
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Flexible Graphical Editors for Extensible
Modular Meta Models

Master’s Thesis of

B.Sc. Michael Junker

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf Reussner

Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek

Advisor: Dipl.-Inform. Misha Strittmatter

Second advisor: M.Sc. Heiko Klare

12. April 2016 – 11. October 2016

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 10.October 2016

. .

(B.Sc. Michael Junker)

Abstract

In model-driven software development, graphical editors can be used to create model

instances more e�ciently and intuitively than with pure XML code. These graphical

editors rely on models created on the basis of a meta-model. If such a meta-model is

extended invasively not only its code has to be re-generated but also the graphical editor

needs to be adapted. When developing multiple extensions, the meta-model as well as the

corresponding graphical editor tend to get complex and error-prone.

One way of coping with this complexity is to use modular meta-models and extending

them noninvasively. However, having multiple meta-model fragments providing extended

features is only half the job as equivalent graphical editors are needed as well.

This master’s thesis therefore analyzes di�erent types of extensions for meta-models as

well as on graphical editor level. Next, a short analysis of extension mechanisms follows.

These mechanisms are used for di�erent realizations of extension types. Like the extension

types, the mechanisms are also analyzed for both meta-models and for graphical editors.

While the classi�cation of extensions resembles one part of this thesis’ concept, their

mapping from meta-model level to graphical editor level marks the second part. This

mapping is done in order to show possible impacts of a meta-model extension to its

corresponding graphical editor.

To validate this concept, the analyzed mappings are implemented exemplarily in two

di�erent frameworks. Furthermore, the two prototypes show the di�erent possibilities

each framework has to o�er when it comes to their capabilities of extension. Therefore,

this thesis can also be seen as guideline for extending a given graphical editor.

i

Zusammenfassung

Im Bereich der modellgetriebenen Softwareentwicklung werden oftmals graphische Edi-

toren eingesetzt um die Entwicklung von Modellen zu erleichtern. Diese graphischen

Editoren sind dabei auf das den Modellen zugrunde liegende Metamodell angepasst. Falls

dieses Metamodell invasiv erweitert wird, muss nicht nur der gesamte Code erneut gene-

riert werden, der graphische Editor muss dann ebenfalls an die Erweiterung angepasst

werden. Im Falle mehrerer Erweiterungen wird so nicht nur das Metamodell, sondern

auch der graphische Editor komplex und fehleranfällig. Weiterhin kann es passieren, dass

Endnutzer nicht alle Funktionalitäten des Metamodells und des Editors nutzen möchten,

sondern nur einen Teil davon. Weitere Erweiterungen senken dann unter Umständen die

Attraktivität des Gesamtprodukts.

Eine Möglichkeit dieser Komplexität entgegen zu wirken, ist die Einführung von mo-

dularen Metamodellen und damit einhergehend auch Erweiterungen nicht-invasiv zu

gestalten. Nichtsdestotrotz sind modulare Metamodelle auch nur dann sinnvoll, wenn

die graphischen Editoren auch entsprechend umgesetzt sind, da ansonsten dennoch die

gesamte Funktionalität der Metamodelle in einem Editor steckt.

Aufgrund dieser Faktoren beschäftigt sich diese Masterarbeit mit den verschiedenen Typen

von Erweiterungen auf Metamodell-Ebene sowie auf Ebene der graphischen Editoren.

Neben der Klassi�kation der einzelnen Erweiterungstypen wird dabei auch auf einzelne

Mechanismen eingegangen, die zu bestimmten Erweiterungstypen führen können.

Während die Klassi�kation der Erweiterungen eine große Rolle in dieser Arbeit spielt,

müssen die Erweiterungen auf beiden Ebenen noch in Zusammenhang gebracht werden.

Dabei werden mehrere Abbildungen gescha�en, die es erlauben von einer Metamodel-

lerweiterung auf mögliche Erweiterungen auf graphischer Editorenebene zu schließen.

Dadurch lassen sich die verschiedenen Auswirkungen einer Erweiterung auf Metamodel-

lebene auf graphische Editoren besser erkennen.

Validiert wird dieses Konzept durch eine exemplarische Implementierung der Abbildungen

in zwei verschiedenen Frameworks. Weiterhin zeigen die beiden implementierten Prototy-

pen welche Möglichkeiten und Grenzen die beiden Frameworks aufweisen. Dadurch kann

diese Arbeit auch als Richtlinie betrachtet werden, mit Hilfe derer die Entwicklung einer

Erweiterung vereinfacht werden soll.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Motivation . 1

1.2 Goals of this thesis . 2

1.3 Outline . 2

2 Foundations 5
2.1 Model-Driven Software Development . 5

2.2 Models and Meta-Models . 5

2.3 Domain-Speci�c Languages . 7

2.4 Modularity . 8

2.5 Extensibility . 9

2.6 Eclipse Modeling Framework . 10

2.7 Graphical Editors . 11

2.7.1 The Graphiti Framework . 12

2.7.2 The Sirius Framework . 13

3 RelatedWork 15
3.1 Extension of Meta-Models . 15

3.2 Modular Meta-Models . 16

3.3 Language Workbenches . 17

3.4 Extension of Graphical Editors . 18

4 Classification of Extensions 21
4.1 General Approach . 21

4.2 Extension Types and Mechanisms . 22

4.3 Extension Types on Meta-Model Level . 23

4.3.1 New Meta-Class . 25

4.3.2 New Information to Existing Classes 27

4.4 Extension Mechanisms on Meta-Model Level 28

4.4.1 Referencing . 28

4.4.2 Inheritance . 31

4.4.3 Realization . 31

4.4.4 Stereotyping . 32

4.4.5 Combination of Extension Mechanisms 32

v

Contents

4.5 Summary of Meta-Model Extension Types and their Realizations 33

4.6 Extension Types for Graphical Editors . 34

4.6.1 Extend Existing Notation Element 34

4.6.2 New Notation Element . 38

4.6.3 Add Palette Entry . 39

4.6.4 Add Properties Entry . 39

4.6.5 Extension of Outline View . 39

4.6.6 Add Toolbar Button . 40

4.6.7 Add Button to Context Dependent Menu 41

4.6.8 Create New View . 42

4.7 Combination of Extension Types for Graphical Editors 42

4.8 Extension Mechanisms for Graphical Editors 43

4.8.1 Extension Mechanisms in Graphiti 43

4.8.2 Extension Mechanisms in Sirius 44

5 Mapping of Extensions between Meta-Models and Graphical Editors 45
5.1 Mapping of Meta-Class Instance Below Root Node to Graphical Editors . 45

5.1.1 Supported Realizations on Graphical Editor Level 46

5.1.2 Unsupported Realizations on Graphical Editor Level 47

5.2 Mapping of Meta-Class Instances as Part of Other Instances to Graphical

Editors . 48

5.2.1 Supported Realizations on Graphical Editor Level 49

5.2.2 Unsupported Realizations on Graphical Editor Level 51

5.3 Mapping of Adding Attributes to Existing Classes to Graphical Editors . 52

5.3.1 Supported Realizations on Graphical Editor Level 52

5.3.2 Unsupported Realizations on Graphical Editor Level 55

5.4 Mapping of Adding a Containment to Existing Classes to Graphical Editors 56

5.4.1 Supported Realizations on Graphical Editor Level 56

5.4.2 Unsupported Realizations on Graphical Editor Level 58

5.5 Mapping of the Relation Extension Type to Graphical Editors 59

5.5.1 Supported Realizations on GRaphical Editor Level 59

5.5.2 Unsupported Realizations on Graphical Editor Level 60

6 Implementation and Validation 63
6.1 Overview on Available Scenarios . 63

6.2 Smart Grid Resilience Framework . 64

6.3 Implementation of the Core Meta-Model in Graphical Editors 66

6.3.1 Sirius Implementation . 66

6.3.2 Graphiti Implementation . 72

6.4 The Input Model Extension . 79

6.4.1 The Input Meta-Model . 80

6.4.2 Adding a Second Model to the Editor 81

6.4.3 Implementing the Input Model with Sirius 84

6.4.4 Implementing the Input Model with Graphiti 90

vi

Contents

6.5 The Output Model . 93

6.5.1 The Output Meta-Model . 94

6.5.2 Implementing the Output Model with Sirius 95

6.5.3 Implementing the Output Model with Graphiti 97

6.5.4 Problems with Two or More Active Extensions 100

6.6 Further Extension of the Smart Grid . 101

6.6.1 The Arti�cial Extension Meta-Model 102

6.6.2 Mapping of the Individual Extension Types 103

6.6.3 Implementation of a MDSD Pro�le 104

6.6.4 Sirius Implementation . 106

6.6.5 Graphiti Implementation . 113

6.7 Summary of the Validated Mappings . 117

6.7.1 Summary of the Validation on Meta-Model Level 118

6.7.2 Comparison of Extension Types on Graphical Editor Level 118

6.7.3 Validation of the Mapping in Sirius 119

6.7.4 Validation of the Mapping in Graphiti 121

7 Evaluation 123
7.1 Comparison Between the Graphiti and the Sirius Framework 123

7.1.1 Creating the core editor . 123

7.1.2 Toolbar . 124

7.1.3 Creating the extension . 124

7.1.4 Adding an extension model to the diagram 124

7.1.5 Further drawbacks . 125

7.2 Content not Supported by the Current Graphical Editor 125

7.3 Further Scenarios . 126

7.3.1 IntBIIS . 126

7.3.2 Security Extensions . 128

7.3.3 Architectural Data Flow Analysis 128

8 Conclusion 131
8.1 Conclusion . 131

8.2 Future Work . 132

Bibliography 135

vii

List of Figures

2.1 The four meta-levels of OMG described by Stahl et al. [54] 6

4.1 General approach showing extensions on meta-model and graphical editor

level . 22

4.2 A simpli�ed version of the ecore meta-model based on the complete meta-

model in [55] . 24

4.3 An exemplary core meta-model and three fragments extending the core

meta-model . 25

4.4 The extension type of adding a new meta-class 26

4.5 Two meta-classes in di�erent packages related with an unidirectional

association . 30

4.6 Extension types in graphical editors . 35

4.7 Excerpt from a usage model in the Palladio context showing notation

elements inside a container . 38

4.8 An exemplary outline view for a graphical editor 40

4.9 Mouse over extension type . 41

5.1 Mapping of the �rst meta-class extension type to graphical editor extension

types . 46

5.2 Mapping of the second meta-class extension type to graphical editor ex-

tension types . 49

5.3 Mapping of the attribute extension type to graphical editor extension types 53

5.4 Mapping of the compartment extension type to graphical editor extension

types . 57

5.5 Mapping of the relation extension type to graphical editor extension types 59

6.1 Screenshot of the smart grid core meta-model as described in 2 65

6.2 Screenshot of the resulting smart grid core editor in Sirius 67

6.3 Legend of all notation elements in the Sirius core editor 67

6.4 Screenshot of the odesign �le realizing the topography meta-model . . . 68

6.5 Screenshot of the main properties for representing a power grid node . . 69

6.6 Screenshot of the properties of the set action when using a java service . 72

6.7 The core editor for our running example in Graphiti 79

6.8 Meta-model of the input model extension 80

6.9 Screenshot of the extended Sirius toolbar 83

6.10 The viewpoint description �le for the input model extension 85

6.11 Properties of a diagram extension completed for the input model extension 86

6.12 Our running example with a loaded input model 88

6.13 Three new context menu buttons appearing if the input layer is selected 89

ix

List of Figures

6.14 The input model diagram representation in Graphiti for our running example 90

6.15 Two new mouse-over buttons for setting the power and destroyed status 92

6.16 The output meta-model extension . 94

6.17 The disabled load output model button next to the load input model button 96

6.18 Result of the output model extension implementation in Sirius 98

6.19 The result of the output model extension implementation in Graphiti . . 99

6.20 The Meta-Model for the Arti�cial Extension 102

6.21 The pro�le used for the smart grid extension 105

6.22 The odesign of the arti�cial smart grid extension 106

6.23 Result of the active smart grid extension layer 107

6.24 The edge creation for the generic connection 109

6.25 Screenshot of the extended properties view 110

6.26 Screenshot of the properties view description in the odesign �le 111

6.27 Screenshot of the smart meter aggregation node double click action . . . 112

6.28 Screenshot of the smart meter aggregation diagram description 113

6.29 Screenshot of the arti�cial extension implemented in Graphiti 114

7.1 IntBIIS meta-model with new meta-classes on the right side and existing

classes on the left side . 127

7.2 Excerpt of the ContainerStereotypes package of the meta-model developed

by Czogalik [7] . 128

7.3 Excerpt of the DSEFF package of the meta-model developed by Czogalik [7] 129

7.4 Excerpt of the Usage package of the meta-model developed by Czogalik [7] 130

x

List of Tables

4.1 Summary of meta-model extension types and mechanisms realizing them 33

5.1 Overview on when to use which extension type on graphical editor level

given the second new meta-class extension type 51

6.1 Overview on available scenarios . 64

6.2 Overview on the validation of extension types and mechanisms on meta-

model level . 118

6.3 Direct comparison of the possible extension types in both frameworks . 119

6.4 Overview on the validation of the mapping in Sirius 120

6.5 Overview on the validation of the mapping in Graphiti 121

xi

Listings

6.1 Method signature of ID generator . 71

6.2 Get remove feature implementation regarding the relation-based power

connection . 73

6.3 Implementation of the add method in AbstractFormPattern for the repre-

sentation of an entity . 75

6.4 Implementaiton of the control center’s graphics algorithm 75

6.5 Adding a new pattern to the Graphiti diagram 76

6.6 Creation of a Graphiti diagram . 77

6.7 Preparation of each entity before adding them to the diagram 78

6.8 Adding entities from inside a recording command 78

6.9 The adding of a new model to the current Sirius session 82

6.10 Menu contribution extension point used to add toolbar button to the Sirius

toolbar . 82

6.11 The adding of a new model to the current Graphiti diagram 83

6.12 The isPowerOutage method of the java service class used in the input model

extension . 86

6.13 Set power outage method in the java service class 89

6.14 Drawing the destroyed status for network entities 91

6.15 Removing both texts in the control center 93

6.16 Example implementation of the setFileDialogExtension method 96

6.17 Example on how to get all active extensions implementing an extension

point . 101

6.18 Applying a pro�le and stereotype with MDSD Pro�les 105

6.19 execute-method for the external java action to create a new intrusion

detection system . 108

6.20 AQL statement receiving the x-coordinate of the current LocalMinimum-
Coord instance . 111

6.21 Adding a new node from an extension to an existing diagram in Graphiti 115

6.22 Adding a prede�ned region to the control center with variable location

information . 116

xiii

1 Introduction

1.1 Motivation

Nowadays, software systems tend to grow and get increasingly complex. If we take a look

at the lines of code for a Windows operating system, we see that there have been four to

�ve million in 1993 and with the release of Windows XP in 2001 there were already around

40 million [39]. While four to �ve million lines of code are hard to manage, 40 million seems

almost impossible. Furthermore, there are countless additional features implemented in

further versions of the operation system, which also increases its complexity. One way

to approach this ever increasing complexity is by introducing model-driven software

development (MDSD) [33]. In MDSD we use meta-models in order to describe domain-

speci�c languages [54]. However, like actual code, these models also have to be maintained.

Since a software systems usually lasts a couple of years, these models also have to evolve.

One approach to handle that evolution is to expand the originally used meta-model leading

to a larger meta-model, which then can be hard to understand or contains features most

of the users won’t even use. The approach we pursue during this thesis is to create meta-

model fragments and use these as extension, to the original meta-model. That way if a

user only wants to use the core features without any extension, the extensions can just be

left out.

A problem that occurs when using the second approach is that the meta-model fragments

are only useful if they re�ect in every other part of the system as well [9]. In the context

of the Palladio Component Model [3], there is the approach to modularize the current

meta-model. According to Strittmatter et al [56], not only the meta-model modules are

important but also their impact on the simulations or graphical editors. One part of a

software system that is covered in this thesis are graphical editors. If the meta-model

consists of many di�erent modules but the graphical editor needs every single one of

these modules to function, there is no gain in using meta-model fragments instead of

directly extending the core meta-model. Therefore, the graphical editor must also be

�exible enough to handle these meta-model extensions on editor level.

Of course, there are already di�erent approaches considering the extension of meta-models

or the extension of graphical editors. Authors such as Jiang et al [26] propose di�erent

extensions for meta-models in general, while Heinrich [21] focuses on the extension of

business process editors. Furthermore, there are approaches combining the two types of

extension. In [58] for example the complete IDE can be extended through an extension of

the meta-model.

Existing approaches however, mostly generate a graphical editor automatically out of the

given meta-models. That means, that if a meta-model is extended a complete regeneration

of the graphical editor is necessary. This editor contains the core meta-model and the

1

1 Introduction

extension. Aside from the fact, that the automatic generation can only be done for limited

domains or simple editors, like tree editors or generic class diagrams, the user is again

forced to work with the complete graphical editor, although he doesn’t need certain

extensions. The approach presented in this thesis should therefore not generate a graphical

editor out of a meta-model but give the developer the freedom to create and combine their

own versions of meta-model and graphical editor extensions. Achieving that the user is

free to choose which extension he considers necessary for his project and which can be

left out. Therefore, we �rst present a classi�cation of possible extensions on meta-model

level as well as on graphical editor level. After that we map the meta-model extensions

to graphical editor extensions showing the degree of freedom the developer has when

considering an extension on meta-model level. Furthermore, this mapping together with

the evaluation can be seen as guidelines as to how extensions of graphical editors can be

created given a certain meta-model extension.

To validate the given approach we implemented two prototypes with the help of two

di�erent frameworks which both use the same meta-model. The meta-model is composed

of di�erent modules while each module represents speci�c extensions that are classi�ed

within this thesis. Those extensions are then implemented for both prototypes in order to

show, that our classi�cation and mapping is valid for an extension on meta-model level and

its representation in a graphical editor extension. Thereby, we do not only implement these

extensions on their own but furthermore show that these extensions can be combined

freely according to certain rules. The frameworks used are Graphiti [12] on the one hand

and on the other hand Sirius [13]. Both of them are extensions to the Eclipse IDE and

based on the Eclipse Modeling Framework (EMF).

1.2 Goals of this thesis

The goals for this thesis can be expressed as a number of research questions that are

answered by this thesis. The �rst research question that arises is how extensions can be

classi�ed in general and then of course, how they can be further classi�ed on meta-model

level as well as on graphical editor level. The next question that has to be answered is how

these extensions are mapped together on the di�erent levels. Furthermore, the question of

realization must be answered showing which mapping actually is possible to implement

with the given frameworks. The last research question can only be answered by the

two prototypes. Assuming there are models containing information of every available

extension and try to load these models when only the basic graphical editor is available.

What happens with the remaining information unknown to the graphical editor? Is it left

out, shown as incomplete information or in the worst case, can the model no longer be

opened?

1.3 Outline

This thesis is organized as follows. Chapter 2 captures foundations for the following

chapters. Thereby, we address the �eld of model-driven software development. This �eld

2

1.3 Outline

also includes the terms model and meta-model as well as a short overview on domain-

speci�c languages. Since this thesis focuses mainly on modularity and extensibility of

meta-models as well as graphical editors both terms are also addressed in this chapter. The

chapter concludes with an overview on both frameworks that were used for the creation

of the prototypes.

Chapter 3 introduces related work on the �eld of meta-model and graphical editor extension.

Furthermore, work on the creation of modular meta-models is discussed while another

section deals with language workbenches which are workbenches with the purpose of

creating DSLs.

One of the main contributions of this thesis is addressed in chapter 4 where a classi�cation

of extensions on both meta-model and graphical editor level is made. This chapter includes

general, platform independent classi�cation of extensions as well as concrete extensions

for EMF meta-models or Graphiti editors.

After the classi�cation of extensions is made the chapter that follows deals with the

mapping of those extensions between meta-model level and graphical editor level.

Chapter 6 then shows the implementation of both prototypes answering the research

question of which mapping actually can be implemented for which prototype. In both

prototypes we implement one core editor based on a core meta-model and overall three

extensions to the core editor which are also based on meta-model extensions referring to

the core meta-model. Botch implementations can be seen as guidelines as to how di�erent

extensions can be implemented.

After the implementation we can analyze both frameworks on the aspects of what features

are still missing and which framework should be preferred under which circumstances.

Furthermore, we can also theoretically analyze further scenarios to prove that the mapping

presented in chapter 5 does also hold for di�erent scenarios. This is all done in chapter 7.

At last we summarize this thesis and give an outlook on future work.

3

2 Foundations

This chapter covers the fundamentals of this thesis. In the beginning, we �rst give an

overview on model-driven software development and the terminology and technology as-

sociated with it. After that, the key term modularity is explained. This chapter ends with an

introduction to the technical foundations and frameworks used during the implementation

of both prototypes.

2.1 Model-Driven So�ware Development

Models can have a wide variety of applications such as code generation, deriving further

artifacts or documentation. In case of a documentation purpose the Uni�ed Modeling
Language (UML) [18] can be used to create diagrams illustrating the system. However,

if the system evolves, the code changes making the UML diagram inconsistent with the

code. Additional e�ort must then be conducted, in order to ensure the consistency of the

diagrams with the code and the other derived artifacts. Since this task is an additional

e�ort, it can also be seen as a burden to the developer.

In contrast to model-based software development as mentioned above, model-driven

software development (MDSD) uses models not only for documentation purposes, but as

key artifacts. Those models are ‘abstract and formal at the same time’ according to Stahl et

al. in [54] p.14. This abstraction can be expressed as a reduction to the essence, meaning

that a model in MDSD contains the same information as the �nal program code, but in a

much more compact form. In order to receive valid code in the end of the modeling process,

transformations are needed. For software developers the approach of �rst creating models

and then transforming them into valid source code, has the advantage that it reduces the

system’s complexity. That is the result of the possibility to work on the compact and easier

models than on the actual program code.

So far we covered the aspect of abstraction, but left out the aspect of formalism. In order

to apply a mode-to-model or a model-to-code transformation, the model to be transformed

has to meet de�ned criteria. Those criteria are de�ned in a meta-model, which can be also

thought of as a domain-speci�c language (DSL), which describes how models of a speci�c

domain should look like.

2.2 Models and Meta-Models

For a better understanding of the concepts in model-driven software development, a few

de�nitions and their context are needed. The de�nitions include model, meta-model and

meta-metamodel, which are illustrated in �gure 2.1.

5

2 Foundations

describes instance of

describes

describes

describes

instance of

instance of

instance of

M3: Meta-metamodel

M2: Meta-model

M1: Model

M0: Instance

Figure 2.1: The four meta-levels of OMG described by Stahl et al. [54]

In order to describe those levels in a more concrete way, the levels are explained with

the help of an example. As represented in the �gure, the lowest level is the instance level,

which is the actual object. Exemplary speaking, this could be an actual car. The following

paragraphs describe the further levels M1 to M3 with the help of the example car.

Model A model can be seen as an abstraction of a real world object. According to

Stachowiak [53], a model is a formal representation of an original that ful�lls the properties

of abstraction, homomorphism and pragmatics. These properties mean that a model

abstracts from unnecessary details the original has since not every detail is actually

needed, when creating models. For example, when modeling the car that should serve

as toy for children, the gear drive is an unnecessary detail, but the car still should have

tires. Furthermore, when creating a valid model, the developer is not allowed to give

the model additional features the original doesn’t have. This is covered by the property

of homomorphism, which states that statements on the model also hold for the original.

In our car example, unless real cars can’t �y, the model car should also not be able to

transform into a plane. The last property mentioned is pragmatics. This property simply

means that the model always serves a speci�c purpose. In our example this is the purpose

as children’s toy.

Meta-Model With the help of a meta-model it is possible to describe models or in other

words: Every model is an instance of a meta-model. A model can thereby only be created

with constructs that are de�ned in the meta-model. Stahl et al. [54] states that a meta-model

consists of the following parts:

6

2.3 Domain-Speci�c Languages

• Abstract Syntax: The abstract syntax describes the elements a valid model can consist

of, independent of the representation. Throughout this thesis, elements belonging

to the abstract syntax of a meta-model are called meta-classes.

• Concrete Syntax: While there is only one abstract syntax of a given meta-model,

there can be various concrete syntaxes. Concrete syntaxes may be di�erent graphical

representations. For example, classes in UML could be drawn with rectangles or

with circles. Even textual representations as concrete syntax are possible.

• Static Semantics: These are semantics that can be evaluated without executing the

model itself. Static semantics can for example be expressed as constraints.

When referring to the car model example from above, the meta-model of such a car would

describe how valid car models can be created. This description may contain a color and

the number of tires and seats a car can have. As a constraint, we can also say that the

number of tires must be either three or four in order to be a car. This constraint belongs

to the static semantic, since it is evaluable without executing the model.

Meta-Metamodel As the meta-model describes valid models, the meta-metamodel is used

to describe meta-models. Meta-metamodels should be self-describing to prevent endless

conformance sequences. Although, the Object Management Group (OMG) standardized the

meta-metamodel Meta Object Facility (MOF) [17], a more common meta-metamodel that is

used in practice is Ecore. Ecore is an implementation of the Essential MOF (EMOF) standard

and is implemented as part of the Eclipse Modeling Framework (EMF) [55]. The meta-model

and its extensions presented in this thesis are based on Ecore and are implemented in EMF.

As already stated, meta-models are used in order to describe models, which, in model-

driven development, can be used for code generation. Although meta-models are a general

concept, during this thesis they are always referred to describe a language leading to

the interchangeability of these two terms. The reason behind this interchangeability is

that meta-models can be considered a language describing aspects of a (software) system

speci�c to a domain.

2.3 Domain-Specific Languages

As mentioned in section 2.1, in MDSD meta-models can be used to describe domain-speci�c

languages. Martin Fowler [14] de�nes a DSL as ‘a computer programming language of

limited expressiveness focused on a particular domain’ p.27. The key element of limited

expressiveness is in contrast to general-purpose languages (GPL), such as Java or C++,

which is why DSLs are usually used to build only certain aspects of a system, but not the

entire system. Since DSLs are compact languages and focus only on a single domain, they

are valuable programming languages for that domain and should therefore be preferred

instead of GPLs. According to Fowler [14], DSLs can be divided into three categories.

7

2 Foundations

• External DSLs are languages separate from the main language of the application it

works with. Examples for external DSLs are thereby regular expressions, SQL [57]

or the Palladio Component Model (PCM) [3].

• Internal DSLs are DSLs, which use general-purpose languages in such a way that

scripts in an internal DSL are valid code in its GPL, but only use a subset of the

language’s features, in order to handle one aspect of the overall system. An example

for this style is Lisp [43].

• Language workbenches are special integrated development environments (IDE) used

for de�ning and building DSLs. Furthermore, language workbenches support work-

ing with self-de�ned DSLs as they come with IDE support. A few examples, which

are also discussed in section 3.3, are Eclipse Xtext [4] or Jetbrains MPS [58].

Since DSLs usually cover one aspect of a system and therefore apply only to a small domain,

there are a lot of di�erent DSLs. Some of them are listed by van Deursen et al in [8], but

since this paper came out in the year 2000, there are even more DSLs. For this thesis, DSLs

built upon meta-models in a model-driven environment and support the use of graphical

editors are primarily relevant. Although DSLs of every category mentioned above, could

be of interest, language workbenches have the advantage that they usually come with

additional graphical editors for model support. When creating internal or external DSLs

graphical editors may still have to be designed and implemented.

2.4 Modularity

Modularity is a general concept and has been applied to a wide �eld of applications as

for example shown in [27], where Jinghua et al investigate the concept of modularity in

di�erent sciences, such as social sciences and natural sciences. A de�nition of modularity

for software systems is thereby given in the IEEE standard [25]:

• Modularity: The degree to which a system or computer program is composed of

discrete components such that a change to one component has minimal impact on

other components.

To put in another way, modularity is simply ‘the degree to which a system’s components

may be separated and recombined’ as stated by Schilling [47]. If analyzed from another

perspective, every system can be characterized by some degree of coupling between its

components. The higher the degree of coupling between the system’s components, the

lower the degree of modularity and vice versa. In component-based software engineering

(CBSE) [1], components can be composed to modules, whereas a module encapsulates

certain functionality. Not only in CBSE modularity is a topic, but also in programming

languages such as Java, which already comes with concepts to support modularity as

shown in Poo et al [42]. A single class can for example represent a module encapsulating

certain functionality. To build the bridge between Java and CBSE, classes can be composed

to components, which can be their own module or, as already stated, can be composed to

bigger modules.

8

2.5 Extensibility

Since modules have a high internal cohesion because of the encapsulated functionality,

but low coupling to other modules, they can be changed or substituted with other modules

without a bigger impact on the rest of the system. When trying to achieve a high degree of

modularity, however, Meyer et al [37] suggested �ve criteria, which indicate the degree of

modularity. Decomposability of the problem into sub-problems, composability of modules

to new systems and understandability of a module in isolation are three of the criteria

of modularity. The fourth criterion is that small changes in a module should only have

localized e�ects, while the last criterion is that faults should stay isolated in the module.

These criteria apply for systems, as well as all artifacts associated with the system, such as

the meta-model. There are numerous ways of creating a modular meta-model, which is

discussed in section 3.2. An advantage of modules that was only marginally mentioned

so far, is their capabilities of extension. When a meta-model is a self-contained entity,

which a module is, it can be easily extended by every developer without regard to other

extensions or compositions. Those extensions are discussed later in detail in section 4. At

�rst, the terms extension and extensibility are explained in the next section.

2.5 Extensibility

There are various ways to de�ne the term extensibility depending on its application context,

which makes it even more important to create a common basis, since the terms extension

and extensibility are used throughout the entire thesis. Just like the term modularity, there

is also an IEEE de�nition on the term extensibility in the same standard [25].

• Extensibility: The ease with which a system or component can be modi�ed to

increase its storage or functional capacity.

Synonyms for extensibility are expandability and extendability. The main focus in this

thesis, however, lies rather in increasing the functional capacity than in increasing the

system’s storage.

While extensibility describes the ease of modifying a system or component, the extension is

the actual modi�cation. Extensions are usually implemented as a result of changing or new

user requirements during the system’s evolution. According to Selmeci et al [50], there

are di�erent ways of how to engage these requirements. There are solutions, where there

is no need of extending the system, such as con�guration or personalization of options.

Solutions that require extensions can be further categorized. Modi�cation for example,

means that the standard software is altered, which requires a deep understanding of the

software. As modi�cation on meta-model level leads to a larger and more complex single

meta-model, it is not further discussed in this thesis. The other two options of extending

a system are enhancing and add-ons. Enhancing means implementing prede�ned entry

points. The original system is not changed, but the power of the extension is dependent

on the entry points. An add-on on the other hand is a special set of objects, which are built

on a speci�c version of the application (or meta-model) that o�er additional features. Both

of these solutions can be applied to both meta-models and graphical editors and therefore

the focus in this thesis lies on these two.

9

2 Foundations

2.6 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is part of the Eclipse IDE [55]. As already mentioned

in section 2.2, the example meta-model and its extensions are based on Ecore and are

implemented in EMF. This section therefore deals with EMF and its features. Creating

a meta-model based on the EMF is very similar to creating meta-models in the UML. In

addition to meta-classes and packages, di�erent types of references, such as compositions

or inheritance can be modeled. A meta-class can furthermore contain di�erent attributes

or operations, while each attribute has a data type. Data types can either be primitive, such

as integer or Boolean or other meta-classes as well. Operations, instead, can be pictured

as methods in java composed of a return type, a parameter list and a name.

If a meta-model should be extended, there is always the possibility to add the extension

directly in the current meta-model in form of new packages or classes within the meta-

model. The other way of extending a meta-model in general is creating a new plug-in

containing the extension, which references the current meta-model. To preserve the

understandability, the latter approach should be preferred. Among de�ning meta-models

in MDSD approaches, EMF also comes with a generator tool with capabilities to generate

source code out of existing meta-models. If changes have to be implemented, the developer

can simply adjust the meta-model and regenerate the code out of it. The generated code

manifests in di�erent Eclipse plug-ins. It is possible to generate up to four di�erent plug-ins

for each meta-model generation.

• Model Plug-in: This plug-in includes all interfaces and corresponding classes to

the Ecore packages, classes and enums that are described in the meta-model. For

every class, there is also an additional interface generated to provide the program to

an interface design principle [15].

• Edit Plug-in: The edit plug-in contains the UI-independent portion of the editor

code in terms of item provider classes for each meta-class. Furthermore, EMF

generates sample icons to represent the classes.

• Editor Plug-in: This plug-in contains the UI-dependent portion of the editor code.

The three plug-ins already mentioned facilitate building models with the help of a

tree editor instead of writing XML code.

• Test Plug-in: The last generated plug-in contains test code for each entity in the

meta-model. For testing the JUnit framework
1

is used.

Although, it is possible in EMF to create models with a tree-based editor, developing own

diagram-based graphical editors can come with more advantages. In case the meta-model

is complex and o�ers a lot of di�erent features, such as the PCM, a self-developed graphical

editor can reduce the complexity when creating models.

1
http://junit.org/junit4/

10

2.7 Graphical Editors

2.7 Graphical Editors

The idea of graphical editors supporting the development process is not new. In 1990

Brad Myers [38] already came up with a taxonomy on visual programming and program

visualization. Visual programming thereby ‘refers to any system that allows the user to

specify a program in a two-(or more)-dimensional way’ [38]. In program visualization

on the other hand, the program is speci�ed in the conventional textual way, but uses

graphics to illustrate aspects of the program. In this thesis we only focus on graphical

editors to support the process of creating and maintaining models in a model-driven

environment. Since those models are usually transformed into executable code and are

then compiled or interpreted into one-dimensional streams, graphical editors in this thesis

are seen as program visualization. The advantages of graphical editors in comparison

to pure textual coding are numerous. According to Smith [52] and Rimes [45], program

visualization supports program understanding. This becomes clear, when thinking about

the human nature. Humans can memorize and understand pictures way faster than textual

representations, such as code. Together with a better program understanding, graphics

tend to be a higher-level description of the desired actions, which makes the programming

task a lot easier [38]. Furthermore, Shneiderman claims that the user has the impression

of directly constructing the program instead of abstractly design it [51].

As already stated in the previous section, when using EMF the data that the user wants

to visualize is the domain model. This can be done by using the EMF generator tool

to open every domain model based on the de�ned meta-model with a tree-based editor.

This tree-based editor can already be considered a graphical editor. However, there are

other representations, such as the entity representation in a diagram, on which this thesis

focuses. An entity representation of a domain model always consists of the graphical

elements representing the domain model elements and their connections to each other.

Graphical elements can be considered as nodes or containers depending on whether they

contain other graphical elements or not. Connections are usually referred to as edges

between nodes or containers. Those terms are interchangeable throughout this thesis.

The development of a graphical editor for entity representation as it is done in this thesis

can have further advantages. The editor still uses the same underlying business domain

model as the tree-based editor leading to the fact that if a graphical element is deleted

from the editor canvas, it is also deleted from the domain model. This makes it possible

to only work with both the self-de�ned graphical editor and the generated tree-based

editor. While the generated editor displays all elements either with diamonds or icons a

self-de�ned graphical editor can use all kinds of graphics to display certain model objects.

Furthermore, a graphical editor as it is presented within in thesis comes with additional

features such as di�erent views. Views such as a properties view listing all attributes

of the selected element or an outline view giving an overview on the current model are

also available in the tree-based editor but other views such as the palette showing all

elements that can be added to the diagram aren’t. In addition to views the layout of the

graphical elements can also be changed to improve the understandability. All in all, when

referring to a graphical editor in this thesis all the editors’ aspects are meant including

the canvas containing the graphics, the toolbar, the properties view, the outline view, the

palette view and possible further views belonging to the editor de�ned by the framework

11

2 Foundations

or the developer. Another term for graphical editors in this thesis are graphical modeling

workbenches.

In order to evaluate the approach in this thesis, we implemented a prototype in two

di�erent frameworks. Both frameworks, Graphiti and Sirius, are explained in the following

two sections.

2.7.1 The Graphiti Framework

Graphiti is an Eclipse-based graphics framework, that enabled rapid development of state-

of-the-art diagram editors for domain models [12]. Relevant for this thesis is that Graphiti

can deal with EMF-based domain models easily but can also deal with any other Java-

based objects on domain side as well. Although, Graphiti utilizes the Graphical Editing
Framework2

and Draw2D3
for diagramming the user only needs to know Java coding

and EMF to use the framework. To add functionality to the editor in development the

user implements so called features. These are used for example for displaying pictogram
elements, the graphical representation of objects in Graphiti. There are standard features

the user can implement or in case additional functionality is needed there is also the

possibility to implement custom features. A list of all standard features is given in the

following.

• Add: The add feature makes it possible to add an existing model element to the

diagram.

• Create: Besides adding an element to the diagram the create feature also creates a

new corresponding business object in the underlying model.

• Update: When updating the business model the graphical diagram is not updated

as well. In order to ensure an update on the diagram as well the update feature for

these elements representing business objects has to be implemented.

• Move: General movement of graphical elements is already implemented. With the

help of this feature however it is possible to restrict the movement of those elements.

An application for this feature would be annotated elements that should always be

in distance of 10 pixels to other elements for readability purposes.

• Remove: Remove is basically the opposite of the Add-feature. It only removes

the pictogram element from the diagram but not the corresponding object in the

business model.

• Delete: While the Remove-feature is the opposite of the Add-feature, the opposite

for the Delete-feature is the Create-feature. Not only the pictogram element is

removed from the diagram but the corresponding object in the business model is

also removed.

2
https://eclipse.org/gef/

3
https://www.eclipse.org/gef/draw2d/

12

2.7 Graphical Editors

• Resize: Like the Moving-feature a standard implementation for resizing pictogram

elements is also given. A useful application for rede�ning the resizing behavior can

be that it is not allowed to make the pictogram element smaller than the total length

of the characters representing the name of the element.

• Layout: If pictogram elements can contain other pictogram elements their represen-

tation might be confusing. With the help of the Layout-feature the user can choose

how to arrange those elements depending on which and how many elements there

are.

2.7.2 The Sirius Framework

Like Graphiti Sirius is also an Eclipse-based graphics framework [13]. Although both

frameworks aim for an easy development of graphical editors and the visualization of EMF

models their approaches are di�erent. While the user needs to know Java coding when

using Graphiti this is not necessary when using Sirius. Of course, it is possible to write

Java code to add additional functionality to the editor but the main focus of Sirius lies in

the de�nition of a model which de�nes the complete structure of the graphical editor the

user wants to develop. The user can choose whether he wants to create a diagram, table

or tree editor but for this thesis only the diagram editor matters. As already mentioned

the main focus of Sirius lies in the de�nition of a model. This model is de�ned in a

.odesign �le. Besides de�ning the look and behavior of model elements the user can even

choose di�erent layers to represent the data on. On the default layer the basic structure of

the model elements could be displayed while on an additional layer additional behavior

compartments to existing elements could be represented.

When starting to de�ne a graphical editor in Sirius a domain class has to be set for the

diagram which resembles the starting point. In order to de�ne further model elements

the user has to navigate through the meta-model starting from the chosen domain class.

Besides variable, feature or service expressions Sirius also o�ers Acceleo
4

expressions

which are based on the Eclipse implementation of OCL [16].

Besides creating new diagram elements such as nodes, containers, edges or decorations to

be displayed in the canvas of the graphical editor the user can also add new tools, new

customizations or import existing elements. Customizations allow for adding additional

styles to existing elements. These styles apply when certain properties are evaluated or

selected. The import mechanism works for every diagram element that has already been

de�ned in the same odesign. This is useful when many domain model elements have

similar properties. With the help of the import mechanism these properties have only

be de�ned once and can be reused any time. When creating a new tool a new section is

created. Depending on the content of the section it is displayed in the palette view of the

graphical editor or not. Tools can also be used for de�ning behavior on graphical elements,

adding new menu buttons or adding additional functionality by using plain Java code.

Getting to know the exact features of these tools is part of chapter 6.

4
https://eclipse.org/acceleo/

13

3 RelatedWork

This chapter deals with related work for the presented approach. First of all, di�erent

meta-model extensions are discussed and analyzed. This is later used as a foundation on

how meta-models can be extended in general. The next section considers modular meta-

models covering also possibilities to modularize existing meta-models. Then, language

workbenches are discussed as they cover the aspect of creating meta-models as DSL.

Furthermore, they also come with textual or graphical editor support for the developed

DSL. The next section deals with graphics frameworks, such as the two frameworks used

for the implementation of the presented approach. In the last section of this chapter,

extensions to graphical editors itself are discussed and how they relate to the approach in

this thesis.

3.1 Extension of Meta-Models

There are various ways to extend an existing meta-model. This section covers general

notes on the extension of meta-models, as well as concrete scenarios. Nevertheless, all

of these approaches consider mainly one, at most two di�erent extension mechanisms.

Within this thesis, we combine all these papers and analyze all of the di�erent mechanisms

for their capabilities of extension.

According to Jiang et al. in [26], there are four di�erent types of extension mechanisms

the UML has to o�er, di�erentiating in what the user is allowed to change. While the �rst

level allows for manipulating the original meta-model, the second level is de�ned in a way

an extension is used within this thesis. The original meta-model can not be manipulated,

but not every element of the extension must necessarily have a parent element in the core

meta-model. This supports for a modular use of meta-models. The next two levels further

constrain the extensions and are not further considered. Although, Jiang uses the term

extension mechanism it should not be confused with extension mechanisms presented in

this thesis, since these concepts di�er from each other.

In general, di�erent sorts of meta-model extensions are possible. One quite obvious

extension is extension by inheritance as presented by Schleicher et al [48] and Danilo

et al [2]. Existing meta-classes in the core meta-model are thereby simply inherited and

extended by additional functionality in the meta-model extension. Schleicher et al. uses

thereby inheritance, when extending the Business Process Model and Notation meta-model

to support compliance scope, while Danilo et al adds further annotations that represent

quality aspects. Another way of extending an existing meta-model, is by either referencing

meta-classes in the core meta-model or realizing interfaces as shown in the documentation

of TOGAF [19]. Referencing can have di�erent impacts on the extension, which are

addressed in section 4.4.1. One last possible extension, that is also analyzed within this

15

3 Related Work

thesis, is extension by applying the UML Pro�le mechanism as presented in the work of Ko

et al [30]. Another important paper on this approach was published by Kramer et al [32],

where the EMF-Pro�le mechanism is applied to the Palladio Component Model. This pro�le

mechanism is also addressed later, when dealing with the classi�cation of extensions in

chapter 4 and during the implementation in chapter 6.

3.2 Modular Meta-Models

The whole basis of the approach presented in this thesis, relies on having a modular meta-

model. Therefore, we should discuss general usage, composition and extension of modular

meta-models within this section. When we use the term modular meta-model, we refer to

a meta-model consisting of di�erent modules, while each module is an encapsulation of

functionality from other modules as presented by Colombo et al. in [6]. Furthermore, it is

important to Colombo, that modules are communicating with mostly one element from

other modules. Although, communication with as little entities in modules as possible

is desirable, there are di�erent approaches as to how this communication should work,

especially when modular meta-models should be extended by other modules.

The authors in [29], [24] and [60] suggest building modular meta-models with the help of

meta-model fragments and interfaces. Since those interfaces are used as extension points

for further meta-model fragments, they support the information hiding principle. Being

able to hide di�erent information, makes it possible to use meta-models as black-boxes.

Given that, developers extending the meta-model don’t have to get full insight in the

complete structure of the core meta-model. Kelsen et al [29] and Hessellund et al [24]

only focus on the conceptual idea of modular meta-models, while Zivkovic et al [60]

also suggests mechanisms to extend the meta-model. Those mechanisms are interface

realization and interface subtyping but there is no suggestion given of when to use which

mechanism. Within this thesis, we also cover the aspect of the di�erent impacts each

mechanism has.

A di�erent approach is used by Henriksson et al [23], where grammars are extended in

such a way, that they resemble modules. Furthermore, this approach is extended by using

a transformation from the presented grammar to meta-models, whereas meta-models, due

to this transformation, have the following properties. Inheritance is only used to express

grammatical types, not for feature inheritance meaning that no parent meta-class has any

features, such as attributes or operations. Meta-models used in this thesis, resemble gram-

matical types as well as they support feature inheritance. The second property mentioned

by Henriksson et al [23] is that all aggregations in the generated meta-model are composi-

tions, leading to a tree structure of the meta-model. Although, both the inheritance and

referencing extension mechanisms presented in this paper are constrained, this approach

can be applied to any language according to Henrisson et al.

The last approach presented by Weisemöller et al in [59] extends the MOF 2.0 itself in

such a way, that required and provided interfaces can be implemented in the meta-model.

Achieving that, meta-models and components in component-based software development

can be designed in the same manner, leading to modular meta-model fragments.

Extensions presented within this thesis, can also be considered meta-model fragments,

16

3.3 Language Workbenches

as they always refer to at least one entity in the core meta-model or to another exten-

sion, which itself refers to the core meta-model. The core meta-model is itself the only

meta-model not being a fragment, as it doesn’t need to communicate with its extensions.

Furthermore, instead of restricting meta-models to only a few extension mechanisms, in

this thesis every mechanism can be used to create a communication between the core

meta-model and its modules. Nevertheless, this also assumes that each user knows what

he is doing as all internal meta-model entities can be extended.

3.3 LanguageWorkbenches

In [58] Jetbrains MPS is presented. Jetbrains MPS is a language workbench, with which

it is possible to de�ne custom languages and their IDEs. This includes ways to extend,

modularize or compose the language. Everyone of these building blocks is divided into

structure and syntax, the type system and the generation of the building block. Extension

of languages and editors is thereby presented as extension by inheritance. In this paper

extension means adding new information to existing elements. Another type of building

block presented in this paper is reuse. Reuse can be achieved by using templates in form of

abstract classes which are extended. Those extensions work well for MPS, but in general,

there are more extensions applicable to editors and meta-models which are addressed in

chapter 4.

MetaEdit+ [41] is a graphical workbench also used for creating and using domain-speci�c

languages and code generators. Meta-models can either be created graphically or form-

based with a meta-modeling language created by MetaCase [40]. While language creation

works good with MetaEdit+, there is a lack of modular language evolution. The only way

of meta-model evolution can be achieved by changing the meta-model directly, leading to

an adaption of the generated code. That is one of the main aspects we want to avoid during

this thesis. Fortunately, even if elements in the meta-model are deleted older instances

can still be produced, since the information stays in the instance. There is just no way

further instances of the removed element can be created.

Another language engineering environment worth mentioning is MontiCore [31]. Monti-

Core is parser-based and can generate parsers, meta-models and editors based on extended

grammar. Furthermore, two di�erent extension mechanisms for languages are supported,

which are grammar inheritance and embedding. As in MetaEdit+, those extension mecha-

nisms apply only to the developed language, as the editors are generated from the language

de�nition. That means, that no extensions to the editors itself are intended.

One of the last workbenches discussed is Spoofax/IMP. Spoofax/IMP is a meta-tooling suite

providing DSLs for describing editor services [28]. These editor service descriptions can

then be used to generate Eclipse plug-ins. The generated editors are purely textual but can

be composed since a generated editor in Spoofax/IMP is always a module. Composition is

thereby the only way to extend a language but has the drawback that once two editors are

composed they are dependent on each other which I want to avoid during this thesis.

The last tool worth mentioning here is Xtext [4]. Xtext is built on top of the Eclipse IDE and

also uses source editing, instead of graphical editing. Like some of the other workbenches

17

3 Related Work

already discussed the user can not only develop his own language with Xtext but it also

contains a framework for the generation of Java code.

3.4 Extension of Graphical Editors

This section discusses related work for the extension of graphical editors, as well as

modular structures of graphical editors that could possibly extended. Thereby, not only

graphical editors in the context of DSL modeling are considered. Although, there are

plenty of language workbenches providing their own graphical editors, extending these

editors is barely considered. That is due to the fact, that they are generated on the basis of

the de�ned meta-model. However, as mentioned in section 1 there are situations where

explicit extensions of graphical editors apart from meta-model extensions are needed.

As mentioned, graphical editors have a wide �eld of applications which is not restricted

to the modeling of DSLs. Fejes et al [10] for example, present a graphical editor for man-

machine interfaces of dynamic systems. The editor itself is build in a modular way where

each module can be extended separately. The modules cover thereby pictures representing

subsystems or processes, associations between those pictures, menus, icons, fonts and

rules. These are all valid extension types for graphical editors described in that paper.

However, we only deal with diagram representations as graphical editors, which leads

to further and di�erent extension types. Therefore, the work in Fejes et al [10] does not

su�ce for our context.

When modeling business processes, the work of Heinrich [21] introduces quality require-

ments as symbols. These symbols are an extension of a graphical editor for the Business
Process Model and Notation (BPMN). A symbol for example, can thereby indicate the

maturity of an activity based on errors that were found during a certain period of time.

However, based on an underlying meta-model, there are not only symbols but further

types of extensions for a graphical editor, that we cover within this thesis.

Another work from Refsdal compares the two Eclipse frameworks GMF and Graphiti [44].

The graphical modeling framework (GMF) is, as Graphiti and Sirius, an Eclipse-based

framework to visualize models. He noticed that both of these frameworks have capabilities

for extension but it is a lot easier in Graphiti since one can work with plain java code

and doesn’t need to know the internals of GEF and Draw2D as the underlying rendering

engine.

Instead of comparing two di�erent frameworks Lehrig extended a given meta-model and

its graphical editors by architectural templates in [36]. The editor extension relies on

applying di�erent Pro�les to the meta-model and therefore also to the editor. Although,

this is also one aspect within this thesis we also cover other possibilities to extend a

meta-model and its corresponding graphical editor.

The last paper to discuss is the work of Ruscio et al [46], who automates the propagation

of domain-model changes by GMF model adapters. This paper uses a similar approach to

the approaches of most of the previous discussed language workbenches. In the paper,

GMF is extended in such a way, that the editor is automatically adapted when changes on

meta-model level occur. As mentioned earlier, in this thesis we stride towards a �exible

18

3.4 Extension of Graphical Editors

graphical editor that isn’t generated with all extensions, whenever the meta-model is

extended. In that way, the user is not forced to use every extension available.

19

4 Classification of Extensions

As already mentioned in section 1, modular meta-models can only be of use if the other

parts of a system are equally �exible. In this master’s thesis, we propose a general concept

for �exible graphical editors, that should help developers decide how to extend their

graphical editors, if the meta-model is extended. Therefore, the �rst section deals with

the basic approach I presumed during this thesis. Furthermore, one has to di�erentiate

between the concept of extension types and extension mechanisms, which is described

next within this chapter. In the following, all extension types and mechanisms that are

considered throughout this thesis are described �rst on meta-model level and then on

graphical editor level.

4.1 General Approach

Before going into the details of this approach, the general concept should be described.

Therefore, �gure 4.1 illustrates the proposed approach in an UML-like notation. When

beginning to design a new system in model-driven software engineering, the developer

starts o� by developing the meta-model. In this thesis this is called the core. As soon

as the core meta-model is developed, a graphical editor can be implemented in order to

design domain models in a graphical manner. When an extension for the meta-model

is needed, the developer has two options. Either the extension is directly added to the

core meta-model in the same �le or a new �le containing the extension is created. The

�rst option would lead to a larger core meta-model, which we do not want, as already

discussed in chapter 1. In order for the second option to work, at least one class of the

extension has to somehow connect to the existing core meta-model. This connection can

be called an extension mechanism and is explained in the next section. The important part

of extending the core meta-model is, that the extension references the core meta-model,

but not the other way around. That way, it is still possible to add or remove extensions

without an impact on the core meta-model. The core meta-model can then be considered

modular, since a change in one of the extensions has no impact on the core meta-model or

the other extensions. Furthermore, a change in the core meta-model only a�ects those

extensions, that are connected to the changed classes. Of course, on graphical editor level,

the extensions must work in the same way. As we can see in �gure 4.1, in this approach

graphical editors are realized in the same manner. There is a core graphical editor with

di�erent extensions. The extensions have knowledge of the core graphical editor but not

the other way around. Furthermore, the core graphical editor only references the core

meta-model, so that the core graphical editor can only display the core meta-models class

instances. The same applies for each extension on graphical editor level. Each extension

only references its corresponding meta-model extension. The last feature of the approach

21

4 Classi�cation of Extensions

Core Meta-
Model

MM-Extension 1

MM-Extension 2

MM-Extension 1.1

Core Graphical
Editor

Extension 1.1

Extension 2

Extension 1

Figure 4.1: General approach showing extensions on meta-model and graphical editor

level

shown by the �gure, is an extension of an extension. In the �gure, meta-model extension

1.1 extends the meta-model extension 1. This also works, since extension 1.1 knows

indirectly about the content of the core meta-model, as it references extension 1, which

references the core meta-model. The same applies again for the graphical editor. There

is only one quite obvious feature concerning this aspect. Removing extension 1 would

lead to the removal of extension 1.1, which of course leads also to either the removal of

graphical editor extension 1.1 and 1 or at least to their deactivation, since a graphical

editor can not represent anything that isn’t there. A more interesting question is what

happens if all meta-model extensions exist but the user only uses a subset of the graphical

editor extensions. This question is technology dependent and therefore answered later in

chapter 7.

After discussing the general approach of this thesis it is important to analyze how those

extensions actually work. Therefore, a characterization of extensions is needed which is

analyzed in the next section.

4.2 Extension Types and Mechanisms

As already stated in section 2.5, an extension can be characterized in various ways depend-

ing on the system’s context. There is also the possibility to further classify the general

concept of extension in order to get a more distinct view on this topic. Therefore, the

terms extension mechanism and extension type in context of the presented approach are

introduced in the following.

• Extension Mechanisms de�ne how something is extended. Depending on the

context and the technology used there can be a lot of di�erent mechanisms that can

22

4.3 Extension Types on Meta-Model Level

be used to realize an extension type. Since those realizations are implemented in ap-

plications, components or other systems extension mechanisms are highly platform

dependent. In the context of this thesis I concentrated on extension mechanisms for

EMOF-based meta-models as well as for the frameworks Graphiti and Sirius.

• Extension Types are a more general concept. Extensions can be classi�ed into

di�erent groups representing one type of extension. In contrast to extension mech-

anisms, extension types are platform independent meaning that it doesn’t matter

whether Sirius or a di�erent framework is used. Although, extension types are

independent of the platform they are still context dependent. A simple example

would be an automobile and a building structure. An extension type for a building

structure could be the vertical transportation of people whereas this extension type

can not be applied to automobiles. Furthermore, an extension type can have multiple

extension mechanisms realizing the type. Referring to the building structure, the

vertical transportation can be realized by an elevator or a �ight of stairs.

When putting the terms extension type, extension mechanism and the general term

extension all together, we are making the restriction that an extension contains at least

one instance of an extension type. In other words, an extension implements at least one

extension type. Otherwise there is no increase of the previous functionality. Furthermore,

an extension type is realized by an extension mechanism, which is dependent on the

underlying platform. Since an extension type can be realized by more than one mechanism,

the mechanism is also dependent on di�erent quality aspects, such as usability, complexity

or understandability. Nevertheless, there can be di�erent forms of extensions. We therefore

do not require, that a meta-class in the extension targets a meta-class in the core meta-

model with a relation. We also consider meta-classes in the extension referencing each

other with no direct relation to one of the meta-classes in the core meta-model as possible

extension types.

In the following sections, extension types and mechanisms for both meta-models and

graphical editors are listed and explained. For meta-models we consider only EMOF-based

meta-models as they are the most common ones in model-driven software development.

Furthermore, extension types for graphical editors mostly apply to Eclipse based diagram

editors but there are other graphical editors where these extension types can also be

applied to. Extension mechanisms are thereby also analyzed for EMF-based meta-models,

the Graphiti and the Sirius framework.

4.3 Extension Types on Meta-Model Level

Since we are only considering meta-models based on the EMOF meta-metamodel, we can

infer the possible extension types considered in this thesis from the ecore meta-model.

Figure 4.2 thereby shows a simpli�ed version of the meta-model. The �rst division in this

simpli�ed meta-model are the sub classes of ENamedElement. On the one hand there is

the EClassi�er sub-class dividing further into EDataType and EClass, whereas an EClass
can either be abstract or an interface. An EClass can have multiple super-classes as

indicated by the reference. On the other hand, there is the ETypedElement class, which

23

4 Classi�cation of Extensions

Figure 4.2: A simpli�ed version of the ecore meta-model based on the complete meta-model

in [55]

can have an EClassi�er as type. Going down in the inheritance hierarchy, we have the

EStructuralFeature sub-class, which divides into the sub-classes EReference and EAttribute.
An attribute must always have a certain data type, while the reference always references

an EClass as type. Furthermore, the reference can be a containment or a container.

When identifying possible extension types, we concentrate on the three meta-classes

EClass, EAttribute and EReference, as these are not abstract and most commonly used when

designing a new meta-model. Analyzing both the given meta-model and the related work

in section 3.1, it becomes clear, that there are basically only two di�erent extension types

on meta-model level. Adding new information to an existing class or adding a new EClass
as meta-class. Those types however, can be divided into more detailed extension types.

Both extension types are further analyzed within the next two sections.

For illustration purposes �gure 4.3 shows a minimalistic example containing all discussed

extension types and mechanisms that realize these types for EMF-based meta-models. The

�gure is divided into �ve parts containing a core meta-model and its four independent

extensions. The core meta-model only de�nes a DSL where persons can be de�ned. A

person has a name, a unique identi�er and an arbitrary number of relatives. A relative

is thereby de�ned by his or her degree of kinship to the person standing in relation to

the relative. Furthermore, a relative can visit another person and has certain topics to

talk about when having a conversation with a certain person depending on the degree of

kinship. The topics method in the relative class is abstract making the whole class abstract.

The three remaining extensions that are provided in the �gure are discussed within the

next sections, where the extension types and mechanisms for EMF-based meta-models

that we use in this thesis are explained.

24

4.3 Extension Types on Meta-Model Level

Cat

PersonWithPet

Dog

bark()

ExamplePets

CoreModel
Pets

Pet
-name: String

Father

+topics(p: Person): String

Mother

+topics(p: Person): String

«Stereotype»
«Enumeration»

Gender
FEMALE
MALE

NearestRelatives
GenderSpecifics

Core

Relative
-degreeOfKinship: int {readOnly}
+visit(p: Person)
+topics(p: Person): String

Person
-name: String

Identifier
-id: long {unique} pets

0..*

coreModel

 0..*
persons

coreModel

 0..*
relatives

0..*
relatives

1
person

1
id

0..1
person

Figure 4.3: An exemplary core meta-model and three fragments extending the core meta-

model

4.3.1 NewMeta-Class

Whenever we create a new extension on meta-model level, we most likely create new

meta-classes (except for a stereotype only extension) as we are not allowed to alter the

existing core meta-model. On graphical editor level, extending a meta-class could therefore

lead to all kinds of extension type implementations in the mapping. Therefore, we need to

�gure out how to best divide this extension type into further sub-extension types. One

way of doing so is to di�erentiate between whether the meta-model extension should

be used in the same editor as the core meta-model or if it should be represented in its

own graphical editor. This, however addresses only the intention on graphical editor level

and is therefore only considered in chapter 5 where the mapping is analyzed. Another

point which is considered later this chapter in section 4.4.5 is the combination of this

extension type together with the other extension types on meta-model level. Depending

on the combination, di�erent extension types are actually realized. Nevertheless, we

divide this extension type depending on the developers intent meaning that we assume

we are allowed to intrusively extend the core meta-model. If we were allowed to do that,

would the meta-class now be represented as attribute, containment or as new meta-class

somehow referencing the core meta-class? Whenever we would intrusively add another

meta-class to the core meta-model as an extension, we say that the extension type of

adding a new meta-class is ful�lled. Otherwise, one of the three other extension types

considered in this section are ful�lled. From now on, when referring to the meta-class

extension type, we always refer to the assumption that we can intrusively extend the

given meta-model and add a new meta-class given the developers intention. Furthermore,

the new meta-class is only counted among this extension type if new domain-speci�c

information is added to the core meta-model. A counter example can be constructed given

�gure 4.3. Assuming there is a meta-class extending only the Identi�er meta-class, which

25

4 Classi�cation of Extensions

Figure 4.4: The extension type of adding a new meta-class

relates to the Relative and Person meta-class, such an extension would rather not add any

new domain-speci�c information and can therefore not be counted as a new meta-class.

One way to further di�erentiate this extension type apart form what we already did is

considering the instances of the new meta-class on the model level. When referring to

the tree editor of EMF-based meta-models we can say that a new meta-class is added

when an instance of this meta-class would be added on the same level as the extended

meta-class given an intrusively extended meta-model. A simple example based on the

meta-model and their extensions in �gure 4.3 is given by �gure 4.4. Thereby we can divide

this extension type into two subtypes where both have di�erent realizations on graphical

editor level. One of these subtypes is creating a new meta-class instance one level below

the root node of the model while the other subtype is creating a new meta-class instance

as part of another instance except the root node. Here we assume that the root node of

the model is also the root node for our graphical editor. If the root node in the graphical

editor is a di�erent one than in the model, the assignment of both extension types may

change. In that case, all meta-classes, whose instances are below the model instance root

node don’t matter anymore as the root node for the graphical editor is a di�erent one. On

the other hand, some of the other meta-classes may then switch to be instances below

the graphical editors new root node. All in all, the editor’s root node is crucial for the

classi�cation of the new meta-classes and these two extension types therefore are only

valid when also considering their mapping to the graphical editor. Both types are further

discussed within the next two sections.

4.3.1.1 NewMeta-Class Instance Below Root Node

Given �gure 4.4 with the corresponding meta-model in �gure 4.3, we can see that any of

the given extensions of the Relative meta-class leads to the new meta-class extension type.

All instances of the Father or Mother class are shown one level below the root node, the

CoreModel-object, which is the same level any other instance of a meta-class extending

the Relative class would be listed.

4.3.1.2 NewMeta-Class Instance as Part of Other Instance

Apart from creating new instances of meta-classes one level below the root element, the

new meta-class extension type can also be applied if those instances are listed one level

below any other instance given the condition that the new instance is on the same level as

the extended meta-class. An example for this is also shown in �gure 4.4, where an instance

26

4.3 Extension Types on Meta-Model Level

of the Dog meta-class is listed on the same level as the instance of the Pet meta-class. In

the corresponding meta-model in �gure 4.3, we can see that the Dog meta-class extends

the given Pet meta-class in a di�erent extension.

4.3.2 New Information to Existing Classes

Analyzing the new meta-class extension type we �gured out that creating a new meta-class

is actually dependent on the developers intent. Even newly created meta-classes in an

extension may not be used as meta-class extension type. Therefore, we introduce a second

main extension type being the adding of new information to existing classes in contrast to

creating a new meta-class extension type. Since adding new information to existing classes

is a generic term, further speci�cation is needed. Therefore, we divide this extension type

into three further types: adding a new attribute, adding a new containment and adding a

new relation. All these types di�er in some aspects which also re�ects in the mapping

of these extension types to those extension types on graphical editor level, which are

discussed in chapter 5.

Depending on the information the user wants to add, di�erent extension mechanisms can

be used, which are discussed in the following sections. In case a non-primitive type other

than a string is added as attribute and that type didn’t exist before, there is of course the

need in creating a new class in the extension representing that data type. However, this

case doesn’t satisfy the de�nition of the new meta-class extension type as the data type

itself is considered to be a di�erent extension type as the attribute who’s type is the new

data type. Keep in mind that all these extension types may either refer to the respective

ecore meta-class in �gure 4.2 or are the result of the developers intent when creating a

new meta-class in the extension meta-model.

4.3.2.1 New Attribute

One of the possible extension types on meta-model level is adding a new attribute as new

information to an existing class. The attribute thereby doesn’t have to be listed when

selecting an instance of the extended meta-class as long as the instance appears as property

of the extension. Section 4.4.1 analyzes this type a bit further.

There are di�erent attributes that are possible to add. Those can be primitive such as

integer or Boolean, enumerations or other non-primitive types such as strings or other

objects. When adding a new attribute to an existing class as part of an extension in the

tree editor, this attribute is not necessarily shown as a new element but only as property of

the extended meta-class given that the core meta-model is extended intrusively. Attributes

are shown in �gure 4.3 only as real attributes and not as meta-classes whose intent it is

to attribute a given meta-class in the core meta-model. Examples for attributes are the

degreeOfKinship or the name attributes.

4.3.2.2 New Containment

Adding a new containment is in a way the same extension type than adding a new attribute

to an existing class. At �rst, when the new containment is added to an existing meta-class,

27

4 Classi�cation of Extensions

it only resembles another attribute. The di�erence between the containment and the

attribute mentioned in the previous section is that on model level the containment is

shown one level below its container object, while the attribute is only shown as property

of the container object. Since a containment is shown as a new object in the tree editor,

this leads to more advantages. At �rst, the containment itself can have further attributes.

Second, the containment can itself be used as a new container having even more elements

as containment in further extensions. Given �gure 4.3, a containment is shown in the

Pets extension, where the meta-class PersonWithPet contains an arbitrary number of Pet
instances.

4.3.2.3 New Relation

The extension type of adding new information is in this section given for introducing

a new relation between meta-classes. Extending or altering an existing relation is not

possible due to the restriction of not changing the core meta-model intrusively. Relations

are always shown as references between two meta-classes. Not only the reference itself is

important but also their role and cardinality. The importance of the latter is also described

in chapter 5. The role of a relation, however, also gives an indication of the developers

intent which is important especially if the meta-model extension developer is a di�erent

person than the developer developing the graphical editor extension. Given �gure 4.3, the

relation extension type is shown between any two connected meta-classes. The speci�c

type of relation thereby represents the extension mechanism. However, those speci�c

relations not only realize the relation extension type but can also realize other extension

types, which are discussed in the next section.

4.4 Extension Mechanisms on Meta-Model Level

In this section all extension mechanisms on meta-model level are discussed. As already

mentioned, extension mechanisms indicate how an extension type is realized. However,

one extension mechanism can realize multiple extension types. Therefore, not only the

extension mechanisms are discussed, but also how they relate to all extension types on

meta-model level discussed in the section before. The extension mechanisms analyzed in

the following are all considered during the implementation in chapter 6. We only cover

the most basic extension mechanisms on meta-model level. Therefore, the list of extension

mechanisms for meta-models may not be complete as extension types, such as decorations,

are missing.

4.4.1 Referencing

Although, referencing can be one of the most simple methods to realize a certain extension

type, the term referencing covers each type of association that can be used between

two meta-classes. All those types need to be considered when analyzing the impact

of the referencing extension mechanism. In TOGAF [19], for example, referencing with

bidirectional associations can be used, while Henriksson et al [23] only allows compositions,

28

4.4 Extension Mechanisms on Meta-Model Level

when referencing between two entities. Since we are dealing with EMF-based meta-

models, de�ning an aggregation between two classes is not possible and is not further

discussed here. As already mentioned, referencing is done by adding an association

between two meta-classes in the extension or one meta-class in the extension and one

meta-class in the core meta-model. Thereby, a di�erentiation has to be made in which

type of association is used. Because of that the �rst paragraph in this section deals

with bidirectional associations, the second with unidirectional associations and the third

paragraph focuses on compositions. Note that the relation extension type only gives a

general notion that a reference would be used if the core meta-model would be extended

intrusively. The reference extension mechanism always refers to one type of reference in

particular such as a composition or an association.

Bidirectional Association A basic binary association is shown in �gure 4.3 as association

between the two classes Person and Identi�er. Although this is not an extension of the core

meta-model, we can see the purpose of a possible extension with a bidirectional association

as extension mechanism. A bidirectional association can realize the new relation and both

meta-class extension types. Since a bidirectional association can only be used between

two classes in the extension, the intention of the developer doesn’t change in case the core

meta-model would be intrusively extended. Therefore, both meta-classes connected by the

association are implementations of the one of the two meta-class extension types. Such an

association can only be realized within two meta-classes in the extension, as otherwise

the core meta-model would be extended intrusively, which we want to prevent. Assuming

both meta-classes that are connected with a bidirectional association would realize each

a new attribute, if the core meta-model was extended intrusively. Then, the association

would still be needed as a relation between both attributes. The same argumentation holds

for both meta-classes, if any or both would be realized as new meta-classes.

Unidirectional Association An unidirectional association is, in contrast to a bidirectional

association, an association where we can only navigate from the source meta-class to the

target meta-class but not the other way around. This type of association is not shown in

the example above. In contrast to the bidirectional association, this type of association can

occur between two meta-classes in the extension meta-model as well as between one class

in the extension and another class in the core meta-model. The last one is shown in �gure

4.5. The realization of the extension type with this mechanism is highly dependent on the

developers intent. As the combination in �gure 4.5 can also occur for both meta-classes

being in the same core meta-model when intrusively extending the core. The association

would then only realize the relation extension type, while the meta-class actually realizes

one of the both meta-class extension types. On the other hand the example in �gure 4.5

could also realize the attribute extension type. Then, both the ExtClass and the association,

would disappear and the CoreClass would gain a new attribute, if intrusively extended. At

last, the developer may also intent to realize the new containment extension type with the

help of an unidirectional association. An indication for that is a cardinality of one and a

further composition leading to another meta-class. Compositions are discussed within the

next paragraph.

29

4 Classi�cation of Extensions

CoreClass

ExtClass

Extension

Core

role

0..1

Figure 4.5: Two meta-classes in di�erent packages related with an unidirectional

association

Composition A composition de�nes a whole/part relationship between two classes. A

part can be included in at most one composite at a time and if the composite is deleted, all

of its parts are deleted. An example is shown in �gure 4.3, where the Pet class is linked to

the PersonWithPet class by a composition. This means that as soon as a pet exists, it has to

belong to an owner, while a person with pets can have an arbitrary number of pets.

The inheritance of the person meta-class in this case is necessary, since we can not connect

the composition in this context directly with the person meta-class. This would again

postulate that the core meta-model knows about its extension, which we want to prevent.

However, if we turn the composition around, a direct connection to the person class would

be possible, but then a person would be contained inside a pet. There are situations, where

such a use of compositions is semantically correct resulting in the realization of a new

meta-class, which is a container for the meta-class in the core meta-model. In any case,

using a composition as extension mechanism realizes the containment extension type

for meta-models. That is due to the fact that on EMF model level, there will always be

a new containment, when creating an instance of the extension. This also applies for

compositions related to the root container meta-class. In our case, both the Person and the

Relative meta-class are contained in the CoreModel class.

Although, a composition is a type of reference we wouldn’t consider the composition

realizing the relation extension type. That is due to the fact that only the meta-class and

the composition combined realize the containment extension type.

As we can see, referencing allows for the realization of all extension types. However,

the reference itself, can only realize the three sub-types of the new information to an

existing meta-class extension type. Which type is realized exactly is on the one hand

dependent on the type of reference (association or composition) and on the other hand on

the type of meta-class that is created in the extension. Furthermore, as a meta-class needs

to be created in order to use any type of reference to another meta-class any of the two

meta-class extension types can also be realized depending on the developers intent.

30

4.4 Extension Mechanisms on Meta-Model Level

4.4.2 Inheritance

Inheritance as extension mechanism is probably the classic method of extension. Like

referencing the term inheritance also needs a distinguished examination as Danilo et al

[2] or Schleicher et al [48] use extension on abstract or normal classes, while Zivkovic et

al [60] suggests interface subtyping. Depending on the inherited class or interface this

extension mechanism can also be used to realize more than one of the extension types for

meta-models. The following three paragraphs thereby analyze each case.

Inheriting Abstract Meta-Classes In the example meta-model in �gure 4.3, inheritance of

the abstract class Relative is shown in the meta-model extension NearestRelatives. Both

classes Father and Mother inherit the Relative class and implement its abstract method

topics. This form of inheritance can be used to add a new meta-class. However, there is

also the possibility to add a new containment, when inheriting an abstract meta-class.

Assuming the core meta-model contains two meta-classes connected by a composition,

where the composition’s target is an abstract meta-class. Inheriting from this abstract

meta-class leads to having a new containment as its abstract super-class is connected by a

composition.

Inheriting Normal Meta-Classes Other than inheriting from an abstract meta-class, inher-

itance can be used on any other meta-class as well. This is done for example in �gure 4.3,

when inheriting from the Person or Pet meta-class. Usually this is done in order to receive

a specialized version of the extended meta-class. In general, the extension type of adding

a meta-class is also realized with this type of inheritance. Depending on the developers

intend, the newly created class could also serve only for adding attributes to the class

already in existence. The concrete realization is thereby dependent on the developers

intent, if he were to intrusively extend the core meta-model. In addition to adding an

attribute or a new meta-class, a new relation is also realized, inheriting a normal meta-class.

This extension type is given, as the sub-class always references its super-class, because of

the inheritance relation between those two. At last, there is also the possibility that a new

containment is realized by inheritance under the same circumstances we explained the

previous paragraph.

Inheriting Interfaces The last possibility a user has, when using inheritance is by interface

subtyping. In EMF a meta-class marked as interface, always needs to be marked as abstract

as well. Therefore, inheriting from an interface in EMF with another interface is equal to

an abstract meta-class inheriting another abstract meta-class. Neither a new meta-class

nor information to an existing class are added, as abstract classes or interfaces can be

instantiated as model elements. Nevertheless, interface subtyping may be useful especially

when planning to add an extension to the extension.

4.4.3 Realization

Realization means implementing a given interface and can in this case only be applied on

meta-classes marked as interface. As already mentioned, when using EMF a meta-class

31

4 Classi�cation of Extensions

can only be marked as interface, if it is marked as abstract as well. Therefore, realizing an

interface in EMF is equal to inheriting from an abstract class with all its consequences on

model level.

4.4.4 Stereotyping

The last extension mechanism for meta-models that is discussed in this thesis is stereo-

typing. In �gure 4.3, the Gender enumeration stereotype is shown. When a stereotype is

applied to an existing class, the class gets all the attributes and operations it had before

plus every attribute and operation of each applied stereotype. In this case with the help of

the GenderSpeci�cs extension, it can be de�ned whether a person is male or female. Since

the content of a stereotype merges with the content of the classes the stereotype is applied

on, there are no new classes available when instantiating a model but further attributes

for those model elements the stereotype is applied to.

Stereotyping is the only extension mechanism not supported by the basic EMF editor. Since

it is getting more and more popular to use stereotypes and apply pro�les in UML, there is

an extension to EMF that supports the pro�le mechanism. In EMF this is called EMF-Pro�les
and was developed by Langer et al [34], [35]. Furthermore, since the evaluation of this

approach can be applied on the Paladio Component Model, we can use MDSD-Pro�les [32].

MDSD-Pro�les are speci�cally designed for the PCM environment and are therefore the

obvious choice when implementing this extension mechanism.

4.4.5 Combination of Extension Mechanisms

Now that we discussed all extension mechanisms on meta-model level that are relevant for

this thesis, we have to focus on the hierarchy of those mechanisms, as it is possible to use

more than one extension mechanism on one extension. A meta-class in an extension could

thereby be referenced to an existing meta-class in the core meta-model as well as it could

realize an interface given in the core meta-model. As the di�erent extension mechanism

realize di�erent extension types there is the possibility of a hierarchy. Since a stereotype

can only be applied with the respective mechanism, there can not be a hierarchy when

using stereotypes. However, the other three extension mechanisms can be combined,

which makes an analysis of their hierarchy necessary.

One combination can be where two extension mechanisms are combined that realize the

same extension type. In that case only this extension type is realized obviously. An example

for that is an extension where the meta-class in the extension inherits a meta-class in the

core meta-model and at the same time realizes a given interface in the core meta-model.

The next possible combination is referencing combined with either inheritance or real-

ization. As we already discussed referencing can be used for all three extension types

that belong to adding new information to an existing meta-class in the core meta-model.

Assuming we use a composition on the one hand and on the other hand inheritance on

two di�erent core meta-classes. The composition in general realizes the new containment

extension type while inheritance realizes the new meta-class extension type. If both mech-

anisms are used, then also both extension types are realized, as it is possible to add the

new class as containment to the source of the composition and at the same time instantiate

32

4.5 Summary of Meta-Model Extension Types and their Realizations

Extension Type

A
t
t
r
i
b
u

t
e

R
e
l
a
t
i
o

n

C
o

n
t
a
i
n

m
e
n

t

M
e
t
a
-
C

l
a
s
s

Extension

Mechanism

Association x x x x

Composition x

Inheriting Abstract Class x x

Inheriting Normal Class x x x x

Realization x x

Stereotyping x (x) (x)

Table 4.1: Summary of meta-model extension types and mechanisms realizing them

it anywhere the inherited meta-class could also be instantiated.

All in all, we can see that all extension mechanisms can be combined. Those combinations

have only the e�ect that more than one extension type is possibly realized by a single

meta-class in the extension. None of the considered extension mechanisms lies in any

kind of hierarchy.

4.5 Summary of Meta-Model Extension Types and their
Realizations

To sum up the previous sections, this section gives an overview on all meta-model extension

types and the extension mechanisms for EMF-based meta-models realizing these extension

types. For a concrete overview table 4.1 is given. The columns of the table thereby

represent the extension types, while each row represents an extension mechanism for meta-

models. As the table shows, an association can realize every extension type. Therefore,

associations are highly dependent on the developers intent, whereas a composition always

leads to realizing a containment. We do not distinguish here between unidirectional and

bidirectional associations, as both can realize the same extension types as a bidirectional

association can be split into two unidirectional associations.

The next extension mechanism, inheriting an abstract class, realizes only the meta-class

extension type or the containment extension type depending on the meta-class the abstract

meta-class is connected to. In case of inheriting a normal meta-class, the realized extension

type depends on the developers intent, as it is when regarding associations. Since the

realization of interfaces leads to the same goal as inheriting an abstract class this extension

mechanism also realizes the new meta-class extension type and the containment extension

type. The last extension mechanism, we discussed during the last sections, is stereotyping.

Stereotyping with EMF-Pro�les only aims for adding new attributes to existing classes,

since once a stereotype is applied to a meta-class, instances of this meta-class are the

same as before but with further attributes. As we use MDSD-Pro�les, it is also possible to

33

4 Classi�cation of Extensions

deposit relations within the stereotype. Therefore, not only the relation extension type,

but also the containment extension type, could be indirectly realized. However, during

the implementation we only regard stereotyping, when adding further attributes to an

existing meta-class.

4.6 Extension Types for Graphical Editors

When describing extension types for graphical editors, we can also reduce those types

down to the same two core types as for meta-models. One core type being adding new

information to an existing graphical element and the other type being adding a new

graphical element. Adding information can thereby mean that, for example, a new sub-

node is added to the graphical element representing further information. In contrast, the

extension type of adding a new graphical element means that the graphical element must

exist independent of other existing graphical elements. A third extension type for graphical

editors can be called the structure extension type, where the information of elements and

elements itself stay the same with regard to contents, but the structure of the editor

changes. This type includes changes in the layout or replacements of nodes or containers

to other, possibly more comprehending structures. Since this type is independent of any

extension type on meta-model level, it is only mentioned for the sake of completeness and

not further divided or discussed.

Although, it is possible to reduce the extension types down to the two types mentioned

above, there is no indication given, where those extension types are located in a graphical

editor. Therefore, the list of extension types for graphical editors is extended by the location,

where a type should be applied. A drawback that comes with this kind of partitioning is

that extension types for graphical editors can not be fully generic, as di�erent graphical

editors tend to have di�erent parts (e.g. some have a toolbar, others don’t). In addition to

di�erentiating between the location of each extension type, we also can divide the given

extension types as to whether they are used for the representation of notation elements or

if they can be used for the creation of elements or for altering their values. Having this in

mind the following list applies to graphical editors based on the Eclipse IDE. However,

many of these concepts can also be seen in other graphical editors. Furthermore, we only

consider diagram representations in this thesis, as focusing on all di�erent editors would

be too complex. In order to get a better idea on what those extension types actually are,

�gure 4.6 shows a typical graphical editor as to how we see it. Extension types not visible

in the �gure are shown in the respective section.

4.6.1 Extend Existing Notation Element

An obvious extension type for graphical editors is the extension of an existing notation

element. Whether the notation element is a node, container or connection does in this

case make no di�erence. For this extension type only the representation of an existing

notation element is extended meaning that possible creations are not discussed here. They

resemble their own extension type, analyzed in section 4.6.3 and following.

The extension of an existing notation element can be divided into further extension types.

34

4.6 Extension Types for Graphical Editors

F
i
g
u

r
e

4
.6

:
E

x
t
e
n

s
i
o

n
t
y

p
e
s

i
n

g
r
a
p

h
i
c
a
l

e
d

i
t
o

r
s

35

4 Classi�cation of Extensions

One of these types being changing the appearance of a notation element in order to show

further information, while another type being creating a new compartment. The next

possibility a user has is to add a new annotation to an existing notation element. There

are some cases not covered by the previous three extension types, which is why there

is a fourth rather generic extension type, which is the representation of a sub-node or

-container within the existing notation element. In all four of these cases we add new

information to existing elements. All of these types are further analyzed within the next

four subsections.

4.6.1.1 Change Appearance

The appearance of a graphical element can be used for the representation of certain aspects

of the element in the underlying business model. Thereby, not only the color, but also

labels are relevant. Changing the appearance of connections for example can indicate a

di�erent data �ow or one, which capacities are at their limit. If the color of a node changes,

this could indicate that a certain state of the node has altered.

4.6.1.2 New Compartment

A compartment in graphical editors can exist only inside a notation element. They are

used to group sub-elements into prede�ned regions within a container. An example is

shown in �gure 4.6, where the ResourceDemand, characterized through the folder icon,

is an element inside a compartment of the «InternalAction» container. A compartment

can contain more than one element inside it. In this case it would be possible to add

further ResourceDemands to the one already existent. Compartments can even be divided

into further compartments making the compartment a container structure. Extending a

notation element by adding a new compartment can be applied on container structures, as

well as on nodes. While the extension of a container structure to support the compartment

can be realized straightforward, it is a much harder task when extending a node to support

a compartment. Nodes don’t contain any compartments, which is why the node itself

has to be turned into a container structure �rst. As this is an intense intrusion to the

speci�cations of the core graphical editor, the impact on further extensions to that node

can not be foreseen. Because of that, adding a new compartment to a node should be

avoided whenever possible and is not included within this thesis.

4.6.1.3 New Annotation

The next possibility we have, when extending an existing notation element, is to add a

new annotation to it. In contrast to a compartment, an annotation does not de�ne a region

where similar elements are grouped. An example for an annotation is also shown in �gure

4.6 on top of any of the two container nodes. Of course the annotation is not limited to be

a border node on a container, but can be any node inside a container as well. The only

condition is that the annotation represents an attribute of the existing graphical element

and not a group of speci�c sub-elements or new sub-elements. Speaking in other words, an

annotation only resembles information the user should be able to see to the full extend in

the properties view, which narrows the annotation down to rather primitive data types or

36

4.6 Extension Types for Graphical Editors

strings that should be represented. In case of the VariableCharacterisation in the �gure, we

can say that the container element itself is not an annotation, but rather a new sub-container

or a new compartment. This depends on whether it is possible to add further key-value

pairs below the BYTESIZE = stream.BYTESIZE or if a new VariableCharacterization container

is created. The key-value pair that is listed inside the container is by our de�nition an

annotation, since this string resembles only an attribute of the VariableCharacterization.

Another sort of annotation is the introduction of a new symbol that is attached to a

notation element. Symbols can represent anything, such as quality aspects as depicted

by Heinrich [21]. In general, symbols should be preferred over changing the appearance

of a notation element, when more than one extension can possibly be implemented for

the same graphical element, as changing the color can apparently only be done once or

otherwise information gets lost.

Like the compartment, an annotation can also be applied to both nodes and container

structures, which comes with the same side e�ects in case the node has to be turned into

a container structure �rst. On the other side, if just a bordered node should be added to

the existing node, this usually is no problem, if there aren’t that many extensions using

bordered nodes. These would then start to overlap making it hard to read the inside of the

bordered node.

4.6.1.4 New Sub-Node or -Container

Besides creating a new compartment for grouping similar elements or creating an annota-

tion representing an attribute, we also can add nodes or container structures to existing

elements for a di�erent purpose. A new node or container could also resemble a new

element which is a rather complex attribute of the existing notation element or is not

even listed in the properties view. Figure 4.7 shows an example for notation elements

within an existing container element that don’t belong to any of the above mentioned

extension types. As we can see on the right side of the defaultUsageScenario container, the

«ClosedWorkload» is one example that doesn’t �t into the category of being an annotation

nor being a compartment. It can not be an annotation since it is obviously a container

and can also not be a compartment, as there is no grouping of similar elements inside it.

On the left side of the defaultUsageScenario container inside the compartment, there are

other examples for new sub-nodes and containers which don’t belong in any of the above

mentioned categories for extension types. The top and the bottom node both resemble

start or end nodes for processes that lie between them. None of these can be accounted

for an annotation, as they resemble stand-alone elements inside the compartment. The

last element is the «SystemCallAction» located between the start and end node. The same

argumentation already used for the «ClosedWorkload» container can also be applied to this

container. The «SystemCallAction» goes even further as it obviously has a compartment

marked by the horizontal line.

All in all, we have now four di�erent extension types, when it comes to the extension of

existing graphical elements. All of these extension types can even be further extended

either by one of the four types already mentioned or by other extension types, which are

discussed during this section.

37

4 Classi�cation of Extensions

Figure 4.7: Excerpt from a usage model in the Palladio context showing notation elements

inside a container

4.6.2 New Notation Element

While the previous section focused on extending an existing graphical element, this section

focuses on representing notation elements that didn’t exist in the core graphical editor.

New notation elements, assuming they exist in the extension of the business model, are

always shown directly in the diagram of the graphical editor, which is usually placed in the

center of a graphical editor. Apart from representing elements of the underlying business

model, the removal of a notation element also results in the deletion of the corresponding

model element in the business model. Like in the previous section, we can also divide

this extension type into further types. One type being the creation of a new node or

container element, while the other type being the creation of a new connection. The

node or container focuses on the representation of an instance element of the underlying

business model, while the connection states the relation between two elements. However,

if the corresponding meta-class’ purpose is being a connection between other meta-classes

this is also a valid reason for representing it in the diagram as connection. Furthermore,

we do not di�er between connections targeting notation elements inside an existing one,

targeting notation elements represented directly in the diagram or a combination of both.

However, when speaking of a new container or node we only mean new nodes or container

structures directly inside the diagram but not inside an existing container. Creating nodes

or containers inside existing containers resembles the new sub-node or -container or new

compartment extension type.

Besides the extension type of creating a new notation element, there is usually also the

extension type of a new palette entry realized at the same time, which is discussed within

the next section.

38

4.6 Extension Types for Graphical Editors

4.6.3 Add Palette Entry

The palette is used to show the user the elements he can add to the editors diagram, where

the graphical elements are displayed. Thereby, these elements are not only added to the

editor but also created in the underlying business model. This is in contrast to the diagram

itself, where notation elements only represent their corresponding model elements. In

�gure 4.6, the palette is bordered blue. Besides nodes or containers also connections can

be listed within the palette that can be added to the diagram. Usually the palette displays

all elements available for that graphical editor, while the diagram contains all elements

already existent in the domain model to be edited. Since it is possible to add graphical

elements to the diagram directly with the help of the palette, extending it also leads to

the creation of new graphical notation elements like nodes, containers or connections.

Furthermore, the second core extension type for graphical editors can also be realized

with the palette. This is possible, since the palette can also contain elements that are used

in compartments or as annotations within existing notation elements.

4.6.4 Add Properties Entry

The properties view in Eclipse is, as the name states, responsible for showing properties

of a selected graphical element. In �gure 4.6, the properties view is placed at the bottom

of the editor and is bordered green. In the properties view not only properties are shown,

but they can also be altered. Since only properties of selected elements are shown, an

extension of this view can only lead to showing more properties of existing graphical

elements. No new independent graphical elements can be shown, since those must be

created in advance before the properties view can actually show their value. This means

that only the core extension type of adding new information to existing elements can be

realized by extending this view. Depending on the editor used, the properties view may

update automatically, when an element extended by further attributes is selected in the

editor. However, we don’t consider an automatic update as new properties entry in the

sense of an extension type. Realizing this extension type therefore means that the entry

can be added manually to the properties view.

4.6.5 Extension of Outline View

One of the only views not shown in �gure 4.6 is the outline. An example outline is

therefore shown in �gure 4.8. The outline is used to give the user an overview on the

diagram in focus. This also includes information on the underlying domain model. The

outline is automatically updated, when new notation elements are added to the diagram.

As discussed in the previous section considering the properties view, we don’t consider

automatic updates as a realization of an extension type. Nevertheless, the outline view

could also be extended. An extension of this view, however, can only lead to adding

information to existing elements in the sense of altered representations. Of course, there

is also the possibility to show new elements in the outline view that don’t exist within

the actual diagram. This could be achieved by accessing and alternating this view’s code.

39

4 Classi�cation of Extensions

Figure 4.8: An exemplary outline view for a graphical editor

That would also violate the original purpose of this view and is therefore not considered

in this thesis.

4.6.6 Add Toolbar Button

The toolbar is usually placed right above the graphical editor. In �gure 4.6 it is bordered

purple. Toolbar buttons can be used for various reasons. Giving the graphical elements,

a better layout, showing the user helpful tips or hiding elements according to speci�c

�lters are only a few of those options. Extending the toolbar can either mean adding a new

toolbar button and ,with that, new functionality or extending a button that already exists

with further functionality. In either way the button can then lead to additional information

that is shown for existing graphical elements. An example for this kind of extension is, as

already mentioned, showing or hiding elements according to speci�c �lters. While �lters

don’t actually add attributes to existing elements nor create new elements, since only

already existing elements are shown or hidden, another use for a toolbar can be used as

extension type in the sense of this thesis. Thereby, a toolbar button automatically generates

missing graphical elements of a speci�c type according to certain criteria. Another use for

toolbar buttons is to change the state of all valid existing entities at once to save the user

time.

The main di�erence between the toolbar and other extension types presented in this

section is that the toolbar usually adds more than only one graphical element to the

diagram. Therefore, it needs special requirements in order to be useful.

40

4.6 Extension Types for Graphical Editors

Figure 4.9: Mouse over extension type

4.6.7 Add Button to Context Dependent Menu

Adding a button to a context dependent menu like extending an existing notation element

is a more or less generic term. We thereby regard context dependent menus that appear,

when hovering the mouse on a notation element and pop-up windows that appear when

right-clicking with the mouse on an empty diagram space or a notation element. Although

we discuss both of these menus separately, they are the same extension type as it doesn’t

make any di�erence in the later mapping chapter.

Context Menu Button This part of the extension type of adding a new button to the

context dependent menu is bordered red in �gure 4.6. When a context menu opens due to

a right-click on the diagram, besides general options or applying a layout to the whole

diagram, it is possible to extend the pop-up window. Therefore, new elements can be

added to the diagram. Usually a new button in the context menu isn’t used for adding

new elements, since it is user friendlier to add a new element via drag and drop from the

palette, but for the sake of completeness it is still mentioned here.

If right-clicked on a selected graphical element, an extended context menu on the other

side can add new information to the selected graphical element. In contrast to the toolbar

this kind of extension always a�ects only one graphical element.

As mentioned before, using the palette to drag and drop a new element on the diagram or a

graphical element is preferred over opening the context menu via right-clicking. However,

there are still use cases for using such a context dependent menu. An example would be a

list of similar elements, where one of them is automatically generated depending on other

already existing elements. This could happen either within a certain graphical element or

depending on all other elements in the diagram. Furthermore, such a context menu button

can be used anytime a palette entry can not be used due to the framework’s capabilities.

Other than that we can use a context dependent menu to change an attribute’s value.

MouseOver Button Since this part of the above mentioned extension type is not shown in

the overview �gure of extension types for graphical editors, �gure 4.9 shows an example

of this type. Depending on the graphical framework that is used these mouse over buttons

as presented in the �gure are created automatically, as they resemble every palette entry

that is valid for this location the mouse rests on. Apart from using mouse over buttons to

add new notation elements to the diagram or new compartments to an existing notation

element, a mouse over button can also be used to alter di�erent information of an existing

notation element. Exemplary speaking, an extension could use a mouse over button to

set a Boolean attribute of a notation element to either true or false. In the same way this

extension can also be used for changing the appearance of the existing notation element on

41

4 Classi�cation of Extensions

demand. The di�erence between this extension type and the change appearance extension

type discussed in section 4.6.1.1 is that the latter is only used for representational purposes.

The mouse over extension type actually changes the appearance online when the button

is pressed.

4.6.8 Create New View

Although it would be possible to extend the Eclipse platform in order to create a new

view in terms of an Eclipse-based view, this is not the intention of that extension type.

The views we are suggesting and analyzing, when speaking of this extension type are

views that appear if and when the user, for example, double clicks on a notation element.

The view should then manifest as either a wizard or a dialog window, where values of

the notation element can be seen and optional edited or as a new editor, where further

elements can be added. The base notation element then serves as a container for content

not available in the core editor.

As we can see designing a new view can serve the purpose of adding information to an

existing notation element, in case a dialog opens, where for example new key-value pairs

can be altered. Furthermore, the other core extension type of adding new elements can

also be realized with the help of a new view in case a new editor is opened.

4.7 Combination of Extension Types for Graphical Editors

All the above mentioned extension types for graphical editors can, like the extension types

and mechanisms on meta-model level, also be combined. At �rst glance and with regard

to the mapping, which is discussed later in chapter 5 the combination of extension types

does not make any di�erence, as if only one extension type is used. This is due to the

fact that only one extension type on meta-model level is realized with an extension type

on graphical editor level. Multiple combinations of extension types on graphical editor

level do not change the meta-model extension type. Of course, not every combination is

possible or reasonable but this is discussed later in the mapping chapter.

Combining extension types has di�erent advantages. In case a meta-model extension

doesn’t consist of only one meta-class but of more classes, which are related to the class

serving as extension, using only one extension type in the graphical editor may cause

the editor to get overly complex. Considering the work of Heinrich [21], where quality

attributes are added to activities in a Business Process Model and Notation (BPMN) model.

Since there are many quality attributes, such as security, portability, performance and

so on it would make the notation element confusing for others to read, if more than one

quality attribute is attached to the element. This is why symbols are used, which would

resemble the change appearance extension type and when clicked on a symbol a new view

opens containing information on that quality attribute. This way the complexity of the

diagram is reduced by combining two di�erent extension types.

42

4.8 Extension Mechanisms for Graphical Editors

4.8 Extension Mechanisms for Graphical Editors

This section includes the di�erent extension mechanisms for both the Graphiti and the

Sirius framework. Furthermore, it is also addressed which extension mechanism possibly

realizes which extension type for graphical editors.

4.8.1 Extension Mechanisms in Graphiti

This section deals with potential extension mechanisms available for the Graphiti frame-

work. There are basically two di�erent extension mechanism. The �rst mechanism are

extension points, a mechanism strongly supported by the Eclipse platform
1
. The second

mechanism are plug-in dependencies meaning that besides a new plug-in containing the

extension also a dependency to the core graphical editor can be created. Using the second

extension mechanism results in further possibilities for extension, such as referencing or

given certain extension points also inheritance or realization.

• Extension Point: Graphiti itself delivers only four di�erent extension points that

can be used for extending the framework itself. One is designed for exporting

the diagram to a �le, the other three for providing new diagram types or images

meaning that these three can be used for actually covering extension types listed

in the previous section. Fortunately, developers can de�ne their own extension

points leading to a large set of extensions to cover extension types, such as the

toolbar or in general the look of a speci�c element. To cover the additional extension

types, the developer has to use extension points provided by the Eclipse platform.

Drawbacks of extension points are that some of them need a great understanding

of the underlying Eclipse platform, which makes them complicated to implement.

Furthermore, extension points for the toolbar or graphical elements have to be

de�ned �rst. That requires a clear understanding, of where extension points should

be placed regarding additional extensions.

Since extension points are used all over Eclipse and Graphiti also supports them, it

can be said that every extension type for graphical editors can be realized with the

help of extension points. Although this is possible, it should be stated that the e�ort

for realizing some of these extension types with this mechanism may be arbitrary

high, whereas other extension types can be realized quite simply.

• Plug-in Dependency Since the Graphiti framework is based on features that have

to be implemented, we can not simply reference a given feature and add information

to it. However, we can reference all the existing notation elements and add further

elements or di�erent colors to it. Inheriting or realization on the other hand will

only work if the inherited class is somehow added to the main class of the diagram,

the feature provider. For such an adding we again need an extension point, which

will be demonstrated later in chapter 6.

1https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

43

https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

4 Classi�cation of Extensions

4.8.2 Extension Mechanisms in Sirius

When using the Sirius framework, there are overall four di�erent extension mechanisms

that can or even must be combined. All these extension mechanisms are described shortly

in the following. Every extension mechanism can be used within the same viewpoint

or in any other viewpoint as well as long the necessary resources are loaded. This also

means that every extension mechanism can be used in a di�erent project than the project

containing the core editor.

• Diagram Import: With the help of the diagram import mechanism, a developer,

like the name states, can import a given diagram. Instead of the complete diagram

representation, only the �rst layer of that diagram representation is imported. How-

ever, the developer has the opportunity to add further layers. Unfortunately, every

change made in the imported diagram directly a�ects the original diagram. There-

fore, we can not use this extension mechanism for our purpose and is therefore not

further regarded during this thesis.

• Java Extension: With the help of a java extension, the developer can add a java

class de�ning general methods that can be used wherever an Acceleo expression

is needed. Although this extension doesn’t actually add new attributes to existing

elements or new classes, it strongly supports the diagram import and extension

mechanism Sirius o�ers. That is because Acceleo expressions are used for labeling

or creating elements or semantic expressions pointing to certain elements. Java

extensions are explained in detail in the implementation chapter.

• Extension Point: Since Sirius as well as Graphiti are both frameworks embedded in

the Eclipse platform, the developer has the same opportunities regarding extension

points than with Graphiti. Although, the capabilities when de�ning own extension

points are the identical to Sirius and Graphiti, there are a lot more extension points

speci�c to Sirius than to Graphiti leading to an easier extension of the whole frame-

work. However, self-de�ned extension points may o�er further functionality, such

as mouse-over buttons, which Sirius doesn’t use.

• Diagram Extension: When extending an existing diagram with a diagram exten-

sion, nothing in the core diagram can be changed in any of its layers. However, the

developer can add additional layers representing either new information to existing

elements or even new elements, depending on the meta-model extension. Therefore,

the diagram extension should be preferred over the diagram import mechanism

and is used throughout the entire implementation of the Sirius prototype. As we

can use any Sirius tools after creating a diagram extension, we can assume that the

diagram extension is capable of realizing most of the extension types presented in

this chapter. This assumption is proven correct during the validation in chapter 6.

44

5 Mapping of Extensions between
Meta-Models and Graphical Editors

In the previous chapter we focused on a classi�cation of extensions on meta-model level

as well as on graphical editor level. Therefore, we distinguished between extension types

and extension mechanisms. While we mapped each extension mechanism to one or more

extension types on their respective levels, we still need to relate both levels to each other.

This is done within this chapter. We here focus on mapping extension types on meta-model

level to possible extension types on graphical editor level. Thereby, we always consider one

meta-model extension type and analyze the possible resulting graphical editor extension

types. Since there are �ve di�erent meta-model extension types, but twelve extension

types on graphical editor level, there obviously can not be a one-to-one relation between

these extension types.

Although, an extension type on meta-model level exists, this doesn’t necessarily mean

that the extension type has to be mapped on graphical editor level. There are multiple

cases, where meta-classes are not intended to be represented on graphical editor level.

Therefore, given a certain extension type, there is always the possibility that no mapping

to graphical editors is even wanted.

This chapter starts with the analysis of both meta-class extension types and continues with

the three extension types covering new information to existing meta-classes. Each section

thereby covers the possible mapping and an argumentation of why the other graphical

editor extension types are not supported by a meta-model extension type.

5.1 Mapping of Meta-Class Instance Below Root Node to
Graphical Editors

This section covers the mapping of extending the meta-model by the new meta-class

extension type to possible extension types on graphical editor level. The extension type in

focus here covers meta-classes, whose instances are placed one level below the root node

chosen for the graphical editor. Usually the root node of a graphical editor is identical

to the root node of the corresponding EMF tree editor. To cover all the aspects of this

mapping, this section is further divided into �rst all supported mappings from meta-model

level to graphical editor level and then an analysis of why the other extension types on

graphical editor level are not supported.

45

5 Mapping of Extensions between Meta-Models and Graphical Editors

Meta-Class Below
Root Node

Palette Entry

Node/Container

Context Dependent
Menu Button

New View

Connection

Figure 5.1: Mapping of the �rst meta-class extension type to graphical editor extension

types

5.1.1 Supported Realizations on Graphical Editor Level

To start o�, we analyze the possible realizations on graphical editor level given the new

meta-class extension type. For a better overview on this mapping �gure 5.1 is given. As we

can see, when using this extension type, we can choose between �ve di�erent realizations

on graphical editor level, whereas two of them can be used for representation. The other

three extension types are used for their creation. For a better overview, each of these

extension types are discussed in their separate paragraph.

Notation Element If the new meta-class is supposed to be represented in the graphical

editor, one obvious extension type that should be covered on graphical editor level is the

new node/container extension type. Whether we use a node or container depends on

the scenario. As a general notion we can say that if the meta-class contains more than

one attribute or other containments, using a container as representation is appropriate.

Furthermore, if possible extensions to this meta-class are thinkable, a container might be

of more use than a node. As an alternative for the node/container extension type, if the

meta-class resembles a connection between other meta-classes, we could represent it as

connection instead of a node or container.

Palette Entry As already stated in section 4.6.3, the palette view is used to create not

only a notation element in the diagram. Also the corresponding model element in the

underlying business model is created. Therefore, if the user not only wants to show and

possibly remove the new notation element from the diagram, a new palette entry should

be created.

46

5.1 Mapping of Meta-Class Instance Below Root Node to Graphical Editors

Context Dependent Menu Button Apart from creating a new palette entry, we can also

extend any given context dependent menu by adding another button to it. This can be

either a new mouse-over button, when hovering over an empty diagram space or a context

menu button appearing, when right-clicking on the diagram. In any way, we can use such

a button to create the notation element and its corresponding model element. As the e�ect

of both a palette entry and the context dependent menu button are usually interchangeable

for a given meta-class extension type, one or both can be used for the creation of the

notation element and its corresponding model element.

New View The last possible extension type on graphical editor level, which may be the

result of the new meta-class extension type, is the new view extension type. In this case

the new view can be seen as a wizard that pops up, where the user has to choose between

di�erent model elements before the notation, and the corresponding model element, can

be created correctly.

Now that we discussed which extension types can be realized given the �rst meta-class

extension type, we should also analyze why the other extension types should not be

preferred. This is done within the next section.

5.1.2 Unsupported Realizations on Graphical Editor Level

Now that we discussed the possible extension types on graphical editor level that can be

realized, if the �rst new meta-class extension type on meta-model level is realized, we

need to analyze why the other extension types for graphical editors can not be realized at

the same time. Like in the previous section, we here also divide the unsupported extension

types by paragraphs explaining why an extension type on graphical editor level should be

avoided given the �rst meta-class extension type.

Extend Existing Notation Element It is pretty obvious that every extension type related to

altering existing notation elements can not be realized by the given meta-class extension

type. This is due to the fact that instances of this meta-class are direct containments of

the editor’s root node. Therefore, the corresponding notation element can not be part of

any other existing notation element, except for the root node, which is the basis of the

diagram. In conclusion, we can say that none of the four extension types concerning the

extension of a notation element can be realized with the given meta-class extension type.

Add Properties Entry Since we excluded all of the four extension types concerning the

extension of an existing notation element, consequently, there is no properties view

to extend. As we always create a new notation element, its properties view contains

everything that is needed. However, if further notation elements are added to the new

container, we could alter the container’s properties view to represent the new values, when

selecting the container. Nevertheless, this would be in contrast with our given mapping

for this meta-class extension type, as this container would be altered due to a di�erent

meta-model extension type.

47

5 Mapping of Extensions between Meta-Models and Graphical Editors

Extend Outline Now that we overall discussed ten out of the twelve extension types on

graphical editor level, there is only extending the outline and adding a new toolbar button

left. As the automatic update of the outline view, whenever a notation element is added

to the diagram or changed, is not considered an extension to this view (see section 4.6.5),

there is no scenario where this view is extended to show the new meta-class. We can say

that there are two basic situations, where such an extension in case of a new meta-class

can be considered. First, when in addition to the notation element in the diagram speci�c

characteristics should be displayed. If that is the case, extending the outline is not done

to show the new notation element. It shows rather the speci�c attribute, which is again

a di�erent extension type. The second situation is when the notation element should

only be displayed within the outline view, but not in the actual diagram. That would be a

real extension of the outline. At the same time this mean that the new meta-class has no

important contribution to the core meta-model as the corresponding notation element is

only shown in a small scale in the outline for representative purposes. If that is the case,

the extended meta-class can simply be omitted.

Toolbar Button The last extension type to discuss is the new toolbar button extension

type. Toolbar buttons can be considered a special extension type, as their purpose varies

from loading resources to a diagram, moving notation elements in order to gain a certain

layout or changing the status of multiple entities. While we do not think of the �rst two

purposes as extension type for any meta-model extension type, the last purpose is still not

covered, when considering the �rst meta-class extension type. Besides changing the status

of existing elements, of course, multiple new notation elements could be added. However,

if we only regard the meta-class and its notation element, there is no indication on how

many notation elements should be added when pressing the toolbar button. Therefore, a

toolbar button for such a purpose would be too random to actually consider it as extension

type. A last notion on toolbar buttons for the meta-class extension type is that we could

alter the purpose of the toolbar so that only one notation element is added somewhere in

the diagram. However, since the position would be more or less random and the toolbar

button uses the same functionality as the new context menu button, we can leave out this

extension type.

5.2 Mapping of Meta-Class Instances as Part of Other
Instances to Graphical Editors

This section deals with the mapping of the second new meta-class extension type to

extension types on graphical editor level. This extension type focuses on instances of a

meta-class that are listed as part of other instances, except the chosen root node of the

graphical editor. As in the previous section, we divide this section into one part analyzing

the supported realizations on graphical editor level, while the second part discusses why

the other extension types on graphical editor level are not supported.

48

5.2 Mapping of Meta-Class Instances as Part of Other Instances to Graphical Editors

Meta-Classw
InstancewaswPartwof

OtherwInstance PalettewEntry

Sub-Node/
-Container

ContextwDependent
MenuwButton

NewwView

Compartment

Node/Containerw+
Connection

Annotation

PropertieswEntry

Connection

Figure 5.2: Mapping of the second meta-class extension type to graphical editor extension

types

5.2.1 Supported Realizations on Graphical Editor Level

Like in the previous section, we �rst give an overview on the possible mappings as rep-

resented by �gure 5.2. Next, we discuss in each paragraph why those extension types

are supported. As there are overall nine extension types supported for this meta-model

extension type, we also present table 5.1 at the end of this section. The table shortly

summarizes the supported extension types and the condition under which they should be

preferred.

As we can see from the �gure, there are more extension types on graphical editor level

that can be possibly realized, if the second new meta-class extension type is given. While

there are some extension types we already discussed in the previous section, there are

others that became available once instances of the meta-class are placed as part of other

instances in the EMF tree editor.

49

5 Mapping of Extensions between Meta-Models and Graphical Editors

Node/Container + Connection Although, the meta-class in focus is already part of another

meta-class, we still have the opportunity to represent it as new notation element within

the diagram. The only di�erence to the mapping in the previous section is that we need

a connection to the notation element resembling the container meta-class as well. That

way, we make sure the user knows to where this notation element and its corresponding

meta-class instance belongs.

Apart from representing the meta-class instances as node or container, we, of course, can

represent them also only as connections, if and when the meta-class itself should resemble a

connection. Thereby, we do not di�er whether a connection targets two notation elements

inside an existing notation element, two notation elements directly placed in the diagram

or a combination of both as stated in section 4.6.2.

Extend Existing Notation Element If we don’t want to create a new notation element in

the diagram including a connection, we can also extend an existing notation element. If the

new meta-class’ essence can be represented by a single string or another attribute, adding

an annotation to the existing element is enough. The annotation could, for example, be a

bordered node. On the other hand, if the meta-class explicitly adds new domain speci�c

information that can not be covered with the representation of an annotation, a new

sub-node or -container can be added.

Aside from creating new sub-nodes or containers inside a given container, there is also

the possibility to create a new compartment. This is usually done if more meta-classes

belong to the meta-class in focus, and they can furthermore be grouped together. In other

words we can say that a new compartment is never created alone, as further sub-nodes

are needed to �ll the compartment. Whether those sub-nodes are directly related to any

meta-class in the core meta-model or reference the meta-class in focus in any way, doesn’t

matter.

Creation of the Notation Element As soon as it is possible to create compartments or

sub-nodes or -containers it seems likely that a palette entry or a new context dependent

menu button is also created in order to create those notation elements not only in the

diagram but also in the underlying business model. This argumentation is the same as in

the previous section. Furthermore, a new view can be added if the meta-class should also

be represented in its own diagram representation. Another purpose for a new view is if

further to the meta-class related instances should be manually chosen by the user in order

to create a valid notation and business model element.

Adding a Properties Entry Aside from adding a palette entry in order to create the nota-

tion element and its corresponding meta-class instance, we here have also the possibility

to add a new properties entry. This can be done, since instances of this meta-class are

already part of an existing instance and therefore their notation element corresponds to

an already existing notation element. Therefore, the properties entry can be added to

the already existing notation element, if not done automatically. A drawback is that the

properties entry is only supposed to show and alter attributes of a notation element, but

not to create new ones. Adding a properties entry may still be useful, if further attribute

50

5.2 Mapping of Meta-Class Instances as Part of Other Instances to Graphical Editors

N
o

t
a
t
i
o

n
E

l
e
m

e
n

t
+

C
o

n
n

e
c
t
i
o

n

C
o

n
n

e
c
t
i
o

n

S
u

b
-
N

o
d

e
/
-
C

o
n

t
a
i
n

e
r

A
n

n
o

t
a
t
i
o

n

C
o

m
p

a
r
t
m

e
n

t

P
a
l
e
t
t
e

E
n

t
r
y

C
o

n
t
e
x
t

D
e
p

e
n

d
e
n

t
M

e
n

u
B

u
t
t
o

n

P
r
o

p
e
r
t
i
e
s

E
n

t
r
y

N
e
w

V
i
e
w

Representation x x x x x x

Intended as Connection x

Simple meta-class x

Element grouping x

Creation also possible x x x

Manual choice of sub-elements x

Further properties available x

Table 5.1: Overview on when to use which extension type on graphical editor level given

the second new meta-class extension type

extension types should also be shown within this properties entry. However, with the

help of the new view extension type this rule could be violated and new notation elements

could be created. This is not further discussed here.

Table 5.1 again lists all possible extension types, including their condition under which they

can be applied to the graphical editor. Rows �ve and six require any of the representation

extension types, while row number six also includes the row above. The last row however

does not require any of the other extension types. The further content of the table is not

discussed here, as it is already mentioned in the paragraphs above. Within the next section

we analyze the extension types not listed in this section and discuss why they can’t or

shouldn’t be used for the second meta-class extension type.

5.2.2 Unsupported Realizations on Graphical Editor Level

As already done in the previous section, we here discuss those extension types on graphical

editor level that are not supported by the second new meta-class extension type.

New Node/Container Although, we discussed the new notation element extension type

partly in the previous section, for the sake of completeness, it is necessary to analyze

it within this section. As already discussed, we can combine the new node/container

extension type with the new connection extension type, in order to represent the second

meta-class extension type on graphical editor level. The connection therefore targets the

51

5 Mapping of Extensions between Meta-Models and Graphical Editors

outer instance of our meta-class instance in focus. If the connection was left out, we could

still identify the targeting notation element by adding an annotation containing the ID

of the target. However, the diagram would get too complex, if this was done for every

meta-class instance that is part of another instance. That is why the new node/container

extension type should only be applied, if combined with a connection to its target. If

placed alone without any additional extension type, there is no indication given to which

other notation element the node or container belongs.

Change of Appearance Another extension type from which we should refrain, when

given the second meta-class extension type, is changing the appearance of an existing

notation element. Changing the appearance of an element usually indicates a change of

an attribute’s value. Therefore, this extension type is not supported when adding a new

meta-class as part of another meta-class.

Toolbar and Outline As already mentioned in the previous section considering the �rst

meta-class extension type, an extension of the outline view would require that our meta-

class including all of its attributes is not important enough to be represented in the diagram

itself. However, if that is the case, the class itself could be left out. Therefore, it is not

necessary to extend the outline view given the second meta-class extension type. For

an extension of the toolbar we can also apply the same argumentation as in the section

before. Although, we could implement a toolbar button creating multiple instances of the

meta-class as notation element, a scenario where doing so is necessary, is hard to �nd and

therefore this extension type can also be omitted. An equivalent result can be achieved for

multiple drag and drop operations from one palette entry.

5.3 Mapping of Adding Attributes to Existing Classes to
Graphical Editors

After covering both extension types on meta-model level dealing with the adding of new

meta-classes, we also have to discuss adding new information to existing meta-classes and

their mappings to graphical editor extension types. Therefore, we start with the adding

attributes to existing classes extension type. Like in the previous sections, we �rst start

with all supported realizations on graphical editor level for this extension type, followed

by a short summary of the reasons behind each extension type. In the section afterward,

we discuss why the other extension types are not supported.

5.3.1 Supported Realizations on Graphical Editor Level

When adding a new attribute to an existing class, there are overall eight possibilities

to realize this extension type for graphical editors. Figure 5.3 summarizes all possible

mappings for this extension type. Starting from these eight extension types, we can divide

those further into extension types that are necessary for the pure representation of the

52

5.3 Mapping of Adding Attributes to Existing Classes to Graphical Editors

Attribute

OutlineDView

ChangeDAppearance

ToolbarDButton

PropertiesDEntry

DAnnotation

Node/ContainerD+
DConneciton

NewDView

ContextDDependent
DMenuDButton

Figure 5.3: Mapping of the attribute extension type to graphical editor extension types

53

5 Mapping of Extensions between Meta-Models and Graphical Editors

new attribute and extension types that are used to change the value of the attribute. All of

these extension types are discussed in the following paragraphs.

Node/Container + Connection Like in the previous mapping, we here have again the

possibility to represent the attribute as new notation element. However, if we do so,

we again need to connect the notation element to the notation element it belongs. The

targeting notation element should overall represent the meta-class whose attribute we

just added. This is the same argumentation as for the second meta-class extension type

presented in section 5.2.1.

Extend Existing Notation Element When representing the attribute, we can further choose

between adding a new annotation or changing the appearance. Changing the appearance

is mostly done, if the attribute to represent is a Boolean attribute. If the attribute changes

the state of the underlying meta-class instance, the color of the notation element may

be set to change. Beside the color, also the label of the node or container may change

indicating an attribute, such as a counter. If the existing label shouldn’t be changed, an

annotation can also be added to the notation element.

Extension of the Outline View The last possibility we have for the pure representation

of an attribute, is the extension of the outline view. As stated in section 4.6.5, we don’t

consider the automatic update of the outline view as an extension. An extension rather

introduces a new feature, which is only available for the outline view. Therefore, an

extension of this view is rare, since the attribute needs to be important enough to appear

in the meta-model but not that important to actually be shown in the original diagram.

Another scenario for extending the outline view is, if the attribute requires a smaller

representation of the complete diagram. This can be the case for an attribute indicating a

bottleneck in a bigger diagram.

Extending the Properties View As mentioned in section 4.6.4, the properties view satis�es

both, the representation of an attribute, as well as altering its value. Therefore, extending

the properties view, when introducing an attribute, should always be considered, if not

done automatically. The type of attribute thereby doesn’t matter as there are plenty of

widgets that can be added, in order to represent any type of attribute.

Altering the Attribute’s Value Changing the value of an attribute can further be done by

adding a toolbar button, a context dependent menu button or a new view or simply by

adding a new feature to an annotation created before to represent the attribute. With a

new feature a mouse click on the annotation results in changing the label of the annota-

tion. At the same time, the attribute’s value should change, if implemented correctly. We

don’t consider this as an actual extension type, but for the sake of completeness it is still

mentioned here.

Besides di�erent functionality, such as loading a new model, toolbar buttons can also be

used for applying or clearing an attribute’s value for all relevant notation elements in the

diagram. The important di�erence between a toolbar button and every other extension

54

5.3 Mapping of Adding Attributes to Existing Classes to Graphical Editors

type in this mapping is that the toolbar button applies a change to all notation elements

that ful�ll a certain condition. The other extension types apply their change only to one

notation element containing the attribute.

As in the previous sections mentioned, a mouse-over button as well as a context menu

button provide a pop-up window and are most of the times interchangeable. If the frame-

work provides custom mouse motion listeners, we can add an icon as mouse-over button

representing the state of the attribute we want to change. By clicking on the button the

value of the attribute changes to a value speci�ed in the implementation. The new context

menu button does the same. If both buttons can be implemented, the mouse-over button

in general should be preferred, since it is user-friendlier.

New View The last extension type realizing the attribute extension type on graphical

editor level is the creation of a new view. There are various examples, where a new view

can be used to alter the value of an attribute, such as views for entering and validating

key-value pairs. However, all these examples require not only the representation of the

attribute, but furthermore at least one feature that opens the new view. In case of altering

the value of an attribute, a double click on a new annotation or even one of the other

extension types responsible for altering the attribute’s value can be used as feature to open

the new view.

5.3.2 Unsupported Realizations on Graphical Editor Level

Since there are eight possible extension types that can be realized on graphical editor level,

when adding a new attribute to an existing meta-class, there are only four extension types,

which are not supported by the new attribute extension type. As before, these extension

types are discussed within each of the following paragraphs.

Sub-Node/-Container Starting at the top of our classi�cation, introducing a new sub-node

or -container is by de�nition not possible, when realizing the new attribute extension

type. New sub-nodes or -containers contain new domain speci�c information, whereas an

annotation only speci�es additional information to an existing domain class.

Adding a Compartment The next unlikely extension type is the compartment extension

type. A compartment resembles a group of similar elements. Creating a compartment

would be possible, if a list is added as attribute. However, depending on the list only their

size may be of interest or the elements are shown in the properties view. If the content of

the given list contains rather complex elements, they should rather be resembled as new

containment as then further attributes need to be represented. In either way, adding a

compartment because of a single attribute is unlikely.

NewNotationElement As previously discussed, the combination of adding a new notation

element and a connection to the corresponding notation element is valid. However, using

only one of these extension types to cover the attribute extension type, is not supported.

If the node resembling the attribute is used alone, then we can not decide to which

55

5 Mapping of Extensions between Meta-Models and Graphical Editors

element the attribute belongs. On the other hand, an attribute can not be represented by a

connection. A connection requires both a source and a target. If a primitive data type is

used, there can not be a source and target in the same diagram. Nevertheless, if the data

type is non-primitive and can be identi�ed to an existing notation element, representing

an attribute as a connection would be possible. However, if this is the case, there should

rather be a relation on meta-model level between these two meta-classes, instead of an

attribute.

Palette Entry The last extension type that is not supported by the new attribute extension

type is the palette entry. Since the palette is used to add notation elements that didn’t

exist before, there is no need in introducing a palette entry for an attribute, as attributes

are always present. Only their value changes, which can not be covered by a palette entry.

5.4 Mapping of Adding a Containment to Existing Classes to
Graphical Editors

In this section we analyze the mapping between adding a new containment on meta-model

level and its realization possibilities for graphical editors. Like the previous section, we

start by analyzing all supported realizations and continue with a discussion of why the

other extension types are not supported or at least should be avoided.

5.4.1 Supported Realizations on Graphical Editor Level

Similar to the previous mapping, we here have seven supported realizations for the

containment extension type. In order to preserve the structure of the previous sections,

�gure 5.4 shows the mapping of the new containment extension type. We here also

separate this section into �rst, the supported extension types that are used for the pure

representation and in the next paragraph the extension types used for the creation of the

containment on editor level are presented. As the argumentation for some extension types

are the same as in the previous sections, we only reference the paragraph, where these

extension types have already been discussed.

Representation As the previous two extension types, the containment can also be real-

ized as a combination of node or container and connection targeting its container. For a

detailed explanation refer to paragraph 5.2.1. Furthermore, the containment can also be

realized as connection, if the containment itself is intended as connection between two

meta-class instances.

Deciding, whether a containment is realized as new sub-node or -container or as com-

partment, strongly depends on further meta-classes and their references towards the

containment. If the containment doesn’t have any further references, representing it as

sub-node or sub-container is enough. If, however, there are more meta-classes related to

the containment with an arbitrary cardinality, the containment can be used as compart-

ment. On the other side, if the containment itself has an arbitrary cardinality towards

56

5.4 Mapping of Adding a Containment to Existing Classes to Graphical Editors

Containment

New View

Compartment

Palette Entry

Properties Entry

Context Dependent
Menu Button

 Sub-Node/
-Container

Node/Container +
Conntection

Figure 5.4: Mapping of the compartment extension type to graphical editor extension types

57

5 Mapping of Extensions between Meta-Models and Graphical Editors

it container, those containment instances can also be grouped in a compartment. As a

general rule, we can say that the more instances the containment may have, the better the

representation as compartment is.

As last extension type that can be used for the representation of the containment, a prop-

erties entry can be added to the container element. Besides the representation of the

containment and its possible sub-elements, the values of those sub-elements may also be

altered in the properties view.

Creating the Containment on Editor Level If the containment should also be created in the

diagram, there are the same possibilities we have, when creating an instance of a new

meta-class in our diagram. Those possibilities are a new palette entry or a new context

dependent menu button. Both of these extension types have already been mentioned in

paragraph 5.2.1. As support for any of the both mentioned creating extension types, a new

view can also be used. This view could either be a new editor with the containment as

root element or a dialog for choosing the containment’s sub-elements.

5.4.2 Unsupported Realizations on Graphical Editor Level

As the previous section discussed all supported extension types on graphical editor level

given the containment extension type, we now discuss why the other extension types are

not supported or at least are unlikely. Therefore, each of the remaining extension types

are analyzed in separate paragraphs.

Node/Container The reasons that speak against only adding a node or a container to

the diagram are the same as mentioned in sections 5.3.2 and 5.2.2. Of course, if the root

element of the diagram changes due to a newly created editor, the containment could

be realized as node or container. However, the containment wouldn’t be a containment

extension type anymore, but one of the meta-class extension types.

Annotation and Change of Appearance As containments are rather complex instances

and usually contain further elements, simply changing the appearance of the existing

notation element won’t cover all the containment’s features. An equal problem occurs for

annotations. Instead of an attribute, a containment o�ers more complexity. Therefore, we

can not add an annotation, in order to grasp the containment to its full extend.

Extension of Outline Extending the outline view, in order to show a containment that

isn’t shown anywhere else in the diagram, can be rejected with the same reasons as in

section 5.1.2. Therefore, we do not discuss this extension type further.

Toolbar Button The last extension type that is unlikely to realize given the containment

extension type, is the toolbar button extension type. We could implement a toolbar button

serving the functionality of creating the containment in any desired way. However, we

would require certain rules specifying which notation element receives the graphical repre-

sentation of the containment and which does not. Furthermore, not only one containment

58

5.5 Mapping of the Relation Extension Type to Graphical Editors

Relation
Palette Entry

 Connection

Outline View

Context Dependent
Menu Button

Properties Entry

Figure 5.5: Mapping of the relation extension type to graphical editor extension types

instance would be added, but an arbitrary valid number. Although, in some scenarios this

may be useful, in general, we should refrain from implementing such a toolbar button.

5.5 Mapping of the Relation Extension Type to Graphical
Editors

The last extension type, whose mapping needs to be discussed is the relation extension

type. Again, we �rst provide all the supported extension types on graphical editor level.

Afterward, the present the rather unlikely or unsupported extension types.

5.5.1 Supported Realizations on GRaphical Editor Level

As in the previous sections, an overview is given by �gure 5.5. When speaking of the

relation extension type, it is important to remember that only the relation is relevant at

that point. Of course, the relation always has a source and a target meta-class. In this

section, however, we focus on representing and creating only the relation on graphical

editor level. Furthermore, we need to remember that only those relations are relevant that

would still be relations, if the core meta-model was extended intrusively. As we did in

the previous sections, we divide this section into paragraphs analyzing the representation

possibilities and the possibilities to create the relation.

Representation Given the relation extension type, we have overall two possibilities to

represent the relation. The �rst one is the connection, while the second one is extending

the outline view. Given a relation, we always can choose whether we want to represent

59

5 Mapping of Extensions between Meta-Models and Graphical Editors

is as connection or if we want to represent it only indirect. An indirect representation

thereby means that, considering an unidirectional association, the source of the relation

is represented within an existing notation element, the target, leaving out the relation

representation. Considering a composition, the target is usually represented within the

source notation element. When seeing that a notation element is placed inside an existing

one, the user knows that the inner notation element belongs to the outer one. Therefore,

there is no reason to also represent the relation explicitly.

Another way of representing the relation extension type is by extending the outline

view. This could happen, if the relation is de�ned as connection on graphical editor level

representing a data �ow. Although present in the actual diagram, an extension of the

outline could therefore imply a bottleneck between some of the entities. The connection

itself could then, for example, be represented in a di�erent color than in the actual diagram.

Creation of the Relation This paragraph assumes that the relation is represented as con-

nection. Indirect representations were already regarded in the previous sections analyzing

the other extension types on meta-model level. As we represent the relation as connection,

besides adding a palette entry, also a context dependent menu button can be added. As

the connection is relation-based, no new element will be added to the underlying model.

Moreover, the properties view of existing elements changes. Therefore, we also have the

possibility on graphical editor level to extend the properties view by adding a new entry,

if not done automatically. The properties entry can then show the connection between

two notation elements or we could even create further connections between elements that

were not connected before.

Within the next paragraph, we discuss why there is no mapping to the rest of the extension

types on graphical editor level given the relation extension type.

5.5.2 Unsupported Realizations on Graphical Editor Level

During this section we analyze the seven extension types left on graphical editor level.

We again, discuss those extension types only shortly, if the reasons behind not using them

are similar to reasons we already mentioned during previous sections.

Node/Container Since a relation states a connection between two meta-classes, realizing

the relation as node or container would cause the source and target information to get

lost. Of course, we could add annotations to the node or container that state the source

and the target element. However, in a larger diagram with many similar elements, we can

not see which element is connected to which. Furthermore, if the elements don’t have an

ID, they can not be identi�ed exactly, when using this sort of notation. This is why the

developer should refrain from realizing the relation extension type as node or container.

ExtendExistingNotationElement The same argumentation from above can also be applied,

when thinking about a realization as sub-node or sub-container. However, as mentioned

in the previous section, a relation can also be indirectly realized. Considering this, the

60

5.5 Mapping of the Relation Extension Type to Graphical Editors

relation, of course, is partly represented as sub-node/-container, compartment or annota-

tion. However, as the representation is only indirect, these realizations are not considered

above. At last, the extension type considering the change of appearance can also not be

supported by the relation, as the semantic behind such an extension is not clear. A change

in the color of a notation element, usually maps to a certain state. A relation, however,

does not resemble a state.

Toolbar Button Like always, the toolbar button resembles a special extension type. There

could be scenarios, where a toolbar button is needed to create connections. However, these

scenarios are limited to a view. Therefore, the toolbar button is here again, not considered

a likely extension type.

New View Although possible in every other mapping, a new view created because of

a relation, is unlikely. As already stated, the relation is only represented directly as

connection. A connection as such, relates two notation elements. Therefore, there is no

reason to implement a new view to represent the connection. Even if the connection needs

to be created between three notation elements, this can still be done within the normal

diagram representation. A new view would only let the user choose in a dialog window,

which notation elements the connection should target. Although this is a scenario for

implementing a new view, it is rather unlikely and therefore, the view is not considered in

the mapping above.

61

6 Implementation and Validation

This chapter deals with the implementation of both prototypes in Graphiti and Sirius. On

the one hand, this chapter is used to validate the classi�cation of chapter 4 as well as

the mapping of those extension types in the previous chapter. On the other hand, this

chapter can also be seen as guideline as to how di�erent extensions in both Sirius and

Graphiti can be implemented. To start o�, we �rst discuss possible scenarios that can be

used for the validation. After choosing a scenario, we �rst analyze its core meta-model and

implement the corresponding graphical editor in both frameworks. When analyzing the

extensions, we �rst take a look at the meta-model extension types. From those extension

types, we infer the possible mapping to graphical editor extension types. During the

implementation we choose appropriate extension types on graphical editor level with

regard to the implementation of the core editor. Therefore, not every mapping can be

implemented, as there are too many di�erent mappings. This procedure is done for all

three extensions highlighting the most important changes during each extension. This

chapter concludes with a section that sums up the mappings validated in each framework.

6.1 Overview on Available Scenarios

To validate the concept introduced in chapters 4 and 5, we implement two prototypes.

One is implemented with the help of the Graphiti framework, the other one with the

Sirius framework. Both are Eclipse-based graphical editor frameworks. To show that the

classi�cation and the mapping analyzed in the previous chapter holds for any realistic

scenario, we �rst have to choose an adequate scenario. Overall, we found three basic

scenarios, which look promising on �rst sight. One of them is analyzed at length during

this chapter, while the other scenarios are discussed shortly within the next chapter. Table

6.1 gives an overview on the possible extension types on graphical editor level that can

be realized with possible extensions on meta-model level. As we can see, the Smart Grid
Resilience Framework1

can support all possible extension types on graphical editor level in

its extensions. To be fair, we therefore used a more or less arti�cial extension among the

two existing ones on meta-model level. Even though one of these extensions didn’t exist

before, the extension itself is conclusive.

The IntBIIs extension is introduced by Heinrich et al [22]. IntBIIs is an extension of the

Palladio Component Model, which addresses only the usage model. An evaluation of

this scenario is done in section 7.3.1. Like the IntBIIs extension, the security extensions

mentioned in the table are also an extension of the PCM. Instead of the usage model, they

address the repository and the resource environment. Those extensions are introduced by

Busch et al [5] and are also further addressed in section 7.3.2.

1https://svnserver.informatik.kit.edu/i43/svn/code/SmartGrid

63

https://svnserver.informatik.kit.edu/i43/svn/code/SmartGrid

6 Implementation and Validation

N
o

d
e
/
C

o
n

t
a
i
n

e
r

C
o

n
n

e
c
t
i
o

n

A
n

n
o

t
a
t
i
o

n

C
o

m
p

a
r
t
m

e
n

t

C
h

a
n

g
e

N
o

t
a
t
i
o

n
E

l
e
m

e
n

t

S
u

b
-
N

o
d

e
/
-
C

o
n

t
a
i
n

e
r

P
a
l
e
t
t
e

E
n

t
r
y

C
o

n
t
e
x
t

D
e
p

e
n

d
e
n

t
M

e
n

u
B

u
t
t
o

n

P
r
o

p
e
r
t
i
e
s

E
n

t
r
y

E
x
t
e
n

d
O

u
t
l
i
n

e

N
e
w

V
i
e
w

T
o

o
l
b
a
r

B
u

t
t
o

n

Smart Grid x x x x x x x x x x x x

IntBiis x x x

Security Extensions x x x x x x x

Table 6.1: Overview on available scenarios

As we can cover all the possible extension types on graphical editor level with the Smart

Grid extensions, we choose this as our scenario for the implementation of both prototypes.

An introduction to the Smart Grid Resilience Framework is given in the next section.

6.2 Smart Grid Resilience Framework

A smart grid is conceived as an electric grid able to deliver electricity in a controlled,

smart way from points of generation to consumers [20]. Smart grids often make sense,

when using renewable energy resources, such as solar plants or wind generators. There

are usually more than one renewable energy resource in a de�ned region. Those can all

be addressed separately. With a smart grid we can choose, whether we need all wind

generators or ,if the production of a few is currently enough.

When designing a new smart grid, it becomes necessary to graphically represent the smart

grid, as distances or possible �aws can be detected easier. Therefore, this chapter uses

graphical editors to represent a smart grid based on a given meta-model. The graphical

editor can also be used to run various analysis to show the impact of each analysis directly

in the diagram. Furthermore, we validate our classi�cation of chapter 4 and the mapping

discussed in chapter 5 with the help of overall three extensions.

In order to build a graphical editor for smart grids, we need to de�ne a meta-model �rst,

on which the graphical editor is based. The meta-model given in �gure 6.1 is based on

previous work available at
2
. Based on the root element SmartGridTopology, there are

overall four di�erent containments: PowerGridNode, NetworkEntity, PhysicalConnection
and LogicalCommunication. Network entities are at least connected to one power grid node,

which is responsible for the generation of power. Furthermore, these network entities can

be connected to each other by a physical connection. The abstract class NeworkEntity can

2https://svnserver.informatik.kit.edu/i43/svn/code/SmartGrid

64

https://svnserver.informatik.kit.edu/i43/svn/code/SmartGrid

6.2 Smart Grid Resilience Framework

Figure 6.1: Screenshot of the smart grid core meta-model as described in 2

65

6 Implementation and Validation

be divided into further concrete classes, such as NetworkNode, SmartMeter, ControlCenter,
InterCom and GenericController. All of these entities, beside the network node, are also a

CommunicatingEntity meaning that there can be a logical communication between two of

these entities. The only attribute listed in this meta-model is the Aggregation of a smart

meter. If the value of this attribute is higher than one, it means that the smart meter

instance resembles as many smart meters as the attribute’s value states.

The next section starts with the implementation of the given meta-model as Sirius-based

graphical editor and continues with the implementation of the Graphiti-based editor.

6.3 Implementation of the Core Meta-Model in Graphical
Editors

This section covers the implementation of the core editor for both the Graphiti and the

Sirius framework. Both subsections cover the framework speci�c parts of the implementa-

tion. Therefore, this whole chapter can also be seen as a guideline, when similar editors

have to be implemented in either of the two frameworks.

In general, when implementing a new editor, we start o� by choosing the root element

for each model representation. In our case this is an instance of the SmartGridTopology
meta-class, as all the other meta-classes are contained within SmartGridTopology. All

the other meta-classes we want to represent in the graphical editor can then be added

according to the frameworks speci�cs.

6.3.1 Sirius Implementation

When using the Sirius framework, we can more or less click our editor together and still

have the opportunity to provide java classes for even more functionality. Creating an editor

in Sirius mainly consists of the following parts. First, we de�ne a new viewpoint with

which we de�ne the connection between the di�erent models and the editor we’re about

to implement. Second, we need to de�ne all notation elements that should be represented

in the diagram later. Optional, we can implement sections that also support the creation

of these de�ned notation elements. Putting all this together and creating a diagram for a

given model instance, results in the diagram shown in �gure 6.2. This �gure is thereby

our running example throughout this entire chapter for both the Sirius and the Graphiti

framework. The center of the diagram thereby shows the notation elements, while on

the right side the palette view includes all notation elements that can be added to the

diagram. The legend in �gure 6.3 shows which notation element resembles which model

element. Starting with the de�nition of a new viewpoint, we explain how this editor can

be implemented within the next subsections. Thereby, we only brie�y discuss the features

of representing and adding new notation elements, as this can already be found in many

tutorials throughout the internet.

66

6.3 Implementation of the Core Meta-Model in Graphical Editors

Figure 6.2: Screenshot of the resulting smart grid core editor in Sirius

Power Grid Node Smart Meter

Network Node

Inter Com

Generic Controller Control Center

Power Connection

Physical Connection Logical Communication

Figure 6.3: Legend of all notation elements in the Sirius core editor

67

6 Implementation and Validation

Figure 6.4: Screenshot of the odesign �le realizing the topography meta-model

6.3.1.1 Creating a New Viewpoint

A typical editor created with the Sirius framework is speci�ed in an odesign �le. Figure

6.4 thereby shows the odesign for our core editor. In order to de�ne representation

elements and their rules for creation and editing, we �rst have to de�ne a viewpoint,

which encapsulates all of this information. The viewpoint is shown in the �gure right

below the folder symbol having topo written next to it. The viewpoint’s name we used

for the de�nition of our core diagram editor is Topology. Other than the name of the

viewpoint we can also de�ne the model �le extension this viewpoint can be applied

to. Therefore, the names of the model �le extensions have to be given. Since we only

want to use this viewpoint for .smartgridtopo model �les, we should insert this as model

�le extension or simply enter *, in order to support all �le extensions. The concrete

models that are actually supported, are models containing a special root node element

speci�ed in the diagram description. As we de�ne only one diagram description with

68

6.3 Implementation of the Core Meta-Model in Graphical Editors

Figure 6.5: Screenshot of the main properties for representing a power grid node

smartgridtopo.SmartGridTopology as root node element and those elements can only exist

in .smartgridtopo model �les, only these �les are supported.

6.3.1.2 Representation of Notation Elements

As shortly stated in the previous subsection, we use a diagram description to de�ne which

element should be the root editor node for every diagram we want to create. Besides

diagram descriptions Sirius o�ers further editors we could create, such as table descriptions

or tree editors. Nevertheless, the extension types for graphical editors discussed in chapter

4 are based on editors that support nodes, container structures and connections and

therefore we only consider diagram descriptions in this thesis.

Inside a viewpoint we can add multiple di�erent descriptions to the viewpoint, which is

why we need to identify each description by adding an ID to it. In our case the ID of the

diagram description is SmartGridTopology, as seen in �gure 6.4. When adding an ID and

de�ning which model element is used as root node, we can start adding notation elements

to the description. Adding notation elements for representation purposes requires layers.
We have chosen to use overall four layers in this core editor. In each layer, both the

representation and the creation of those notation elements speci�c to this layer are de�ned.

Therefore, the �rst layer contains all entities like smart meter, intercom, generic controller

and control center. The second layer, as seen in �gure 6.4, contains the power grid node and

the power connection. The third layer is responsible for the representation and creation

of network nodes and physical connections, while the last layer only contains logical

communications. In Sirius each of these layers can be hidden resulting in the masking of

all its containing elements in the editor.

If we want to add a notation element for representation to the editor, we have to de�ne it

inside a layer. As an example, we take a closer look at the PowerGridNode in �gure 6.4.

We �rst de�ne that we want the power grid node to be actually displayed as a node and

add a style to it. In this case, we choose a yellow diamond as representation. For this to

work, we also need to add some properties to the PowerGridNode. Those properties can

be seen in �gure 6.5. When creating a new notation element for representation purposes,

we have to de�ne an ID for this element �rst. After that, we need to tell the node to

which meta-model element the node should refer to. In out current example this is the

smartgridtopo.PowerGridNode, as shown in the second row of the �gure. The last row in

this properties sheet is the Semantic Candidates Expression. This is the only entry that

is optional but should always be used, especially, if more than one model exists and is

69

6 Implementation and Validation

opened in a Sirius diagram. The Sirius documentation for those expressions states the

following:

• Semantic Candidates Expression: Restrict the list of elements to consider before

creating the graphical elements. If it is not set, then all semantic models in session

will be browsed and any element of the given type validating the precondition

expression will cause the creation of a graphical element. If you set this attribute

then only the elements returned by the expression evaluation will be considered.
3

Since we didn’t set a precondition, all power grid nodes of all available smartgridtopo

models would be shown, if this expression is not set. With feature:ContainsPGN, we �rst

address only the smartgridtopo model for which we create a representation and not all of

them. Second, we restrict the represented power grid nodes to the ones that are returned,

when calling the ContainsPGN composition in the meta-model. An equivalent semantic

candidates expression, which we also use is [self.ContainsPGN]. When creating a new

connection for representation purposes, there are a few other �elds we have to �ll out. First

of all, we have to choose nodes and containers the connection can be applied to as source

and target notation element, as well as an expression on how to �nd the target. These

information need to be applied for both relation-based connections and element-based

connections. The di�erence between those two is that the element-based connection

corresponds to a speci�c meta-class leading to further information that need to be given.

Those information are on the one hand the domain class, like in �gure 6.5, and on the

other hand an additional expression leading to the source.

6.3.1.3 Creation of Notation Elements

As our notation elements are now represented, we also want to be able to create all of these

notation elements within the diagram. Therefore, we �rst need to create a section inside

one of our layers. In this example, we provide one section to each layer. It is also possible

to put all tooling concerns, such as node or container creation, delete features, double click

actions and so on into one section. In our example, we consider again the power grid node

and its creation. As we can see in �gure 6.4, we are now in the section Power and inside

the Node Creation Power Grid Node item. The �rst two entries consider only variables that

can be used throughout the creation of the node. The �rst variable returns the container

notation element. For our purposes, this is the only variable necessary. This is in our case

the SmartGridTopology model element, on which this diagram is based. The third entry is

the starting point of our creation. We �rst switch the context to our root node element

under which we want to add a new power grid node. Second, we create a new instance of

that node. Thereby, we have to enter a reference name, in which the new instance will be

stored. As there is only one way to access all power grid nodes, we enter ContainsPGN,

as we did for the creation of the representation of this node. The last item we use, when

creating a power grid node, is to set the ID. Since we do not want, and there is no need for

it, to manually type the ID for each new power grid node, we use a java service to provide

one randomly. How the use of java services works, is described shortly within the next

section.

3
https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial

70

6.3 Implementation of the Core Meta-Model in Graphical Editors

6.3.1.4 Java Services

Java services are always used, if the Sirius framework itself doesn’t provide the required

functionality. This may be because the functionality required is too speci�c or there are

further validations required than the framework itself could provide. The basic implemen-

tation of a java service requires four steps
4
, which are described below.

• Create Java Class: The java class we want to use as a service, according to the

tutorial, should be placed in a new source folder services within our project containing

the odesign description �le. However, the service class can be placed anywhere in

any project, as long as there is a dependency from our viewpoint speci�cation project

to the project containing the java service. The class itself should have a standard

constructor with no arguments, as an instance of this class is created automatically

by the Sirius framework whenever a method of this class is needed.

• Implement Java Service Methods: For the java service method to be valid and

accessible from inside an editor, each method has to follow a speci�c signature.

The method should be public and should return either a primitive data type or an

ecore-based object for example EList, EObject or any subtype. Furthermore, the

method needs at least one parameter which should also be an ecore-based object.

The method signature for our ID generator thereby looks as described in listing 6.1

Listing 6.1: Method signature of ID generator

1 public int generateRandom(EObject obj)

We here do not need to further specify the parameter, as we don’t need it in order to

generate a random number.

• Let the Diagram Description Know the Service Class: Before we can actually

use the service class in our editor speci�cation, we �rst need to let the editor

speci�cation know that the class actually exists. Therefore, we add a Java Extension
in our odesign �le and enter the quali�ed java class name of our java service. The

quali�ed java class name is thereby the combination of the package and the class

name of our service. This is shown at the bottom of �gure 6.4.

• Using the Service: For an easier understanding of how we can use the java service,

�gure 6.6 is given showing the properties of a set action setting the ID of an entity

with the help of a java service. The feature name is thereby the name of the attribute

we want to set. In this case it is the ID. Below, in the expression �eld, we can use

our java service. The service is thereby called by entering service: followed by the

method we want to call. The parameter, if there is only one, doesn’t need to be

entered as the EObject is automatically transferred to the method by the framework.

The object transferred is thereby dependent on the context. Since we now consider a

new instance of a power grid node, the new power grid node instance is transferred.

4
https://wiki.eclipse.org/Sirius/Tutorials/AdvancedTutorial

71

6 Implementation and Validation

Figure 6.6: Screenshot of the properties of the set action when using a java service

A java service can be used wherever an expression is required. This includes semantic

candidates expressions, value expressions, preconditions and further.

6.3.2 Graphiti Implementation

While we simply can create a diagram based on an existing model in Sirius, this is not

possible in Graphiti at �rst. We can either create a new Graphiti editor that creates a new

topology model from scratch with the help of a wizard or we can create a plug-in receiving

an existing topology model and creating a diagram on that basis. Since we may have

also existing topology models, the latter makes more sense and is discussed in subsection

6.3.2.3. However, �rst of all we need to de�ne the diagram we can use for a topology model.

Where we need a viewpoint speci�cation in Sirius, we have to implement speci�c classes

in Graphiti, which are described in the next subsection. As soon as we created the diagram,

we also need to implement the representation and creation of all the notation elements,

which is done in section 6.3.2.2. The implementation in Graphiti for the topology and later

the input and output model extensions is based on previous work. Further information

can be gained here
5
. As we are forced to write java code, when dealing with Graphiti

and can not click our editor together like we can when using Sirius ,there are a lot of

listings presented in all Graphiti-based sections. All of these listings are explained in detail

after they are �rst referenced, so that each section should be understandable even without

reading every line of code.

6.3.2.1 Implementing a New Smart Grid Diagram

While we needed to de�ne a viewpoint and a diagram description in Sirius, we also have

to de�ne a basic diagram representation that can be used for smart grid topology models.

In contrast to Sirius, we have to implement the java code by ourselves. Since we are using

Eclipse and our new graphical editor can be seen as a plug-in to the Eclipse platform,

we, of course, need to implement a few extension points, in order to place our graphical

editor in the Eclipse platform. In Sirius, this is done automatically, when creating a new

viewpoint speci�cation project. For a new Graphiti editor we need to implement three

extension points that are explained in the following.

org.eclipse.graphiti.ui.diagramTypes This extension point only states the diagram type

ID, which is needed whenever we want to refer to any smart grid topology graphical editor

based on Graphiti. There is no class that has to be implemented but only the name of

5https://sdqweb.ipd.kit.edu/wiki/Smart_Grid_Model

72

https://sdqweb.ipd.kit.edu/wiki/Smart_Grid_Model

6.3 Implementation of the Core Meta-Model in Graphical Editors

the diagram type, the actual self de�ned type, which has to be unique, and an ID for this

extension point has to be de�ned.

org.eclipse.graphiti.ui.diagramTypeProviders According to the Graphiti developer guide
6
,

this extension type is used to register custom diagram type providers. The custom provider

must understand the given diagram type provided by the previous extension type and

therefore be suitable for editing and viewing diagrams of that type. The class we need to

implement is required to implement the IDiagramTypeProvider interface. This class is by

far the most important class of our editor, as it not only contains the standard diagram

behavior instance handling the complete behavior in our diagram, but also the feature

provider. The feature provider contains all sorts of notation elements we want to use in our

editor. In our case, these are patterns containing all sorts of features as listed in section 2.7.1.

Since we provide our own meta-model, we should also de�ne a custom feature provider.

Basically, the feature provider is implemented as follows. First, the constructor adds all

patterns that we want to represent in the editor. The de�nition of a pattern is analyzed

in section 6.3.2.2. Next, since we also want to be able to use mouse-over buttons in later

extensions, we already de�ned a method, which adds context buttons to the mouse-over

view. Therefore, another extension point is de�ned that all extensions can implement. This

is exemplary shown in section 6.4.4.3. So far, we could already use the feature provider

as it is and would be able to view and create all element-based patterns. However, the

PowerConnection in our meta-model is not element-based but only relation-based meaning

that there is no meta-class de�ning the power connection. Therefore, we also need to

override most of the feature methods, namely getAddFeature, getCreateConnectionFeatures,
getRemoveFeature and getDeleteFeature to adjust them to our needs. In our editors adding

simply means creating a notation element, while creating also means the creation of the

corresponding business model element. Removing and deleting can thereby be regarded

the same way, as removing only removes the notation element from the diagram and

deleting also removes the corresponding business model element. The implementation of

these methods is straightforward and exemplary shown for the getRemoveFeature method

in listing 6.2.

Listing 6.2: Get remove feature implementation regarding the relation-based power con-

nection

1 public IRemoveFeature getRemoveFeature(final IRemoveContext context) {

2 if (context.getPictogramElement() instanceof Connection) {

3 Connection con = (Connection) context.getPictogramElement();

4 NetworkEntity start = this.getNetworkEntity(con.getStart());

5 PowerGridNode end = this.getPowerGridNode(con.getEnd());

6

7 if (start != null && end != null) {

8 return new RemovePowerConnectionFeature(this);

9 }

10 }

11 return super.getRemoveFeature(context);

6http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.graphiti.doc%2Fresources%

2Fdocu%2Fextension-points%2FdiagramTypeProviders.html

73

http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.graphiti.doc%2Fresources%2Fdocu%2Fextension-points%2FdiagramTypeProviders.html
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.graphiti.doc%2Fresources%2Fdocu%2Fextension-points%2FdiagramTypeProviders.html

6 Implementation and Validation

12 }

The context given as parameter is always dependent on the method called. Given the

getAddFeature method, the context would be an implementation of IAddContext. In the

second line of the listing, we check whether the pictogram element contained in the given

context is a connection. If not, we can delegate to the super class method and let the

remove action be handled there. If we are dealing with a connection, we check whether

the given connection starts at a network entity and ends at a power grid node. If that is

given, we are dealing with a power connection. Otherwise, a logical communication or a

physical connection should be removed currently. However, if the source of the connection

resembles a network entity and the target resembles a power grid node, we can return a

RemovePowerConnectionFeature instance, where the logic of removing a power connection

is handled.

org.eclipse.ui.editors This extension point is the only one, which is actually optional.

A Graphiti diagram would now already open, if a wizard or a topology model loader is

implemented, which is shown in section 6.3.2.3. However, as we would like the diagram

to be more extensible we provide our own version of a Graphiti diagram and therefore,

we need to implement the given extension point. This extension point requires us to

implement the IEditorPart interface. This is easily achieved by extending the Graphiti

diagram class called DiagramEditor. The only method we override in this class is the

createDiagramBehavior method, as we provide our own diagram behavior. Although, we

can access the diagram behavior from the diagram provider class implemented in the

previous extension point, Graphiti doesn’t provide methods to set the diagram behavior

in the provider class. That is why we need an extended diagram editor. Our self de�ned

diagram behavior adds a new ResourceSetListener, as we know that the given editor is

going to be extended. This listener lets us know, whether a resource inside the given

resource set changed and needs to be saved along with the other resources. In Sirius this

is automatically done, if a resource is added to the current Sirius session described later in

section 6.4.2.

6.3.2.2 Creating Notation Elements in Graphiti

Like in Sirius, we need to de�ne each node and connection we want to use separately.

Instead of clicking our desired representation together, we need to implement so called

patterns in plain java code. For each pattern we can choose whether we want to be able

to only represent the underlying domain model, or, if we also want to be able to create

new notation elements with a palette entry and other features, such as resizing, moving,

removing or deleting of that notation element. Like in Sirius, we can link each notation

element with a domain model element making it easier to implement such a delete feature.

Since the procedure for the implementation of such a pattern is almost the same for each

notation element, we analyze the implementation of the control center as container and

the logical communication as domain model element-based connection and the power

connection as relation-based connection.

74

6.3 Implementation of the Core Meta-Model in Graphical Editors

Control Center The basis for each entity in our scenario is given by the abstract class

AbstractFormPattern, which extends AbstractPattern and implements basic functionality

needed by each pattern. Together, both of these abstract classes implement functionality,

such as creating, moving, updating or resizing of all concrete patterns we want to imple-

ment. For a more detailed view on the implementation of the AbstractPattern class, refer

to the documentation in [11]. The AbstractFormPattern class further implements methods,

such as canAdd and canCreate that return true, if the location we want to place our pattern

is the diagram itself. For using the control center in further extensions, these methods

should be overridden, as the control center should be used as container.

For the representation of the control center or any other entity we take a closer look at

the add method implemented in AbsractFormPattern, which is shown in listing 6.3.

Listing 6.3: Implementation of the add method in AbstractFormPattern for the representa-

tion of an entity

1 public PictogramElement add(final IAddContext context) {

2 Diagram targetDiagram = (Diagram) context.getTargetContainer();

3 IPeCreateService peCreateService = Graphiti.getPeCreateService();

4 ContainerShape containerShape = peCreateService.createContainerShape(targetDiagram,

true);

5

6 // add a chop box anchor to the shape

7 peCreateService.createChopboxAnchor(containerShape);

8

9 IGaService gaService = Graphiti.getGaService();

10 GraphicsAlgorithm shape = this.getGraphicalPatternRepresentation(containerShape);

11 gaService.setLocation(shape, context.getX(), context.getY());

12

13 this.linkObjects(containerShape, context.getNewObject());

14 return containerShape;

15 }

The �rst three lines of the given method simply create a container shape and add it to

the current diagram. The container shape is important, since we then have the possibility

to add further shapes in di�erent extensions. The ChopboxAnchor created in line seven

makes sure that all connections targeting our entity are placed in the middle of the border

of our container shape. The next three code lines manage the graphical representation

of the entity and its location in the diagram. This is the only part, which is speci�c for

each entity, as each entity type should be represented di�erently. Therefore, the method

getGraphicalPatternRepresentation is abstract and needs to be implemented by each entity

pattern. Basically, the shape, color and possible children shapes are de�ned in that method,

which is shown in listing 6.4. The last two lines in listing 6.3 link the current container

shape with the underlying business object. In case of the control center pattern this object

is the desired control center.

Listing 6.4: Implementaiton of the control center’s graphics algorithm

1 protected GraphicsAlgorithm getGraphicalPatternRepresentation(ContainerShape

containerShape) {

75

6 Implementation and Validation

2 IGaService gaService = Graphiti.getGaService();

3 Rectangle rect = gaService.createRectangle(shape);

4 rect.setWidth(200);

5 rect.setHeight(100);

6 rect.setForeground(new ColorConstant(128, 128, 128));

7 rect.setBackground(new ColorConstant(255, 255, 255));

8 rect.setLineWidth(ConstantProvider.shapeLineWidth);

9

10 MultiText inside = gaService.createMultiText(rect, "<<ControlCenter>>");

11 inside.setHeight(25);

12 inside.setWidth(200);

13 inside.setX(rect.getX() + 1);

14 inside.setY(rect.getY() + 1);

15

16 return rect;

17 }

Regarding listing 6.4, it becomes clear that the container shape given as parameter only

represents the frame for our concrete control center. In case of the control center repre-

sentation, we �rst create a new rectangle, which we want to use as container for further

nodes and set its color, size and line width. Since we want the user to know that this is

a control center, we also have to add another label to it, which is done in lines ten to 14.

For other entities this method is, of course, implemented di�erently. However, this listing

should serve as basic idea of how to implement those entities.

Since we not only want to represent the control center and the other entities, but want to

have a palette entry for creating these entities we also have to override the create method

in the ControlCenterPattern class. As we need to create the business object, as well as

the graphical representation, we start by getting our SmartGridTopology root container

class from the current diagram. Based on that topology model we create a new control

center, add it to the list of network entities in the SmartGridTopology object and call the

addGraphicalRepresentation method, which does the rest for us, as we already implemented

all the necessary methods.

The last step we need to do before the control center (and the other entities) are active

and can be used in the diagram is to switch to our SGSFeatureProvider class and add the

line in 6.5 to the constructor of our feature provider.

Listing 6.5: Adding a new pattern to the Graphiti diagram

1 this.addPattern(new ControlCenterPattern());

Logical Communication As basis for each element based connection we also use an ab-

stract class called AbstractConnection, which itself extends the abstract class provided by

Graphiti called AbstractConnectionPattern. The procedure for implementing the create
method is similar to the implementation of the control center shown in the previous

paragraph. The di�erence is that we not only have to create a line, instead of a rectangle,

we also have to set the anchors of the connection accordingly. Therefore, we added a chop

box anchor for every entity pattern, which can be addressed by the ICreateConnection-
Context, which is given as parameter for the create method of our logical communication

76

6.3 Implementation of the Core Meta-Model in Graphical Editors

pattern. Other connection contexts are given accordingly in every other method provided

by AbstractConnectionPattern. The given context allows us to access the source, as well as

the target anchor. From these given anchors and their parent pictogram elements Graphiti

provides a method with which we can access the business model element according to the

given pictogram element. The parent of each chop box anchor is the pictogram element

representing an entity.

For the power connection, the pattern can stay the same except that in the create method

we, of course, can not create a power connection in the underlying business model as

the power connection only exists as relation. Therefore, we need to set the ConnectedTo
attribute each NetworkEntity instance contains. That means that we can apply a connec-

tion pattern to element-based edges, such as the logical communication, as well as on

relation-based edges, such as the power connection.

6.3.2.3 Creating a Representation for a Topology Model

As mentioned earlier we have two options, if we want to use a Graphiti diagram. The �rst

one is to create a wizard and along with the creation of the diagram to create the topology

model resource. The second option is to load an existing topology model and build a

diagram upon that model. As this is more comfortable we only describe the second option.

However, the knowledge needed on Graphiti is the same for both options. Moreover,

since it is not possible to create a diagram representation like we do in Sirius, we have

to implement our own plug-in providing this functionality independent on whether we

want to use the wizard or loading an existing topology model. Therefore, we create a new

toolbar button for loading a topology model, as it is described later in section 6.4.2 for

the input model extension. After the topology model is loaded, we can start creating the

diagram. As the implementation is only partly dependent on Graphiti, we more or less

skip the Graphiti independent parts by only describing them shortly. Creating and �lling a

diagram in Graphiti with content basically consists of four steps. The �rst one is creating

the diagram itself and connecting it to the topology scenario. Then, we need to add all

necessary topology elements to the diagram. As all elements are placed in the upper left

corner, we also should apply a layout algorithm to the notation elements. The last step

necessary is to save the diagram. As the last two steps are mostly independent of Graphiti

and can be applied to any resource, it is only mentioned for the sake of completeness. The

other two steps are explained in detail in the following.

Creating a NewDiagram Apart from creating a �le containing the future diagram, we also

need to con�gure the diagram itself. Therefore, listing 6.6 is given. The given listing is

embedded and executed in a recording command, as otherwise an exception would occur,

when executing the code.

Listing 6.6: Creation of a Graphiti diagram

1 diagramResource.setTrackingModification(true);

2 final Diagram diagram = Graphiti.getPeCreateService().createDiagram("

SmartGridSecurityDiagramType", diagramName, 10, true);

3 // link model and diagram

77

6 Implementation and Validation

4 final PictogramLink link = PictogramsFactory.eINSTANCE.createPictogramLink();

5 link.setPictogramElement(diagram);

6 link.getBusinessObjects().add(scenario);

7 diagramResource.getContents().add(diagram);

The listing starts with setting the tracking modi�cation to true, as we want to track

changes in the topology model, as well as in the diagram. Line two creates the diagram

itself. Therefore, we need to provide the correct diagram type ID, which we de�ned in our

extension point explained earlier in section 6.3.2.1. Apart from the name of the diagram,

we also provide information on the grid size of the later diagram and whether the diagram

should snap to the grid. After the diagram creation is done, we again have to link the

diagram with the current topology scenario, which is done in lines four to six. The last

line in this listing only adds the diagram to the resource we created earlier. Now loading

the resource automatically loads the created diagram.

Adding Relevant Entities Since we can access the topology scenario, we also have access

to each entity and connection available in the current model. Therefore, the adding of

these entities can be done straightforward by iterating over all entities and then adding

each of them to the current diagram. Listings 6.7 and 6.8 show how the network entities

can be added to the diagram.

Listing 6.7: Preparation of each entity before adding them to the diagram

1 private void addElements(final Diagram diagram, final Object newObject) {

2 final AreaContext area = this.createAreaContext();

3 final AddContext add = new AddContext(area, newObject);

4 add.setTargetContainer(diagram);

5 add.setNewObject(newObject);

6 ...

7 }

The method given in listing 6.7 takes our diagram and an entity, such as a smart meter as

parameter. We then need to create an area context de�ning the location, where the new

notation element should be placed. As we apply a layout algorithm later this position may

be arbitrary inside the diagram. Next, we add an add context de�ning that we want to add

our new entity to the diagram. To actually add the newly de�ned context containing the

element to the diagram we again need a RecordingCommand with the code line given in

listing 6.8 to be executed.

Listing 6.8: Adding entities from inside a recording command

1 GraphitiHelper.getInstance().getFeatureProvider().addIfPossible(add);

This code line simply calls the addIfPossible method of our feature provider, which is re-

sponsible for adding, creating, deleting or altering all notation elements inside the diagram.

The procedure for adding connections is quite similar to adding entities to the diagram.

The di�erence between these two actions is that for a connection we need an AddConnec-
tionContext. Creating a new AddConnectionContext requires two anchors as parameters,

78

6.4 The Input Model Extension

Figure 6.7: The core editor for our running example in Graphiti

which we get from receiving the pictogram elements to the business objects the connection

connects. Therefore, it is important that we create the pictogram elements for the entities

�rst, as we need them to access their anchors. Now that we have created all entities with

their connections in our diagram we only need to layout them. This can be done with any

layouting algorithm and is used as custom feature. This means that we only need to ref-

erence the feature provider, while the rest of the implementation is independent of Graphiti.

The result of loading our running example can be seen in �gure 6.7. The elements’

representations are the same in Sirius as well as in Graphiti. The only change is that the

power grid nodes are represented as triangle and the power connections are black instead

of yellow.

6.4 The Input Model Extension

In this section we cover the �rst extension for our smart grid resilience framework.

Therefore, the section is divided into �rst the analysis of the meta-model including its

extension types and mechanisms. After that we discuss how a second model is loaded

to the existing diagram for both Sirius and Graphiti. Section 6.4.3 then deals with the

79

6 Implementation and Validation

EntityState

IsDestroyedC:CEBooleanC=Cfalse
IsHackedC:CEBooleanC=Cfalse

PowerState

PowerOutageC:CEBooleanC=Cfalse

ScenarioState

SmartGridTopology

NetworkEntity

PowerGridNode

[0..*] EntityStates

[0..*] PowerStates

[0..1] Scenario
[1..1]COwner

[1..1]COwner
[0..*] ContainsNE

[0..*] ContainsPGN

[1..*]CConnectedTo

Figure 6.8: Meta-model of the input model extension

Sirius implementation of the actual editor, while the last section covers the Graphiti

implementation.

6.4.1 The Input Meta-Model

The �rst of the three extensions for our smart grid resilience framework is the input

model given by the meta-model in �gure 6.8. This meta-model aims at adding states to the

existing meta-model elements of the topology meta-model. The top of the �gure shows

those meta-classes that already exist in the core meta-model, while the bottom of the �gure

shows the new meta-classes available in the input model extension. As we can see, this

extension only contains three additional meta-classes. Since we want to be able to create

smart grid input models, there has to be a root model element. In this case the root element

is ScenarioState, which contains the two other meta-classes. Furthermore, a ScenarioState
references a SmartGridTopology, the root element of the core model. As already mentioned,

the two remaining meta-classes in the extension aim at providing states to existing core

model elements. On the one hand, there is a PowerState meta-class, which tells the modeler

whether there is a power outage or not. Naturally, such a power state needs a power grid

node, where this state can be applied to. This is realized by an unidirectional association to

the meta-class PowerGridNode. If only this extension without the core meta-model would

be considered, we would have a meta-class extension type with an attribute extension

type and a relation extension type represented by the association. However, as we need to

focus on the developers intent, we here only contribute to the attribute extension type,

as the power outage should clearly be an attribute of the power grid node. The same

80

6.4 The Input Model Extension

extension mechanism is also used to relate an EntityState to a NetworkEntity. Entity states

indicate whether a given network entity is destroyed or hacked. Network entities, as seen

in section 6.2, are all elements we implemented as notation elements in the core editor,

such as the control center, network nodes, smart meters, generic controllers and intercoms.

Since we have only one extension type, according to our classi�cation, we need to think

about how to best realize these extension types on graphical editor level. Given the

attribute extension type, our mapping in section 5.3 suggests eight di�erent extension

types, where four can be used for the representation, while the other four should alter

the value of the attribute. As we ca not implement all of them, we choose to change the

appearance of a power grid node, if its power is out. For the other entities we also choose

a change in the appearance depending on the hacked and destroyed status. The only

exception thereby is the control center, where we add annotations to it regarding each

status. Changing the value is implemented as context dependent menu button.

The next subsections give detailed information on the actual implementation in Sirius, as

well as in Graphiti. But �rst, adding a new toolbar button to load possible extensions is

explained.

6.4.2 Adding a Second Model to the Editor

When representing the input model in an editor, it becomes clear that for this to work also

information of the corresponding topology model needs to be present. As the input model

represents an extension to the topology model, we would prefer to have both models at

the same time active in one diagram. If that is given, we can alter both models at the same

time and get a better view on how they interact together. In Sirius this is no problem, as all

models present in the same project containing a viewpoint description, are automatically

loaded to the current session. We only need to check whether, for example a certain

input model �ts to the current topology model. However, if the model is not present in

the current project, we need to load this model into the current session. In Graphiti the

model needs to be loaded in any way, as there is no equivalent to the Sirius session. In

order for this to work, we introduce a new toolbar button with which a second model,

and possibly further models, can be loaded. The model can thereby only be loaded, if the

diagram already displays a smartgridtopology model. Since the Sirius framework o�ers

its own toolbar, we can add a new toolbar button at the end of the standard toolbar. In

Graphiti, we have to use the basic Eclipse toolbar, as Graphiti doesn’t provide its own.

Therefore, both of these approaches unfortunately require a di�erent procedure, which is

why we �rst discuss the Sirius implementation of the toolbar button and then the Graphiti

implementation on its own.

6.4.2.1 Adding a Toolbar Button to the Sirius Toolbar

For the toolbar button to work as intended, we overall need three extension points all

provided by the Eclipse platform. The following enumeration lists and explains all three

of them.

• org.eclipse.ui.commands: This extension point is needed to tell the program what

to do after the button is pressed. The class implementing this command should

81

6 Implementation and Validation

extend the org.eclipse.core.commands.AbstractHandler class, as then only the execute

method has to be overridden. The basic course of action is here still independent

of the framework used. We �rst access the shell and from there open a new �le

dialog, from which we can choose the input model we want to load. After that, we

create and load a new resource containing the �le that was just chosen. The last

step is to access the current editor and add the resource to the list of resources that

are currently active in the editor. Since only the last part is really speci�c to Sirius,

listing 6.9 only covers these few lines.

Listing 6.9: The adding of a new model to the current Sirius session

1 IEditorPart part = PlatformUI.getWorkbench().getActiveWorkbenchWindow().getActivePage

().getActiveEditor();

2 DDiagramEditor editor = (DDiagramEditor) part;

3 final Session session = editor.getSession();

4 TransactionalEditingDomain domain = (TransactionalEditingDomain) editor.

getEditingDomain();

5 final RecordingCommand cmd = new RecordingCommand(domain) {

6

7 @Override

8 protected void doExecute() {

9 session.addSemanticResource(r.getURI(), new NullProgressMonitor());

10 }

11 };

12 domain.getCommandStack().execute(cmd);

Lines one to three only retrieve the current session containing all loaded models

and other resources, such as the current diagram. Since we can not alter the session

directly, as it is currently used by the diagram, we have to contain the method call

in line eight inside a RecordingCommand. That command is directly executed in the

last line of the listing. To minimize failures, there should be a check �rst whether

a valid input model is already loaded and remove that resource from the session

before adding the new one to the list.

• org.eclipse.core.expressions.propertyTesters: Since the toolbar button should only be

present, if a topology model is currently active in the editor, we need to implement

this extension point as well. In general, this extension point is used to test a property

and act accordingly. For our purpose, the property tester gets the current editor and

tests, if the target model of the editor is a topology model.

• org.eclipse.ui.menus: The last extension point we need is the one which puts the last

two extension points together. Since this extension point is a bit bigger than the

other ones, in the following we analyze the code of the plugin.xml regarding this

extension point, which is presented in listing 6.10.

Listing 6.10: Menu contribution extension point used to add toolbar button to the Sirius

toolbar

1 <extension point="org.eclipse.ui.menus">

82

6.4 The Input Model Extension

Figure 6.9: Screenshot of the extended Sirius toolbar

2 <menuContribution

3 allPopups="false"

4 locationURI="toolbar:org.eclipse.sirius.diagram.ui.tabbar?after=additions">

5 <command

6 commandId="smartgrid.model.input.sirius.loadinputmodel"

7 icon="icons/open-file-icon.png"

8 style="push">

9 <visibleWhen

10 checkEnabled="false">

11 <test

12 property="smartgrid.model.input.sirius.propertyTester.isTopoLoaded">

13 </test>

14 </visibleWhen>

15 </command>

16 </menuContribution>

17 </extension>

First of all, a menu contribution is added to our extension point. The menu contribu-

tion explicitly states that our toolbar button should appear at the end of the Sirius

toolbar. By pressing the toolbar button we invoke our previous written command,

which here has the special attribute of only being visible if the property test returns

true.

The overall result of the toolbar button implementation can be seen in �gure 6.9. As we

can see, the new toolbar button is listed at the end of the Sirius toolbar. The button is

present as long as a topology model is shown in the current diagram. Thereby, we don’t

make a di�erence whether an element is selected or not. If the button should only be

present, if no element is selected, an additional property tester is needed.

6.4.2.2 Adding a Toolbar Button to the Eclipse Toolbar

Since the standard Graphiti editor doesn’t have its own toolbar, we need to either create a

new extensible toolbar, when designing the core editor or we have to extend the Eclipse

toolbar. Creating a new toolbar is an even harder task than adding a toolbar button to the

Sirius toolbar. However, adding a new button to the Eclipse toolbar is in that way an easier

task as we only need to use the ID of the Eclipse toolbar toolbar:org.eclipse.ui.main.toolbar
and implement the button the same way as described the section before. Inside the execute

method of our command we basically apply the same code as for the Sirius toolbar button.

First, we retrieve the current shell and open a �le dialog, where we can choose the input

model. Next, we load the input model as resource and add it to the list of active models in

our diagram. For Graphiti the last part is also contained in a RecordingCommand containing

the two line shown in listing 6.11.

83

6 Implementation and Validation

Listing 6.11: The adding of a new model to the current Graphiti diagram

1 final EObject scenarioState = inputModelResource.getContents().get(0);

2 this.diagramContainer.getDiagramTypeProvider().getDiagram().getLink().getBusinessObjects

().add(scenarioState);

In the �rst line the actual scenario state object is retrieved from the resource we loaded

one step earlier. The next line accesses the current diagram container, which stores the

current diagram amongst other variables. From that diagram, we can access the underlying

business models, such as our topology model and add the current scenario state to it. The

result of this implementation is the same as in the section before with the di�erence that

now we have a new toolbar button in the Eclipse toolbar. To minimize failures, there

should be a check �rst whether a scenario state is already loaded and remove that scenario

state before adding the new one to the list. This check does also need to be done for the

Sirius implementation we discussed earlier.

6.4.3 Implementing the Input Model with Sirius

As we already discussed the possible mappings for the input model in section 6.4.1, we

focus in this section on the actual implementation of these mappings in Sirius. Therefore,

we �rst focus on how to extend a given diagram in Sirius and then focus on the change of

appearance for power grid nodes, as well as on the other entities. The next subsection

here deals with the possibility to change the value of an attribute from inside the diagram.

Then, we discuss the adding of new annotations to the control center, as this is our only

container element in the editor. For this case we also discuss possibilities to alter the values

of the control center’s attributes. For explanation purposes, �gure 6.10 thereby shows the

description �le for the input extension.

6.4.3.1 Extending a Given Diagram in Sirius

Since we already discussed how to load a second model into the current Sirius session, we

now need to make sure this model can be used appropriately. Since we do not want to

create an extended diagram programmatically and we don’t want the core editor know the

extension, we need to use the extension mechanisms given by the framework. Therefore,

we �rst create a new plug-in with a new viewpoint speci�cation model, as we already did,

when creating the core editor. After the de�nition of the new viewpoint, we can add a

so called diagram extension shown in �gure 6.10, which we named SmartGridInput. For a

better understanding of how such a diagram extension works, �gure 6.11 is given. Since

we want to extend the diagram description given by the topology model, we have to tell the

diagram extension, where to �nd that description. The �rst properties entry thereby only

states the name of our extended diagram description and can be chosen at will. The second

entry speci�es the viewpoint containing the diagram description we want to extend. The

required URI is thereby composed of the keyword viewpoint:/ followed by the name of the

plug-in, where the viewpoint is located. The last segment of this URI simply states the

viewpoint’s name, where the diagram description to extend is located. Only those three

segments make the URI unique, as there can be more than one description �le with more

84

6.4 The Input Model Extension

Figure 6.10: The viewpoint description �le for the input model extension

85

6 Implementation and Validation

Figure 6.11: Properties of a diagram extension completed for the input model extension

than one viewpoint inside a single plug-in. The last properties entry labeled Representation
Name should have the name of the diagram description we want to extend as value. In

our case this is the SmartGridTopology diagram description.

After all these entries have been correctly �lled, the extension is active as soon as we add

the new viewpoint to the list of viewpoints of a modeling project. We should mention

here that the extension uses the same root element as the core editor. That results in the

use of a java service for almost all entities we want to add. In order to reference or use

elements from the core diagram description, we should load this resource to our viewpoint

speci�cation. The next subsections thereby show how we can alter the appearance of a

given notation element that was already de�ned in the core editor.

6.4.3.2 Changing the Appearance of a Notation Element

Since all attributes introduced in the input model are Boolean attributes, we can change

the appearance of nodes in order to display the attributes value. A false attribute should

thereby be represented in the node’s original state, while the attribute being true actually

changes the node’s appearance. In order to change an existing element, we �rst have to

import that element. Therefore, we �rst need to load the core editor into our extension.

If that is done correctly, the URI of the odesign �le appears at the bottom of the input

model extension description, as seen in �gure 6.10. After loading the core editor, we can

import any of the given notation elements to our input model extension. All imported

entities have the same properties as the originals in the core editor. We can then add

a conditional style to one of these elements. This can also be seen in �gure 6.10 for the

PowerGridNodeImport. Conditional styles require a Boolean value. If the condition is met,

the style is changed according to the style de�nition. In our case the yellow diamond

of the power grid node changes to a gray diamond, if the condition is true. As we can

not access the domain model elements of the input model directly, we need to add a java

service to the editor. Regarding again �gure 6.10 at the bottom, we added a java service

class called ShowInputNotationElements to the diagram extension. For checking the status

of a power grid node, we therefore use the service method isPowerOutage(). Listing 6.12

thereby shows the code for this method.

Listing 6.12: The isPowerOutage method of the java service class used in the input model

extension

1 public boolean isPowerOutage(PowerGridNode node) {

2 boolean powerOutage = false;

86

6.4 The Input Model Extension

3 PowerState required = getCorrectPowerState(node);

4 if (required != null) {

5 powerOutage = required.isPowerOutage();

6 }

7 return powerOutage;

8 }

The method getCorrectPowerState() uses the given power grid node to access its Smart-
GridTopology container element. After we retrieve the current Sirius session, which we

already discussed in listing 6.9, we can access all its current semantic resources. From

there, we can test each resource whether it is our scenario state container or not. Then

we test, if the scenario state actually belongs to the given smart grid topology element

by comparing the ID’s of the current smart grid topology element with the referenced

smart grid topology element from the given scenario state. If these ID’s are the same, we

have the correct scenario state. From there, the getCorrectPowerState() method simply

compares each power state’s owner with the given power grid node and, if there is a

match, the power outage state is returned. This procedure is the same for the test, if an

entity is broken or hacked. The main di�erence between changing the appearance of

a power grid node and changing the appearance of a network entity is that we overall

need three conditional styles for the network entity, in order to show all possible states

and their variations. The �rst conditional style tests whether both attributes are true and

changes the style of the node accordingly. The second and third conditional style only

test whether one of these attributes are true. The conditional style testing whether both

attributes are true must be placed in the �rst place, since Sirius performs only the �rst

condition evaluating to true and ignores the other conditions. In order to prevent such a

behavior we have to give the node in the extension in general a custom style that behaves

according to certain conditions. Therefore, a custom EditPart and an EditPartProvider has

to be implemented, which is not further discussed here. The result of our input model

extension can be seen in �gure 6.12. Gray nodes thereby represent destroyed entities,

a gray diamond is as mentioned a power grid node without power. If a node is hacked,

the label of the node changes to an underlined H and, if an entity is both destroyed and

hacked, the node is gray and marked with an underlined H.

Now that we can represent additional styles, we need to can concentrate on adding an-

notations to the control center in order to represent the destroyed and hacked state in

container elements.

6.4.3.3 Adding New Annotations to the Control Center

Adding an annotation works in a similar way than changing the appearance of an existing

node. Instead of a conditional style, we simply add a new node to the imported control

center. The labeling works again with the help of a method in our java service class. The

method works similar as the method described in listing 6.12 with the di�erence that

we can not return a Boolean value but must return a string for a correct labeling. The

reason behind this is that we can not combine service calls with other acceleo expressions.

Therefore, in case of the destroyed node, the returned string starts always with destroyed
= and then alters between true or false depending on the value.

87

6 Implementation and Validation

Figure 6.12: Our running example with a loaded input model

The result of the new annotations can also be seen in �gure 6.12. The control center now

has two additional annotations showing the destroyed and the hacked status. If this status

needs to be changed in the diagram directly, there are basically two di�erent options

the developer has. The �rst one is to create a new context dependent menu button as

described in the next section. The other, more intuitive option is to add an element edition.

Using an element edition we can not know what the user will type into the label to edit

meaning that we can not rely on a simple service call as we do, when changing a nodes

appearance shown later in section 6.4.3.4. Therefore, we create an external java extension

that acts according to the user’s input, when the label is edited. A direct edit label action

is also shown in the viewpoint speci�cation in �gure 6.10. For the external java action

to work properly, we also need to transfer the user’s input as parameter to the external

java action. The java action basically retrieves the correct entity state for our control

center and checks the argument whether it contains any forms of true or false. Then,

we check if there is a di�erence between the input value and the current status, and if

so, change the status and refresh the diagram. Refreshing the diagram programmatically

works similar to retrieving the current session in Sirius. After the current editor is retrieved

the representation, meaning the diagram itself, is retrieved, which can be refreshed.

6.4.3.4 Adding a New Button to a Context Dependent Menu

Changing the appearance of a node directly inside the diagram can be achieved in multiple

ways. We could add a toolbar button setting the power for all power grid nodes at once.

Since we already implemented a toolbar button for loading the input model and this

would work in the same way, we rather choose a di�erent extension type. Therefore, we

88

6.4 The Input Model Extension

Figure 6.13: Three new context menu buttons appearing if the input layer is selected

add a new button to a context dependent menu for each appearance we want to change.

Since Sirius doesn’t provide support for creating own mouse-over buttons, we choose to

add new buttons to the context pop-up menu. Before adding the actions itself, we �rst

create a new pop-up menu entry for the standard context menu. This is shown in the

viewpoint speci�cation in �gure 6.10 and is called Input Model Changes. The next step

is to add actions to this menu. In the �gure only the SetPowerStatus action is visible to

its full extend, but the other actions are implemented in the same way. When starting

the action, we simply use a set action to set the power status. The set action itself calls a

method from our service class, which changes the current state of the power grid node.

Applying these steps also for the other two states results in the menu shown in �gure

6.13. There is, of course, the possibility to add a �lter to these buttons making them only

visible, when the correct element is selected. However, since the methods in the service

class explicitly require a PowerGridNode for changing the power status and a NetworkNode
for changing the destroyed or hacked status these methods are only actually called, when

one of these elements is selected in advance. For the sake of completeness, listing 6.13

shows the method for changing the current power status.

Listing 6.13: Set power outage method in the java service class

1 public void setPowerOutage(PowerGridNode node) {

2 PowerState state = getCorrectPowerState(node);

3 state.setPowerOutage(!state.isPowerOutage());

89

6 Implementation and Validation

Figure 6.14: The input model diagram representation in Graphiti for our running example

4 refreshDiagram();

5 }

At �rst, the method retrieves the corresponding power state to the given power grid

node. Afterward, the state is changed to its opposite and last, the diagram is refreshed

immediately.

6.4.4 Implementing the Input Model with Graphiti

Now that the implementation in Sirius is covered, we focus on the Graphiti implementation.

As there is no such thing as a diagram extension, we only need to add a toolbar button to

the Eclipse toolbar providing the functionality described in 6.11. Based on this functionality,

any representation can be altered, which is described within the next two subsections. As

the Graphiti implementation of the input model extension is mainly based on previous

work, the appearance of some entities is di�erent than in the Sirius implementation.

Furthermore, the hacked status is left out for the entities and �rst introduced within

the next extension. The result of the input model extension in Graphiti is presented by

�gure 6.14. The �gure shows again the running example introduced in the section before.

Throughout the next subsections, we will refer to each kind of entity considered in the

extension at the appropriate point in time starting with changing the appearance of nodes.

90

6.4 The Input Model Extension

6.4.4.1 Changing the Appearance of a Node

During runtime in Sirius every notation element in the extension gets evaluated and

executed as soon as the speci�c layer gets active. As there are no layers in Graphiti, the

model representation should be active as soon as the input model is loaded. Therefore,

we need to apply all changes directly after the model is loaded. This may lead to rather

complex code. If the changes should only be represented, then there is no need in creating

a new feature, as we can access each shape directly and change its appearance. In the

following, we analyze the destroyed status for network entities, which is exemplarily

shown in �gure 6.14 for the smart meter bottom right. The destroyed and hacked status

for the control center is considered in the next section.

As we already loaded the input model, we have access to all its entity states and therefore

access to every destroyed state. Assuming the destroyed state doesn’t refer to a control

center, we want to represent that state as two lines crossing each other over the respective

network entity. Therefore, we provide a method during the loading of the input model

accomplishing that task. The method is given in listing 6.14.

Listing 6.14: Drawing the destroyed status for network entities

1 public void drawDestroyed(final ContainerShape containerShape) {

2 IPeCreateService peCreateService = Graphiti.getPeCreateService();

3 IGaService gaService = Graphiti.getGaService();

4 // create lines

5 Shape firstLine = peCreateService.createShape(containerShape, false);

6 Polygon pFirst = gaService.createPolygon(firstLine, new int[] { 0, 20, 20, 0 });

7 pFirst.setForeground(this.manageColor(ConstantProvider.FOREGROUND_BLACK));

8 pFirst.setLineWidth(ConstantProvider.shapeLineWidth);

9 Shape secondLine = peCreateService.createShape(containerShape, false);

10 Polygon pSecond = gaService.createPolygon(secondLine, new int[] { 0, 0, 20, 20 });

11 pSecond.setForeground(this.manageColor(ConstantProvider.FOREGROUND_BLACK));

12 pSecond.setLineWidth(ConstantProvider.shapeLineWidth);

13 }

After receiving the graphics algorithm service and the pictogram element service in the

�rst two lines, we can start adding two crossing lines to the given shape representing a

network entity. Both shapes �rstLine and secondLine are represented as children of the

given container shape meaning that their location in x and y coordinates is limited to the

area of the container shape. The polygons created are used to form each line, its color and

line width. The integer arrays transferred in lines �ve and nine contain information on

each edge of the polygon. In line �ve, for example, the �rst edge starts at x=0 and y=20,

while the second edge of the same polygon is placed at x=20 and y=0.

When removing the scenario state again from the current diagram, we can simply remove

all children for each network entity. That is due to the fact that the only possible children

are currently these two crossing lines indicating the destroyed status. An exception is the

control center, which is discussed next.

91

6 Implementation and Validation

Figure 6.15: Two new mouse-over buttons for setting the power and destroyed status

6.4.4.2 Adding New Annotations to the Control Center

Adding an annotation to a container works similar to changing the appearance of a node

in Graphiti. As all of our patterns representing entities are container shapes, we can add

as many shapes as children as we want. Instead of lines, we add a so called MultiText to

the control center for each possible status. The control center can thereby also be seen

in �gure 6.14 with its two additional states hacked and destroyed. In order to change the

status of either network entity, we added mouse-over buttons that are presented within

the next section.

6.4.4.3 Adding a Button to a Context Dependent Menu

As we not only want to represent a power or entity state, but also want to be able to

change it, we implemented a context dependent menu button for possible state changes

like we did for the Sirius prototype. The di�erence in this prototype is that we implement

these buttons for the mouse-over context menu. This is possible, since the topology editor

already o�ers an extension point for adding new buttons to this context menu. If our Sirius

editor would also o�er such a self-de�ned extension point, we could have implemented

such a mouse-over button there as well. However, a custom EditPart is needed for such

a behavior, which was only implemented for the Graphiti-based smart grid editor in the

previous work.

As mentioned in the sections before, as long as we only want to represent the extension

but not make any changes, we do not need a new feature. However, since we want to

change the status directly in the editor, we need to provide a new CustomFeature for each

possible state. Figure 6.15 shows the result of two new mouse-over buttons. The left one

resembles the power state, while its neighbor represents changing the destroyed status

of a node. The implementation for the hacked status is equivalent and is not considered

here. We only consider here the power state feature. Other features can be implemented

similarly. As we want the power enabled button to appear as mouse-over button, we need

to implement the given smartgridsecurity.graphiti.extension.contextbutton extension point.

The implementing contributor only adds all features that should appear as button to a

list and returns it. The evaluation is done by the topology editor, which adds the new

buttons to the existing ones Graphiti provides, such as the remove or delete button. In the

following, the PowerEnabledFeature, which is able to change the power state of a given

power grid node is considered.

The class itself extends org.eclipse.graphiti.features.custom.AbstractCustomFeature. The two

important methods that need to be overridden are the execute method and getImageID.

The latter returns a path to an icon, which is used as button in the mouse-over menu.

92

6.5 The Output Model

The execute method itself changes the state of the current power grid node and alters its

appearance. Due to the evaluation of the extension point the execute method is always

called whenever the button is pressed leading to a change of the current state.

6.4.4.4 Removing the Content of an Input Model

As already mentioned, Graphiti doesn’t o�er a layer functionality as Sirius does. Therefore,

after loading another model all its features stay active as long as the diagram exists,

whereas we only need to disable a certain layer in Sirius to only show the original diagram.

An implementation of another toolbar button is required clearing all the changes made

because of loading the input model. The clear button itself can be implemented the same

way as the load button. However, instead of adding shapes or changing colors, pressing the

clear button should return the original state of the diagram. In the following, we shortly

discuss this process for all network entities, the power grid nodes and the scenario state

itself.

As power grid nodes only gain another color, if their power is out, we need to draw the

original yellow for every power grid node. As the input model extension has a dependency

to the topology model the original color is known.

Smart meters or other entities may have two lines crossing indicating their defect in the

input model. As these lines are implemented as children of the original shape we can easily

remove all children from the shape restoring the original entity. This, of course, is only

valid as long as we are sure that the input model extension is the only extension. Otherwise,

we need to make sure that only the two crossing lines are removed. An exception for that

is the control center, since in the original editor it already has a MultiText as child shape.

Therefore, the code in listing 6.15 removes exactly the two MultiTexts the input model

creates.

Listing 6.15: Removing both texts in the control center

1 for (GraphicsAlgorithm g : shape.getGraphicsAlgorithm().getGraphicsAlgorithmChildren()) {

2 if (g instanceof MultiText && ((MultiText) g).getValue().contains(value)) {

3 shape.getGraphicsAlgorithm().getGraphicsAlgorithmChildren().remove(g);

4 break;

5 }

6 }

The parameter value in line two thereby equals either Hacked or Destroyed depending on

which text should be deleted.

The last action that needs to be done when clearing the input model, is the removal of the

scenario state that was loaded to the diagram. After that the diagram is again reverted to

its original state.

6.5 The Output Model

In this section we analyze and implement the second extension of the smart grid topology

meta-model. The output model extension is thereby an extension to the input model

93

6 Implementation and Validation

Figure 6.16: The output meta-model extension

extension meaning that the output meta-model knows the input meta-model, as well as the

topology meta-model. As we did in the last section, we �rst analyze the given meta-model

and explain its proper use. At the same time, we analyze the di�erent mappings the output

model extension has to o�er. After that, we continue with the implementation in both

Sirius and Graphiti leaving out or cutting short those parts that are similar to the last

extension. The last subsection summarizes and explains di�erent problems and possible

solutions, when having more than one extension active at the same time.

6.5.1 The Output Meta-Model

As already mentioned, the output model extension is en extension to the input model

extension. That means, in order to create a valid output model instance, we need an existing

input model instance. In general, the output model resembles the estimated result given a

certain input for the smart grid. In other words, the output model resembles the impact of

the input model to the remaining entities. Therefore, an output model is best generated

automatically, as a manual creation of an output model might lead to missing or wrongly

classi�ed nodes. Furthermore, as the representation should resemble an output resulting

from a given input, there is no need in implementing any extension type that can be used

for altering values of an attribute. The complete meta-model of this extension is shown

in �gure 6.16. On the left side we can see the main container element, the ScenarioResult.
As the output model extension extends the input model, there is a reference from the

ScenarioResult to the ScenarioState given. Furthermore, the ScenarioResult only contains

two di�erent meta-classes directly. The �rst is the abstract EntityState meta-class along

94

6.5 The Output Model

with the inheriting meta-classes On, NoPower and Defect. Although, this class is named

identical to the meta-class in the input model, they are still di�erent semantically. This

abstract class should speci�cally resemble a concrete output state resulting from a di�erent

input state. For example, if a power state has a power outage all entities that are connected

to this power state and no other result in having no power. The defect meta-class resembles

a state, which was marked earlier as destroyed. The abstract meta-class On can be further

divided into either an Online entity, where everything is alright or a NoUplink meta-class,

where somehow the connection to the control center is lost. This can happen, if an entity

is destroyed and only this entity has outgoing connections to the control center. Then

all other entities can be considered NoUplink entities. Last but not least, the EntityState
meta-class, like its equivalent in the input model, references exactly one network entity

meaning that each entity state is mapped to exactly one existing network entity.

The other meta-class in �gure 6.16 directly contained in the ScenarioResult class, is the

Cluster meta-class indicating, which On state belongs to which given cluster, whereas a

cluster speci�cally contains a number of smart meters, as well as a number of control

centers as attributes.

As mentioned, we leave out some of the extensions, as they are similar to the extensions

in the input model. Therefore, we here focus on the NoUplink and the Cluster meta-class.

As an entity state can only resemble one concrete state at a time and given the developers

intent to add further states to the model, we can infer that the NoUplink resembles again an

attribute extension type. If extended noninvasively, each network entity would probably

receive a new attribute with EntityState as type. Therefore, we can infer the same mapping

as we did within the previous extension.

Considering the cluster class, we can further di�erentiate. If the cluster was intended

as an actual meta-class, we could represent each instance as container surrounding its

containing network entities. However, if, for the developer, the relation between the

cluster and the On meta-class is the important aspect, we could consider this a relation

extension type. If only the relation extension type is relevant, the outline view could be

extended, in order to show the membership of each On state towards its cluster. Due to lack

of time and missing framework capabilities an extension of the outline view is not done

and only mentioned here for the sake of completeness. Furthermore, the implementation

of further meta-classes is shown within the next extension. Therefore, we only focus on

implementing the NoUplink meta-class.

Besides the di�erent mapping possibilities the attribute extension type has to o�er, we

again want to change the appearance of the existing model to represent those kinds of

information. As this is almost the same implementation we did in the section earlier, we

only focus on the NoUplink implementation, since the rest can be implemented the same

way.

6.5.2 Implementing the Output Model with Sirius

Since the implementation of the output model is almost identical to the implementation

of the input model, we only cover those parts that di�er from the input model. As an

exemplary implementation, we only regard the NoUplink meta-class, as the other meta-

classes that extend the EntityState meta-class can be implemented the same way. Therefore,

95

6 Implementation and Validation

Figure 6.17: The disabled load output model button next to the load input model button

the next two subsections �rst deal with loading a third model to the given diagram and

second, the implementation of a smart meter representation, in case there is no uplink

given.

6.5.2.1 Loading a Second Extension Based on the First Extension

In section 6.4.2 we’ve already shown how adding a second model to the given diagram

works for Sirius as well as Graphiti. Since this procedure is identical for every further

model we want to add, there is no need in mentioning it here again. Nevertheless, our

output model extension is an extension of the input model extension causing us to only

enable the load button, if a corresponding input model is already loaded. Alternatively, we

could alter the visible when parameter for the toolbar button to make the output button

only visible, in case an input model is loaded. However, it makes more sense to already

show the button assuming the corresponding plug-in exists, but disable it to show the user

that further extensions are possible under the condition that an input model is loaded.

When loading a new model with the help of a toolbar button, we basically need to extend

the AbstractHandler class. As we now have more than one extension we provide another

abstract class named LoadExtensionModel, which implements the required execute method

as seen in the Sirius part of section 6.4.2. Since we need to add a required �le extension and

name for the �le chooser dialog, this part is outsourced to an abstract method that each

class has to implement. In case of our new LoadOutputModel class, the implementation of

this method is shown in listing 6.16.

Listing 6.16: Example implementation of the setFileDialogExtension method

1 protected void setFileDialogExtension() {

2 dialog.setFilterExtensions(new String[] { "*.smartgridoutput" });

3 dialog.setFilterNames(new String[] { "Output Model" });

4 }

The �rst line simply states that only output models can be loaded, while the second line

names the given extension.

If we want to disable the toolbar button given the condition that no input model is

loaded, we further need to override the public boolean isEnabled() method given by the

AbstractHandler class. The procedure in this method is similar to loading a model. We �rst

gather the current Sirius session, access all semantic resources and check whether there is

already a valid input model loaded. If that is the case, we return true and otherwise false.

The result can thereby be seen in �gure 6.17 showing a disabled load output model button

next to the load input model button known from section 6.4.2 However, it is important to

96

6.5 The Output Model

know that this procedure is decrepit, if all the models exist in the same project, as they are

automatically added to the current session as soon as the diagram is opened.

6.5.2.2 Implementing the Output Model Diagram Extension

Since we want to use the output model extension whenever a corresponding input model is

active, we also need to de�ne a diagram extension like we did for the input model extension.

The only di�erence now is that we don’t extend the topology viewpoint and diagram

representation directly, but the smartgridinput diagram extension. Therefore, the viewpoint

URI and the representation name of the diagram extension are adjusted to the speci�cs of

the input model extension. As already discussed in section 6.5.1, we again want to change

the appearance of our nodes to show, whether their state is NoUplink, NoPower, Online
or Defect. For the last two states we wouldn’t need to change anything, since an online

state can be seen as fully functional as represented by the topology diagram and a defect

state resembles a destroyed node, which is already covered by the input model extension.

Furthermore, we only focus on the NoUplink state here, since the implementation for the

second state can be considered equal.

Since the output model resembles an output state for the given input state, the output

model receives a higher priority than the input state. Therefore, we need to make sure

that the entity state of the output model is shown instead, or at least among the state of

the input or topology model. To ensure that we can not import the SmartMeter node of the

topology diagram, as than the appearance would depend on whether the input layer would

be chosen active �rst or the output layer. Therefore, we import the SmartMeterImport node

from the input model extension. Doing that results in also importing every conditional

style we applied earlier on. When adding a new conditional style, it gets preferred over the

other existing conditional styles. Furthermore, using the output layer without the input

layer now results in the same representation we would have, if the output layer isn’t active

at all. This is due to the fact that we imported a node from the input model extension.

The result of the NoUplink implementation for smart meters can be seen in �gure 6.18,

where two out of the three smart meters are now marked as NoUplink. Since changing the

appearance of a node may lead to a con�icting state, for example, if two extensions both

want to change the color of a node, we also need to address this problem. This is done

in section 6.5.4 and is considered for both the cases that the extensions know and also

depend on each other and that both extensions are completely independent of each other.

6.5.3 Implementing the Output Model with Graphiti

Now that the implementation of the output model extension for the Sirius-based editor is

discussed, the next focus lies on the implementation of the Graphiti-based editor. Within

this section, we also divide between loading the output model based on the currently

active input model and then concentrate on the actual implementation of the extension.

The implementation here is based on previous work meaning that all new states are

implemented for every network entity except the control center.

97

6 Implementation and Validation

Figure 6.18: Result of the output model extension implementation in Sirius

6.5.3.1 Loading a Second Extension Based on the First Extension

As there are no layers in Graphiti, the otput model extension needs to become active,

as soon as a valid output model is loaded. Loading the model is done the same way as

described in section 6.4.2. The di�erence now is that before any dialog opens to choose an

output model from, a check is required whether the diagram currently contains an input

model or not. If that is the case, the standard procedure is executed including that another

clear button gets enabled, if the output model was loaded successfully.

6.5.3.2 Implementing the Graphical Representation in Graphiti

As mentioned in the section before, we extend the input model extension only by checking

whether an input model is already loaded and by that knowing which changes in the editor

are made after the input model is active. Therefore, the appearance of entities can again be

changed at will. That is in a way equal to the import mechanism Sirius o�ers. Figure 6.19

shows the result of the Graphiti implementation. Since this extension is based on previous

work, there are more extensions implemented as the NoUplink meta-class for smart meters.

However, we only analyze the NoUplink feature for smart meters, in order to establish

a better basis for comparison of the two frameworks. In �gure 6.19, the same two smart

meters are marked as NoUplink than in the Sirius section. Furthermore, the output model

in Graphiti also states the hacked status of a node with an exclamation mark, if its hacked

and with a question mark, if its only an instance of NoUplink. Even more, the color of a

NoUplink entity is changed to a gray with its border getting the original color of its inside.

98

6.5 The Output Model

Figure 6.19: The result of the output model extension implementation in Graphiti

99

6 Implementation and Validation

Technically, this extension works as a combination of the clear button in the input model

and the extension implementation already discussed in the input model regarding only

entities that are NoUplink instances in the output model. On a more concrete perspective

this means that, if an entity is an instance of NoUplink, all its children are removed. Then,

the color is changed and depending on the hacked status a question or exclamation mark

is drawn.

As long as these two extensions are the only extensions and the output model extension

depends on the input model extension, this implementation works. However, if another

extension is added independently, the implementation gets more complex. This is addressed

in the next section for Sirius as well as for Graphiti. Furthermore, a general solution is

o�ered for that problem but not validated.

6.5.4 Problems with Two or More Active Extensions

Adding additional buttons to the Sirius or Eclipse toolbar is no problem proven by the

output model extension. Moreover, we can have at least two extensions active at the same

time meaning that further extensions are also possible. We already noticed a problem,

when two or more extensions are active at the same time. If both extensions change the

appearance of an existing node, we have to de�ne rules to prioritize the extensions. In

case of the input and output model extension, this is fairly easy, since the output model

extension shows the impact of a given input and therefore should always have a higher

priority than the input model. Even if we assume that both extensions have the same

priority, we could manage to change the appearance accordingly, since the output model

extension knows the input model extension.

In Sirius, we can therefore di�erent conditional styles in order to derive the di�erent

appearances. If there are more appearances to adjust, we can even use the custom style

for nodes for both extensions. In case of the output model extension, we extend the

EditPart for the node in the input model extension and add the new conditions under

which the appearance changes. This works well even if there are con�icting appearances,

for example, that one extension requires a node to turn yellow, while the other requires the

same node under a di�erent condition to be blue. If both conditions are met, the standard

Sirius behavior is to change the color according to the �rst condition of the �rst active

extension that is true. In case of a custom style, the developer can decide which color must

be active.

A similar solution also works for the Graphiti framework. Since we need to use plain Java

code, we can access the extension directly checking whether any appearance is changed

and act accordingly. Assuming we developed the core and extension editor according to

certain quality aspects, this problem is as easy to solve in Graphiti as it is in Sirius.

A problem occurs, if the appearances are con�icting and the extensions don’t know about

each other. Then, the possibility to extend a given custom style is not given anymore.

Therefore, di�erent rules have to be identi�ed. One way could be to already address

this problem at the core editor. We could de�ne an extension point serving the purpose

of communicating among all extensions. With that extension point an extension could

identify con�icting extensions and could act accordingly assuming all extensions actually

implement the given extension point. Of course, if such an extension point has to be

100

6.6 Further Extension of the Smart Grid

created afterward, when most of the extensions already exist, the e�ort of creating such

a communication among the given extensions is huge. In the following, we describe a

possible de�nition of such an extension point in the core editor.

To establish a communication between possible extensions, we have to de�ne a basis for

that communication. In our case an abstract class named AbstractSmartGridExtension is

appropriate for that task. This abstract class needs to be inherited by each future extension.

The abstract class contains on the one hand methods responsible for retrieving certain

notation elements and on the other hand abstract methods for each extension type on

graphical editor level, where a con�ict may occur. Referring to the smart grid resilience

framework, we �rst would need ID’s to identify each possible entity class, such as smart

meters or power grid nodes. As abstract methods we need simple Boolean methods

returning true, if, for example, the color of a power grid node is possibly a�ected by the

extension. After creating such methods, the only methods left to implement are methods

that check whether at least one extension changes the color for a certain entity. Therefore,

we also need a list of all extensions implementing this extension point. Listing 6.17 shows

how this can be done without the core editor knowing its extensions in detail.

Listing 6.17: Example on how to get all active extensions implementing an extension point

1 IExtensionRegistry reg = Platform.getExtensionRegistry();

2 IExtensionPoint ep = reg.getExtensionPoint(extensionID);

3 IExtension[] extensions = ep.getExtensions();

4 ArrayList<AbstractSmartGridExtension> contributors = new ArrayList()<

AbstractSmartGridExtension>;

5 for (IExtension ext : extensions) {

6 IConfigurationElement[] ce = ext.getConfigurationElements();

7 AbstractSmartGridExtension obj = (AbstractSmartGridExtension) ce[0].

createExecutableExtension("class");

8 contributors.add(obj);

9 }

At �rst, we access our desired extension point in line two. The parameter extensionID
is thereby the ID of our de�ned extension point. From there, we can access all available

extensions and iterate over all. In line six, we access the con�guration elements containing

each interface or abstract class the extension point provides. Since we only provide one

abstract class and nothing else, we can access that class in line seven. By calling such a

method, we can check each entity classes for possible con�icts and act accordingly. As

this is only a theoretical idea further validation is necessary.

6.6 Further Extension of the Smart Grid

As we couldn’t cover all extension types on graphical editor level with the previous two

extensions, there is a need in creating a further arti�cial extension. With the last two

extensions we already covered the meta-class, attribute and relation extension type on

meta-model level. Furthermore, we used mainly unidirectional associations as extension

mechanisms. That leaves the containment extension type and inheritance, composition

and stereotyping as extension mechanisms. On graphical editor level, we already covered

101

6 Implementation and Validation

Figure 6.20: The Meta-Model for the Arti�cial Extension

annotations, a change of appearance as representative extension types. Toolbar buttons

and context dependent menu buttons as extension types were used for creation or altering

values. For the representation, there are still notation elements left including nodes/con-

tainers as well as connections and furthermore compartments, sub-nodes and an extension

of the outline view. When creating or changing notation elements we need to implement

a properties entry, a palette entry and a new view. Therefore, we create an extension that

could possibly be implemented in the smart grid context.

The next subsection therefore deals with the meta-model of this extension. Section 6.6.2

covers the mapping of each meta-model element, as there are more di�erent extension

types than in the extensions before. After that, we regard the implementation of a new

stereotype, as this is independent of the editor framework used. The last two subsections

within this section then deal with the implementation in �rst Sirius and then in Graphiti.

6.6.1 The Artificial Extension Meta-Model

Like in the previous sections analyzing the di�erent extensions, we �rst provide the

meta-model considering the extension. The meta-model for our arti�cial extension is

given in �gure 6.20. This time the meta-classes contained in the topology meta-model are

represented on the right side of the diagram, while the new meta-classes of the extension

are shown on the left side. We, of course, again use a container element referencing the

SmartGridTopology. Based on the SmartGridExtension container meta-class we have overall

three di�erent outgoing compositions. The �rst one on the left side is the CostFunction. If

we �nd a (local) minimum of the cost function, the control center works e�cient. Therefore,

we need an unidirectional association to the control center on the one hand and on the

102

6.6 Further Extension of the Smart Grid

other hand another meta-class resembling the local minimums as a new meta-class. The

LocalMinimumCoords thereby contains two attributes indicating the x and y coordinate of

the local minimum.

The second outgoing composition we need to consider is the IntrusionDetectionSystem
meta-class. As the name states this meta-class simply resembles an intrusion detection

system inheriting the NetworkEntity meta-class of our topology meta-model.

The last meta-class we need to consider in this meta-model is the GenericConnection.

This class should resemble a special connection between generic controllers and network

nodes.

Since we want to cover all extension mechanisms and types that weren’t covered in

the extensions before, we also have to consider stereotyping. As EMF doesn’t support

stereotyping within its diagrams, we need to con�gure a new diagram containing our

stereotype. For this extension we choose to add an emergency supply to the control center

that states how long a control center lasts, when all connected power grid nodes su�er a

power outage. The implementation of this stereotype is shown in section 6.6.3.

6.6.2 Mapping of the Individual Extension Types

While the previous section covered the single meta-classes that are added during this

extension, this section deals with the mapping of each meta-class to possible graphical

editor extension types. Considering the IntrusionDetectionSystem meta-class, we can see

that this meta-class is in fact a direct sub-class of NetworkEntity. Since this meta-class is

directly connected to the topology meta-model with an extension mechanism resulting in

a meta-class extension type, we can not map an intrusion detection system to an existing

graphical element. Therefore, we need to handle this meta-class in the same way as we

did with the other network entities contained in the core editor and simply create a new

node. The creation can also be handled the same way as for the other entities meaning

that a new palette entry is added. Additionally, a context dependent menu button could be

added. Other possible implementations can be inferred from section 5.1.

If we take a look at the GenericConnection meta-class, we have multiple options. As we can

see, there are two unidirectional associations aiming towards the generic controller and

the network node meta-class. We hereby assume that this meta-class would be added to the

core meta-model in a similar way as it is presented here. The only di�erence would be that

there would be two bidirectional associations, instead of unidirectional ones. Therefore,

the GenericConnection realizes the second meta-class extension type, as it is part of either

the network node or the generic controller class. The associations on the other hand,

realize the relation extension type. The meta-class as well as the relations can be mapped to

a new connection between generic controllers and network nodes. Although, we decided

to implement this extension type in such a way, there are other possibilities. We could, for

example, add a properties entry for each generic controller and network node indicating

to which entity they are connected by a generic connection. Furthermore, we could use a

bordered node to move the properties entry to the diagram. If the generic controller and

network node were implemented as containers, we could also use a sub-node representing

a single generic connection. Otherwise, a compartment containing all generic connections

with their target would also be possible. However, as bordered nodes should mostly be

103

6 Implementation and Validation

used for annotations and a class intended as connection wouldn’t necessarily count as an

annotation, we should refrain from adding a border node in this case. For the creation of

such a connection we can simply add a palette entry or a context dependent menu button.

If the connection should only be resembled in the properties view, than a connection could

also be created in this view.

The last mapping of meta-classes visible in �gure 6.20, is the cost function and its local

minimum coordinates. The cost function itself relates to the control center. Through

this association information is added to the control center the same way as in the input

and output model extension. However, this time there are no Boolean attributes involved

meaning that a change of the appearance of the control center or adding of just an

annotation doesn’t resolve this mapping. Furthermore, the LocalMinimumCoordinates
meta-class is also connected to the cost function meta-class and needs to be considered

as well. Analyzing these meta-classes and their connections step by step we come up

with the following extension types for meta-models and their realizations on graphical

editor level. The composition from the cost function to the coordinates results in the

coordinates being a containment inside the cost function. Therefore, we can organize the

coordinates as sub-nodes of the cost function. For the representation of the cost function

itself we again assume that we create an extension based on the topology editor. If we

created a new editor for this extension, the cost function itself would de�nitely be its own

container. However, as an extension to the topology editor, the cost function needs to

relate to the control center. If added intrusively, the cost function itself would be realized

as containment extension type. Therefore, we could also create a container for the cost

function and add a connection to the corresponding control center realizing the relation as

connection and the cost function as notation element. Nevertheless, we can also directly

map the cost function to the control center, as there is always exactly one control center

corresponding to a cost function. Therefore, these two meta-classes in the extension map

to a compartment inside the control center and sub-nodes resembling the coordinates.

Adding and changing can here also be done by a palette entry and the properties view.

As we also cover stereotypes within this extension, we need to �gure out the mapping

of the power supply stereotype. As we stated in section 4.4.4 the stereotype extension

mechanism realizes the attribute extension type on meta-model level. As the attribute

we want to add is an integer, we need to refrain from changing the appearance but can

simply add an annotation or a properties entry. The next section thereby deals with the

implementation of such a stereotype.

6.6.3 Implementation of a MDSD Profile

MDSD pro�les provide a non-invasive mechanism for extending a given meta-model.

The approach is described by Kramer et al [32]. The de�nition and application of such

a pro�le is mostly independent on the framework used. The framework speci�c parts

are therefore only described shortly in two paragraphs. For our smart grid extension we

provide a stereotype EmergencySupply within a new pro�le EmergencySupplyPro�le. The

pro�le itself is shown in �gure 6.21. For simplicity reasons, the stereotype can only be

applied to the control center. The power supply attribute should state how much time the

control center can stay online after all its energy supply is shut down. In order to apply

104

6.6 Further Extension of the Smart Grid

Figure 6.21: The pro�le used for the smart grid extension

this stereotype non-invasively we need to use the MDSD pro�les API. First, we need to

apply the pro�le in general to a smart grid topology model and after that we can apply

the stereotype to any control center. The appliance of a pro�le and stereotype is shown in

listing 6.18.

Listing 6.18: Applying a pro�le and stereotype with MDSD Pro�les

1 IFile f1 = ResourcesPlugin.getWorkspace().getRoot().getProject(PROJECT_NAME).getFile(

PROFILE_LOCATION);

2 ResourceSet set = new ResourceSetImpl();

3 Resource r = set.createResource(URI.createFileURI(f1.getFullPath().toString()));

4 try {

5 r.load(null);

6 } catch (IOException e) {

7 e.printStackTrace();

8 }

9

10 Profile profile = (Profile) r.getContents().get(0);

11 EObject currentSelection = selection.iterator().next();

12 ProfileAPI.applyProfile(currentSelection.eContainer().eResource(), profile);

13 Stereotype st = profile.getStereotypes().get(0);

14 StereotypeAPI.applyStereotype(currentSelection, st);

For this kind of appliance one requirement is that the project and path to the pro�le is

known. An alternative would be to open a dialog window, where the user can choose the

pro�le. After loading the pro�le’s resource, we make use of the Pro�leAPI and StereotypeAPI
given by the MDSD pro�les. Before applying a stereotype, we need to apply the pro�le

�rst. The pro�le is applied to the complete model instance, whereas a speci�c stereotype

contained in the pro�le is only applied to a speci�c model element. According to the

pro�le de�nition in �gure 6.21, the pro�le contains only one stereotype. This stereotype

is applied to the currently selected element in the last line of the listing. For the sake of

completeness, there should exist another method checking whether the current selection

really is a control center to which the stereotype can be applied.

In order to add the stereotype as representation to the smart grid extension, we can add a

context menu button calling an external java action performing the code in listing 6.18.

Furthermore, a java service method is needed returning a list of control centers with

applied stereotype. Whether the given stereotype is applied or not can also be checked

with the given API. Figure 6.23 shows the control center with applied stereotype. We

chose to simply add an annotation to it whenever the stereotype is applied.

105

6 Implementation and Validation

Figure 6.22: The odesign of the arti�cial smart grid extension

A Graphiti-based solution can be implemented analogous, as we can also receive the

current selection and act accordingly.

6.6.4 Sirius Implementation

This section covers the implementation of the arti�cial extension with the Sirius frame-

work. We thereby do not only implement the mapping discussed in section 6.6.2 but also

implement a new view. This view wasn’t mentioned earlier, since it is not an extension

caused by the meta-model in this section. Moreover, we add a bordered node to the smart

meter indicating its aggregation and on double click a new editor should open showing all

smart meters contained in the aggregation. This could be used for further extensions in

case the smart meter is further extended by containments or attributes. Figure 6.22 shows

the description �le for the arti�cial extension including the diagram extension as well

as the diagram description for the smart meter aggregation. As we can see, we here also

use a java extension in order to represent the elements of our arti�cial extension. Here

the java extension is named ShowSmartGridExtensionElements. The other java extension

106

6.6 Further Extension of the Smart Grid

Figure 6.23: Result of the active smart grid extension layer

is responsible for the SmartMeterAggregation diagram description and is discussed in

subsection 6.6.4.4.

The result of the active smart grid extension layer can be seen in �gure 6.23. During

each subsection we explain the di�erent extensions based on our running example. Since

we already discussed the diagram extension mechanism at length, we only go over the

actual implementation of the elements discussed in section 6.6.2 starting with the intrusion

detection system and the generic connection as new notation elements.

6.6.4.1 Adding a Notation Element

Within this subsection we discuss the adding of new notation elements. Therefore, we

start with adding the intrusion detection system as a new node and continue with adding

the generic connection as new connection between generic controller an network nodes.

Adding aNode As we already discussed the IntrusionDetectionSystem meta-class is a meta-

class below root node extension type, as it extends the abstract meta-class NetworkEntity
directly. Using the same semantic candidates expression as for all other network entities

does not work here. That would only work if either the smart grid topology meta-model

knows the smart grid extension or, if the smart grid extension root container extends the

SmartGridTopology container. Therefore, we here again need a service method to receive

a list of all intrusion detection systems available in the extension. This service method,

however, only needs to receive the smart grid extension container and from there get all

intrusion detection systems available.

After successfully representing the intrusion detection system, we also need to add an-

other palette entry so that these intrusion detection systems can also be added to the

diagram, if they didn’t exist before. Therefore, we added a new node creation in our

SmartGridExtension section. The creation of the node itself can either be done by changing

107

6 Implementation and Validation

the context to the smart grid extension with a java service call and from there create a new

intrusion detection system. Otherwise, we need to add a new external java action dealing

with the creation. When creating a new external java action, we need to implement the

IExternalJavaAction interface. This interface includes a canExecute method, which in our

case always returns true, as there are no restrictions in creating an intrusion detection

system. The second method execute is shown in listing 6.19.

Listing 6.19: execute-method for the external java action to create a new intrusion detection

system

1 public void execute(Collection<? extends EObject> arg0, Map<String, Object> arg1) {

2 List<? extends EObject> list = (List<? extends EObject>) arg0;

3 SmartGridTopology topo = (SmartGridTopology) list.get(0);

4 SmartGridExtension ext = ExtensionModelHelper.getAndCheckSmartGridExtension(topo);

5 IntrusionDetectionSystem ids = SmartgridextensionFactory.eINSTANCE.

createIntrusionDetectionSystem();

6 ext.getIntrusiondetectionsystem().add(ids);

7 }

The �rst argument contains thereby our smart grid topology container element, while the

second argument contains further self de�ned parameters, if there are any. The sequence

of this method is fairly simple. First, we get the current topology container, then the smart

grid extension container currently used. After creating a new intrusion detection system

in line �ve, we add this element to the list of all intrusion detection systems within our

container element.

The intrusion detection system can be seen in �gure 6.23 as gray square in the diagram

top left and in the palette view the creation of such a system is called IDS.

Although, adding a new node or container can be done almost straightforward another

problem occurs. As we now have a new network entity we would assume that it is possible

to also connect these intrusion detection systems with other network entities with the help

of a physical connection. According to the topology meta-model in section 6.2, a physical

connection connects two network entities and therefore this should work. However, since

we need to use node and container mappings, when representing a new connection, only

the entities covered in the topology model can be used as source and target for the physical

connection. Furthermore, importing the physical connection from the topology editor does

also not solve the problem, as we then are only able to change the style of the connection

but not the mapping for this extension. The only current way to solve this problem is to

add a new element-based edge resembling the physical connection and add the intrusion

detection system as mapping, beside every other entity. After that, we also need a new

edge creation for the palette in order to create new physical connections that use the

intrusion detection system as source or target.

Adding a Connection Besides adding an intrusion detection system as node, we also want

to add the generic connection as new element-based edge to the diagram. The procedure

for the representation is quite similar to the representation of, for example, the physical

connection. Since the element-based edge is in Sirius based on the corresponding domain

class, we can add [genericcontroller/] and [networknode/] as source, respectively target

108

6.6 Further Extension of the Smart Grid

Figure 6.24: The edge creation for the generic connection

�nder expression. Those two expressions are based on the roles in our arti�cial extension

meta-model. We only need our java service for the semantic candidates expression, which

returns all generic connections for our smart grid extension model instance.

For the creation of such a connection inside the diagram we have also the possibility to

either use an external java action, as we did for the intrusion detection system, or we

can use the given basic Sirius actions. We chose to do the latter. Figure 6.24 shows the

creation of the generic connection in our diagram extension. We �rst change the current

context to the SmartGridExtension root container. From there, we �rst create a new generic

connection instance named instance. We now have automatically a new variable to switch

the context to and can set the generic controller and network node accordingly.

Like the intrusion detection system, the connection can also be seen in �gure 6.23 in

the palette view as third item and in the diagram. In the diagram we have two generic

connections shown as gray arrows going from the generic controller to two of the available

network nodes.

6.6.4.2 Adding a Compartment

After we created a new node as well as a new connection, we now need to discuss the

creation of a new compartment and its sub-nodes inside the control center. Like in the

input model extension, we �rst import the control center from our topology editor. Then,

we can add the cost function as a new container inside the control center. Since only

the local minimum coordinates are added to that container, the cost function container

resembles a compartment. In order to receive the correct cost function, we again need

our service class. The method getCostFunction(ControlCenter cc) provided by the service

class simply gets all cost functions available for the current smart grid extension and then

checks whether the owner of the cost function has the same ID as the given control center.

If so, that cost function is returned. For representing the coordinates we don’t have to use

the service class, as our container element is already the cost function. Therefore, we can

109

6 Implementation and Validation

Figure 6.25: Screenshot of the extended properties view

simply enter the meta-model role of the composition from the cost function meta-class

to the LocalMinimumCoordinates meta-class. These coordinates should be represented as

annotations inside the compartment.

Since we also want to create palette entries for both the cost function and the coordinates,

we have several options. Besides the possibilities to either use the basic Sirius actions or an

external java action, we can also vary the content of the Sirius actions. We can for example

choose to only add a palette entry for the coordinates and add a conditional course of

action, if the cost function doesn’t exist for the current control center. Nevertheless, we

can still add both the coordinates and the cost function to the palette view. The coordinates

can be added like any other basic entity by changing the context to its container and then

adding a new instance. This works, since the container of the coordinates is already placed

in the context of our extension. When adding the cost function on the other hand, we �rst

need to switch the context to our extension by calling the getExtension() method of our

service class.

Like the two other extensions, both the cost function and the coordinates can be found in

�gure 6.23 in the palette view, as well as in the control center in the diagram. A side e�ect

of mapping meta-model elements to new notation elements is that for these new elements

the properties view is updated automatically and needn’t be done as its own extension.

Therefore, altering the values of the coordinates can also be done in the properties view,

when clicking on one of the coordinate sub-nodes. Of course, we could also add a direct

edit label, as we did in the input model extension in section 6.4.3.3.

6.6.4.3 Extending the Properties View

Extending the properties view is one of the new features Sirius 4.0 has to o�er. Instead

of implementing di�erent extension points to provide an extended properties view, we

now can use the mechanics Sirius o�ers. Within this section, we exemplary show how to

add a new tab to the cost functions properties view that shows all available local minimum

coordinates. The result is shown in �gure 6.25. Each LocalMinimumCoord instance gets

his own label and text �eld containing the values for the coordinates. If the corresponding

meta-class would also have an ID, the label for each instance could be adjusted. In order to

show the mechanics behind this result, �gure 6.26 is given showing the description of our

new properties view. As we can see, the properties view description contains two main

110

6.6 Further Extension of the Smart Grid

Figure 6.26: Screenshot of the properties view description in the odesign �le

elements. One being a page, while the other one being a group. The page corresponds

to a new tab in the existing properties view, while the group represents a section in the

properties tab
7
. In the page we simply de�ne that the domain class, where this tab should

be visible is our CostFunction class. In the group we could limit the representation further.

However, as we are only interested in all of the cost function’s minimum coordinates, we

do not need to specify anything further except for the group’s ID. In the dynamic mapping

that follows we iterate over all available LocalMinimumCoord instances the selected cost

function has to o�er. The iterator used needs to be named. During the iteration this name

can be used as variable in order to access the current LocalMinimumCoord instance. For

each iteration a condition is required for which the following widgets should be created.

As we do not need any condition and want to represent all coordinates, we simply add

aql:true as statement to the condition. The text widget that follows speci�es the label

x,y-coordinate we can see in �gure 6.25 and the value of its text �eld. As the current

instance is stored in our iterator variable, we can access the coordinates as follows in

listing 6.20, where localminimumcoords is the name of our iterator.

Listing 6.20: AQL statement receiving the x-coordinate of the current LocalMinimumCoord
instance

1 aql:localminimumcoords.xCoord + ’, ’ + localminimumcoords.yCoord

Sirius o�ers a key listener for each text widget. Therefore, if we want possible editing

changes to be applied to the correct instance, we can use an external java action. This

external java action receives two parameters. One parameter being the current LocalMini-
mumCoords instance, while the other parameter being the new value of our text widget.

The new value is automatically stored in a variable called newValue, which can be accessed

7https://www.eclipse.org/sirius/doc/specifier/Properties_View_Description.htm

111

https://www.eclipse.org/sirius/doc/specifier/Properties_View_Description.htm

6 Implementation and Validation

Figure 6.27: Screenshot of the smart meter aggregation node double click action

by var:newValue. The external java action itself simply transforms the string value of

the text �eld into two double values and sets the attributes of the LocalMinimumCoords
instance accordingly.

6.6.4.4 Opening a New View as Editor

Within this section we create a view as editor by double clicking on the aggregation of a

smart meter. This extension is only new on graphical editor level, since the aggregation

is already a valid attribute in the topology meta-model. In order to create a double click

event on the aggregation, we �rst have to add the aggregation as border node to the smart

meter. This is done easily by importing the smart meter from the topology model and

adding a new border node containing the smart meter’s aggregation. Then, we need to

con�gure our double click event. Since �gure 6.22 only shows the presence of the double

click event SmartMeterDoubleClick, we also provide �gure 6.27 to show that action in

detail. The double click event itself is mapped to the new aggregation node, but could

also be mapped to the smart meter node as well. As we can see, the Sirius mechanism to

open a new editor window is fairly simple. We make sure that we are indeed in context

of the current smart meter and then use a navigation action to open the corresponding

diagram. The SmartMeterAggregation described in the details of the double click action

is the same diagram description we can see in �gure 6.22 at the top. For the navigation

action we can choose whether a new diagram should be created, if it doesn’t exist. If that

box is unchecked, then nothing happens, when double clicking on the border node, in case

the smart meter doesn’t have its own representation in a diagram.

Now that we know how to open a new diagram based on a smart meter, we need to take a

short look at that description as well to show how multiple elements can be shown, if they

are based on a single integer attribute like the aggregation. Therefore, �gure 6.28 shows

the diagram description of our new smart meter diagram. The description only contains

one aggregation node and a section for adding additional nodes and removing existing

ones. Since the aggregation attribute is only an integer, we can not use a standard semantic

candidates expression to tell the diagram to represent a number of smart meters according

to the value of the aggregation attribute. Therefore, we need our java service. The java

service method takes the current smart meter’s aggregation and creates a list of smart

meters depending on the aggregation’s value. For the increase of the aggregation we can

use a palette entry beside the given properties view. Instead of creating a new smart meter

through the palette entry, we simply increase the root smart meter’s aggregation by one.

As we increase and represent the aggregation of the smart meter in such a complicated

way. we also need to de�ne a delete feature managing the deletion of one of the diagram’s

nodes. Therefore, we can implement an external java action handling the decrease of the

112

6.6 Further Extension of the Smart Grid

Figure 6.28: Screenshot of the smart meter aggregation diagram description

aggregation. Decreasing the value the same way as we increased it doesn’t work, since

the diagram thinks that we are dealing with real smart meters, which are in fact linked

nowhere in the underlying business model.

Such an implementation in Sirius comes with a major drawback. As smart meters inside a

smart meter only exist as an integer value, the diagram behavior is broken when adding

fake smart meters as nodes. Therefore, we can not change the layout of the represented

nodes or resize them. However, this extension should only demonstrate the creation of

a new editor, where in a real scenario actual domain elements are contained in the new

diagram root node.

6.6.5 Graphiti Implementation

This section deals with the implementation of the arti�cial extension in Graphiti. Other

than in Sirius, we leave out the navigation to a new editor as well as extending the

properties view. The �rst one is excluded as we already implemented a similar feature

in section 6.3.2.3, where we created a new diagram based in the selection of a topology

model. The navigation to a new editor can be implemented in a similar way, where the

selection is not a topology model but a smart meter in the current diagram. The properties

view is excluded from this implementation, as there is no Graphiti speci�c API handling

the representation of the properties view as there is in Sirius 4.0.

The rest of this section addresses adding new notation elements namely the intrusion

detection system and the generic connection. At last, adding the cost function as new

compartment is also discussed. The result of the implementation can be seen in �gure

6.29, which is referenced throughout this section.

113

6 Implementation and Validation

Figure 6.29: Screenshot of the arti�cial extension implemented in Graphiti

114

6.6 Further Extension of the Smart Grid

6.6.5.1 Adding a New Node

As in the Sirius implementation, we also want to add the intrusion detection system as

node to our Graphiti implementation. The intrusion detection system is represented as

orange square in �gure 6.29. As we can see from the �gure, there can also be a physical

connection attached to the intrusion detection system. This can be done without creating

an extended physical connection as we needed to do in the Sirius implementation. Adding

an intrusion detection system can be done with the help of a new add feature. The add

feature itself is implemented the same way as described in listing 6.3. The di�erence

between a pattern and the add feature is that the pattern class contains methods for every

possible feature, while the add feature only contains methods for adding the element to

the diagram and checking whether it can be added or not. Furthermore, the add feature

does not need to be added to the feature provider as the pattern does. In order to show the

intrusion detection systems available in our diagram, we need to call the add method of its

feature. Therefore, the code presented in listing 6.21 can be applied to any new element

that should be represented in the current diagram. The code is called from our toolbar

button as the elements should all be represented as son as the smartgridextension model is

loaded.

Listing 6.21: Adding a new node from an extension to an existing diagram in Graphiti

1 private void addAddFeature(EObject newObject, AbstractAddFeature feature, ContainerShape

targetContainer) {

2 final AreaContext area = new AreaContext();

3 area.setLocation(100, 50);

4 final AddContext add = new AddContext(area, newObject);

5 add.setTargetContainer(targetContainer);

6 add.setNewObject(newObject);

7 final CommandStack commandStack = this.diagramContainer.getDiagramBehavior().

getEditingDomain().getCommandStack();

8 commandStack.execute(new RecordingCommand(this.diagramContainer.getDiagramBehavior().

getEditingDomain()) {

9 @Override

10 protected void doExecute() {

11 feature.add(add);

12 }

13 });

14 }

The �rst �ve lines of the given method create the context for the element to be repre-

sented. Therefore, its location has to be set, which should be di�erent for each element

or, alternatively, a layout algorithm has to be applied to the new elements after they got

created. After setting the location, the element’s container and its business object have

to be set to the context. The container for an intrusion detection should always be the

current diagram but for other domain model objects the container could change. The last

lines of this listing again address the CommandStack and execute the feature’s add method

so that the new element can be added to the active diagram.

Since existing intrusion detection systems are now represented, we also want to create

new ones directly in the diagram. Unfortunately, ones the core editor is implemented

115

6 Implementation and Validation

Graphiti does not o�er any possibility to add new elements to the palette view for creation

purposes. This is caused by the feature provider, which provides only methods to receive

all its known create features. However, as they are returned as �xed array, there is no

possibility to add further create features. Furthermore, a feature provider can not be

set a second time once the diagram is created. In order to accomplish adding elements

to the palette view a custom feature provider has to be used already in the core editor

providing speci�c methods for this task. The same problem occurs for creating a new

context dependent menu button, when right clicking on the diagram’s surface. Graphiti

does support changes for this menu but there must be an extension point de�ned in the

core editor so that further buttons can be added to it in an extension. The only extension

point the core editor o�ers in that case regards changes in the mouse-over menu. However,

this menu only is active, when hovering over an existing element and not while hovering

over the diagram itself. Therefore, adding a new button to this menu, like we did in the

input model implementation in section 6.4.4.3, is not suitable for this task.

6.6.5.2 Adding a Connection

Adding a new connection works similar to adding a new node. The only change is that

instead of an AddContext an AddConnectionContext is required, which needs a source and

a target anchor. For our GenericConnection we hereby need again an AddFeature and the

delegation to its add method from our LoadSmartGridExtension class responsible for the

loading of an arti�cial extension model.

As mentioned, an AddConnectionContext requires a source as well as a target anchor. We

can address these by �nding the source and target container shape for the connection to

be created. Finding the correct container shapes is done by comparing the linked network

entity’s ID of each container shape with the source and target network entity’s ID of the

generic connection to be created.

The implementation of the add feature is similar to the implementation for the power

connection described in section 6.3.2.2 and is therefore not further discussed here. For

creating new connections directly inside the diagram we have the same problems as we

did when creating a new intrusion detection system. However, in this case we can add a

mouse-over button since a connection needs to be created between a source and a target

entity. The creation of a new mouse-over button was also discussed in section 6.4.4.3 and

is therefore not further discussed here.

6.6.5.3 Adding a Compartment

The cost function compartment and its content can be added to the control center as the

intrusion detection system can be added to the diagram including the same drawbacks.

However, a di�erence that can be made concerns the location of the compartment. As

the container shape of the compartment is the control center, we can make the location

of where to put the cost function more exact. Therefore, we alter the code described in

listing 6.21 a bit to the listing in 6.22.

116

6.7 Summary of the Validated Mappings

Listing 6.22: Adding a prede�ned region to the control center with variable location infor-

mation

1 if (!(targetContainer instanceof Diagram)) {

2 int childrenY = 1;

3 if (targetContainer.getGraphicsAlgorithm() != null

4 && targetContainer.getGraphicsAlgorithm().getGraphicsAlgorithmChildren() != null) {

5 childrenY = 25 * targetContainer.getGraphicsAlgorithm().getGraphicsAlgorithmChildren

().size();

6 }

7 area.setLocation(0, childrenY);

8 } else {

9 area.setLocation(100, 50);

10 }

Instead of de�ning a �xed location, we make the location in the area context dependent

on the given container structure. If, for example, a cost function should be added to the

control center, the check in line three returns true. This is due to the fact that the control

center as target container has a graphics algorithm child, namely the «ControlCenter» label.

For each label, and we assume that labels are the only additional children a control center

shape has, we assume a height of 25 and multiply this height with the number of total

children. The new location’s x coordinate is then set to zero, as it should start on the left

border of its container, while its y coordinate is dependent on the value of childrenY. The

code in listing 6.22 can also be applied for the cost function’s content. Then, the target

container resembles the cost function and its children are dependent on the number of the

cost functions optimums already added to the cost function container shape.

For the creation of such a cost function and its local minimum coordinates a mouse-over

button can be applied, as we need an existing element to add the cost function to. The

implementation of such a mouse-over button can be done according to section 6.4.4.3.

Apart from the creation, the compartment as such can not be moved or resized. The

inability to resize the compartment is due to the implementation of the topology editor but

could be overridden. However, if we also want the compartment to be moveable inside the

control center, we also would have to implement a so called MoveShapeFeature8
speci�cally

designed for the cost function and its content.

6.7 Summary of the Validated Mappings

During this section we sum up this chapter. Thereby, we focus on the validation of our

approach. First, we give an overview on the extension mechanisms and types validated on

meta-model level. Second, we compare the validated extension types on graphical editor

level for both frameworks. At the end of this section, we show which mappings have been

validated for which framework.

8http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.graphiti.doc%2Fjavadoc%2Forg%

2Feclipse%2Fgraphiti%2Ffeatures%2Fimpl%2FDefaultMoveShapeFeature.html

117

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.graphiti.doc%2Fjavadoc%2Forg%2Feclipse%2Fgraphiti%2Ffeatures%2Fimpl%2FDefaultMoveShapeFeature.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.graphiti.doc%2Fjavadoc%2Forg%2Feclipse%2Fgraphiti%2Ffeatures%2Fimpl%2FDefaultMoveShapeFeature.html

6 Implementation and Validation

M
e
t
a
-
C

l
a
s
s

A
t
t
r
i
b
u

t
e

C
o

n
t
a
i
n

m
e
n

t

R
e
l
a
t
i
o

n

Association x x x

Composition x

Inheritance x x

Stereotype x

Table 6.2: Overview on the validation of extension types and mechanisms on meta-model

level

6.7.1 Summary of the Validation on Meta-Model Level

In this section, we sum up the validation done on meta-model level. Thereby, table 6.2

is given. Both meta-class extension types are here combined, as their di�erentiation is

only required when considering the mapping towards graphical editor extension types.

Furthermore, the extension mechanism realization is left out, since interfaces in EMF

are always marked as abstract and therefore, can also be considered as abstract classes

for our purposes. As we can see from the table, not all possible extension mechanism to

extension type mappings have been covered during our validation. If compared to table

4.1 in section 4.5, the association misses the containment extension type. Furthermore,

we didn’t realize the containment and relation mapping with the inheritance extension

mechanism. However, all extension types on meta-model level have been validated by our

extensions and all extension mechanisms have been used for the realization of at least one

extension type.

The associations were used for the GenericController in section 6.6.2, where we covered

the relation and the meta-class extension type. Furthermore, we used associations in the

input model to add further attributes.

The composition was only used during the arti�cial extension, when considering the

CostFunction as well as its local minimum coordinates. Inheritance was also used during

the arti�cial extension but also when adding entity states as attributes to network entities

in the output model extension.

At last, we used a stereotype in order to add another attribute to the control center, also in

section 6.6.2.

6.7.2 Comparison of Extension Types on Graphical Editor Level

For a better comparison of both frameworks regarding their capabilities in realizing

extension types, table 6.3 is given. The table shows all extension types regarded in section

4.6 and indicates, which of those are realizable by which framework. As we can see, all

extension types responsible for the representation of a model element are realizable and

have been validated in both frameworks. We only have to di�erentiate, when it comes

to the creation or altering of element’s values. For Graphiti, both the palette entry and

118

6.7 Summary of the Validated Mappings

Sirius Graphiti

Node/Container x x

Connection x x

Annotation x x

Change Appearance x x

Compartment x x

Sub-Node/Sub-Container x x

Palette Entry x (x)

Context Dependent Menu Button x (x)

Toolbar Button x *

Properties View Entry x *

New View x x

Outline View Extension ** **

Table 6.3: Direct comparison of the possible extension types in both frameworks

the context dependent menu button are in brackets, as their realization depends on the

core editor. If the core editor provides custom extension points, whose class instances

are added to the respective methods, further palette entries and context dependent menu

buttons are possible in Graphiti. However, if the core editor should not be altered at all,

creation of new model elements is only possible by creating a new editor in Graphiti.

The extension types marked with an asterisk may be possible but are not dependent

on the framework. As we have shown in section 6.4.2, we can add a toolbar button to

the Eclipse toolbar providing the same functionality as in Sirius. However, as Graphiti

does not provide its own toolbar, the toolbar button is also independent of the Graphiti

framework. Although, it has not been implemented within this thesis, Graphiti does not

provide altering the properties view neither as extension point nor as any intern method,

which needs to be overridden. On the other hand, Sirius does provide this functionality,

but only as recently as the current version 4.0 was released in Eclipse Neon.

The last extension type the table shows is the extension of the outline view. This extension

type was not implemented by any of the two prototypes, which is why we can not make

any well-founded statements on this extension type for neither framework.

6.7.3 Validation of the Mapping in Sirius

This section deals with the summary of the validation of the mapping in Sirius. The

validation in Graphiti is regarded in the next section. To get a better overview on the result

of the validation, table 6.4 is given. Starting in the �rst row, we can see that we covered

only two out of �ve di�erent mappings given this meta-model extension type. However,

the other possible mappings were a connection, a context dependent menu button and

a new, which we’ve shown that they can be implemented, at least for other extension

types. The procedure in Sirius, however, is the same so that we can safely say that the

three remaining mappings can also be implemented using the Sirius framework.

Unfortunately, we only managed to cover two out of the nine di�erent mappings the

119

6 Implementation and Validation

N
o

d
e
/
C

o
n

t
a
i
n

e
r

C
o

n
n

e
c
t
i
o

n

S
u

b
-
N

o
d

e
/
-
C

o
n

t
a
i
n

e
r

A
n

n
o

t
a
t
i
o

n

C
o

m
p

a
r
t
m

e
n

t

C
h

a
n

g
e

A
p

p
e
a
r
a
n

c
e

O
u

t
l
i
n

e
V

i
e
w

P
a
l
e
t
t
e

E
n

t
r
y

C
o

n
t
e
x
t

D
e
p

e
n

d
e
n

t
M

e
n

u
B

u
t
t
o

n

P
r
o

p
e
r
t
i
e
s

E
n

t
r
y

T
o

o
l
b
a
r

B
u

t
t
o

n

N
e
w

V
i
e
w

Meta-Class,

Below Root Node

x x

Meta-Class, Part

of Other Instance

x x

Attribute x x x x x

Containment x x x x

Relation x x

Table 6.4: Overview on the validation of the mapping in Sirius

second meta-model extension type has to o�er. Although, the validation of some of these

mappings can be inferred from other extension type’s mappings, not all of them can be

validated that way.

Considering the attribute extension type we managed to cover �ve out of eight di�erent

mappings. The representational extension types were covered during the input model

extension and the arti�cial extension, as was the context dependent menu button. The

properties view entry was added for the coordinates of the local minimum coordinates

instances for the cost function in the arti�cial extension. The new view, on the other side,

was created for the aggregation attribute belonging to the smart meter.

The containment extension type was only realized in the arti�cial extension. Therefore,

we covered four out of seven di�erent mappings. The last extension type, whose mapping

needs to be regarded, is the relation extension type. Here, we covered two out of �ve

di�erent mappings. Indirectly, the relation extension type was also realized as compartment

and sub-node. However, within the mapping we only regard the direct realizations of the

relation extension type.

Although, we created various toolbar buttons, they didn’t actually serve the purpose of

realizing any extension type. That is why they are left out in this summary. However, as

we managed to implement toolbar buttons, we are con�dent that they can also be used,

for example, for changing the status of a notation element.

120

6.7 Summary of the Validated Mappings

N
o

d
e
/
C

o
n

t
a
i
n

e
r

C
o

n
n

e
c
t
i
o

n

S
u

b
-
N

o
d

e
/
-
C

o
n

t
a
i
n

e
r

A
n

n
o

t
a
t
i
o

n

C
o

m
p

a
r
t
m

e
n

t

C
h

a
n

g
e

A
p

p
e
a
r
a
n

c
e

O
u

t
l
i
n

e
V

i
e
w

P
a
l
e
t
t
e

E
n

t
r
y

C
o

n
t
e
x
t

D
e
p

e
n

d
e
n

t
M

e
n

u
B

u
t
t
o

n

P
r
o

p
e
r
t
i
e
s

E
n

t
r
y

T
o

o
l
b
a
r

B
u

t
t
o

n

N
e
w

V
i
e
w

Meta-Class,

Below Root Node

x

Meta-Class, Part

of Other Instance

x

Attribute x x x

Containment x x x x

Relation x x

Table 6.5: Overview on the validation of the mapping in Graphiti

6.7.4 Validation of the Mapping in Graphiti

Like we did for the Sirius framework, we sum up the validated mappings also for the

Graphiti framework. As in the previous section, we present table 6.5 for a better overview.

While we were able to validate 15 out of 34 di�erent mappings for Sirius, we only validated

eleven mappings for Graphiti. This was because of the fact that the core editor would

have to be extended, in order to support additional palette entries. Furthermore, Graphiti

doesn’t support an extension of the properties view, which is why we couldn’t validate

the mappings, considered with the properties view, either. However, we have managed to

validate the same amount of mappings considering the pure representation, as we did for

the Sirius framework.

Further mappings in Graphiti would have been possible, since we could have, for example,

implemented a toolbar button serving the purpose of switching the power outage status

of each power state on and o�. However, to cover all mappings equally, further meta-

model extensions would have been needed, as we can not realize multiple representation

extension types for a single meta-model extension type.

121

7 Evaluation

While the previous chapter considered the implementation of both frameworks and there-

fore, the validation of our approach, we evaluate the insights achieved throughout this

chapter. Therefore, we start with a comparison between both the Graphiti and the Sirius

framework. After that, we take a look at the scenario, where more meta-model content is

available, but there is no editor handling the content. Thereby, we also consider the other

case, where the graphical editor extension exists, but there is no valid model for the given

extension. A last section within this chapter discusses further scenarios extending given

meta-models. These scenarios are only discussed theoretically and are not implemented.

However, these scenarios proof again that the mapping depicted in chapter 5 is valid, as

we also discuss the appliance of these scenarios to a possible Sirius implementation.

7.1 Comparison Between the Graphiti and the Sirius
Framework

This section deals with the direct comparison of both frameworks used. Therefore, ad-

vantages and disadvantages of each framework are taken into consideration. After we

compared the capabilities of each framework to realize the given extension types in section

6.7.2, we can also compare both frameworks towards their advantages and disadvantages.

We hereby divide this section into �ve di�erent parts, where each part is concerned with

one aspect of creating and using an editor, as well as its extensions.

7.1.1 Creating the core editor

When creating the core editor for a given meta-model, we don’t have to consider possible

extensions, when creating the editor in Sirius. We can still use the complete functionality

in any extension independent of the core editor’s design. Furthermore, the e�ort creating

the core editor is pretty low, as the core Sirius editors already contain a wide range of

functionality. A minor disadvantage of Sirius for this concern is that the model always

has to be created �rst. There is no feature that lets you create the diagram �rst and ,from

there, automatically creates the model.

In Graphiti on the other hand, we have to know whether one or more extensions are

created in the future. If there will be any further extensions, di�erent extension points

have to be de�ned that regard adding create features in the feature provider and adding

context dependent menu buttons. Furthermore, the e�ort creating a core editor with

almost the same functionality Sirius o�ers, is a lot higher as custom diagram, feature

provider, diagram behavior and other classes have to be created. Additionally, we need to

write plain java code for each notation element to be represented, whereas we can use the

123

7 Evaluation

prede�ned viewpoint description editor in Sirius to create the required notation elements

with only little java writing necessary. At last, Graphiti does neither o�er a mechanism

for creating a diagram without an existing model nor creating a diagram for an existing

model. Both features have to be implemented.

7.1.2 Toolbar

The fact that Graphiti doesn’t o�er a toolbar, such as Sirius, leads to more than one

disadvantage. As there is no toolbar in Graphiti, we have to add buttons to the Eclipse

toolbar itself causing the toolbar to appear crowded. If only one or two extensions should

be added to the current diagram, this is not a problem. However, if other buttons should

be added as well, a new toolbar speci�cally designed for the Graphiti diagram may need to

be implemented. Furthermore, there is some functionality missing in Graphiti due to the

missing toolbar, such as a layout button. If a new diagram, based on a model, should be

created and there is no layout algorithm applied, all model elements have to be dragged

from hand to their position. Other functionality such as the layer buttons in Sirius are

nice to have but can be implemented in Graphiti with the help of clear buttons, as we did

in section 6.4.4.4 as well.

7.1.3 Creating the extension

Concerning the pure creation of an extension Sirius again has the advantage that the

viewpoint description editor can be used for most of the extension. However, as a di�erent

root model element is used in the extension than in the core editor it becomes necessary

to use java services and external java actions which also have to be implemented with java

code. In Graphiti we can add new notation elements or change existing ones the same

way we did when creating the core editor. For their creation in the diagram the prede�ned

extension points have to be implemented. The features created in the extensions need

only to be called at the appropriate point in time. Therefore, the e�ort in creating the

extension in Graphiti is reduced compared to the creation of the core editor as we don’t

have to implement the diagrams basics again. On the other side the e�ort for creating an

extension in Sirius is higher than creating the core editor as we most certainly are required

to write java code in order to support the extension meta-model.

7.1.4 Adding an extensionmodel to the diagram

Adding an extension model to the diagram can be implemented in both frameworks by

adding a new toolbar button. Sirius furthermore, automatically adds every valid model

to the current diagram that exists in the diagram’s project. Such a feature can be an

advantage, since there is no need for a toolbar button but can also be disadvantageous.

That is the case for many extension models referring to the diagram’s underlying core

model. Regarding our running example, it is possible that more than one input model

exists for a given topology model in order to represent di�erent scenarios. Currently, all

input models would be loaded into the diagram, as they are all valid causing the Sirius

editor to only load the �rst model applicable and ignoring the other ones.

124

7.2 Content not Supported by the Current Graphical Editor

Graphiti on the other hand, �rst needs a ResourceSetListener implemented in the core editor

that ensures that all loaded models are saved together. Furthermore, if a desired extension

should be added to the diagram, a toolbar button is necessary loading the extension to

the diagram. The advantage of this method is that always only the loaded models and the

core model is active. Therefore, we can take a look at multiple valid input models for a

single topology model without putting more e�ort in the implementation.

7.1.5 Further drawbacks

The last paragraph in this section regards further drawbacks for both frameworks individ-

ually. A minor drawback in Sirius is that mouse-over buttons aren’t supported by the core

editor. Like Graphiti, there would be the need for a custom editor implementation to enable

mouse-over buttons in Sirius. A bigger drawback in Sirius is that changes made on the

same notation element, whether it is a node or a container are not commutative throughout

independent extensions. That means if in our running example all three extensions are

active at the same time, the control center only shows the elements of the smart grid ex-

tension layer. A possible, but untested, reason could be that Sirius prioritizes its extensions

alphabetically leading to the smart grid extension having the highest priority. Graphiti on

the other hand, simply adds all elements successively to the container independent of the

extension loaded last.

An advantage in Graphiti, and at the same time a disadvantage for Sirius, is the activation

of an extension, if no valid extension model exists. In Graphit this simply isn’t possible,

as all extensions need to be loaded to the diagram by the toolbar button. In Sirius on the

other hand, we simply activate a certain extension layer. Even if there is no valid extension

model, the layer still becomes active leading to NullPointerExceptions, as all java service

methods can not access the extension, since it is not present in the current session. The

editor itself can still be used, but as long as the extension layer is active, further exceptions

will be thrown. That happens, for example, if a new intrusion detection system should be

created, and there is no smart grid extension model to add the intrusion detection system

to.

All in all, we can say that using the Sirius framework for the creation of core editor and its

extensions requires a lot less e�ort than using the Graphiti framework. This is also due to

the fact that Sirius o�ers a framework including UI components, such as the viewpoint

description editor, while Graphiti only o�ers an API used within plain java code.

7.2 Content not Supported by the Current Graphical Editor

This section deals with the last research question considering content that is available as

meta-model extension, but no graphical editor extension is available for representation

and creation of the meta-model extension elements. Of course, if the editor doesn’t know

that a certain model is an instance of a meta-model extension, there will be no additional

content in the editor considering this model. However, it may be useful for the user to see,

whether there is additional content, as he may want to take the meta-model extension

into account. As this section is theoretical, we only discuss such possibilities for the Sirius

125

7 Evaluation

framework.

In order for such a feature to be realized, we could use an additional diagram extension

or structure our core editor accordingly. We here assume that we only extend the core

meta-model. However, the presented approach can also be extended in such a way that

unknown extensions of an extension become visible. Assuming that any notation element

could be extended, we need to add a further notation element for each already existing

notation element with a connection between the two elements. As we don’t know the

domain class extending our notation, element we use the same domain class as for the

notation element to be possibly extended. The di�erence here lies only in the semantic
candidates expression. The appropriate extension class can not be found with the help

of the acceleo query language, as it can not be used for such general terms. Therefore,

we need to implement a java service method. This service method would need to visit

every resource in the current project that is not known and �nd possible references to

the domain class, which is possibly extended. This approach would have to be done for

every domain class that is represented in the current diagram. As a label for these new

notation elements, we could then add their corresponding resource to show the user, where

additional content can be found. If there are multiple extensions of the same type, the

further represented notation elements may be redundant. This strategy, of course, only

works for such extensions, where the core model element is referenced by a composition

or unidirectional association. If the corresponding meta-class is extended by inheritance,

another strategy needs to be found, such as trying to up-cast every class instance found.

The validation of such a feature is a challenge for future work and is not further discussed

here.

7.3 Further Scenarios

This section deals with additional scenarios that were not addressed within the last chapter

but are still worth mentioning. Therefore, we shortly describe each scenario and its

purpose. During the description, a special focus lies on the extension types on meta-model

level and how they can be possibly realized in a theoretical graphical editor extension

without implementing such an extension. We hereby only focus on the extension types

used for representing the model elements as most of the creation extension types strongly

dependent on the developers preference. Each of the presented extensions extends the

Palladio Component Model (PCM) [3]. The PCM is an approach for performance prediction

during the design time of a software system. It comprises �ve sub-models: repository,

system assembly, resource environment, deployment and usage. The relevant models for

each extension are explained shortly in the respective subsection.

7.3.1 IntBIIS

The Integrated Business IT Impact Simulation (IntBIIS) is an extension for the Palladio

Component Model, which addresses only the usage model and is based on Heinrich et al

[22]. According to Becker et al [3], the PCM usage model describes typical or critical usage

scenarios and parameter values for the system in development. IntBIIs consists of two

126

7.3 Further Scenarios

Figure 7.1: IntBIIS meta-model with new meta-classes on the right side and existing classes

on the left side

di�erent packages, whereas only one actually extends the PCM usage model. Therefore,

only this extension is regarded. The extension o�ers overall six new meta-classes that

can be seen in the meta-model in �gure 7.1. Starting with the Activity meta-class, we can

see that there are overall two references to meta-classes of the usage meta-model. One

reference is the extension of the abstract class AbstractUserAction. As concrete user actions

are displayed as sub-nodes or sub-containers in the usage model, the activity should be

represented the same way. The same argumentation holds for AcquireDeviceResourceAc-
tion, ActorStep and ReleaseDeviceResourceAction, as all of these four classes extend the

AbstractUserAction meta-class. Furthermore, an activity also references ScenarioBehaviour
with a composition. Therefore, a scenario behavior should be realized as compartment of

the activity making the activity a container element.

Regarding the AcquireDeviceResourceAction, as well as the ReleaseDeviceResourceAction, we

can see another reference towards the DeviceResource meta-class. This meta-class is not

part of the usage model, but part of the second package of this extension. However, since

both resource action meta-classes inherit the AbstractUserAction meta-class and contain

further attributes, these two could also be realized as container. For the same reasons, the

ActorStep meta-class, together with its attributes can also be realized as container, where

the referenced meta-class instances can also be represented as annotation or sub-container,

depending on the realization of the Role meta-class.

The last meta-class directly referencing the usage model is ProcessWorkload. As its in-

herited class is also represented as sub-container, the process workload should also be

represented as sub-container having a compartment containing ProcessTriggerPeriod meta-

class instances.

As none of these classes seem to require any special instantiation all of these classes could

127

7 Evaluation

Figure 7.2: Excerpt of the ContainerStereotypes package of the meta-model developed by

Czogalik [7]

be added to the palette view to ensure their creation. Changing any of their attributes’

values could be done directly in the diagram or as a new properties entry.

7.3.2 Security Extensions

The next extension discussed in this section also deals with the Palladio Component Model.

Busch et al propose an approach for assessing security of component-based software

architectures [5]. To accomplish this extension on meta-model level only the repository
and the resource environment models in the PCM have to be extended. The resource

environment model de�nes resource containers and the network topology, while the

repository contains interfaces and components that are used throughout the de�nition of

the complete model instance [3]. The extension thereby focuses on adding new attributes

by stereotyping. Therefore, the extension on a possible graphical editor is also limited to a

few extension types. Currently, there is no meta-model given for this extension leading

to the fact that all realizations according to the attribute extension type are possible

assuming that stereotyping is the only extension mechanism used. If other extension types

and mechanisms, such as providing relations and di�erent references will be used, both

mappings regarding relations and attributes in the sections 5.3 and 5.5 have to be taken

into account.

7.3.3 Architectural Data Flow Analysis

A last extension we want to discuss within this chapter focuses on the work of Seifermann

in [49] and the thesis of Czogalik in [7]. We hereby point out the di�erent extension types

by analyzing the given meta-model. As the meta-model itself is quite large only those

classes are regarded that can be considered a direct extension to one of the given PCM

sub-models. The meta-model consists of �ve di�erent packages. Three of them are partly

shown and analyzed towards their extension types within this section.

Starting with �gure 7.2, we see an excerpt of the ContainerStereotypes package. In this

128

7.3 Further Scenarios

Figure 7.3: Excerpt of the DSEFF package of the meta-model developed by Czogalik [7]

package, there are overall two meta-classes directly referencing meta-classes of the PCM.

The LinkinResourcePropertyContainer class references LinkinResource, while the Resource-
ContainerPropertyContainer references ResourceContainer. The referenced classes are both

contained in the resource environment sub-meta-model of the PCM. According to our clas-

si�cation, both references result in a relation extension type. However, as they both have a

cardinality of one and a further composition attached to them, both of these meta-classes

realize the containment extension type, as described in section 4.4.1. Possible ways of

realizing the containment extension type on graphical editor level are analyzed in section

5.4. Since both the LinkinResource and the ResourceContainer are realized as containers,

we could simply add a new compartment to each of the containers. Further instances of

sub-classes of LinkingResourceProperty and ResourceContainerProperty can than be added

as nodes or containers to the compartment.

The next part of the meta-model we need to analyze, is the DSEFF package. An excerpt

of this package with all meta-classes extending the PCM is shown in �gure 7.3. Within

this package, there are overall four references to PCM meta-classes. All of the referenced

classes are meta-class of the repository sub-model. Starting with the Binding meta-class,

we can assume, that, in an intrusively extended meta-model, these two classes would

be modeled the same way as they are in this meta-model. Therefore, we have a relation

extension type. The Binding meta-class itself is contained in the BindingContainer class

and therefore realizes the containment extension type. If mapped to a graphical editor, we

could implement this class and its reference together as annotation within a compartment

that corresponds to the BindingContainer.
Looking at the right side of �gure 7.3, we see the DataFlowSEFF meta-class. This class uses

two unidirectional associations. One targets the abstract Signature class, the other one

targets the BasicComponent class. As the original service e�ect speci�cation also uses two

references in a similar way we can here also assume that the extension would be the same,

if the meta-model was intrusively extended. Therefore, both associations realize a relation

extension type together with a meta-class extension type. This combination can result in

129

7 Evaluation

Figure 7.4: Excerpt of the Usage package of the meta-model developed by Czogalik [7]

the representation of the DataFlowSEFF as container containing each a BasicComponent
and a Signature. Otherwise, both of the associations targets can be represented as indepen-

dent nodes or containers with a connection to the DataFlowSEFF.

The last class to analyze is the DataFlowExternalCallAction meta-class. However, if com-

pared to the SEFF meta-model the references in the data �ow extension are interchangeable

with the ones in the SEFF meta-model. Therefore, both associations linked to the repository
classes again realize the relation extension type, while the DataFlowExternalCallAction
resembles a meta-class extension type. The ParameterBinding can be realized as compart-

ment of the DataFlowExternalCallAction container element, as it realizes the containment

extension type.

The last package we need to discuss, is the Usage package shown in �gure 7.4. The Usage
package contains only one meta-class referencing the PCM usage model. On the left side,

the ParameterBinding class inherits a class with the same name known from the DSEFF
package shown in �gure 7.3. Therefore, the meta-class in the usage package also contains

further BindingContainers. Furthermore, as there is again one unidirectional association to

the PCM meta-class with a cardinality of one, we can conclude that the ParamterBinding
meta-class in the usage package realizes the containment extension type together with its

relation to EntryLevelSystemCall. The mapping on graphical editor level therefore is the

same, as mentioned before, where we discussed the ContainerStereotypes package.

The last two packages that complete this meta-model either extend meta-classes that were

already discussed or extend generic meta-classes, such as Identi�er. Those two packages

are therefore not further discussed.

130

8 Conclusion

This last chapter concludes this thesis with a summary of its contributions and gives an

overview on the possibilities of future work.

8.1 Conclusion

This thesis presented ways to extend a modular meta-model and transfer those extensions

to graphical editors in the same manner. The extensions itself are designed independently

from each other and extend the core meta-model or graphical editor or one of their

extensions noninvasively. In contrast to related work, our graphical editors are as modular

as the underlying meta-model. That means that if the user does not wish to use a certain

extension, it can be left out on both, the graphical editor level as well as the meta-model

level. Therefore, we started the main part of this thesis with a de�nition of extension

types and mechanisms that were used throughout this thesis. Afterward, we discussed

and analyzed a classi�cation of extensions for meta-models as well as for graphical editors.

Thereby, we introduced �ve di�erent extension types on meta-model level that have an

impact on a graphical editor extension. Graphical editor extension types can thereby be

divided into �rst, the representation of a meta-model extension and second, into creating

or altering the meta-model instance’s value. For our understanding such a graphical editor

can have up to twelve di�erent extension types that are mostly based on the framework

used for creating such an editor. Besides the extension types on each level, we also de�ned

extension mechanisms that can be used for the realization of an extension type on their

respective level.

As there was no indication given on which extension type on meta-model level results in

an extension type on graphical editor level, a mapping between those two needed to be

established. This was be done after the classi�cation on both levels was completed. During

the mapping, we analyzed the possible impact of a meta-model extension type on graphical

editor level. The result was e shortened list of graphical editor extension types which

could be implemented for a given meta-model extension type. Based on this mapping and

the classi�cation an implementation could be done. The actual implementation of course,

is dependent on the developers intention, the given context and the possibilities of the

framework used for the implementation.

To validate this concept and the mapping, we implemented two prototypes, each in a

di�erent framework. During the validation we have shown, that the classi�cation on both

levels is reasonable. The mapping following from this classi�cation could also be validated

for the most part, as not all mappings have been implemented.

Although, both the Sirius and the Graphiti framework are capable of implementing most

of the extension types, when given a meta-model extension, we came to the conclusion

131

8 Conclusion

that Sirius should be preferred. Where Graphiti uses plain java code, a Sirius-based editor

description is more structured and o�ers even more possibilities, such as a custom de�nition

of a properties view, that comes with Sirius 4.0. Furthermore, we do not necessarily need

to implement a toolbar button for loading an extension into our Sirius diagram. Sirius

does automatically load every model instance in the current project, which has an active

viewpoint, to the current session.

All in all, we’ve not only shown that the mapping between meta-model extension types

and graphical editor extension types works. We also established guidelines showing how

to extend graphical editors noninvasively for both the Sirius and the Graphiti framework.

8.2 Future Work

Future work based on this thesis may address several topics. On the one hand there could

be future work aiming towards the classi�cation of extensions and their mappings. On

the other hand there still open issues concerning the implementation of graphical editors

which can also be addressed in future work.

Starting with the classi�cation we only focused on the main extension types and mecha-

nisms for meta-models. However, there could be more extension types taken into account

when considering the ecore meta-metamodel such as packages, classi�ers or operations.

Some of these may also have an impact on graphical editor extensions. Not only more

extension types but also extension mechanisms can be considered on meta-model level

such as decorating which wasn’t mentioned in this thesis.

Among extending a modular meta-model and its impact on graphical editors there are other

artifacts future work could target. Extending the meta-model may also have in�uences on

further simulations which can also be regarded.

Now that graphical editor extensions based on meta-model extensions have been covered

there are also reasonable scenarios where no meta-model extension is given but the editor

may need an extension overall. That can be the case for simulations where editor support

is advantageous in order to show the impact of a given input without having a further

meta-model extension. In that way further functionality can be achieved.

The last three aspects of possible future work cover implementation parts of this thesis

that haven’t been fully evaluated. One of these two aspects was already mentioned in

section 6.5.4 where two or more extensions are active at the same time but are independent

of each other. The developer or the user may not want the editor’s elements to change

their appearance according to the last loaded extension. For that case rules have to be

de�ned as to how to react in these situations. Section 6.5.4 indeed introduces a possible

solution for this problem but this solution also needs to be validated and tested.

Besides having possible con�icts in two or more independent extensions future work may

also regard content not provided by the current editor. There could be a meta-model exten-

sion with valid model instances but no graphical editor extension to represent the model.

One way of dealing with such a case would be to somehow recognize the meta-model

extension and represent it in the editor as cloud or other so that the user knows that there

is another extension with references to the current active models.

A last future work based on this thesis may be researching possibilities to apply a graphical

132

8.2 Future Work

editor extension also to a di�erent core editor. An application would be a general core

editor for tutorial purposes with low complexity where developers can start building

simple extensions. These extensions can then be applied to another core editor with

further functionality and more complexity.

133

Bibliography

[1] Andreas Andresen. Komponentenbasierte Softwareentwicklung mit MDA, UML 2
und XML. 2., neu bearb. Au�. München: Hanser, 2004. isbn: 3-446-22915-9. url:

http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=1589920&

custom_att_2=simple_viewer.

[2] Danilo Ardagna et al. “Project Deliverable D3. 1 Prediction Models Speci�cation

(revised version)”. In: (2009). url: http://www.q- impress.eu/wordpress/wp-

content/uploads/2009/05/D3.1-Prediction_model_specification_v20.pdf.

[3] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model

for model-driven performance prediction”. In: Journal of Systems and Software 82.1

(2009). Special Issue: Software Performance - Modeling and Analysis, pp. 3–22.

issn: 0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2008.03.066. url:

http://www.sciencedirect.com/science/article/pii/S0164121208001015.

[4] Lorenzo Bettini, ed. Implementing domain-speci�c languages with Xtext and Xtend
: Learn how to implement a DSL with Xtext and Xtend using easy-to-understand
examples and best practices. Community experience distilled. Bibliogr. [p. 311]-318.

Index. Birmingham, UK [u.a.]: Packt Publ., 2013. isbn: 978-1-78216-030-4; 1-78216-

030-2 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen].

[5] Axel Busch, Misha Strittmatter, and Anne Koziolek. “Assessing Security to Compare

Architecture Alternatives of Component-Based Systems”. In: Proceedings of the
IEEE International Conference on Software Quality, Reliability & Security. QRS ’15.

Acceptance Rate (Full Paper): 20/91 = 22%. Vancouver, British Columbia, Canada:

IEEE Computer Society, 2015, pp. 99–108. doi: 10.1109/QRS.2015.24.

[6] A. Colombo et al. “The Use of a Meta-Model to Support Multi-Project Process

Measurement”. In: 2008 15th Asia-Paci�c Software Engineering Conference. Dec. 2008,

pp. 503–510. doi: 10.1109/APSEC.2008.55.

[7] Thomas Czogalik. “Daten�ussmodellierung für Vertraulichkeitsanalysen in Palladio”.

Bachelor thesis. Karlsruher Institute for Technology, 2016.

[8] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-speci�c Languages: An

Annotated Bibliography”. In: SIGPLAN Not. 35.6 (June 2000), pp. 26–36. issn: 0362-

1340. doi: 10.1145/352029.352035. url: http://doi.acm.org/10.1145/352029.

352035.

135

http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=1589920&custom_att_2=simple_viewer
http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=1589920&custom_att_2=simple_viewer
http://www.q-impress.eu/wordpress/wp-content/uploads/2009/05/D3.1-Prediction_model_specification_v20.pdf
http://www.q-impress.eu/wordpress/wp-content/uploads/2009/05/D3.1-Prediction_model_specification_v20.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2008.03.066
http://www.sciencedirect.com/science/article/pii/S0164121208001015
http://dx.doi.org/10.1109/QRS.2015.24
http://dx.doi.org/10.1109/APSEC.2008.55
http://dx.doi.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035

Bibliography

[9] Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. “What is Needed for

Managing Co-evolution in MDE?” In: Proceedings of the 2Nd International Workshop
on Model Comparison in Practice. IWMCP ’11. Zurich, Switzerland: ACM, 2011,

pp. 30–38. isbn: 978-1-4503-0668-3. doi: 10.1145/2000410.2000416. url: http:

//doi.acm.org/10.1145/2000410.2000416.

[10] Lajos Fejes, Gunnar Johannsen, and Gerd Strätz. “A graphical editor and process

visualization system for man-machine interfaces of dynamic systems”. In: The Visual
Computer 10.1 (1993), pp. 1–18. issn: 1432-2315. doi: 10.1007/BF01905527. url:

http://dx.doi.org/10.1007/BF01905527.

[11] The Ecipse Foundation. Eclipse Graphiti Documentation. Last visited on August, 20,

2016. url: http://help.eclipse.org/mars/index.jsp?topic=/org.eclipse.

graphiti.doc/javadoc/index.html%5C&help-doc.html.

[12] The Eclipse Foundation. Graphiti Homepage. Last Visited on March, 5, 2016. url:

https://eclipse.org/graphiti/.

[13] The Eclipse Foundation. Sirius Homepage. Version 3.1. Last visited on March, 5, 2016.

url: https://eclipse.org/sirius/.

[14] Martin Fowler. Domain-speci�c languages. 1. print. The Addison-Wesley signature

seriesA Martin Fowler signature book. Upper Saddle River, NJ: Addison-Wesley, 2010

[erschienen] 2011. isbn: 978-0-321-71294-3; 0-321-71294-3. url: http://bvbr.bib-

bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=020690261&line_

number=0001&func_code=DB_RECORDS&service_type=MEDIA.

[15] Erich Gamma, ed. Design patterns : elements of reusable object-oriented software.
37. print. Addison-Wesley professional computing series. Boston, Mass.: Addison-

Wesley, 2009. isbn: 0-201-63361-2; 978-0-201-63361-0 [Titel anhand dieser ISBN in

Citavi-Projekt übernehmen].

[16] Object Management Group. Object Constraint Language. English. Version 2.4. Last

visited on April, 21st, 2016. Feb. 2014. url: http://www.omg.org/spec/OCL/2.4/.

[17] Object Management Group. OMG Meta Object Facility (MOF) Core Speci�cation.

English. Version 2.5. Last visited on April, 4th, 2016. June 2015. url: http://www.

omg.org/spec/MOF/2.5/.

[18] Object Management Group. OMG Uni�ed Modeling LanдuaдeTM (OMG UML). En-

glish. Version 2.5. Last visited on April, 4th, 2016. Mar. 2015. url: http://www.omg.

org/spec/UML/2.5/.

[19] The Open Group. “TOGAF”. In: 2011. Chap. 34. Content Metamodel. url: http:

//pubs.opengroup.org/architecture/togaf9-doc/arch/index.html.

[20] S. S. u. H. Mohani et al. “Smart grid system”. In: 2016 SAI Computing Conference
(SAI). July 2016, pp. 1278–1285. doi: 10.1109/SAI.2016.7556144.

[21] Robert Heinrich. “Quality Modeling within Business Process Models”. English. In:

Aligning Business Processes and Information Systems. Springer Fachmedien Wies-

baden, 2014, pp. 59–77. isbn: 978-3-658-06517-1. doi: 10.1007/978-3-658-06518-

8_4. url: http://dx.doi.org/10.1007/978-3-658-06518-8_4.

136

http://dx.doi.org/10.1145/2000410.2000416
http://doi.acm.org/10.1145/2000410.2000416
http://doi.acm.org/10.1145/2000410.2000416
http://dx.doi.org/10.1007/BF01905527
http://dx.doi.org/10.1007/BF01905527
http://help.eclipse.org/mars/index.jsp?topic=/org.eclipse.graphiti.doc/javadoc/index.html%5C&help-doc.html
http://help.eclipse.org/mars/index.jsp?topic=/org.eclipse.graphiti.doc/javadoc/index.html%5C&help-doc.html
https://eclipse.org/graphiti/
https://eclipse.org/sirius/
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=020690261&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=020690261&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=020690261&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
http://dx.doi.org/10.1109/SAI.2016.7556144
http://dx.doi.org/10.1007/978-3-658-06518-8_4
http://dx.doi.org/10.1007/978-3-658-06518-8_4
http://dx.doi.org/10.1007/978-3-658-06518-8_4

Bibliography

[22] Robert Heinrich et al. “Integrating business process simulation and information

system simulation for performance prediction”. In: Software & Systems Modeling
(2015), pp. 1–21. issn: 1619-1374. doi: 10.1007/s10270-015-0457-1. url: http:

//dx.doi.org/10.1007/s10270-015-0457-1.

[23] J. Henriksson et al. “Extending grammars and metamodels for reuse: the Reuseware

approach”. In: IET Software 2.3 (June 2008), pp. 165–184. issn: 1751-8806. doi: 10.

1049/iet-sen:20070060.

[24] Anders Hessellund and Andrzej Wąsowski. “Model Driven Engineering Languages

and Systems: 11th International Conference, MoDELS 2008, Toulouse, France, Septem-

ber 28 - October 3, 2008. Proceedings”. In: ed. by Krzysztof Czarnecki et al. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008. Chap. Interfaces and Metainterfaces

for Models and Metamodels, pp. 401–415. isbn: 978-3-540-87875-9. doi: 10.1007/978-

3-540-87875-9_29. url: http://dx.doi.org/10.1007/978-3-540-87875-9_29.

[25] “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE Std 610.12-
1990 (Dec. 1990), pp. 1–84. doi: 10.1109/IEEESTD.1990.101064.

[26] Yanbing Jiang et al. “«UML» 2004 — The Uni�ed Modeling Language. Modeling

Languages and Applications: 7th International Conference, Lisbon, Portugal, October

11-15, 2004. Proceedings”. In: ed. by Thomas Baar et al. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2004. Chap. On the Classi�cation of UML’s Meta Model Extension

Mechanism, pp. 54–68. isbn: 978-3-540-30187-5. doi: 10.1007/978-3-540-30187-

5_5. url: http://dx.doi.org/10.1007/978-3-540-30187-5_5.

[27] L. Jinghua and L. Yan. “Cross-�elds Study of Modularity”. In: 2006 IEEE International
Conference on Management of Innovation and Technology. Vol. 2. June 2006, pp. 595–

599. doi: 10.1109/ICMIT.2006.262288.

[28] Lennart C.L. Kats, Karl T. Kalleberg, and Eelco Visser. “Domain-Speci�c Languages

for Composable Editor Plugins”. In: Electronic Notes in Theoretical Computer Science
253.7 (2010). Proceedings of the Ninth Workshop on Language Descriptions Tools

and Applications (LDTA 2009), pp. 149–163. issn: 1571-0661. doi: http://dx.doi.

org/10.1016/j.entcs.2010.08.038. url: http://www.sciencedirect.com/

science/article/pii/S1571066110001179.

[29] Pierre Kelsen and Qin Ma. “Fundamental Approaches to Software Engineering: 13th

International Conference, FASE 2010, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,

2010. Proceedings”. In: ed. by David S. Rosenblum and Gabriele Taentzer. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010. Chap. A Modular Model Composition

Technique, pp. 173–187. isbn: 978-3-642-12029-9. doi: 10.1007/978-3-642-12029-

9_13. url: http://dx.doi.org/10.1007/978-3-642-12029-9_13.

[30] M. Ko et al. “Extending UML Meta-model for Android Application”. In: Computer
and Information Science (ICIS), 2012 IEEE/ACIS 11th International Conference on. May

2012, pp. 669–674. doi: 10.1109/ICIS.2012.48.

137

http://dx.doi.org/10.1007/s10270-015-0457-1
http://dx.doi.org/10.1007/s10270-015-0457-1
http://dx.doi.org/10.1007/s10270-015-0457-1
http://dx.doi.org/10.1049/iet-sen:20070060
http://dx.doi.org/10.1049/iet-sen:20070060
http://dx.doi.org/10.1007/978-3-540-87875-9_29
http://dx.doi.org/10.1007/978-3-540-87875-9_29
http://dx.doi.org/10.1007/978-3-540-87875-9_29
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1007/978-3-540-30187-5_5
http://dx.doi.org/10.1007/978-3-540-30187-5_5
http://dx.doi.org/10.1007/978-3-540-30187-5_5
http://dx.doi.org/10.1109/ICMIT.2006.262288
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2010.08.038
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2010.08.038
http://www.sciencedirect.com/science/article/pii/S1571066110001179
http://www.sciencedirect.com/science/article/pii/S1571066110001179
http://dx.doi.org/10.1007/978-3-642-12029-9_13
http://dx.doi.org/10.1007/978-3-642-12029-9_13
http://dx.doi.org/10.1007/978-3-642-12029-9_13
http://dx.doi.org/10.1109/ICIS.2012.48

Bibliography

[31] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “MontiCore: a framework for

compositional development of domain speci�c languages”. In: International Journal
on Software Tools for Technology Transfer 12.5 (2010), pp. 353–372. issn: 1433-2787.

doi: 10.1007/s10009-010-0142-1. url: http://dx.doi.org/10.1007/s10009-010-

0142-1.

[32] Max E. Kramer et al. “Extending the Palladio Component Model using Pro�les and

Stereotypes”. In: Palladio Days 2012 Proceedings (appeared as technical report). Ed. by

Ste�en Becker et al. Karlsruhe Reports in Informatics ; 2012,21. Karlsruhe: KIT,

Faculty of Informatics, 2012, pp. 7–15. url: http://digbib.ubka.uni-karlsruhe.

de/volltexte/documents/2350659.

[33] P. Kruchten, H. Obbink, and J. Sta�ord. “The Past, Present, and Future for Software

Architecture”. In: IEEE Software 23.2 (Mar. 2006), pp. 22–30. issn: 0740-7459. doi:

10.1109/MS.2006.59.

[34] Philip Langer et al. “EMF Pro�les: A Lightweight Extension Approach for EMF

Models”. In: Journal of Object Technology 11.1 (Apr. 2012), 8:1–29. issn: 1660-1769.

doi: 10.5381/jot.2012.11.1.a8. url: http://www.jot.fm/contents/issue_2012_

04/article8.html.

[35] Philip Langer et al. “From UML Pro�les to EMF Pro�les and Beyond”. In: STUFF

MISSING. 2011.

[36] Sebastian Lehrig. “Applying Architectural Templates for Design-Time Scalability

and Elasticity Analyses of SaaS Applications”. In: Proceedings of the 2Nd International
Workshop on Hot Topics in Cloud Service Scalability. HotTopiCS ’14. Dublin, Ireland:

ACM, 2014, 2:1–2:8. isbn: 978-1-4503-3059-6. doi: 10.1145/2649563.2649573. url:

http://doi.acm.org/10.1145/2649563.2649573.

[37] Bertrand Meyer. Object-oriented software construction. 2. ed. Upper Saddle River, NJ:

Prentice Hall PTR, 1997. isbn: 0-13-629155-4. url: http://digitool.hbz-nrw.de:

1801/webclient/DeliveryManager?pid=3853398.

[38] Brad A. Myers. “Taxonomies of visual programming and program visualization”.

In: Journal of Visual Languages and Computing 1.1 (1990), pp. 97–123. issn: 1045-

926X. doi: http://dx.doi.org/10.1016/S1045-926X(05)80036-9. url: http:

//www.sciencedirect.com/science/article/pii/S1045926X05800369.

[39] Larry O’Brien. How Many Lines of Code in Windows? last visited on August, 03,

2016. Dec. 2005. url: http://www.knowing.net/index.php/2005/12/06/how-many-

lines-of-code-in-windows/.

[40] MetaCase Oy. The Graphical Metamodeling Example. Version 2. 2008.

[41] Risto Pohjonen and Steven Kelly. “Interactive Television Applications using MetaEdit”.

In: Model-Driven Development Tool Implementers Forum. 2007.

[42] Danny Poo, Derek Kiong, and Swarnalatha Ashok. “Object-Oriented Programming

and Java”. In: London: Springer London, 2008. Chap. Modularity, pp. 103–117. isbn:

978-1-84628-963-7. doi: 10.1007/978-1-84628-963-7_8. url: http://dx.doi.org/

10.1007/978-1-84628-963-7_8.

138

http://dx.doi.org/10.1007/s10009-010-0142-1
http://dx.doi.org/10.1007/s10009-010-0142-1
http://dx.doi.org/10.1007/s10009-010-0142-1
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/2350659
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/2350659
http://dx.doi.org/10.1109/MS.2006.59
http://dx.doi.org/10.5381/jot.2012.11.1.a8
http://www.jot.fm/contents/issue_2012_04/article8.html
http://www.jot.fm/contents/issue_2012_04/article8.html
http://dx.doi.org/10.1145/2649563.2649573
http://doi.acm.org/10.1145/2649563.2649573
http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=3853398
http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=3853398
http://dx.doi.org/http://dx.doi.org/10.1016/S1045-926X(05)80036-9
http://www.sciencedirect.com/science/article/pii/S1045926X05800369
http://www.sciencedirect.com/science/article/pii/S1045926X05800369
http://www.knowing.net/index.php/2005/12/06/how-many-lines-of-code-in-windows/
http://www.knowing.net/index.php/2005/12/06/how-many-lines-of-code-in-windows/
http://dx.doi.org/10.1007/978-1-84628-963-7_8
http://dx.doi.org/10.1007/978-1-84628-963-7_8
http://dx.doi.org/10.1007/978-1-84628-963-7_8

Bibliography

[43] Christian Queinnec. LISP in small pieces. 1. publ. Includes bibliographical references.

Cambridge [u.a.]: Cambridge University Press, 1996. isbn: 0-521-56247-3; 0-521-

54566-8.

[44] Ivar Refsdal. “Comparison of GMF and Graphiti based on experiences from the

development of the PREDIQT tool”. Master’s Thesis. University of Oslo, 2011. url:

http://hdl.handle.net/10852/9000.

[45] B. R. Rimes. “A graphics-based system that supports the program understanding

process”. In: Systems Integration, 1990. Systems Integration ’90., Proceedings of the First
International Conference on. Apr. 1990, pp. 117–124. doi: 10.1109/ICSI.1990.138671.

[46] Davide Ruscio, Ralf Lämmel, and Alfonso Pierantonio. “Software Language Engi-

neering: Third International Conference, SLE 2010, Eindhoven, The Netherlands,

October 12-13, 2010, Revised Selected Papers”. In: ed. by Brian Malloy, Ste�en Staab,

and Mark Brand. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. Chap. Auto-

mated Co-evolution of GMF Editor Models, pp. 143–162. isbn: 978-3-642-19440-5.

doi: 10.1007/978-3-642-19440-5_9. url: http://dx.doi.org/10.1007/978-3-

642-19440-5_9.

[47] Melissa A. Schilling. “Toward a General Modular Systems Theory and Its Application

to Inter�rm Product Modularity”. In: The Academy of Management Review 25.2 (2000),

pp. 312–334. issn: 03637425. url: http://www.jstor.org/stable/259016.

[48] D. Schleicher et al. “Compliance scopes: Extending the BPMN 2.0 meta model to

specify compliance requirements”. In: 2010 IEEE International Conference on Service-
Oriented Computing and Applications (SOCA). Dec. 2010, pp. 1–8. doi: 10.1109/SOCA.

2010.5707154.

[49] Stephan Seifermann. “Architectural Data Flow Analysis”. In: Proceedings of the
13th Working IEEE/IFIP Conference on Software Architecture. WICSA’16. accepted, to

appear. Venice, Italy: IEEE, 2016. url: http://sdqweb.ipd.kit.edu/publications/

pdfs/seifermann2016c.pdf.

[50] A. Selmeci and T. Orosz. “Modi�cation free extension of standard software”. In:

Applied Machine Intelligence and Informatics (SAMI), 2014 IEEE 12th International
Symposium on. Jan. 2014, pp. 185–190. doi: 10.1109/SAMI.2014.6822403.

[51] B. Shneiderman. “Direct Manipulation: A Step Beyond Programming Languages”.

In: Computer 16.8 (Aug. 1983), pp. 57–69. issn: 0018-9162. doi: 10.1109/MC.1983.

1654471.

[52] David Can�eld Smith. Pygmalion : a computer program to model and stimulate
creative thought. Interdisciplinary systems research ; 40. Basel: Birkhaeuser, 1977.

isbn: 3-7643-0928-8.

[53] H. Stachowiak.AllgemeineModelltheorie. Springer-Verlag, 1973. isbn: 9783211811061.

url: https://books.google.de/books?id=DK-EAAAAIAAJ.

139

http://hdl.handle.net/10852/9000
http://dx.doi.org/10.1109/ICSI.1990.138671
http://dx.doi.org/10.1007/978-3-642-19440-5_9
http://dx.doi.org/10.1007/978-3-642-19440-5_9
http://dx.doi.org/10.1007/978-3-642-19440-5_9
http://www.jstor.org/stable/259016
http://dx.doi.org/10.1109/SOCA.2010.5707154
http://dx.doi.org/10.1109/SOCA.2010.5707154
http://sdqweb.ipd.kit.edu/publications/pdfs/seifermann2016c.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/seifermann2016c.pdf
http://dx.doi.org/10.1109/SAMI.2014.6822403
http://dx.doi.org/10.1109/MC.1983.1654471
http://dx.doi.org/10.1109/MC.1983.1654471
https://books.google.de/books?id=DK-EAAAAIAAJ

Bibliography

[54] Thomas Stahl and Markus Völter. Model driven software development : technology,
engineering, management. Chichester [u.a.]: Wiley, 2006. isbn: 0-470-02570-0; 978-0-

470-02570-3. url: http://swbplus.bsz-bw.de/bsz253002060cov.htm%20;%20http:

//bvbr.bib- bvb.de:8991/F?func=service%5C&doc%5C_library=BVB01%5C&

doc%5C_number=015445749%5C&line%5C_number=0001%5C&func%5C_code=DB%5C_

RECORDS%5C&service%5C_type=MEDIA.

[55] Dave Steinberg, ed. EMF - Eclipse modeling framework. 2. ed., revised and updated.

The eclipse series. Boston, Mass.: Addison-Wesley, 2009. isbn: 0-321-33188-5; 978-0-

321-33188-5. url: http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=

BVB01&doc_number=014933667&line_number=0001&func_code=DB_RECORDS&

service_type=MEDIA.

[56] Misha Strittmatter et al. “Towards a Modular Palladio Component Model”. In: Pro-
ceedings of the Symposium on Software Performance: Joint Kieker/Palladio Days. Ed. by

Ste�en Becker et al. Vol. 1083. Karlsruhe, Germany: CEUR Workshop Proceedings,

Nov. 27–29, 2013, pp. 49–58. url: http://www.kieker-palladio-days.org/.

[57] Michael Unterstein. Relationale Datenbanken und SQL in Theorie und Praxis. Ed.

by Günter Matthiessen. 5. Au�. 2012. eXamen.pressSpringerLink : Bücher. Berlin,

Heidelberg: Springer, 2012. isbn: 978-3-642-28986-6. url: http://swbplus.bsz-

bw.de/bsz376064560cov.htmhttp://dx.doi.org/10.1007/978-3-642-28986-6.

[58] Markus Voelter. “Generative and Transformational Techniques in Software En-

gineering IV: International Summer School, GTTSE 2011, Braga, Portugal, July

3-9, 2011. Revised Papers”. In: ed. by Ralf Lämmel, João Saraiva, and Joost Visser.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Chap. Language and IDE Mod-

ularization and Composition with MPS, pp. 383–430. isbn: 978-3-642-35992-7. doi:

10.1007/978-3-642-35992-7_11. url: http://dx.doi.org/10.1007/978-3-642-

35992-7_11.

[59] Ingo Weisemöller and Andy Schürr. “Model Driven Engineering Languages and

Systems: 11th International Conference, MoDELS 2008, Toulouse, France, September

28 - October 3, 2008. Proceedings”. In: ed. by Krzysztof Czarnecki et al. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008. Chap. Formal De�nition of MOF 2.0

Metamodel Components and Composition, pp. 386–400. isbn: 978-3-540-87875-9.

doi: 10.1007/978-3-540-87875-9_28. url: http://dx.doi.org/10.1007/978-3-

540-87875-9_28.

[60] Srđan Živković and Dimitris Karagiannis. “Enterprise, Business-Process and Infor-

mation Systems Modeling: 16th International Conference, BPMDS 2015, 20th Inter-

national Conference, EMMSAD 2015, Held at CAiSE 2015, Stockholm, Sweden, June

8-9, 2015, Proceedings”. In: ed. by Khaled Gaaloul et al. Cham: Springer International

Publishing, 2015. Chap. Towards Metamodelling-In-The-Large: Interface-Based Com-

position for Modular Metamodel Development, pp. 413–428. isbn: 978-3-319-19237-6.

doi: 10.1007/978-3-319-19237-6_26. url: http://dx.doi.org/10.1007/978-3-

319-19237-6_26.

140

http://swbplus.bsz-bw.de/bsz253002060cov.htm%20;%20http://bvbr.bib-bvb.de:8991/F?func=service%5C&doc%5C_library=BVB01%5C&doc%5C_number=015445749%5C&line%5C_number=0001%5C&func%5C_code=DB%5C_RECORDS%5C&service%5C_type=MEDIA
http://swbplus.bsz-bw.de/bsz253002060cov.htm%20;%20http://bvbr.bib-bvb.de:8991/F?func=service%5C&doc%5C_library=BVB01%5C&doc%5C_number=015445749%5C&line%5C_number=0001%5C&func%5C_code=DB%5C_RECORDS%5C&service%5C_type=MEDIA
http://swbplus.bsz-bw.de/bsz253002060cov.htm%20;%20http://bvbr.bib-bvb.de:8991/F?func=service%5C&doc%5C_library=BVB01%5C&doc%5C_number=015445749%5C&line%5C_number=0001%5C&func%5C_code=DB%5C_RECORDS%5C&service%5C_type=MEDIA
http://swbplus.bsz-bw.de/bsz253002060cov.htm%20;%20http://bvbr.bib-bvb.de:8991/F?func=service%5C&doc%5C_library=BVB01%5C&doc%5C_number=015445749%5C&line%5C_number=0001%5C&func%5C_code=DB%5C_RECORDS%5C&service%5C_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014933667&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014933667&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014933667&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://www.kieker-palladio-days.org/
http://swbplus.bsz-bw.de/bsz376064560cov.htmhttp://dx.doi.org/10.1007/978-3-642-28986-6
http://swbplus.bsz-bw.de/bsz376064560cov.htmhttp://dx.doi.org/10.1007/978-3-642-28986-6
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1007/978-3-540-87875-9_28
http://dx.doi.org/10.1007/978-3-540-87875-9_28
http://dx.doi.org/10.1007/978-3-540-87875-9_28
http://dx.doi.org/10.1007/978-3-319-19237-6_26
http://dx.doi.org/10.1007/978-3-319-19237-6_26
http://dx.doi.org/10.1007/978-3-319-19237-6_26

Bibliography

141

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Goals of this thesis
	Outline

	Foundations
	Model-Driven Software Development
	Models and Meta-Models
	Domain-Specific Languages
	Modularity
	Extensibility
	Eclipse Modeling Framework
	Graphical Editors
	The Graphiti Framework
	The Sirius Framework

	Related Work
	Extension of Meta-Models
	Modular Meta-Models
	Language Workbenches
	Extension of Graphical Editors

	Classification of Extensions
	General Approach
	Extension Types and Mechanisms
	Extension Types on Meta-Model Level
	New Meta-Class
	New Information to Existing Classes

	Extension Mechanisms on Meta-Model Level
	Referencing
	Inheritance
	Realization
	Stereotyping
	Combination of Extension Mechanisms

	Summary of Meta-Model Extension Types and their Realizations
	Extension Types for Graphical Editors
	Extend Existing Notation Element
	New Notation Element
	Add Palette Entry
	Add Properties Entry
	Extension of Outline View
	Add Toolbar Button
	Add Button to Context Dependent Menu
	Create New View

	Combination of Extension Types for Graphical Editors
	Extension Mechanisms for Graphical Editors
	Extension Mechanisms in Graphiti
	Extension Mechanisms in Sirius

	Mapping of Extensions between Meta-Models and Graphical Editors
	Mapping of Meta-Class Instance Below Root Node to Graphical Editors
	Supported Realizations on Graphical Editor Level
	Unsupported Realizations on Graphical Editor Level

	Mapping of Meta-Class Instances as Part of Other Instances to Graphical Editors
	Supported Realizations on Graphical Editor Level
	Unsupported Realizations on Graphical Editor Level

	Mapping of Adding Attributes to Existing Classes to Graphical Editors
	Supported Realizations on Graphical Editor Level
	Unsupported Realizations on Graphical Editor Level

	Mapping of Adding a Containment to Existing Classes to Graphical Editors
	Supported Realizations on Graphical Editor Level
	Unsupported Realizations on Graphical Editor Level

	Mapping of the Relation Extension Type to Graphical Editors
	Supported Realizations on GRaphical Editor Level
	Unsupported Realizations on Graphical Editor Level

	Implementation and Validation
	Overview on Available Scenarios
	Smart Grid Resilience Framework
	Implementation of the Core Meta-Model in Graphical Editors
	Sirius Implementation
	Graphiti Implementation

	The Input Model Extension
	The Input Meta-Model
	Adding a Second Model to the Editor
	Implementing the Input Model with Sirius
	Implementing the Input Model with Graphiti

	The Output Model
	The Output Meta-Model
	Implementing the Output Model with Sirius
	Implementing the Output Model with Graphiti
	Problems with Two or More Active Extensions

	Further Extension of the Smart Grid
	The Artificial Extension Meta-Model
	Mapping of the Individual Extension Types
	Implementation of a MDSD Profile
	Sirius Implementation
	Graphiti Implementation

	Summary of the Validated Mappings
	Summary of the Validation on Meta-Model Level
	Comparison of Extension Types on Graphical Editor Level
	Validation of the Mapping in Sirius
	Validation of the Mapping in Graphiti

	Evaluation
	Comparison Between the Graphiti and the Sirius Framework
	Creating the core editor
	Toolbar
	Creating the extension
	Adding an extension model to the diagram
	Further drawbacks

	Content not Supported by the Current Graphical Editor
	Further Scenarios
	IntBIIS
	Security Extensions
	Architectural Data Flow Analysis

	Conclusion
	Conclusion
	Future Work

	Bibliography

