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1 Introduction

During the last decades, financial extreme events have substantially gained the at-

tention of academics, financial practitioners and the general public, e.g. Embrechts

et al. (1999), Poon et al. (2004), Taleb (2007). Financial regulators have recognized

the importance of unforeseeable financial crashes to the stability of the financial

system: As is demanded in the Third Basel Accord, banks should "explicitly con-

sider extreme events in stress testing", (BIS 2010, p. 47). Prominent examples of

financial extremes are the Black Tuesday 1929, the Black Monday 1987, and, re-

cently, the turmoils of the Subprime Crises starting October 2008. These crises

are initiated and characterized by extreme price movements — a first step in un-

derstanding, cushioning and even predicting extreme risk in financial markets is

a thorough quantification thereof. Statistically, an event is extreme if it is so rare

that one cannot expect to have witnessed its occurrence in a given sample. Extreme

value statistics provides tools which can, nonetheless, consistently quantify proba-

bilities of such unforeseen events. The usefulness of one–dimensional extreme value

statistics in quantitative finance is well documented, in particular for the estima-

tion of extreme risk measures such as the Value at Risk, see McNeil & Frey (2000).

Multi–dimensional extreme value methods measure the dependence between occur-

rences of one–dimensional extremes, and, ultimately, can approximate probabilities

of multivariate extreme events. Yet, the scarcity of relevant extremal observations is

a statistical challenge that complicates robust estimation of multivariate extremes.

Multivariate extreme value methods, however, have only recently found their way in

financial risk management, see Poon et al. (2004), Straetmans et al. (2008).

This thesis contributes to the statistical assessment of multivariate (financial) ex-

treme events. We contribute to this venture by proposing four statistical tools that

reveal risk patterns that were so far ignored, misjudged or unheard of in quanti-

tative risk management. Our new statistical tests improve the understanding of

linkages between at least two extremes. We study their theoretical properties, ver-

ify them in practically relevant simulation experiments, and, finally, apply the tests

1



1 Introduction

to real financial data. Empirical applications unravel specific data anomalies that

were unidentified, or, at least, underestimated as of yet. To attend this matter, we

employ and enhance methods from multivariate extreme value statistics. While our

applications focus on dependencies of extremes in financial markets, the proposed

tests are not limited to finance, but can also be applied in other fields where joint

extreme events are of interest, i.e. as hydrology, meteorology, oceanography, or en-

gineering.

The particular contributions of this thesis are as follows. In Chapter 2, we develop a

statistical test for the question whether the standard pairwise approach to measure

dependence of extreme events is appropriate in high–dimensional settings. Typically,

to assess the dependence between several extremes — so–called tail dependence —

of a cross–section of financial assets, only tail dependencies for all two–dimensional

pairs are quantified. Our test investigates whether this approach is valid, or if one

underestimates the risks of joint occurrences of three or more extreme events. We

term extreme events in dimension three or higher higher order tail dependencies
(HOTDs). Statistical properties of the test are discussed and validated in a Monte

Carlo simulation study. We identify satisfying test properties both for i.i.d. data and

serially dependent time series data. In an empirical application with international

stock market indices, we find that a solely pairwise approach mostly ignores a sub-

stantial part of tail risk, and that this share has steadily increased during the last

two decades. While HOTDs occur less frequently on a global level, tail dependence of

European financial markets is substantially characterized by HOTDs. This implies

fewer diversification opportunities of purely European portfolios and the need for

truly multi–dimensional tail models.

The test in Chapter 3 compares dependence between two two–dimensional tails, e.g.

tail dependence of joint losses versus joint gains within a two–dimensional portfolio,

or joint losses (gains) between two two–dimensional portfolios. Such extreme risk

comparisons are of particular importance for efficient asset allocation which heavily

depends on optimal risk diversification. While there already exist methods to address

this question, we find our test approach to be slightly more powerful in standard

situations. For non–standard, asymmetric types of tail dependence, our test is out-

standingly more powerful as competing tests oversimplify tail structures, and omit

asymmetries. Importantly, our test localizes sample events for which both tails differ

the most. Also, our test is tailored to financial data, which is often serially dependent.

Test properties are derived and also verified in a Monte Carlo simulation. Studying
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pairs of S&P500 industries and foreign exchange rates, we establish tail asymmetry

is more severe than expected, and that non–standard tail dependence causes com-

peting tests to misjudge the degree of tail inequality. In particular, the most common

test type, based on the scalar–value tail dependence coefficient, misses up to 20% of

tail dependence differences solely due to non–standard tail events.

The test type in Chapter 4 studies if a single two–dimensional tail is symmetric with

respect to its one–dimensional components, i.e. we test against so–called intra–

tail (a)symmetry. We propose a non–parametric and a parametric testing approach.

Again, test properties are provided and validated in a Monte Carlo simulation study.

For the most relevant foreign exchange rate pairs, we find time periods where nearly

20% of bivariate tails are indeed intra–tail asymmetric, i.e. of non–standard type.

This implies, that in such cases, standard dependence models, such as symmetric

copulas, are inconsistent. As a result, by pre–testing against asymmetries, our test

can improve parametric risk modeling.

Lastly, Chapter 5 extends the ideas of Chapter 3 to comparisons of entire dependence

structures of bivariate distributions. Theoretical test properties are illustrated in a

Monte Carlo Simulation. Due to its computational simplicity, this test is especially

suited for massive data sets. We study high–frequency return pairs with respect

to the dynamics of their dependence structure. By localizing sample events where

dependence typically changes over time, we find that current ways of modeling time

variation in dependence structures do not account for the most time sensitive parts

of the dependence.

Chapter 2 is joint work with Melanie Schienle and Julia Schaumburg and has been

published in the Journal of Financial Econometrics, Bormann et al. (2016). Chapter

3 is joint work with Melanie Schienle. Chapters 4 and 5 are single–authored.
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2 Beyond dimension two: A test for higher
order tail risk
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This chapter is based on Bormann et al. (2016).

Abstract

In practice, multivariate dependencies between extreme risks are often only assessed

in a pairwise way. We propose a test for detecting situations when such pairwise

measures are inadequate and give incomplete results. This occurs when a significant

portion of the multivariate dependence structure in the tails is of higher dimension

than two. Our test statistic is based on a decomposition of the stable tail dependence

function describing multivariate tail dependence. The asymptotic properties of the

test are provided and a bootstrap–based finite sample version of the test is proposed.

A simulation study documents good size and power properties of the test, including

settings with time–series components and factor models. In an application to stock

indices for non–crisis times, pairwise tail models seem appropriate for global markets

while the test finds them not admissible for the tightly interconnected European

market. From 2007/08 on, however, higher order dependencies generally increase

and require a multivariate tail model in all cases.

Keywords: decomposition of multivariate tail dependence, multivariate extreme val-

ues, stable tail dependence function, extreme dependence modeling
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2 Beyond dimension two: A test for higher order tail risk

2.1 Introduction

Studying extreme co–movements in multidimensional systems is a key concern in

finance and insurance. However, tail dependence structures of multivariate distri-

butions are mostly treated in bivariate setups, see for instance Poon et al. (2004)

and Klugman & Parsa (1999), but also Straetmans et al. (2008), Li (2013), Rodriguez

(2007), among many others. Pairwise simplification is not only standard when ana-

lyzing financial systems, but is also widely used for studying extreme environmental

and weather risks (see de Haan & de Ronde (1998) and Ghosh (2010)). This is due

to the fact that, in practice, bivariate models are more easily tractable and com-

putationally more appealing. But also from a theoretical point of view, statistical

properties of a large group of estimators are only known up to dimension two (Coles

& Tawn (1991), Joe et al. (1992), de Haan et al. (2008), Guillotte et al. (2011)). Yet,

for a variety of empirical settings, there are periods of time during which a pairwise

approach is too restrictive, as joint extremes occur in cross–sections of dimension

three or higher. In particular during the recent financial crisis, markets became in-

creasingly dependent. The financial contagion literature provides a lot of evidence

that the major part of this rising interconnectedness was due to complex higher or-

der interdependencies, which could not have been detected by standard pairwise tail

dependence measures (see, e.g., Longstaff (2010), Brunnermeier & Pedersen (2009)).

In such situations, the most common bivariate measures for tail dependence, such

as the tail dependence coefficient (see Straetmans et al. (2008), Poon et al. (2004),

Hartmann et al. (2004)), bivariate copulas (see, e.g. Li (2013), Rodriguez (2007), and

references therein), or simple product moment correlation coefficients and correla-

tion matrices, fail to explicitly account for a large amount of the complex dependence

structure among extreme risks in the system. This leads to severe underestimations

of the effects of extreme co–movements. For a discussion of the limitations of com-

mon bivariate measures of dependence, see also Embrechts (2009) and Mikosch

(2006).

We propose a test that indicates whether pairwise modeling of multivariate tail de-

pendence of a d–dimensional random vector X = (X(1), ..., X(d)) with d > 2 is adequate,

or whether it implies significantly different and thus incomplete tail dependence

structures. The test is based on the stable tail dependence function (STDF), which

was first introduced in Huang (1992). See also de Haan & Ferreira (2006) and Ein-

mahl et al. (2012). The STDF maps the univariate tails of a random vector to their
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2.1 Introduction

joint limit distribution, and, therefore, completely describes their extremal depen-

dence structure. It is a general and flexible concept of tail dependence and allows

for straightforward non–parametric estimation, bearing a smaller risk of model mis-

specification than alternative parametric approaches. Furthermore, its statistical

properties are well understood for X of dimension beyond two (Einmahl et al. (2012),

Bücher et al. (2014)). Moreover, its rather conservative definition of multivariate

extreme events fits the needs of (financial) risk management (Segers (2012)).

The main idea of the test is to decompose the STDF for X into probabilities of uni-

variate extreme events, the STDFs of all possible bivariate pairs within X, and a

remainder term capturing extreme events in dimensions three to d. We refer to the

latter as higher order tail dependencies (HOTDs), and denote tail events as mul-

tivariate when they comprise three or more extremes in the cross–section. If an

estimate of the remainder term is not significantly different from zero, we conclude

that tail dependence in dimension d can be captured sufficiently well by analyzing

only bivariate tails. However, if we reject the null hypothesis that HOTDs have no

influence, ignoring high–dimensional joint extreme events leads to underestimation

of the actual tail risk dependence, which is then driven by a substantial portion of

joint extremes in dimension three and higher. The asymptotic properties of the test

statistic are derived and a bootstrap implementation scheme for finite samples is

proposed. Simulation studies with standard multivariate risk structures for i.i.d.

and ARMA–GARCH cases document good size and power properties of the test in

finite samples. Moreover, our simulations highlight the need to filter the data from

conditional heteroscedasticity before applying the test to financial time series.

Our empirical application deals with the influence of HOTDs in international stock

markets. Asset allocation and portfolio diversification, as well as systemic risk as-

sessment, require a most accurate picture of tail dependencies between financial

markets. Univariate tail losses within a portfolio can be diversified by holding tail in-

dependent assets. Bivariate tail dependence eliminates such tail risk diversification

opportunities between two assets, as large losses tend to occur simultaneously. The

same reasoning applies to higher–dimensional tail risk: Whenever extreme losses of

three or more assets coincide, multivariate tail risk cannot be diversified anymore.

Ang & Chen (2002), Poon et al. (2004), Chollete et al. (2011) and others estimate

bivariate tail measures for indices of international stock markets. The common con-

clusion is that lower bivariate tails, i.e. bivariate extreme losses, are dependent,

especially intra–continentally. Right tails, however, tend to be independent. We test

9



2 Beyond dimension two: A test for higher order tail risk

for HOTDs within two separate sets of stock market indices. In a global portfolio

including US, Asian–Pacific and European stock indices, we find no evidence for

HOTDs in both left and right tails, until the rise of the financial crisis of 2007. This

finding suggests that global tail diversification possibilities are limited ever since,

a finding that has also been made by Christoffersen et al. (2012) using a dynamic

copula approach. Testing against HOTDs in a multi–country European portfolio, we

find strong evidence for HOTDs during the last decades, which can only partly be ex-

plained by serial correlation, time variation, and a factor reflecting the development

of global markets. Our results therefore contribute to the empirical international fi-

nance literature in three points. First, we find that the extent of intra–European tail

dependence is more severe than discovered in former contributions. Second, higher

order tail effects in European markets are time–varying, and have increased during

the recent financial crisis. Third, multivariate effects in extreme losses on the global

level become relevant in the course of the financial crisis, while extreme gains are

largely not affected by HOTDs. We conclude our empirical application by quantifying

the share of HOTDs in tail dependence. We find time periods in which up to 70% of

all bivariate extreme events are in fact multivariate. Also, in recent years, this share

has doubled for losses and even tripled for gains on the European portfolio.

The rest of this chapter is organized as follows. Section 2.2 discusses necessary con-

cepts from multivariate extreme value theory. Section 2.3 introduces and formalizes

test idea, test asymptotics and finite sample implementation. Finite sample prop-

erties are studied in Section 2.4. Section 2.5 studies HOTDs between international

stock indices. Section 2.6 concludes. The Appendix contains supplementary and

theoretical results.

2.2 Multivariate dependence in extreme tails

For our analysis of extreme risks, we use techniques from multivariate extreme

value theory which we introduce and motivate in the following. Denote by X :=

(X(1), ..., X(d)) a d–dimensional random vector with continuous joint cumulative dis-

tribution function (CDF) FX(x),x := (x(1), ..., x(d)). Its univariate marginal CDFs are

denoted by Fj(x
(j)), j = 1, ..., d. Suppose we observe a sample of n i.i.d. draws from

the random vector X, collected in the (n × d) sample matrix X = (X
(1)
n , ...,X

(d)
n ) with

X
(j)
n = (X

(j)
1 , ..., X

(j)
n ), j = 1, ..., d. We write max(X

(j)
n ) = max(X

(j)
1 , ..., X

(j)
n )′ for the sam-

ple maximum of margin j. For each marginal, we assume that there exist normal-

10



2.2 Multivariate dependence in extreme tails

izing constants a(j)
n ∈ R+, b

(j)
n ∈ R, j = 1, ..., d, and a limiting distribution GX(x), such

that

lim
n→∞

P

(
max(X

(1)
n )− b(1)

n

a
(1)
n

≤ x(1), ...,
max(X

(d)
n )− b(d)

n

a
(d)
n

≤ x(d)

)
= GX(x), (2.1)

for all continuity points of GX(x). Then, GX(x) is a multivariate extreme value dis-

tribution, and FX(x) is said to be in the domain of attraction of GX(x), which is

denoted by FX ∈ D(GX), see de Haan & Ferreira (2006) and Resnick (1987). Neces-

sary and sufficient conditions for FX ∈ D(GX) can be found in de Haan & Resnick

(1977), Beirlant et al. (2004, p.287), de Haan & Ferreira (2006), and Resnick (1987).

Throughout, we assume that they are fulfilled. In general, closed–form expressions

for GX(x) do not exist. Equation (2.1) can be written as

lim
n→∞

FnX (a(1)
n x(1) + b(1)

n , ..., a(d)
n x(d) + b(d)

n ) = GX(x), (2.2)

implying that the univariate marginals converge individually to one–dimensional ex-

treme value distributions Gj(x(j)), which have the standard Fisher–Tippett form

lim
n→∞

Fnj (a(j)
n x(j) + b(j)n ) = Gj(x

(j)) = exp
(
−(1 + γ(j)x(j))−1/γ(j)

)
, j = 1, ..., d, (2.3)

where γ(j) denotes the tail index (shape parameter) of margin j (Fréchet (1927),

Fisher & Tippett (1928), Gnedenko (1943)). An equivalent formulation of Equation

(2.2), with (2.3) holding true for all margins, is given by the concept of the stable

tail dependence function (STDF) of X, denoted by `X(x) or `(x) , see Huang (1992),

Einmahl et al. (2012). Equivalent characterizations of GX(x), and thus `(x), can be

obtained via the spectral measure and the exponent measure (de Haan & Ferreira

2006, Chapter 6) but are less intuitive in interpretation and decomposition. The

STDF `(x) : Rd 7→ R+ is defined as

`(x) = − logGX

x(1)−γ
(1)

− 1

γ(1)
, ...,

x(d)−γ
(d)

− 1

γ(d)

 .
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2 Beyond dimension two: A test for higher order tail risk

The STDF describes the complete dependence structure of the tails of the univariate

marginals. One can express `(x) as

`(x) = lim
t→0

t−1P
( d⋃
i=1

{F−1
i (1− tx(i)) ≤ X(i)}

)
, t ∈ R+. (2.4)

The stable tail dependence function (STDF) is an asymptotic measure which can

be interpreted as the scaled asymptotic probability that at least one element of X
exceeds an extreme quantile, that is, X(i) exceeds F−1

i (1 − tx(i)), as t → 0. From this

representation, a direct non–parametric estimate of the STDF can be derived. Also,

`(x) can be decomposed into component STDFs of dimensions lower than d.

There is a rich statistical literature on general properties of the STDF and its esti-

mators (e.g. Huang (1992), Dietrich et al. (2002), Einmahl et al. (2006), Drees et al.

(2006), Einmahl et al. (2012), Bücher et al. (2014)). Importantly, the STDF is a con-

vex function and homogeneous of degree one, i.e. `(λx) = λ`(x) for λ ∈ R. Moreover,

`(x) ∈ [max(x),x′1 =
∑d

i=1 x
(i)] with 1 representing a d–vector of ones. The lower (up-

per) bound is attained if X is perfectly tail dependent (independent), that is, extremes

of univariate marginals always (never) occur simultaneously (Beirlant et al. (2004),

de Haan & Ferreira (2006)). Numerical values of `(x) close to max(x) indicate that

tails of X are strongly interconnected. Values of `(x) close to x′1 mark the opposite.

Tail (in)dependence is often also denoted as asymptotic (in)dependence. In practice,

perfect tail dependence is rare.

It is important to note the connection, but also the difference, of the STDF to the so–

called tail copula which is a closely related metric for tail dependence. The (upper)

tail copula of X is defined as

Λ(x) = lim
t→0

t−1P
( d⋂
i=1

{F−1
i (1− tx(i)) ≤ X(i)}

)
. (2.5)

It only considers joint exceedances to characterize tail dependence, see Schmidt &

Stadtmüller (2006). Sibuya (1960), Joe (2001) and Coles et al. (1999) analyze bivari-

ate tail dependence by means of the tail dependence coefficient, which corresponds

to the bivariate TC at the point x = (1, 1). Roughly speaking, it describes the ten-

dency of two random variables to jointly exceed a high threshold. In two dimensions,

there is a one–to–one mapping between the tail copula and the STDF. Due to the

lack of natural ordering in higher dimensions, however, the definition of a multivari-

12



2.3 A new test for higher order tail dependence

ate extreme event depends on the research objective. There are several reasons why

we prefer the STDF over the tail copula for our purpose: Firstly, the tail copula cap-

tures only (the most extreme) parts of the multivariate tail dependence in dimensions

d > 2, while the STDF completely describes it (see Subsection 2.3 for the relationship

between the two). Secondly, a practical issue for large d is that joint d–dimensional

exceedances are rarely observed in finite samples. Unless a sample contains an

observation with all marginals being extreme, the tail copula indicates tail indepen-

dence. That is, the TC only considers the most extreme events when all marginals

are simultaneously extreme, and disregards more likely tail events. Conversely, the

STDF incorporates events in which a single component of X becomes extreme, and

hence finite samples provide more relevant observations. Segers (2012) interpret

`(x) as ”trouble in the air”, whereas Λ(x) only considers events as extreme when

”the sky is falling”. The STDF is therefore an important ingredient for a conservative

risk monitoring approach, in the sense that not only the most extreme extremes are

considered.

2.3 A new test for higher order tail dependence

2.3.1 Test idea and asymptotic properties

We aim to detect the share which HOTDs contribute to overall tail dependence.

Hence, we decompose the STDF for dimension d into tail copulas for dimensions

two to d. In dimension d = 2, from Equation (2.4) we have that `(x) is the limiting

probability of a union of two events; since P(A ∪ B) = P(A) + P(B) − P(A ∩ B) for

events A and B. Therefore, we have `(x(1), x(2)) = x(1) + x(2) − Λ(x(1), x(2)). For similar

decompositions in arbitrary dimension 2 < d < ∞, additional notation is required.

For I ⊂ {1, ..., d}, define the subvectors X(I) := (X(i))i∈I ,x
(I) := (x(i))i∈I , and accord-

ing STDFs as `I(x(I)). Then, in R2<d<∞, using the inclusion–exclusion principle, we

have

`(x) =

d∑
i=1

x(i) −
∑
i<j≤d

Λij(x
(i,j)) +

∑
h<i<j≤d

Λhij(x
(h,i,j))− ...+ (−1)d+1Λ(x)︸ ︷︷ ︸

=:A

, (2.6)

where A denotes the portion HOTDs contribute to ”global” tail dependence in X,

that is, the tail dependence of the entire random vector X. Provided that global tail

13



2 Beyond dimension two: A test for higher order tail risk

dependence is only caused by bivariate extreme events, i.e. by the first two terms

of Equation (2.6), A equals zero. In this case, higher dimensional joint extremes

are irrelevant. When substituting Λij(x
(i), x(j)) = x(i) + x(j) − `ij(x(i), x(j)), i < j ≤ d,

Equation (2.6) yields

`(x) = (2− d)
d∑
i=1

x(i) +
∑
i<j≤d

`ij(x
(i,j)) +A, (2.7)

which decomposes global tail dependence into asymptotic probabilities for univariate

extremes and STDFs for any bivariate combination and HOTDs.

Using Equation (2.7) we can test whether extreme events in dimensions larger than

two have a statistically significant impact, that is, if two–dimensional tails explain

tail dependence in dimension d > 2 sufficiently well. Formally, if A = 0, we have

∆ := `(x)− (2− d)
d∑
i=1

x(i) −
∑
i<j≤d

`ij(x
(i,j)) = 0. (2.8)

In this case, bivariate extreme relations are sufficient for capturing the full global

tail dependence. Hence, the null hypothesis, that the impact of higher order tail

dependencies is negligible, can be formulated as

H0 : ∆ = 0. (2.9)

If ∆ substantially deviates from zero, the null is rejected. With x = 1, it is possible to

show that ∆ ∈ [0,
∑d−2

i=1 i], d > 2.

The following proposition clarifies that testing for ∆ = 0 is not equivalent to testing

whether X is tail independent. Thus, multivariate distributions exist which are glob-

ally tail dependent but have ∆ = 0. Hence their global tail dependence is exclusively

caused by bivariate tails. A test for tail independence is proposed in Draisma et al.

(2004).

Proposition 2.1. a
If X is tail independent,1 then ∆ = 0. The reverse does not hold.

This can, e.g., be easily shown for the family of distributions which we use in the

simulation setting in Section 2.4.

1I.e. if all bivariate tails of X are tail independent.
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2.3 A new test for higher order tail dependence

In order to apply the test, we have to estimate the STDF of X, `X, and the STDFs for

bivariate pairs, `ij. Let X(i)
n:m denote the m–th largest order statistic of margin X(i),

and let 1(C) be the indicator function for event C. In Equation (2.4), replacing the

running variable t by k/n and the extreme quantiles F−1
i (1 − tx(i)) by X

(i)

n:n+0.5−kx(i)

we use the following non–parametric estimator for the STDF (see Huang (1992) and

Einmahl et al. (2012))

̂̀(x) =
1

k

n∑
i=1

1
{ d⋃
j=1

{X(j)
i ≥ X

(j)

n:n+0.5−kx(j)}
}
, n→∞, k →∞, k

n
→ 0, (2.10)

x = (x(1), ..., x(d)). Under some technical conditions, the empirical process
√
k(̂̀(x) −

`(x)) converges to a sum of a centered Gaussian field and univariate centered Gaus-

sian processes with given covariance structure (Einmahl et al. (2012), Bücher et al.

(2014)). If X is asymptotically independent, ̂̀(x) is still asymptotically normal but

with degenerate variance (Hüsler & Li 2009). Note, ̂̀(x) is invariant against mono-

tone transformations. For simplicity, we fix x = 1, which is standard in the applied

extreme value literature, see e.g. Hartmann et al. (2004). In this case, for each

marginal, the threshold equals X(i)
n:n+0.5−k. The asymptotic distribution of ̂̀(1) simpli-

fies to √
k
(̂̀(1)− `(1)

)
d→ N(0, σ2̂̀),

where closed form expressions of σ2̂̀ can be reconstructed from Theorem 4.6 in Ein-

mahl et al. (2012). Plugging ̂̀(1) into ∆ yields the empirical test statistic

∆̂ := ̂̀(1)− 2d+ d2 −
∑
i<j≤d

̂̀
ij (1) . (2.11)

These considerations lead us to the asymptotic distribution of the test statistic,

which is stated after stating necessary assumptions.

Assumptions 2.1. Assume FX ∈ D(GX). Furthermore, let the following assumptions
hold:

(A1∆) There exists a constant β > 0 such that for t ↓ 0 it holds that t−1P(
⋃d
i=1 F

−1
i (1 −

tx(i)) ≤ X(i)) = `(x) +O(tβ) uniformly on the unit simplex in Rd.

(A2∆) The threshold parameter k → ∞ for n → ∞ with k = O(n2β/(1+2β)) with β from
(A1∆).
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2 Beyond dimension two: A test for higher order tail risk

Proposition 2.2. Under (A1∆) and (A2∆), it holds that

√
k(∆̂−∆)

d→ N(0, σ2
∆̂

), (2.12)

where σ2
∆̂

is the sum of all entries of the covariance matrix of(̂̀(1), (̂̀ij(1, 1))i<j≤d

)
.

The proof can be found in the Appendix. Assumption (A1∆) imposes that t−1P(
⋃d
i=1 F

−1
i

(1 − tx(i)) ≤ X(i)) exists for t small and converges to the STDF at a certain speed.

This second–order condition refines the base assumption of max–domain attraction

of FX. The second assumption restricts the speed with which k grows to infinity,

and in combination with (A1∆) guarantees that an asymptotic bias term for the left

hand side of Equation (2.12) vanishes (see Resnick & de Haan (1996), Einmahl et al.

(2008) for details). According to Bücher et al. (2014), a smoothness assumption

for the STDF is not required. In particular, we do not need to impose that partial

derivatives of ` exist for the asymptotic result to hold. Such an assumption might be

too rigid, as it would, e.g., exclude factor models, which are practically important in

financial applications. For obtaining Proposition (2.2), we therefore rely on asymp-

totic results by Bücher et al. (2014), which do not require the existence of partial

derivatives of the STDF, but which are also no longer uniform and yield convergence

of ̂̀(x) in a wider sense.2

In both the simulation study and the empirical application in Sections 2.4 and 2.5,

we restrict the test to dimension 7. However, if X exhibits tail dependence in dimen-

sion d larger than 7, it necessarily exhibits tail dependence in dimensions 3 ≤ g < d.

Thus, the asymptotic power of the test also increases with larger dimensions. Sub-

section 2.4.2 further discusses these details, in the context of the results on the

empirical power in the simulation settings. Also, the test can be readily adapted to

detect whether joint extremes of dimension 3 < g ≤ d are significant.

2In particular, Einmahl et al. (2012) show weak convergence of the empirical process
√
k(̂̀(x) − `(x))

for bounded functions in the sup–norm, while Bücher et al. (2014) show convergence for locally
bounded functions in the so–called hypi–semimetric.
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2.3 A new test for higher order tail dependence

2.3.2 Finite sample version of the test

Although it is possible to derive the explicit form and calculate empirical versions of

the asymptotic variance of the test statistic, a bootstrap version is practically supe-

rior. The reason is that bootstrapping σ2
∆̂

works under milder conditions, in partic-

ular if X exhibits asymptotic dependence (Bücher & Dette 2013). In contrast, direct

estimation of σ2
∆̂

may require the estimation of partial derivatives of the STDF and

of covariances between the different STDFs. In principle, a weighted least squares–

based estimator for such partial derivatives of the STDF exists, but its statistical

properties have only been established for dimension d = 2 so far (see Peng & Qi

2007). Furthermore, smoothness assumptions for the STDF might not be met. In

such cases, estimating the partial derivatives is not admissible (Bücher & Dette

2013).

As our goal is to bootstrap extremal observations, we do not resample from the full

sample, but only from a subsample (Politis & Romano (1994)). Otherwise, an asymp-

totically vanishing bias term of ∆̂, inherited from ̂̀X (see Huang (1992)), might distort

the bootstrap distribution. Peng (2010) proposes a similar approach and successfully

employ a subsample size of n0.95. Qi (2008), El-Nouty & Guillou (2000), Danielsson

et al. (2001), Geluk & de Haan (2002) generally document the benefits of subsam-

pling for pointwise extreme value statistics. We construct rejection regions for the

test from the asymptotic normal distribution of ∆̂ with the resampled form of the

variance. We explicitly mark if an estimator θ̂ depends on the threshold parameter k

by writing θ̂(k). In summary, we proceed along the following six steps for obtaining

a test decision:

1. Choose the threshold parameter, denoted by k∗, for ∆̂ from the sample X.

2. Calculate ̂̀(k∗), and any ̂̀i(k∗), i ∈ I(d)
(2) , to determine the full sample test statistic

∆̂(k∗) from X.

3. Draw at least B = 500 bootstrap samples with replacement from X with sample

size n∗ = n0.95 and denote the resulting bootstrap samples by X∗1, ...,X
∗
B.

4. For j = 1, ..., B, estimate ∆̂(k∗) from the bootstrap samples X∗1, ...,X
∗
B, yielding B

bootstrapped estimates ∆̂(k∗)1, ..., ∆̂(k∗)B.

5. Estimate σ2
∆̂

from the bootstrapped estimates in the previous step by its empir-

ical analogue.

6. On a 1 − α confidence level reject H0 : ∆ = 0 if 0 < ∆̂(k∗) + zασ̂
∆̂(k∗)

, where zα
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2 Beyond dimension two: A test for higher order tail risk

denotes the α–quantile of the standard normal distribution.3

A theoretically optimal, data driven choice of the threshold parameter k should bal-

ance the bias–variance trade–off that is inherent to the estimation of `(x). Finding

such a solution and deriving its optimality properties is non–standard even in the

univariate case and is thus beyond the scope of this work. In our simulations we

choose k randomly from an interval in order to minimize possible distortions from

a poorly chosen k. In the application, we estimate ∆ over a grid of different values

for k and calculate the median over this set of estimates.4 Further details can be

found in the respective sections. For alternative, purely data–driven procedures for

determining k in a univariate setup, we refer to Frahm et al. (2005) and Schmidt &

Stadtmüller (2006).

For time series data, issues of short–range serial dependence can be addressed by

implementing a blocked version of the bootstrap providing appropriate up to second

moment adjustments, see, e.g., Straetmans et al. (2008) with an asymptotically op-

timal choice of block length of order n1/3 according to Hall et al. (1995). Instead,

however, we use appropriate GARCH–type filtered observations before applying the

test. With this we also control for and amend higher order moment effects and

volatility clustering of heteroscedastic financial data (McNeil & Frey (2000), Poon

et al. (2004)). See Section 3.3. for details.

2.4 Simulation study

2.4.1 Size and power

In this subsection, we evaluate the empirical size and power of the test in finite sam-

ples in an i.i.d. setting. Results for time series data are presented in Subsection

2.4.3. We simulate from two types of distribution families with various subspeci-

fications, for which we know whether the null of no significant HOTDs is true. In

particular, we focus on the class of meta t–distributions and (max) factor models,

which are both commonly used in financial risk management (McNeil et al. (2005),

3Note, a normal approximation for ∆̂ is theoretically not justified under tail independence, i.e. if
`(x) =

∑d
i=1 x

(i); then, it holds σ2̂̀ = σ2
∆̂

= 0 and the distributions of both ̂̀ and ∆̂ are degenerate,
while the theoretical ∆ is zero, i.e. the null is true. However, in such situations, the test typically
indicates the correct decision not to reject the null.

4Specifically, for a sample size of 750, k ∈ {8, 9, ..., 48} in dimension three and k ∈ {8, 9, ..., 30} in
dimension 7.
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2.4 Simulation study

Fama & French (1992)). The meta t–distribution is a generalization of the multi-

variate t–distribution and the t–copula, and max factor models have the same tail

dependence structure as factor models (Einmahl et al. (2012)). We employ the fi-

nite sample version of the test introduced in Subsection 2.3.2. All simulations are

repeated S = 500 times.

Model dimensions are d ∈ {3, 5, 7}. For a power analysis, considering larger dimen-

sions is often not necessary, as detection of HOTDs in moderate dimension is suffi-

cient for concluding that HOTDs are significant.

Let Ctν,P (x) denote the t–copula with ν degrees of freedom, and dispersion matrix P .

Following Demarta & McNeil (2005),

Ctν,P (x) =

∫ t−1
ν (u(1))

−∞
· · ·
∫ t−1

ν (u(d))

−∞

Γ((ν + d)/2)

Γ(ν/2)
√

(πν)d|P |
(1 + ν−1(x′P−1x))−(ν+d)/2dx, (2.13)

where t−1
ν (x(i)) denotes the quantile transform of a t–distribution with ν degrees of

freedom for margin i, and Γ(·) is the gamma function. According to Hua & Joe (2011),

the t–copula is of second–order regular variation and thus fulfills the assumptions

of Proposition (2.2). In contrast to a classical t–copula, meta t–distributions allow

the degrees of freedom of marginals ν(i)
m to differ from the degrees of freedom of the

copula, denoted by νC . For the simulation, we choose νC ∈ {5, 10, 15, 20}, νm := ν
(i)
m =

5, i = 1, ..., d, and P = (0.5)i 6=j , Pii = 1. Thus, we consider equicorrelated t–distributions

with common degrees of freedom νm that are linked by the t–copula with νC degrees

of freedom. Exploiting results from Demarta & McNeil (2005) and Nikoloulopoulos

et al. (2009, theorem 2.3), it is possible to show, that for the classical multivariate

t–distribution the theoretical values of our test statistic ∆ are larger than zero as the

t–copula is capable of producing joint extremes in dimension d > 2; ∆ increases if the

degrees of freedom of the copula decreases, and/or if pairwise correlation increases.

It equals zero if the correlation parameter equals −1. A meta t–distribution comprises

the widely used multivariate t–distribution whenever νC = νm.5

In finance, often factor models are applied, in which asset returns X(j) depend on

common factors Z(i) in a linear fashion. Max factor models assume X(j) can be

modeled as the maximum of the factors times a parameter amj, the so called factor

5Theoretically, the dependence structure is only governed by the parametrization of the copula and
not by distributional properties of the univariate tails, i.e. νm. In additional simulations that are
not reported here, we found finite sample properties of the test are robust against changing the
marginal degrees of freedom.
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2 Beyond dimension two: A test for higher order tail risk

loadings. Both models have the same tail dependence structure (Einmahl et al.

(2012)). Let Z := (Z(1), ..., Z(r)) be a random vector of independent Fréchet random

variables (ν =1). A d–dimensional max factor model for X = (X(1), ..., X(d)) is then

defined by

X(j) := max(a1jZ
(1), ..., arjZ

(r)), j = 1, ..., d,

with
∑d

j=1 amj = 1, amj ≥ 0. The loading matrix BA
d := (amj) governs the dependence

between the tails of X. Employed calibrations of BA
d can be found in the Appendix.

In the notation of the loading matrix the subscript denotes the dimension d of X and

the superscript denotes whether the model fulfills the null (B0) or the specific kind of

alternative (BA). The null is fulfilled if at most two entries within a row of the loading

matrix are non–zero as then tail dependence is only caused by pairs. For example,

given the parametrization

B0
3 =

(
0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

)
,

we have that the STDFs for bivariate pairs are `12(1, 1) = `13(1, 1) = `23(1, 1) = 1.5,

while Λ123(1, 1, 1) = 0. Einmahl et al. (2012) show that

`(x) =
r∑
i=1

max
j=1,...,d

(aij/(
r∑
i=1

aij))x
(j),

and thus `123(1, 1, 1) = 1.5 and ∆ = 0. If more than two elements within a row

are non–zero, there exist common factors that induce three or more components

of X to become simultaneously extreme. Thus, tail dependence is also caused by

higher–dimensional joint extremes, and the null would be false. This is the case

for BA1
3 , BA2

5 , BA2
5 , BA1

7 , BA2
7 , BA3

7 . Specifically, the number of non–zero entries per row

describes the dimension in which joint extremes occur. Model notation is chosen

such that with increasing index of A the order of tail events increases, i.e. BA1
5

allows for joint extremes of X(1), X(2) and X(3) (first row) while in case of BA2
5 also

four–dimensional joint extremes of X(1), X(2), X(3) and X(4) can occur (first row).

In extreme value statistics, simulation results are usually sensitive to the choice of

the threshold parameter k. Large values of k cause a systematic bias of ∆̂, whereas

a small k induces a large variance. We use a data–driven approach to the threshold

choice in our simulation study. Within a reasonable interval, k is chosen randomly

within each simulation replication. This interval is defined as [0.01n, cn1/2], c ∈ [1, 2].

By several simulation runs, we found the best choices for c concerning test size are
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1.75 in d = 3, 1.4 in d = 5, and 1.1 in d = 7.6 For comparability of results across

increasing dimensions d, we let c decrease with d. With increasing dimensions, the

range of `X and the number of possible univariate extremes increase. To achieve

comparability across dimensions, higher cut–off values X
(i)
[n:n+0.5−k] are chosen for

higher dimensions. Generally, in our simulation experiments, we find that the power

of the test is fairly robust against changes in c.

For the simulation in each specification, we employ five sample sizes which are stan-

dard for analyzing daily financial data (n1 = 200, n2 = 500, n3 = 1000, n4 = 1500, n5 =

2000). Table (2.1) contains the empirical rejection rates of the test in each of the

model classes at a nominal significance level of 5%.

For max factor models, we find that the empirical power of the test is generally high in

all considered dimensions. For models with only a slight impact of HOTDs, however,

the test requires sample sizes larger than 1000 in d = 5 in order to yield satisfactory

power, which appears adequate given the difficulty of the problem in small samples.

But empirical power quickly converges to one for larger sample sizes. And empirical

sizes appear close to the nominal level and plateaus around 5% for n sufficiently

large. Depending on the exact model specification, this can occur already for the

smallest sample size of 200. While empirical power is robust against the choice of

k, we found that empirical sizes vary substantially when altering the domain of k.

Generally, the test rejects too often if k tends to be small, thus empirical sizes are

systematically smaller than nominal levels. In financial risk management, however,

one would prefer a test with a larger false positive rate over a test that tends to falsely

overlook prevalent HOTDs. Still, as we model k as a uniform random variable defined

over an interval of reasonable possible values, reported sizes are more robust with

respect to k than if k was a fixed value.

For the meta t–distribution, increasing dimensions and decreasing degrees of free-

dom of the copula imply high empirical rejection rates. This is to be expected given

the above discussion of the properties of the meta t–distribution.

For all specifications, empirical power monotonously converges to one as n increases.

For perfectly tail dependent DGPs (BA1
3 ), and meta t–distributions with small νC , em-

pirical power is always very high, irrespective of the dimension. Conditional on the

choice of k, empirical sizes are also close to α for the DGPs characterized by B0
3 , B

0
5,

and B0
7, again irrespective of the dimension. Hence, up to dimension seven, the

6In dimensions d = 4, and d = 6 we found c = 1.5, and c = 1.2, respectively, to perform best.
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2 Beyond dimension two: A test for higher order tail risk

Table 2.1: Empirical rejection rates: Max factor models and i.i.d. t–copula (df = νC ,
ρ = 0.5) with t–distributed marginals (df = 5). Nominal test level is α = 0.05.

d = 3 d = 5 d = 7
200 500 1000 1500 2000 200 500 1000 1500 2000 200 500 1000 1500 2000

t(νC)

5 35.2 51.2 66.2 74.2 78.6 60.2 79.4 91.6 96.2 99.6 70.4 82.2 97.0 100 100
10 29.8 39.0 45.4 55.4 63.2 54.8 68.0 78.2 88.2 93.4 59.2 77.0 91.0 97.6 99.8
15 25.6 32.8 42.0 45.8 57.8 54.2 57.2 73.6 83.0 91.8 58.4 72.2 85.0 94.0 98.8
20 24.0 30.0 41.6 40.0 51.6 60.4 62.2 73.2 81.2 87.0 56.6 69.0 86.0 92.0 96.6

max
factor

B0
3 5.2 4.2 4.2 5.0 4.8 - - - - - - - - - -

BA1
3 100 100 100 100 100 - - - - - - - - - -

B0
5 - - - - - 7.2 6.8 7.6 5.6 5.2 - - - - -

BA1
5 - - - - - 20.4 34.4 48.2 60.0 70.2 - - - - -

BA2
5 - - - - - 59.2 76.8 94.4 97.4 99.4 - - - - -

BA3
5 - - - - - 100 100 100 100 100 - - - - -

B0
7 - - - - - - - - - - 4.0 4.4 2.4 5.2 5.8

BA1
7 - - - - - - - - - - 49.2 73.8 95.4 100 100

BA2
7 - - - - - - - - - - 59.6 80.6 98.6 100 100

BA3
7 - - - - - - - - - - 68.8 89.4 99.0 99.8 100

usual curse of dimensionality often encountered when employing non–parametric

methods appears not to play a role for our test. For small sample sizes, empirical

size is slightly larger than the nominal size α. Furthermore, if ∆ is close to zero (e.g.

for a meta t–distribution with νC = 20), larger sample sizes such as n3 = 1000 are

required for the test to accurately identify the presence of HOTDs.

2.4.2 Local power analysis

In this subsection, we study the performance of the test under a series of local devia-

tions from the null hypothesis. In contrast to the fixed alternatives of the subsection

before, alternatives here are very close to the null and their distance to the null

can shrink with increasing sample size, revealing the power optimality properties of
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the test. Thus, we evaluate the ability of the test to detect a violation of the null

if the nature of the underlying distribution of X is such that fewer and fewer joint

extremes in dimension ≥ 3 occur in finite samples. Following Berg & Quessy (2009)

and Kojadinovic & Yan (2010), such distributions are generated by mixing distribu-

tions that violate the null, denoted by FX,H1, with distributions that comply with the

null, denoted by FX,H0. We define the mixture distribution by

FX,λ(n)(x) := (1− λ(n))FX,H0(x) + λ(n)FX,H1(x), (2.14)

where λ(n) decreases to zero for increasing sample size n and FX,H0(x) satisfying

∆ = 0, FX,H1(x) satisfying ∆ > 0, and FX,H0(x) ≤ FX,H1(x),∀x, ensuring realizations

from FX,H1 enter the extreme part of the sample. Denote the test statistic resulting

from the mixture distribution FX,λ(n)(x) by ∆λ(n). For λ(n) = O((
√
k(n))−1), we can

show that, asymptotically,

√
k(∆̂λ(n) −∆λ(n))

d→ N(0, σ2
∆̂λ(n)

),

where the asymptotic variance can again be obtained analytically from theorem 4.3

in Einmahl et al. (2012). Thus, the test has power against any local alternatives if

and only if these alternatives are at least of order (
√
k(n))−1 apart from the null.

In the following simulations, we illustrate this result. Hence, we are interested in

rejection rates of ∆ = 0 from mixture distributions defined in Equation (2.14) for

λ(n) := λk(n)−1/2, with 0 < λ ≤ k(n)−1/2. We determine k as in the simulations

before. In order to calculate local powers pn, we generate S = 1000 samples from

a DGP of mixture distribution type, with fixed sample size and increasing λ. Local

power is estimated by p̂n = 1/S
∑S

i=1 1{∆̂λ(n) > zασ̂
∆̂,λ(n)

k−1/2} for every λ(n). The

asymptotic variance σ̂2
∆̂,λ(n)

is estimated by the bootstrap procedure presented in

Section 2.3.2. Berg & Quessy (2009), Kojadinovic & Yan (2010) carry out similar

analyses for goodness–of–fit tests of parametric (extreme value) copulas. For the

sake of brevity, we concentrate on dimensions d ∈ {3, 5}, sample size n = 2000, and

we let λ increase. For d = 3,

FX,λ(n)(x) = (1− λ(n))FY(y) + λ(n)FW(w), (2.15)

where FY(y) and FW(w) are the distribution functions of the max factor model B0
3

and BA1
3 , respectively. For d = 5, we mix the distribution function of B0

5 and BA3
5 :=

( 1/5 1/5 1/5 1/5 1/5 ). If, for example, λ(n) = 0.1, then 10% of the extreme part of the
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2 Beyond dimension two: A test for higher order tail risk

Figure 2.1: Empirical test power for the mixture distributions defined in Equation
(2.15) with sample size n = 2000 at level 5%.
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sample should be generated by the FW which violates the null. Figure (2.1) shows

estimated local powers with α = 0.05. The test successfully detects minor violations

from the null. Even for small λ, when the impact of the perturbating DGP is small,

rejection rates quickly converge to one. Increasing the dimension d accelerates the

convergence speed of empirical power.

2.4.3 Size and power for serially dependent and conditionally
heteroscedastic data

While Proposition (2.2) assumes i.i.d. data, financial time series, in particular as-

set returns, feature small autocorrelations and time–varying conditional volatility,

and thus cannot be considered i.i.d. In order to apply our test to detect the cross–

sectional tail dependence structure of financial time series, the data have to be pre–

filtered. We use autoregressive moving average (ARMA) models for the mean, and

the class of generalized autoregressive conditional heteroscedasticity (GARCH) mod-

els for the variance, (Bollerslev (1986)). After filtering, we expect that the resulting

standardized residuals are largely free of serial dependence in first and second mo-

ments, and are thus nearly i.i.d. We therefore apply the test to these pre–filtered

residuals instead of the raw observations. In the applied extreme value literature,
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2.4 Simulation study

this approach is common when dealing with time–series effects, see e.g. McNeil &

Frey (2000) in a univariate setting for extreme quantile estimation, and Poon et al.

(2004) for estimating bivariate tail dependencies between financial time series.

It is intuitively clear that
√
n–consistent parametric pre–filtering should not impact

the consistency of the more slowly converging non–parametric estimator of the STDF.

However, there are no formal theoretical results on the asymptotic properties of such

dependence estimates for pre–estimated residuals available yet. In comparison to

semi–parametric and non–parametric copula estimation (see e.g. Chen & Fan (2006),

Rémillard (2010), Oh & Patton (2013)) such results for non–parametric tail depen-

dence estimation would require completely different empirical process techniques

for respective rank statistics which do not exist and are extremely challenging to

develop. In what follows, we therefore focus on the finite sample performance of

the test in such settings. In particular, we explore if and how empirical size and

power of the DGPs from Section 2.4 change when introducing autocorrelation and

time–varying conditional volatility.

We follow Oh & Patton (2013) and generate random draws from the following AR(1)–

GARCH(1,1) processes, which are linked by the error term copula Cη:

y
(i)
t = µ

(i)
t + σ

(i)
t η

(i)
t = ϕ

(i)
0 + ϕ

(i)
1 y

(i)
t−1 + σ

(i)
t η

(i)
t ,

σ
2,(i)
t = ω(i) + α(i)

(
y

(i)
t−1 − µ

(i)
t−1

)2
+ β(i)σ

2,(i)
t−1

η := (η(1), ..., η(d)) ∼ iid Fη(x(1), ..., x(d)) = Cη(Fη,(1)(η
(1)), ..., Fη,(d)(η

(d))), (2.16)

t = 1, ..., T . θ(i) = (ϕ
(i)
0 = 0.01, ϕ

(i)
1 = 0.05, ω(i) = 0.05, α(i) = 0.1, β(i) = 0.8) denotes the

vector of AR–GARCH parameters for marginal i, Fη is the continuous joint distri-

bution function of the vector of error terms η = (η(1), ..., η(d)), and Fη,(i)(η
(i)) are the

marginal distributions of the error terms linked by error term copula Cη. Hence the

dependence structure of η is the “true” but unobserved dependence we are interested

in, and from which the observed dependence structure between the realizations y(i)
t

might differ due to autocorrelation and GARCH effects. See Oh & Patton (2013) for

details on such DGPs.

We test for HOTDs in the observed, unfiltered realizations (y
(1)
t , ..., y

(d)
t )Tt=1, and in

correctly standardized residuals (η̂
∗,(1)
t , ..., η̂

∗,(d)
t )Tt=1, η̂

∗,(i)
t := (y

(i)
t − µ̂

(i)
t )/σ̂

(i)
t . To eval-

uate the size of the test, we choose the max factor model of type B0
3 , B

0
5, and B0

7

as models for the error term copula Cη. Thus, the test is again applied in dimen-
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2 Beyond dimension two: A test for higher order tail risk

sions 3, 5, and 7. In contrast to the i.i.d. setting, we do not employ a Fréchet(1)–

distribution, which would produce very extreme observations such that numerical

GARCH–estimation may fail to converge. As marginal error distributions Fη,(i)(η
(i))

we choose t–distributions with degrees of freedom νm ∈ {5, 10, 15, 20} for size analy-

sis. For power analysis, Cη is the t–copula with degree of freedom νC ∈ {5, 10, 15, 20},
and fixed marginal degrees of freedom νm = 5, i.e. η follows a meta t–distribution.7

Thereby we can observe how quickly the test reacts to a steadily diminishing degree

of HOTDs.

Simulations are repeated S = 500 times with sample sizes n2 = 500, n3 = 1000, n4 =

1500, n5 = 2000. We do not include n1 = 200 in this section as GARCH estimates

for a sample size of 200 may be unreliable. The parameter vector θ = (θ(1), ..., θ(d)) is

estimated by maximum likelihood, assuming marginal t–distributions with estimated

degrees of freedom. Table (2.2) reports empirical rejection probabilities for the factor

copula with ∆ = 0; Table (2.3) reports empirical rejection probabilities in case of

the t–copula as error term copula for filtered and unfiltered data, respectively. We

find that disregarding serial correlation and time–varying volatility worsens size and

power properties, and a correct filter leads to similar results as in the i.i.d. case.

Empirical rejection rates for the max factor copula indicate that the test is slightly

undersized. Yet empirical sizes are still satisfactorily close to 5%.

The effect of serial correlation and GARCH effects becomes clear when comparing the

number of test rejections of the binomial test H0 : pi = 0.05, where pi denotes the re-

jection probability of some parametrization that meets the null (test level 5%). That is,

for each setting we compare all 48 empirical rejection rates of filtered and unfiltered

data with the nominal size of 5%. The correctly specified AR(1)–GARCH(1,1) filter

leads to 18.2% of all cases in which the empirical rejection probability significantly

differs from the nominal size. Not filtering the data amounts to 31.3% significant

deviations. With a binomial test one can also compare empirical powers of the i.i.d.

and the non–i.i.d. settings. In 95.8% of comparisons, applying the test to the resid-

uals of the correctly specified GARCH process produces significantly higher power

than testing in the unfiltered returns. Hence, disregarding the time series properties

of the data worsens size and power results.

Finally, we compare the power results obtained when simulating from the i.i.d. meta

7As in the i.i.d. case, empirical power is robust against varying the marginal degrees of freedom. Yet,
we report empirical sizes for different νm in order to have more data points for a more accurate
comparison between test performances for unfiltered and filtered time series.
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2.5 Higher order tail dependencies in global and European stock markets

Table 2.2: Empirical rejection rates under H0: Max factor copula as error term cop-
ula, t(df = νm)–distributed errors, and GARCH(1,1) volatility model. Nom-
inal test level is α = 0.05.

d = 3 d = 5 d = 7
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

filter
νm

5 4.6 3.0 3.8 5.2 4.4 6.0 6.4 6.2 2.8 2.4 4.2 3.4
10 3.4 2.0 2.8 3.8 6.0 4.0 5.6 5.2 2.8 3.6 3.2 2.4
15 5.2 5.0 5.4 4.4 4.4 3.6 4.8 4.2 3.0 2.0 3.4 5.0
20 3.8 2.6 5.4 4.4 5.6 5.2 5.4 4.4 3.6 1.8 3.6 4.8

no
filter
νm

5 3.4 2.6 4.4 4.6 4.2 5.4 4.6 2.8 1.4 3.4 1.8 1.6
10 4.6 2.2 4.2 4.2 4.8 4.4 5.2 4.6 1.6 3.8 2.8 2.0
15 4.6 4.6 4.6 5.8 5.4 4.2 4.8 5.8 3.4 2.0 2.8 1.8
20 5.2 2.6 5.6 4.4 6.4 6.0 4.2 7.0 3.0 2.0 2.2 2.8

t–distribution (Table (2.1)) with those corresponding to correctly filtered, and un-

filtered AR(1)–GARCH(1,1) processes connected via the meta t–distribution (Table

(2.3)). In case of the correct filter, empirical power never differs significantly from the

i.i.d. case (test level 5%). In the unfiltered series, however, empirical power is signif-

icantly lower in 91.6% of all cases (test level 5%). Hence, disregarding time–varying

volatility amounts to lower power and lower test size, and testing in correctly filtered

series produces nearly identical results as for i.i.d. data.

2.5 Higher order tail dependencies in global and European
stock markets

2.5.1 Data description

In the following empirical application, we study extreme gains and losses of two

different sets of stock indices. First, we test for HOTDs in left and right tails of

27



2 Beyond dimension two: A test for higher order tail risk

Table 2.3: Empirical rejection rates under H1: Correctly filtered and unfiltered
GARCH processes with t–copula (df = νC , ρ = 0.5) as error copula, t(νm =
5)–distributed errors. Nominal test level is α = 0.05.

d = 3 d = 5 d = 7
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

filter
νC

5 45.0 63.2 71.8 79.4 77.8 90.8 96.8 99.2 83.6 97.2 99.4 99.8
10 49.4 62.2 74.2 83.0 67.0 81.8 86.4 92.4 72.4 91.2 97.4 99.8
15 32.2 42.0 45.4 52.8 60.4 74.6 83.0 90.6 70.8 86.0 93.8 100
20 26.0 39.6 42.2 49.6 56.4 70.6 79.4 86.8 66.6 82.2 93.0 97.0

no
filter
νC

5 24.6 27.2 30.2 31.6 51.2 53.8 60.0 61.6 61.8 68.2 76.0 79.4
10 17.0 19.2 21.0 23.4 41.6 42.0 42.4 43.4 54.0 55.8 61.4 60.4
15 17.4 15.0 14.2 15.4 37.8 39.0 38.4 38.8 45.6 50.8 55.2 56.6
20 16.4 12.4 18.0 13.2 36.8 35.2 35.2 38.0 43.0 48.2 51.2 53.2

the weekly stock return distributions on a global level, while in a second study we

focus exclusively on daily European stock returns. The global portfolio consists of

three stock indices of the USA, Europe and the Asian Pacific region, namely the

MSCI USA, MSCI Pacific, and MSCI Europe.8 The European portfolio consists of

seven individual European MSCI indices, including the largest European economies

(United Kingdom, Germany, France, Italy, Spain), as well as smaller economies that

played a role during the recent European sovereign debt crisis (Greece, Portugal).9

The two portfolios are analyzed separately.

The sample period of the global portfolio is 01/30/1970 – 10/29/2014. To overcome

problems arising from different time zones, we use weekly returns. As observa-

tions of MSCI Pacific are only available on a monthly frequency until 12/30/1983,

a weekly proxy for MSCI Pacific during that time period is created by averaging over

weekly observations of the MSCI Japan and MSCI Australia, with weights equal to

2/3 and 1/3, respectively. This weighting scheme resembles the current composition

8Data are available on Datastream with mnemonics MSUSAML, MSPACF$ and MSEROP$.
9Data are available on Datastream with mnemonics MSUTDKL, MSGERML, MSFRNCL, MSITALL,

MSGREEL, MSSPANL and MSPORDL.
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2.5 Higher order tail dependencies in global and European stock markets

of the MSCI Pacific.10 After deleting weeks with zero returns, the sample features

2335 observations for each index. The sample period of the European portfolio is

01/04/1988 – 10/29/2014. In this second portfolio time zone effects do not matter,

so we can use daily returns. After discarding days with zero returns, the sample has

6889 observations for each index.

Both samples are tested against HOTDs with rolling windows containing n = 750

observations, corresponding to roughly 15 years in the global portfolio, and roughly

three and a half years in the European portfolio. Simulation studies document ap-

propriate test performance for such a sample size, and we aim to keep the window

length as short as reasonably possible. The test is applied bi–weekly for the global

portfolio and every fifth day for the European portfolio. We test against HOTDs in

raw observations, and in standardized ARMA–GARCH residuals, along the lines of

model in Equation (2.16) in order to eliminate the effects of serial correlation and

time–varying volatility. Returns are thus modeled by

y
(i)
t = µ

(i)
t + σ

(i)
t η

(i)
t , i = 1, ..., 7, η

(i)
t

iid∼ t(νm).

Standardized residuals η̂
∗,(i)
t = (y

(i)
t − µ̂

(i)
t )/σ̂

(i)
t are re–estimated in each window to

address potential parameter changes. In every window, each time series is fitted to

an ARMA(p ≤ 2, q ≤ 2) model with automatic order choice according to the Schwarz

information criterion. Subsequently, the data are fitted to a threshold–GARCH(1,1)

(TGARCH) model, see Glosten et al. (1993).11 A TGARCH(1,1) model is given by

σ2
t = ω + ασ2

t−1η
2
t−1 + δ1{ηt−1 < 0}σ2

t−1η
2
t−1 + βσ2

t−1, t = 1, ..., T.

Notably, a TGARCH model is able to capture asymmetric impacts of positive and

negative shocks. Hence, in each window and for both return losses and return gains,

we test against HOTDs in raw returns and in standardized ARMA(p,q)–TGARCH(1,1)

residuals.

In order to calculate ∆̂, we have to choose the number of upper order statistics k.

The rolling window scheme complicates a manual choice for each window. Thus,

for each k ∈ [0.01n, c
√
n], we compute ∆̂(k) and take the median thereof as the final

estimator for ∆ (see Sections 2.3.2 and 2.4 for details). Figures (2.2) and (2.3) show

10Data are available on Datastream with mnemonics MSJPANL and MSAUSTL.
11Results obtained by using a standard GARCH model were qualitatively very similar and are therefore

not reported.
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2 Beyond dimension two: A test for higher order tail risk

the evolution of ∆̂, 90% confidence intervals for ∆ and test decisions for the global

and the European portfolio at each time point; a confidence interval is colored gray

whenever H0 : ∆ = 0 has to be rejected, i.e. whenever multivariate tail risk is not

only bivariate. 12

2.5.2 Results and economic implications

Regarding global portfolio gains, the TGARCH(1,1) filtered series never allows reject-

ing the null hypothesis of no HOTDs, while for the unfiltered series the null has to be

rejected after 2010 with p–values close to 5%. Still, the absolute amount of HOTDs is

also small after 2010. For losses, we detect an accentuated increase in HOTDs after

2006–07, whereas no significant HOTDs up to 2006 can be found. The gradually

increasing HOTDs appear to be still on the rise at the end of the sample. Although

the sample covers major historical events such as the 1970s oil crises, the Black

Monday 1987, the dissolution of the Soviet Union, the Gulf War 1990–91, the Asian

financial crisis in 1997, the introduction of the Euro, the burst of the dot–com bub-

ble, and 09/11/2001, it is the global financial crisis of 2007–08 that marks the start

of global HOTDs to become significant. Thus, the latter is the only event within the

sample, that is capable of herding global high-dimensional extreme losses. Before

2007–08, investors, holding a globally diversified portfolio, did not have to pay at-

tention to HOTDs, while this has apparently become an additional challenge in asset

allocation on top of bivariate tail dependence nowadays. By contrast, throughout the

considered time span, investors cannot expect to benefit from HOTDs between gains:

The financial turmoils during 2007–08 caused univariate extreme losses to trigger

joint global extreme losses, whereas univariate extreme gains still do not spread out

(unfiltered), or at least not as strongly as extreme losses (filtered).

Losses and gains within the European portfolio, on the other hand, are more prone

to HOTDs. This may be explained by closer economic connections, but also by the

fact that now seven indices are considered, implying that extreme connections be-

tween three or more components are more likely than within a three–dimensional

portfolio.13 Intra–European HOTDs appear to be time–varying and are most of the

12Note, as ∆ ≥ 0, theoretically, confidence interval lower bounds should not become negative yet this
bound decides whether ∆ is significantly larger than zero. Furthermore, as we are conducting
one–sided tests, the shaded areas within the 90% confidence intervals refer to test rejections on 5%
significance level.

13This makes a direct comparison of test results across both data sets difficult.
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2.5 Higher order tail dependencies in global and European stock markets

time significant. The TGARCH filter smoothes the evolution of ∆̂, suggesting that

the unstable behavior of ∆̂ for the unfiltered series can be partly explained by serial

correlation and time–varying conditional volatility. However, the results do not differ

qualitatively with respect to whether the filter is employed or not, as the test deci-

sions on a significance level of 5% are mostly alike for both specifications. Overall,

the empirical variance of ∆̂ appears to be constant for both the filtered and the raw

data. For losses, one observes a decrease of HOTDs from the sample beginning until

the mid to mid/end–1990s; also, HOTDs are not significant between 1994 and 1998.

Afterwards, the importance of HOTDs increases until the beginning of the 2007–08

crisis, remaining on a stable, high level ever since. Interestingly, this movement is

continuous and the major political events that fall in this period (dot–com crisis,

9/11/2001, introduction of the Euro) do not cause discontinuities of the trajectory

of ∆̂.

We conclude that HOTDs in the European portfolio are not driven by one–time events

but rather mirror established, mid– to long–term processes due to the European fi-

nancial and economic integration. This also gives an explanation for why gains

HOTDs of the European portfolio prevail throughout the sample, which stands in

contrast to nearly non–existent HOTDs in gains within the global portfolio. Diversifi-

cation opportunities of cross–sectional extreme losses are limited within Europe, as

it was also found in Christoffersen et al. (2012). Our test results for right tails indi-

cate, however, that there is potential to benefit from cross–sectional extreme gains.

This generalizes the results in Poon et al. (2004) as the presence of HOTDs implies

their results based on pairwise bivariate analysis. Moreover, we observe that tail

dependence, at least within European stock markets, is more severe than assumed

so far.

2.5.3 Factor model for the European stock market

The presence of HOTDs within the European portfolio might be caused by tail events

of a common external factor. To distill truly intra–European HOTDs, we now control

for effects of global financial markets. Returns y
(i)
t are thus modeled by a factor

market model

y
(i)
t = ζ(i)Mt + ε

(i)
t , i = 1, ..., 7,

where Mt denotes a common factor for all marginal returns y(i)
t . The disturbance ε(i)t

is often interpreted as the idiosyncratic part of y(i)
t . An apparent choice for Mt is the
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2 Beyond dimension two: A test for higher order tail risk

Figure 2.2: Dynamics of the test statistic ∆̂ (see Equation (2.11)), together with
90% confidence intervals, the global portfolio, using a rolling window of
roughly 15 years. The left panel shows test decisions for portfolio losses,
whereas the right panel shows test decisions for portfolio gains. Confi-
dence intervals are colored gray whenever H0 : ∆ = 0 has to be rejected.
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2.5 Higher order tail dependencies in global and European stock markets

Figure 2.3: Dynamics of the test statistic ∆̂ (see Equation (2.11)), together with 90%
confidence intervals, for the European portfolio, using a rolling window
of three to four years. The left panel shows test decisions for portfolio
losses, whereas the right panel shows test decisions for portfolio gains.
Confidence intervals are colored gray whenever H0 : ∆ = 0 has to be
rejected.
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2 Beyond dimension two: A test for higher order tail risk

return series of the MSCI World Ex Europe14 as it is an index of all relevant stock

markets except for European ones.

We repeat the rolling window analysis of the previous section for the European port-

folio, and test for HOTDs between (unfiltered) factor model residuals (ε̂
(1)
t , ..., ε̂

(7)
t )nt=1.

Furthermore, we obtain standardized residuals from a ARMA(p,q)–TGARCH(1,1)

model for the factor model residuals. Test decisions for the latter two models thus

account for serial correlation, time–varying volatility and the effect of the common

risk driver. The remaining dependence structure can be considered as idiosyncratic

to the European stock market system. For all seven indices, the return model is

re–estimated in each window and the orders of the ARMA models are again found

with the Schwarz criterion.15 Test results for both gains and losses of unfiltered data

and ARMA–TGARCH(1,1) filtered data are shown in Figure (2.4).

Controlling for changes in global stock markets slightly attenuates European HOTDs,

yet results closely resemble the results from the previous subsection (Figure (2.3)).

The only major exception where controlling for the world index alters the test deci-

sion, in the sense that it causes HOTDs to be significant, is for gains during 1990–94,

Figure (2.3) (d) and Figure (2.4) (d). However, the effect of the market factor to HOTDs

between European gains has increased since 2006 which can be seen by comparing

Figures (2.3) (b) and (2.4) (b). Both do not account for ARMA–(T)GARCH effects and

the only possible source for a difference is the accounting for the common factor.

Overall, HOTDs between the idiosyncratic risks of European stock markets have

increased since 2000. Thus, we can reveal that joint extremes are truly due to intra–

European HOTDs. For a practitioner, this provides econometric evidence that losses

on portfolios with different European–based Exchange–traded funds, or with differ-

ent single European stocks, are likely to add up in times of crisis, and diversification

effects may fade away in case of tail events for solely stock–based portfolios. As

multivariate extreme losses of European stock markets are apparently only slightly

affected by events of the market factor, there exist tail diversification opportunities

between both. These opportunities slightly diminish for extreme gains. Besides the

14This index runs under mnemonic MSWXEU$ in Datastream.
15Whenever numerical optimization of the likelihood function failed for the given setting, we first

changed the conditional distribution from a t– to a Normal distribution. In seven out of 8596
estimated models we then only came across convergence problems for 8 TGARCH models. In these
cases we used residuals from the GARCH(1,1) model as substitute. There appears to be one outlier
of ∆̂ for TGARCH residuals at 040/7/1996 where the optimization of the likelihood for the TGARCH
model struggles.
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2.5 Higher order tail dependencies in global and European stock markets

importance for asset allocation, significance of HOTDs also seems to mark periods

of distress in the markets, i.e. when stock indices tend to jointly experience large

losses.

2.5.4 Importance and share of higher order tail dependencies in practice

To show the importance of testing for HOTDs, we provide some simple descriptive

screening tools in this subsection. In particular, we assess the share of bivariate tail

events that cannot be captured by tail correlations. For this, we use the asymptotic

probabilities of two or three joint extremes, κ2 and κ3, defined as

κ2 = lim
t→0

t−1P
(⋃
i 6=j

{
{X(i) ≥ F−1

i (1− tx(i))} ∩ {X(j) ≥ F−1
j (1− tx(j))}

})
,

κ3 = lim
t→0

t−1P
( ⋃
h6=i 6=j

{
{X(h) ≥ F−1

h (1− tx(h))} ∩ {X(i) ≥ F−1
i (1− tx(i))}

∩ {X(j) ≥ F−1
j (1− tx(j))}

})
They describe the likelihood of at least two or respectively three assets becoming

extreme at once. Their ratio κ3/κ2 quantifies the share of bivariate extremes that

also amount to a trivariate extreme event. Similar to the estimation of the STDF,

this magnitude can be estimated by its empirical counterpart. We compare the days

featuring a bivariate (κ2) or trivariate (κ3) extreme with the number of days with at

least one univariate extreme,

κ̂2 =

∑n
t=1

∑
i 6=j
∏
g∈{i,j} 1

{
X

(g)
t > X

(g)
n:n+0.5−k}∑n

t=1 1{
⋃d
i=1X

(i)
t > X

(i)
n:n+0.5−k}

, (2.17)

κ̂3 =

∑n
t=1

∑
h6=i 6=j

∏
g∈{h,i,j} 1

{
X

(g)
t > X

(g)
n:n+0.5−k}∑n

t=1 1{
⋃d
i=1X

(i)
t > X

(i)
n:n+0.5−k}

. (2.18)

Section 2.7.3 in the Appendix provides a small simulation study that shows κ3/κ2 is

indeed a reasonable measure for determining the severeness of HOTDs.

Figure (2.5) shows estimates κ̂2, κ̂3 and κ̂3/κ̂2 for the TGARCH filtered European port-

folio without controlling for a common factor. As before, final estimates in each

window were found by taking the estimates’ medians for k ∈ [0.01n, c
√
n].

Not surprisingly, trajectories resemble the dynamics of ∆̂ (Figures (2.3) (c–d)). The
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2 Beyond dimension two: A test for higher order tail risk

Figure 2.4: Dynamics of the test statistic ∆̂ (see Equation (2.11)), together with 90%
confidence intervals, for the European portfolio, using a rolling window
of three to four years, after controlling for a market factor. The left panel
shows test decisions for portfolio losses, whereas the right panel shows
test decisions for portfolio gains. Confidence intervals are colored gray
whenever H0 : ∆ = 0 has to be rejected.
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2.6 Conclusion

Figure 2.5: Dynamics of κ̂2, κ̂3, and κ̂3/κ̂2 (see Equations (2.17) and (2.18)) for the
TGARCH filtered European portfolio.
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probability of observing trivariate extremes (κ̂3) has steadily increased from 10–20%

for losses, and 5–10% for gains, respectively, during the 1990s up to 20–30% for losses,

and 30–40% for gains, respectively, at the peak of the recent financial crisis 2007–

09. However, the share of trivariate extremes in bivariate extremes κ̂3/κ̂2 steadily

declined both for losses and gains during the 1990s (from 60% to 35% for losses, and

from 50% to 20% for gains) and has consequently ascended for both tails until the end

of the 2010s (up to 70–80% for both losses and gains). Thus, for losses, the probability

that multivariate extremes occur in larger cross–sections has doubled during the

2000s, while it has even tripled for gains in that time span. This highlights that

extremes more than ever occur not only in bivariate pairs, but also in larger cross–

sections.

2.6 Conclusion

This chapter proposes a test that reveals situations in which common bivariate mea-

sures for tail dependence underdiagnose the potential for higher–dimensional ex-

37



2 Beyond dimension two: A test for higher order tail risk

treme events. Test asymptotics are derived and simulations show the bootstrap im-

plementation routine features attractive finite sample properties, despite the chal-

lenging threshold choice, inherent to extreme value statistics, which occasionally

affects test size. In the case of data that exhibit serial correlation and GARCH ef-

fects, we recommend studying estimated residuals instead observed realizations, to

maintain the good size and power properties.

On global stock markets, we find that cross–sectional extremes become relevant in

the course of the financial crisis of 2007–08. Multivariate extremes on European

stock markets are historically more intertwined, as the impact of high–dimensional

extremes is significant throughout the considered sample. There appears to be di-

versification potential of multivariate extreme losses between European and non–

European stock markets, while extreme gains do not share this feature. Within the

European system, left tail events feature no potential for diversification. We find time

periods when up to 80% of extremes are truly multivariate.
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2.7 Appendix

2.7 Appendix

2.7.1 Model specifications

Table 2.4: Specifications of the max factor models.

B0
3 =

(
1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

)
BA1

3 = ( 1/3 1/3 1/3 )

B0
5 =



1/2 1/2 0 0 0
1/2 0 1/2 0 0
1/2 0 0 1/2 0
1/2 0 0 0 1/2
0 1/2 1/2 0 0
0 1/2 0 1/2 0
0 1/2 0 0 1/2
0 0 1/2 0 1/2
0 0 1/2 0 1/2
0 0 0 1/2 1/2


BA1

5 =


1/3 1/3 1/3 0 0
1/2 0 0 1/2 0
1/2 0 0 0 1/2
0 1/2 0 1/2 0
0 1/2 0 0 1/2
0 0 1/2 1/2 0
0 0 1/2 0 1/2



BA2
5 =


1/4 1/4 1/4 1/4 0
1/2 0 0 0 1/2
0 1/2 0 0 1/2
0 0 1/2 0 1/2
0 0 0 1/2 1/2



B0
7 =



1/2 1/2 0 0 0 0 0
1/2 0 1/2 0 0 0 0
1/2 0 0 1/2 0 0 0
1/2 0 0 0 1/2 0 0
1/2 0 0 0 0 1/2 0
1/2 0 0 0 0 0 1/2
0 1/2 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0
0 1/2 0 0 1/2 0 0
0 1/2 0 0 0 1/2 0
0 1/2 0 0 0 0 1/2
0 0 1/2 1/2 0 0 0
0 0 1/2 0 1/2 0 0
0 0 1/2 0 0 1/2 0
0 0 1/2 0 0 0 1/2
0 0 0 1/2 1/2 0 0
0 0 0 1/2 0 1/2 0
0 0 0 1/2 0 0 1/2
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 0 1/2
0 0 0 0 0 1/2 1/2



BA1
7 =

(
1/3 1/3 1/3 0 0 0 0
1/3 0 0 1/3 1/3 0 0
0 1/3 0 0 0 1/3 1/3

)

BA2
7 =

(
1/3 1/3 1/3 0 0 0 0
0 0 1/2 1/2 0 0 0
0 0 0 1/4 1/4 1/4 1/4

)
BA3

7 =

 1/6 1/6 1/6 1/6 1/6 1/6 0
1/2 0 0 0 0 0 1/2
0 1/2 0 0 0 0 1/2
0 0 1/2 0 0 0 1/2
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2 Beyond dimension two: A test for higher order tail risk

2.7.2 Proofs

Proof of Proposition (2.1). .

If X is tail independent, `(x) = x1 ⇔ `i(x
(i)) = x(i)1, for all possible bivariate combi-

nations i. Plugging this into the general form of ∆, and realizing that in this case∑
i<j≤2 `i(x

(i)) = (d− 1)
∑d

i=1 x
(i), it follows that

∆ = `(x)− 2

d∑
i=1

x(i) + d

d∑
i=1

x(i) −
∑
i<j≤2

`i(x
(i))

=

d∑
i=1

x(i) − 2

d∑
i=1

x(i) + d

d∑
i=1

x(i) −
∑
i<j≤2

`i(x
(i))

=

d∑
i=1

x(i) − 2

d∑
i=1

x(i) + d

d∑
i=1

x(i) − (d− 1)

d∑
i=1

x(i)

= 0.

The reverse does not hold true. E.g. let X := (X(1), X(2), X(3)), with X(3) being inde-

pendent of X(1), and let X(1) a.s.= X(2), i.e. X(1) and X(2) are perfectly tail dependent.

Thus, `12(x(1), x(2)) ≡ `11(x(1), x(1)) = x(1), `13(x(1), x(3)) = x(1) + x(3), and

`123(x(1), x(1), x(3)) = lim
t↓0

tP
( ⋃
i∈{1,2,3}

{X(i) ≥ F−1
i (1− tx(i))}

)
= lim

t↓0
tP
(
{X(1) ≥ F−1

1 (1− tx(1))} ∪ {X(3) ≥ F−1
3 (1− tx(3))}

)
= x(1) + x(3).

Rewriting ∆ yields

∆ = `123(x(1), x(1), x(3))− 2(2x(1) + x(3)) + 3(2x(1) + x(3))

− 2`11(x(1), x(1))− `13(x(1), x(3))

= x(1) + x(3) − 2(2x(1) + x(3)) + 3(2x(1) + x(3))− x(1) − 2(x(1) + x(3))

= 0.

Hence, we have tail dependence in X and ∆ is zero as extreme events in dimension

three do not matter.
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2.7 Appendix

Proof of Proposition (2.2). .

The result directly follows from Einmahl et al. (2012), theorem 4.6, and Bücher &

Dette (2013), Bücher et al. (2014)
√
k(̂̀(x) − `X(x),x ∈ [0, 1]d, is asymptotic normal

with zero mean and covariance matrix equal to a sum of a centered Gaussian field

and Gaussian processes. It is assumed that `X(x) < x′1 to ensure the asymptotic

variance of ̂̀X(x) is non–zero. This holds if at least one bivariate pair (X(i), X(j)) is

asymptotic dependent. In R2, where x = (x(i), x(j)), it holds that

√
k̂̀ij(x(i), x(j))

d→ N(`(x(i), x(j)), σ2
` ), x

(i), x(j) > 0,

where

σ2
` = `(x(i), x(j))− 2x(i)`∂i(x

(i), x(j))− 2x(j)`∂j(x
(i), x(j)) + x(i)`2∂i(x

(i), x(j))

+ x(j)`2∂j(x
(i), x(j)) + 2`∂i(x

(i), x(j))`∂j(x
(i), x(j))(x(i) + x(j) − `(x(i), x(j)),

with `∂j(x) := (∂`/∂x(j))(x) denoting the partial derivative of the STDF with respect to

argument x(j). According to Equations (2.6) and (2.7), and setting x = 1, Λ̂(x) is also

asymptotic normal. Asymptotic normality of ∆̂ directly follows from Equation 2.8.

Thus,

∆̂
d→ N(∆, σ2

∆̂
),

with

σ2
∆̂

= k−1σ2̂̀ + k−1
∑
i<j≤2

σ2̂̀
i

+ 2
( ∑
i<j≤2

Cov(̂̀i, ̂̀) +
∑

i<j≤2;g<h≤2;i 6=g
Cov(̂̀ij , ̂̀gh)

)
∈ (0,∞).

Whenever partial derivatives of the STDF do not exist, the same reasoning for the

limit law of
√
k∆̂ applies using asymptotic results in Bücher et al. (2014).

2.7.3 Auxiliary simulations

The ratio κ3/κ2 gives the share of bivariate extremes that are also extremes in dimen-

sion three or larger; as this ratio conditions on the occurrence of bivariate extremes,

the magnitude is driven by multivariate (d > 2) tails and is not driven by the number

of bivariate extremes, as is the case for κ3. Table (2.5) reports averages from 1000

simulation repetitions of all three measures for the distributions considered in the
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2 Beyond dimension two: A test for higher order tail risk

Table 2.5: Means and standard deviations of simulated κ̂3/κ̂2, κ̂3, κ̂2 for max factor
models and meta t–distributions from Section 2.4 with 1000 repetitions,
d = 7, n = 750 and k as in the empirical application.

κ̂3/κ̂2 κ̂3 κ̂2 κ̂3/κ̂2 κ̂3 κ̂2

t-distr. max
factor

νC
5 0.507 0.212 0.419 B0

7 0.050 0.040 0.795
(0.070) (0.040) (0.046) (0.027) (0.022) (0.048)

10 0.453 0.168 0.371 BA1
7 0.590 0.500 0.852

(0.071) (0.036) (0.042) (0.063) (0.035) (0.033)
15 0.431 0.151 0.351 BA2

7 0.558 0.534 0.958
(0.072) (0.033) (0.041) (0.062) (0.053) (0.028)

20 0.425 0.145 0.344 BA3
7 0.517 0.328 0.633

(0.072) (0.032) (0.040) (0.019) (0.028) (0.048)

simulations of Section 2.4. Sample size, dimension and choice of k are as in the

empirical application of Section 2.5.

Note, the only distribution in dimension seven that fulfills the null of no HOTDs is

the max factor model with loading matrix B0
7. In this case, both κ3 and κ3/κ2 are

close to zero. Theoretically, they should be exactly zero, however, for a sample size

of n = 750 this distortion can be be interpreted as finite sample bias. Yet in this case,

a simple t–test would not indicate a statistical significance (α = 0.05). For the meta

t–distribution, κ3/κ2 grows with decreasing degree of freedom of the copula, which

governs the strength of bivariate and multivariate extremes. Thus, κ̂3/κ̂2 is indeed

capable of reflecting the severeness of HOTDs.
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3 Detecting structural differences in tail
dependence of financial time series
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This chapter is based on Bormann & Schienle (2016).

Abstract

An accurate assessment of tail inequalities and tail asymmetries of financial returns

is key for risk management and portfolio allocation. We propose a new test proce-

dure for detecting the full extent of such structural differences in the dependence of

bivariate extreme returns. We decompose the testing problem into piecewise mul-

tiple comparisons of Cramér–von Mises distances of tail copulas. In this way, tail

regions that cause differences in extreme dependence can be located and conse-

quently be targeted by financial strategies. We derive the asymptotic properties of

the test and provide a bootstrap approximation for finite samples. Moreover, we

account for the multiplicity of the piecewise tail copula comparisons by adjusting

individual p–values according to multiple testing techniques. Extensive Monte Carlo

simulations demonstrate the test’s superior finite–sample properties for common fi-

nancial tail risk models, both in the i.i.d. and the sequentially dependent case. In

a high–dimensional S&P500 industry universe, we compare tail dependence of bi-

variate lower and upper tails of sector returns in a rolling window scheme. For the

last 90 years, our test detects up to 20% more tail asymmetries than competing tests.

This can be attributed to the presence of non–standard tail dependence structures.

We also find evidence for diminishing tail asymmetries during every major financial

crisis — except for the 2007-09 crisis — reflecting a risk–return trade–off for ex-

treme returns. Finally, for major foreign exchange rates during 2001–16, we identify

EUR–CHF as the most tail dependent pair in both upper and lower tails. This tail

dominance prevails even after the Swiss National Bank unpegged the Franc from the

Euro.

Keywords: Tail dependence, tail copulas, tail asymmetry, tail inequality, extreme

values, multiple testing

JEL classification: C12, C53, C58
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3.1 Introduction

Asymmetric dependence both within and between bivariate extreme returns in differ-

ent market conditions is not only a key criterion for asset and risk management, but

also a main focus of market supervision. During financial crises, financial markets

exhibit pronounced cross–sectional co–movements of (lower) tails of return distri-

butions. Thus, the tendency of joint extreme events intensifies, see e.g. Longin &

Solnik (2001), Ang & Chen (2002), Li (2013). For investment strategies, this should

be taken into account by timely and adequate re–allocations of assets, e.g. profit-

ing from arbitrage trading opportunities, and by appropriate adjustments of hedging

decisions. Conversely, risk managers and market supervisors might need to set

larger capital buffer requirements if the tendency for joint occurrences of extreme

losses rises in times of market distress. Particularly aiming at dependence between

extreme events, we provide a robust non–parametric statistical test against tail de-

pendence differences. The test accurately detects all types and the full extent of

deviations between two tail dependence functions. Our test procedure is based on

multivariate extreme value techniques which remain valid during turbulent mar-

ket periods, e.g. Mikosch (2006). Particular to finance, Ang & Chen (2002), Patton

(2006), Chollete et al. (2011), Li (2013) document the economic merits for asset di-

versification of asymmetric dependence structures, e.g. for optimal portfolio alloca-

tion. Under adverse market conditions, standard linear dependence measures are

flawed which calls for alternative statistical models. Most prominently, the Gaus-

sian copula is a convenient tool to model dependence near the mean of multivariate

distributions. However, it is not capable of measuring dependence in the far tails

(Embrechts (2009)).

We propose a novel non–parametric test procedure against pairwise differences in tail

dependence structures which we measure with tail copulas denoted by Λ(x(1), x(2)),

(x(1), x(2)) ∈ R2
+. A tail copula is a functional of the complete tail dependence. The

flexibility of using empirical tail copulas avoids possible parametric misspecification

risk; see e.g. Longin & Solnik (2001), Patton (2013), Jondeau (2016) for paramet-

ric approaches. Furthermore, the generality of this approach is in sharp contrast

to established approaches, which only estimate and compare scalar summary mea-

sures of extreme dependence, such as the tail dependence coefficient (Hartmann

et al. (2004), Straetmans et al. (2008)), or the tail index of aggregated tails (Ledford &

Tawn (1996)). Specifically, we compare tail copulas over their entire relevant domain
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3.1 Introduction

in a locally piecewise way. Thus, we study a multiple testing problem of tail copula

equality. Piecewise testing allows to pin down specific quantile regions where tail

dependence differences are most serious. Such areas then indicate those types of

extreme market conditions that typically cause tail asymmetry (inequality). More-

over, our test is still consistent if one (or both) of the two considered tail copulas is

non–exchangeable, i.e. Λ(x(1), x(2)) 6= Λ(x(2), x(1)). Existing procedures fail to address

such intra–tail asymmetric dependence structures. Therefore, for non–exchangeable

tail copulas, those tests are inconsistent.

Our test builds on the idea of a two–sample goodness–of–fit test for tail copulas as

in Bücher & Dette (2013). However, for increased sensitivity against violations of the

null, we compare both tail copulas in a piecewise way on disjoint subintervals of the

unit simplex hull. This way, a number of individual tests against tail dependence

equality is carried out. For an accurate overall assessment, we use multiple testing

principles, such as the familywise error control and the false discovery rate, to jointly

control the error rate of all marginal tests. Asymptotic properties of the test are

provided. Moreover, a multiplier bootstrap procedure is suggested by extending ideas

of Bücher & Dette (2013) to non–i.i.d. data.

A simulation study with widely used factor and Clayton copulas reveals the test’s

attractive finite sample properties both for i.i.d. and sequentially dependent time

series data. In standard cases, our test is slightly superior to competing tests, while

it is much more powerful in case of intra–tail asymmetric copulas. Simulation results

strongly suggest that accounting for time series dynamics is essential. This can

be achieved by either GARCH pre–filtering or by directly adjusting the bootstrap

approximation for serial dependence.

In an empirical application, we establish tail asymmetry dynamics of 49 S&P500

industry portfolios for the last 90 years, i.e. dynamics of the differences between

upper and lower tails of all bivariate industry pairs. We find empirical evidence

that tail asymmetries substantially diminish in times of financial distress. The only

strong exception is the 2007–2009 financial crisis which apparently was completely

different in structure than any other crisis. We conclude dependence between ex-

treme gains increases in crisis. As the danger of joint extreme losses surges during

bear markets, this finding documents a type of extreme risk–return trade–off as joint

extreme gains are more likely compensating for the increased risk of joint extreme

losses. This contrasts to other studies that analyze and compare market index pairs.

Overall, our test detects up to 20% more tail asymmetries than competing tests. This
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3 Detecting structural differences in tail dependence of financial time series

can specifically be attributed to tail events not detected by standard tail dependence

measures as the tail dependence coefficient (TDC) (Hartmann et al. (2004), Jondeau

(2016)), or the tail copula–based test by Bücher & Dette (2013). Thus, our test could

serve as a more accurate tool for investors when assessing tail asymmetry in the

market, e.g. our test reveals more opportunities for improved tail asymmetry–based

portfolio allocation strategies.

We also test pairs of six foreign exchange rates against tail inequalities during 2000–

2016, i.e. against differences between bivariate tails of different pairs. Generally,

for the entire time period, the Euro–Swiss Franc pairs stands out with the strongest

tail dependence. Interestingly, this dominance appears to continue after the sudden

unpegging of the Franc by the Swiss National Bank on January 2015.

This chapter is structured as follows. Section 3.2 introduces theoretical results

on tail dependence necessary for the testing procedures. Section 3.3 introduces our

testing technique. It also provides asymptotic properties and respective finite sample

versions of the test procedures. Section 3.4 studies the finite sample performance in

a thorough simulation study, and Section 3.5 provides detailed applications on sub-

sectors indices of S&P500 and on data of the major foreign exchange rates. Finally,

Section 3.6 concludes.

3.2 Tail dependence and tail copulas

To understand the test idea and test statistics, we shortly introduce necessary tools

from extreme value statistics. A complete treatment thereof can be found in de Haan

& Ferreira (2006). A two–dimensional (random) return vector will be denoted by X =

(X(1), X(2)). Marginal returns X(i), i = 1, 2, are assumed to be i.i.d. with continuous

distribution Fi(x
(i)), i = 1, 2, and quantile functions F−1

i . Later, we can relax the

independence assumption directly, as will be discussed in Section 3.3.2.

Our test is based on the full dependence structure in the tails captured by a tail

copula. Note, standard dependence measures such as point correlations, quantify

the likelihood of aligned return movements of X(1) and X(2). However, if returns of

both assets are extreme, i.e. {X(i) > F−1
i (1 − t)}, or {X(i) < F−1

i (t)}, i = 1, 2, for t → 0,

standard dependence measures are insufficient, and thus measures that focus on

the tails should be used, Embrechts (2009). For example, the Gaussian copula,

which is completely parametrized by the correlation coefficient, is unable to model
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3.2 Tail dependence and tail copulas

any tail dependence. That is to say, dependence may vary over different parts of the

distribution, and correlation may be unable to measure dependence in the tails.

If X is in the domain of attraction of a two–dimensional extreme value distribution,

there exists the so–called tail copula which measures the complete tail dependence

between X(1) and X(2). The upper and lower tail copula ΛUX (x(1), x(2)),ΛLX(x(1), x(2)),x :=

(x(1), x(2)),x ∈ R2
+, are defined by

ΛUX (x(1), x(2)) := lim
t→0

t−1P(X(1) > F−1
1 (1− tx(1)), X(2) > F−1

2 (1− tx(2))),

ΛLX(x(1), x(2)) := lim
t→0

t−1P(X(1) < F−1
1 (tx(1)), X(2) < F−1

2 (tx(2))), t ∈ R+,

i.e. the tail copula measures how likely both components jointly exceed extreme

quantiles. See, among others, de Haan & Ferreira (2006), Schmidt & Stadtmüller

(2006), for further details. If ΛUX (x) > 0 (ΛLX(x) > 0), gains (losses) of X are said to

be tail dependent. For the sake of notational brevity, we omit the superscripts U

and L unless it becomes important. With x = (1, 1), the tail copula boils down to

the tail dependence coefficient (TDC), ι := Λ(1, 1). The TDC is a standard tool in

financial applications to measure tail dependence, e.g. Frahm et al. (2005), Aloui,

Aïssa & Nguyen (2011), Garcia & Tsafack (2011). However, the TDC covers only a

fragment of tail dependence, namely dependence between joint quantile exceedances

of marginals thresholds along the line (F−1
1 (1−t), F−1

2 (1−t)), t→ 0. In contrast, the tail

copula varies marginal thresholds as (x(1), x(2)) ∈ R2
+, and describes tail association

for every possible tail event. It can be shown that ΛX(x(1), x(2)) ∈ [0,min(x(1), x(2))],

and ΛX(ax) = aΛX(x), a ∈ R. Due to this homogeneity of the tail copula, it is sufficient

to analyze ΛX(x) with x ∈ S, where the domain of the tail copula, S := {(x(1), x(2)) :

x(1), x(2) ≥ 0, ||x|| = c}, is, e.g. the unit simplex hull with || · || = || · ||1 and c = 1,

or the unit circle hull with || · || = || · ||2 and c = 1. Without loss of generality, we

choose S to be the unit simplex hull. The homogeneity property prunes the relevant

domain of the tail copula (i.e. from R2
+ to S) and reduces computational efforts in

practical implementation. The homogeneity property will lay the basis for our test.

We assume the tail copulas exist and ΛX(x) > 0, i.e. we assume tail dependent

pairs because non–parametric methods are biased for ΛX(x) = 0, see Schmidt &

Stadtmüller (2006).

We are interested in comparing two tail copulas, i.e. in differences of tail copulas.

To formalize the discussion about tail copula differences and special cases such as

tail asymmetry, and tail inequality, we introduce the following definitions and some
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3 Detecting structural differences in tail dependence of financial time series

notation. We say two tail copulas ΛX and ΛY,Y = (Y (1), Y (2)), differ if there exists a

set I ⊂ R2
+ with P(I) > 0 such that

{ΛX(x(1), x(2)) 6= ΛY(x(1), x(2))} or {ΛX(x(1), x(2)) 6= ΛY(x(2), x(1))}, (x(1), x(2)) ∈ I.
(3.1)

Note, we demand inequality over some set I, and not only at a single point (x(1), x(2)) ∈
R2

+. For the homogeneity of the tail copula, it is sufficient to consider (x(1), x(2)) ∈ S.
We write shorthand ΛX 6= ΛY for Equation (3.1). Tail asymmetry is given if two tail

copulas of the same return vector differ, e.g. upper and lower tail copulas of X differ.

To detect tail asymmetry, one should compare ΛUX (x(1), x(2)) with ΛLX(x(1), x(2)) and

also with the flipped version ΛLX(x(2), x(1)). Tail inequality occurs between two return

vectors, i.e. ΛX 6= ΛY.

Definition 3.1 (Tail asymmetry). A return vector X is tail asymmetric if ΛLX 6= ΛUX .

Whenever the likelihood for co–movements of extreme losses differs from that of

extreme gains, the return vector X exhibits tail asymmetry. For example, in terms of

Value at Risk (VaR) exceedances, ΛLX > ΛUX implies joint exceedances of loss VaRs are

more likely to occur than those of gain VaRs.

Definition 3.2 (Tail inequality). Return vectors X and Y exhibit tail inequality if ΛWX 6=
ΛQY for W,Q = U,L.

The concept of tail inequality can be used to compare competing portfolios with

respect to their sensitivity to extreme events. For example, ΛLX > ΛLY implies joint

exceedances of loss VaRs for those portfolio X are more likely to occur than those

portfolio Y, i.e. X exhibits a stronger tail risk of joint losses than Y. Similarly, if

ΛUX < ΛLY, joint extreme losses in portfolio Y are more intertwined than joint extreme

gains in X.

One reason for tail copula differences may be non–exchangeability of at least one of

the tail copulas considered. We term non–exchangeability of a tail copula intra–tail

asymmetry as it refers to asymmetry of a single tail copula. A return vector X is

intra–tail asymmetric if ΛWX (x(1), x(2)) 6= ΛWX (x(2), x(1)), (x(1), x(2)) ∈ S,W = U,L. Intra–

tail asymmetry refers to one joint tail of X and occurs whenever the tail copula of

that specific tail is not symmetric with respect to its arguments x = (x(1), x(2)), i.e. if

the tail copula is not exchangeable with respect to X(1) and X(2). For example, let
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3.2 Tail dependence and tail copulas

x(1) = 0.2, x(2) = 0.8 and t = 0.05. Then, intra–tail asymmetry is present if the tail

event {X(1) > V aR1(0.99)}∩{X(2) > V aR2(0.96)} is differently likely than the tail event

{X(1) > V aR1(0.96)} ∩ {X(2) > V aR2(0.99)}. The following proposition illustrates the

importance of intra–tail asymmetry for comparisons of tail dependence functions.

Proposition 3.1. If ΛWX (x(1), x(2)),W = U,L, is intra–tail asymmetric, then ΛWX 6= ΛHZ ,
for (Z, H) ∈ {(X,W ), (Y, U), (Y, L)}, where W denotes the complement of W .1

Figure (3.3) illustrates this idea. If ΛWX (x),W = U,L, is asymmetric with respect to x,

any comparison with that tail copula automatically amounts to tail asymmetry (in-

equality) as there is always a point on the unit simplex hull where both tail copulas

differ. While parametric models for intra–tail asymmetric tails exist, e.g. the asym-

metric logistic copula in Tawn (1988), and factor copulas in Einmahl et al. (2012),

intra–tail symmetry is implicitly assumed to hold in all standard tests for tail depen-

dence differences. However, we find this phenomenon should not be ruled out ex

ante, e.g. Bormann (2016) detects a considerable amount of intra–tail asymmetries

in foreign exchange rate pairs.

As the tail copula is the main component for our test, we sketch relevant statis-

tical results. Non–parametric estimation of ΛX(x) approximates marginal quantile

functions F−1
i,X , i = 1, 2, non–parametrically by the empirical counterpart F̂−1

i,X , i = 1, 2.

Further, the running variable t is replaced by k/n with the sample size n → ∞, and

the effective sample size k →∞, k ∈ O(n). A consistent estimator for ΛU (x) is

Λ̂UX (x(1), x(2)) =
1

k

n∑
m=1

1
{
X(1)
m > F̂−1

1,X(1− (k/n)x(1)), X(2)
m > F̂−1

2,X(1− (k/n)x(2))
}
,

(x(1), x(2)) ∈ S. An asymptotically equivalent estimator is given by

Λ̂UX (x(1), x(2)) =
1

k

n∑
m=1

1
{
F̂1,X(X(1)

m ) > 1− (k/n)x(1), F̂2,X(X(2)
m ) > 1− (k/n)x(2)

}
,

where F̂i,X(x) = 1
n+1

∑n
j=1 1{X(i)

j ≤ x}. Estimators for ΛLX(x) are defined analogously.

Concerning asymptotic results for the empirical tail copula in the standard i.i.d.

case, we state both assumptions and results for the tail copula as they are the

1Assume ΛWX (x(1), x(2)) = ΛHZ (x(1), x(2)). As ΛWX (x(1), x(2)) 6= ΛWX (x(2), x(1)), it holds ΛWX (x(2), x(1)) 6=
ΛHZ (x(1), x(2)), and Equation (3.1) applies.
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3 Detecting structural differences in tail dependence of financial time series

backbone of the asymptotic distribution of our test statistic, see Bücher & Dette

(2013).

Assumptions 3.1. For a bivariate random vector X, we assume the following.

(A1S ) X ∼ FX, i.i.d.

(A2S ) FX is in the max–domain of a bivariate extreme value distribution with tail copula
ΛX > 0.

(A3S ) k →∞ and k
n → 0 for n→∞.

(A4S ) It holds that |Λ(x(1), x(2))− tCX(x(1)/t, x(2)/t)| = O(A(t)), for t→∞, and some func-
tion A : R+ 7→ R+ with limt→∞A(t) = 0 and

√
kA(n/k) → 0 for n → ∞, where

CX(x(1), x(2)) := P(F1(X(1)) ≤ x(1), F2(X(2)) ≤ x(2)) denotes the copula of X.

(A5S ) The partial derivatives Λ∂i := ∂Λ(x(1),x(2))

∂x(i) , exist and are continuous for x(i) ∈ R+{0}.

Assumption (A1S) is standard, yet restrictive for financial time series. In practice,

the necessity of i.i.d. data is bypassed by pre–filtering the data with e.g. GARCH

models. We later illustrate how (A1S) may be relaxed to stationarity with a specific

mixing rate allowing for a direct application of our test to serially dependent data,

see Section 3.3.2. Assumption (A2S) requires sample tails can be modeled by bivari-

ate extreme value distributions and are asymptotically dependent, see Schmidt &

Stadtmüller (2006) for details. Standard distributions with actual tail dependence,

such as the bivariate t–distribution with dispersion parameter ρ 6= 0, meet this as-

sumption. Notably, due to its tail independence (Λ = 0 for |ρ| < 1), the Gaussian

copula violates (A2S). Assumption (A3S) imposes that the effective sample size k in-

creases more slowly than n for n→∞. The second–order condition (A4S) (see Bücher

& Dette (2013)) effectively requires that the lower part of the scaled copula can be

approximated sufficiently well by the tail copula, i.e. with order A. This, in fact,

is a regular variation restriction and in practice imposes a corresponding slightly

tighter condition on the expanding rate of k. For example, if A(t) is asymptotically

of order 1/tα with α > 0, then k should be at most of order n
2α

1+2α < n in order to

satisfy the conditions. For completeness, we state Assumption (A5S). Nevertheless,

this smoothness assumption may also be omitted. This results in a more complex

limiting behavior of the empirical tail copula, which permits consistent estimation of

tail copulas of factor models, see Bücher et al. (2014).
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Under Assumptions (A1S)–(A5S), the asymptotic distribution for the tail copula can

be derived as follows√
kX(Λ̂X(x(1), x(2))− ΛX(x(1), x(2)))

w→ G
Λ̂,X(x(1), x(2)), (x(1), x(2)) ∈ R2

+; (3.2)

where w→ denotes weak convergence, G
Λ̂,X is a bivariate Gaussian field of the form

G
Λ̂,X(x(1), x(2)) = GΛ̃,X(x(1), x(2))−

2∑
i=1

Λ∂i(x
(1), x(2))GΛ̃,X(x(i), x−i =∞),

where Λ∂i(x
(1), x(2)) := ∂Λ(x(1),x(2))

∂x(i) denote the partial derivatives of the tail copula,

GΛ̃,X(x(1), x(2)) is a centered Gaussian field with covariance

E(GΛ̃,X(x(1), x(2))GΛ̃,X(v(1), v(2))) = Λ(min(x(1), v(1)),min(x(2), v(2))), (v(1), v(2)) ∈ R2
+.

These results were first established in Schmidt & Stadtmüller (2006); Bücher & Dette

(2013) and Bücher et al. (2014) provide related results while also relaxing (A5S), i.e.

existence of partial derivatives of the tail copula is generally not needed. This is

important in practice, as it covers not only smooth standard models for tail models,

but also practically relevant tail dependence model that may arise from (tail) factor

models.

3.3 A new testing methodology against tail asymmetry and
inequality

3.3.1 Test idea, asymptotic properties, and implementation

Generally, we test the global null hypothesis of equality between tail copulas by

checking for local violations of the null over many disjoint subsets of the relevant

support (S) for all subset permutations. This localization provides additional insights

on specific quantile areas which might be a valuable target for adequate risk or

portfolio management strategies.

When testing against tail equality, our test takes into account that each of the return

vectors could be intra–tail asymmetric. In case of intra–tail asymmetry, statistical

tests are only consistent if all possible permutations of arguments in the tail copulas
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3 Detecting structural differences in tail dependence of financial time series

are considered as only then null violations in all directions can be found (ΛZ(x(1), x(2)),

and also ΛZ(x(2), x(1)),Z = X,Y). This contrasts sharply with the TDC–based test by

Hartmann et al. (2004), abbreviated as TDC test, which only compares tail copulas

at a single point of their domain. Yet, we account for possible tail differences within

the entire domain of both tail copulas. Our test is closely related to the test by

Bücher & Dette (2013), abbreviated as BD13 test, which compares the tail copula of

X with the tail copula of Y = (Y (1), Y (2)) along the unit circle. However, as tail copula

differences are only evaluated in one direction, their test statistic is not exchange-

able, i.e. for the test statistic S it holds that S(X, (Y (1), Y (2))) 6= S(X, (Y (2), Y (1))). To fix

this, we propose to analyze tail copula differences in both directions of the unit sim-

plex hull, and thereby we search for differences between tail copulas over distinct,

pre–determined subintervals of the unit simplex. Testing for tail equality over many

different subintervals amounts to an entire collection of individual tests. If the null

of tail dependence equality is rejected within a specific subset, this approach locates

those sample regions that cause tail dependence differences. Test power strongly

benefits from intra–tail asymmetric tail copulas. Further, in standard cases, i.e.

intra–tail symmetric cases, it features similar, yet slightly better test properties as

competing tests.

Note, the notation corresponds to the test against tail inequality. However, the test

also applies for tail asymmetry by exchanging ΛX by ΛUX and ΛY by ΛLX. Due to

the homogeneity property of the tail copula, it is sufficient to compare tail copulas

only over the unit simplex hull instead of R2
+. We denote the unit simplex hull by

S := {(x(1), x(2)) : x(1) + x(2) = 1, x(i) ≥ 0, i = 1, 2}. We apply M Cramér–von Mises tests

on M/2 disjoint subinterval of S. The global null hypothesis is

H0 : ΛX = ΛY over S, a.s.,

consisting of M individual null hypotheses of the form

H0,m : ΛX(φ, 1− φ) =

{
ΛY(φ, 1− φ), φ ∈ Im, m = 1, . . .M/2

ΛY(1− φ, φ), φ ∈ Im−M/2, m = (M/2) + 1 . . .M,

for even numbered M , and with disjoint subintervals I1, ..., IM/2 of equal length that

fully compose [0, 1]. Note that H0 :
⋂M
m=1H0,m, i.e. global tail equality naturally implies
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3.3 A new testing methodology against tail asymmetry and inequality

tail equality over each subset. Marginal test statistics are given by

Sm(X,Y) =

{
kXkY
kX+kY

∫
Ij (ΛX(φ, 1− φ)− ΛY(φ, 1− φ))2 dφ, j = 1, . . .M/2

kXkY
kX+kY

∫
Ij (ΛX(φ, 1− φ)− ΛY(1− φ, φ))2 dφ, j = (M/2) + 1 . . .M.

Each marginal test corresponds to a specific subset of S, which can be translated to

a subspace of the sample. The switch of arguments in ΛY for j ≥ (M/2)+1 guarantees

that tail copulas are compared over the entire unit simplex, e.g. in both directions.

If H0,m is true, Sm = 0, while Sm > 0 otherwise. Test statistics are estimated by

replacing Λ by Λ̂. Empirical test statistics will be denoted by Ŝm.

The following proposition provides the marginal test distributions in the i.i.d. case.

Section 3.3.2 discusses extensions for time series data.

Proposition 3.2. Assume that Assumptions (A1S )–(A4S ) hold for X,Y. Then,

(a)
(Ŝ1, ..., ŜM )

w→ (S1, ..., SM ),

with

Sm =

∫
Im

(√
kX

kX + kY
G

Λ̂,X(φ, 1− φ)−

√
kY

kX + kY
G

Λ̂,Y(φ, 1− φ)

)2

dφ,

m = 1, ...,M .

(b) Under H0,
Sm

w→ 0,m = 1, ...,M.

(c) Under H1,
∃m : Sm

w→ c,

where c ∈
(

0,
∫
Im min(φ, 1− φ)2dφ

]
drives local power.

Note, the processes G
Λ̂,X,GΛ̂,Y correspond to G

Λ̂
(x(1), x(2)) from Equation (3.2). Due

to the complexity of the limiting stochastic processes, closed forms of the asymp-

totic distributions do not exist and have to be simulated. We follow Bücher & Dette

(2013) and approximate the distribution of (S1, ..., SM ) by a multiplier bootstrap. Fur-

ther notation is required to construct the bootstrap distribution. The bth bootstrap
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estimate of Ŝm is

Ŝm,(b)(X,Y) =
kXkY
kX + kY

∫
Im

(
(Λ̂

(b)
X (φ, 1− φ)− Λ̂X(φ, 1− φ))−

(Λ̂
(b)
Y (φ, 1− φ)− Λ̂Y(φ, 1− φ))

)2 dφ,

where Λ̂
(b)
Z (x) is the multiplier bootstrap version of Λ̂Z(x),Z = X,Y,

Λ̂
(b)
Z (x(1), x(2)) =

1

kZ

n∑
i=1

ξ̃Zi 1
{
Z

(1)
i ≥ F̃−1

1,Z(1− (kZ/nZ)x(1)), Z
(2)
i ≥ F̃−1

2,Z(1− (kZ/nZ)x(2))
}
,

ξ̃Zi = ξZi /ξ
Z, i = 1, ..., nZ,

F̃j,Z(x) =
1

nZ

nZ∑
i=1

ξ̃Zi 1
{
Z

(j)
i ≤ x

}
, j = 1, 2,

and ξi, i = 1, ..., nZ, are i.i.d. random variables, called multipliers, with E(ξi) = V(ξi) =

1. This bootstrap technique guarantees weak convergence of (Ŝm,(b) − Ŝm) to (Ŝm −
Sm), conditional on the bootstrap samples and conditional on the observed samples

of X and Y. This means the asymptotic distributions of the bootstrap statistics

converge to the asymptotic distributions of the empirical test statistics, and can be

used to mimic the marginal null distributions in Proposition (3.2). We extend the

test assumptions as follows.

Assumptions 3.2 (cont.).

(A6S ) Multiplier variables ξi, i ∈ Z+, are i.i.d. random variables; ξi are independent of
X,Y, and E(ξi) = V(ξi) = 1.

The following asymptotic result of the bootstrap version of the test ensures test con-

sistency in the i.i.d. case.

Proposition 3.3. Let (A1S )–(A6S ) hold. Then

(Ŝ1,(b) − Ŝ1, ..., ŜM,(b) − ŜM )
w→ (S1 − Ŝ1, ..., SM − ŜM ).

This result provides a feasible bootstrap approximation of the test distribution. For

the i.i.d. case, we set ξi ∼ Exp(1).2 Finally, a consistent Monte Carlo p–value for

2Note, whenever X and Y are dependent, one has to use the same multiplier series for both X and Y.
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3.3 A new testing methodology against tail asymmetry and inequality

hypothesis H0,m is given by

p̂m =
1 +

∑B
b=1 1{Ŝm ≥ Ŝm,(b)}

B + 1
.

Joint testing of M hypothesis requires an adjustment of the individual test level α to

control the error rate of the global hypothesis, α∗, say. Common error rates are the

familywise error rate (FWER) and the false discovery rate (FDR).

In general, for a family of M individual hypotheses H0,1, H0,2, ...,H0,M , FDR controls

for the expected number of falsely rejected marginal null hypotheses among all re-

jections, i.e.

FDR := E
(∑M

m=1 1{pm ≤ αm|H0,i}∑M
m=1 1{pm ≤ αm}

)
≤ α.

The Benjamini–Hochberg algorithm (Benjamini & Hochberg (1995)) sorts all p–values

p(1), ..., p(M), starting with the smallest one, and compares p(i) with i
Mα where i de-

notes the rank of p–value p(i). If p(i) < i
Mα, marginal hypotheses corresponding to

p–values p(1), ..., p(i) are rejected. Adjusted p–values are p̃(i) = p(i)M
i and are compared

with α∗. The FWER controls for the probability of at least false rejection at a prefixed

threshold α, say α = 5%, i.e.

P(∪Mm=1{pm ≤ αm|H0,m}) ≤ α,

where pm denotes the marginal p–value and αm is determined by the multiple testing

method such that the inequality holds. For the well–known Bonferroni control, αm =

α/M . Equivalently, individual p–values are adjusted as p̃m = pmM and marginal

hypotheses are rejected if p̃m < α.

In general, controlling the BH–FDR is not as conservative as the FWER–Bonferroni

correction. Also, BH–FDR is better suited for (positively) dependent p–values, which

is a natural assumption for our setting. However, as we find in our simulations, test

performance is only slightly affected by the choice of error rate, and thus we choose

BH–FDR with α∗ = 0.05. See Romano & Wolf (2005) for an overview of multiple testing

methods with applications to financial data.

The practical implementation of the basic test works as follows.
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3 Detecting structural differences in tail dependence of financial time series

Test algorithm 1.

1. Determine kX, kY, and estimate both tail copulas, i.e. calculate Λ̂X(φ, 1−φ), Λ̂Y(φ, 1−
φ), φ ∈ [0, 1].

2. Set M . Decompose [0, 1] into M/2 disjoint, equally sized subintervals, i.e. I1, ...,

IM/2.

3. Calculate Ŝm,m = 1, ...,M .

4. Set B. Calculate Ŝm,(b),m = 1, ...,M, for b = 1, ..., B.

5. Calculate p̂m,m = 1, ...,M .

6. Fix an error rate α. Apply a multiple testing routine on p̂1, ..., p̂M and decide on the
global null hypothesis.

This test is, independent of the multiple testing method, asymptotically valid. E.g.

for the FDR it holds that limn,B→∞ FDR = e ≤ α, and in case of FWER, limn,B→∞ P
(
∪Mm=1

{pm ≤ αm|H0}
)

= f ≤ α. We use B = 1499 bootstrap repetitions; note the necessary

correction of B (1499 instead of 1500) which ensures consistency of the p–value.

Unless otherwise stated, we discretize [0, 1] as In = {0.01j}99
j=1. We typically apply test

Test Algorithm (1) with at most M = 26 marginal hypotheses, which discretizes [0, 1]

into 13 equally sized subintervals.3 The choice of M is subject to a trade–off between

test power and precision of localization of tail differences. A larger M amounts to

lower power as less data fall into finer subintervals, and the multiplicity penalty of

the individual p–values increases in M , making rejections even less likely. A larger

M also means, the tests very precisely pin down very narrow subintervals with sig-

nificant tail dependence differences. In the extreme case, where M → ∞, the test

algorithm carries out an infinite number of TDC–type tests. While this is a theoret-

ically valid test, test power would implode as the harsh p–value adjustment and the

decreasing number of observations in small subsets would almost never suggest a

test rejection due to the strong multiplicity penalty. Simulations suggest a choice of

M = 26 is reasonable as this also keeps computational effort manageable.

However, as we do not strive to determine an optimal number of subsets we suggest

to apply the test several times over a set of grids. Consequently, we combine p–

values of the different grids to one embracing test and we refrain from any further

multiplicity adjustment.

3For M = 26, I1 = {0.01, 0.02, ..., 0.09}, I2 = {0.10, 0.11, ..., 0.17}, ..., I13 = {0.93, ..., 0.99}. Note, subsets
may not exactly be of equal length.
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3.3 A new testing methodology against tail asymmetry and inequality

Test algorithm 2.

1. For J different grids that increase in grid fineness, individually execute Test Al-
gorithm (1) with Mj subsets, where Mj = 2j, j = 1, ..., J.

2. For each grid, adjust the p–values for multiplicity: (p̃1
1, p̃

2
1), ..., (p̃1

J , ..., p̃
2J
J ).

3. For each grid, pick the minimal adjusted p–value:

(p̃∗1 = min(p̃1
1, p̃

2
1), ..., p̃∗J = min(p̃1

J , ..., p̃
2J
J )).

4. Reject the global H0 if at least one p̃∗j is smaller than α.

Note, this aggregating test does not adjust the grid–specific p–values a second time.

This approach would control exactly for the error rate α, if p̃∗1, ..., p̃
∗
J were perfectly

dependent. For asymptotic control, however, we can relax this condition to nearly
perfect dependence, see Condition (3.3) below. This is important, as assuming per-

fect dependence between grid–minimal p–values is much more rigid than postulating

only nearly perfect dependence. For simplicity, we state the following result only for

FWER control. We denote αj as the asymptotic test size of the jth Test (1).

Proposition 3.4. For Test (2), if

P(∪Jj=1p̃
∗
j ≤ α|H0) ↑ max(α1, ..., αJ), as J →∞, (3.3)

it holds that
lim

n,B,→∞
P(∪Jj=1p̃

∗
j ≤ α|H0) = α.

The formal proof of Proposition (3.4) is contained in the Appendix. For the result,

Condition (3.3) is key, and also that (realized) test sizes of Test (1) converge to zero

as M →∞.

Simulation results from Section 3.4 confirm that Condition (3.3) appears to be sat-

isfied in standard settings. We find Test (2) consistently obeys the α–limit due to

individual undersizedness of Test (1) and nearly perfect dependence between grid–

minimal p–values. Figure (3.1), which shows p–values of one specific setting, il-

lustrates that both these points hold; results of other settings are in line, but not

reported. We see that individual test sizes are consistently below α, and decrease in

the number of marginal hypotheses. Furthermore, correlation between minimal p–

values of different grids is close to one, indicating nearly perfect (linear) dependence.

Hence, we find Test (2) is appropriate.
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3 Detecting structural differences in tail dependence of financial time series

Figure 3.1: Exemplary p–values from the simulation study for Test (1) with j = 1, ..., 13
(GARCH marginals equipped with a Factor model, k = 0.1n, n = 1500, ta-
pered bootstrap). In this case, test size is estimated with 500 repetitions.
Left: Scatterplots of p–values for all grid pairs. Middle: Histogram of esti-
mated correlations between all pairs of grid–minimal p–values. Right: J ,
the fineness of the grids, is plotted against estimated test sizes according
to Test (1).
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Generally, it would be desirable to provide a lower bound of the strength of depen-

dence between the p–values, i.e. a sufficient convergence rate in Condition (3.3).

Convergence rates of individual test sizes and the unknown p–value dependence

structure determine this lower bound. Unfortunately, to explicitly state this bound

in our setting, we would have to assume specific closed–form distributions for the

test statistics (Proschan & Shaw (2011)), or specific parametric dependence model

for the p–values, see Stange et al. (2015) and Bodnar & Dickhaus (2014). Yet, the

precise dependence structure between the p–values is unknown, whereas tails of the

test distributions may be approximated by χ2 distributions, see Beran (1975).

3.3.2 Inference for serially dependent data

The i.i.d. assumption is unreasonable for financial time series as financial data

typically exhibit serial dependence. However, standard extreme value theory and

the multiplier bootstrap rely on the independence assumption. We know of two

approaches to address the problem of dependent data.

The standard approach is to fit financial returns to an appropriate time series model,

such as an ARMA–GARCH model, to compute standardized residuals. The latter

should roughly resemble an i.i.d. series, and can thus be used for further inference.

See McNeil & Frey (2000), who propose this method in a univariate setting. However,
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3.3 A new testing methodology against tail asymmetry and inequality

we do not know of any results that provide a rigorous proof for convergence when

using estimated residuals.

For empirical copulas of dependent data, another remedy is to assume stationarity

coupled with some mixing conditions, which consequently allows to use unfiltered

returns for estimation. Valid statistical inference is ensured by adjusting the boot-

strap procedure: For strongly mixing time series, convergence of the block bootstrap

and the so–called tapered block multiplier bootstrap has been shown for the empiri-

cal copula process, Bücher & Ruppert (2013). Necessary assumptions are met for a

wide class of time series models, such as ARMA and GARCH models. We suggest to

use the dependent data bootstrap methodology also for empirical tail copulas. Yet,

we do not prove the validity of this approach as this difficult task is beyond the scope

of this chapter. However, Assumption (A4S) puts the tail copula process close to the

scaled copula process in the respective tail — in finite samples, where the running

variable t has to be replaced by k/n, and both k, n > 0 are fixed, differences between

Λ(x(1), x(2)) and tC(x(1)/t, x(2)/t) might be neglectable. This suggests that results of

the empirical copula process (
√
nZ(ĈZ(x(1), x(2))− CZ(x(1), x(2)))) carry over to the em-

pirical tail copula process (
√
kZ(Λ̂Z(x(1), x(2)) − ΛZ(x(1), x(2))). We employ the tapered

block multiplier and the block bootstrap for tail copula estimation. For complete-

ness, results of the previous section are adopted for the tapered block multiplier

bootstrap. The i.i.d. Assumption (A1S) is replaced by the following assumption, see

Bücher & Ruppert (2013).

Assumptions 3.2 (cont.).

(A1S∗) X,Y are realizations of a strictly stationary process that is strongly mixing with
rate αZ = O(r−aZ), r > 0, aZ > 1,Z = X,Y.

The mixing coefficient is defined as αZ(r) = αZ(Fs,Fs+r) = supA∈Fs,B∈Fs+r |P(A ∩ B) −
P(A)P(B)|, where Ft denotes the filtration of the underlying stochastic process up to

time point t, and Z is strongly mixing if αZ(r) → 0 for r → ∞, i.e. serial dependence

vanishes as the interval length between two events increases.

This assumption specifies the rate at which serial dependence has to vanish. Con-

sequently, under (A1S∗) & (A2S)–(A4S), the empirical tail copula should converge to

some centered Gaussian process Gα(x(1), x(2)) that is governed by the mixing rate αZ,

i.e. √
kZ(Λ̂Z(x(1), x(2))− ΛZ(x(1), x(2)))

w→ Gα,Z(x(1), x(2)), (x(1), x(2)) ∈ R2
+.
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3 Detecting structural differences in tail dependence of financial time series

The functional delta theorem ensures convergence of Λ̂Z,Z = X,Y, carry over to the

test statistics (Ŝ1, ..., ŜM ). To approximate the limiting behavior of the test statistics,

now the tapered block multiplier bootstrap has to be applied. The tapered block

multiplier bootstrap generates series of block–dependent multipliers that replace the

i.i.d. multipliers. The following conditions have to be met for the consistency of

the tapered block multiplier bootstrap in case of the empirical copula process, see

Theorem 3 in Bücher & Ruppert (2013).

Assumptions 3.2 (cont.).

(A7S∗) The underlying stochastic process of Z is strongly mixing with
∑∞

r=1(r+1)c
√
αZ(r) <

∞, c = max(28, b2/εc+ 1).

(A8S∗) The tapered block multiplier process (ξj,n)j=1,...,n is strictly stationary, has bounded
moments, is independent of Z, and positively cl(n)–near epoch dependent,4 where
c is some constant and l(n) →n→∞ ∞, l(n) = O(n), and for all positive valued in-
tegers j, h assume E(ξj,n) = µ > 0,V(ξj,n, ξj+h,n) = µ2v(h/l(n)) and v is a bounded
function symmetric around zero, and w.l.o.g. µ = 1, v(0) = 1.

(A9S∗) For the tapered block length l(n)→∞, where l(n) = O(n1/2−ε), 0 < ε < 0.5.

(A7S∗) demands the serial dependence in Z must vanish sufficiently fast. For ex-

ample, AR and GARCH processes fulfill this condition. (A8S∗) and (A9S∗) give condi-

tions on the (dependent) multiplier process and the multiplier block length (l) under

which the generated multiplier series consistently mimics the resulting dependence

structure of Z. Bücher & Ruppert (2013) provide detailed advice on implementation

strategies. The authors suggest to fix a block length of l(n) = 1.25n1/3 for the block

bootstrap. Moreover, for the tapered block multiplier bootstrap, we employ the uni-

form kernel κ1, and use Γ(q, q)–distributed base multipliers, with q = 1/(2l(n) − 1),

where l(n) is the multiplier block length, which can be automatically determined

using the R–package npcp, see Kojadinovic (2015).

Now, under (A1S∗),(A2S)–(A9S∗), the tapered block multiplier bootstrap versions of

the test statistics, Ŝi,(b),tap, should converge weakly to the counterpart of the original

sample, i.e.

(Ŝ1,(b),tap − Ŝ1, ..., ŜM,(b),tap − ŜM )
w→ (S1 − Ŝ1, ..., SM − ŜM ).

4I.e. for fixed j, ξj,n is independent of ξj+h,n for all |h| ≥ cl(n).
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3.3 A new testing methodology against tail asymmetry and inequality

The simulation study underlines the validity of the tapered multiplier bootstrap for

the empirical tail copula. An advantage of this approach is the tail dependence

structure is not polluted due to pre–filter model misspecification which may be a

problem for large, high–dimensional data sets where automatic GARCH fitting is

challenging and computationally expensive.

3.3.3 Local tail asymmetry

One main feature of our test is that we can localize tail dependence differences.

This enriches the binary test decision on tail asymmetry/inequality as we can find

subspaces in R2
+ where tail asymmetry/inequality can be expected. If the global null

is rejected, significant individual p–values trace the subsets of the unit simplex hull

where both tail copulas differ. The boundary points of the significant subsets amount

to empirical quantile threshold vectors which span a tail asymmetric subspace in the

sample space, i.e.

QX =
(
F−1

1,X(1− k/nx(1)), F−1
1,X(1− k/nx(2))

)
×
(
F−1

2,X(1− k/nx(1))), F−1
2,X(1− k/nx(2))

)
,

QY =
(
F−1

1,Y(1− k/nx(1)), F−1
1,Y(1− k/nx(2))

)
×
(
F−1

2,Y(1− k/nx(1))), F−1
2,Y(1− k/nx(2))

)
.

Due to the homogeneity of the tail copulas, these extreme sets can be extrapolated

arbitrarily far into the tail, given the extreme value conditions hold. In particular,

Figure (3.2) illustrates how to trace tail asymmetry.

Thus, when comparing tail dependencies of return vectors, our test provides pre-

cise information on which specific tail events, or VaR events, cause tail dependence

differences. Conditional on realized returns of X (Y) falling into QX (QY), tail de-

pendence of X and Y differ; conditional on X(Y) /∈ QX (QY), ΛX and ΛY do not differ

significantly.

This additional information might improve tail risk anticipation for regulators, or

tail risk–based hedge and trading strategies for investors as those market times are

identified which typically induce behavior of bivariate extremes to shift.
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3 Detecting structural differences in tail dependence of financial time series

Figure 3.2: Left and right: Upper–right quadrants of scatterplots for X,Y, both
equipped with an asymmetric logistic copula and marginal distribu-
tions X(i) ∼ t(df = 3), Y (i) ∼ t(df = 10), i = 1, 2. The corre-
sponding tail copula is Λ(x(1), x(2)) = x(1) + x(2) −

[
(1 − ψ(1))x(1) + (1 −

ψ(2))x(2) + ((ψ(1)x(1))−θ + (ψ(2)x(2))−θ)θ
]

(see Tawn (1988)), with parameters
(ψ(1), ψ(2), θ) = (0.1, 0.6, 0.1), (ψ(1), ψ(2), θ) = (0.1, 0.5, 0.4). The shaded rect-
angles show the tail asymmetric tail regions; the homogeneity of the tail
copula allows to extrapolate this region far into the sample tail. Center:
Estimated tail copulas for x(1) ∈ {0.01, 0.02, ..., 0.99}, k = 500, n = 10000,M =
8. The shaded area indicates over which subset both tail copulas signifi-
cantly differ.
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3.4 Simulation study

We now compare the finite sample performance of our test with the TDC test, and the

BD13 test.5 For this, we study two types of dependence models that are frequently

used in finance. First, we employ the (implicit) factor model copula. See Fama &

French (1992), Einmahl et al. (2012), and Oh & Patton (2015) for factor models in

finance, tail dependence of factor models, and tail dependence of factor copulas in

finance, respectively. Second, representing the broad class of Archimedean copulas,

we employ the Clayton copula, which models solely lower tail dependence. Its lean

parametric form makes the Clayton copula a popular building block for more com-

plex copula models, such as mixtures of copulas, see Rodriguez (2007) and Patton

(2006). For each copula, we impose one parametrization that fulfills the null, and

one that violates the null, leaving us with four DGPs.

5We focus on non–parametric tests only as in practice parametric specifications may suffer from a
model bias, especially if intra–tail asymmetry is not accounted for.
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3.4 Simulation study

DGP1 and DGP2 are based on the tail factor model. Bivariate return vectors Z =

(Z(1), Z(2)),Z = X,Y, follow a bivariate factor model with r factors V (j), j = 1, ..., r, and

loadings aij , i = 1, 2, j = 1, ..., r, when

Z(i) =
r∑
j=1

aijV
(j) + ε(i), i = 1, 2, (3.4)

where factors are i.i.d. Fréchet with ν = 1, independent of the error term ε(i) which

feature thinner tails than V (j); we set ε(i) as Fréchet with νε = 2. In this way, the ma-

trix of factor loadings A = (aij) directly determines the tail copula of Z. In particular,

the (upper) tail copula of Z is equivalent to the tail copula of the max factor model

Z̄(i) = maxj=1,...,r(aijV
(j)), which is

ΛU (x(1), x(2)) = x(1) + x(2) −
r∑
j=1

max

(
a1j∑r
j=1 a1j

x(1),
a2j∑r
j=1 a2j

x(2)

)
,

see Einmahl et al. (2012) for further details. DGP1 consists of X,Y both resulting

from a factor model as in Equation (3.4), but with loading matrix

A1 =
[

2 0
1 1
0 2

]
.

Here, the first factor only influences X(1) (Y (1)), the second factor influences both

X(1) (Y (1)) and X(2) (Y (2)), and the third factor only influences X(2) (Y (2)). That is, A1

amounts to intra–tail symmetry and to tail equality between X and Y, and thus the

null is true. See Figure (3.3), first from the left, for Λ(x(1), 1 − x(1)), x(1) ∈ [0, 1]. For

DGP2, both X and Y stem from a factor model as in Equation (3.4) with

A2 = [ 1 1
0 2 ] ,

where the second factor only influences X(2) (Y (2)), causing the tail copula to become

intra–tail asymmetric, Λ(x(1), x(2)) 6= Λ(x(2), x(1)), and consequently tail copulas of X
and Y coincide only when x(1) = x(2), see Figure (3.3), second from the left. DGP2

thus represents the class of intra–tail asymmetric copulas which violate the null

according to Proposition (3.1).

For the Clayton copula, only the lower left part of the distribution features tail de-
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3 Detecting structural differences in tail dependence of financial time series

Figure 3.3: Tail copulas of DGPs 1 to 4 from left to right. Note, for DGP2, the solid
lines represents Λ(x(1), x(2)), x(2) = 1−x(1), whereas the dashed line shows
Λ(x(2), x(1)). For DGP4, two different specifications of the Clayton copula
are used for X and Y.
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pendence,

ΛL(x(1), x(2); θ) = (x(1)−θ + x(2)−θ)−1/θ,

ΛU (x(1), x(2); θ) = 0,

where (lower) tail dependence increases in the parameter θ ∈ [0,∞). DGP3 is given

by X,Y ∼ Clayton(θ = 0.5); this specific choice of θ implies a TDC of ι = 0.25, which

roughly corresponds to a TDC of a bivariate t–distribution with correlation 0.5 and

four degrees of freedom (McNeil et al. (2005), p.211). For DGP3, the null is true.

See Figure (3.3), second from the right. For DGP4, X ∼ Clayton(θ = 0.5), and Y ∼
Clayton(θ = 1). Thus, tail equality is violated as the TDC of Y is ι = 0.5. See Figure

(3.3), first from the right.

To check whether the test also works for financial time series data, we combine all

DGPs with i.i.d. as well as GARCH marginals. We apply the test to raw GARCH

returns, and to standardized GARCH residuals as it is important to analyze whether

using estimated residuals affects test performance. Moreover, we study the test per-

formance for unfiltered returns using the block bootstrap and the tapered block mul-

tiplier bootstrap. In particular, we employ GARCH(1,1) dynamics for any marginal

return process. We follow Oh & Patton (2013) and employ bivariate AR–GARCH mod-

els. We can link serially dependent marginals by the (implicit) copulas of DGPs 1 to 4,

allowing us to study the effect of conditional heteroscedasticity on test performance.
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3.4 Simulation study

For both bivariate return series Z = (Z(1), Z(2)),Z = X,Y, it holds

Z
(i)
t = σ

(i)
t η

(i)
t,Z,

σ
2,(i)
t,Z = ω + α(i)Z

2,(i)
t−1 + β(i)σ

2,(i)
t−1,Z,

ηZ := (η
(1)
Z , η

(2)
Z ) ∼ iid Fη,Z(x(1), x(2)) = Cη,Z(Fη,Z,1(η

(1)
Z ), Fη,Z,2(η

(2)
Z )), t = 1, ..., nZ,

where we set ω = 0.01, α = 0.15 and β = 0.8 such that α + β is close to one. This

mimics parameter values often found in financial returns, see for example Engle &

Sheppard (2001). To impose the tail structures of DGPs 1 to 4 on the time series, we

use DGPs 1 to 4 to model the error copula Cη,Z(Fη,Z,1(η(1)), Fη,Z,2(η(2))) and to generate

ηt,Z = (η
(1)
t,Z , η

(2)
t,Z): In a first step, we simulate observations ηt,Z according to DGPs 1 to

4. Consequently, we transform simulated errors to pseudo–observations by means of

the marginal empirical cumulative distribution, F̂η,Z,i(η
(i)
t,Z), i = 1, 2. Finally, we apply

the quantile function of the t–distribution function with 10 degrees of freedom to

the pseudo–observations. Thus, the final errors are linked by the copulas of DGPs

1 to 4 with fat–tailed t–marginals.6 Those are used to generate the GARCH series

for X and Y. We obtain standardized residuals from estimation by quasi maximum

likelihood.

For sample sizes n = 750, 1500, varying values of the effective sample size k, and a

nominal test level of α = 0.05, we compare empirical rejection frequencies. Also, for

Test Algorithm (1), we employ two subset discretizations (M = 6, 18) to evaluate the

sensitivity of the test performance with regard to the user–dependent test calibra-

tion. Furthermore, we employ Test Algorithm (2) which merges 15 different grids

with grid sizes Mj = 2j, j = 1, ..., 15,.7 The TDC test is carried out using the multiplier

bootstrap at points x(1) = x(2) = 0.5. The number of simulations is S = 500 for each

setting.

Table (3.1) reports empirical rejection frequencies for i.i.d. marginals, filtered GARCH

marginals, unfiltered GARCH marginals, GARCH marginals with the block and ta-

pered bootstrap, and sample size n = 1500. Also, we study the effect of varying

the effective sample size, k ∈ {b0.1nc, b0.2nc, b0.3nc}. Note, Λ(x(1), x(2); k = k∗) =

Λ(ax(1), ax(2); k = ak∗). Hence, these values for k correspond to b0.05nc, b0.1nc, b0.15nc
in the standard case of TDC estimation with x(1) = x(2) = 1. Table (3.2) contains

6Monotone transformations, such as the quantile transformation, do not alter the tail dependence
structure. However, t–transformed error distributions are a more realistic approximation of asset
returns.

7Note, for some grids, this implies subintervals are only roughly of equal length.
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3 Detecting structural differences in tail dependence of financial time series

empirical rejection frequencies for n = 750. As non–parametric methods for tail de-

pendence are often criticized for unsatisfactory small sample performance, it is worth

studying test behavior for small and moderate sample sizes.

In general, both Test (1) and Test (2) appear to be consistent. For i.i.d. marginals,

both obey the nominal test size of α = 0.05 (DGP1 and DGP3), irrespective of the

choice of k. This is particularly important for Test (2) as it points out that grid–

specific p–values appear to be sufficiently dependent to keep empirical size below

α, although no additional multiplicity penalty is applied. While empirical test size

remains untouched by k, the choice of effective sample size notably affects empirical

power; for example, for DGP4, power increases by up to 25% both for M = 6, 18.

Hence, this suggests a larger choice of k is favorable. As noted in Bücher & Dette

(2013), for a large k, bias terms in Λ̂X and Λ̂Y cancel out. This suggests the choice of

k, which in essence is a bias–variance problem for Λ̂, is slightly facilitated compared

to other extreme value–based peaks–over–threshold problems. Thus, k ≈ 0.1n seems

a reasonable rule of thumb.

While single–grid tests (Test (1)) show larger power than the TDC test, the BD13

test is more powerful in standard cases compared to Test (1). However, combining

a multiple of single–grid tests, e.g. Test Algorithm (2), makes our test consistently

more powerful than BD13.

Importantly, our test successfully rejects in case of intra–tail asymmetries, as shown

by the empirical rejection frequencies for DGP2. Both the TDC test and BD13 test

fail to reject the null in this case and completely ignore intra–tail asymmetries. If the

tail copula is intra–asymmetric, our power of our tests increases in the number of

employed subsets. If the tail copula is symmetric, however, power decreases in M .

It is thus advisable to apply Test (2).

Also, test results for GARCH filtered returns are in line with i.i.d. series. The esti-

mation step of the GARCH residuals does not downgrade neither test power nor size.

However, unfiltered GARCH returns should not be used: In the case of DGP4, test

power implodes by roughly 50–75% for all three tests. Empirical sizes for DGP1 are

still fine, whereas empirical size of DGP3 generally is too large.

The tapered block multiplier bootstrap produces results comparable to the multiplier

bootstrap–based on i.i.d. and GARCH filtered marginals. Thus, we prefer a bootstrap

adjustment over GARCH–filtering to address serial dependence it can handle serially

dependent data and does not require pre–estimation of a parametric model. However,
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as Table (3.2) suggests, the tapered block bootstrap should only be applied for larger

sample sizes, since for n = 750 and GARCH marginals the tapered multiplier block

bootstrap appears to be oversized and hence GARCH–filtered data should be used

instead.

Finally, we find our aggregating test (Test (2)) is throughout most powerful, while

the test with fixed grids (Test (1)) is consistently more powerful than the TDC test,

slightly less powerful than the BD13 test, and more powerful than the latter in case

of intra–tail asymmetry.

3.5 Empirical application

3.5.1 Tail asymmetries within S&P500 industry portfolios

Related studies, e.g. Ang & Chen (2002), focus on tail asymmetries in pairs of inter-

national stock indices, and point out that, especially during financial crises, correla-

tions mainly between extreme losses increase. We are interested whether this finding

also applies for sector pairs in the US stock market. Hence, we study possible tail

asymmetries between daily returns of 49 S&P500 industry portfolios. The data set8

contains nearly 90 years of weighted returns of CRSP SIC codes–based industries.9

We proceed as follows. We aim to detect tail asymmetry dynamics within the com-

plete S&P500 universe. Applying a rolling window analysis with window length of

n = 1500, i.e. nearly six years, and a step size of 300 trading days, i.e. roughly

14 months, we arrive at 74 (overlapping) time periods. In each period, we build all

possible bivariate industry combinations ,X = (X(i), X(j)), and test the nulls

H0 : ΛUX = ΛLX.

Discarding pairs with missing data, in each period, there are at most 1176 pairs to

test against tail asymmetry. In total, we apply the test approximately 85000 times.

To avoid possible model risk by pre–filtering the returns, we throughout analyze raw

returns using the tapered block multiplier bootstrap; Section 3.3.2 and the results

8Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.
html, accessed on 03/01/2016.

9For detailed information on industry composition we refer to the website just mentioned.
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3 Detecting structural differences in tail dependence of financial time series

Table 3.1: Empirical rejection probabilities for α = 5%, S = 500 repetitions and
sample size n = 1500. Effective sample fraction k/n is evaluated at
(x(1), x(2)) = (1, 1). DGP1: factor model satisfying H0. DGP2: factor model
violating H0. DGP3: Clayton copula satisfying H0. DGP4: Clayton copula
violating the null. Rejection frequencies are shown for a varying effective
sample size, i.i.d. marginals and GARCH marginals for which the tests are
applied to raw observations (unfiltered) and also to standardized residuals
(filtered). For the latter, estimation was carried out by quasi maximum
likelihood.

k/n DGP1 DGP2 DGP3 DGP4

TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16
18 6 TA2 18 6 TA2 18 6 TA2 18 6 TA2

iid
5% 4.0 3.2 3.2 2.4 4.8 3.2 4.2 100 100 100 5.0 4.8 3.2 4.2 6.8 73.8 86.2 78.2 82.2 88.2
10% 2.0 3.8 2.0 2.4 5.4 4.0 4.4 100 100 100 2.2 3.6 3.4 2.8 4.8 91.8 97.6 94.8 95.8 98.2
15% 4.4 3.2 2.8 2.6 6.0 5.2 5.8 100 100 100 3.0 3.0 3.0 2.4 7.0 96.6 99.8 98.4 98.6 100
fil.
5% 3.4 4.4 2.8 3.4 5.8 5.4 7.6 100 100 100 3.6 4.0 3.0 2.8 5.8 73.8 86.2 78.2 82.2 87.2
10% 4.0 4.4 2.4 3.8 5.8 5.0 7.6 100 100 100 4.4 3.8 3.4 2.6 6.6 92.6 97.4 95.6 96.0 97.8
15% 5.2 4.0 3.0 3.0 5.4 9.2 8.8 100 100 100 3.0 3.0 3.0 2.4 7.0 97.2 98.8 97.6 98.4 98.8

unfil.
5% 6.0 6.6 4.2 4.6 8.0 8.6 12.6 83.2 52.0 86.8 9.6 12.4 8.6 9.8 14.2 17.8 21.2 18.0 19.2 24.6
10% 4.6 5.8 4.0 4.6 7.4 6.6 8.8 100 100 100 7.0 11.4 9.0 9.8 14.8 22.0 31.0 25.4 26.2 34.6
15% 4.8 4.2 3.0 4.2 6.4 5.6 7.8 100 100 100 6.8 7.4 6.4 6.0 10.2 33.2 44.2 35.8 39.8 48.0
blo.
5% 6.6 5.0 3.6 3.4 6.6 8.0 8.0 73.4 40.2 81.4 7.4 11.0 8.8 9.4 14.6 37.0 44.6 39.0 42.6 49.0
10% 6.0 4.8 3.4 4.0 5.4 6.6 6.6 100 99.8 100 5.6 8.0 8.4 7.8 13.0 70.4 80.0 70.2 76.0 82.8
15% 6.0 5.0 3.2 3.4 5.8 5.6 6.4 100 100 100 4.0 7.2 8.0 6.6 12.8 88.0 94.0 90.8 92.2 95.0
tap.
5% 3.8 4.8 2.6 3.8 6.0 5.4 6.8 100 100 100 3.8 4.2 2.6 2.2 6.0 75.8 85.6 77.8 82.6 87.8
10% 3.8 4.6 2.6 3.2 5.6 5.4 7.4 100 100 100 4.2 3.4 4.0 2.6 6.4 92.8 97.6 95.2 96.8 97.8
15% 5.2 4.0 2.8 3.0 4.8 4.4 4.6 100 100 100 4.4 5.0 3.8 3.4 6.8 97.0 99.0 97.4 98.4 99.0

70



3.5 Empirical application

Table 3.2: Empirical rejection probabilities as in Table (3.1), but with a sample size
of n = 750.

k/n DGP1 DGP2 DGP3 DGP4

TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16
18 6 TA2 18 6 TA2 18 6 TA2 18 6 TA2

iid
5% 4.6 4.8 3.6 3.8 5.6 2.6 4.4 97.8 100 99.8 3.4 4.0 3.6 3.2 6.2 43.2 57.8 44.6 52.2 60.8
10% 3.2 2.8 2.6 2.2 5.0 5.4 5.8 100 100 100 3.4 3.6 2.8 3.2 6.0 65.2 79.6 69.6 75.8 82.4
15% 4.0 4.2 3.2 2.8 7.2 4.2 5.6 100 100 100 4.0 5.8 2.8 3.4 8.0 76.4 86.2 81.0 83.6 88.6
tap.
5% 5.0 6.2 4.2 4.6 6.8 4.4 3.8 98.0 78.6 99.8 11.6 15.2 13.8 13.8 20.4 26.6 39.4 33.4 37.0 44.8
10% 4.4 5.4 3.0 4.4 7.2 4.8 6.2 100 100 100 8.0 12.6 12.4 12.2 19.4 48.2 61.4 55.8 57.8 66.2
15% 2.4 4.2 3.2 3.6 5.6 6.2 6.4 100 100 100 8.2 9.8 7.6 8.0 13.8 62.0 75.4 69.6 73.2 79.6

of the simulation study justify this approach.10 Also, we fix the effective sample size

to k = 0.2n,11 which, too, is inspired by the findings in the simulation study. We are

not interested in particular industry pairs as our focus is on tail asymmetry of the

general market. Hence, a fixed k for all pairs is an operable solution to the question

of number of extremes as over– and underestimation might eventually balance out

when aggregating test decisions over all 1176 pairs.

To grasp the general evolution of lower and upper bivariate tails, we introduce a

descriptive measure for upper and lower market tail dependence. In period t, for

each pair i, we integrate the empirical tail copula Λ̂i(φ, 1 − φ) over [0, 1] and provide

empirical location statistics across all pairs, e.g. the mean and empirical quantiles.

For the mean,

Λt :=
1(
nt
2

) (nt2 )∑
i=1

∫ 1

0
Λ̂i(φ, 1− φ)dφ,

where nt is the number of sectors in period t, and empirical quantiles are computed

accordingly. It is easy to see that
∫ 1

0 Λ(φ, 1−φ)dφ ∈ [0, 0.25]. The lower (upper) bound is

attained if pair i has no (perfect) tail dependence. Figure (3.6) shows the trajectory of

the mean and q–quantiles, q ∈ {0.01, ..., 0.99}, for both upper and lower tails covering

1931–2015.

The null hypothesis of tail equality is tested by the TDC test, the BD13 test and

10For simplicity, we fix the window parameter of the tapered block multiplier bootstrap at l = 8. Yet,
we find no change of results worth mentioning when altering l.

11This corresponds to k = 0.1n in TDC studies which evaluate the tail copula at (x(1), x(2)) = (1, 1).
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3 Detecting structural differences in tail dependence of financial time series

Test (2), which aggregates over 15 grids in the spirit of the simulation study. Figure

(3.4) displays trajectories of the share of rejections for each test, i.e. the share of

tail asymmetric pairs according to each test. Figure (3.5) documents the importance

of non–standard tail events, i.e. non-TDC events that occur off the diagonal (x(1) =

x(2)).

All tests indicate that most of the time, a substantial amount of tail asymmetries ex-

ists in the market. We find that our test reveals more tail asymmetries than compet-

ing tests which we attribute to non–diagonal tail dependence and intra–tail asymme-

try. Furthermore, we find tail asymmetry typically vanishes during financial crises,

expect for the subprime crisis when tail asymmetries occurred more frequently than

before and afterwards. This finding may reflect the classical risk–return trade–off

with a new livery: As lower tail dependence, i.e. the risk of joint extreme losses,

spikes during financial distress, opportunities for joint extreme gains must counter-

actively increase as we detect more tail asymmetries during bear markets.

On average, our test finds that 64% (sd=0.25) of all pairs exhibit tail asymmetry. We

can identify a long lasting phase of pronounced tail asymmetries between 1940–70

where on average 80% (sd=0.10) of all pairs are tail asymmetric. Collapses of the

number of tail asymmetries coincide strikingly with during times of financial crises,

such as the beginning of the Great Depression (1932–37), the Oil Crisis (1968-74

until 1972–78), Black Monday (1987) and the Asian and millennium crisis accumu-

lating into the Dot–Com crisis (1995–2003). It is empirically documented that in

crises losses increasingly move in extreme ways. We can only conclude that, during

crises, the tendency of extreme gains to co–move also increases. The latter might

compensate investors for facing extreme downside risk in large cross–sections. That

is to say, when bivariate losses occur more frequently, one can also expect more

bivariate extreme gains. In contrast, the recent financial crisis 2007–09 is charac-

terized by a temporary bump in tail asymmetries which subtends a phase of steady

decline of tail asymmetries since the mid 1990s. One might argue that, in contrast

to former financial crises, only tail dependence between losses was affected. But tail

dependence between gains did not experience such change. This makes the sub-

prime crises particularly disastrous as investors did not encounter much extreme

upside potential. However, aggregated tails of the market (Figure (3.6)) hardly back

this conclusion as we observe a nearly parallel progression of both upper and lower

tail measures. Thus, by aggregating bivariate tails to an index measure, much infor-

mation on the tail dependence between tails of the index’ constituents is lost. While
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3.5 Empirical application

Figure 3.4: Dynamics of the percentage of detected tail asymmetries among all pairs
using a rolling window of size n = 1500, and a step size of 300 trading
days for the TDC test (dashed), BD13 test (dotted) and our test (solid),
respectively.
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the summary measures for market tail dependence suggest left and right tails are

connected equally strongly during the 2000s, all three tests report otherwise and

reveal a pattern not captured by descriptive statistics. This implies tail measures for

indices do not tell the same story their constituents can.

In comparison to the two competing tests, our test consistently detects more asym-

metries, see Figure (3.5) (left), which we attribute to the fact that competing tests

overlook non–central tail dependence structures (TDC test), or intra–tail asymmetry

(TDC test, BD13 test). Hence, our test provides a more accurate assessment of tail

asymmetry within the market and suggests tail asymmetry is more common than

expected. With respect to the TDC test (BD13 test), we find 2.5%–27% (0%–12%) more

tail asymmetric pairs. We also plot the trajectory of the percentage of rejections

where, for Test (1) with M = 14, the adjusted p–value of the central subinterval does

not suggest a rejection, while at least one non–central p–value does (solid line, Fig-

ure (3.5)). This line runs nearly parallel to the graph of the differential in found tail

asymmetries between the TDC test and our test.

To further underline the importance of non–standard tail dependence structures,
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3 Detecting structural differences in tail dependence of financial time series

we quantify the number of tail asymmetric pairs that scalar approaches would miss

due to off–diagonal tail asymmetries. In Figure (3.5) (right), for each period, we

compare the number of rejections of non–central subintervals with the number of

rejections found in the central subinterval. We find that our test, when restricted

to non–diagonal subintervals, finds up to 20% more asymmetries than a TDC–based

analysis that solely focuses on the central subinterval. Throughout the sample,

there exists at least one non–central subinterval with more test rejections than the

central subinterval. Furthermore, there are periods of time — which match the major

financial crises — where not considering off–diagonal parts of the TC is especially

serious. Yet, in the finance literature, e.g. Jondeau (2016), it is common practice to

analyze tail dependence solely by the tail dependence coefficient ι, i.e. the tail copula

along the diagonal where x(1) = x(2). We document that this approach might overlook

non–standard types of tail dependence leading to a substantial misconception of tail

asymmetry.

Figure 3.5: (Left) Difference of detected asymmetries in percentage points with re-
spect to the TDC test (dashed) and BD13 test (dotted), and percentage
of our test’s rejections that are induced by subintervals off the diagonal,
based on a grid with M = 14. (Right) Number of rejections in subsets
Ii, i = 1, 2, ..., 7, i.e. off–diagonally, compared to number of rejections in
subsets I4, i.e. around (x(1) = 0.5, x(2) = 0.5), based on a grid with M = 14.
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Furthermore, the difference in found asymmetries between our test and BD13 sug-
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3.5 Empirical application

gests some degree of intra–tail asymmetry among all pairs. The simulation study

demonstrated both tests’ power differs mainly in intra–tail asymmetric cases. How-

ever, quantifying the effect of intra–tail asymmetries on test rejection rates is beyond

the scope of this chapter as independent tests against intra–tail asymmetries have

been developed, see Kojadinovic & Yan (2012), Bormann (2016).

Figure 3.6:
∫ 1

0 Λ̂(x, 1−x)du for all possible pairs (up to 1176) in each period; dark line:
empirical mean; gray lines: empirical quantiles: 0.01i, i = 1, ..., 99. Left:
losses. Right: gains.
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3.5.2 Tail inequalities of foreign exchange rates

We now analyze tail equality in pairs of six main foreign exchange rates, namely

Euro (EUR), British Pound (GBP), Canadian Dollar (CAD), Japanese Yen (JPY), New

Zealand Dollar (NZD) and Swiss Franc (CHF), all nominated in USD.12 The sam-

ple consists of returns of daily closing prices covering the period 01/05/2001 to

02/01/2016.

As foreign exchange rates are the most frequently traded financial security with an

average daily trading volume of more than five trillion in April 2013,13 investors

and regulators have a natural interest in a comparison of extreme co–movements of

foreign exchange rates. We again apply a rolling window analysis, now with a window

size of n = 1000 and step size of 50 days to draw a finer picture of the tail (in)equality

dynamics. For any pair comparison trading days with missing data or zero returns
12Time series data are standard exchange rates from Bloomberg.
13See Rime & Schrimpf (2013).
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3 Detecting structural differences in tail dependence of financial time series

Figure 3.7: Foreign exchange rates nominated in US Dollars during 01/2001 –
02/2016.
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are discarded. The effective sample size is fixed k = 0.2n which is backed by the

results of the simulation study. We conduct the following tail pair comparisons

H
(L−L)
0 : ΛLX = ΛLY, H

(L−U)
0 : ΛLX = ΛUY , H

(U−U)
0 : ΛUX = ΛUY ,

for all 15 bivariate pairs, amounting to 4 ·
(

6
2

)
= 420 tests in each period. Figure (3.8)

shows the share of tail inequalities among all possible comparisons. The fraction of

rejected tail equalities, ranging from 45% to 75%, suggests bivariate tail dependence

of foreign exchange rates systematically differ. We observe a steady increase of tail

inequalities from 2006 to 2008 which coincides with a major depreciation of the

USD with respect to the EUR. This evolution is reversed when the USD appreciates

during the European Sovereign Crisis (2013 onwards). Thus, in the last decade, a

strong (weak) USD (EUR) came along with more (less) tail equality within the foreign

exchange rates market.

Figure (3.9) displays a dynamic ranking for all 15 pairs based on the TDC and the

summary statistic
∫ 1

0 Λ(φ, 1 − φ)dφ which was introduced in the last subsection. A

careful inspection of all four plots shows there is only little difference between the

TDC–based and the tail copula–based ranking. Tail dependence of appreciations and
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3.5 Empirical application

Figure 3.8: Dynamics of the percentage of detected tail inequalities among all pairs,
comparing the following tails: Upper–upper, upper–lower, lower–lower.
The window size is n = 1000 with a step size of 50 trading days, and
rejections based on the TDC test (BD13 test, our test) correspond to the
dashed (dotted, solid) line.
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depreciations of EUR and CHF with respect to the USD tends to be the strongest

throughout the sample. While the pair GBP–EUR exhibits strong tail dependence for

joint upper tails (depreciations), the lower tails show a strong tail link only in the last

five years (as well as until 2007). Also, JPY–CAD (upper tail) and CAD–NZD (both

tails) feature comparably strongly connected tails. The pairs JPY–NZD, JPY–CAD

and GBP–JPY feature the weakest tail dependence in both tails.

The pair EUR–CHF dominates tail comparisons throughout, which is probably due

to the fixed exchange rate regime until 01/2015 with a EUR:CHF minimum rate of

1:1.20. Also, the tight economic linkage between both parties may attribute to the

relatively strong tail dependence. On 01/15/2015, the Swiss Central Bank unpegged

its currency from the Euro, intending to avoid a continued depreciation of the Swiss

currency as the EUR had steadily devaluated since 2008/2009. This policy change

caused the CHF to appreciate by 20% with regards to the EUR within a single day.

We now test whether the break of the CHF–EUR currency peg had a significant
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3 Detecting structural differences in tail dependence of financial time series

impact on the tail dependence between both currencies. This would be the case if

the TC had changed after 15/01/2015. Unfortunately, the sample contains only 273

observations after the policy change and we thus compare TCs for overlapping time

periods, that is 01/01/2006 – 14/01/2015 (ΛT1) and 01/01/2006 – 16/01/2016

(ΛT1,T2). The null is

H0 : ΛW,T1
CHF−EUR = ΛW,T1+T2

CHF−EUR,W = U,L (3.5)

However, the tapered block multiplier bootstrap has to be adjusted to account for

the dependence of both samples. For the tail copula of the entire period (T1 + T2), we

use the multiplier vector ξT1+T2 = (ξ1, ..., ξT1, ξT1+1, ..., ξT1+T2); for the tail copula of the

first subperiod, we only use the first T1 entries of ξT1+T2. We execute the test for 15

different values of the effective sample size, namely kT i = 0.02nT i, 0.04nT i, ..., 0.3nT i, i =

1, 2, where nT i denotes the sample size of the first subperiod (T1) and the entire period

(T2), respectively. Table (3.3) contains p–values of Test (2). To this date, there is no

evidence for a structural change in neither the lower nor the right tail.

Table 3.3: p–values corresponding to the null hypothesis of constant tail dependence
between EUR and CHF (see Equation (3.5)) for varying effective sample
sizes.

tails k/n
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

L-L 4.4 10.6 37.2 30.8 17.9 19.9 22.4 35.6 52.0 61.5 46.2 33.6 46.0 56.1 63.7
U-U 99.2 7.4 98.0 87.2 99.9 87.8 44.7 80.2 98.6 99.6 95.7 96.1 99.8 99.6 96.6
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3 Detecting structural differences in tail dependence of financial time series

3.6 Conclusion

We propose a novel test against asymmetries/inequalities between tail dependence

functions. The test is based on the empirical tail copula and conducts piecewise

comparisons between tail copulas. Importantly, our test considers intra–tail asym-

metries and achieves higher power in intra–tail asymmetric cases, and slightly higher

power else. The test idea may also be applied for general copula comparisons, and

also for tail dependence comparisons in higher dimensions. An empirical study of

S&P500 and foreign exchange rates shows our test typically finds more asymme-

tries/inequalities than competing tests; we find time periods where our test clearly

benefits from respecting non–diagonal TC differences, meaning our test detects sub-

stantially more opportunities to hedge tail risks.
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3.7 Appendix

3.7.1 Proofs

Proof of Proposition (3.2). .

Equation (3.2) guarantees convergence of the empirical tail copula
√
kZΛ̂Z(x(1), x(2)),Z =

X,Y, for (x(1), x(2)), (v(1), v(2)) ∈ R2
+. Define

∆̂(x(1), x(2), v(1), v(2)) =:
√
kY/(kX + kY)Λ̂X(x(1), x(2))−

√
kX/(kX + kY)Λ̂Y(v(1), v(2)),

which is a sum of rescaled tail copula processes with G
Λ̂,Z,Z = X,Y, is a bivariate

Gaussian process. It directly follows from Equation (3.2) that

∆̂(x(1), x(2), v(1), v(2))
w→ ∆(x(1), x(2), v(1), v(2))

:=
√
kY/(kX + kY)GΛ̂,X(x(1), x(2))−

√
kX/(kX + kY)GΛ̂,Y(v(1), v(2)).

Only under the null E(∆(x(1), x(2), v(1), v(2))) = 0 for corresponding vectors x,v. By the

continuous mapping theorem ∆̂2(x(1), x(2))
w→ ∆2(x(1), x(2)). For a fixed grid I(i), and

some subinterval [a, b] ⊂ I(i), 0 < a < b < ∞, consider the test statistic corresponding

to the ith null H0,i that integrates over [a, b], i.e. Ŝi,[a,b]. Then it directly follows

∆̂2
i (x

(1), 1 − x(1))
w→ ∆2

i (x
(1), 1 − x(1)), x(1) ∈ [a, b]. Under the null of H0 : ΛX = ΛY, for all

i, ∆̂2
i
w→ 0 as ∆2

i = 0. Under the alternative, there naturally is at least one subinterval

where the test statistic does not converge to zero.

Proof of Proposition (3.4). .

We show that individual tests are asymptotically undersized. Due to this, grid–

specific p–values need not to be perfectly dependent.

For Test (1) with Mj subsets, denote the test statistic corresponding to the minimal

p–value by S∗j , and the denote the factor of S∗j by υj := (kX,j + kY,j)/(kX,jkY,j), where

kX,j , kY,j denote the realized effective sample sizes of X and Y in the subinterval

corresponding to p∗j . Obviously,

υj ≤ υ := (kX + kY)/(kXkY),

and υj decreases in both kX,j and kY,j, while kZ,j , kY,j both decrease in the fineness of

the grid (j →∞): The finer the grid, the smaller kZ,j, i.e. less observations are in each
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3 Detecting structural differences in tail dependence of financial time series

subinterval. For υ, a test against copula equality would be asymptotically exact, i.e.

P(p ≤ α|H0)→ α, under (A1S)–(A4S).

Realize that — under the null — the test statistic integrates over squared differ-

ences of centralized normal variables. We may approximate the right tail of the

null distribution by a centered χ2 distribution with, say, $j > 0, degrees of free-

dom; see Beran (1975). Hence, for x large enough, test size can be approximated as

αj := P(S̃∗j > x|H0) ∼ χ2($j), j = 1, ..., J , where S̃∗j denotes the theoretical test statistic

corresponding to the adjusted p–value p̃∗j . Also, for the variance of the test statistic,

it holds that V(S̃j) = O(υ2
j ), i.e. the variance increases as grid fineness increases (j ↓)

and less observations enter the estimation (kX,j , kY,j ↓, υi ↑). According to the Markov

inequality, with fixed critical values xj,

αj := P(S̃∗j ≥ xj |H0) ≤
E(S̃∗j )

xj
=

V(S̃∗j )/2

xj
) = O(V(S̃∗j )),

i.e. under the null, realized test sizes αj decrease with rate υ2
j . Furthermore, grid–

specific p–values are continuous and uniformly distributed. Now, Sklar’s Theorem

implies their dependence under the null can be characterized by a copula, Cα, say,

i.e. Cα(u) = P(p̃∗1 ≤ u(1), ..., p̃∗J ≤ u(J)|H0). Under the null, the FWER in terms of the

copula Cα, is given by

P(∪Jj=1p̃
∗
j ≤ α|H0) = 1− Cα(1− α1, ..., 1− αJ), . (3.6)

For illustration, let nearly any observations at all fall in relevant subintervals, i.e.

∀j : υj ≈ 0,

1− Cα(1− α1(υ1), ..., 1− αJ(υJ)) ↓ 1− Cα(1, ..., 1) = 0,

and Test (2) naturally obeys the α–limit in this unrealistic case. In all other cases,

as J →∞, for FWER control P(∪Jj=1p
∗
j ≤ α|H0) ≤ α, it must hold that

1− Cα(1− α1(υ1), ..., 1− αJ(υJ))↗ α?(υ?),

where α? := max(α1(υ1), ..., αJ(υJ)) → 0. This means, for FWER control, the copula

Cα must approach its upper bound — (α1, ..., αJ) must be nearly perfectly dependent

— but the upper bound does not need to be exactly obtained due to αj → 0, j =

1, ..., J .
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This chapter is based on Bormann (2016).

Abstract

When univariate tails contribute asymmetrically to the tail dependence function,

tail dependence is non–exchangeable. In quantitative risk management, such intra–

tail asymmetries rule out popular parametric dependence models, like elliptical and

Archimedean (tail) copulas, as they would induce a model error. We propose a

simulation–based Cramér–von Mises test and a maximum likelihood–based test

against intra–tail asymmetry for financial time series. A simulation study for se-

quentially dependent copula–based Markov chains documents the tests’ satisfactory

finite sample properties. For foreign exchange rate pairs, during the last 15 years, we

estimate intra–tail asymmetry dynamics and reveal that up to 20% of the pairs under

study exhibit non–exchangeable tails. This finding renders standard (tail) copula

models inappropriate for these instances.

Keywords: Tail dependence, tail copulas, tail asymmetry, tail inequality, extreme

values

JEL classification: C12, C53, C58
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4 Testing against intra–tail asymmetries in financial time series

4.1 Introduction

Tail copulas and related functions are a proven statistical tool to assess depen-

dence between tail events, e.g. Poon et al. (2004), Garcia & Tsafack (2011). Non–

exchangeability of tail dependence arises when tail dependence is not symmetric

with respect to the ordering of marginal components. We denote this phenomenon

intra–tail asymmetry as it addresses possible skewness of tail dependence functions

within a bivariate tail. (Tail) copulas are not only used to measure contemporaneous

dependence, but can also be used to evaluate serial dependence of a univariate time

series (Chen & Fan (2006)).

For serial dependence in univariate time series, intra–tail asymmetry may also be

called non–reversibility of tail events, see Beare (2010), Beare & Seo (2014), who

focus on the entire copula instead of its asymptotic (tail) regions. Hong et al. (2009)

connect intra–tail asymmetry with tail Granger causality as intra–tail asymmetry

may improve predictive power of tail measures. Ultimately, this can be used to

improve trading strategies during extreme market conditions, i.e. this specific type of

tail dependence can be used to hedge against certain extreme events. As mentioned

in Beare (2010) and Beare & Seo (2014), for copula–based Markov chains, copula

non–exchangeability occurs when many (few) small (large) increases are followed by

few (many) large (small) decreases in the time series. Examples are business cycles,

and oligopolistic price settings where a steady, monotonous time series evolution is

erupted by a short–term shock. Correspondingly, tail copula non–reversibility, i.e.

intra–tail asymmetry, occurs when one extremely large (small) extreme is typically

followed by a smaller (larger) extreme.

For bivariate, i.e. cross–sectional, time series, intra–tail asymmetry implies that ex-

treme events of marginal X(1) may tend to drag marginal X(2) to its tail, while vice

versa this effect may be less pronounced. In other words, one component X(i) is

more important to joint tail dependence than X(j), i 6= j. Importantly, for statistical

modeling of tails, symmetric tail copula models, such as elliptical and Archimedean

tail copulas, are inadequate when intra–tail asymmetry is on hand. For example,

Schmidt (2002) exploits elliptical tail structures to improve estimation of the tail de-

pendence coefficient. Hence, pre–testing for intra–tail asymmetry may rule out many

popular symmetric tail copula models, eliminating one possible source of model mis-

specification. Also, tail dependence non–exchangeability implies the tail copula of

interest is unique in that there is no tail copula with an identical tail structure, see
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Bormann & Schienle (2016), Proposition (1).

These arguments substantiate a practical need for statistical tests that identify intra–

tail asymmetry for cross–sectional and serial data. This chapter proposes and com-

pares two types of tests against intra–tail asymmetry: A computationally intensive

simulation–based non–parametric test and a parametric test based on the maximum

likelihood machinery that is computationally less demanding. The non–parametric

test exploits recent empirical tail copula results and performs a Cramér–von Mises

test, integrating squared differences between the tail copula and the tail copula with

switched components. Test distributions can readily be approximated by the (ta-

pered) multiplier bootstrap, see Bücher & Dette (2013), Bücher & Ruppert (2013).

Besides weak standard extreme value assumptions, the test is flexible in that it has

power against any form of intra–tail asymmetry, i.e. it is independent of the paramet-

ric form of the underlying theoretical tail copula, and even works if the tail copula is

not smooth. Furthermore, the maximum likelihood–based test fits preselected asym-

metric tail copula models and tests against equality of asymmetry parameters. We

employ the peaks over threshold–type maximum likelihood approach by Stephenson

& Tawn (2005); test distributions directly follow from standard maximum likelihood

arguments. In contrast to the non–parametric approach, the maximum likelihood

test requires smoothness of the tail copula, which is violated for e.g. factor mod-

els.

Relatedly, Kojadinovic & Yan (2012) propose a non–parametric Cramér–von Mises

test based on Pickands dependence function for i.i.d. data. However, the indepen-

dence assumption is inappropriate for possibly dependent financial data. Yet, their

test is closely related to our non–parametric test, but we specifically adjust the test

to address eventual serial dependence in the data. Also, Beare & Seo (2014) propose

a Kolmogorov–Smirnov–type test for copula non–exchangeability in copula–based

Markov chains. Berg (2009) finds that, specifically for copula models, Kolmogorov–

Smirnov tests are less powerful than Cramér–von Mises tests. Furthermore, their

test focuses on the entire copula and not specifically on the tail copula; in a tail

setting, much less observations are available for estimation which would decrease

the power of the Kolmogorov–Smirnov test relative to the Cramér–von Mises test

even more. Our tests hence complement and significantly extend current tests for

financial data and for tail dependence, respectively.

In a small simulation study with copula–based Markov chains, we find satisfying

finite–sample properties for both tests. Moreover, for the considered types of data
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4 Testing against intra–tail asymmetries in financial time series

generating processes, the impact of model risk of the maximum likelihood approach

appears to be small, rendering it even more powerful than the non–parametric test in

small samples. In an empirical application, we can identify intra–tail asymmetry for

up to 20% of pairs of the most important foreign exchange rates. This implies stan-

dard, i.e. symmetric, tail copula models may be inadequate, and a more accurate

modeling of joint extremes can be achieved by allowing for intra–tail asymmetry.

This chapter is structured as follows. Section 4.3 introduces our tests including

test distributions and implementations. Section 4.4 provides a simulation study,

and Section 4.5 studies intra–tail asymmetry of foreign exchange rates while Section

4.6 concludes. The Appendix provides additional details to maximum likelihood

estimation for tail dependence functions.

4.2 Cross–sectional and intertemporal intra–tail asymmetry

We denote a bivariate (random) return vector by X = (X(1), X(2)), and assume its

joint distribution function FX is in the domain of attraction of a bivariate extreme

value distribution G(x(1), x(2)). Its continuous marginal distributions Fi, i = 1, 2, are

consequently in the max–domain of univariate extreme value distributions, i.e.

(max(X
(i)
1 , ..., X(i)

n )− b(i)n )/a(i)
n

d→W,

W ∼ Gi,

Gi(x) = exp
(
−(1 + γ(i)(x− µ(i))/σ(i))

−1/γ(i)

+

)
, (4.1)

where γ(i), µ(i), σ(i) denote the shape, location and scale parameter of margin i, and

a
(i)
n , b

(i)
n are appropriately chosen normalizing constants, see de Haan & Ferreira

(2006) for details. Recall the definition of the theoretical upper tail copula of X,

and its empirical version, respectively,

ΛUX (x(1), x(2)) = lim
t→0

t−1P(X(1) > F−1
1 (1− tx(1)), X(2) > F−1

2 (1− tx(2))), (x(1), x(2)) ∈ R2
+,

and

Λ̂UX (x(1), x(2)) =
1

k

n∑
m=1

1
{
X(1)
m > F̂−1

1 (1− (k/n)x(1)), X(2)
m > F̂−1

2 (1− (k/n)x(2))
}
,
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4.2 Cross–sectional and intertemporal intra–tail asymmetry

with sample size n, effective sample size k, and empirical marginal distribution func-

tions F̂i(x) = 1
n+1

∑n
j=1 1{X(i)

j ≤ x}. The (empirical) lower tail copula, ΛL, is defined

accordingly,

Λ̂LX(x(1), x(2)) =
1

k

n∑
m=1

1
{
X(1)
m < F̂−1

1 ((k/n)x(1)), X(2)
m < F̂−1

2 ((k/n)x(2))
}
.

All results are also valid for the upper and lower tail copula and thus we omit the up-

per indices U and L, respectively. The tail copula is homogeneous, Λ(ax) = Λ(x), a ∈
R, and it is hence sufficient to study the tail copula only on the unit simplex, denoted

by S, see, among others, Huang (1992). We are interested in the following type of tail

dependence.

Definition 4.1 (Intra–tail asymmetry). A bivariate return vector X is intra–tail asym-
metric if there exists a set I ⊂ R2

+ with P(I) > 0 such that

ΛX(x(1), x(2)) 6= ΛX(x(2), x(1)), for (x(1), x(2)) ∈ I.

That is to say, there exists an entire set I, with non–zero (probability) measure,

where the tail copula is not symmetric with respect to its arguments. Intra–tail

asymmetry is present if extremes of X(1) have a different impact on extremes of X(2)

than vice versa. For example, let x(1) = 0.2, x(2) = 0.8 and t ≈ 0.05: In terms of Value

at Risk (VaR) events, intra–tail asymmetry is present if {X(1) > V aRX1(0.01)}∩{X(2) >

V aRX2(0.04)} is differently likely from {X(1) > V aRX1(0.04)} ∩ {X(2) > V aRX2(0.01)}.
Testing against tail copula non–exchangeability boils down to the null hypothesis

of

H0 : Λ(x(1), x(2)) = Λ(x(2), x(1)), a. s.∀(x(1), x(2)) ∈ S.

In a univariate time series, bivariate tail copulas can also measure partial tail de-

pendence between Xt and Xt−h, h ∈ N. Following Chen & Fan (2006), we model

a one–dimensional time series {Xt} as a stationary first–order Markov process by

capturing first order dependence with a copula C, i.e. by a copula for the joint distri-

bution of (Xt−h, Xt), h = 1. We denote this type of copula as intertemporal copula of

first order. Assume strong stationarity for Xt, i.e. for all t, the distribution function

of X, F , remains constant. To be precise, the intertemporal copula of first order is

defined as Ch=1(x(1), x(2)) := P(F (Xt−1) ≤ x(1), F (Xt) ≤ x(2)). Intertemporal tail depen-

dence between Xt and Xt−1 is completely determined by the tail copula that evolves
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4 Testing against intra–tail asymmetries in financial time series

from Ch=1. The first order tail copula directly follows as

Λh=1(x(1), x(2)) := lim
v→0

v−1
(
x(1)/v + x(2)/v − 1 + Ch=1(1− x(1)/v, 1− x(2)/v)

)
. (4.2)

Extensions to higher order dependence (Λh>1) are possible. Yet, in standard finan-

cial time series, first order tail dependence should cover the most important part of

autoregressive extreme dependence. Beare (2010) shows that such stochastic pro-

cesses are ρ–mixing under mild conditions, e.g. also allowing for tail dependent and

asymmetric copulas. This time series model is attractive as modeling the temporal

extreme dependence, Λh=1, and modeling the marginal distribution of {Xt}, F, are

completely separated. Furthermore, and similar to GARCH–type models, clusters of

extremes can be modeled if Λh=1 > 0. Intertemporal intra–tail asymmetry is similarly

defined as in the cross–sectional case.

Definition 4.2 (Intertemporal intra–tail asymmetry). A univariate stochastic process
Xt is intertemporally intra–tail asymmetric if there exists a set I ⊂ R2

+ with P(I) > 0

such that
Λh=1(x(1), x(2)) 6= Λh=1(x(2), x(1)), for (x(1), x(2)) ∈ I.

We only study intra–tail asymmetry for one lag, while extensions of intra–tail asym-

metry to higher lags are immediate; see Hong et al. (2009) for Granger causality

of tail events for arbitrary lag length. Intertemporal intra–tail asymmetry (of first

order) is on hand if the tail copula of (Xt−1, Xt) is non–exchangeable. This occurs

when extremes in t− 1 tend to disproportionately often trigger more extreme extreme

events in t (Λh=1(x(1), x(2)) < Λh=1(x(2), x(1))), i.e. extremes behave progressively. On

the other hand, when Λh=1(x(1), x(2)) > Λh=1(x(2), x(1)), extremes tend to be followed

by less extreme extreme events , i.e. extremes behave regressively. Recently, Hong

et al. (2009) extend the concept of Granger causality to extreme spillovers in a bivari-

ate time series setup. Granger causality in the tail, in a cross–sectional context, is

defined as extreme events of X(1) can improve predicting contemporaneous extreme

events of X(2). Similarly, Granger causality in a copula–based Markov chain setting

means that extremes of Xt−1 can improve predicting extreme events of Xt.
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4.3 Testing procedures

4.3.1 Non–parametric testing

The null hypothesis of intra–tail symmetry can be translated to

H0 : Λ(x(1), 1− x(1)) = Λ(1− x(1), x(1)), x(1) ∈ [0, 1], (4.3)

which, in the copula–based Markov chain setting, reads as

H0 : Λh=1(x(1), 1− x(1)) = Λh=1(1− x(1), x(1)), x(1) ∈ [0, 1]. (4.4)

For the intertemporal setting, we propose the following tail copula–based test statis-

tic

D =
k

2

∫
[0,0.5)

(Λh=1(φ, 1− φ)− Λh=1(1− φ, φ))2dφ,

which evaluates squared differences of the tail copula and its flipped version over

[0, 1]. In the copula–based Markov chain setting, the upper empirical tail copula is

Λ̂h=1(x(1), x(2)) =
1

k

n∑
m=2

1
{
F̂ (Xm−1) > 1− (k/n)x(1), F̂ (Xm) > 1− (k/n)x(2)

}
.

Setting Λh=1 = ΛX, Xm−1 = X
(1)
m , Xm = X

(2)
m , F̂i, i = 1, 2, covers the cross–sectional case.

We impose the following assumptions, that ensure existence of the tail copula and,

ultimately, consistency of the test distribution even in the serially dependent case.

Assumptions are as in Bücher & Ruppert (2013), Bücher & Dette (2013), Bormann

& Schienle (2016). Notation is kept loose to cover both cross–sectional (bivariate)

and the intertemporal (univariate) case; results are valid for both the cross–sectional

and the univariate case.

Assumptions 4.1.

(A1ITA) X exhibits tail dependence, Λ > 0.

(A2ITA) k →∞ and k
n → 0 for n→∞.

(A3ITA) It holds that |Λ(x(1), x(2))− (1− tCX(1−x(1)/t, 1−x(2)/t))| = O(A(t)), for t→∞, and
some function A : R+ 7→ R+ with limt→∞A(t) = 0 and

√
kA(n/k)→ 0 for n→∞.

(A4ITA) X is strongly mixing with
∑∞

r=1(r + 1)c
√
αX(r) < ∞, r > 0, c = max(28, b2/εc + 1),

where αrX denotes the mixing coefficient of X.
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For consistency, the tail copula must not necessarily be continuous, see Bücher

et al. (2014), i.e. this would also cover factor models for tail dependence. If (A1ITA) is

violated, non–parametric tail estimation is biased, see Schmidt & Stadtmüller (2006);

(A2ITA) requires the sample size (n) and the effective sample size (k) to increase, yet

n must increase much faster. This ensures that k stays relatively small, and only

the truly extreme observations are used for estimation. The second–order condition

(A3ITA) particularizes the rates of k and n that are needed to put the tail copula

sufficiently close to the extreme part of the (scaled) copula. (A4ITA) allows for serially

dependent data whose serial dependence wears out sufficiently fast over time. For

cross–sectional dependence models, this covers AR and GARCH processes (Bücher &

Ruppert (2013)). For intertemporal dependence models, first–order copula–Markov

chains, that exhibit tail dependence and also intra–tail symmetry, are ρ–mixing,

which implies strong mixing, and thus such models are also covered as well, see

Beare (2010).

The empirical test statistic is

D̂ =
k

2

∫
[0,0.5)

(Λ̂h=1(φ, 1− φ)− Λ̂h=1(1− φ, φ))2dφ.

Under the null, when Λh=1(x(1), x(2)) and Λh=1(x(2), x(1)) are identical, it should hold

that D̂ ≈ 0, and the null has to be rejected if the test statistic is too large. The

asymptotic test distribution directly follows from the asymptotic distribution of Λ̂h=1

for α–mixing time series (see Bücher & Ruppert (2013), Bücher & Dette (2013), Bor-

mann & Schienle (2016)) and the continuous mapping theorem.

Proposition 4.1. Under (A1ITA)–(A4ITA),

D̂
H0→ Q :=

∫
[0,0.5)

(G(φ, 1− φ)−G(1− φ, φ))2dφ,

where G(x(1), x(2)) denotes a centered Gaussian process with covariance

E
(
G(x(1), x(2))G(y(1), y(2))

)
= Λ(min(x(1), y(1)),min(x(2), y(2))).

The proof is straightforward using the functional delta theorem, see Kojadinovic &

Yan (2012). Kojadinovic & Yan (2012) introduce a Cramér–von Mises test against

tail dependence non–exchangeability based on Pickands dependence function for

i.i.d. data. In contrast, we formulate the test in terms of the tail copula which
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allows for serially dependent data as follows. Due to the complexity of the limiting

process, the null distribution has to be simulated. We employ the tapered multiplier

bootstrap, which simulates a series of so–called multipliers (ξj,n)j=1,...,n. In the i.i.d.

case, bootstrap estimates of the tail copula are generated by

Λ̂
(b)
h=1(x(1), x(2)) =

1

k

n∑
m=2

ξ̃i1
{
Xm−1 ≥ F̃−1(1− (k/n)x(1)), Xm ≥ F̃−1(1− (k/n)x(2))

}
,

ξ̃i = ξi/ξ, i = 1, ..., n,

F̃ (x) =
1

n

n∑
m=1

ξ̃i1 {Xm ≤ x} .

In the mixing case, (ξj,n)j=1,...,n has to be adjusted as follows.

Assumptions 4.3.

(A5ITA) The tapered block multiplier process (ξj,n)j=1,...,n is strictly stationary, has bounded
moments, is independent of X, and positively cl(n)–near epoch dependent, where
c is some constant and l(n) →n→∞ ∞, l(n) = O(n), and for all positive valued in-
tegers j, h assume E(ξj,n) = µ > 0,V(ξj,n, ξj+h,n) = µ2v(h/l(n)) and v is a bounded
function symmetric around zero, and w.l.o.g. µ = 1, v(0) = 1.

(A6ITA) For the tapered block length l(n)→∞, where l(n) = O(n1/2−ε), 0 < ε < 0.5.

(A5ITA) and (A6ITA) give conditions on the multiplier process to achieve consistency

of the simulated null distribution. The independent (multiplier) bootstrap is not

capable to reconstruct the distribution of non–i.i.d. data. Thus, the (multiplier)

bootstrap must be adjusted to also capture serial dependence. This is achieved by

simulating serially dependent multipliers.

Now, the limiting null distribution of D̂ can be consistently approximated by the

tapered multiplier bootstrap techniques in Bücher & Dette (2013), Bücher & Ruppert

(2013). We adopt implementation details from Kojadinovic (2015) and Bormann &

Schienle (2016).

4.3.2 Parametric testing

A parametric test against intra–tail asymmetry can be performed by maximum likeli-

hood imposing some parametric model for Λh=1 (ΛX). This model must allow for both
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4 Testing against intra–tail asymmetries in financial time series

intra–tail asymmetry and intra–tail symmetry. Then, fitted asymmetry parameters

are compared with the case of symmetry. Popular models for intra–tail asymmetry

are the asymmetric logistic tail copula as it generalizes the logistic tail copula (Tawn

(1988), Coles & Tawn (1994)), and the negative logistic tail copula (Joe (1990)). In

two dimensions, both models remain parsimonious with only three parameters.

Stephenson & Tawn (2005) extend standard maximum likelihood estimation of tail

dependence to include occurrence time information of joint extremes. This allows

to approximate only the tail and not the entire distribution by an extreme value

distribution. Consequently, this approach also depends on the choice of effective

sample size k as k determines which observations to consider extreme. Introducing

the choice of effective sample size makes this maximum likelihood approach directly

comparable to the non–parametric tail copula test as both methods use the same

part of the sample. In the Appendix, we provide details of maximum likelihood

estimation of tail dependence.

On top of standard maximum likelihood regularity conditions (e.g. Amemiya (1985)),

we briefly state further assumptions that are needed in an extreme value scenario

to ensure asymptotic normality of the maximum likelihood estimators and, conse-

quently, consistency of the maximum likelihood test.

Assumptions 4.4.

(A1ML) X is an i.i.d. series.

(A2ML) For all marginal decay parameters, it holds that γ(i) > −0.5, as in Equation (4.1).

(A3ML) X exhibits tail dependence, but not perfect tail dependence, 0 < Λ(x(1), x(2)) <

min(x(1), x(2)).

(A4ML) Λ belongs to a parametric tail copula class that is characterized by parameter
vector θ ∈ Θ ⊂ Rq, q > 0, and Θ is compact and convex.

(A5ML) Second derivatives of Λ exist and are continuous.

(A1ML) excludes many financial time series, but, in general, asymptotic maximum

likelihood properties still carry over as long as the data generating process is β–

mixing with polynomial rate, see Joe (2001). For first order copula–Markov chains,

however, Beare (2010) points out that Λh=1 > 0 rules out even β–mixing, i.e. this

assumption is violated. Nonetheless, simulations with non–β–mixing data document

consistency of the maximum likelihood–based test in finite samples. (A2ML) ensures
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maximum likelihood estimation is regular, which is needed to establish standard

maximum likelihood consistency result; see Smith (1985). This assumption allows

for Gumbel– and Fréchet–type tails in F , while restricting F to have no finite end-

points. The latter, however, is only of minor importance for financial (log) returns

which are typically modeled by the Gaussian or heavier–tailed distributions, e.g.

Cont (2001). (A3ML), in many parametric models, excludes dependence parameters

of Λ(;θ) living on the boundary which typically causes perfect tail dependence, or

no tail dependence. This ensures identifiability of marginal parameters, see Beirlant

et al. (2004). Also, (A5ML) is needed to guarantee a regular likelihood function. For

the non–parametric test, we need no assumptions an the smoothness of the tail cop-

ula at all, see Bücher et al. (2014). In the Appendix, we provide details on maximum

likelihood estimation of tail copulas.

For the admissible parameter space Θ, denote by Θ0 ⊂ Θ the set of parameter con-

stellations for which the null of intra–tail symmetry (Equation (4.3)) holds. The null

and the alternative hypothesis can thus be rewritten as

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1, (4.5)

where Θ1 denotes the complement of Θ0. To exemplify the maximum likelihood test,

we shortly discuss two popular asymmetric models for the tail dependence function.

Notably, both nest the symmetric case.

The asymmetric logistic copula is defined as

CALh=1(x(1), x(2)) = exp

(
−
(

(1− ψ(1))x(1) + (1− ψ(2))x(2) +
[
(ψ(1)x(1))θ + (ψ(2)x(2))1/θ

]θ))
,

and the tail copula directly follows as

ΛALh=1(x(1), x(2)) = x(1) + x(2) −
(

(1− ψ(1))x(1) + (1− ψ(2))x(2)

+
[
(ψ(1)x(1))1/θ + (ψ(2)x(2))1/θ

]θ)
, (4.6)

with parameter vector θ = (ψ(1), ψ(2), θ). The asymmetry parameters ψ(1) and ψ(2)

govern the impact of Xt−1 and Xt, respectively, on the symmetry of the tail copula.

Within the asymmetric logistic model, the null hypothesis (Equations (4.4) and (4.5))

is equivalent to

H0 : ψ(1) − ψ(2) = 0,

95



4 Testing against intra–tail asymmetries in financial time series

as only then the tail copula is symmetric. Under (A1ML)–(A5ML), test statistic and

asymptotic test distribution follow as

Ŵ =
ψ̂(1) − ψ̂(2)

σ2
ψ̂(1)−ψ̂(2)

H0→ N(0, 1), k, n→∞, k/n→ 0.

The bivariate asymmetric negative logistic copula has a tail copula of the form

ΛANLh=1 (x(1), x(2)) = ((ψ(1)x(1))−θ + (ψ(2)x(2))−θ)−1/θ, θ ∈ [0,∞), ψ(i) ∈ [0, 1], i = 1, 2,

where ψ(i) governs the degree of asymmetry of margin i; see Joe (1990) for further de-

tails. Maximum likelihood estimation of both the asymmetric logistic and the asym-

metric negative logistic model is implemented in the R–package evd, Stephenson

(2002). Importantly, maximum likelihood estimation depends on the marginal dis-

tributional properties, i.e. estimates may drastically vary when Fi changes. Hence,

for maximum likelihood estimation we throughout operate with Gumbel marginals.

4.4 Simulation study

In this section, for first–order copula–based Markov chains, we compare finite sam-

ple properties of the non–parametric test with the parametric maximum likelihood–

based test. To model intertemporal tail dependence, we simulate {Xt} according

to Model (4.2) with Λh=1 = ΛANLh=1 (x;ψ(1), ψ(2), θ), and choose F , the marginal distri-

bution of Xt, as the standard Gumbel distribution function. The Gumbel distribu-

tion attracts (standardized) maxima of the Normal distribution and has tail index

γ = 0 > −0.5. Hence, it fulfills (A2ML), while e.g. the uniform distribution violates

this assumption and renders the parametric test inconsistent. Note, the choice of

(marginal) distribution model is only important for the parametric case, and we do

not investigate how fat tails influence test performance of the maximum likelihood

approach.

Importantly, to assess the impact of model misspecification for the maximum like-

lihood test, we assume the asymmetric logistic copula is the true data generating

process, i.e. we deliberately misspecify the parametric test to analyze whether it is

still consistent under a violation of a standard maximum likelihood assumption.

We vary asymmetry (ψ(1), ψ(2)) and dependence (θ) parameters to study test perfor-
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4.4 Simulation study

mances for various types of nulls and violations thereof. In particular, for studying

test size, we set θ ∈ {0.301, 0.43, 0.575, 0.756, 1}, while fixing ψ(1) = ψ(2) = 1, amounting

to tail dependence coefficient of ι := Λ(1, 1) ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The null is vio-

lated whenever ψ(1) 6= ψ(2). Concerning statistical power, we fix θ = 10, and iterate

the asymmetry vector ψ = (ψ(1), ψ(2)) over six values that amount to tail dependence

coefficients of ι ∈ {0.125, 0.25, 0.50, 0.85, 0.125, 0.25}; for details see Table (4.2). We set

n ∈ 500, 1000, 1500, k/n ∈ {0.1, 0.15, 0.25, 0.3}, nominal test level α = 0.05, and simula-

tions are repeated 500 times. Table (4.1) shows empirical test sizes, and Table (4.2)

contains empirical test power. We find both tests perform reasonably well.

Remarkably, for the parametric test, the choice of a wrong tail copula model has little

impact on empirical test power and size. Simulated power results, assuming the true
tail copula ΛANLh=1 (not reported), are very similar to the misspecified scenario here.

We believe, for asymmetric and differentiable tail copulas, such as the asymmetric

and the negative logistic tail copula, the model choice is only minor. In contrast,

an incorrectly specified model might severely distort test results when the true tail

copula is not differentiable, for example, if the tail copula stems from a max factor

model. Then, the non–parametric test is still consistent (Einmahl et al. (2012)),

and thus works without any constraints. Conversely, for non–differentiability of the

tail copula a likelihood function does not exist, and approximations may only yield

inconsistent results.

Both the tail copula and the maximum likelihood test typically obey the α–limit in

case of a true null, independent of the strength of tail dependence. Interestingly,

the employed Markov processes are neither i.i.d. nor β–mixing, violating one core

maximum likelihood assumption, yet we do not observe major violations of the α–

limit. For both tests, empirical rejection probabilities are closest to α for k/n = 0.3 –

else, the non–parametric test appears slightly undersized, while the parametric test

overrejects for small values of k/n, i.e. k/n < 0.2.

Concerning power, both tests appear to be consistent, while the parametric tests typ-

ically outperforms the non–parametric test. Excluding four cases where numerical

optimization fails too often, the maximum likelihood test is more powerful especially

for small sample sizes (n = 500). That is, the maximum likelihood test is to be pre-

ferred although numerical problems might request careful manual implementation.

For n > 1000, both tests are equally powerful.
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4 Testing against intra–tail asymmetries in financial time series

Table 4.1: Empirical test size for the negative logistic tail copula both for the non–
parametric and the parametric test with varying dependence parameter,
θ ∈ {0.301, 0.43, 0.575, 0.756, 1}, and asymmetry parameters fixed to one,
(ψ(1), ψ(2)) = (1, 1). The significance level is α = 0.05.

θ = 0.301 θ = 0.430 θ = 0.575
n k/n k/n k/n

0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

Λ̂
500 0.8 0.8 0.8 3.2 2.4 0.4 2.0 0.8 0.4 2.8 0.4 0.4 1.2 1.2 2.8
1000 1.6 2.8 4.0 2.0 4.0 0.8 0.8 0.8 1.6 3.2 1.2 0.8 1.6 0.8 2.8
1500 1.6 2.4 3.2 3.6 3.2 1.6 2.8 4.0 1.6 3.6 3.2 2.0 2.8 2.8 4.4

ML
500 1.6 6.8 1.2 0.8 0.4 6.2 6.4 6.8 0.0 1.6 10.0 7.6 6.4 4.8 4.0
1000 0.5 0.0 0.4 4.0 2.8 5.1 0.0 2.4 3.6 3.2 5.3 1.6 6.0 3.6 4.0
1500 0.4 1.6 2.4 2.8 1.6 0.4 4.4 4.0 6.8 5.2 1.6 3.2 5.2 4.4 5.6

θ = 0.756 θ = 1
k/n k/n

0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

Λ̂
500 0.8 0.4 0.0 1.2 1.2 1.2 0.0 0.4 0.8 0.4
1000 0.8 2.0 4.4 2.0 3.2 0.4 0.8 2.4 2.0 1.6
1500 0.8 0.8 1.6 1.6 2.0 0.8 1.6 2.4 1.6 1.6

ML
500 4.0 8.0 5.6 7.2 6.0 8.0 5.6 8.5 3.3 2.0
1000 7.2 4.0 5.6 2.4 2.8 2.8 4.0 4.8 2.0 5.6
1500 4.0 5.6 5.2 3.2 3.6 4.8 5.2 3.2 1.6 5.6
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Table 4.2: Empirical test power of the non–parametric and the parametric test with
fixed dependence parameter (θ = 10), and varying asymmetry parameters.
For the parametric test, the asymmetric logistic tail copula is assumed,
while results worsen by at most 5% when assuming a negative logistic tail
copula. When maximum likelihood estimation fails in at least 50% of all
cases, we treat that specific test level as missing (NA). The significance
level is α = 0.05.

(ψ(1), ψ(2)) = (1/8, 1) (ψ(1), ψ(2)) = (1/4, 1) (ψ(1), ψ(1)) = (1/2, 1)
n k/n k/n k/n

0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

Λ̂
500 35.6 64.8 66.0 77.2 84.0 82.4 97.6 98.4 98.4 100 96.4 100 100 100 100
1000 82.4 92.8 96.0 99.2 100 99.2 100 100 100 100 100 100 100 100 100
1500 98.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100

ML
500 92.1 92.8 84.6 83.9 100 97.8 100 99.5 99.1 98.7 97.3 99.5 99.7 100 100
1000 NA 93.5 100 100 100 98.9 99.1 100 100 100 99.5 100 99.5 100 100
1500 97.4 100 100 100 100 99.4 100 100 100 100 99.5 98.7 100 100 100

(ψ(1), ψ(2)) = (7/8, 1) (ψ(1), ψ(2)) = (1/8, 1/2) (ψ(1), ψ(2)) = (1/4, 1/2)
k/n k/n k/n

0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

Λ̂
500 12.8 31.2 47.2 70.8 80.8 23.6 39.6 48.0 54.8 63.6 27.6 46.0 55.2 62.8 71.6
1000 54.4 86.4 96.0 99.2 100 62.8 81.6 82.8 87.2 91.2 76.4 88.0 94.0 96.5 99.2
1500 86.8 98.8 100 100 100 84.8 93.6 98.4 99.6 98.4 90.4 98.0 99.6 100 98.8

ML
500 NA 90.9 90.2 99.4 98.3 48.2 47.6 61.9 51.6 57.5 43.8 75.9 82.7 89.2 91.6
1000 90.5 98.3 96.4 99.0 100 64.3 NA NA 96.4 99.2 95.5 96.3 99.2 100 100
1500 97.8 96.6 100 100 100 NA 70.0 99.2 100 100 90.0 97.9 100 100 100
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4 Testing against intra–tail asymmetries in financial time series

4.5 Intra–tail asymmetries in foreign exchange rates

Returns on foreign investments change as domestic currencies change. Extreme
exchange rates induce high volatility in foreign investments, and can cause se-

vere losses. Hence, investors strive to minimize exposure to exchange rate extreme

risks, which necessitates an appropriate quantitative modeling of dependencies be-

tween exchange rates. By detecting intra–tail asymmetries, we can rule out complete

classes of popular tail copula models, such as elliptical and Archimedean models.

Hence, our test can be used to improve existing statistical models for extreme de-

pendence within foreign exchange rates.

The data set, stemming from Bloomberg, consists of daily returns of the Euro (EUR),

British Pound (GBP), Canadian Dollar (CAD), Japanese Yen (JPY), New Zealand Dol-

lar (NZD) and the Swiss Franc (CHF), all nominated in USD for the period 01/05/2001

– 02/01/ 2016. We use the same data set as in Bormann & Schienle (2016). They

compare tail dependence of pairs in exchange rates and indicate some tail copula dif-

ferences are due to intra–tail asymmetry. This section re–examines their conclusion

by applying of our non–parametric test in order to quantify the amount of intra–tail

asymmetries in the given data set.

As foreign exchange rates typically exhibit serial dependence violating (A1ML), we

only employ the non–parametric test of Section 4.3.1. Furthermore, it is unclear

whether tail copulas of foreign exchange rate pairs are sufficiently smooth to justify

a direct application of the parametric test, i.e. (A5ML), too, may be violated. Also, the

maximum–likelihood test must pre–estimate marginal distributions which induces

additional estimation error; for details, see the Appendix. In contrast, the non–

parametric test, does not need any assumption on the smoothness of the tail copulas

at all, and is margin–free. In the simulations, for larger sample sizes (n > 1000),

both tests exhibit approximately the same power of roughly 100%. Under non–ideal

conditions, we believe the non–parametric test is more robust as it requires weaker

assumptions. Hence, it should be sufficient to study the data only with the non–

parametric test.

We apply a rolling window analysis with a window size of n = 1000 and step size

of 50 to draw a fine picture of the tail (in)equality dynamics. This corresponds to a

window length of approximately four years. For any pair comparison, trading days

with missing data or zero returns are discarded. The effective sample size is set to

k = 0.1n; we analyze unfiltered data and use the tapered block multiplier bootstrap
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to simulate the test distributions. We test against intra–tail asymmetry in each pair,

within each period, and separately for upper and lower tails, i.e.

H0 : ΛWX (x(1), 1− x(1)) = ΛWX (1− x(1), x(1)), a.s.,W = U,L, x(1) ∈ [0, 1],

for exchange rate pairs X = (X(i), X(j)). Figure (4.1) displays the share of intra–tail

asymmetries with the 15 bivariate pairs and also shows which pairs exhibit intra–tail

asymmetry.

The test reveals that only a small, yet non–neglectable share of pairs is intra–tail

asymmetric, which backs the presumption in Bormann & Schienle (2016) of intra–

tail asymmetries standard financial returns. The pairs JPY–NZD (lower tail) and

GBP–CAD (upper tail) feature a pronounced phase of intra–tail asymmetry during

2008–13. Pairs for which our test frequently rejects (five or more times) contain

an exotic currency, such as NZD or CAD, which are less frequently traded. This

empirical phenomenon indicates that opportunities for trading strategies based on

intra–asymmetric tails can mainly be found in pairs with one prominent currency

(e.g. EUR, GDP, JPY) and one exotic currency (e.g. NZD, CAD). Interestingly, intra–

tail asymmetry is mostly found in either lower tails or upper tails.

Figure 4.1: Intra–tail asymmetric pairs for lower (left) and upper (right) tails. Signifi-
cant intra–tail asymmetries are marked by black dots (upper panel). We
also plot the dynamics of the share of intra–tail asymmetric pairs among
all pairs (lower panel).
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Intra–tail asymmetry in at least one tail excludes entire tail copula classes. This find-

ing provides another argument against a hasty usage of basic model classes, i.e. it

excludes elliptical or Archimedean models. Those not only require symmetry within

each tail, but also symmetry between the lower and the upper tail. Elliptical distri-

butional properties are exploited in Schmidt (2002) to improve the estimation of the

tail dependence coefficient. Such approaches would not remain valid in instances of

intra–tail asymmetric upper and lower tails.

4.6 Conclusion

We propose two tests against tail copula non–exchangeability based on the empirical

tail copula and on the maximum likelihood method, respectively. Test asymptotics

are provided and implementation details are discussed. A simulation study with de-

pendent data reveals the maximum likelihood test is more powerful, yet might suffer

from numerical problems. For foreign exchange rate pairs, we find a noteworthy

share of intra–tail asymmetries. This finding can improve parametric modeling, and

is of interest for tail risk–based trading strategies.
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4.7 Appendix

4.7.1 Maximum likelihood estimation of tail dependence

For a more complete treatment of maximum likelihood estimation of tail dependence,

we refer to Huser et al (2016). The limiting distribution of the componentwise max-

ima of (appropriately standardized) X, GX(x(1), x(2)), is a bivariate extreme value dis-

tribution

GX(x(1), x(2)) = exp(−VX(x(1), x(2))), x(1), x(2) > 0,

where VX is the so–called exponent measure that, equivalently to the tail copula,

completely describes the tail dependence within X. In particular,

V (x(1), x(2)) =
x(1) + x(2) − Λ(x(1), x(2))

x(1) + x(2)
.

The joint density of GX, gX(x(1), x(2)) = ∂GX
∂x , is

gX(x(1), x(2)) =

(
∂VX
∂x(1)

∂VX
∂x(2)

− ∂2VX
∂x(1)∂x(2)

)
GX(x(1), x(2)),

requiring the existence of second derivatives of the tail dependence function.

For maximum likelihood estimation, let VX be member of a parametric family, V (x(1),

x(2);θ), with parameters θ ∈ Rq<∞. Note, the parameter vector θ also directly deter-

mines the tail copula. The joint density g(x(1), x(2);θ) directly allows for maximum

likelihood estimation for θ when marginals are simultaneously estimated by

x̂(i) = (−(1 + γ̂(i)(x(i) − µ̂(i))/σ̂(i)))
−1/γ̂(i)

+ ,

according to Equation (4.1). Note that the marginal parameters γ̂(i), µ̂(i), σ̂(i) directly

enter the density g(x(1), x(2);θ), i.e. density and likelihood alter in the distributional

properties of the marginals. Stephenson & Tawn (2005) show that the asymptotic

joint density collapses to

g(x̂(1), x̂(2);θ) = −∂
2V (x̂(1), x̂(2);θ)

∂x̂(1)∂x̂(2)
G(x̂(1), x̂(2);θ),
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when extremes occur simultaneously, which simplifies the log likelihood to

l(x̂(1), x̂(2);θ) =
∑
i∈R

log(−∂2Vi(x̂
(1), x̂(2);θ)/∂x̂(1)∂x̂(2) Gi(x̂

(1), x̂(2);θ)),

where R denotes the index of all observations with a joint extreme of X(1) and X(2),

i.e. R := {i : {X(1)
i > F−1

1 (1− k/n)} ∩ {X(2)
i > F−1

2 (1− k/n)}}. Final estimates are found

by numerical optimization of l(x̂(1), x̂(2);θ) with respect to θ, and asymptotic proper-

ties (consistency, asymptotic normality, asymptotic efficiency) follow from standard

arguments, e.g. Amemiya (1985).
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This chapter is based on Bormann (2016).

Abstract

Comparisons of bivariate dependence structures are vital for financial risk man-

agement and form a basis for quantitative trading strategies. We propose a simple

non–parametric test for comparing two bivariate copulas of financial time series. We

partition the copula domain into cells and aggregate comparisons between empirical

cell probabilities over a variety of grid configurations by multiple testing techniques.

While existing cell–based copula tests are not consistent in scenarios when at least

one copula is non–exchangeable, we study all cell combinations, rendering our test

consistent for any copula family. Further, in contrast to standard tests, our test

does not require a specific optimal cell choice. The test allows to pin down sample

regions that cause copula inequality providing precise information on what market

conditions induce copula changes. In contrast to simulation–based tests, it is com-

putationally efficient and allows for analyses of massive data sets. Also, the test is

suitable for many financial time series, such as ARMA–GARCH processes. A copula–

GARCH simulation study confirms the satisfactory finite sample properties of the

test. An empirical study of high–frequency return pairs shows that serial copula

structures exhibit distinct periods of time variation. Our test suggests to extend dy-

namic models for bivariate copulas by accounting for time variation in all four tails

instead of only joint upper and lower tail.

Keywords: Two–sample Goodness–of–fit, copula modeling, dependence modeling,

high–frequency data,

JEL classification: C12, C53, C58
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5.1 Introduction

Assessing and comparing dependence between two financial assets is crucial for

financial investors, banks, and regulating agencies. Ranking pairs of financial secu-

rities according to their tendency to co–move is essential for investment decisions.

For example, when hedging one’s position with respect to the market, investors aim

to find securities that are market neutral, i.e. as weakly dependent with the mar-

ket as possible. In contrast, statistical arbitrage trading typically aims to find stock

pairs that are strongly dependent in order to profit from temporary drifting apart

and mean–reversion, e.g. Gatev et al. (2006). In the simplest form of statistical ar-

bitrage, investors concentrate on only two assets ignoring higher–dimensional risk

structures. Yet, even in the bivariate case, comparing entire dependence structures

is a difficult task. It is well known that standard correlation–based comparisons are

insufficient to model non–linear and asymmetric dependencies, see Longin & Solnik

(2001), Ang & Chen (2002). The most complete measure of bivariate dependence is

a bivariate copula as it models the entire joint distribution. Hence, bivariate copulas

are ideally suited for detecting significant dependence inequalities by two–sample

copula goodness–of–fit tests.

We propose a simple non–parametric test for the equality of two copulas that is

valid for strongly mixing processes, including many standard econometric time se-

ries models such as ARMA and GARCH processes. The test partitions the domain

of the copulas into cells and jointly compares corresponding empirical probabili-

ties by means of multiple testing techniques. Thereby we can account for possi-

ble copula non–exchangeability, which is a specific type of asymmetric dependence.

Non–exchangeability describes asymmetric contributions of marginal (risk) compo-

nents to the joint distribution often occurring in credit risk, see McNeil et al. (2005).

Moreover, we can localize where in the copula domain differences are significant,

i.e. under which market conditions co–movements of return vector X are more likely

than co–movements of return vector Y. This additional information can be exploited

by investors to refine existing trading strategies by extracting more trading signals,

or by improving parametric copula models.

In contrast to standard χ2–tests, our test is also consistent if one or both copulas are

non–exchangeable. Besides financial applications, the test finds applications in any

multiple pairs risk scenario where one needs to prioritize safety measures, such as

hydrology, e.g. Chen et al. (2012). Our method is tailored to the bivariate case, but
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can be readily extended to higher dimensions. Yet, for higher dimensions, we expect

finite sample properties to worsen significantly due to the curse of dimensionality of

non–parametric methods. Also, our rank–based test is invariant against monotone

transformations.

Comparisons of copula structures are typically based on comparing fitted parametric

copula models, i.e. one–sample goodness of fit testing. Non–parametric tests com-

pare some copula measures without imposing any structure beforehand. Overviews

of existing goodness–of–fit tests can be found in Genest et al (2009), Berg (2009), Pat-

ton (2012), Jaworksi et al (2013). Throughout, the Cramér–von Mises test is typically

found to be most powerful. Avoiding the detour of fitting parametric copulas, Rémil-

lard & Scaillet (2009) directly propose a two–sample Cramér–von Mises test that is

based on empirical copulas of two samples. Theoretically, this approach is most

appealing. Unfortunately, it comes with practical limitations. Firstly, this type of

test says little about which return vector is more dependent, and, secondly, in which

market conditions copula inequality is on hand, i.e. in bear, bull or average mar-

kets, corresponding to lower, upper, and mid parts of the return distributions. That

is, it remains unclear which return pair exhibits a higher idiosyncratic risk during

specific market periods, and also which market conditions cause copula inequali-

ties. Thirdly, test distributions do not exist in closed form and must be simulated

which is computationally burdensome. For ultra large data sets, such as financial

high–frequency data, daily comparisons of many return pairs become infeasible due

to computational limitations.

Closely related to our test, many heuristic approaches define fixed grids of the copula

domain and compare empirical cell probabilities by a standard χ2–test, as in Dobrić

& Schmid (2005), Hu (2006), Jondeau and Rockinger (2006), Hong et al (2007), Pat-

ton (2013). This type of test also exhibits three problems. Firstly, the choice of

cells is rather arbitrary and subject to a trade–off between test precision and robust-

ness; empirical probabilities over too few cells may represent the copula structure

too coarsely while estimates are stable since sufficiently many observations fall in

each cell. In case of many cells, variance increases due to the lack of observations

in some cells, yet estimates are less biased. Secondly, the χ2–test is also unable to

trace market conditions with significant copula differences for the χ2–test statistic

sums up all squared cell probability differences. Thirdly, these tests typically do not

account for non–exchangeability of the copula, and are inconsistent in such cases.

Our approach builds on the subset idea, but treats cells individually and robustifies
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5 Bivariate copula comparisons with multiple testing techniques

test findings across differently sized grids. It compares individual empirical cell prob-

abilities by simple Wald tests for each reasonable combination of cells. Hence, we are

able to identify cells that induce copula inequality, i.e. we trace market conditions

where dependence differs. Further, by comparing every reasonable combination of

cell probabilities, we address possible copula non–exchangeability. However, joint

testing demands an adjustment of individual p–values to restrain the overall test de-

cision from becoming oversized. Multiple testing techniques, such as the Bonferroni

adjustment, are applied to each cell p–value. We reject the null of copula equality if a

single adjusted cell p–value undercuts the α–threshold. Finally, we iteratively apply

this method for different cell grids. For each grid, we pick the smallest adjusted p–

value, and reject the null of copula equality if at least one of the p–values is smaller

than α. In such a setting, this appears to be valid: As minimum p–values are highly

dependent, and the stand–alone tests become severely undersized for increasingly

many cell comparisons, small effective cell sample sizes cause the variance of the

test statistics to grow. Similarly, Bormann & Schienle (2016) study differences be-

tween tail dependence functions — we generalize their approach to copulas. Monte

Carlo simulations confirm our approach. Our test improves on all problems of the

standard χ2–test while remaining computationally attractive.

In a rolling window framework, we apply the test to reveal intertemporal copula

changes of high–frequency returns of five financial stocks during 2007–2015. We

find copula structures tend to be extremely time–varying in times of economic tur-

moil. During slack periods, copulas remain constant. We find that exclusively uni-

variate extreme events drive short-term copula changes. This sharply contrasts with

the standard of parametric copula modeling of bivariate returns which mainly fo-

cuses on capturing (time–varying) joint tail dependence, see Patton (2006). We out-

line how parametric models can be adjusted to account for our finding.

This chapter is structured as follows. Section 5.2 introduces notation, presents

test idea, asymptotics. and discusses implementation issues. Section 5.4 studies

finite sample properties. Section 5.5 studies copula dependence of high–frequency

returns, Section 5.6 concludes.
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5.2 Dependence and copulas

5.2 Dependence and copulas

We briefly outline core concepts of bivariate copula theory. Denote the distribu-

tion function of a bivariate random vector Z = (Z(1), Z(2)) by FZ(x1, x2) = P(Z(1) ≤
x(1), Z(2) ≤ x(2)), (x(1), x(2)) ∈ R2. Univariate distribution functions are denoted as

Fi(x) = P(Z(i) ≤ x), i = 1, 2. Sklar’s theorem states that for continuous Z there exists

a unique bivariate distribution function with uniform marginals, the copula, which

expresses the joint distribution FZ in terms of the marginal distributions Fi, i = 1, 2.

To be precise, there exists a function CZ : [0, 1]2 7→ [0, 1] such that

CZ(x(1), x(2)) := P(F1(Z(1)) ≤ x(1), F2(Z(2)) ≤ x(2)) (5.1)

= P(Z(1) ≤ F−1
1 (x(1)), Z(2) ≤ F−1

2 (x(2))), (x(1), x(2)) ∈ [0, 1]2, (5.2)

and CZ is called the copula of Z. Since CZ characterizes the complete joint probability

distribution of Z, CZ captures the complete dependence between Z(1) and Z(2). This

separates modeling of joint and marginal distributions. Furthermore, a copula is

called non–exchangeable if CZ(x(1), x(2)) 6= CZ(x(2), x(1)), (x(1), x(2)) ∈ I,P(I) > 0, i.e.

over a set I that has positive measure, CZ is not symmetric with respect to the order

of (Z(1), Z(2)). There exist many parametric models for CZ, for example the Gauss

copula, t–copula, Clayton copula, Gumbel copula or the Frank copula — see Section

5.4 for some analytical expressions and short discussions.

Estimation is typically performed in two stages. First, F1, F2 are estimated either

parametrically or non–parametrically by the empirical distribution function. Then,

the copula function can be estimated by maximum likelihood according to the para-

metric model. The choice of copula family is critical, and a vast literature on specifi-

cation and goodness of fit tests has emerged, see Berg (2009).

If one is unwilling to restrict oneself to a specific parametric copula model, the copula

can also be estimated non–parametrically using ranks. This avoids copula model

risk but results in slower convergence rates, i.e. larger sample sizes are needed. We

shortly present main results of non–parametric copula statistics which rely on the

so–called empirical copula process.

Marginal distributions are estimated by the empirical distribution function,

F̂i(x) =
1

n+ 1

n∑
j=1

1{Z(i)
j ≤ x},
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5 Bivariate copula comparisons with multiple testing techniques

with observations Z
(i)
1 , ..., Z

(i)
n , i = 1, 2. The copula CZ is estimated by the empirical

copula ĈZ:

ĈZ(x(1), x(2)) =
1

n+ 1

n∑
j=1

1
{
F̂1(Z

(1)
j ) ≤ x(1), F̂2(Z

(2)
j ) ≤ x(2)

}
.

The transformation F̂i(Z
(i)j ) =: Z̃

(i)
j ∈ [0, 1], j = 1, ..., n, yields so–called pseudo ob-

servations which are approximately uniform. Marginals are mapped into the unit

square which dissolves marginal distributional properties but preserves rank–related

dependencies between Z(1) and Z(2), since F−1
i is a monotone transformation. In

practice, Fi, i = 1, 2, is typically unknown and must be estimated, which induces

additional variability of the empirical copula.

Asymptotics of the empirical copula process
√
n(ĈZ(x)− CZ(x)) are well–known; see,

among others, Rüschendorf (1976), Fermanian et al (2004), Segers (2012), Bücher

et al. (2014), who establish consistency and asymptotic normality under various

regularity conditions concerning the existence of partial copula derivatives, denoted

by C∂i := ∂CZ(x)

∂x(i) . Importantly, Bücher & Ruppert (2013) transfer consistency results

to the serially dependent, non–i.i.d. case. See the Appendix for details.

5.3 Test idea and asymptotic properties

We impose the following assumptions for test consistency. The test allows for dy-

namic data with serial dependence; this also covers the i.i.d. case as a special case,

which is vital for applications with financial data.

Assumptions 5.1.

(A1C ) Xt := {(X(1)
t , X

(2)
t )}nX

t=1,Yt := {(Y (1)
t , Y

(2)
t )}nY

t=1, are samples of ergodic and covariance–
stationary stochastic processes X,Y ∈ R2, respectively.

(A2C ) Cross–sectional dependence within X and Y is characterized by copulas CX and
CY, respectively.

(A3C ) X and Y are mutually independent.

(A4C ) For α–mixing Z = X,Y, it holds that

sup
t
||Z(i)

t − E(Z(i))||2+δ <∞,
∞∑
t=1

αZ,i(t)
δ/(2+δ) <∞, δ > 0,
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and E
(∑nZ

t=1(Z
(i)
t − E(Z(i)))2

)
/nZ → σ2

Z,i <∞.

Assumptions (A3C )–(A4C ) entail many linear processes, such as ARMA and GARCH

models, Francq & Zakoïan (2010). Assumption (A3C ) facilitates estimation of the test

statistic as no covariance term appears this way. This assumption may be dropped

whenever estimation of the test statistic is adjusted accordingly. Assumptions (A1C )

and (A4C ) ensure consistency of unconditional empirical moments. Together with

(A4C ), this provides
√
n–central limit results for serially dependent data, see Her-

rndorf (1984). (A4C ), which is directly from Herrndorf (1984), postulates a specific

mixing rate, a finite variance, and that the process remains reasonably close to its

mean. Notably, our test asymptotics will not depend on (non–)differentiability of the

underlying copulas.

We are interested in whether joint dependence in X and Y is equal, i.e. in the null

hypothesis of

H0 : CX = CY, a.s. (5.3)

Note, this implies comparisons of the type CX(x(1), x(2)) = CY(x(1), x(2)) as well as

CX(x(1), x(2)) = CY(x(2), x(1)), which addresses possible non–exchangeability of CX or

CY. We divide the copula domain [0, 1]2 into J2 ∈ N equally large square cells, denoted

by b11, ..., bJ1, b12, b22, ..., bJJ , i.e. bij = {(x(1), x(2)) : (i− 1)/J ≤ x(1) < i/J, (j− 1)/J ≤ x(2) <

j/J}, i, j = 1, 2, ..., J .

After pseudo–transforming both samples, X̃ = (F1,X(X(1)), F2,X(X(2))), Ỹ = (F1,Y(Y (1)),

F2,Y(Y (2))), we compare cell probabilities pX̃ij = P(X̃ ∈ bij), p
Ỹ
ij = P(Ỹ ∈ bij) for all cell

combinations that are in line with Equation (5.3). Rewriting pẐij in terms of the copula

yields

pẐij =

∫
bij

dCZ(v), (5.4)

i.e. obviously cell probabilities can be expressed by the copula, and may also be

approximated by a sum of Binomial variables. The null implies equality of all corre-

sponding cell probabilities. With marginal null hypotheses,

H→0,ij : pXij = pYij ,
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5 Bivariate copula comparisons with multiple testing techniques

where i, j = 1, ..., J , and

H←0,ij : pXij = pYji,

where i, j = 1, ..., J and i 6= j, or, equivalently,

H0,1 = H→0,11, H0,2 = H→0,21, ..., H0,J2 = H→0,JJ ,

H0,J2+1 = H←0,21, H0,J2+2 = H←0,31, ..., H0,2J2+J = H←0,J(J−1),

the global hypothesis (Equation (5.3)) can be written as

H0 :

2J2+J⋂
i=1

H0,i. (5.5)

This covers all reasonable comparisons between cells, thus capturing possible non–

exchangeabilities. However, probabilities of diagonal cells pX̃ii, p
Ỹ
ii are compared only

once.1 The null is violated if at least one marginal cell comparison has to be rejected.

The empirical Wald type test statistic for the marginal hypothesis H→0,ij is

Q̂→ij =

(
p̂X̃ij − p̂Ỹij

)2

((p̂X̃ij(1− p̂X̃ij))/nX + (p̂Ỹij(1− p̂Ỹij))/nY)
,

where cell probabilities are estimated by

p̂Z̃ij =
1

nZ

nZ∑
i=1

1{Z̃i ∈ bij}.

Test statistics for flipped versions of the marginal hypotheses Q̂←ij are defined accord-

ingly. The asymptotic test distribution immediately follows.

Proposition 5.1. Under the null hypothesis and under Assumptions (A1C )–(A4C ),

Q̂→ij
d→ F1,min(nX,nY)−5, nX, nY →∞.

By (A1C ), p̂Z̃ij is consistent, and, due to (A4C ), also asymptotically normally dis-

tributed, see Herrndorf (1984). Assumption (A3C ) allows to estimate V(p̂Zij−pZij) =: σ2
p̂Zij

with the standard empirical variance estimator, without addressing any covariances.

1Otherwise, the multiplicity penalty would penalize comparisons along the diagonal, i.e. pXii = pYii, i =
1, ..., J, twice.
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However, if Assumption (A3C ) is violated, covariances must be estimated, e.g. by

bootstrap.

The degrees of freedom of the basic t–statistic have to be adjusted as five additional

nuisance parameters occur; four pre–estimated marginal distributions (see Dobrić

& Schmid (2005)), and the estimated variance. This adjustment directly enters the

asymptotic distribution of Q̂→ij and appears also in the second term on the right hand

side of Equation (5.7), the asymptotic limit of the empirical copula process, which

only occurs when marginal distributions are unknown.

Clearly, under the null of copula equality, test statistics should be close to zero.

Violations of the null amount to at least one of the Wald statistic Q̂→ij being too large,

i.e. Q̂→ij > F 1−α
1,min(nX,nY)−5. This is equivalent to a one–sided test decision with α∗ = α/2.

Consequently, the test directly reveals if one pair is significantly more dependent

within a specific cell bij.

Standard χ2–tests compare the sum of squared differences between empirical prob-

abilities with quantiles of the χ2 distribution (Hu (2006), Jondeau and Rockinger

(2006), Hong et al (2007), Patton (2013)). However, this does not allow to pin down

boxes where copulas significantly differ. By reformulating the copula comparison

as a multiple testing problem as in Equation (5.5), we see which marginal hypoth-

esis is rejected. This directly links copula inequality to specific cells in the cop-

ula domain [0, 1]2, or, equivalently, links copula inequality to quantile events. Note

again, we compare all (reasonable) cell combinations to account for possible non–

exchangeability of the copulas which standard χ2 box tests ignore. As we jointly test

M := 2J2 − J marginal hypotheses, we have to reduce the marginal significance level

to achieve overall α–control. Denote the individual p–value for test statistic H→0,ij by

P→ij . The simplest method accounting for the multiplicity of this testing problem is

the Bonferroni adjustment, which multiplies p–values with the number of marginal

hypotheses, i.e P̃→ij = MP→ij .

This is the baseline procedure of the test. However, we find aggregating many base-

line tests to one single test decision substantially improves power while α–control

is still held when p–values across grids are sufficiently dependent and grid–specific

baseline tests tend to be undersized. This aggregation step has first been proposed

in Bormann & Schienle (2016) for tail copula comparisons. As is often criticized, the

choice of the number of cells for χ2–tests is arbitrary. Naturally, more cells imply

fewer observations in each cell inducing lower power. In contrast, fewer cells imply
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5 Bivariate copula comparisons with multiple testing techniques

that non–standard dependence structures might be overlooked, also inducing lower

power. We propose to apply the test over many different grids and aggregate grid–

specific p–values by simply picking the smallest adjusted p–value over all grids. This

not only robustifies the test, but also increases test power.

Aggregating p–values in this manner comes along with the danger of the test size

being too large. However, the test appears to be undersized for each single grid

individually due to multiplicity penalty, and the fact that with smaller cells, less

observations fall into cells and realized convergence rates decelerate. Estimation

error rises, reducing the tendency to reject. Moreover, boxes overlap and exhibit

strong to nearly perfect dependence. All these points justify refraining from further

multiplicity penalties. Simulations indicate, irrespective of sample size or underlying

copula model, that (i) the test obeys nominal α–control, and (ii) test results are very

similar when aggregating over a number of baseline tests with different grids.

Notably, the test is very easy to implement, and has no computational costs in con-

trast to simulation–based tests. Also, by comparing cell probabilities individually,

we can pin down cells, i.e. quantile events, where dependence differs. Further-

more, we can directly conclude which random vector is more dependent in a specific

cell. In contrast to other cell–based tests, we explicitly account for possible non–

exchangeability of both copulas.

5.4 Simulation study

This section investigates the finite sample properties of the test. In particular, we

compare two versions of our aggregation test with the standard two–sample χ2–test.

The first version of our test aggregates baseline tests with J2 = 22, ..., 102. We denote

this test by M10. The second version aggregates baseline tests with J2 = 22, ..., 152,

which we denote as M15. Note, a baseline test with J2 = 42 consists of 2J2−J = 28 in-

dividual cell comparisons. We also compute test levels for the standard two–sample

χ2–test with 81 cells, denoted by χ2
9. However, we do not include the Cramér–von

Mises test by Rémillard & Scaillet (2009) due to its high computational burden even

for moderately large samples. For example, for n > 250 (parallelized) computation

takes minutes on a standard laptop while our test, even unparallelized, instanta-

neously provides a test result even for large sample sizes (n > 5000). Yet, we expect

that test to be more powerful than the tests presented here.
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5.4 Simulation study

We will find that, in a copula–GARCH setting, our test is consistent, typically holds

the nominal α–level, and is more powerful than the competing standard χ2–test.

Moreover, the latter is inconsistent in case of copula non–exchangeability, while our

text exhibits excellent power properties for non–exchangeable copulas.

Specifically, we compare rejection probabilities when testing equality of cross–sectional

dependence structures between two bivariate, serially dependent processes, X and

Y. As GARCH–processes are successfully used in modeling financial returns, we

employ GARCH(1,1) processes for univariate dynamics. Cross–sectional dependence

between GARCH–processes are governed by imposing pre–specified copula models

for GARCH innovations. This approach is in line with Oh & Patton (2013). Formally,

for both bivariate return processes Z = (Z(1), Z(2)),Z = X,Y, such copula–GARCH

models can be written as,

Z
(i)
t = σ

(i)
t η

(i)
t ,

σ
2,(i)
t = ω + αZ

2,(i)
t−1 + βσ

2,(i)
t−1 ,

η := (η(1), η(2)) ∼ iid Fη,Z(x(1), x(2)) = Cη,Z(Fη,1(η(1)), Fη,2(η(2))), t = 1, ..., nZ,

where we set ω = 0.01, α = 0.15 and β = 0.8 (see Engle & Sheppard (2001) for typical

empirical values), and Cη,Z denotes the error term copula for process {Z(1)
t , Z

(2)
t }

nZ
t=1,

Fη,Z is the joint error term distribution function for process Z, and FZ,i, i = 1, 2, are

marginal distribution functions of Z(1) and Z(2). Note that spillover effects are solely

governed by the error term copula. Errors are marginally t–distributed five degrees

of freedom to account for fat tails.2

In the following, we estimate test rejection probabilities when both processes, X and

Y, follow copula–GARCH processes with (i) the same error term copula, and with (ii)

differently parametrized error term copulas, i.e. parametrizations of Cη,X and Cη,Y

vary. The former approximates test size, the latter approximates test power. One

draw of simulated data of all copula families considered are shown in Figure (5.1).

We choose sample sizes as n ∈ {250, 500, 1000, 5000, 10000}. Simulations are repeated

1000 times.

The first choice for Cη,Z (DGP1) is a mixture of a Gauss and a t–copula. Both cop-

ulas are popular in financial practice for their simplicity and easy implementation.

Further, the t–copula also captures tail dependence, and a mixture of both extends

2Marginal error distributions are standardized, i.e.V(η(i)) = 1, i = 1, 2.
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5 Bivariate copula comparisons with multiple testing techniques

Figure 5.1: Scatterplots of simulated samples from DGPs 1 to 3. Left column: DGP1,
mixtures of Gauss copulas and t–copulas. Mid column: DGP2, mixtures
of Frank copulas and the independence copula. Right column: DGP3,
the non–exchangeable copula by Khoudraji (1995); note how the degree
of non–exchangeability increases from top to bottom.
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(c) τ = 0.6, α = 0.5, β = 0.5
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(d) ρ = 0.6, λN = 1/3, ν = 5
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(e) τ = 0.6, λF = 2/3
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(f) τ = 0.6, α = 0.5, β = 0.9
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(g) ρ = 0.9, λN = 1/3, ν = 5
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(h) τ = 0.9, λF = 2/3
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(i) τ = 0.9, α = 0.5, β = 0.9
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5.4 Simulation study

the linear dependence modeling of the Gauss distribution by accounting for possi-

ble joint tail events. Denote the Gaussian copula by CN (x; ρN ) and the t–copula by

CT (x; ρT , ν) with ν degrees of freedom. For the Gauss copula, ρ denotes the corre-

lation parameter, and similarly, it denotes the dispersion parameter in case of the

t–copula. The mixture copula is given by

CN ,T (x; ν, λN , ρN , ρT ) := λN CN (x; ρN ) + (1− λN ) CT (x; ρT , ν), λN ∈ [0, 1],

where λN measures the share the Gauss copula contributes to the entire copula, i.e.

how strongly the Gauss copula enters the mixture copula. If λN = 1, CN ,T is a pure

Gauss copula. If λN < 1, the model allows for tail dependence due to the influence of

the t–copula (1− λN ).

We model the dependence between the innovations of X and Y, respectively, by

CN ,T , and vary the mixture and copula parameters to achieve situations in which

the null is either fulfilled or violated. To keep the analysis manageable, we set

ρN = ρT , ν
X = νY, i.e. within each random vector, correlation and dispersion of

the Gauss and the t–copula are always identical. Furthermore, the impact of varying

tail dependence, correlation and dispersion are investigated by setting νX = νY ∈
{5, 20}, λN ∈ {1/3, 2/3, 1}, ρX, ρY ∈ {0.3, 0.6, 0.9}. The null is true whenever ρX = ρY and

νX = νY.

Table (5.1) contains empirical size and power of our tests M10 and M15 and the fixed

cells χ2–test. As a comparison with the serially dependent case, Table (5.5) contains

complementary results with i.i.d. marginals (t–distributed, five degrees of freedom).

Our test features attractive power results for sample sizes larger than 500. For n ≥
5000, false nulls are rejected almost surely. However, for n ≤ 500, the test struggles

to detect copula inequalities if |ρX − ρY| = 0.3, i.e. when the discrepancy between

cross–sectional dependencies is moderate. Most empirical test sizes are close to the

nominal level of α = 5%. Empirical test sizes of both of our tests are close to each

other, while for M15, empirical power is slightly larger. Nevertheless, we also observe

empirical rejection probabilities that exactly coincide for M10 and M15. Both tests

hence produce similar results, while M15 is slightly more appealing. For large sample

sizes, empirical size appears to be slightly too large. This might result from the fact,

that for large sample sizes, estimated GARCH coefficients may indicate almost non–

stationarity and persistent serial dependence (α̂ + β̂ ≈ 1), see Mikosch & Stărică

(2004). This might explain test size distortion for very large sample sizes. Figure
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5 Bivariate copula comparisons with multiple testing techniques

(5.8) visualizes this phenomenon in our setting. In the i.i.d. case, this phenomenon

is less pronounced, see Table (5.5). Consequently, data anomalies may explain why

empirical test levels are too large for large sample sizes.

In comparison, the χ2–test also obeys the nominal test size, but is undersized ir-

respective of sample size and copula parametrization. Empirical power is typically

lower. For some settings, the χ2–test is not able to produce reliable results; as a

rule of thumb, the χ2–test demands at least five observations in each cell to work

properly. In all other cases, NA indicates the test fails in all of the 1000 simulation

runs.

For DGP2, we model CX and CY as a mixture of the Frank and the independence

copula. The Frank copula, denoted by CF (x; θ), is given by

CF (x; θ) = −1

θ
log

(
1 +

(exp(−θx(1))− 1)(exp(−θx(2))− 1)

exp(−θ)− 1

)
, θ ∈ R,

where we choose θ such that Kendalls tau3 τ ∈ {0.3, 0.6, 0.9}, i.e. θ ∈ {2.9174, 7.9296,

38.29121}. The independence copula is given by

CI(x) = x(1)x(2).

The mixture copula for DGP2 follows as

CF ,I(x; θ, λF ) = λFCF (x; θ) + (1− λF )CI(x),

where λF ∈ {0, 1/3, 2/3}. The mixture parameter reflects the share of the Frank

copula to the mixture copula. To keep results manageable, we fix λXF = λYF . The null

holds whenever θX = θY. Table (5.2) shows results of the copula–GARCH model.

Results are similar to DGP1. However, for large sample sizes, our test is oversized

whenever the independence copula is involved, and the Frank copula exhibits strong

correlation. In theory, the aggregating step should render the test oversized. How-

ever, if only few or even no data fall in some cells, oversizedness is absorbed as

individual cell p–values are undersized. With the independence copula, data are

evenly distributed over [0, 1]2, and the absorbing effect of (some) undersized cell p–

values vanishes. The test should hence be only used when at least some dependence

3Kendall’s tau is another dependence measure, which is completely determined by the copula function
as τX = 4

∫
[0,1]2

CX(u)dCX(x)− 1, see McNeil et al. (2005).
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in both return vectors is on hand.

Finally, we use asymmetrized mixtures of Gumbel copulas to show χ2
9 is not con-

sistent for non–exchangeable copulas, while our test is extremely powerful in such

cases. Non–exchangeable copulas can be constructed following Khoudraji (1995),

who combines two exchangeable copulas C1 and C2 by

CK(x) = C1

(
x(1)1−a

, x(2)1−b)
C2

(
x(1)a, x(2)b

)
,

with asymmetry parameters a, b ∈ [0, 1]. If a 6= b, CK is non–exchangeable, see Figure

(5.1), right panel, for simulated data. We choose C1, C2 to be Gumbel copulas with

identical parametrization for both C1 and C2. The Gumbel copula is given by

CG(x; θ) = exp
(
−((− log x(1))θ + (− log x(2))θ)1/θ

)
, 1 ≤ θ <∞. (5.6)

For the error term copulas of X and Y, set Cη,X(x) = CK(x; θX, aX, bX), Cη,Y(x) =

CK(x; θY, aY, bY), and choose θX, θY such that τ ∈ {0.3, 0.6, 0.9}, i.e. θX, θY ∈
{1.428571, 2.5, 10}. Concerning the asymmetry parameters, we set aX ∈ {0.5, 0.7,

0.9}, aY = 0.5, bX = bY = 0.9, i.e. at least one copula is always non–exchangeable, and

the tests ideally always reject the null. Note that aY is fixed, while aX varies; for the

case of aX = aY = 0.5 the null is only seemingly true as parameters for both copulas

are equal. However, due to the non–exchangeability, the null is not true. Table (5.3)

contains test results for the copula–GARCH model.

Our test exhibits ideal power properties, also for moderate sample sizes. In contrast,

when null rejection is only seemingly true, the χ2–test is not able to reject the false

null, rendering it inconsistent in these cases. However, for our test, care must

be taken if at least one copula under consideration is similar to the independence

copula.
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5 Bivariate copula comparisons with multiple testing techniques

Table 5.1: Empirical rejection frequencies for mixtures of the Gauss and the t–
copula, where marginals follow GARCH(1,1) processes.

M10M15 χ2
9 M10M15 χ2

9 M10M15 χ
2
9 M10M15 χ2

9 M10M15 χ2
9 M10M15 χ

2
9

n (λN , ρX) ρY = 0.3 ρY = 0.6 ρY = 0.9 (λN , ρX) ρY = 0.3 ρY = 0.6 ρY = 0.9

(1/3, 0.3) (1/3, 0.6)
250 0.5 0.5 1.0 17.9 17.9 8.2 100 100 100 15.1 15.1 7.8 0.3 0.3 0.0 69.1 69.1 NA
500 0.3 0.3 0.6 63.0 63.0 43.3 100 100 100 62.6 62.6 41.8 0.2 0.2 0.7 100 100 100
1000 0.7 0.7 0.6 98.9 98.9 94.4 100 100 100 98.1 98.1 93.9 1.5 1.5 0.3 100 100 100
5000 2.9 4.1 1.7 100 100 100 100 100 100 100 100 100 3.5 5.7 1.4 100 100 100
10000 4.1 8.1 1.1 100 100 100 100 100 100 100 100 100 4.8 7.4 0.5 100 100 100

(1/3, 0.9) (2/3, 0.3)
250 100 100 100 67.8 67.8 NA 0.0 0.0 NA 0.0 0.0 0.3 17.4 17.4 10.1 99.9 99.9 100
500 100 100 100 99.8 99.8 100 0.1 0.1 NA 0.8 0.8 0.5 64.6 64.6 42.1 100 100 100
1000 100 100 100 100 100 100 0.4 0.4 NA 1.3 1.4 0.6 98.3 98.3 99.9 100 100 100
5000 100 100 100 100 100 100 4.3 5.5 0.0 3.0 4.2 0.5 100 100 100 100 100 100
10000 100 100 100 100 100 100 5.5 7.2 1.4 3.9 7.1 0.8 100 100 100 100 100 100

(2/3, 0.6) (2/3, 0.9)
250 16.5 16.5 7.7 0.4 0.4 0.0 67.7 67.7 NA 100 100 100 67.0 67.0 NA 0.0 0.0 NA
500 64.6 64.6 39.5 0.6 0.6 0.6 99.8 99.8 100 100 100 100 100 100 100 0.1 0.1 NA
1000 98.4 98.4 91.1 1.2 1.2 0.7 100 100 100 100 100 100 100 100 100 0.5 0.5 NA
5000 100 100 100 3.8 5.8 1.5 100 100 100 100 100 100 100 100 100 3.0 3.6 3.0
10000 100 100 100 5.1 8.4 1.4 100 100 100 100 100 100 100 100 100 4.5 6.4 1.2

(1, 0.3) (1, 0.6)
250 0.1 0.1 0.6 16.9 16.9 10.3 100 100 100 13.9 13.9 8.8 0.0 0.0 7.1 66.4 66.4 NA
500 0.5 0.5 0.9 57.1 57.1 32.7 100 100 100 61.1 61.2 35.3 0.8 0.8 0.3 99.6 99.6 100
1000 1.3 1.3 0.3 97.9 97.9 89.1 100 100 100 97.5 97.5 89.6 0.8 0.8 0.4 100 100 100
5000 3.6 6.5 0.8 100 100 100 100 100 100 100 100 100 3.6 6.0 0.9 100 100 100
10000 3.5 6.5 0.7 100 100 100 100 100 100 100 100 100 4.9 7.4 1.0 100 100 100

(1, 0.9)
250 99.9 99.9 100 65.5 65.5 NA 0.0 0.0 NA
500 100 100 100 99.6 99.6 100 0.0 0.1 NA
1000 100 100 100 100 100 100 0.8 0.8 NA
5000 100 100 100 100 100 100 5.4 6.0 0.7
10000 100 100 100 100 100 100 5.3 6.8 0.9
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Table 5.2: Empirical rejection frequencies for mixtures of the Frank and the inde-
pendent copula, where marginals follow GARCH(1,1) processes.

M10M15 χ2
9 M10M15 χ2

9 M10M15 χ2
9 M10M15 χ2

9 M10M15 χ2
9 M10M15 χ2

9

n (λF , τ
X) τY = 0.3 τY = 0.6 τY = 0.9 (λF , ρ

X) τY = 0.3 τY = 0.6 τY = 0.9

(0, 0.3) (0, 0.6)
250 0.2 0.2 2.1 74.4 74.4 83.3 100 100 100 73.7 73.7 57.1 0.0 0.0 NA 96.7 96.7 NA
500 0.8 0.8 0.8 99.9 99.9 98.8 100 100 100 99.8 99.8 99.3 0.1 0.1 NA 100 100 NA
1000 1.8 1.8 0.9 100 100 100 100 100 100 100 100 100 1.6 1.6 0.0 100 100 NA
5000 2.9 5.6 0.7 100 100 100 100 100 100 100 100 100 4.1 5.1 0.5 100 100 100
10000 4.1 7.2 0.7 100 100 100 100 100 100 100 100 100 4.2 6.5 1.1 100 100 100

(0, 0.9) (1/3, 0.3)
250 100 100 NA 96.3 96.3 NA 0.0 0.0 NA 0.2 0.2 0.1 8.3 8.3 10.7 94.2 94.2 99.6
500 100 100 100 100 100 NA 0.0 0.0 NA 0.4 0.4 1.0 45.6 45.6 40.5 100 100 100
1000 100 100 100 100 100 NA 0.0 0.0 NA 1.0 1.1 0.7 95.5 95.5 93.4 100 100 100
5000 100 100 100 100 100 100 0.4 1.2 NA 3.3 5.2 0.7 100 100 100 100 100 100
10000 100 100 100 100 100 100 0.7 2.7 NA 2.9 6.7 0.6 100 100 100 100 100 100

(1/3, 0.6) (1/3, 0.9)
250 10.2 10.2 10.0 0.4 0.4 0.0 24.1 24.1 71.4 94.3 94.3 98.8 25.0 25.0 60.0 1.0 1.0 0.0
500 42.8 42.9 41.8 0.6 0.6 0.7 89.4 89.4 99.5 100 100 100 85.8 86.4 99.3 3.2 3.3 5.8
1000 94.6 94.6 91.6 1.4 1.4 1.7 100 100 100 100 100 100 100 100 100 6.9 7.2 8.3
5000 100 100 100 4.9 6.5 1.1 100 100 100 100 100 100 100 100 100 12.1 15.2 6.0
10000 100 100 100 5.9 9.6 1.1 100 100 100 100 100 100 100 100 100 14.6 19.2 8.2

(2/3, 0.3) (2/3, 0.6)
250 0.1 0.1 0.8 0.7 0.7 1.7 8.3 8.3 23.3 1.3 1.3 2.9 0.4 0.4 0.6 1.0 1.0 5.4
500 1.0 1.0 1.1 3.1 3.1 4.3 51.2 51.2 68.3 2.5 2.5 2.5 0.6 0.6 0.9 8.6 8.7 22.0
1000 1.0 1.0 0.5 15.6 15.6 12.2 98.1 98.2 99.4 12.6 12.9 12.2 1.3 1.5 0.3 50.8 52.2 71.8
5000 3.0 6.1 1.1 99.0 99.1 97.9 100 100 100 99.0 99.0 98.3 4.5 7.1 0.7 100 100 100
10000 3.5 6.8 0.6 100 100 100 100 100 100 100 100 100 3.1 6.3 0.8 100 100 100

(2/3, 0.9)
250 8.0 8.0 22.1 1.2 1.2 5.8 0.4 0.4 2.3
500 52.1 52.3 70.2 10.4 10.5 24.9 1.6 1.6 3.3
1000 99.0 99.1 99.6 49.9 51.0 68.4 3.5 4.1 3.7
5000 100 100 100 100 100 100 6.8 11.3 3.7
10000 100 100 100 100 100 100 6.9 12.8 4.2
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5 Bivariate copula comparisons with multiple testing techniques

Table 5.3: Empirical rejection frequencies for mixtures of the asymmetrized Gumbel
copula with asymmetry parameters aX = aY = 0.5, bX = bY = 0.9. Note, in
all cases, the null is false — pseudo test size is bold. Marginals follow
GARCH(1,1) processes.

M10 M15 χ2
9 M10M15 χ2

9 M10 M15 χ2
9 M10M15 χ2

9 M10 M15 χ2
9 M10M15 χ2

9

n (aX, τX) τY = 0.3 τY = 0.6 τY = 0.9 (aX, τX) τY = 0.3 τY = 0.6 τY = 0.9

(0.5, 0.3) (0.5, 0.6)
250 0.2 0.2 0.8 13.0 13.0 5.2 82.7 82.7 79.2 13.4 13.4 5.7 6.4 6.4 1.7 57.5 57.5 27.3
500 1.4 1.4 0.7 57.6 57.6 22.9 100 100 99.9 55.8 55.8 21.435.535.5 1.1 99.2 99.2 69.4
1000 3.0 3.1 1.0 97.0 97.1 74.5 100 100 100 96.5 96.5 73.192.592.5 0.9 100 100 98.8
5000 50.654.0 0.9 100 100 100 100 100 100 100 100 100 100 100 0.4 100 100 100
10000 94.795.1 0.9 100 100 100 100 100 100 100 100 100 100 100 0.4 100 100 100

(0.5, 0.9) (0.7, 0.3)

250 82.5 82.5 81.2 56.8 51.2 16.792.592.5 NA 0.3 0.3 1.4 34.7 86.7 23.9 98.3 98.3 100
500 100 100 99.7 99.4 85.8 65.2 100 100 1.8 1.5 1.5 1.6 89.6 99.7 77.7 100 100 100
1000 100 100 100 100 99.7 99.0 100 100 2.2 4.9 4.9 1.8 100 100 99.9 100 100 100
5000 100 100 100 100 100 100 100 100 4.9 67.0 68.7 10.5 100 100 100 100 100 100
10000 100 100 100 100 100 100 100 100 4.9 97.8 98.1 37.7 100 100 100 100 100 100

(0.7, 0.6) (0.7, 0.9)

250 4.8 4.8 4.7 6.7 21.0 0.0 78.8 78.8 100 70.1 70.1 73.5 25.9 49.2 100 95.3 95.3 NA
500 30.2 30.2 12.9 37.2 42.6 6.7 99.9 99.9 100 99.8 99.8 99.5 91.1 83.9 69.8 100 100 94.7
1000 83.5 83.7 51.0 92.2 76.5 23.8 100 100 100 100 100 100 100 99.0 98.7 100 100 100
5000 100 100 100 100 100 99.8 100 100 100 100 100 100 100 100 100 100 100 100
10000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

(0.9, 0.3) (0.9, 0.6)

250 1.1 1.1 1.2 71.0 99.2 63.6 100 100 100 3.2 3.2 2.9 18.1 68.4 11.8 99.7 99.7 100
500 3.3 3.3 2.2 99.3 100 99.5 100 100 100 13.3 13.4 10.8 69.7 96.7 59.5 100 100 100
1000 13.5 13.7 8.0 100 100 100 100 100 100 57.0 57.3 45.1 99.5 100 97.6 100 100 100
5000 97.5 97.7 80.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
10000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

(0.9, 0.9)

250 58.6 58.6 75.2 23.9 81.6 NA 99.3 99.3 NA
500 99.2 99.2 99.8 86.9 99.1 97.5 100 100 100
1000 100 100 100 100 100 100 100 100 100
5000 100 100 100 100 100 100 100 100 100
10000 100 100 100 100 100 100 100 100 100
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5.5 Copula dynamics in high-frequency returns

5.5 Copula dynamics in high-frequency returns

5.5.1 Data description

We analyze high-frequency returns of five financial stocks with respect to intertem-

poral copula changes during 06/27/2007 – 10/13/2015, i.e. JP Morgan (JPM),

Bank of America (BAC), Goldman Sachs (GS), Wells Fargo & Co (WFC), Morgan Stan-

ley (MS). Returns are computed from NASDAQ limit order book data obtained from

https://lobsterdata.com/. NASDAQ trading hours are from 9:30 to 16:00. We

are interested in (i) whether copulas change at all, (ii) when copulas change, and

also (iii) where copulas change, i.e. what parts of the bivariate return distribution

are time–varying.

We build all ten bivariate pairs, and apply the test to compare each pair’s copula

structure in two disjoint, successive time periods, i.e. we test H0 : C
(i,j)
T1

= C
(i,j)
T2

,

where C
(i,j)
T1

denotes the copula of the return vector (r
(i)
t , r

(j)
t )T1

i=1, and C
(i,j)
T2

denotes

the copula of (r
(i)
t , r

(j)
t )T2

i=T1+1. We repeat testing in a rolling window scheme, and

also consider different sample frequencies. To be precise, for 60 second returns we

compare two trading weeks of observations (n ≤ 1800); for 150 second returns we

compare six trading weeks (n ≤ 2160); for 300 second returns we compare ten trading

weeks (n ≤ 1800) for 300 second returns we compare 24 trading weeks (n ≤ 2160). Our

test allows for a computationally rapid analysis, whereas for simulation–based tests,

this test setup would be an immense computational burden.

High–frequency data should be cleaned with respect to data errors, which might

arise due to erroneous recording, see Hautsch (2012), Chapter 3. We proceed by

computing mid–quotes by averaging first level bid and ask prices; only executed

trades are employed. Further, to minimize effects of market opening and closing, we

only consider observations during 9:45 – 15:45. Observations where the midquote is

larger (smaller) than 1.3 (0.7) of the daily midquote median are discarded, excluding

implausibly extreme price movements. Next, we compute 60, 150, 300 and 600 second

log returns which regularizes the data to an evenly spaced time grid, reducing market

microstructure noise.

One major concern with high–frequency data is intra–day seasonality. Figure (5.2)

shows estimated intra–day volatility medians. Figure (5.3) shows empirical autocor-

relation and partial autocorrelation in case of BAC; Figure (5.7) shows similar results
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Figure 5.2: Median intra–day realized volatility of all stocks’ five minute returns. For
each time point, we take the median over all days.
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for all other stocks. All of these figures support the well known empirical facts of un-

correlatedness of first moments, and seasonality and persistence in higher moments.

Highly persistent serial dependence violates the assumption of a α–mixing time se-

ries and, in this setting, also (A3C ). This would render our test inconsistent unless

the data is properly filtered. Martens et al. (2002) summarize appropriate desea-

sonalization procedures, which are all based on realized volatility measures. In the

same way, we impose a standard volatility seasonality model for returns r
(i)
t , given

by

r
(i)
t = µ

(i)
t + σ

(i)
t r
∗,(i)
t ,

where µ
(i)
t is conditional mean, σ(i)

t is conditional volatility, and r
∗,(i)
t is the desea-

sonalized component of the observed return r
(i)
t . The conditional mean µ

(i)
t is zero

and we estimate σ(i)
t to achieve deseasonalized returns r̂∗,(i)t :=

r
(i)
t

σ̂
(i)
t

. We estimate the

volatility in each intra–day time window [tj−1, tj ] simply by the square root of the

average over all squared returns in [tj−1, tj ] — excluding the right end point. Figure

(5.7) shows this simple filter successfully wipes out nearly any serial dependence

in first and second moments, and also any seasonality.4 Table (5.4) shows basic

summary statistics of raw and deseasonalized returns.

4Note, there exist more sophisticated realized volatility measures, such as the two–time–scale by
Zhang et al. (2005). However, our aim is to achieve an approximately α–mixing time series which is
also possible by this simple cleaning strategy.
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5.5 Copula dynamics in high-frequency returns

Table 5.4: Summary statistics of all stocks’ five minute returns, covering 2086 days,
and n = 148106 observations.

BAC GS JPM MS WFC BAC GS JPM MS WFC
raw (∗1000) desea.

q0.01 -8.824 -6.719 -7.296 -9.400 -7.967 −2.449 −2.193 −2.716 −2.828 −2.724
x -0.022 -0.002 -0.002 −0.008 -0.004 -0.007 0.006 0.002 −0.001 −0.003
σ̂ 2.975 2.385 2.452 3.601 2.647 1.070 0.876 1.152 1.202 1.161
q0.99 8.786 6.733 7.298 9.490 8.123 2.449 2.217 2.725 2.829 2.746

Figure 5.3: Exemplary ACF and PACF for BAC. Raw and deseasonalized five minute
returns (first and second), and of squared versions thereof (third and
forth).
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5.5.2 Detecting and localizing of copula time variation

With the high–frequency returns now cleaned, we apply our test to investigate copula

dynamics, i.e. how the copula of a single pair evolves over time. Figure (5.4) (right)

displays the share of test rejections across all ten pairs for ten minute returns, and

relative rejection frequencies over the entire time period for all frequencies. Results

appear similar for all frequencies while results of higher frequencies appear a bit

more noisy. We thus mostly present results for ten minute returns.

More than 70% of time points feature at least one copula change (out of ten possi-

ble changes), rendering high–frequency return copulas time–varying. Hence, copula

stationarity, needed for many statistical applications in quantitative finance, can be

considered a more than questionable assumption. However, time points where more

than 50% of the copulas change, i.e. copula changes in large cross–sections, are

rare (10–20%). Test rejections in nearly every pair would indicate a systematic shift

in cross–sectional dependence of the entire market. Figure (5.4) (left) precisely doc-

uments when copulas change. Wide changes of copulas occurred more often before

2012 than after. Moreover, periods with many test rejections more frequently fall into
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5 Bivariate copula comparisons with multiple testing techniques

Figure 5.4: (Left) Dynamics of rejection frequencies over all pairs for 600 second re-
turns. (Right) Within the cross–section of all ten pairs, we compute the
number of test rejections in each period, and plot the relative frequen-
cies over all time windows. For 600 second returns, we observe copula
changes in all pairs in nearly 5% of all cases (black bar furthest right).
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time periods with economic tension (default of Lehman Brothers in 09/2008, Flash

Crash in 05/2010, beginning of the Euro Crisis 08/2011, Chinese stock market

crash 06/2015).

Additionally, our test is capable of localizing where copulas change. Figures (5.5)

and (5.6) highlight each cell that led to test rejections. Iterating through the en-

tire sample, we repeatedly plot such cells according to their tendency to induce a

test rejection. Darkly shaded cells correspond to cells where copulas most often

change, allowing us to understand which market conditions cause time variation of

copulas. Dependence between average price movements, i.e. the core of the copula,

surprisingly remains relatively stable over time as the null is only rarely rejected in

the middle of the unit square. Interestingly, copula changes most often appear in

the upper left and the lower right quadrant, while changes in the upper right and

lower left quadrant are scarce. The latter are the joint tail regions, and thus the

copula appears to remain stable for joint extremes. However, probabilities for ex-

clusive one–dimensional extreme events constantly change for all pairs and for all

frequencies.
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5.5 Copula dynamics in high-frequency returns

5.5.3 Implications for parametric models of time–varying copulas

The finding that copulas most often change in upper left and lower right tails is

remarkable in that parametric copula modeling typically aims to dynamically model

joint tails to account for time–varying tail dependence, e.g. Patton (2006).

We find that, to fully comprehend copula dynamics, one should also explicitly model

exclusive one–dimensional extreme events. This can be achieved by extending the

approach by Patton (2006) who employs a time–varying symmetrized Joe–Clayton

(sJC) copula that only accounts for dynamics in upper and lower tail dependence.

The symmetrized Joe–Clayton (sJC) copula is defined by

CJC(x
(1), x(2); τU , τL) = 1− (1− {[1− (1− x(1))κ]−γ + [1− (1− x(2))κ]−γ − 1}−1/γ)1/κ,

κ = 1/ log(2− τU ), γ = −1/ log(τL),

τU , τL ∈ (0, 1),

where copula parameters τU , τL measure upper and lower tail dependence. A cop-

ula that explicitly models all quadrants is given by a mixture of a standard sJC

copula, CJC(x(1), x(2); τU , τL), and a sJC copula for (x(1), 1 − x(2)), denoted by

C1−x(2)

JC (x(1), x(2); τU , τL), i.e.

C∗J C(x
(1), x(2); τUR, τLL, τUL, τLR, λ) :=λCJC(x

(1), x(2); τUR, τLL)

+ (1− λ)C1−x(2)

JC (x(1), x(2); τUL, τLR),

λ ∈ [0, 1],

where UR, LL, UL and LR are short for upper right, lower left, upper left and lower

right quadrant, respectively, and λ denotes the mixture coefficient, which has to be

estimated from the data.
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5 Bivariate copula comparisons with multiple testing techniques

5.6 Conclusion

We propose a computationally attractive test against copula equality in a time series

framework based on multiple testing. The test accounts for possible copula non–

exchangeability, features good finite sample properties and is easy to implement.

Importantly, we provide information on which areas of the copula domains induce

copula inequality. This improves understanding of time variation of copula struc-

tures.

For high–frequency data of five financial stocks, we provide evidence for (serial) time

variation in copula structures. We find that copulas typically alter in the upper left

and lower right parts of their domain, which is often not modeled in parametric ap-

proaches. These findings suggest to extend standard copula models to also explicitly

model these often overseen parts of the copula.

132



5.7 Appendix

5.7 Appendix

5.7.1 Asymptotic properties of the empirical copula

For completeness, we briefly outline the asymptotic properties of the empirical cop-

ula. To be precise,

sup
x
|Ĉ(x)− C(x)| p→ 0, n→∞,

and

√
n(Ĉ(x(1), x(2))− C(x(1), x(2)))

w→
n→∞

B(x(1), x(2))−
2∑

k=1

∂CiB(x(i))),∀x ∈ [0, 1]2,

where B is a centered bivariate Gaussian process with covariance structure

E(B(x)B(v)) = C(min(x(1), v(1)),min(x(2), v(2)))− C(x)C(v)),

where x(i) := (x(i), u−i = 0). Weak asymptotic normality of the empirical copula pro-

cess with estimated marginals can also be established for sequentially dependent

data. Assume observations X1, ...,Xn stem from a stationary process X which is

strongly mixing with rate α(r) = O(r−a), a > 1. Then

√
n(Ĉ(x)− C(x))

w→ B(x)−
2∑
i=1

∂Ci(x)B(x(i)),∀x ∈ [0, 1]2, (5.7)

and B is a bivariate centered tight Gaussian field with covariance

γ(x,v) =
∑
j∈Z

Cov(1{Ũ0 ≤ x}, 1{Ũj ≤ v}, ∀x,v ∈ [0, 1]2,

with Ut = (F1(Z
(1)
t ), F2(Z

(2)
t )), see Bücher & Ruppert (2013).

133



5 Bivariate copula comparisons with multiple testing techniques

5.7.2 Additional empirical results

Figure 5.7: ACF and PACF of raw and deseasonalized five min returns (upper two
panels), and of squared versions thereof (lower two panels).
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5.7 Appendix

5.7.3 Additional simulation results

Figure 5.8: Density of the sum of estimated GARCH parameters α̂ and β̂ for n = 10000
based on 40000 repetitions. Dashed line: True value. This indicates
large sample sizes induce long memory, violating Assumption (A4C ), and
possibly distorting the test size.
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5 Bivariate copula comparisons with multiple testing techniques

Table 5.5: Empirical rejection frequencies for mixtures of the Gauss and the t–
copula, where marginals are i.i.d.

M10M15 χ2
9 M10M15 χ2

9 M10M15 χ
2
9 M10M15 χ2

9 M10M15 χ2
9 M10M15 χ

2
9

n (λX, ρX) τY = 0.3 τY = 0.6 τY = 0.9 (λX, ρX) τY = 0.3 τY = 0.6 τY = 0.9

(1/3, 0.3) (1/3, 0.6)
250 0.0 0.0 0.7 18.6 18.6 9.3 100 100 100 19.6 19.6 7.5 0.2 0.2 0.0 66.4 66.4 NA
500 0.4 0.4 0.5 69.2 69.2 43.5 100 100 100 68.8 68.8 42.5 0.5 0.5 1.3 100 100 100
1000 1.4 1.4 0.8 99.0 99.0 96.5 100 100 100 99.3 99.4 95.3 1.3 1.3 0.5 100 100 100
5000 2.4 4.4 0.4 100 100 100 100 100 100 100 100 100 4.1 6.2 0.7 100 100 100
10000 3.5 6.2 0.6 100 100 100 100 100 100 100 100 100 5.3 8.2 0.6 100 100 100

(1/3, 0.9) (2/3, 0.3)
250 100 100 100 66.7 66.7 NA 0.0 0.0 NA 0.3 0.3 1.2 16.0 16.0 8.9 100 100 100
500 100 100 100 99.9 99.9 100 0.0 0.0 NA 0.6 0.6 0.5 62.0 62.0 35.9 100 100 100
1000 100 100 100 100 100 100 0.3 0.3 NA 1.4 1.4 0.6 97.8 97.9 92.7 100 100 100
5000 100 100 100 100 100 100 3.6 4.5 NA 3.9 6.4 0.6 100 100 100 100 100 100
10000 100 100 100 100 100 100 4.4 5.8 0.0 2.5 5.8 0.4 100 100 100 100 100 100

(2/3, 0.6) (2/3, 0.9)
250 17.0 17.0 8.8 0.2 0.2 0.0 67.6 67.6 NA 100 100 100 66.5 66.5 NA 0.0 0.0 NA
500 65.1 65.1 38.5 0.4 0.4 0.4 99.8 99.8 100 100 100 100 99.9 99.9 100 0.0 0.0 NA
1000 98.8 98.8 93 1.3 1.3 1.0 100 100 100 100 100 100 100 100 100 0.4 0.4 NA
5000 100 100 100 4.4 5.8 1.0 100 100 100 100 100 100 100 100 100 2.9 3.7 0.0
10000 100 100 100 5.4 8.9 1.4 100 100 100 100 100 100 100 100 100 5.3 6.0 1.7

(1, 0.3) (1, 0.6)
250 0.2 0.2 1.0 15.5 15.5 10.2 100 100 100 16.2 16.2 7.8 0.2 0.2 0.0 67.5 67.5 NA
500 0.6 0.6 0.7 66.7 66.7 39.2 100 100 100 64.2 64.2 36.3 0.4 0.4 1.0 99.8 99.8 100
1000 1.2 1.2 0.9 97.6 97.6 91.3 100 100 100 98.7 98.7 92.0 0.5 0.5 0.5 100 100 100
5000 3.2 5.2 1.0 100 100 100 100 100 100 100 100 100 4.5 6.8 0.6 100 100 100
10000 3.4 6.3 0.8 100 100 100 100 100 100 100 100 100 3.7 7.7 0.7 100 100 100

(1, 0.9)
250 100 100 100 66.3 66.3 NA 0.1 0.1 NA
500 100 100 100 99.9 99.9 100 0.2 0.2 NA
1000 100 100 100 100 100 100 0.3 0.3 NA
5000 100 100 100 100 100 100 2.5 3.1 0.0
10000 100 100 100 100 100 100 5.6 7.2 0.4
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