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Abstract Automorphism groups of graphs may lead to multiple equivalent
solutions of graph-clustering algorithms and to a certain degree of arbitrari-
ness in selecting one or more solution(s) as well as to problems with partition
comparison measures. Knowledge of the automorphism group is crucial for sta-
bility analysis, for evaluating the degree of arbitrariness involved in selecting a
solution, as well as for a further classification as congruent solutions or struc-
turally equivalent solutions. For this purpose we identify three weak invariants
of group actions of the automorphism group of a graph, namely modularity,
partition type, and the Kolmogorov-Sinai entropy. In particular, we extend the
Kolmogorov-Sinai entropy for measuring the uncertainty in finite permutation
groups and we apply the underlying construction for testing if multiple struc-
turally equivalent solutions exist for a given graph partition.
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1 Introduction

Clustering a graph is an algorithmic technique of finding a partition of the node
set of a graph from the given data of the graph (node set and list of edges)
so that the groups of vertices forming clusters have common properties with
regard to their structure or interrelationship. It is used to find structures in real
networks (e.g. the Internet, social networks, biological and chemical reaction
networks, . . . ) (Fortunato, 2010). The algorithm-focused view on graph clus-
tering already indicates that the solutions of this undertaking are the solutions
of optimization problems that maximize or minimize some local or global cri-
terion (the clustering criterion). The optimum can either be unique or there
exist several equivalent optima which may be structurally identical, “congruent”
(defined later) or a mixture of both. The possibility of multiple equivalent solu-
tions raises the question “What are the true clusters?” (Hennig, 2015). Multiple
structurally identical solutions (generated from the automorphism group of the
graph) provide yet another example of the pervasive problem of multiplicity
which P. Diaconis has identified 30 years ago (Diaconis, 1985).

Finding the automorphism group of a graph is equivalent to the graph iso-
morphism problem. These problems are computationally hard and expensive
(even after more than 35 years of intensive research). McKay’s backtracking al-
gorithm nauty (based on McKay (1981)) in its most recent incarnation is still
one of the most promising practical approaches (McKay and Piperno, 2014).
Weisfeiler (1976) studied algorithmic ideas of attacking the graph isomorphism
problem: In addition to “almost” brute force enumeration (McKay’s approach)
he presented the idea of using graph-invariants which can be computed fast
for pruning the search space. However, only weak invariants were found and
discussed. In the following we present three weak invariants related to graph
clustering which hopefully can be used to reduce the problem complexity:
Modularity, partition type, and the Kolmogorov-Sinai entropy. Two of these
are available directly from a single clustering solution (Sects. 4.1 and 4.2). The
Kolmogorov-Sinai entropy (Sinai (1959), Sect. 4.3) is a concept mainly coming
from the study of ergodic dynamical systems.
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2 Notation and Concepts

As a graph we consider a tuple G = (V,E) with V the set of nodes (or often
called vertices/points) and E ⊂ V ×V the set of edges. In the context of this
paper all graphs are undirected, connected (for every pair of nodes a path be-
tween them exists), unweighted (every edge has no or at least constant weight
set to 1) and has no self edges (loops). Further we define |V | = n < ∞ (finite
graphs) and |E|= m. A partition P(Ω) of a set Ω is a set of subsets Ci ⊆ Ω

having the properties of being complete (
⋃

iCi = Ω ), not having empty subsets
(Ci 6= /0) and being disjoint (Ci∩C j = /0 for all i 6= j). For Ω =V we call P(V )
(or simply P) partition of the graph G = (V,E), the node subsets Ci are called
clusters.

To investigate the problems raised by multiple solutions, we must give some
foundations of permutation groups (see Wielandt, 1964) and derive the def-
inition of graph automorphisms for permutation groups: A permutation is a
bijective function f : Ω →Ω mapping each point αi ∈Ω onto a point βi ∈Ω :(

α1 α2 . . . αn

β1 β2 . . . βn

)
.

For brevity, the cycle notation f = c1c2 . . .ck is often used, each ci =(γi1 γi2 . . . γir)
is a cycle that maps γik onto γik+1 and γir onto γi1 . Single cycles (γ j1) are omitted
in notation. The composition of permutations f ◦g = h is again a permutation
and the mapping is performed from right to left (i.e. h(α) = f (g(α))). We
call a permutation id that maps each point in Ω onto itself the identity and a
permutation f−1 for that f ◦ f−1 = f−1 ◦ f = id the inverse of f . Furthermore
f k := f ◦ . . .◦ f (k times f composed with f ) and f 0 := id. A set of permutation
functions H is called a permutation group if

1. ∀ f ,g ∈ H : f ◦g ∈ H (Closure),
2. id ∈ H (Existence of unit element),
3. ∀ f ∈ H : f−1 ∈ H (Existence of inverse elements) and
4. ∀ f ,g,h ∈ H : f ◦ (g◦h) = ( f ◦g)◦h (Associativity)

holds.
When a permutation group H acts on a graph G, we write G f = (V f ,E f ), f ∈

H where V f := { f (v) | v ∈V}) and E f := {{ f (u), f (v)} | {u,v} ∈ E}. We say
“ f acts on G”. A permutation group is the automorphism group of G (we write
Aut(G)) if and only if G f = G,∀ f ∈ Aut(G) and Aut(G) must be maximal
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(@ f ′ 6∈ Aut(G) : G f ′ = G). A permutation acting on a set Ω also acts on diverse
combinatorial constructions of Ω , such as partitions.

A metric for a space S (with s, t,u ∈ S) is a distance function from S× S
into R+ with symmetry (d(s, t) = d(t,s)), identity (d(s, t) = 0 if and only if
s = t), and where the triangle inequality d(s,u) ≤ d(s, t) + d(t,u) holds. A
pseudometric space S∗,d has a relaxed identity condition (d(s,s) = 0) and,
instead of the space S, the space S∗ which consists of equivalence classes of
subsets of S is used (see Doob, 1994, p. 5).

3 Problems Caused by Multiple Structurally Equivalent Solutions

In this section we illustrate two problems of the presence of multiple struc-
turally equivalent (MSE) solutions for graph clustering:

1. Partition-comparison measures are nonconstant when comparing solutions
from a set of MSE solutions with a cardinality larger than 2.

2. What is the true cluster structure in the MSE solution set? Does the MSE
solution set contain a true cluster structure at all?

3.1 The Problem of Nonconstant Partition-Comparison Measures

Example 1. The Variation of Information (VI, Meilă, 2003) measures the dis-
tance of pairs of partitions and is proven to be a metric by the author. It is defined
as V I(P,P′)=H(P)+H(P′)−2MI(P,P′) where H(P)=−∑i=1,...,|P|

|Ci|
n log |Ci|

n

is the entropy of a partition and MI(P,P′) = ∑C∈P ∑C′∈P′
|C∩C′|

n logn |C∩C′|
|C||C′| is the

mutual information between both partitions.
The three partitions of the C9 (shown in Fig. 1) P= {{v0,v1,v2}, {v3,v4,v5},
{v6,v7,v8}}, R= {{v1,v2,v3}, {v4,v5,v6}, {v7,v8,v0}} and S= {{v2,v3,v4},
{v5,v6,v7}, {v8,v0,v1}} are easily identified as structurally equivalent by
“just looking at the graph” and they have the same optimal modularity (see
Sect. 4.1).

We expect that measures which can identify structurally equivalent partitions
(e.g. P and R above) have a constant distance d(P,R) = 0. The entropy H for all
three partitions is−3 ·(3

9 log2
3
9)=− log2

1
3 = log2 3 and the mutual information

is 3 · (2
9 log2 9 · 2

3·3 +
1
9 log2 9 · 1

3·3) =
2
3 log2 2 = 2

3 (each cluster of one partition
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(a)

v0

v1

v2v3

v4

v5

v6 v7

v8

(b)

v0

v1v2

v3

v4

v5 v6

v7

v8

(c)

Fig. 1 A 2-regular cyclic graph C9. k-regularity means each node vi ∈V has degree k, for undirected
graphs the degree of a node is the number of incident edges deg(vi) := |{e ∈ E | vi ∈ e}|. Every 2-
regular (connected!) graph is automatically a cyclic graph, w.l.o.g. Cn = ({v0, . . . ,vn−1},{{vi,vi+1} |
i,(i+ 1) ∈ Z/nZ}). The permutation f = (v0 v1 . . . v8) maps the representation in (b) to the repre-
sentation in (c)

compared to the three clusters of the other partition has once overlap two and
once overlap one). However, the distances measured by VI yield d(P,P) = 0.0,
but d(P,R) = 1.837, d(P,S) = 1.837, and d(R,S) = 1.837. For a Cn with larger
n, VI will vary with the degree of overlap between clusters.

If d′ is a pseudometric distance function, d′(P,P) = d′(P,R) = d′(P,S) =
. . .= d′(S,S) = 0.0 would hold, as P,R,S ∈ [P] ([P] is the equivalence class).

VI is not a suitable measure for identifying structurally equivalent solutions.
All known distance-, similarity-, or dissimilarity-measures routinely used by
practitioners of cluster analysis are unsuitable for identifying structurally equiv-
alent solutions.

3.2 The Problem of the True Cluster Structure in a Set of MSE
Solutions

Example 2. The graph shown in Fig. 1 has a non trivial automorphism group
|Aut(C9)| > 1 (i.e. not only the identity acts on the graph) and e.g. f =

(v0 v1 . . . v8) ∈ Aut(C9). One can easily check that P = S f = R f 2
(see Ex-

ample 1). The solutions are structurally equivalent as automorphic mappings
define structural equivalency. The automorphism group of the graph is implic-
itly derived from the graph’s structure and it is important to keep in mind that
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this means the properties are present in the graph data and not because they
were subsequently introduced by any assumptions we added.

The existence of a set of MSE solutions poses the question how the cluster
structure found by the cluster algorithm relates to the true cluster structure
and in the case of the example above where the automorphism group acts
nontrivially on all nodes if there exists a true cluster structure at all or if we
may pick one of the solutions P, R, S arbitrarily.

Graph automorphisms are the common cause of both multiplicity problems
illustrated above:

• For partition comparison measures used for the evaluation of cluster solu-
tions, they violate the axiom that d(x,y) = 0 implies that x≡ y, (d is a mea-
sure between two points x and y of some space S). In measure theory, e.g.
Doob (1994) handles this problem formally by replacing this axiom of a met-
ric space by the axiom of pseudometric space which states that d(x,y) = 0
does not imply x≡ y.
In applications, the transformation from a metric space to a pseudometric
space requires the identification of the equivalence classes defined by the
automorphism groups and the replacement of members of an equivalence
class by the “canonical” representative of the class before evaluating the
solution of the cluster problem.

• For the interpretation of the existence and/or nature of the true cluster struc-
ture in a graph we also need to know the automorphism group of the graph.
At least in the natural sciences, group actions are linked to natural laws.

Progress with regard to both problems requires finding the automorphism
group of a graph. Unfortunately, this is equivalent to solving the graph isomor-
phism problem which is still considered a hard problem.

In Sect. 4 we identify three weak invariants of graph automorphisms which
are necessary but not sufficient for structurally equivalent partitions. We suggest
to use them for detecting candidates for non-trivial automorphism functions.

4 Weak Invariants of Graph Automorphisms

An invariant is a condition which is always true up to some transforma-
tions of the input. In our context it is some function m : X → Y for which
m(x) = m(x f )∀ f ∈ Aut(G), x ∈ X holds. X is the space of some combinatorial
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construction of the node set V of G, for our purpose X is the space of all parti-
tions of V . Such a measure is considered weak if a transformation f 6∈ Aut(G)
with m(x f ) = m(y) exists (for any G).

4.1 Modularity: A Measure for Partition Quality

The modularity introduced by Newman and Girvan (2004) is a measure of
quality of some partition P of a graph G. It is defined as the summation over
all clusters Ci ∈ P of the difference of the edge fraction and the expected edge
fraction if the edges would be rewired randomly:

Q(G,P) = ∑
i=1,...,|P|

(eii−a2
i ). (1)

The two components are defined as

eii =
|{{u,v} ∈ E|u,v ∈Ci}|

|E|
(2)

and

ai = eii +
|{{u,v} ∈ E|u ∈Ci,v 6∈Ci}|

2|E|
. (3)

The factor 1
2 in Eq. 3 is important because every edge connecting clusters is

counted once for each incident cluster, therefore twice all in all. Due to the
possibility of iterative computation of Q, starting from a partition of singletons
(clusters consisting of exactly one node), modularity can be used as cluster
criterion (e.g. Ovelgönne et al, 2010). See Fortunato and Barthélemy (2007);
Brandes et al (2008) for additional details.

From Eqs. 2 and 3 it is clear that modularity is computed only on adjacency
information. Because every automorphism f ∈ Aut(G) preserves adjacency by
definition, Q(G,P) = Q(Gg,Pg) holds and proves modularity to be an invariant
measure. However, modularity is only a weak invariant measure, because for
many graphs partitions exist which are structurally different but result in the
same value for Q. For example, consider the clusters C1 = {u1,u2,u3,u4}, C2 =
{w}, and C3 = {v1,v2,v3,v4} which partition the graph shown in Fig. 2. C1 and
C3 are congruent.

We call subgraphs congruent if they have the same number of nodes and
inner edges plus the same connection structure with the rest of the graph.
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w

u1 u2

u3 u4

v1 v2

v3 v4

Fig. 2 A “nearly point-symmetric” graph (around w) where (1) the two clusters formed of the gray
nodes are similar but structurally different and (2) the two two-cluster-partitions formed of the gray
nodes and the center node w (once part of the darker gray, once part of the light gray cluster) have the
same modularity and integer partition but cannot be mapped onto each other by an automorphism of
the graph.

4.2 The Integer Partition

A partition of an integer n ∈N is some series a1,a2,a3, . . . where ∑i ai = n. The
definition of a partition from Sect. 1 was based on sets but if we let ai = |Ci|,
every partition of a set has an associated integer partition which is unique up to
permutation of the objects. For faster comparison we write the integer partition
as sequence (ai1 ,a j2 ,ak3 , . . .) partially ordered by≥ and for brevity we compact
the sequence by writing (a#a,b#b,c#c, . . .) (#x is the count of occurrences of
integer x). E.g. the singleton partition with n elements is denoted by (1n).

Let now t be a function that maps a partition of a set to its integer partition.
We call this the type of the partition and can of course also apply t to partitions
of graphs.

We can make use of the same argumentation as in the previous subsection
because graph automorphisms do not change the adjacency (and are permuta-
tions), the type of a partition does not change: ∀ f ∈ Aut(G) : t(P) = t(P f ) (see
also James, 1978, p. 6). Again, counterexamples can be found where partition
type and modularity are equal but there does not exist an automorphism that
maps the partitions onto each other. This proves the partition type to be only
a weak invariant measure. For example, consider the following two partitions
of the graph shown in Fig. 2: Ĉ1 = {u1,u2,u3,u4,w}, Ĉ2 = {v1,v2,v3,v4} and
C̄1 = {u1,u2,u3,u4}, C̄2 = {v1,v2,v3,v4,w}.
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4.3 The Kolmogorov-Sinai Entropy

In this subsection we introduce the Kolmogorov-Sinai entropy, one of the
concepts for which Sinai received the Abel Prize 2014 (Sinai, 1959). The
Kolmogorov-Sinai entropy is a weak invariant of graph automorphisms. We
show that the Kolmogorov-Sinai entropy (and its computation) provides a diag-
nostic of the stability of a graph with regard to its automorphism group Aut(G).
Computation of the entropy of a point allows the classification of the nodes of
the graph in stable (fixed by the permutations of Aut(G)) and unstable nodes
(moved by the permutations of Aut(G)) with regard to the automorphism group
of the graph.

4.3.1 Definition

Sinai (1959) defined the Kolmogorov-Sinai entropy in the setting of M, a
Lebesgue measure space with σ -algebra S of measurable subsets of M, and a
probability measure µ with an arbitrary automorphism T of M. He investigated
the properties of applying T t-times on a finite partition P = {C1, . . . ,Ck} of
M and what happens to the entropy of h(P) =−∑

k
i=1 µ(Ci) log2 µ(Ci) in the

limit k→ ∞ (Sinai, 2010, p. 3):

Definition 1. The Kolmogorov-Sinai entropy of an automorphism T is the
supremum of hT (P) over all finite partitions P: hT = supP hT (P).

Building on Shannon’s well known entropy definition in Sect. 4.3.2, we
show in detail in Sects. 4.3.3 and 4.3.4 how the Kolmogorov-Sinai entropy is
constructed and computed for the automorphism group Aut(G) of a graph.

4.3.2 Shannon’s Entropy on Symbols and Blocks

In his seminal article on information theory Shannon (1948) measured the
amount of information transmitted over a communication channel as the en-
tropy of the string of symbols . . .x0x1x2 . . . where each xi is an element of a
fixed alphabet A= {a1, . . . ,ak}: If P(ai) is the probability of receiving ai, for all
i = 1, . . . ,k, then the amount of information transmitted per symbol on average
is defined by the entropy H =−∑

k
i=1P(ai) log2P(ai).
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For a general source (e.g. an English text), the probability of receiving a
given symbol depends on what other symbols have already been received. This
dependency structure is captured by blocking symbols into groups: For each k=
1,2,3, . . . let Bk denote the family of all blocks of k-symbols from A. Each block
B in Bk has a certain probability P(B) to be received. The average information
per symbol in a transmission of length k is then

Hk =−
1
k ∑

B∈Bk

P(B) log2P(B) (4)

and the entropy of the source for an infinite symbol stream exists (Petersen,
1983, p. 231) and is

h = lim
k→∞

−1
k ∑

B∈Bk

P(B) log2P(B). (5)

4.3.3 Kolmogorov-Sinai Entropy for Aut(G)

To better point out what happens when automorphisms act on a graph and how
nodes (identified by their labels vi) wander through a partition, we additionally
assign to each node an arbitrary color υi ∈V . The function col : V →V outputs
the color of a node, the function lab : V →L the label (or name of a node).
Automorphisms of a graph can be seen as permutations of the labels or as
permutations of the colors. This is a consequence of the internal representation
of a node as a pair of identifiers: Its color and its label. If we fix the colors, we
apply permutation functions from Aut(G) only to the labels (and the other way
round). This can be imagined as a concrete representation of the graph on a two
dimensional plane where the circles that represent nodes have a fixed position
(identified by their color) and Aut(G) permutes the labels under the conditions
we defined in Sect. 2.

A measure-preserving system (X ,X ,µ,T ) consists of a probability space
(X ,X ,µ) and a measure-preserving transformation T on it: T : X → X is
a measurable transformation on the probability space for which ∀C ∈ X :
µ(T−1(C )) = µ(C ) holds.

The measure-preserving system (X ,X ,µ,T ) for the cyclic graph C4 in
Fig. 3 and g = (v1 v2 v3 v4) is set up in the context of graph automorphisms
by the following:

1. The set X is the set V of nodes,
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2. the sigma-algebra X is the set of all subsets of V . We denote a subset of X
as Ci,

3. µ(Ci) is the probability that an element v ∈V is in subset Ci, and
4. T : X → X is the graph automorphism g.

An element v ∈V is in subset Ci exactly when col(v) = Ci.
Figure 3 shows how we attach a finite state machine f s to the automorphism

g of the graph C4 which is partitioned as P = {C1,C2}. We tacitly assume
that partitions have a canonical labeled representation (which we did by the
coloring of nodes), the technical details of canonical labeling (called painting
by Rudolph) can be found e.g. in Rudolph (1990).

The elements of the finite alphabet A are the names (symbols) of the subsets
C1 and C2 in the partition P . The function sym(subset) prints the name of the
subset. The state space of the finite state machine f s (constructed for P and
g) is A. The state transition function of f s is defined as follows: At time t the
finite state machine f s prints out symbol Ci if node v is in partition Ci after t
applications of g, short:

f s(vgt
) = sym(Ci), if vgt ∈ Ci. (6)

v1

v2v3

v4

C1

C2

(a) State 0 (Cg0

4 ):

Output symbol f s(vg0

1 ) = C1
Symbol stream S0,0 = C1

v1v2

v3 v4

C1

C2

(b) State 1 (Cg1

4 ):

Output symbol f s(vg1

1 ) = C2
Symbol stream S0,1 = C1C2

v1

v2 v3

v4

C1

C2

(c) State 2 (Cg2

4 ):

Output symbol f s(vg2

1 ) = C2
Symbol stream S0,2 =C1C2C2

Fig. 3 A C4 with the group action g= (v1v2v3v4) and the partition {C1,C2}with a finite state machine
f s which reports the symbol of the cluster a node is member of after 0,1,2 applications of g. The
symbol stream we can observe starting from time 0 to t is denoted S0,t

Of course, we can compute the probability P(v j ∈ Ci) that a certain element
v j is in a certain subset Ci of the finite partition P after t applications of the
group action. In Fig. 3 and Table 1 we write P(· |S0,t) to point out that the
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t 0 1 2 3 4 5 6 7 8 . . . ∞

Action v1g0 v1g1 v1g2 v1g3 v1g4 v1g5 v1g6 v1g7 v1g8 . . . v1g∞

State v1 C1 C2 C2 C1 C1 C2 C2 C1 . . . . . . C1 | C2

Pt(v1 ∈ C1 |S0,t) 1 1
2

1
3

1
2

3
5

1
2

3
7

1
2 . . . . . . 1

2
Pt(v1 ∈ C2 |S0,t) 0 1

2
2
3

1
2

2
5

1
2

4
7

1
2 . . . . . . 1

2
H(P,v1,gt) 0 1 0.918 1 0.970 1 0.985 1 . . . . . . 1

Action v2g0 v2g1 v2g2 v2g3 v2g4 v2g5 v2g6 v2g7 v2g8 . . . v2g∞

State v2 C2 C2 C1 C1 C2 C2 C1 C1 . . . . . . C1 | C2

Pt(v2 ∈ C1 |S0,t) 0 0 1
3

1
2

2
5

1
3

3
7

1
2 . . . . . . 1

2
Pt(v2 ∈ C2 |S0,t) 1 1 2

3
1
2

3
5

2
3

4
7

1
2 . . . . . . 1

2
H(P,v2,gt) 0 0 0.918 1 0.970 0.918 0.985 1 . . . . . . 1

Action v3g0 v3g1 v3g2 v3g3 v3g4 v3g5 v3g6 v3g7 v3g8 . . . v3g∞

State v3 C2 C1 C1 C2 C2 C1 C1 C2 . . . . . . C1 | C2

Pt(v3 ∈ C1 |S0,t) 0 1
2

2
3

1
2

2
5

1
2

4
7

1
2 . . . . . . 1

2
Pt(v3 ∈ C2 |S0,t) 1 1

2
1
3

1
2

3
5

1
2

3
7

1
2 . . . . . . 1

2
H(P,v3,gt) 0 1 0.918 1 0.970 1 0.985 1 . . . . . . 1

Action v4g0 v4g1 v4g2 v4g3 v4g4 v4g5 v4g6 v4g7 v4g8 . . . v4g∞

State v4 C1 C1 C2 C2 C1 C1 C2 C2 . . . . . . C1 | C2

Pt(v4 ∈ C1 |S0,t) 1 1 2
3

1
2

3
5

2
3

4
7

1
2 . . . . . . 1

2
Pt(v4 ∈ C2 |S0,t) 0 0 1

3
1
2

2
5

1
3

3
7

1
2 . . . . . . 1

2
H(P,v4,gt) 0 0 0.918 1 0.970 0.918 0.985 1 . . . . . . 1

Table 1 A group action g = (v1 v2 v3 v4) of Aut(C4) as a state transition function of the dynamical
system shown in Fig. 3. A column corresponds to the t-th transition of the evolving system. Each
column shows for all of the four node labels vi of the partitioned graph from Fig. 3 in which state
it is after the t-th transition. Furthermore, the probability distributions for the two states (Pt(· |S0,t)
where S0,t is the observed symbol stream) and the derived entropy (H(·)) are denoted. Of course,
only some of the first steps are shown as the system evolves infinitely often. When the system tends
to infinity, we can see in the last column that state probabilities are equally distributed which leads to
the maximum possible entropy!

probabilities are computed conditionally on the observed symbol stream S0,t .
For the rest of this paper we omit this notation. Table 1 shows the first few steps
of this construction. The entropy of the partition P = {C1, . . . ,Ck} at v j for
g ∈ Aut(G) is

H(P,v j,g) =−
k

∑
i=1

P(v j ∈ Ci) log2P(v j ∈ Ci). (7)

For example, what is the entropy of the partition P at v4 for g for t = 6?
From Table 1, H(P,v4,g6) = 0.985. And for t = ∞? The answer is provided
by Birkhoff’s pointwise ergodic theorem (Birkhoff, 1931):
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Theorem 1. Let (V,X ,µ) be a probability space, g : V → V a measure pre-
serving transformation and f ∈ L1(V,X ,µ). Then limt→∞

1
t ∑

t−1
i=0 f (vgi

) = f (v)
exists almost everywhere.

We state Birkhoff’s theorem without proof. For proofs we refer either to
Birkhoff’s original paper (Birkhoff, 1931) or Petersen (1983, pp. 27-33). We
illustrate the working of the dynamic system for the cyclic graph C4 with the
partition P = {C1,C2} and the action g of Aut(C4) in Table 1. The group
action g is measure preserving. In Table 1 we also show three examples for the
f (v), namely the relative frequencies that a node vi is in subset C1 or C2 at time
t (Pt(vi ∈ C1) and Pt(vi ∈ C2)) and the entropy of this distribution H(P,vi,gt).
By the pointwise ergodic theorem, all three functions converge.

The entropy of nodes vi (i = {1,2,3,4}) for partition P is 1 and so is the
entropy of partition H(P,g) (that is H(P,v,gt) for t→∞, ∀v∈V ). Informally,
this is the average entropy of the 4 symbol streams generated by g at the 4 nodes.
The entropy of the partition P for the group action g is

H(P,g) =
1
n

n

∑
j=1

H(P,v j,g). (8)

We define a second state transition function: At time t the finite state machine
f s prints out a symbol Ci for each node v ∈V if node v is in partition Ci after t
applications of g (i.e. four symbols for the C4, one for each node):

f s(V gt
) =

(
f s(vgt

1 ), . . . , f s(vgt

n )
)T

. (9)

Following Petersen (1983, p. 233) we introduce the usual notation in ergodic
theory: The partitions α = {A1, . . . ,An} and β = {B1, . . . ,Bm}. We define α ∨
β = {Ai ∩B j | i = 1, . . . ,n; j = 1, . . . ,m; Ai ∩B j 6= /0}. β is a refinement of α

denoted as β ≥ α if each B j is up to a set of measure 0 a subset of some Ai.
The symbol stream generated by f s(V g j

) for j = 0, . . . , t−1 corresponds to
the set

⋂t−1
j=0 Ag j

i j
which is an element of the partition α

t−1
0 =

∨t−1
j=0 αg j

(the least

common refinement of the partitions α , αg, . . . , αgt−1
).

We use in the following the standard notation for partitions used in ergodic
theory with the tacit understanding that they get replaced by the corresponding
symbol stream on which we compute the entropy.

According to Petersen (1983, p. 233), the block entropy in (4) is Hk =
1
k H(α ∨αg ∨ . . .∨αgk−1

) and the entropy of the source of (5) is h(α,g) =
limk→∞

1
k H(α ∨αg∨ . . .∨αgk−1

).
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h(α,g) is a measure of the average uncertainty per unit of time we have about
which element of the partition α a node will enter next under the action of the
automorphism g. And, obviously, we are interested in the maximal uncertainty
over all finite state processes (partitions) associated with g (the Kolmogorov-
Sinai entropy of g):

h(g) = sup
α

h(α,g). (10)

The size of h(g) reflects the degree to which g disorganizes the space. h(g)
is an isomorphism invariant of g and it is a weak one.

4.3.4 Computation of the Kolmogorov-Sinai Entropy

In Rokhlin and Sinai (1961), Rokhlin proposed a denumerably infinite sequence
of increasingly refined partitions tending to a partition of points for studying
isomorphisms of stationary stochastic processes.

v1

v2v3

v4

C1 C2

C3C4

(a) Singleton partition P(1n)

v1

v2v3

v4

C1

(b) Trivial Partition P(n1)

Fig. 4 The two partitions are both special: The singleton partition results in the maximum possible
entropy and the trivial partition has the minimum possible entropy of zero (not only for this but for
every graph)

For the case of a finite permutation group, we get a finite chain of increas-
ingly refined partitions, with two special partitions, namely the singleton (point)
partition P(1n) and the trivial partition P(n1). For the trivial partition for any
group action g, the finite state machine of the dynamical system produces a con-
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stant symbol stream. Therefore, h(P(n1),g) = 0. P(n1) is always the coarsest
partition possible. We show examples of both special partitions in Fig. 4.

The entropy of P(1n) with k= n singletons and a group action g which moves
all nodes is H(P(1n),g) =

1
n ∑

n
j=1
(
−∑

k
i=1P(v j ∈ Ci) log2P(v j ∈ Ci)

)
and for a

system with k states with equal probability, this reduces to H(P(1n),g) = log2 k.
The symbol stream produced by the action vgt

on P(1n) observed at some
vertex in a cycle of a permutation is . . .C1C2C3C4C1C2C3C4 . . . and thus
H(P(14),g) = log2 4 = 2. The chain P(41) ≤ P(22) ≤ P(212) ≤ P(14) for
our example has the following sequence of entropies: H(P(41),g) = 0 <
H(P(22),g) = 1 < H(P(212),g) = 1.5 < H(P(14),g) = 2. Therefore, the
Kolmogorov-Sinai entropy for the example shown in Fig. 3 is hC4(g) = 2. The
(test) partition associated with the Kolmogorov-Sinai entropy is the coarsest
partition at which the Kolmogorov Sinai entropy of the group action is maxi-
mal.

Until now, we have computed the Kolmogorov-Sinai entropy for a single ac-
tion of the automorphism group Aut(G). To extend the computation of the
Kolmogorov-Sinai entropy to characterize the whole automorphism group
Aut(G) with maximal uncertainty we redefine the second finite state machine
so that at time t an action of Aut(G) is randomly selected (we use rand(Aut(G))
to denote this) and the finite state machine f s prints out a symbol Ci for each
node v ∈V if node v is in partition Ci after t applications of rand(Aut(G)):

f s(V rand(Aut(G))t
) =

(
f s(vgt

1 ), . . . , f s(vgt

n )
)T

, g = rand(Aut(G)). (11)

The definition of the Kolmogorov-Sinai entropy for a source which generates
a symbol stream by the finite state machine (11) is then:

h(α,Aut(G)) = lim
k→∞

1
k

H(α ∨α
rand(Aut(G))∨ . . .∨α

rand(Aut(G))k−1
) (12)

and

h(Aut(G)) = sup
α

h(α,Aut(G)). (13)

The Kolmogorov-Sinai entropy of the automorphism group of a graph is the
average entropy of the symbol stream defined above. αKS is any partition with
h(αKS,Aut(G)) = h(Aut(G)). In practice, h(Aut(G)) is computed by taking the
average of h(g) for all g ∈ Aut(G):
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h(Aut(G)) =
1

|Aut(G)| ∑
g∈Aut(G)

h(g). (14)

The computation of the Kolmogorov-Sinai entropy of Aut(C4) is shown in
Table 2. Note, that αKS = P(14) for the C4 and h(Aut(C4)) = 1.

gi ∈ Aut(C4) h(g)
g1 = id 0
g2 = (v1 v2 v3 v4) 2
g3 = (v1 v4 v3 v2) 2
g4 = (v1 v3) 0.5
g5 = (v2 v4) 0.5
g6 = (v1 v4)(v2 v3) 1
g7 = (v3 v4)(v1 v2) 1
g8 = (v1 v3)(v2 v4) 1

h(Aut(C4))
8
8 = 1

Table 2 Computation of h(Aut(C4)) for the partition αKS which is the singleton partition shown in
Fig. 4a. The left column denotes the permutations that form the automorphism group, the right column
shows the entropy for each permutation. In the last row we show the entropy of the whole group which
is calculated with Eq. 14

Of course, we are also interested in the entropy of a single node. By averag-
ing over all group actions of Aut(G) (or of one of its subgroups) instead of the
nodes (Eq. 8) we get

H(P,v,Aut(G)) =
1

|Aut(G)| ∑
g∈Aut(G)

H(P,v,g). (15)

If H(αKS,v,Aut(G))> 0 then the node v is unstable.
Computing the Kolmogorov-Sinai entropy for a group action, a subgroup or

a group as described until now is a formidable task because of the necessity
to search the partition for which h(Aut(G)) (or h(g)) is the supremum over all
partitions (see Eqs. 13 and 10).

Fortunately, Aut(G) is a finite permutation group represented by a set of
permutation functions in cycle form as in Table 2 and Aut(G) is known. In this
case we can compute the limits directly from the finite cycle structure of the
group action: The cycles define how nodes are permuted. After a finite number
of applications of a permutation function the original state is reached and all
nodes in the cycle have been moved once. We call the set of nodes moved by a
group action the orbit of the group action.
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All nodes on the orbit of the group action are moved, all other nodes stay
fixed (have an entropy of 0). All nodes in a cycle have the same entropy and
the length of the cycle l determines the entropy: The probability that a node is
in a certain position on the cycle is 1

l in the limit.

Permutation of label Permutation of color
Measures instability of the graph Measures instability of the test partition

H(P,v,g4) lab(vg3
4 ) lab(vg2

4 ) lab(vg1
4 ) lab(vg0

4 ) Cell col(vg0
4 ) col(vg1

4 ) col(vg2
4 ) col(vg3

4 )

1.0 (v3 v1) (v3 v1) v1 C1 C1 C2 C1 C2
0.0 v2 v2 v2 v2 v2 C2 C2 C2 C2 C2
1.0 (v1 v3) (v1 v3) v3 C2 C2 C1 C2 C1
0.0 v4 v4 v4 v4 v4 C1 C1 C1 C1 C1

h(g4) = 0.5

H(P,v,g6) lab(vg3
6 ) lab(vg2

6 ) lab(vg1
6 ) lab(vg0

6 ) Cell col(vg0
6 ) col(vg1

6 ) col(vg2
6 ) col(vg3

6 )

1.0 (v4 v1) (v4 v1) v1 C1 C1 C1 C1 C1
1.0 (v3 v2) (v3 v2) v2 C2 C2 C2 C2 C2
1.0 (v2 v3) (v2 v3) v3 C2 C2 C2 C2 C2
1.0 (v1 v4) (v1 v4) v4 C1 C1 C1 C1 C1

h(g6) = 1.0

Table 3 Applying group actions g4 and g6 to the labels (nodes) and to the colors (clusters) of the
C4 in state 0 in Fig. 3. Start reading from the center Cell column. To the right, the symbol stream of
clusters/colors is shown. To the left, the symbol stream of nodes/labels is shown.

Table 3 shows the symbols streams generated by g4 and g6 and illustrates
how h(g4) and h(g6) in Table 2 are computed. The table also illustrates that we
have defined two types of measures:

1. h(g) and h(Aut(G)) (the Kolmogorov-Sinai entropy of a group action on a
graph and of the automorphism group of a graph) are invariant measures of
the instability of the graph. Entropies above zero indicate potential instabili-
ties and multiple equivalent solutions of cluster algorithms.

2. h(α,g) and h(α,Aut(G)) are the Kolmogorov-Sinai entropy of a graph par-
tition with regard to a group action and with regard to the automorphism
group of a graph. Table 3 shows that the partition shown in state 0 in Fig. 3
detects the instability caused by g4 but not the instability caused by g6. These
measures can be used to diagnose the stability of the best solutions found by
cluster algorithms.
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4.4 Applications to Graph Clustering

We conclude with two examples of a straightforward application of the ergodic
constructions used in the computation of the Kolmogorov-Sinai entropy to
graph cluster analysis. Given a graph G, its automorphism group Aut(G), and
POPT the optimal partition found by a graph clustering algorithm:

1. If h(Aut(G)) = 0, then no structurally equivalent solutions with the same
value of the cluster criterion exist. However, congruent solutions may exist.

2. If h(POPT ,Aut(G)) = 0, then POPT is compatible with GAut(G). This means
that with regard to Aut(G) the optimal solution found by the cluster algorithm
is unique: No other structurally equivalent solution with the same value of
the cluster criterion exists.

3. If h(POPT ,Aut(G)) > 0, then some of the group actions in Aut(G) move
nodes between clusters of POPT , the solution found is unstable and multiple
structurally equivalent solutions (which can be enumerated with the help of
Aut(G)) exist.

4. h(POPT ,Aut(G)) is an invariant measure of the instability of G with regard
to the partition POPT .

For Zachary’s karate network K (Zachary, 1984, Fig. 5), the modularity-
optimal partition (with Q(K,POPT ) = 0.4198, Ovelgönne et al, 2010) is

POPT = {{10,4,5,6,16},{17,21,12,11,1,3,0,7,2,19,13},
{29,33,30,8,26,32,9,14,15,22,18,20},{25,24,23,27,31,28}}

and Aut(K) has three non-trivial subgroups, namely G1 = Sym(Ω1) with
Ω1 = {14,15,18,20,22}, G2 = Sym(Ω2) with Ω2 = {17,21}, and the sub-
group G3 = {(),(4 10)(5 6)}. All three non-trivial subgroups are contained
in the clusters of POPT , in detail Ω1 ⊂ C3, Ω2 ⊂ C2 and G3 acts on nodes in
C1. The finite state machine (11) produces a constant symbol stream for POPT

and h(POPT ,Aut(K)) = 0. Nonetheless, h(Aut(K)) ≈ 0.29. The node entropy
for any node u ∈Ω1 is H(αKS,u,Aut(K))≈ 1.38 and the node entropy for any
node w ∈ {4,5,6,10,17,21} is H(αKS,w,Aut(K)) = 0.5. For all other (stable!)
nodes v, H(αKS,v,Aut(K)) = 0.

Finally we present some useful test partitions for a graph and provide exam-
ples for the karate network in Table 4

1. The finest partition β with entropy zero (@α ≥ β : h(β ,Aut(G)) = 0 ∧
h(α,Aut(G)) = 0): Any coarser partition than β also has entropy zero, there-
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Fig. 5 The karate network which represents relationships between members of a karate club that
Zachary (1977) analyzed. The four clusters of the modularity-optimal solution are connected by the
dashed edges, nodes moved by automorphisms a drawn with thick border

fore if POPT is a coarsening of β it is a stable solution. The partition βK

shown in Table 4 is a refinement of the optimal graph clustering partition
(POPT ≤ βK) which proves that POPT is stable.

2. The coarsest partition α which has maximum entropy (h(α,Aut(G)) =
h(Aut(G))): All finer partitions have also maximum entropy. This partition
may not be unique. The partition αK in Table 4 is not invariant with regard
to Aut(K).

3. A special coarsest partition γ ≥ α that is invariant and therefore unique. The
difference between αK and γK in Table 4 is that in αK nodes that are moved
by different subgroups are in the same cluster.

Partition Value for the karate network
βK {{0},{1},{2},{3},{4,10},{5,6},{7},{8},{9},{11},{12},{13},{14,15,18,20,22},

{17,21},{16},{19},{23},{24},{25},{26},{27},{28},{29},{30},{31},{32},{33}}
αK {{16,0,1,2,3,7,11,12,13,19,23,24,25,27,28,31,8,9,26,29,30,32,33,14},

{6,4,15,17},{5,10,18,21},{20},{22}}
γK {{16,0,1,2,3,7,11,12,13,19,23,24,25,27,28,31,8,9,26,29,30,32,33},{6,4},{5,10},

{17},{21},{14},{15},{18},{20},{22}}

Table 4 Three test partitions for the karate network K that have different properties: βK is the finest
possible partition with zero entropy, αK is an example of a coarsest possible partition with maximum
entropy and γK also has maximum entropy but is invariant with regard to Aut(K)
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5 Conclusion and Further Research

In this paper we have introduced three weak invariants of actions of the auto-
morphism group of a graph, namely the modularity measure, the graph partition
type and the Kolmogorov-Sinai entropy for sets of actions of Aut(G). For finite
permutation groups, we have presented a constructive method of computing the
Kolmogorov-Sinai entropy from the group actions of a permutation group.

We have given a formal definition of the stability of graph cluster solutions
with regard to the automorphism group of the graph. This definition of stability
requires no further assumptions but relies only on the inherent symmetries of
the graph.

In addition, we have defined two types of invariant Kolmogorov-Sinai en-
tropy measures: one for the instability of a graph and the second for the in-
stability of a partition. These measures address the problems of MSE solu-
tions for graph clustering in several ways: h(Aut(G)) > 0 implies that MSE
solutions may exist. However, MSE solutions for POPT exist, if in addition
h(POPT ,Aut(G))> 0. The second type of measures is based on the idea of test
partitions underlying the general construction the Kolmogorov-Sinai entropy
for ergodic dynamic systems. These measures are used to test if the optimal
partition found by a clustering algorithm is unique or if multiple structurally
equivalent partitions exist. At the moment, this requires the computation of the
optimal partition by a graph clustering algorithm and the computation of the
automorphism group of the graph.

An analysis of the node entropies shows where the graph is unstable and can
be used to visualize the extent of the instability of the graph.

What remains to be done is to directly integrate stability diagnostics with
graph clustering algorithms. We see modularity and the partition type (as
byproducts of (hierarchical) graph clustering algorithms) as properties useful
in finding candidate partitions from which graph permutation functions can be
identified efficiently. We plan to use the Kolmogorov-Sinai entropy for ana-
lyzing a sample of dendrograms from efficient, randomized ensemble learning
modularity clustering algorithms (see Ovelgönne and Geyer-Schulz, 2013).
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