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Abstract In educational theories, e.g., learning spaces, mastery dependencies
between test items are represented as reflexive and transitive binary relations,
i.e., quasi-orders, on the item set of a knowledge domain. Item dependencies
can be used for efficient adaptive knowledge assessment and derived through
exploratory data analysis, for example by algorithms of item tree analysis. To
compare item tree analysis methods, typically large-scale simulation studies
are employed, with samples of randomly generated quasi-orders at their basis
and assumed to underlie the data. In this context, a serious problem is the fact
that all of the algorithms are sensitive to the underlying quasi-order structure.
Thus, it is crucial to base any simulation study that aims at comparing the
algorithms in a reliable manner on representative samples, meaning that each
quasi-order in the population is equally likely to be selected as part of a sample.
Suboptimal sampling strategies were considered in previous studies leading to
biased conclusions. In this paper, we discuss sampling techniques that allow us
to generate representative, or close to representative, random quasi-orders. The
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item tree analysis methods are compared on ten items with a representative,
large sample of quasi-orders, thereby supporting their invariant ordering.

1 Introduction

Hierarchies among items represented by reflexive, transitive binary relations,
i.e., quasi-orders, on item sets are an important concept of knowledge or learn-
ing space theory (Doignon and Falmagne, 1999; Falmagne and Doignon, 2011).
As a model of the mastery implications between the questions or problems of a
psychological or educational test, quasi-orders can be used to design efficient
adaptive, computer-based knowledge assessment and training procedures. The
Assessment and Learning in Knowledge Spaces (ALEKS) system1 is a fully
automated math tutor on the internet (e.g., see Falmagne et al, 2013).

The basic idea of this approach is that knowledge in many domains, e.g.,
mathematics, is organized in a hierarchical structure. Some pieces of knowledge
can only be learned successfully, if other more basic pieces of knowledge are
already mastered. In this sense, pieces of knowledge, and hence the items or
problems used to measure them, may imply one another and be organized in a
reflexive and transitive relation, a quasi-order, which is also called a surmise
relation in knowledge or learning space theory. The following example with a
test of six elementary algebra problems shown in Fig. 1 may help to illustrate
the main idea.

Item tree analysis (ITA) is a data mining technique that tries to extract logical
implications between binary variables (Schrepp, 1999, 2003; Sargin and Ünlü,
2009). The goal of ITA is to reconstruct, by exploratory analysis of a collection
of observed noisy response patterns due to careless errors or lucky guesses, the
underlying or true quasi-order structure of the between-item implications in a
knowledge domain under reference. The general scheme of ITA-type methods
is as follows (for details, see Schrepp, 1999; Sargin and Ünlü, 2009):

1. Generating the selection set of competing quasi-orders.
2. Using some criterion for assessing the fit of each candidate quasi-order to

the data.
3. Choosing the “best” fitting quasi-order.

1 www.aleks.com

www.aleks.com
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a. A car travels on the freeway at an average speed of 52
miles per hour. How many miles does it travel in 5 hours
30 minutes?

b. Using the pencil, mark the point at the coordinates (1,3).
c. Perform the multiplication 4x4y4 ·2x ·5y2 and simplify as

much as possible.
d. Find the greatest common factor of 14t6y and 4tu5y8. Sim-

plify as much as possible.
e. Graph the line with slope −7 passing through (−3,−2).
f. Write an equation for the line that passes through the point

(−5,3) and is perpendicular to the line 8x+5y = 11.

Fig. 1 A plausible surmise relation on the domain {a, . . . , f}. For instance, the mastery of problem e
implies the mastery of problem b.

Inductive ITA (Schrepp, 1999; Sargin and Ünlü, 2009) was developed as an
improvement of an initial algorithm by Van Leeuwe (1974). Software for the
ITA methods are the Windows program ITA 2.02 (Schrepp, 2006) and the
platform independent R package DAKS3 (Ünlü and Sargin, 2010).

Why are representative random quasi-orders important? Large-scale simula-
tion studies have been employed to evaluate and compare the quality of ITA-
type item hierarchy mining techniques for recovering the posited true quasi-
orders. In a recent work by Ünlü and Schrepp (2015b), it was seen that, in order
to design principled simulation studies for reliable and sound comparisons, the
essential and difficult task is to draw unbiased samples of quasi-orders for the
simulations. The samples taken must be representative for the population or
the set of all possible reflexive and transitive binary relations, in the sense that
each drawn quasi-order is contained in a sample with the same probability.
In particular, Ünlü and Schrepp (2015b) found that using non-representative
quasi-order samples yielded biased or erroneous simulation results regarding
the recovery and coverage qualities with the ITA algorithms.

This can be explained by the fact that there is the dependency of the ITA
algorithms on the discrete structure of the underlying quasi-order (Ünlü and
Schrepp, 2015a,b). Such dependencies result from a complex interplay between

2 www.jstatsoft.org/v16/i10
3 www.jstatsoft.org/v37/i02
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the structure of the quasi-order and the response error probabilities. For some
structural types of orders it may be easier to detect the correct implications than
for others. Representative quasi-order or surmise relation samples will produce
the least biased results when generalizing the findings obtained from simulation
studies to the population of all quasi-orders.

2 Random Quasi-order Generation: The Problem

The problem addressed can be described as follows. Presuppose a set Q of n
test items. We aim at randomly creating, using a random process, a sample of
quasi-orders, which is representative, in the sense that each quasi-order on Q
has the same probability to be included in this sample.

Definition 1. Let the set of all quasi-orders on Q be denoted by QO(n). Let
X ⊂ QO(n) be a non-empty, randomly generated subset of quasi-orders on
Q. We call X a representative sample if P(≤1∈ X) = P(≤2∈ X) for any two
quasi-orders ≤1 and ≤2 in QO(n).

In particular, such a sample X is “proportionally representative” in terms of
the distributions of quasi-order size, quasi-order width, and quasi-order height
in the population. These are the evaluation criteria that we will use in this paper
to assess representativeness.

The following remarks are pertinent to the discussion and were motivated
by critical comments made by a reviewer.

1. The problem of sampling quasi-orders can be put in the broader context of
the random generation of complex combinatorial or discrete-mathematical
structures (e.g., Beckenbach, 1964; Harary and Palmer, 1973; Nijenhuis and
Wilf, 1978; Roberts and Tesman, 2009). There, the primary focus has been on
the enumeration or counting, than actually the representative construction,
for example, of various kinds of graphs. Literature in the field that were
addressing the generation of combinatorial structures uniformly at random
studied this for structures other than the quasi-orders, and for the unlabeled
case. For example, Dixon and Wilf (1983) and Kerber et al (1990) introduced
an algorithm for the uniform generation or selection of unlabeled general
graphs. This algorithm cannot be directly applied in the present context. In
fact, it seems that we have contributed with this paper to the theory of graphs.
Quasi-orders correspond to transitive directed graphs (or finite topologies),
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and it is their counts for different numbers of points that has been determined
in the literature only, rather than developing an algorithm for uniformly, or
representatively, constructing them, as we have done with the present work.
The publications probably closest to the subject of quasi-orders are the works
by Brinkmann and McKay (2002, 2005) and Pfeiffer (2004), who “merely”
counted quasi-orders or deterministically constructed, with no randomization
considered, unlabeled partial orders. This is not directly applicable, too.
However, from the foregoing we can conclude with an interesting direction
for future research. Labeled quasi-order sampling appears to be much easier
to accomplish than the corresponding unlabeled problem. In the unlabeled
case, there is more symmetry and the isomorphism problem involved. Thus,
research is needed to explore to what extent the published approaches in the
context of the random generation of combinatorial or discrete-mathematical
structures can help in developing techniques for the representative sampling
of quasi-orders in the unlabeled case.

2. Representative samples are essential in statistics. Based on the well-known
statistical theory of survey sampling (e.g., Cochran, 1977; Pedigo and Buntin,
1994; De Leeuw et al, 2008; Gideon, 2012; Thompson, 2012), myriads of
theoretical and applied results have been published in numerous problem
areas, including genetic programming, resampling methods, experimental
design, social surveys, and educational large-scale assessment studies.
In spite of this repertoire of widely-used statistical sampling techniques,
it is worth noting that the problem of constructing representative samples
of axiomatically-defined combinatorial objects cannot be solved by simple
application of these tools. A general framework for a principled sampling
theory for mathematical structures such as the quasi-orders appears to be
different from the common statistical theory of survey sampling. Sampling
mathematical structures typically includes preparatory combinatorial work
and thus necessitates the provision of this paper’s type of algorithm. For
example, approaches similar to the simple random and stratified sampling,
the two basic statistical techniques used in surveys, have been practically not
feasible or lacking in the context of sampling quasi-orders. In this paper, we
will discuss one possible algorithm for the uniform selection of labeled quasi-
orders (Sect. 3). The idea underlying this technique may also be applied
when samples of other ordered structures are needed. In such cases, many
“random” generation processes generally exhibit non-linear biases.
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2.1 Representative, But Infeasible, Direct Sampling Methods

Though theoretically implying representative samples, from a practical point
of view, the following methods are not feasible in realistic settings for higher
item numbers.

Census-like Uniform Sampling: The direct method for drawing a represen-
tative sample of quasi-orders on a set of n items is by creating all quasi-
orders, storing them, and then uniformly sampling from them.
This only works for small n, since the number of quasi-orders increases very
rapidly with n. On n = 6 items, we have 209,527 (labeled) quasi-orders.
This number increases to 9,535,241 / 642,779,354 / 63,260,289,423 /
8,977,053,873,043 for n = 7 / 8 / 9 / 10 items, respectively.

Entry-wise Uniform Sampling: All off-diagonal entries of the relational
matrix are randomly filled, and the diagonal entries are set rii := 1 for all i.
Exemplified with n = 3 items, the respective entries are marked: r11 := 1 r12 r13

r21 r22 := 1 r23
r31 r32 r33 := 1

 .

Here r12,r13,r21,r23,r31,r32 ∼iid Bernoulli(1/2), where Bernoulli(1/2) is
the Bernoulli distribution with success (i.e., ri j = 1) probability p = 1/2,
and iid stands for “independent and identically distributed.” The resulting
random reflexive binary relation is retained if it satisfies transitivity.
This procedure as well becomes infeasible in n. The proportions of quasi-
orders among all reflexive relations very rapidly decrease with increasing
item numbers n: there are 2n(n−1) reflexive relations, and for 6≤ n≤ 10, the
proportions of transitive and reflexive relations are 1.95 ·10−4, 2.17 ·10−6,
8.92 ·10−9, 1.34 ·10−11, and 7.25 ·10−15, respectively.

2.2 Flexible, But Non-representative, Ad-hoc Sampling Strategies

Previous studies tried to avoid this problem by implementing ad-hoc procedures.
These procedures are flexible and fast to compute. However, they generally lack
representativeness of the created sets of random quasi-orders.
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Normal Parametric Sampling: In Sargin and Ünlü (2009) the following
procedure was used:

1. The process starts with the diagonal that contains exactly the reflexive
item pairs (i, i) for i = 1, . . . ,n.

2. All other pairs are added to the diagonal with a probability δ , thereby
yielding a relation R. The probability δ itself is drawn randomly from
a normal distribution with µ = 0.16 and σ = 0.06. Values less than 0 or
greater than 0.3 are set to 0 or 0.3, respectively.

3. The transitive closure of R is the resulting random quasi-order.

Uniform Parametric Sampling: The above random process is an improve-
ment of a previous procedure that drew δ based on a uniform distribution
from the interval 0 to 0.4, or 0 to 1, which yielded non-representative samples
with overly represented large quasi-orders (see Sargin and Ünlü, 2009).

An appreciation of the difference in the representativeness of the quasi-order
samples can be obtained from Fig. 2. Histogram and kernel densities show
the lack of representativeness of the normal parametric sampling procedure, in
contrast to a true simple random sample drawn according to the census-like
uniform sampling method.

2.3 Biased Conclusions Due To Suboptimal Sampling

This difference in the representativeness of the sampling methods has a negative
impact in the comparison of the ITA algorithms (Ünlü and Schrepp, 2015b). It
biases the findings. For example, Figs. 3 and 4 show the dist values (symmetric
differences between the derived and true quasi-orders, i.e., the numbers of item
pairs that differ) used to compare and evaluate the ITA algorithms concerning
their qualities to recover the true quasi-orders underlying the simulations.

If a representative mechanism for sampling the quasi-orders such as the
census-like uniform sampling is employed, consistently the same ranking of
the ITA algorithms can be observed. This ranking of the ITA algorithms may
be deemed invariant, where in any of the panels in Fig. 4, the three curves are
ordered increasingly from green, to red, and to blue, along the entire x-axis of
error probabilities. Thus, the minimized corrected algorithm performs slightly
better than the corrected, and the corrected algorithm significantly improves
on the original procedure. That ranking among the ITA methods may also be
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Fig. 2 Top panel: For six items, histogram and kernel density estimate (in blue) of quasi-order sizes
for 1,000 random δ values sampled according to the normal parametric method. In gray, the true
distribution is shown. Averages over 100 quasi-orders were generated for each of the 1,000 δ values
and are plotted. Obtained quasi-order sizes deviate from the sizes expected for a representative sample.
Bottom panel: Histogram and kernel density estimate (in green) of quasi-order sizes for 10,000 quasi-
orders drawn without replacement and with equal probability from the set of all 209,527 quasi-orders
based on six items. This random sample taken according to the census-like uniform sampling matches
the true distribution (in gray). However, it is obtained with extra cost of computation and storage,
which becomes infeasible for larger number of items.
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Fig. 3 Average dist values under the three existing original (blue), corrected (red), and minimized
corrected (green) ITA algorithms, as a function of error probability {0.03;0.05;0.08;0.10;0.15;0.20}
conditioned on sample size {50;100;200;400;800;1,600;6,400}. Panels “norm” are for nine items
with normal parametric sampling. For each combination of error probability and sample size, averages
over 1,000 random quasi-orders drawn according to the normal parametric method are reported.

considered to be plausible theoretically. According to Sargin and Ünlü (2009),
the corrected algorithm was introduced as estimation-correcting improvement
on the original, and the minimized corrected algorithm as a further-optimized
variant based on the corrected estimators.

In contrast, with a suboptimal sampling strategy, like the normal parametric
technique, ordering reversals or discrepancies between the ITA methods prevail,



10 Ali Ünlü and Martin Schrepp

error probability
3, 5, 8, 10, 15, 20 [in %]

di
st

0

2

4

6

8

50
rand

100
rand

200
rand

400
rand

800
rand

1600
rand

6400
rand

Fig. 4 Average dist values under the three existing original (blue), corrected (red), and minimized
corrected (green) ITA algorithms, as a function of error probability {0.03;0.05;0.08;0.10;0.15;0.20}
conditioned on sample size {50;100;200;400;800;1,600;6,400}. Panels “rand” are for six items with
census-like uniform sampling. For each combination of error probability and sample size, averages
over 1,000 random quasi-orders drawn according to the census-like uniform method are reported.

thereby biasing the expected invariant algorithm ordering. For example, based
on non-representative quasi-order samples, the curves intersect in the “norm”
panels in Fig. 3, where with small error probabilities (e.g., 3% and 5%) the
blue curve for the original algorithm lies consistently below the red and green
curves for the corrected and minimized corrected algorithms, respectively. In
addition, the “norm” panels for the large sample sizes (e.g., 1,600 and 6,400)
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show that the corrected algorithm yielded lower dist values compared with the
minimized variant.

3 Inductive Uniform Extension Technique

The sampling technique discussed in this section is inductive (Schrepp and
Ünlü, 2015). It describes a procedure for generating a representative set of
quasi-orders on n+1 items, on the basis of prior constructed quasi-orders on n
items. The technique relies on the notion of a random reflexive extension.

Given a trace quasi-order R on the items 1, . . . , l, we construct a random
reflexive extension of it, on the items 1, . . . , l, l+1, which extends the relational
matrix rR of R with a new (l + 1)th row and (l + 1)th column, retaining the
original values of rR otherwise, and which fills these new entries randomly.
Exemplified with l = 2, for a trace adjacency matrix rR of dimension 2×2, the
randomly filled new entries are marked: r′13rR r′23

r′31r′32 r′33 := 1


(l+1)×(l+1)

and r′13,r
′
23,r

′
31,r

′
32 ∼iid Bernoulli(1/2).

Definition 2. The uniform extension approach is defined inductively.

Anchoring: The inductive procedure starts with a representative sample of
quasi-orders, including the case of the complete inventory of all possible
quasi-orders, on a sufficiently small number of items, say l.

Inductive Step: Presuppose a representative sample of quasi-orders on n≥ l
items, QO(n)⊂QO(n). For each quasi-order in QO(n), we compute a pre-
specified number z of random reflexive extensions. Non-transitive random
extensions are excluded, and the transitive extensions are added to a new
collection of quasi-orders on n+1 items, QO(n+1)⊂QO(n+1).

For example, the inductive procedure can be anchored by using the set of
all 355 quasi-orders on four items, or with a simple random sample of 1,000
quasi-orders drawn from all of the 209,527 quasi-orders for six items. Optional
modifications are possible. The duplicates can be removed from QO(n+ 1)
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depending on the envisaged application, or QO(n+ 1) may be reduced to a
simple random sample of feasibly limited size, when this inductive construction
is repeated several times—e.g., starting with the set of all four quasi-orders on
two items, to create a representative sample consisting of 1,000 quasi-orders
on ten items.

It can be proved (Schrepp and Ünlü, 2015) that this method yields representa-
tive samples of random quasi-orders according to Definition 1. More precisely,
if ≤1 and ≤2 in QO(n+ 1) are any two quasi-orders on Q = {1, . . . ,n+ 1},
and X = QO(n+1) is generated according to the proposed inductive procedure,
then P(≤1∈ X) = P(≤2∈ X).

4 Results

To evaluate the quality of the inductive sampling technique, we investigated
how representative the created quasi-order samples are on a set of six items. We
also compared the ITA procedures based on a representative sample of 10,000
random quasi-orders on ten items drawn utilizing this sampling technique.

4.1 Quality of Representativeness

Throughout the simulation study six items were used.

1. We generated 100 random samples (or trials) each of sample sizes of 100,
1,000, and 5,000 quasi-orders for six items, which we compared with the
set of all 209,527 quasi-orders possible on six items.

2. Beside the size or cardinality (i.e., the number of item pairs in relation) of
a quasi-order ≤, the following properties were also used as the criteria for
representativeness of the samples:

width, the size of a longest anti-chain in ≤, and
height, the size of a longest chain in ≤.

3. We started sampling with the set of all four quasi-orders on two items, i.e.,
the anchoring was with l = 2. The inductive step was employed four times,
thereby yielding random quasi-orders on n = 6 items.

4. The computations were made with a C program on a computer with an Intel
Core i5 2.50 GHz processor.
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Fig. 5 The proportions of size computed in the population of all quasi-orders (unfilled black circle)
compared with the means of the proportions of size computed over 100 trials in each of the samples
of 100, 1,000, and 5,000 quasi-orders (filled blue, green, and red circles, respectively).

The estimated and true distributions of the sizes, widths, and heights are
shown in Figs. 5, 6, and 7, respectively. The Kolmogorov distances of the
estimated and true distributions are summarized in Table 1. We see that the
simulation results approximate the true values very well, especially with larger
sample sizes.
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Fig. 6 The proportions of width computed in the population of all quasi-orders (unfilled black circle)
compared with the means of the proportions of width computed over 100 trials in each of the samples
of 100, 1,000, and 5,000 quasi-orders (filled blue, green, and red circles, respectively).

Table 1 Kolmogorov distances of the estimated and true distributions

Sample size (quasi-orders)

100 1,000 5,000
Criterion

Size 0.015 0.014 0.006

Width 0.012 0.009 0.003

Height 0.013 0.011 0.005
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Fig. 7 The proportions of height computed in the population of all quasi-orders (unfilled black circle)
compared with the means of the proportions of height computed over 100 trials in each of the samples
of 100, 1,000, and 5,000 quasi-orders (filled blue, green, and red circles, respectively).

4.2 Representative Comparison of ITA Algorithms

Running the inductive uniform extension technique, a representative sample
consisting of 10,000 random quasi-orders was drawn from the population of all
possible 8,977,053,873,043 quasi-orders on ten items. Based on this sample
of postulated true mastery hierarchies among the ten questions (cf. Sect. 1),
the original and corrected ITA algorithms (Schrepp, 1999; Sargin and Ünlü,
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Table 2 Average dist values obtained under the original (first line) and corrected (second line) ITA
algorithms, based on a representative sample of 10,000 quasi-orders for ten items with inductive
uniform extension sampling

Sample size (response patterns)

100 1,000 5,000
τ

0.01 6.09 5.12 5.20
3.22 1.43 1.30

0.05 7.51 5.82 5.46
5.26 2.09 1.81

0.10 17.29 20.31 20.17
8.24 4.13 3.61

0.15 21.58 22.80 22.88
11.32 7.69 7.27

2009) were compared regarding their performance when reconstructing the
underlying relational dependencies between the items from simulated noisy
response data. Currently, for such a high number of items, the ITA algorithms
have not been compared based on a representative sample, in a reliable manner.

Table 2 reports the average symmetric differences, i.e., the means of the
10,000 dist values between the underlying quasi-orders of the representative
sample and the ITA data analysis solutions (Sect. 2.3). The response error
probability τ of the data generating latent variable model was specified with
values of 0.01, 0.05, 0.10, and 0.15. The sample size varied among 100, 1,000,
and 5,000 response patterns.

We can see from Table 2 the invariant ordering of the ITA methods that
was mentioned in Sect. 2.3. Based on a representative mechanism for sampling
the quasi-orders, consistently over all simulation settings the same ranking
of the ITA algorithms can be observed. The corrected algorithm significantly
improves on the original procedure. As compared to a suboptimal sampling
strategy, in this study using representative random quasi-orders on ten items no
ordering reversals between the two ITA methods do prevail.

Furthermore, in contrast to the original ITA algorithm, the modifications
made with the corrected procedure yield solutions that improve constantly with
increasing sample size. If we compute the quantity (distτ,n1−distτ,n2)/distτ,n1 ,
where n1 < n2, as the percentage change in dist with increasing sample size,
for the corrected ITA method, this measure attains solely positive values, with
the median of 0.43. For the original algorithm, the measure does take negative
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values too, and the median of the changes with increasing sample sizes is 0.00.
Thus, with the corrected ITA method, there is a relative reduction of the mean
dist values, approximately at an average of more than 40%, within a range of
response error probabilities as more data become available.

The mean dist value computed over the twelve simulation conditions may be
used as a gross location measure for the average number of misclassified item
pairs, which is 4.78 for the corrected algorithm, and 13.35 for the original. In
fact, the simulation results indicate “asymptotic convergence” and suggest that
the corrected algorithm may reconstruct the true quasi-orders sufficiently well,
“asymptotically” in increasing sample size or with decreasing random errors.

5 Conclusion

Representativeness of random quasi-orders drawn and postulated to underlie
item hierarchy mining related simulation studies is an important requirement
for reliable comparison of ITA-type data analysis methods. In this paper, we
have recapitulated techniques for sampling quasi-orders on psychological or
educational item sets. In particular, we have discussed the inductive uniform
extension approach that allows creating representative samples of quasi-orders
even for higher item numbers. The invariant ordering of the ITA algorithms has
been supported on ten items with a representative, large sample of quasi-orders.

In further research, representative quasi-order samples can be employed to
investigate the properties of ITA, independent of specific sample characteristics.
An important research direction is to develop procedures for the construction
of all quasi-orders on an item set, which could be made probabilistic to yield a
process for sampling representative, or close to representative, quasi-orders.
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