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1 Introduction

Quasilinear hyperbolic evolution equations describe a wide range of phenom-
ena in physics, including in particular the Maxwell system with nonlinear
constitutive laws. There is a well established analytical theory for such prob-
lems. On the other hand, despite their importance, for quasilinear hyperbolic
problems there are only very few rigorous convergence results concerning time
integration methods. The implicit Euler method for nonlinear evolution equa-
tions has been studied in [9,13,18] for various cases. These papers establish
convergence of order 1/2 assuming that the numerical solution exists. In [3],
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Crandall and Souganidis showed that the approximations of the semi-implicit
Euler method for (1) are well-posed and converge with order 1/2. To our
knowledge even first order convergence of the implicit Euler scheme has not
been proved until very recently.

Kato’s approach from [11] provides a unified framework for a large class of
quasilinear hyperbolic evolution equations. In this work a local well-posedness
theory is established in spaces like H3 in the case of first order systems. How-
ever, the setting of [11] cannot directly be applied to problems like quasilinear
Maxwell equations, as noted on p. 53 of [11]. One has to invoke state dependent
(energy-type) norms in addition, as in [10] for concrete hyperbolic PDEs and
in [12] for a large class fo evolution equations. We work within a refinement
of Kato’s theory due to Müller [17] whose framework is closer to the applica-
tions we have in mind than that of [12]. Moreover, the setting of [17] takes
into account the quasilinear nature of the problem by introducing an extra
intermediate space on which the nonlinearity is defined. This approach allows
to reduce the restrictions on the initial data, in particular if the nonlinearity
is only defined on open sets of this intermediate space.

The framework of [17] was already used in the recent paper [8] by two of the
present authors, who have proved well-posedness and first order convergence of
the semi-implicit and implicit Euler approximations to quasilinear hyperbolic
evolution equations. These results have been applied to certain quasilinear
Maxwell and wave equations. In the very recent preprint [14] implicit Runge–
Kutta schemes have been analyzed in Kato’s original framework of [11]. For
linear Maxwell equations such schemes were studied in [7] including the space
discretization with discontinuous Galerkin methods.

In the present paper we study implicit Runge–Kutta methods for the quasi-
linear hyperbolic evolution equation

Λ(u(t))∂tu(t) = Au(t) +Q(u(t))u(t), u(0) = u0, (1)

on a Hilbert space X in the framework of [17]. Here A is a linear skew-adjoint
operator, Λ(v) is a symmetric positive definite operator for v in a neighborhood
of zero and Q is a lower order term. In our applications to Maxwell equations,
A is the Maxwell operator, Λ is given by the nonlinear constitutive relations
and Q describes the conductivity, see Section 2. As noted above, the Maxwell
system (and thus also (1) in general) is not covered by Kato’s original setting
of [11] and hence not by the results in [14].

In our main results we prove well-posedness and convergence of order s for
an s-stage implicit Runge–Kutta method applied to (1). This is done first in
the norm of the basic space (e.g., L2) in Theorem 5.3 and then for a stronger
norm in Theorem 6.3 under somehwat stronger assumptions on the data. It is
mainly assumed that the scheme is algebraically stable and coercive and that
the operators in (1) satisfy the assumptions of the analytical well-posedness
result from [17]. Typical examples are Gauß and Radau collocation methods,
see Section 3. To obtain full classical convergence order, one would need rather
strong additional regularity assumptions, cf. Section 4.5 of [14], which we want
to avoid here.
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To treat (1), one first inverts Λ(u(t)). Our analysis (and also that of [12,
17]) then crucially depends on the dissipativity of Λ(u(t))−1A with respect to
the scalar product on X with the (state-depending) weight Λ(u(t)). This fact
is essential for the construction of one step of the scheme in Lemma 4.1. Even
more importantly, the dissipativity provides the main energy-type bounds for
the numerical solution given by Lemma 4.2 and Proposition 4.3 which involve
the state dependent norms. On the other hand, these norms lead to substantial
new diffculties throughout the paper since one is forced to switch between them
within the estimates. For the reasoning it is also crucial to have a precise
control of the constants and of the norms of the numerical solutions in the
various spaces. Here we tried to be rather explicit in our formulations.

Energy techniques for implicit Runge–Kutta methods which are alge-
braically stable and coercive have been successfully applied to analyze stiff
ordinary differential equations, cf. [6, Chapter IV] and references given there.
Our analysis is motivated by [15], where the algebraic stability was an essential
tool to prove rigorous error bounds for quasi-linear parabolic problems, and
by [16], where linear wave equations on evolving surfaces have been considered
using state dependent norms.

One should note however that Kato’s setting in [11] and its variants from
[12,17] do not work well for boundary value problems, in contrast to full space
problems. In the case of Maxwell’s equations one cannot treat perfectly con-
ducting boundaries without very strong restrictions on the nonlinearities, [17].
On the other hand, one can handle Dirichlet boundary conditions for quasilin-
ear Maxwell and wave equations, see [17] and [8]. This shortcoming is unfor-
tunate since the more operator-theoretic approach in [11,12,17] fits very well
to the tools from numerical analysis used in this paper and also in [8,14]. In
future work we want to combine the present approach with more PDE type
methods as in [1,5], for instance, to cover also Maxwell equations on domains
with standard boundary conditions. In such a framework we will then also
investigate the space discretization error which is not considered here.

Notation. For Banach spaces X and Y we write L(X,Y ) for the space

of bounded linear operators from X to Y and
∥∥A∥∥

Y←X := supx 6=0
‖Ax‖Y
‖x‖X for

the operator norm of A ∈ L(X,Y ). We endow the domain D(A) of a closed
operator A in X with its graph norm ‖x‖A := ‖Ax‖X +‖x‖X . The closed ball
of radius r around 0 in X is denoted by BX(r). The number cRK ≥ 1 stands
for generic constants which only depend on the coefficients of the Runge-Kutta
method, and C is a nonnegative number which depends on cRK, the constants
in Assumption 2.1, and the norm of the operators S, S−1, SY and S−1Y in
Assumption 2.2 below.

2 Analytical framework and Maxwell’s equations

In this section we discuss our analytical framework, state the known well-
posedness result for (1) from [17], and discuss the quasilinear Maxwell equa-
tions.
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We use three Hilbert spaces (X, (·, ·)X), (Y, (·, ·)Y ), and (Z, (·, ·)Z) with
continuous and dense embeddings Z ↪→ Y ↪→ X. In addition, Y is an exact in-
terpolation space between Z and X. (For the Maxwell equations one employs
spaces like X = L2, Y = H2, and Z = H3.) We collect the main assumptions
on the operators in (1). In particular, Λ(y) and Q(y) are bounded linear oper-
ators in X which are Lipschitz functions of y in a fixed ball BY (R) of Y . The
main linear operator A is skew-adjoint in X and also maps Z to Y . The initial
value u0 will be taken from Z and the evolution equation (1) is solved in Y ,
see Theorem 2.3. The assumptions below will allow us to derive energy-type
estimates in terms of state dependent norms in X.

Assumption 2.1. Let R > 0 be fixed.

(a) Let A ∈ L(Z, Y ) be a skew-adjoint operator in X with Y ↪→ D(A) ↪→ X.
(b) There exist a family of invertible self-adjoint operators {Λ(y) : y ∈ BY (R)}

in L(X) such that the ranges Ran(I ∓ Λ(y)−1A) are dense in X and the
inverses Λ(y)−1 also belong to L(Y ). Moreover, for all x ∈ X and y, ỹ ∈
BY (R) we have the estimates

(x,Λ(y)x)X ≥ ν−1
∥∥x∥∥2

X
, (2a)∥∥Λ(y)− Λ(ỹ)

∥∥
X←X ≤ `

∥∥y − ỹ∥∥
Y
, (2b)∥∥Λ(y)−1 − Λ(ỹ)−1

∥∥
Y←Y ≤ `Y

∥∥y − ỹ∥∥
Y
, (2c)∥∥Λ(y)−1 − Λ(ỹ)−1

∥∥
X←Y ≤ `X

∥∥y − ỹ∥∥
X

(2d)

for constants ν, `, `Y , `X > 0. Hence, Λ(y) ≥ ν−1I and
∥∥Λ(y)−1

∥∥
X←X ≤ ν.

(c) There are operators {Q(y) : y ∈ BY (R)} in L(X) satisfying

µX := sup
y∈BY (R)

∥∥Q(y)
∥∥
X←X <∞. (3a)

Each Q(y) also belongs to L(Z, Y ) and there are constants mY ,mX ≥ 0
with∥∥Q(y)−Q(ỹ)

∥∥
Y←Z ≤ mY

∥∥y − ỹ∥∥
Y
, (3b)∥∥Q(y)−Q(ỹ)

∥∥
X←Z ≤ mX

∥∥y − ỹ∥∥
X

for all y, ỹ ∈ BY (R). (3c)

Below, R always refers to the radius from this assumption and the above
constants may of course depend on R. Assumption 2.1 easily implies the bound∥∥Λ(y)

∥∥
X←X ≤ λX :=

∥∥Λ(0)
∥∥
X←X + `R, (4)

for all y ∈ BY (R). We now write (1) in the equivalent short form

∂tu(t) = Au(t)u(t), u(0) = u0, (5)

where for v ∈ Y we introduce the operator

Av := Λ(v)−1(A+Q(v)) (6)

with domain D(A) in X. To control stronger norms, we also need the next
assumption on Av.
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Assumption 2.2. Let r > 0. We assume that there are continuous isomor-
phisms S : Z → X and SY : Y → X such that for all v ∈ BY (R)∩BZ(r) there
are linear operators B(v) ∈ L(X) and BY (v) ∈ L(X) satisfying

SAvS
−1 = Av +B(v) and SYAvS

−1
Y = Av +BY (v), (7a)∥∥B(v)

∥∥
X←X ≤ βZ and

∥∥BY (v)
∥∥
X←X ≤ βY (7b)

for constants βZ = βZ(r) > 0 and βY = βY (r) > 0.

Throughout the paper we use the constant

c0 = (νλX)1/2 max
{∥∥S∥∥

X←Z

∥∥S−1∥∥
Z←X ,

∥∥SY ∥∥X←Y ∥∥S−1Y ∥∥
Y←X

}
(8)

≥ (νλX)1/2 ≥ 1.

The following well-posedness result is part of Theorem 3.41 of [17]. For this
theorem one can omit the properties (2d) and (3c) in Assumption 2.1 and the
isomorphism SY in Assumption 2.2. These conditions are only used later on to
treat the numerical solutions. Here and below we take radii r ≥ 1 to simplify
some statements.

Theorem 2.3. Let Assumptions 2.1 and 2.2 be fulfilled and let r ≥ 1 be
arbitrary. Then the following assertions hold.

(a) For each u0 ∈ BY ((2c0)−1R) ∩ BZ((2c0)−1r) there exists a time T0 =
T0(r) ≥ C/(r+βZ(r)) > 0 and a solution u in C([0, T0], Z)∩C1([0, T0], Y )
of (5) satisfying

∥∥u(t)
∥∥
Y
≤ R and

∥∥u(t)
∥∥
Z
≤ r for all 0 ≤ t ≤ T0.

(b) If v ∈ C([0, T ′], Z)∩C1([0, T ′], Y ) is another solution of (5) with
∥∥v(t)

∥∥
Y
≤

R for all t ∈ [0, T ′], then v coincides with u on [0,min{T0, T ′}].

For the error analysis of the time integration methods we need a few addi-
tional properties of the operators collected below. The proofs can be found in
Lemmas 3.1 and 3.6 of [8].

Lemma 2.4. Let Assumption 2.1 be satisfied. For all y, ỹ ∈ BY (R) we have

(a)
∥∥Λ(y)1/2

∥∥
X←X ≤ λ

1/2
X .

(b) (x,Λ(y)1/2x)X ≥ ν−1/2
∥∥x∥∥2

X
for all x ∈ X.

(c) There is a positive constant `′ such that∥∥Λ(y)1/2 − Λ(ỹ)1/2
∥∥
X←X ≤ `

′∥∥y − ỹ∥∥
Y
.

(d) The operator Ay from (6) satisfies∥∥Ay∥∥Y←Z ≤ αY , (9a)∥∥Ay −Aỹ∥∥X←Z ≤ LX∥∥y − ỹ∥∥X , (9b)∥∥Ay −Aỹ∥∥Y←Z ≤ LY ∥∥y − ỹ∥∥Y , (9c)

where `′, αY , LX , LY > 0 only depend on the constants in Assumption 2.1.
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Much of our analysis (and also that of [8,10,12,17]) relies on state depen-
dent norms. Let v, w ∈ BY (R). We define the inner product

(x, y)v = (Λ(v)x, y)X

and denote the space X endowed with this inner product by Xv. By (2a) and
(4), the associated norm is uniformly equivalent to the X-norm, i.e.,

λ−1X
∥∥x∥∥2

v
≤
∥∥x∥∥2

X
≤ ν

∥∥x∥∥2
v
, x ∈ X. (10)

Formulas (2b) and (10) yield the Lipschitz property∥∥x∥∥2
v

= (Λ(w)x, x)X + ((Λ(v)− Λ(w)x, x)X

≤
∥∥x∥∥2

w
+ `
∥∥v − w∥∥

Y

∥∥x∥∥2
X

≤ (1 + `ν
∥∥v − w∥∥

Y
)
∥∥x∥∥2

w
. (11)

Remark 2.5. Assumption 2.1 and the Lumer-Phillips theorem (see Theo-
rem II.3.15 in [4]) imply that Λ(v)−1A generates a contraction semigroup on
Xv for each v ∈ BY (R). From the bounded perturbation theorem, see Theo-
rem III.1.3 in [4], we thus deduce that the operator Av generates a strongly
continuous semigroup on X.

Example. We consider the Maxwell equations

∂tD(t, x) = ∇×H(t, x)− σ(E(t, x))E(t, x), t ∈ [0, T ], x ∈ R3, (12a)

∂tB(t, x) = −∇×E(t, x), t ∈ [0, T ], x ∈ R3, (12b)

∇·D(t, x) = 0, t ∈ [0, T ], x ∈ R3, (12c)

∇·B(t, x) = 0, t ∈ [0, T ], x ∈ R3, (12d)

on R3 with a nonlinear conductivity σ ∈ C3(R3,R3×3) and constitutive rela-
tions of the form

D(t, x) = E(t, x) + P (E(t, x)), B(t, x) = H(t, x) +M(H(t, x)).

Here, P,M ∈ C4(R3,R3) are vector fields such that P ′(ξ) and M ′(ξ) are
symmetric and the matrices I +P ′(0) and I +M ′(0) are positive definite. An
important special case is the Kerr nonlinearity with P (E) = χ |E|2 E for the
susceptility χ ∈ R and M = 0, see [2]. We use the spaces

X := L2(R3)6, Y := H2(R3)6, Z := H3(R3)6.

For given initial data u0 = (E0, H0) in Z satisfying (12c) and (12d), we seek
solutions in C1([0, T ], Y ) ∩ C([0, T ], Z) of (12a) and (12b). These solutions
then automatically fulfill the divergence conditions (12c) and (12d). To tackle
the problem in our framework, we set

Λ(v) =

(
I + P ′(E)) 0

0 I +M ′(H))

)
, Q(v) =

(
−σ(E)E

0

)
, A =

(
0 ∇×

−∇× 0

)
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for v = (E,H) ∈ Y . Observe that Y embeds into L∞(R3)6. Hence, Λ(v) is
positive definite for v in a certain ball BY (R). In the Kerr case mentioned
above, one has positive definiteness for all v ∈ Y if χ > 0.

In Theorem 4.9 of [17] and Remark 3.3 of [8] our Assumptions 2.1 and 2.2
without SY have been checked for the case Q = 0, i.e., for the system with-
out conductivity. We note that nonzero Q(v) can be treated as the operators
Λ(v)−1. For Assumption 2.2, let SY be the diagonal operator with entry I+∆.
Then BY (v) is the product [SY , Λ(v)−1(A + Q(v))]S−1Y for the commutator
[·, ·]. Using Sobolev’s embedding and Hölder’s inequality one checks that BY (v)
is an operator on X whose norm is uniformly bounded for v ∈ BY (R)∩BZ(r).
Hence, Assumptions 2.1 and 2.2 are fulfilled in this example.

In [8] and [17] wave and Maxwell equations on a domain with Dirichlet
boundary conditions were studied in a similar way. The Maxwell system with
the usual boundary conditions of a perfect conductor can be treated in our
framework only for special nonlinearities, see Proposition 4.8 in [17]. �

3 Implicit Runge-Kutta methods

For the equation (5), the general s-stage Runge-Kutta method with s distinct
nodes 0 ≤ ci ≤ 1 and weights Oι = (aij)

s
i,j=1 and b = (bi)

s
i=1 is given by

U̇ni = AUniUni, i = 1, . . . , s, (13a)

Uni = un + τ

s∑
j=1

aijU̇nj , i = 1, . . . , s, (13b)

un+1 = un + τ

s∑
i=1

biU̇ni (13c)

for n = 0, . . . , N−1 and a fixed stepsize τ > 0. Here, un ≈ u(tn) approximates
the solution u to (5) at time tn = nτ and Uni ≈ u(tn+ciτ) are the inner stages.
In the next section we solve the above system for initial values u0 in Z which
belong to a certain ball of Y . To simplify notation, we set

Un =
(
Un1, . . . , Uns

)T
, A(Un) = diag

(
AUn1

, . . . , AUns

)
,

where A(Un) has the domain D(A)s in Xs. We now reformulate (13) in a more
compact form as

Un = 1l⊗ un + τ(Oι⊗ I)A(Un)Un,

un+1 = un + τ(bT ⊗ I)A(Un)Un,
(14)

where 1l = (1, . . . , 1)T and ⊗ denotes the Kronecker product. The first equation
in (14) can be written as

(Is ⊗ I − τ(Oι⊗ I)A(Un))Un = 1l⊗ un,
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or equivalently

(Oι−1 ⊗ I − τA(Un))Un = (Oι−11l)⊗ un. (15)

Here and throughout this paper we assume that the Runge-Kutta matrix has
the inverse Oι−1 = (ãij).

Recall that a Runge–Kutta method is called algebraically stable if bi ≥ 0
for i = 1, . . . , s and the matrix

M = (mij)
s
i,j=1 with mij = biaij + bjaji − bibj (16)

is positive semidefinite. It is well known that Gauß, Radau IA (c1 = 0), and
Radau IIA (cs = 1) collocation methods are algebraically stable. See Defini-
tion IV.12.5 and Theorem IV.12.9 of [6].

For our analysis, we also need the coercivity condition that there exists a
positive definite diagonal matrix D ∈ Rs,s and a positive scalar α such that

uTDOι−1u ≥ αuTDu for all u ∈ Rs. (17)

This condition plays an important role in proving the existence of Runge–
Kutta approximations, cf. Section IV.14 of [6]. For Gauß and Radau collocation
methods, d1, . . . , dn and the constant α are given explicitly in terms of the
nodes ci and the weights bi, i = 1, . . . , s; see Theorem IV.14.5 of [6].

4 Well-posedness of the numerical scheme

In this section we construct solutions of the numerical scheme (13) and bound
them in X, Y and Z. Let W ∈ {X,Y, Z}. In the following we denote the
components of U ∈W s by Ui, i.e., U = (U1, . . . , Us), and W s is equipped with
the inner product

(U, V )W s =

s∑
i=1

(Ui, Vi)W .

On W s, for the operators from Section 2 and 3 we introduce the notation

Λ(U) := diag(Λ(U1), . . . , Λ(Us)), Q(U) := diag(Q(U1), . . . , Q(Us)),

B(U) := diag(B(U1), . . . , B(Us)), D := D ⊗ I = diag(d1I, . . . , dsI),

S := Is ⊗ S = diag(S, . . . , S), SY := Is ⊗ SY = diag(SY , . . . , SY ).

In the next lemma we consider one step of the scheme (13) for suitable un.

Lemma 4.1. Let Assumptions 2.1 and 2.2 be fulfilled and let the Runge-Kutta
method satisfy the coercivity condition (17). Let r ≥ 1 and set R1 = (2γc0)−1R
for the constants defined in (8) and below in (24). Then there exists a maximal
step size τ0 = τ0(r) ∈ (0, 1] such that for all un ∈ BY (R1) ∩ BZ(r) and
τ ∈ (0, τ0] equation (15) has a solution Un in Zs satisfying∥∥Uni∥∥X ≤ γ(λXν)1/2

∥∥un∥∥X , ∥∥Uni∥∥Z ≤ 2γc0
∥∥un∥∥Z , (18)
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∥∥un∥∥Y ≤ R, ∥∥un+1

∥∥
Y
≤ R, (19)

for all i = 1, . . . , s, where un+1 is given by (13c). The number τ0 depends only
on r and the constants in the assumptions.

Proof. Step 1. The proof is based on Banach’s fixed-point theorem. We start
with some preparations. Let r > 0 and τ ∈ (0, 1]. The set

Mr,τ =
{
V = (Vi)

s
i=1 ∈ Zs : ‖V ‖Zs ≤ ĉr,

∥∥Vi − Vj∥∥Y ≤ ĉrτ,∥∥Vi∥∥Y ≤ R for all i, j = 1, . . . , s
}

(20)

is endowed with the distance induced by the norm of Xs, where the constant
ĉ > 0 will be fixed below. This metric space is complete. Indeed, each Cauchy
sequence (V n) in Mr,τ has a limit V in Xs, and it is bounded in both Y s and
Zs. Hence, a subsequence of (V n) converges to V also weakly in Y s and Zs,
so that V belongs to Mr,τ .

Let V ∈Mr,τ . To define the fixed-point map, we introduce the operator

G(V ) := Oι−1 ⊗ I − τA(V ) with D(G(V )) = D(A)s

in Xs. We next show that G(V )− α
2 Is ⊗ I is m-accretive with respect to the

equivalent inner product on Xs given by

(W, W̃ )D⊗Λ(V ) := (DΛ(V )W, W̃ )Xs =

s∑
i=1

di(Λ(Vi)Wi, W̃i)X .

We write Xs
D,V for the Hilbert space Xs equipped with this inner product.

Let W = (Wi)
s
i=1 ∈ Xs. We first observe that

((G(V )− α
2 Is ⊗ I)W,W )D⊗Λ(V ) = ((DΛ(V )Oι−1 ⊗ I − α

2DΛ(V ))W,W )Xs

−τ((D⊗A)W,W )Xs −τ(DQ(V )W,W )Xs .

The second term on the right-hand side vanishes due to the skew-adjointness

of A, see Assumption 2.1, and the third one is bounded by τµX
∑s
i=1 di

∥∥Wi

∥∥2
X

because of (3a). To treat the first one, we compute

((DΛ(V )Oι−1 ⊗ I − α
2DΛ(V ))W,W )Xs

= ((DOι−1 ⊗ I − α
2D)Λ(V )1/2W,Λ(V )1/2W )Xs

+

s∑
i,j=1

diãij((Λ(Vi)
1/2 − Λ(Vj)

1/2)Wj , Λ(Vi)
1/2Wi)X

≥ α

2

s∑
i=1

di
∥∥Λ(Vi)

1/2Wi

∥∥2
X

+

s∑
i,j=1

diãij((Λ(Vi)
1/2 − Λ(Vj)

1/2)Wj , Λ(Vi)
1/2Wi)X ,
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where we employ the coercivity property (17) in the last step. Lemma 2.4,
the definition (20) of Mr,τ , condition (2a), and Hölder’s inequality allow us to
dominate the last term by

s∑
i,j=1

d
1/2
i cRK`

′ĉτr ‖Wj‖X ‖Λ(Vi)
1/2Wi‖X ≤ Crτ

s∑
k=1

dk
∥∥Λ(Vk)1/2Wk

∥∥2
X
.

There thus exists a number τ0 = τ0(r) ∈ (0, 1] such that the mapG(V )−α2 Is⊗I
is accretive in Xs

D,V for all τ ∈ (0, τ0].
Remark 2.5 implies that the operator τA(V ) generates a strongly continu-

ous semigroup on Xs, so that also −G(V ) is a generator by bounded perturba-
tion, see Theorem III.1.3 in [4]. In particular, the sum ωIs⊗I+G(V ) is invert-
ible in Xs for a sufficiently large number ω > 0. The operator G(V )− α

2 Is⊗ I
is thus m-accretive in Xs

D,V . Hence, G(V ) has an inverse in Xs which satisfies

‖G(V )−1‖Xs
D,V←Xs

D,V
≤ 2

α
, (21)

cf. Proposition II.3.23 in [4].
For a given un ∈ X, we can now define the fixed-point map

Φ : Mr,τ → Xs, Φ(V ) = G(V )−1(Oι−11l)⊗ un.

Observe that the equation W = Φ(V ) is equivalent to

(Oι−1 ⊗ I − τA(V ))W = (Oι−11l)⊗ un, (22)

which means that

Wi = un + τ

s∑
j=1

aijAViWi, i = 1, . . . , s.

Consequently, a fixed point of Φ solves (15).

Step 2. We establish that Φ maps Mr,τ into itself for all sufficiently small
step sizes τ > 0 and a suitable constant ĉ, provided that un belongs to
BY (R1) ∩ BZ(r). Let V ∈Mr,τ and set W = Φ(V ). The bound (21) yields∥∥W∥∥

D⊗Λ(V )
= ‖G(V )−1(Oι−11l)⊗un‖D⊗Λ(V ) ≤

2

α

∥∥(Oι−11l)⊗un
∥∥
D⊗Λ(V )

.

By means of (2a) and (4), we derive the inequality

‖W‖Xs ≤ γ(νλX)1/2 ‖un‖X (23)

for the constant

γ = max
{

1,
2

α
√
δ

( s∑
i=1

di

( s∑
j=1

|ãij |
)2)1/2}

with δ := min
k=1,...,s

dk > 0. (24)
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We transfer these estimates to Z in order to check that W satisfies the first
and third condition in (20). To this aim, we multiply (22) by the operator
matrix S = Is ⊗ S. Property (7a) of A now implies the equation

(Oι−1 ⊗ I − τA(V )− τB(V ))SW = (Oι−11l)⊗ (Sun). (25)

Since V belongs to Mr,τ , each norm ‖Vi‖Z is bounded by ĉr so that assumption
(7b) provides the inequality ‖B(V )‖Xs←Xs ≤ βZ(ĉr). In view of (10), the norm
of B(V ) on Xs

D,V is then dominated by CβZ(ĉr) =: β′(r). We replace τ0(r)
by min{τ0(r), α/(4β′(r))} and take τ ∈ (0, τ0(r)]. Because of (21), the sum
G(V ) − τB(V ) thus has an inverse on Xs

D,V with norm less or equal 4/α.
Hence, formula (25) leads to∥∥SW∥∥

D⊗Λ(V )
≤ 4

α

∥∥(Oι−11l)⊗ Sun
∥∥
D⊗Λ(V )

.

Using also Assumptions 2.1 and 2.2 and ‖un‖Z ≤ r, we arrive at the estimate

‖W‖Zs ≤ 2γc0 ‖un‖Z ≤ ĉ1r (26)

for c0 ≥ (νλX)1/2 from (8), all τ ∈ (0, τ0(r)], and ĉ1 := 2γc0. In (23) and (26)
we bounded the norms of the linear map un 7→W in L(X,Xs) and L(Z,Zs),
respectively. By interpolation, we now obtain the bound

‖Wi‖Y ≤ 2γc0‖un‖Y ≤ 2γc0R1 = R (27)

for all i = 1, . . . , s. In the second inequality we use that un is contained in
BY (R1). As a result, the vector W fulfills the last condition in (20).

For the second condition in (20), we employ (9a) and (26) to compute

∥∥Wi −Wj

∥∥
Y

=
∥∥∥τ s∑

k=1

(aik − ajk)AVk
Wk

∥∥∥
Y
≤ τcRKαY

s∑
k=1

‖Wk‖Z

≤ τ ĉ2‖un‖Z ≤ τ ĉ2r,

where ĉ2 := cRKαY c0. With ĉ := max{ĉ1, ĉ2}, the above bounds imply that
W = Φ(V ) belongs to Mr,τ .

Step 3. We show that Φ : Mr,τ →Mr,τ is a strict contraction for the norm

of Xs. We take V, Ṽ ∈Mr,τ and set W = Φ(V ), W̃ = Φ(Ṽ ) and E = W − W̃ .
The definition (22) of Φ then yields the identity

G(V )E = (Oι−1 ⊗ I − τA(V ))E = τ(A(V )−A(Ṽ ))W̃ .

From Assumption 2.1, (21) and (9b) we deduce

‖E‖Xs ≤ cRKν
1/2
∥∥E∥∥

D⊗Λ(V )
≤ 2cRKν

1/2

α
‖τ(A(V )−A(Ṽ ))W̃‖D⊗Λ(V )

≤ 2cRK(νλX)1/2

α
τ‖(A(V )−A(Ṽ ))W̃‖Xs
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≤ 2cRK(νλX)1/2LX
α

τ‖V − Ṽ ‖Xs‖ W̃‖Zs

≤ 2cRKĉ(νλX)1/2LX
α

rτ‖V − Ṽ ‖Xs ,

where we have also used that W̃ belongs to Mr,τ . Decreasing the maximal step
size τ0 = τ0(r) > 0 from Step 2 if necessary, we infer the strict contractivity of
Φ on Mr,τ for every τ ∈ (0, τ0]. This map thus possesses a (unique) fixed point
Un in Mr,τ which then solves (15). The inequalities (18) and the first one in
(19) now follow from estimates (23), (26), and (27).

Finally, the formulas (13) and the bounds (9a) and (26) yield

‖un+1‖Y ≤ R1 + τcRKαY

s∑
i=s

‖Uni‖Z ≤ R1 + Cτr ≤ R

for all τ ∈ (0, τ0], after decreasing τ0 = τ0(r) > 0 once more if necessary.

Lemma 4.1 allows us to solve the numerical scheme (13) for step sizes
τ ∈ (0, τ0(r)] as long as un stays in BY (R1) ∩ BZ(r). However, the estimates
in this lemma are too coarse to show reasonable bounds for the numerical
solution un by iteration. Instead, we next employ energy-type estimates for
the inner products on X corresponding to un. The isomorphisms SY and S
are used to transfer the bounds to Y and Z, respectively. The precise form of
the constants in the next result is crucial for the iteration argument.

Lemma 4.2. Let Assumptions 2.1 and 2.2 be fulfilled and let the Runge-
Kutta method be algebraically stable and satisfy the coercivity condition (17).
Let r ≥ 1 and take the radius R1 = (2γc0)−1R and the maximal step size τ0 =
τ0(r) ∈ (0, 1] from Lemma 4.1. For all un ∈ BY (R1) ∩ BZ(r) and τ ∈ (0, τ0]
the equations (13) then have a solution un+1 ∈ Z satisfying∥∥un+1

∥∥
un+1

≤ ecXrτ
∥∥un∥∥un

, (28a)∥∥SY un+1

∥∥
un+1

≤ ecY (r+βY (r))τ
∥∥SY un∥∥un

, (28b)∥∥Sun+1

∥∥
un+1

≤ ecZ(r+βZ(r))τ
∥∥Sun∥∥un

. (28c)

The numbers cX , cY , and cZ depend only on the constants in Assumption 2.1,
on cRK, and on c0.

Proof. The existence of the solution un+1 in Z follows from Lemma 4.1. By
this result and the assumptions, the vectors un, un+1 and Uni belong to the
ball BY (R) which is needed for the following estimates. To show (28a), we take
the inner product in Xun+1

of (13c) with itself and thus obtain

∥∥un+1

∥∥2
un+1

=
∥∥un∥∥2un+1

+ 2τ

s∑
i=1

bi(un, U̇ni)un+1
+ τ2

s∑
i,j=1

bibj(U̇ni, U̇nj)un+1
.
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In the second term of the right-hand side we insert formula (13b) for un.
Manipulating the resulting double sum, we deduce the identity

∥∥un+1

∥∥2
un+1

=
∥∥un∥∥2un+1

+ 2τ

s∑
i=1

bi(Uni, U̇ni)un+1

+ τ2
s∑

i,j=1

(bibj − biaij − bjaji)(U̇ni, U̇nj)un+1
.

(29)

The last term on the right-hand side is nonpositive due to the algebraic stabil-
ity condition (16). For the first term, estimate (11) and equation (13c) yield
that∥∥un∥∥2un+1

≤ (1 + `ν
∥∥un − un+1

∥∥
Y

)
∥∥un∥∥2un

=
(

1 + `ντ
∥∥∥ s∑
i=1

biU̇ni

∥∥∥
Y

)∥∥un∥∥2un
.

From the expression U̇ni = AUni
Uni, inequality (9a) and Lemma 4.1, we infer

the bound ∥∥U̇ni∥∥Y ≤ αY 2γc0
∥∥un∥∥Z ≤ Cr (30)

using the assumption
∥∥un∥∥Z ≤ r. Consequently, we have∥∥un∥∥2un+1

≤ (1 + Crτ)
∥∥un∥∥2un

. (31)

To control the second term in (29), we write

(Uni, U̇ni)un+1
= (Uni, AUni

Uni)Uni
+
(
(Λ(un+1)− Λ(Uni))Uni, U̇ni

)
X

= (Uni, (A+Q(Uni))Uni)X +
(
(Λ(un+1)− Λ(Uni))Uni, U̇ni

)
X
. (32)

The first term in the last line is bounded by µX
∥∥Uni∥∥2X due to Assumption 2.1

(a) and (c). Condition (2b) further implies

((Λ(un+1)− Λ(Uni))Uni, U̇ni)X ≤ `
∥∥un+1 − Uni

∥∥
Y

∥∥Uni∥∥X∥∥U̇ni∥∥X .
We next subtract (13b) from (13c) and then use (30) to deduce the estimate

∥∥un+1 − Uni
∥∥
Y

= τ
∥∥∥ s∑
j=1

(bj − aij)U̇nj
∥∥∥
Y
≤ Crτ. (33)

On the other hand, formula (13b) yields the identity

U̇ni =
1

τ

s∑
j=1

ãij(Unj − un),

so that the inequality

∥∥U̇ni∥∥X ≤ cRK

τ

s∑
j=1

∥∥Unj − un∥∥X ≤ C

τ

∥∥un∥∥X (34)
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follows from Lemma 4.1. Together with the norm equivalence (10) and the
above bounds, equation (32) lead to

(Uni, U̇ni)un+1 ≤ µX
∥∥Uni∥∥2X + Cr

∥∥un∥∥X ∥∥Uni∥∥X ≤ Cr ∥∥un∥∥2un
, (35)

where we also employed Lemma 4.1. The relations (29), (31), and (35) now

show the estimate
∥∥un+1

∥∥2
un+1

≤ (1 + cXrτ)
∥∥un∥∥2un

. The number cX only

depends on c0 and the constants given by Assumption 2.1 and the Runge-
Kutta scheme. So we have established (28a).

For (28c), we multiply (13c) by S and obtain as above∥∥Sun+1

∥∥2
un+1

≤
∥∥Sun∥∥2un+1

+ 2τ

s∑
i=1

bi(SUni, SU̇ni)un+1 .

The first term on the right-hand side can be controlled as in (31). We rewrite
the second term as

(SUni, SU̇ni)un+1
= (SUni, SAUni

Uni)Uni
+ ((Λ(un+1)−Λ(Uni))SUni, SU̇ni)X

=
(
SUni, (A+Q(Uni) + Λ(Uni)B(Uni))SUni

)
X

+
(
(Λ(un+1)− Λ(Uni))SUni, SU̇ni

)
X

by means of condition (7a). By Assumption 2.2 and Lemma 4.1 the norm of
B(Uni) on X is less or equal the number βZ(r). Moreover, Lemma 4.1 and
Assumptions 2.1 and 2.2 provide the estimates∥∥SUni∥∥X ≤ ∥∥S∥∥X←Z∥∥Uni∥∥Z ≤ C ∥∥S∥∥X←Z∥∥S−1Sun∥∥Z ≤ C ∥∥Sun∥∥un

.

As in (34) we then derive the inequality
∥∥SU̇ni∥∥X ≤ Cτ−1 ∥∥Sun∥∥un

. Arguing

as above, one now establishes assertion (28c). Inequality (28b) can be shown
in the same way using SY and BY instead of S and B.

Given an arbitrary radius r ≥ 1 we can now solve the system (13) within
BY (R1) ∩ BZ(r) and up to a time T1(r) > 0 provided that u0 belongs to
somewhat smaller balls. The constants in the next results behave similar as in
Theorem 2.3.

Proposition 4.3. Let Assumptions 2.1 and 2.2 be fulfilled and let the Runge-
Kutta method be algebraically stable and satisfy the coercivity condition (17).
Let r ≥ 1 and take the radii R0 = (2c0)−1R1 = (4γc20)−1R and r0 = (2c0)−1r
and the maximal step size τ0 = τ0(r) ∈ (0, 1] from Lemma 4.1. Fix the maximal
time

T1 = min
{ ln 2

cY (r + βY (r))
,

ln 2

cZ(r + βZ(r))

}
for the constants from Lemma 4.2. Let u0 ∈ BY (R0) ∩ BZ(r0). We can then
solve scheme (13) for n ≤ T1/τ and the solution un satisfies∥∥un∥∥X ≤ (νλX)1/2ercXnτ

∥∥u0∥∥X ,∥∥un∥∥Y ≤ c0ecY (r+βY (r))nτ
∥∥u0∥∥Y ,∥∥un∥∥Z ≤ c0ecZ(r+βZ(r))nτ
∥∥u0∥∥Z .
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Proof. Note that c0e
cY (r+βY (r))nτ

∥∥u0∥∥Y ≤ R1 and c0e
cZ(r+βZ(r))nτ

∥∥u0∥∥Z ≤ r
for n ≤ T1/τ . Using also (10) and (8), one can now iterate the bounds in (28)
to deduce the result.

5 The convergence result in X

Let Assumptions 2.1 and 2.2 hold. For the Runge-Kutta method we assume
that it is algebraically stable, satisfies the coercivity condition (17), and has
stage order s and order at least s+1. These assumptions are satisfied for Gauss
collocation methods with s ≥ 1 and Radau collocation methods with s ≥ 2.

Moreover, let r ≥ 1, τ ∈ (0, τ0(r)], R0 = (4γc20)−1R, R1 = (2γc0)−1R
and u0 ∈ BY (R0) ∩ BZ((2c0)−1r), cf. Lemma 4.1. Let T = T (r) > 0 be the
minimum of the existence times T0 = T0(r) from Theorem 2.3 and T1 =
T1(r) from Proposition 4.3. These results provide a solution u in C([0, T ], Z)∩
C([0, T ], Y ) of the evolution equation (5) and a solution un of the scheme (13)
for n ∈ N0 with n ≤ T/τ , both staying in the balls BY (R1) and BZ(r). We
assume in addition that u(s+1) ∈ L2([0, T ], D(A)) and u(s+2) ∈ L2([0, T ], X).
We now set

ũn := u(tn), Ũni := u(tn + ciτ),
˙̃
Uni := u′(tn + ciτ)

for n ∈ N and i = 1, . . . , s with the nodes ci ∈ [0, 1] of the Runge-Kutta
scheme. We then introduce the defects ∆ni and δn+1 by the equations

˙̃
Uni = AŨni

Ũni, i = 1, . . . , s, (36a)

Ũni = ũn + τ

s∑
j=1

aij
˙̃
Uni +∆ni, i = 1, . . . , s, (36b)

ũn+1 = ũn + τ

s∑
i=1

bi
˙̃
Uni + δn+1. (36c)

By assumption, the defects of the Runge–Kutta method are given by

∆ni = τs
∫ tn+1

tn

u(s+1)(t)κi

( t− tn
τ

)
dt, (37a)

δn+1 = τs+1

∫ tn+1

tn

u(s+2)(t)κ
( t− tn

τ

)
dt. (37b)

Here κi and κ denote the Peano kernels corresponding to the quadrature rules
defining the Runge–Kutta method. They are uniformly bounded with con-
stants depending on the Runge–Kutta coefficients only.

The errors are next given by

en := un − ũn, Eni := Uni − Ũni, Ėni := U̇ni −
˙̃
Uni
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for n ∈ N and i = 1, . . . , s. Formulas (36) and (13) lead to the expressions

Ėni = AUniEni + (AUni −AŨni
)Ũni, i = 1, . . . , s, (38a)

Eni = en + τ

s∑
j=1

aijĖni −∆ni, i = 1, . . . , s, (38b)

en+1 = en + τ

s∑
i=1

biĖni − δn+1. (38c)

As in (14) we rewrite the system (38) in the compact form

Ėn = A(Un)En + (A(Un)−A(Ũn))Ũn, (39a)

En = 1l⊗ en + τ(Oι⊗ I)Ėn −∆n, (39b)

en+1 = en + τ(bT ⊗ I)Ėn − δn+1. (39c)

For the convergence proof we use the energy technique from [15,16] in
combination with solution-dependent norms, starting with the basic error re-
cursion.

Lemma 5.1. Under the assumptions stated at the beginning of this section,
the error en = un − u(tn) satisfies∥∥en+1

∥∥2
un+1

≤ (1 + Crτ)
∥∥en∥∥2un

+ Crτ (
∥∥En∥∥2Xs +

∥∥∆n

∥∥2
D(A)s

) + Cτ
∥∥ 1
τ δn+1

∥∥2
X

(40)

for all τ ∈ (0, τ0] and n ∈ N with n ≤ T/τ .

Proof. Taking the un+1-inner product of (38c) with itself, we compute

∥∥en+1

∥∥2
un+1

=
∥∥∥en + τ

s∑
i=1

biĖni

∥∥∥2
un+1

− 2
(
en + τ

s∑
i=1

biĖni, δn+1

)
un+1

+
∥∥δn+1

∥∥2
un+1

.

(41)

The last term is dominated by the right-hand side of (40). Equation (38b) and
the algebraic stability of the Runge-Kutta scheme imply the inequality

∥∥∥en + τ

s∑
i=1

biĖni

∥∥∥2
un+1

≤
∥∥en∥∥2un+1

+ 2τ

s∑
i=1

bi(Eni +∆ni, Ėni)un+1
, (42)

cf. (29). As in inequality (31) one sees that∥∥en∥∥2un+1
≤ (1 + Crτ)

∥∥en∥∥2un
.
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To bound the second term on the right-hand side of (42), we write

(Eni +∆ni, Ėni)un+1 = (Eni +∆ni, Ėni)Uni

+ ((Λ(un+1)− Λ(Uni)(Eni +∆ni), Ėni)X .
(43)

In the first term on the right-hand side we replace Ėni by (38a). Estimate (3a)
and the skew-adjointness of A then yield

(Eni +∆ni, AUni
Eni)Uni

= (Eni +∆ni,
(
A+Q(Uni)

)
Eni)X

≤ µX
∥∥Eni∥∥2X − (A∆ni, Eni)X + µX

∥∥∆ni

∥∥
X

∥∥Eni∥∥X
≤ C

(∥∥∆ni

∥∥2
D(A)

+
∥∥Eni∥∥2X). (44)

Using (9b) and
∥∥Ũni∥∥Z ≤ r, we also infer

(Eni +∆ni, (AUni
−AŨni

)Ũni)Uni
≤ C

∥∥Eni +∆ni

∥∥
X

∥∥Eni∥∥X∥∥Ũni∥∥Z
≤ Cr

(∥∥∆ni

∥∥2
X

+
∥∥Eni∥∥2X). (45)

To control the second term in (43), we replace Ėni by

Ėni =
1

τ

s∑
j=1

ãij(Enj +∆nj − en),

see (38b). The Lipschitz condition (2b) and the inequality (33) now lead to

((Λ(un+1)− Λ(Uni))(Eni +∆ni), Ėni)X

≤ 1

τ
cRK`

∥∥un+1 − Uni
∥∥
Y

∥∥Eni +∆ni

∥∥
X

s∑
j=1

(
∥∥Enj∥∥X +

∥∥∆nj

∥∥
X

+
∥∥en∥∥X)

≤ Cr
(∥∥En∥∥2Xs +

∥∥∆n

∥∥2
Xs +

∥∥en∥∥2X).
Combining the above formulas, we arrive at the estimate∥∥∥en + τ

s∑
i=1

biĖni

∥∥∥2
un+1

≤ (1 + Crτ)
∥∥en∥∥2un

+ Crτ
(∥∥En∥∥2Xs +

∥∥∆n

∥∥2
D(A)s

)
.

The second term in (41) is bounded as in the linear case, see (3.18) in [7], by

(
en+τ

s∑
i=1

biĖni, δn+1

)
un+1

≤ Cτ
(∥∥en∥∥2X+

∥∥En∥∥2Xs +
∥∥∆n

∥∥2
Xs +

∥∥ 1
τ δn+1

∥∥2
X

)
.

The norm equivalence (10) then yields the assertion (40).

In the next lemma we control the errors En of the inner stages by
∥∥en∥∥X

and the defects.
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Lemma 5.2. Let the assumptions stated at the beginning of this section be
fulfilled. Possibly after decreasing the maximal step size τ0 = τ0(r) ∈ (0, 1], we
obtain

s∑
i=1

∥∥Eni∥∥2X ≤ C(∥∥∆n

∥∥2
Xs +

∥∥en∥∥2X) (46)

for all τ ∈ (0, τ0] and n ∈ N with n ≤ T/τ .

Proof. The formulas (39) implies the identity

En = 1l⊗ en + τ(Oι⊗ I)A(Un)En + τ(Oι⊗ I)(A(Un)−A(Ũn))Ũn −∆n.

Multiplying by DOι−1 ⊗ I, we obtain

(DOι−1 ⊗ I)En = (DOι−1 ⊗ I)(1l⊗ en −∆n)

+ τDA(Un)En + τD(A(Un)−A(Ũn))Ũn.
(47)

We now take the inner product of this equation with the vector Λ(Un)En. To
treat the left-hand side, we write

Λ(Un) = Is ⊗ Λ(un+1) +
(
Λ(Un)− Is ⊗ Λ(un+1)

)
.

The assumptions (2a) and (2b) on Λ and the coercivity (17) of the Runge–
Kutta method allow us to estimate

(Λ(Un)En, (DOι−1 ⊗ I)En)

= ((Is ⊗ Λ(un+1)1/2)En, (DOι−1 ⊗ I)(Is ⊗ Λ(un+1)1/2)En)Xs

+ (
(
Λ(Un)− Is ⊗ Λ(un+1)

)
En, (DOι−1 ⊗ I)En)Xs

≥ αδ

ν

∥∥En∥∥2Xs − cRK`

s∑
i,j=1

∥∥Uni − un+1

∥∥
Y

∥∥Eni∥∥X∥∥Enj∥∥X
with δ = mini di > 0. Inequality (33) yields

∥∥Uni − un+1

∥∥
Y
≤ Crτ . After

possibly decreasing τ0(r) > 0, we thus deduce the lower bound

(Λ(Un)En, (DOι−1 ⊗ I)En)Xs ≥ αδ

2ν

∥∥En∥∥2Xs .

For the first term on the right-hand side of (47), it follows

(Λ(Un)En, (DOι−1 ⊗ I)(1l⊗ en −∆n))Xs

≤ λXcRK

∥∥En∥∥Xs

(∥∥en∥∥X +
∥∥∆n

∥∥
Xs

)
≤ Cε

∥∥En∥∥2Xs + Cε−1
(∥∥∆n

∥∥2
Xs +

∥∥en∥∥2X)
from (4), where ε > 0 is arbitrary. For the second term, the skew-adjointness
of A and (3a) imply

τ(Λ(Un)En,DA(Un))En)Xs = τ(En,D(I ⊗A+Q(Un))En)Xs
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≤ τµXcRK

∥∥En∥∥2Xs .

Using (4), (9b), and ‖Ũn‖Zs ≤ r, the third term can be bounded by

τ(Λ(Un)En,D(A(Un)−A(Ũn))Ũn)Xs ≤ Cτ
∥∥En∥∥2Xs

∥∥Ũn∥∥Zs ≤ Crτ
∥∥En∥∥2Xs .

After choosing a sufficiently small ε > 0 and possibly decreasing τ0(r) > 0
once more, we deduce the assertion from the above expressions.

Our first main result now easily follows.

Theorem 5.3. Let Assumptions 2.1 and 2.2 be fulfilled. Let the Runge-Kutta
method be algebraically stable, satisfy the coercivity condition (17), and have
stage order s and order at least s + 1. Let r ≥ 1, R0 = (4γc20)−1R, u0 ∈
BY (R0) ∩ BZ((2c0)−1r), and choose T = T (r) > 0 as at the beginning of this
section. Take the maximal step size τ0 = τ0(r) > 0 obtained in Lemma 5.2,
τ ∈ (0, τ0], and N ∈ N with N ≤ T/τ . Let u ∈ C([0, T ], Z) ∩ C([0, T ], Y ) be
the solution of (5) and assume that u(s+1) ∈ L2([0, T ], D(A)) and u(s+2) ∈
L2([0, T ], X). Then the error of the Runge-Kutta scheme (13) is bounded by∥∥eN∥∥X ≤ Cr1/2eCrT τs+1

(∫ T

0

(∥∥u(s+1)(t)
∥∥2
D(A)

+ ‖u(s+2)(t)‖2X
)
dt
)1/2

.

The constants C only depend on the coefficients of the Runge-Kutta scheme,
the isomorphisms S and SY , and the constants in Assumptions 2.1.

Proof. Inserting (46) into (40), we obtain∥∥en+1

∥∥2
un+1

≤ (1 + Crτ)
∥∥en∥∥2un

+ Crτ
(∥∥∆n

∥∥2
D(A)s

+
∥∥ 1
τ δn+1

∥∥2
X

)
≤ eCrτ

∥∥en∥∥2un
+ Crτ2s+2

∫ tn+1

tn

(‖u(s+1)(t)‖2D(A)+ ‖u
(s+2)(t)‖2X) dt,

where we used the formulas (37) to bound the defects. The asserted error
bound now follows from a straightforward iteration, the identity e0 = 0 and
the norm equivalence (10).

6 The convergence result in Y

Using the isomorphism SY from Assumption 2.2, we next extend our conver-
gence result to the norm of Y under slightly stronger conditions. Since the
proofs are analogous, we only sketch them.

Lemma 6.1. Let the assunmptions stated at the beginning of Section 5 be ful-
filled. Assume that SY u

(s+1) ∈ L2([0, T ], D(A)) and SY u
(s+2) ∈ L2([0, T ], X).

The error en = un − u(tn) then satisfies∥∥SY en+1

∥∥2
un+1

≤ (1 + Crτ)
∥∥SY en∥∥2un

+ Cτ
∥∥ 1
τ SY δn+1

∥∥2
X

+ C(r + βY (r))τ (
∥∥SY En∥∥2Xs +

∥∥SY∆n

∥∥2
D(A)s

)

for all τ ∈ (0, τ0] and n ∈ N with n ≤ T/τ .
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Proof. We proceed as in the proof of Lemma 5.1, but first multiply the error
recursion (38) by SY . There are two main changes. First, to estimate the
expression corresponding to (45) we apply (9c) and derive∥∥SY (AUni

−AŨni
)Ũni

∥∥
X
≤
∥∥SY ∥∥X←Y ∥∥(AUni

−AŨni
)Ũni

∥∥
Y

≤
∥∥SY ∥∥X←Y LY ∥∥Uni − Ũni∥∥Y ‖Ũni‖Z

≤ Cr
∥∥SY Eni∥∥X .

To prove the bound corresponding to (44), we now have to use (7a) and (7b)
for SY , which means that the constant now also depends on βY (r).

Lemma 6.2. Let the assumptions stated at the beginning of Section 5 be ful-
filled and let SY u

(s+1) ∈ L2([0, T ], D(A)). Possibly after decreasing the maxi-
mal step size τ0 = τ0(r) ∈ (0, 1], we obtain

s∑
i=1

∥∥SY Eni∥∥2X ≤ C (
∥∥SY∆n

∥∥2
X

+
∥∥SY en∥∥2X)

for all τ ∈ (0, τ0] and n ∈ N with n ≤ T/τ .

Proof. We show this result as Lemma 5.2, again starting from the error re-
cursion (39). One now multiplies it with SY and takes the inner product with
Λ(Un)SY En. With modifications as indicated in the proof of Lemma 6.1 one
then derives the assertion.

Arguing as in the proof of Theorem 5.3, we finally deduce from the above
two lemmas our convergence result in Y .

Theorem 6.3. Let Assumptions 2.1 and 2.2 be fulfilled. Let the Runge-Kutta
method be algebraically stable, satisfy the coercivity condition (17), and have
stage order s and order at least s + 1. Let r ≥ 1, R0 = (4γc20)−1R, u0 ∈
BY (R0) ∩ BZ((2c0)−1r), and choose T = T (r) > 0 as at the beginning of
Section 5. Take the maximal step size τ0 = τ0(r) > 0 obtained in Lemma 6.2,
τ ∈ (0, τ0], and N ∈ N with N ≤ T/τ . Let u ∈ C([0, T ], Z)∩C([0, T ], Y ) be the
solution of (5) and assume that SY u

(s+1) ∈ L2([0, T ], D(A)) and SY u
(s+2) ∈

L2([0, T ], X). Then the error of the Runge-Kutta scheme (13) is bounded by∥∥eN∥∥Y ≤ C(r + βY (r))
1
2 eC(r+βY (r))T τs+1

·
(∫ T

0

(∥∥SY u(s+1)(t)
∥∥2
D(A)

+ ‖SY u(s+2)(t)‖2X
)
dt
) 1

2

.

The constants C only depend on the coefficients of the Runge-Kutta scheme,
the isomorphisms S and SY , and the constants in Assumptions 2.1.
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