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Abstract 

 

The presented thesis about the accumulation potential of pharmaceutical traces in 

groundwater of arid and semi-arid climates evolved from the detection of elevated 

pharmaceutical concentrations in the groundwater of the Jordan Valley in comparison to 

the contributing surface water. This result in the principle question whether persistent 

trace substances, e.g. X-ray contrast media, might enrich in groundwater in the long term 

under such conditions and essentially whether they ultimately reach ecotoxicologically 

relevant levels. Field investigations were conducted in two areas: The Lower Jordan 

Valley and the Wadis Shueib and Kafrein. 

The extensive agriculture on the floor of the Jordan Valley is irrigated with “blended 

water”, a mixture of locally pumped groundwater and treated wastewater which is 

conveyed to the area. This results in a continuous external input of wastewater-borne 

trace substances. A portion of the irrigation water is therefore used in circulation and 

subject to evaporation during each irrigation cycle. The hydromorphology of the Lower 

Jordan Valley comprises low precipitation and high evaporation rates and the Dead Sea 

as the final sink without an outlet. Groundwater in the area is mainly present in the 

quaternary sediments. 

Wadi Shueib and Wadi Kafrein are two steep side wadis along the eastern escarpment of 

the Lower Jordan Valley. Urban areas are found especially in the upper parts of the wadis. 

Anthropogenic pollution contaminates almost all groundwater sources due to the 

inefficient or damaged wastewater infrastructure. Both catchments are characterized by 

karstic limestone and dolomite formations. Shallow groundwater flows in two 

interconnected aquifer systems in depths of 50 to 75 m. 

Within the framework of a five year sampling campaign, the temporal and spatial 

occurrence of wastewater-borne contaminants like different pharmaceuticals, E.coli, and 

nitrate were evaluated in the study areas. 

In addition to the field studies, lab scale experiments on unsaturated columns were 

conducted in order to investigate the effect of evaporative accumulation of the two 

pharmaceuticals bezafibrate and carbamazepine. Both substances showed accumulation 



Abstract 

ii 

under microbiologically inhibited conditions. Accumulation rates corresponded to the 

volume of evaporated water and were similar to conservative species like chloride and 

bromide. These experiments indicate the accumulation potential of pharmaceuticals with 

high persistence against biodegradation. Thereby, the general potential for evaporative 

enrichment of pharmaceuticals could be demonstrated for the first time. This potential 

should be included in risk assessments in the future. In respect to the Lower Jordan Valley 

however, the experiments under near to natural conditions did not indicate any health 

risks arising from the application of treated wastewater in agriculture for the near future. 

Within the scope of the field investigation, the accumulation effect could not be proven on 

a statistically evident level (e.g. by continuous increasing concentrations over time). 

However, essential information could be gathered about contamination dynamics of the 

local groundwater by evaluating the spatial and temporal distribution of contaminants 

and associated concentrations. The X-ray contrast media diatrizoic acid, a standard 

diagnostic until its ban in 2000, showed a widespread occurrence in the groundwater 

while it was almost completely absent in treated wastewater and surface water. At the 

same time, iopamidol, a potential substitute for diatrizoic acid, showed increasing 

detection rates over the sampling period. These results give important indications on 

changes in prescription and application practice. 

This effect has been consistently described in a conceptual model for contamination, 

transport, and leaching pathways for Wadi Shueib and Wadi Kafrein. The correlation of 

nitrate and pharmaceutical concentrations in both wadis strongly indicate that the nitrate 

contamination of groundwater originates from leaking sewers and cesspits. The number 

of detected substances at the sampling locations was also correlated with increasing 

concentrations of wastewater indicators such as nitrate and E. coli. Eventually, both field 

studies demonstrate the excellent potential of pharmaceuticals as tracers for 

anthropogenic contamination. 
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Kurzfassung 

 

Ausgangspunkt der vorliegenden Arbeit zur potentiellen Anreicherung von 

pharmazeutischen Spurenstoffen im Grundwasser semi-arider und arider Gebiete war ein 

Spurenstoffscreening im Grundwasser, Oberflächenwasser und Abwasser des Jordantals. 

Erhöhte Konzentrationen von Pharmazeutika im Grundwasser verglichen zum 

Oberflächenwasser warfen dabei die Frage auf, ob sich persistente Spurenstoffe, wie z.B. 

Röntgenkontrastmittel, unter den gegebenen Bedingungen über längere Zeiträume im 

Grundwasser anreichern und ob hierbei ökotoxikologisch relevante Konzentrationen 

entstehen können. Die daran anknüpfenden Untersuchungen dieser Arbeit wurden in 

zwei Regionen durchgeführt: Dem Unteren Jordantal und den Wadies Shueib und Kafrein. 

Am Talboden des Untere Jordantals wird extensive Bewässerungslandwirtschaft 

betrieben, wozu eine Mischung aus lokalem Grundwasser und importiertem Klärwasser 

genutzt wird. Dies bedeutet einen kontinuierlichen externen Stoffeintrag, der durch die 

zusätzliche Grundwasserentnahme zur Bewässerung zyklisch der Verdunstung 

ausgesetzt wird. Die Hydromorphologie ist charakterisiert durch geringen 

Niederschlagsraten, hohen Verdunstungsraten und dem Toten Meer als abflussloser 

lokaler Senke. Grundwasser befindet sich hauptsächlich in quartären Sedimenten. 

Die Wadis Shueib und Kafrein sind Seitentäler an der östlichen Kante des Jordantals die 

nach Westen hin steil abfallen und im oberen Drittel stark urbanisiert sind. Das 

Grundwasser ist durch anthropogene Schadstoffeinträge häufig kontaminiert, was sehr 

wahrscheinlich auf eine z.T. unzureichende oder defekte Abwasserinfrastruktur 

zurückgeführt werden kann. Grundwasser findet man in der durch verkarstete Kalkstein- 

und Dolomitformationen geprägten Gegend in zwei Aquifersystemen in Tiefen von 50 bis 

75 m. 

Im Rahmen einer mehrjährigen Beprobungskampagne wurde die zeitliche und räumliche 

Verteilung verschiedener verschmutzungsrelevanter Parameter, wie 

Pharmakarückstände oder die Konzentration von Nitrat und coliformer Bakterien erfasst 

und ausgewertet. 

Parallel zu den Untersuchungen im Gelände wurde der Anreicherungsprozess im 

Labormaßstab anhand von ungesättigten Säulenversuchen untersucht. Im Laborversuch 
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konnte hierbei für zwei Substanzen (Bezafibrat und Carbamazepin) eine evaporative 

Anreicherung unter biologisch inhibierten Bedingungen nachgewiesen werden, welche 

sich in der Größenordnung der verdunsteten Wassermenge bewegt. Die 

Akkumulationsraten waren ebenfalls in der gleichen Größenordnung wie die der 

konservativen Stoffe Chlorid oder Bromid. Die Experimente zeigten das evaporative 

Anreicherungspotential von abbauresistenten Pharmaka welches hier zum ersten Mal 

nachgewiesen werden konnte. Dieser Prozess sollte bei zukünftigen Risikobetrachtungen 

berücksichtigt werden. Eine Übertragung der Laborergebnisse unter naturnahen 

Bedingungen auf das Untere Jordantal zeigt auf absehbare Zeit keine Gesundheitsrisiken 

durch die Verwendung von Klärwasser in der Landwirtschaft. 

Im Rahmen der Beprobungskampagne konnte der Anreicherungseffekt im 

Untersuchungsgebiet durch über die Zeit stetig ansteigende Schadstoffkonzentrationen 

im Grundwasser nicht verifiziert werden. Dennoch lassen sich anhand der räumlichen 

und zeitlichen Spurenstoffverteilung und Konzentrationsentwicklung wichtige 

Informationen über die lokale Kontaminationsdynamik im Grundwasser ableiten. Die 

großflächige Verbreitung des Röntgenkontrastmittels Amidotrizoesäure 

(Standardsubstanz in der Diagnostik bis zur Vermeidungsempfehlung seit 2000) bei fast 

völliger Abwesenheit im Klär- und Oberflächenwasser, sowie über den 

Untersuchungszeitraum steigende Detektionsraten von Iopamidol (ein möglicher 

Ersatzstoff) geben Hinweise auf Änderungen in der Verschreibungspraxis. 

Anhand eines konzeptionellen Models konnte die Eintrags-, Transport und 

Auswaschungsdynamik der beiden Röntgenkontrastmittel für das Wadi Shueib 

beschrieben werden. Die Korrelation der Pharmaka- und Nitratkonzentration im 

Grundwasser der urbanen Einzugsgebiete Wadi Shueib und Wadi Kafrein weist auf 

Leckagen im Kanalsystem und in Klärgruben als Quelle der Nitratkontamination hin. Die 

Anzahl der an den Messstellen gefunden pharmazeutischen Substanzen korrelierte 

ebenfalls mit den Konzentrationen anderer typischer Abwasserinhaltsstoffe wie Nitrat 

und E. coli und kann somit als Abwasserindikator genutzt werden. Beide Feldstudien 

zeigen, dass persistente Spurenstoffe als nützliche Tracer für anthropogene 

Kontamination eingestuft werden können.  
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1. Introduction 

1.1. Thesis structure 

The present study is a cumulative PhD thesis enclosing three peer reviewed publications: 

1. Zemann, M., Wolf, L., Pöschko, A., Schmidt, N., Sawarieh, A., Seder, N., Tiehm, A., 

Hötzl, H., Goldscheider, N., (2014): Sources and processes affecting the spatio-

temporal distribution of pharmaceuticals and X-ray contrast media in the water 

resources of the Lower Jordan Valley, Jordan. Science of the Total Environment 488-

489, 100-114. 

2. Zemann, M., L. Wolf, F. Grimmeisen, A. Tiehm, J. Klinger, H. Hötzl and N. 

Goldscheider (2015): Tracking changing X-ray contrast media application to an 

urban-influenced karst aquifer in the Wadi Shueib, Jordan. Environmental Pollution 

198: 133-143. 

3. Zemann M., Majewsky M., Wolf L. (2016): Accumulation of pharmaceuticals in 

groundwater under arid climate conditions – Results from unsaturated column 

experiments. Chemosphere 154, pp 463-471. 

They first focus on pharmaceutical fate and occurrence in an arid and a semi-arid 

environments, namely the Lower Jordan Valley (LJV) (chapter 2) and the Wadi Shueib 

(chapter 3). Second they deal with the potential of pharmaceuticals to accumulate in 

groundwater in an arid climate which is demonstrated in laboratory experiments 

(chapter 4). The introduction (chapter 1) contains the thesis framework, the methodology 

and the geology and hydrogeology of the area investigated. 

Chapter 2 provides the main aspects of spatial and temporal occurrence of 

pharmaceuticals in the LJV. Against the background of intense wastewater reuse in 

agriculture, the evolution of pharmaceutical detections and concentrations in 

groundwater, surface water and treated wastewater is discussed with a special focus 

placed on the contaminant origin and the transfer and diversion systems of raw water and 

wastewater. Furthermore, a small literature study presents degradation rates, sorption 

and elimination rates for two pharmaceuticals derived from multiple laboratory batch 

and column experiments. 
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Chapter 3 particularly deals with the fate and occurrence of X-ray contrast media in an 

urban influenced limestone aquifer in the Wadi Shueib. By correlating well known 

pollution parameters such as nitrate and E. coli and the number of detected 

pharmaceutical substances at each sampling location, this parameter established a 

suitable tool to assess pharmaceutical pollution on a semi-quantitative level. Also, a 

conceptual model presents the flow and storage of diatrizoic acid in the karst system and 

the subsequent release of residual concentrations from the matrix. 

Chapter 4 investigates the potential of evaporative pharmaceutical accumulation by 

column studies. Within this chapter the matter of relative, evaporative accumulation is 

discussed. First, the general flow mechanics and water mass balances are presented to 

demonstrate the overall successful and uniform operation of the experimental setup. The 

relevant physical, biological and chemical processes for pharmaceuticals are then 

explained in the context of the experimental results. Further on, the accumulation of 

pharmaceuticals is demonstrated mainly under biologically inhibited conditions while 

results for one persistent substance indicate the potential under near to natural 

conditions. Accumulation factors of pharmaceuticals were calculated and compared 

successfully to the evaporation rates and other conservative substances like chloride and 

bromide. The relevance of the results regarding their transferability to natural settings is 

discussed as well. 

1.2. Funding framework – SMART & BOMOCIS 

The presented work was initiated and realized within the framework of two projects. 

Firstly, the SMART-project (SMART = Sustainable Management of Available Water 

Resources with Innovative Technologies) which focuses on the topic of “Integrated Water 

Resources Management” (IWRM) of the Lower Jordan Basin and was funded by the BMBF 

(German federal Ministry of Education and Research; grant numbers of project phases I 

and II: 02WT9724 & 02WM1079). Secondly the BOMOCIS-project (Behavior of Mobile 

Organic Compounds in the Subsurface), a KIT startup program to facilitate inter 

facultative cooperation. 

The main goal of the SMART-project was thereby the development of transferable 

solutions for an integrated water management in the LJV (see Figure 1). Priority was set 

to the sustainable improvement of water quality and the available quantities. Within this 

semi-arid to arid region, water has been scarce for centuries and different countries need 



 Introduction 

  3 

to share this limited resource. Due to the political situation, this has often been 

complicated. While the different religious backgrounds and past belligerence already 

generate a tense political environment, the recent political development of the Arabic 

spring increased pressure on the water resources due to refugees from surrounding 

countries. The SMART-project aims to increase the water availability and quality in the 

LJV by an integrative approach, including new treatment techniques, the use of formerly 

unused or unavailable water sources like brackish water, the optimization of usage and 

storage of seasonal flashfloods and by the raising of awareness for conservation and 

sustainable water usage in schools. The project is aiming to consider not only single 

topics, but to include all relevant aspects from available and innovative techniques, 

different water resources, decision support for the local decision makers, awareness 

raising and capacity building by an integrative approach. 

The research objective of the BOMOCIS-project mainly focuses on the transport behavior 

of pharmaceuticals in the unsaturated porous underground. A special focus was put 

thereby on accumulation processes induced by evaporation as it may take place in arid 

environments. The investigations were mainly drawn from laboratory experiments, in 

particular by column studies, simulating percolation of treated wastewater (TWW) 

through the unsaturated zone after application e.g. in irrigation. 
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Figure 1: Overview of the Jordan and Dead Sea Basin with the investigated area and catchment of the Lower 
Jordan River in the middle part (Riepl, 2012). 
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1.3. Motivation of the thesis 

Within the last decade, the country of Jordan has been faced with a severe population 

growth. This was mainly due to the high natality but additionally boosted by several 

refugee flows starting with the Iraq War in 2003. The overall population number 

therefore increased from 5.9 Mio in 2008 to above 8 Mio in 2014 (MercyCorps, 2014). Due 

to the arid and semi-arid climate, water resources were already scarce in the past and 

have been overused for years, as is documented by the decline of groundwater levels and 

the water level of the Dead Sea (Salameh & El-Naser, 2000). The increasing water demand 

within the recent years is an enormous challenge for the local authorities (i.e. the Ministry 

of Water and Irrigation) since drinking water supply is not only a matter of demand, but 

as well needs to meet quality aspects. Like many other developing countries, Jordan 

suffers from insufficient water management and defective water infrastructures. High 

rates of losses in the supply system come along with lacking or damaged wastewater 

infrastructure as leaking sewers or inefficient and sometimes even missing wastewater 

treatment. Infrastructural losses were quantified around 30 % of the total production 

(MercyCorps, 2014). Due to continuous water scarcity, treated wastewater is used for 

irrigation in agriculture in the LJV as a supplement for formerly used drinking water. 

However, locations of water abstractions were often closely spaced to e.g. infiltrating 

wastewater especially as in Jordan drinking water is abstracted almost solely (80 %) from 

groundwater (Properzi, 2010). As a consequence, the water quality has been 

deteriorating for years whereas the demand is further growing. 

While most of the problems were apparent, any approach towards a sustainable solution 

seems complex as it needs to consider aspects of all kinds of different fields of expertise. 

Though, if different experts add their knowledge on a specific field to a shared base it 

might later help any decision maker in the water sector towards an optimized planning 

or realization of improvement activities. The main motivation of this thesis was, therefore, 

to investigate, understand and describe the interconnected problem of groundwater 

contamination, drinking water supply and wastewater treatment for the area of the LJV 

in a sufficient way. Besides, it was tried to evaluate the risk arising from the intensive use 

of treated wastewater in agriculture for the local catchment. This was furthermore based 

on the evaluation of tempo-spatial occurrence of several pharmaceutical trace substances. 

Pharmaceuticals here provide the opportunity of well-defined sources and therefore can 
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help to distinguish the origin and flow paths of groundwater contamination and improve 

the overall understanding of the local contamination dynamics. 

1.4. Objectives and hypotheses 

The evaluation of initial pharmaceutical screening results in groundwater, surface water 

and final effluent of several wastewater treatment plants (WWTP) in the Jordan Valley in 

2007 showed, that at that time several of the detected substances had higher 

concentrations in the groundwater than in the contributing surface water and treated 

wastewater (Wolf et al., 2009). Amongst them were different X-ray contrast media, 

namely iopamidol and diatrizoic acid, which both were known to be rather persistent 

against biodegradation. Due to the local conditions with high temperatures, high 

evaporation rates and almost no precipitation, an evaporative enrichment of persistent 

substances seemed one possibility besides others, like seasonal effects or changes in 

medication. As soil salting is also a known problem in such areas, it was hypothesized that 

pharmaceuticals might accumulate in groundwater under such specified conditions 

which are described as follows: 

 A closed catchment with no or negligible outflow, i.e. the Jordan Valley with the 

Dead Sea acting as the final sink. 

 High temperatures and high evaporation rates, i.e. arid climate. 

 A continuous replenishment of organic trace substances or pharmaceutical 

residues; here, the transfer and use of treated wastewater for irrigation in 

agriculture. 

Due to the limited amount of available data a multi-step approach was done to investigate 

the problem on different scales. First, unsaturated column experiments were chosen to 

investigate the theoretical potential of evaporative enrichment under near to natural 

conditions. Results were later interpreted under the aspect of human hazards and long 

term impacts. The following objectives were thereby investigated (Zemann et al., 2016): 

 Can we simulate the accumulation of pharmaceuticals in a laboratory experiment 

under near to natural conditions? 

 What can we predict from laboratory results? 

 Is the accumulation process capable to become a dangerous fact in groundwater 

quality studies? 



 Introduction 

  7 

In parallel to the laboratory investigations, field studies were conducted in the LJV to 

increase the data amount and obtain long term data. They were interpreted on the 

temporal and spatial level regarding long term accumulation effects and pharmaceutical 

mass fluxes in the area. The following objectives were hereby investigated (Zemann et al., 

2014; Zemann et al., 2015): 

 What substances occur in the different water types of the LJV and in the urban 

karst aquifer of Wadi Shueib and Wadi Kafrein? What concentration levels do they 

reach? 

 Is there any proof of an accumulation processes in the groundwater? 

 How can we make use of pharmaceutical occurrence and concentrations above the 

qualitative level? 

 Are those substances suitable anthropogenic tracers? 

 Is it possible to distinguish tempo-spatial trends or characteristic distribution 

patterns regarding concentrations and occurrence? 

 Can trends and distribution patterns be related to the administration or known 

persistence of pharmaceuticals and do findings match with local infrastructures 

for wastewater distribution in irrigated agriculture? 

1.5. Methodology 

1.5.1. Field studies 

As mentioned in chapter 1.4, occurrence and fate of pharmaceuticals were investigated in 

two different aquifer systems: 

 The shallow alluvial aquifer in the LJV with an intense reuse of treated wastewater 

in agricultural irrigation. 

 The karstic limestone aquifer system in the Wadi Shueib which is heavily 

influenced by effluents from leaking sewers and cesspits of the upstream urban 

area of the city Salt. 

To determine possible pollution sources and pharmaceutical flow paths, samples were 

taken from groundwater as well as from the contributing surface water and treated 

wastewater. The sampling strategy was thereby roughly oriented towards previous 

studies from Wolf et al. (2009). The area between the Dead Sea and the Lake Galilee was 

divided into three sections according to the local diversion of treated wastewater to the 
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farmers. The assumed degree of pollution, in terms of the amount of treated wastewater 

mixed to the irrigation water hereby was increasing from north to south, with highest 

rates close to the Dead Sea. The idea mainly follows the course of the national water 

carrier King Abdullah Canal (KAC) which is an open canal along the LJV (Figure 2). In the 

northern part, the KAC is conveying water from the Lake of Galilee and the Yarmouk River 

to a pumping station in Deir Alla. Further on, most of the water is transferred to Amman 

where it is used for drinking water after purification. Parts of the water are already 

diverted for irrigation along its course. After Deir Alla, water from the King Talal Dam, 

which is collecting the effluent of Ammans biggest WWTP As Samra, is lead into the canal 

(Figure 3). From here, this water, together with the remaining fresh water is delivered 

further south towards the Dead Sea. In this southern part, the canal is refilled and mixed 

with water from several dams. During the dry summer months, those dams were mainly 

fed by the effluent of upstream WWTP. 

 

Figure 2: King Abdullah Canal in the southern LJV. 

 

Figure 3: Inflow of King Talal Dam effluent into the 
King Abdullah Canal at Deir Alla.  

 

Within four field campaigns (autumn 2008, spring 2011, autumn 2011, spring 2012) 

different water quality parameters were surveyed at a total of 24 sampling locations in 

the Wadi Shueib, the Wadi Kafrein and the LJV. The sampling (Figure 4) and analysis 

(Figure 5) procedure are described in detail in chapter 2.2.2. and chapter 3.2.3. The 

investigated parameters were: 

 Pharmaceuticals, i.e. X-ray contrast media 

 Major ions (K, Ca, Mg, Na, PO4, Cl, SO4…) 

 Pysico-chemical parameters (electric conductivity, pH, temperature, oxygen 

demand, redox) 

 E. coli and total coliforms 
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For the LJV, samples were taken from open groundwater, springs and wells. In each of the 

three areas, at least 3 groundwater samples and one contributing surface water sample 

were taken during each campaign. For Wadi Shueib and Wadi Kafrein, samples were 

collected from the main springs (in terms of discharge), some wells and the WWTPs. 

While most of these springs and wells (Shoreia, Baqquriah, Azzraqu, Um Attija, Yesidia) 

are still used for drinking water supply, water quality is a crucial matter, as any single 

detection of a pharmaceutical gives a hint of anthropogenic pollution by wastewater 

(leaking sewers and cesspits) or treated wastewater (infiltration of final effluent via wadi 

streams). 

 

Figure 4: Sampling at Um Attija Well. 

 

Figure 5: Field laboratory at Hazzir spring. 

 

1.5.2. Laboratory studies 

Beside the field investigations, the hypothesis of evaporative accumulation of 

pharmaceuticals was also examined on the laboratory scale. To illustrate the sole effect of 

evaporative accumulation and later evaluate possible risks and hazards, unsaturated 

column studies were conducted from March 2012 until August 2012. 

Within the experiments, treated wastewater dotted with pharmaceuticals was trickled on 

sand filled columns (Figure 6). With the laboratory temperature set to 30°C, the 

evaporation of water should then lead to a relative accumulation of the pharmaceuticals 

in the outflow of the columns. Effects of biodegradation should be considered by the 

comparison with parallel experiments under microbiologically uninhibited and inhibited 

conditions. The amount of adsorbed substances was investigated at the end of the 

experiments by dividing each column into segments and analyzing the eluate of the soil 

samples. 
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The inflow water to the columns consisted of final effluent of the Karlsruhe Neureut 

WWTP. Stable inflow conditions were obtained by taking all treated wastewater at one 

time and stabilizing it by autoclave treatment. All experiments were conducted inside a 

climatic chamber (Figure 7), where 30 °C and 60 % relative humidity simulated a semi-

arid environment. 

 
Figure 6: Trickling of treated wastewater via 
cannulas on the column surface. 

Figure 7: Climatic chamber. 
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1.6. Geology and hydrogeology of the investigated area 

1.6.1. Structural geology of the Lower Jordan Valley 

The Lower Jordan Valley stretches between the Lake Tiberias at -200 m bsl down 

to -415 m bsl at the Dead Sea with 8 to 15 km width extending over a length of 100 km. 

The elevation at its escarpments reaches 1200 m asl (Hötzl, 2009). 

The Arava Dead Sea Jordan Rift Valley is the plate boundary which separates the Arabian 

continental plate from the African plate (Hötzl, 2009). It has developed since the pre-

middle Miocene (~13 Mio years) as a left lateral (sinistral) transformation fault zone 

(McKenzie et al., 1970). The left lateral movement is postulated to be 107 km (Bender, 

1974). Vertical displacements at faults are accompanying the eastern flanks of the rift 

system (Marcus and Slager, 1985). The whole Dead Sea Transform (DST) is approximately 

1000 km long and connects the sea floor center of the Red Sea with the Alpine 

convergence zone in Turkey. Along the DST are several basins (see Figure 8) with a 

lengths range from 15 – 150 km, widths from 5 – 20 km and depths > 10km, especially 

along the southern half (Hötzl, 2009). They are interpreted as pull-apart basins 

(Garfunkel, 1981). The biggest amongst them shown in Figure 8 are:  Gulf of Aqaba-Elat 

(A), Dead Sea (C), Sea of Galilee (D), Hula (E) and Ghab (F) basins (Ben-Avraham et al., 

2012). 

During the Quaternary, several lakes occupied this tectonic depression along the DST: 

Lake Amora (mid to late Pleistocene), the last interglacial Lake Samra, the last glacial Lake 

Lisan and the Holocene to modern Dead Sea (Waldmann et al., 2009). During the Miocene, 

the Dead Sea Basin (DSB) was filled by fluvio lacustrine deposits (Garfunkel, 1981). 

During the Pliocene, the Mediterranean Sea intruded into the DSB, forming the Sedom 

lagoon and deposited thick sequences of salts. After the disconnection of this lagoon, 

terminal lacustrine bodies (Amora, Samra, Lisan, Dead Sea) successively occupied the 

basin (Waldmann et al., 2009). 
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Figure 8: Pull apart basins along the DST (Ben-Avraham et al., 2012). 

 

1.6.2. Stratigraphy in the Wadis Shueib and Kafrein 

The taxonomy of the following chapter is used according to the Jordan 1:50,000 Geological 

Mapping Project of the National Resources Authority (NRA) which is based on Masri 

(1963). The following paragraphs are mainly based on Lenz (1999), Werz (2006), 

AlKhoury (2011), Sahawneh (2011). 

The study area of Wadi Shueib and Wadi Kafrein are both located next to each other at the 

eastern escarpment of the LJV (see Figure 10). Wadi Kafrein is embedded between the 

two main fault systems of the area: The Amman Halabad structure and the Wadi Shueib 
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structure both originate from the early Tertiary Syrian folded arc system and later were 

additionally narrowed and squeezed out during the transform movement started from 

the Upper Miocene and continuing until today. Wadi Shueib borders Wadi Kafrein and the 

Wadi Shueib structure to the north. 

The outcropping rocks in the Wadi Shueib area are of Jurassic age (Azab Group) to Upper 

Cretaceous age (Balqa Group) (Hahne, 2008). Outcropping rocks in Wadi Kafrein are from 

Crataceous ages (Aarda Formation) and younger (Lenz, 1999). The stratigraphy of both 

areas is rather similar comprising the main groups Kurnub, Ajlun and Belqua. At the end 

of the wadi towards the LJV, sediments of the Jordan Valley Group were deposited on the 

valley floor. The different groups, formations and notations for all of Jordan are given in 

Table 1. The outcrops of the important hydrogeological formations are given in the map 

in Figure 9. 

1.6.2.1. Kurnub Group 

The term Kurnub was introduced by Damesin around 1930 for sandstones in the northern 

Negev. This group is of the Lower Cretaceous age and consists mainly of fine to coarse 

grained, partly carbonaceous sandstones. They were intercalated by sandy dolomite, 

dolomitic limestone, siltstone and shale (Margane, 2002). Bender (1974) subdivided the 

group into a white (Aarda) and a variegated (Subeihi) sandstone unit, however today they 

are mainly mapped as one. The thickness of the Kurnub Group in Wadi Sheuib is around 

250 m (Powell, 1989) while it is up to 150 m in Wadi Kafrein (Lenz, 1999). 

1.6.2.2. Ajlun Group 

The Ajlun Group developed in the Upper Cretaceous (upper Albian to Coniacian) and 

consists of five formations. Those were named by Masri (1963) from base to top: Naur 

(A1/2), Fuheis (A3), Hummar (A4), Shueyb (A5/6) and Wadi as Sir (A7). It consists of 

interbedded marl, marly limestone, limestone/dolomite units with a thickness in the 

investigated area of approx. 350 – 400 m (Powell, 1989). Most of the outcropping rocks 

in both wadis belong to the Ajlun Group. 

1.6.2.3. Belqa Group 

The term Belqa was first introduced by Quennel (1951). This group forms the most Upper 

Cretaceous to the early Tertiary age, namely from the Santonian to the Eocene. It mainly 

consists of chalk and limestone with partly high amounts of marl, chert, phosphate and 

siliclastic sand (Quennel, 1951; Parker, 1970). Wolfart (1959) subdivided into five 
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subunits named from base to top: Umm Ghudran (B1), Amman Al Hisa (B2), Muwaqqar 

(B3), Rijam (B4) and Wadi Shallala (B5) Formation. In Wadi Shueib and Kafrein only 

outcrops of the Umm Ghudram and the Amman Al Hisa Formations could be found (Werz, 

2006; AlKhoury, 2011). 

Table 1: Geological groups of Jordan (modified after Sahawneh (2011) and Ministry of Water and Irrigation 
(2004) (*taxonomy after McDonald (1965)). 

System Epoch Group Formation Symbol* Aquifer Unit 

Quaternary 
Holocene 

Jordan 
Valley 

Alluvium Qal 

Alluvium 
(Aquifer)  

Pleistocene 

Lisan & Samra 

JV3 

Tertiary 

Pliocene 

JV1-2 Miocene 

Oligocene Neogene 

Eocene 

Belqa 

Wadi Shallala B5 
B4/5 (Aquifer) 

Umm Rijam B4 

Paleocene Muwaqqar B3 B3 (Aquitard) 

Upper 
Cretaceous 

Maastrichtian 
Al Hisa 
Phosphate 

B2b 

A7/B2 (Aquifer) 

Campanian 

Amman 
Silicified 
limestone 

B2a 

Wadi Umm 
Ghudran 

B1 

Santonian 

Ajlun 

Wadi as Sir A7 
Coniacian 

Turonian Shuayb A5/6 

A1-6 (Aquitard) 
Cenomanian 

Hummar A4 

Fuheis A3 

Naur A1/2 

Lower 
Cretaceous 

  Kurnub 
Subeihi K2 

K1/K2 (Aquifer) 
Aarda K1 

Jurassic  Azab 
(Zarqua 
Group*) 

Z2 

Z1/Z2 (Aquifer) Triassic  Ramtha 
Z1 

Permian  Hudayb 
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1.6.3. Quaternary sediments in the Lower Jordan Valley 

The sediments in the JV between the Dead Sea and the Lake Galilee which are younger 

than the Belqa Group form the Jordan Valley Groups. However, even today the early 

history of the Jordan Valley Group is not fully known, due to the regularly changing 

sedimentation regimes. According to their local occurrence, the sediments in the JV were 

divided into the Jordan Valley Group 1 (JV1), Jordan Valley Group 2 (JV2) the Jordan Valley 

Group 3 (JV3) and the alluvial fans (Salameh, 2001). An overview comparing the 

Quaternary stratigraphy of Jordan and Israel according to their deposition environment 

is given in Table 2. 

Table 2: Comparison of Quaternary stratigraphic tables from different authors for the Lower Jordan Valley. 

Geological age 
Deposition 

environment 
(sea/lake) 

Group  Formation Group Formation Formation 

   Israel (DSB) Southern LJV Northern LJV, Lake Kinneret 

      (Waldmann et al., 2009) (Al-Amoush et al., 2012, 
Bender, 1968) 

(Hazan et al., 2005, 
Bender, 1968) 
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1.6.3.1. Hazeva Formation 

Even though it is not present in the investigated area, the Miocene Hazeva formation 

marks the stage before the beginning development of the DSB (Niemi et al., 1997). The 

formation is deposited under an fluviatile freshwater environment and is present inside 

the DSB as well as on its shoulders. Thus it indicates that the Rift Valley was not developed 

and the sediments could be transported over the later rift. Parts of it contain quartz which 

is most likely delivered from southern Sinai and northwestern Arabia towards the 

Mediterranean Sea (Niemi et al., 1997). 

1.6.3.2. Jordan Valley Group 1 (JV1) 

These formations were deposited between the Upper Miocene until the Middle 

Pleistocene. Its deposition was accompanied by the transform movement with faulting 

and formation of the JV. The Shagur Formation consists of well cemented fluvio-limnic 

conglomerates with interbedded marls, travertines or claystone (Toll, 2007). It covers the 

older rock sequences unconformable and was strongly deformed by structural movement 

(Bender, 1974). The Ghor el Katar Formation is composed of alternating conglomerates, 

sandstones, marl, shale and fossil red soil and equivalent to the Grain Sabt series of 

Ionides and Blake (1939). The series shows deformation as well but to a lower degree 

(Bender, 1974). Both formations only occur in the southern part and middle of the LJV 

(Bender, 1968). Abu Habil Formation consists of hard conglomerate with partly 

limestone. It may be partly correlative to the Erk El-Ahmar series (Horowitz, 1979). The 

Kufranja gravel Formation consists of poorly consolidated gravel, which were correlated 

to the later mentioned Naharayim Formation south of Lake Galilee by Bender (1968). Both 

formations only show small outcrops in the investigated area (Al-Amoush et al., 2012). 

The Jordan Valley Group 1 features overall low porosities and permeability (Al-Amoush 

et al., 2012). It may have secondary porosities in some restricted locations which, 

however, may contain salt water. Their thickness may reach up to 350 m (Salameh, 2001). 

1.6.3.3. Jordan Valley Group 2 (JV2) 

The Jordan Valley group 2 consists of the Ubediya and the Samra Formation. Both were 

formed in the middle Pleistocene. They consist of conglomerates, sands, silt and clayey 

marls but no evaporates and covers the JV1 with a thickness of some 100 m (Salameh, 

2001). The Ubediya Formation occurs only in the area southern to Lake Tiberias (Bender, 

1968). It is rich in prehistoric remains, representing the oldest human implements ever 

found in the Middle East (Horowitz et al., 1973). It is covered by the Naharayim and the 
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Lisan Formation and was faulted and tilted by the middle Pleistocene tectonic movement 

of the central Jordan Valley (Horowitz, 1979). The Samra Formation is the lower, clastic 

part of the Lisan formation (Horowitz, 1979) which corresponds to the Hamamar member 

of Langozky (1961) (Niemi et al., 1997) as later referred to in the JV3. At its edges, it is 

overlain, underlain and inter-fingered with the later described Lisan Formation (Toll, 

2007). Water inside the formation is generally salty, however in areas close to the slope 

there may emerge some fresh water due to lateral flows which substitutes the saline 

water (Salameh, 2001). 

1.6.3.4. Jordan Valley Group 3 (JV3) 

The Lisan Formation was deposited in the Lisan Lake (younger Pleistocene). It consists of 

thin marl layers (some mm thickness). The total thickness ranges from 30 m to several 

hundred meters. The deposit is highly gypsiferous and its salt content is very high 

(Salameh, 2001). Several members of this formation have been defined, based on 

lithological changes and erosional unconformities. As Langorzky (1961) divided it into 

the lower, clastic Hamamar member and the upper evaporitic Amiaz member, the Lisan 

of the Jordan Valley Group refers to the latter (Niemi et al., 1997). The Damya Formation, 

consists of brownish thin to medium bedded silty limestone and calcareous mudstone and 

overlies the Lisan Formation with a thickness of 0 to 14 m (Hötzl, 2009). Groundwater of 

the JV3 is typically saline. Older alluvial fans inter-finger with the JV3 and may contain 

fresh water in a few areas. The primary permeability is very low. The secondary may be 

high in some places due to gravel intercalations and dissolution of salts (Salameh, 2001). 

1.6.3.5. Alluvial Fans 

The Jordan Valley Group is overlain by alluvial sediment fans which are from post Lisan 

age. They are composed from uncemented gravel and sand at their apexes and silt and 

fine sand at their toes, so they fine up towards the Jordan River. They possess high 

permeability in the upstream areas and low in the downstream areas. Their thickness may 

reach up to 20 m and thin out totally towards the Jordan River. At the mouth of the wadis 

towards the LJV, the fans are reduced to rather small coarse channel fillings towards the 

wadis. Their deeper parts are contemporaneous with the Lisan Formation and replace the 

Lisan marls completely. Here, the aquifers of the Jordan Valley below the Lisan marls can 

be recharged from the wadis. Slope debris originating from escarpment foothills overlap 

with these fans (Salameh, 2001). They originate from the exposed formations at the rift 

side and were brought from the eastern side wadis with the winter floods. 
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1.6.4. Hydrogeology 

The hydrogeological units in the research area can be subdivided into three main units:  

 The Deep Sandstone Aquifer Complex (Ram-Zarqua-Kurnub) 

 The Upper Cretaceous Carbonat Aquifer Complex 

 The shallow sandy-gravelly Aquifer Complex (Tertiary - Quaternary) 

Their classification, as well as the interbedded aquitards, is given in Table 1. 

1.6.4.1. The deep sandstone aquifer complex (Ram-Zarqua-Kurnub) 

This aquifer system includes the Ram, Zarqua and Kurnub groups. The Ram (Disi) aquifer 

is the deepest aquifer in Jordan und underlies the entire country (Ministry of Water and 

Irrigation, 2004). It consists mainly of sandstone and is not exposed in the catchment area 

(Margane, 2002). Its average thickness is about 1000 m (Ministry of Water and Irrigation, 

2004). The Zarqua and Kurnub aquifers are mainly composed of variegated sandstone 

(Margane, 2002). The Zarqua aquifer can be characterized as a multi-layer bedrock 

aquifer with layers of different permeability and storability (Ministry of Water and 

Irrigation, 2004). The Kurnub aquifer is a fractured rock aquifer. Its thickness decreases 

from northwestern to southeastern Jordan (Ministry of Water and Irrigation, 2004). 

Kurnub and Zarqua aquifer both receive direct and indirect recharge at their outcrops on 

the eastern escarpment of the Jordan Valley and the northern part of the Dead Sea 

(Ministry of Water and Irrigation, 2004). 

1.6.4.2. The Upper Cretaceous carbonate aquifer complex 

This complex consists of an alternating sequence of limestones, dolomites, marl stones 

and chert beds. The total thickness in central Jordan is about 700 m. It can be divided in 

the Lower Ajlun aquitards and aquifers and in the Upper Ajlun A7/B2 aquifer (Ministry of 

Water and Irrigation, 2004). The Lower Ajlun contains different aquifers, while some of 

them (A1/2, A4) are mainly of local importance (Ministry of Water and Irrigation, 2004). 

Within this study two springs, Baqquriah in Wadi Shueib and Tujabyl in Wadi Kafrein, 

emerge from the A1/2 aquifer (Hahne, 2008; AlKhoury, 2011). All wells in Wadis Shueib 

extract groundwater only from these two aquifers as well (Riepl, 2012).  
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Figure 9: Outcrops of the main aquifer systems of Jordan (Ministry of Water and Irrigation, 2004) 
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The uppermost unit of the Ajlun Group (A7) and the lower part of the Belqa Group (B2) 

are considered as one hydrogeological unit. Due to multiple cracks and faults, both aquifer 

systems are interconnected and therefore named the Wadi Sir Limestone aquifer 

(A7/B2). It forms the most important aquifer for all of Jordan because of its vast extent 

and its relatively high permeability (Margane, 2002). Within the investigated area of Wadi 

Shueib and Kafrein, this aquifer complex is of major importance, as a great share of the 

local drinking water supply, is abstracted from it by wells or drained by springs (Azzraqu, 

Hazzir, Shoreia) (Hahne, 2008). The natural groundwater replenishment takes place at 

the outcrops of this group along the escarpment and in the Jordan highlands (Ministry of 

Water and Irrigation, 2004). 

1.6.4.3. The shallow aquifer complex (Tertiary - Quaternary) 

This aquifer system includes the B3 aquitard, the B4/5 aquifer, the Basalt aquifer and 

alluvial deposits. The B3 aquitard overlies the A7/B2 aquifer. It has a low permeability 

and forms a confining layer to the A7/B2 aquifer and B4/5 aquifer and is therefore 

regarded as an aquitard (Margane, 2002). The B4/5 aquifer consists of the Umm Rijam 

and the Wadi Shallala Formation. The Basalt aquifer is mainly outcropping in the eastern 

plateau. Both were not present in the investigated areas (Ministry of Water and Irrigation, 

2004). 

The groundwater in the shallow LJV aquifer is mainly found in the Quaternary deposits 

and is replenished by flood waters originating from the highlands. The deposition 

environment with decreasing gradients from the mountain foothills to the Jordan River 

course led to rapidly declining permeability towards the Jordan River. Therefore, 

infiltrating water at the foothills flows very slowly towards the Jordan River (Salameh, 

2001). Freshwater is only present in the uppermost layers (gravel, sand, limestone and 

fluviatile deposits) as groundwater becomes salty when it comes into contact with the salt 

enriched deposits of the ancestors of the DS. They mostly inter-finger with the salty 

deposits and are therefore not extensive. Lens type groundwater bodies are also present 

in the alluvial fans of the side wadis (Salameh, 2001). Many wells in the Jordan Valley are 

slightly brackish with EC > 1,500 µS/cm. Groundwater salinity in the alluvial aquifers 

varies widely from 500 to 8000 mg/l. Pumping tests have indicated high transmissivities 

in alluvial fans and the Lisan gravel deposits. Low transmissivities have been encountered 

in the Lisan marls (Ministry of Water and Irrigation, 2004). 



 Introduction 

  21 

1.6.5. Hydrochemistry 

Along with the pharmaceutical analyses, hydro-chemical standard parameters were 

collected during all sampling campaigns. A collection of these data was already evaluated 

within the framework of an unpublished bachelor thesis from Huttenlocher in 2012. A 

spatial plot of the data for February 2012 is given in Figure 10. 

The groundwater in the LJV is almost solely used for irrigation. It is dominated by ions 

introduced via the treated wastewater like chloride and sodium. The groundwater 

sampling points show increasing amounts of chloride (EC likewise) from north to south 

and from east to west. This goes along with the increasing import of treated wastewater 

towards the valley floor which is later documented in chapter 2. It reflects the reuse of 

TWW in irrigation and the subsequent percolation towards groundwater. The surface 

water samples taken from King Abdullah Canal (KAC) show this pattern as well. Similar 

observations for the KAC were made also from Alkhoury et al (2010). 

For Wadi Shueib, many of the sampled springs and wells were used to supply the cities 

Salt and Fuheis with drinking water. Full analysis for major ions were performed here on 

30 groundwater samples (6 in 2008 and each 8 for each other sampling campaign). 

Twenty of these samples showed ion balances within a 5 % confidence interval and were 

plotted in a piper diagram (Figure 11). Eight of the residual samples had an error between 

5 % and 10 % and 2 samples had an ion balance error of > 10 %, both were not considered 

within this study. 

The samples from most springs are of Ca-Mg-HCO3-(Cl) water type and are clustered in 

the piper diagram. The water of the Hazzir spring contains more sodium and is classified 

as Ca-Na-Mg-HCO3-Cl type. Water from the Farkha spring is of Ca-Mg-Na-HCO3-Cl type. 

Samples from Yesidia wells can be easily differentiated due to their abundance of sulfate. 

They are classified as Ca-Mg-HCO3-SO4 type water. This corresponds to the lithology 

(compare Figure 18) where all springs originate from As Sir limestone. Only Yesidia well 

is drilled down to the dolomitic limestone of the Hummar Formation. 
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 Figure 10: Hydrochemical and geological map for the LJV and the Wadis Shueib and Kafrein in February 2012 (Huttenlocher, 2012).
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Mean nitrate concentrations range from 9.5 mg/l at Yesidia wells and 26.5 mg/l at 

Azzraqu spring up to between 30 and 40 mg/l at Shoreia spring, Um Attija well and 

Baqquriah spring (Table 11). Highest mean concentrations were found at Hazzir spring 

(53.0 mg/l) and Farkha spring (60.9 mg/l). Those values were reflected in a similar order 

by mean chloride concentrations and EC measurements. 

 

Figure 11: Piper diagram for groundwater samples from 2008 until 2012 with a charge balance error < 5 %. 

The water sources in Wadi Shueib are known to be subject of groundwater pollution since 

several years (Werz, 2006, Al-Kharabsheh et al., 2013, Margane et al. 2009). This results 

from the urban areas which are located in the upper parts of the wadi on top of the 

vulnerable limestone aquifer. The concentration level of the investigated contaminants 

(nitrate, E. coli) follow the hydrogeological setup, whereas wells inside and springs 

downstream to the city showed the highest rates, indicating the influence of sewage or 

treated wastewater. Several nitrate concentrations (see Figure 10) at springs were in the 

range of 50 mg/l and partly even above the threshold of 50 mg/l in the national drinking 

water standard. However drinking water quality is always maintained by mixing with 

waters with lower nitrate concentrations. Due to the ongoing nitrate and coliform 

contamination, Hazzir spring was disconnected from the supply system in September 

2012. Recent studies delineated the intermitted drinking water supply combined with the 

impact of exfiltrating sewage as the main reason for nitrate changes at Hazzir spring 

(Grimmeisen et al. 2016). 
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2. Sources and Processes Affecting the Spatio-Temporal 

Distribution of Pharmaceuticals and X-ray Contrast Media in the 

Water Resources of the Lower Jordan Valley, Jordan 

 

Reproduced from: Zemann M., Wolf L., Pöschko A., Schmidt N., Sawarieh A., Seder N., Tiehm 

A., Hötzl H., Goldscheider N. (2014): Sources and processes affecting the spatio-temporal 

distribution of pharmaceuticals and X-ray contrast media in the water resources of the 

Lower Jordan Valley, Jordan. Science of the Total Environment 488-489, 100-114, doi: 

10.1016/j.scitotenv.2014.04.063. The final publication is available at 

www.sciencedirect.com. 

 

Abstract: The closed basin of the Lower Jordan Valley with the Dead Sea as final sink 

features high evapotranspiration rates and almost complete reuse of treated wastewater 

for irrigation farming. This study focuses on the water transfer schemes and the presence, 

spreading, and potential accumulation of pharmaceutical residues in the local water 

resources based on findings of a five-year monitoring program. Overall 16 

pharmaceuticals and 9 iodinated X-ray contrast media were monitored in groundwater, 

surface water, and treated wastewater. A total of 95 samples were taken to cover all 

geographical settings and flow paths from origin (wastewater) to target (groundwater). 

Nine substances were detected in groundwater, with concentrations ranging between 

11 ng/L and 33,000 ng/L. Sometimes, detection rates were higher than in comparable 

studies: Diatrizoic acid 75 %, iopamidol 42 %, iopromide 19 %, iomeprol 11 %, 

carbamazepine and iohexol 8 %, ibuprofen 6 %, fenofibrate and iothalamic acid 3 %. 

Concentrations in groundwater generally increase from north to south depending on the 

application of treated wastewater for irrigation. Almost all substances occurred most 

frequently and with highest concentrations in treated wastewater, followed by surface 

water and groundwater. As exception, diatrizoic acid was found more frequently in 

groundwater than in treated wastewater, with concentrations being similar. This 

indicates the persistence of diatrizoic acid with long residence times in local groundwater 

systems, but may also reflect changing prescription patterns, which would be in 

accordance with increasing iopamidol findings by surveys at local hospitals. Trend 

http://dx.doi.org/10.1016/j.scitotenv.2014.04.063
http://www.sciencedirect.com/
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analyses confirm this finding and indicate a high probability of increasing iopamidol 

concentrations, while other substances did not reveal any trends. However, no proof of 

evaporative enrichment could be found. The high spatial and temporal variability of the 

concentrations measured calls for further systematic studies to assess the long-term 

evolution of organic trace substances in this reuse setting. 

 

2.1. Introduction 

Pharmaceutical residues and metabolites were detected in all aquatic compartments in 

the last two decades. Their presence in aquatic environments worldwide as well as their 

degradation under variable conditions in laboratory studies and wastewater treatment 

plants (WWTP) have been subjects of many studies so far. Extensive environmental 

screenings were conducted on groundwater (Sacher et al., 2001; Barnes et al., 2008; Loos 

et al., 2010; Teijon et al., 2010; Fram and Belitz, 2011; Cabeza et al., 2012; Wolf et al., 

2012), surface water (Nakada et al., 2007; Sacher et al., 2008; Loos et al., 2009), and 

treated wastewater (Drewes et al., 2002; Andreozzi et al., 2003; Zwiener and Frimmel, 

2003; Vieno et al., 2007; Matamoros et al., 2008; Loos et al., 2013; Du et al., 2014). 

Publications so far have focused on substances used in large quantities or on components 

suspected of being persistent (Schulte-Oehlmann et al., 2007), such as X-ray contrast 

media (ICM), which can be detected in surface water, groundwater, and drinking water 

all over the world, with the concentrations ranging from ng/L up to lower µg/L levels 

(Sacher et al., 2001; Cabeza et al., 2012; Wolf et al., 2012). Duirk et al. (2011) even 

detected iopamidol (IPA), iopromide (IPR), iohexol (IHE), and diatrizoic acid (DIA) in 

drinking water sources in the U.S. with IPA detection rates of 60 % and concentrations of 

up to 2700 ng/L. Most ICM behave conservatively in the environment due to their 

hydrophilic character and their structural design (Drewes et al., 2001). They are resistant 

against biochemical degradation processes and do not adsorb to sewage sludge (Kalsch, 

1999; Haiss and Kummerer, 2006). Originally designed as contrast agents for X-ray 

diagnosis, these substances were administered in high doses (up to 200 g/treatment) and 

excreted almost non-metabolized due to their inert character (Perez and Barcelo, 2007). 

Subsequently, the ICM pass WWTPs without any significant reduction, with typical 

effluent concentrations reaching up to the µg/L level (Ternes and Hirsch, 2000; Drewes 

et al., 2002; Carballa et al., 2004; Perez and Barcelo, 2007). Other studies classified 

selected ICM as suitable wastewater tracers, as removal rates for DIA (0 %) and IPA 
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(17 %) are small compared to removal rates between 83 and 89 % for IHE, IPR, and IME 

(Ternes et al., 2007). WWTP effluents are the major entrance pathway, other possible 

sources are leaking sewers, sewage sludge or animal manure (Jekel and Reemtsma, 2006). 

Some techniques like photocatalytic degradation (Doll and Frimmel, 2004), advanced 

oxidation, and reduction processes (Jeong et al., 2010), activated powdered carbon (Lipp 

et al., 2012; Margot et al., 2013) or reverse osmosis (Busetti et al., 2010) seem to be 

suitable tools for ICM removal. Nevertheless, they are not state of the art in (waste-)water 

treatment and might not always be affordable, especially for developing countries. In 

most cases, degradation of pharmaceutical substances generally depends on 

environmental conditions, e.g. redox conditions (Massmann et al., 2008). 

Mean differences in influent and effluent concentrations during wastewater treatment are 

taken from literature, stating 0 % for DIA, -1.1 % for the ICM iothalamic acid (ITA), and 

17.4 % for IPA. IHE (59.6 %), IME (73.5 %), and IPR (78.1 %) showed much higher rates. 

The antiepileptic carbamazepine (CBZ) showed a mean difference of -5.7 %, the analgesic 

ibuprofen (IBU) 74.2 % (Deblonde et al., 2011). 

Although trace concentrations of pharmaceuticals and ICM are measured only, concerns 

exist with regard to long-term exposure to low doses or potential toxic effects of mixtures 

of different substances due to interaction or synergetic effects (Jekel and Reemtsma, 

2006). Their uptake in plants (Herklotz et al., 2010) and aquatic organisms (Nakamura et 

al., 2008; Paterson and Metcalfe, 2008; Meredith-Williams et al., 2012) has already been 

verified. Negative effects of organic trace concentrations on different animals were 

reported, e.g. vulture disease due to the analgesic diclofenac (DIC) in India (Taggart et al., 

2007), Pakistan (Oaks et al., 2004), and Africa (Naidoo et al., 2009), collapse of fish 

population (Kidd et al., 2007) or changes in the social behavior of European perch (Perca 

fluviatilis) due to psychotropic drugs (Brodin et al., 2013). The increased formation of 

genotoxic disinfection byproducts in chlorinated drinking water in the presence of X-ray 

contrast media (ICM) was found (Duirk et al., 2011). 

For the Lower Jordan Valley (LJV), the occurrence of several organic trace substances, 

including pesticides, pharmaceuticals, and ICM, in different water sources was described 

previously by Tiehm et al. (2012), Tiehm et al. (2011), and Wolf et al. (2009). The removal 

efficiencies of three local WWTP and the release concentrations of two hospitals in 

Amman were described for four pharmaceuticals by Alahmad and Alawi (2010). 
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Due to the huge amounts of treated wastewater used for irrigation in the LJV (Alfarra, 

2010), a close relationship to the quality of groundwater is assumed, as this is a source 

known to introduce persistent pharmaceuticals into the groundwater (Ternes et al., 2007; 

Siemens et al., 2008; Chávez et al., 2011). A study of irrigation with treated wastewater in 

China revealed increased pharmaceutical concentrations in the soil (Chen et al., 2011). 

Increasing concentrations of the antiepileptic carbamazepine (CBZ) in soils and the 

groundwater underneath caused by irrigation with treated wastewater were also found 

in Tunisia (Fenet et al., 2012). Elevated concentrations of the ICM diatrizoic acid (DIA) in 

groundwater compared to surface water or treated wastewater (Wolf et al., 2009) led to 

the hypothesis of evaporative enrichment of persistent organic micropollutants in this 

area. Other authors observed elevated pharmaceutical concentrations in groundwater 

compared to surface water: A study in Berlin detected higher DIA concentrations in 

groundwater (4 µg/L) than in surface water (2 µg/L) after bank filtration of water from a 

river into which treated wastewater was discharged (Putschew et al., 2000). Monitoring 

the injection of treated wastewater into a confined aquifer close to Barcelona (Spain) 

showed 13.4 % of iopamidol (IPA) (157 ng/L) and 6.9 % of iopromide (IPR) (574 ng/L) 

in groundwater samples, while these substances could not be detected in the raw water 

or the WWTP effluent (Teijon et al., 2010). 

Based on the previous findings, the aim of this study was to investigate groundwater 

quality dynamics of the LJV using pharmaceuticals as pollution indicators and in 

particular different ICM, the antiepileptic CBZ, and the analgesic ibuprofen (IBU). The 

following questions were to be answered: 

 What substances occur in the different water types and which concentration levels 

do they reach? Are they suitable anthropogenic tracers? 

 Are there spatio-temporal trends or characteristic distribution patterns regarding 

concentrations and occurrence? 

 Can trends and distribution patterns be related to the administration or known 

persistence of pharmaceuticals or do findings match with local infrastructures for 

wastewater distribution in irrigated agriculture? 

 Is there any proof of accumulation processes in the groundwater? 
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Figure 12: Main water transfers of the LJV. Annual volumes in million cubic meters (MCM), KAC = King Abdullah 

Canal, figures taken from the Ministry of water and Irrigation (2010) (background map source: ESRI ArcGIS 

basemap). 
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2.2. Materials and methods 

2.2.1. Local introduction 

The LJV is a closed river basin with its deepest point being the Dead Sea (416 m bsl) acting 

as a final sink for all surface water and groundwater flows. Precipitation ranges between 

300 and 400 mm in the northern part, but drops to 100 to 200 mm in the southern part, 

just north of the Dead Sea (Ministry of Water and Irrigation, 2004). The average annual 

temperature ranges between 23 and 28 C°. The climate is classified to be arid to semi-arid 

(Hötzl, 2009). Potential evapotranspiration rates are calculated to reach 2600 mm/a. 

Natural groundwater recharge is low with a minimum annual safe yield of 15 to 20 MCM 

(Ministry of Water and Irrigation, 2004). As almost all water running towards the LJV is 

used in agriculture, irrigation is assumed to be the main source of recharge. To allow for 

extensive agriculture in the LJV despite water scarcity, huge amounts of water are 

transferred to this area (Figure 12). Yet, groundwater levels have been declining since the 

mid 1990s due to pumping and overexploitation of aquifers (Hötzl, 2009). The water level 

of the Dead Sea is dropping with a rate of almost 1 m/a (Salameh and El-Naser, 2000). 

The main share of irrigation water is transferred by the King Abdullah Canal (KAC), 

diverting water from the Yarmouk River, which is then mixed with water from the Sea of 

Galilee according to the peace treaty of 1994. Along the KAC, the water is pumped into 

agricultural development areas at several turnout stations and diverted to the farm units 

for irrigation. Additionally, many farmers operate their (mostly unregistered) private 

wells to supplement the allocated KAC water (Alfarra, 2010). Ponds are used to mix 

groundwater with the KAC share or store water from the KAC for later application. Along 

the flow path down the LJV to Deir Alla, water from several dams is led into the KAC, as a 

result of which its water quality decreases continuously (Alkhoury et al., 2010). These 

dams, in turn, intercept significant amounts of treated wastewater from the highland 

settlements, together with base flow and flash floods, thus introducing water of poorer 

quality into the KAC. The main input of treated wastewater enters halfway down the LJV 

by the King Talal Reservoir (KTR), where the wastewater of the capital Amman (1.9 Mio 

inhabitants, compared to 6.3 Mio inhabitants of Jordan) is impounded after treatment in 

the As Samra WWTP. These transfers are illustrated schematically in Figure 13. 
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Figure 13: Schematic block diagram illustrating all relevant water sources, local distribution processes for 

irrigation, and a simplified geological setting (not to scale). 

Just before the KAC receives the KTR, approximately 45 MCM/a of water are pumped 

towards Amman, where it is treated to reach drinking water quality. After the inflow of 

the KTR into the KAC, the proportion of treated wastewater in the canal ranges between 

50 and 70 % and is classified as “blended water”. At the canal’s end, unused water is 

discharged into the Dead Sea. 

The groundwater in the LJV is found in Quaternary deposits of the Jordan Valley group 

(Figure 13). At the borders of the valley, groundwater flow is directed from the eastern 

and western escarpments towards the Jordan River (Salameh, 2001) and from north to 

south at the bottom of the valley towards the Dead Sea as the lowest point. Due to small 

hydraulic gradients, groundwater movement is very slow (Toll, 2007). 
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2.2.2. Data collection 

2.2.2.1. Sampling campaigns and site selection 

From 2008 to 2012, four water quality sampling campaigns were conducted in the LJV. 

Additionally, a first screening had already been performed in 2007 at some locations. In 

2008, the sample at Tal Mantah WWTP was taken in November, while all other samples 

had been taken in April 2008. Sampling was originally chosen to take place before and at 

the end of the rainy season (November to March), although no seasonal effect was visible 

within this study. For all campaigns, samples were taken within a period of 10 days. In 

total, 95 samples were taken to monitor 25 trace substances (Table 3), including 

16 pharmaceuticals and 9 ICM, as well as major ions and physico-chemical parameters in 

groundwater, surface water, and treated wastewater. The work focused on areas in the 

northern, middle, and southern parts of the LJV (see Figure 14), corresponding to the 

distribution of irrigation water by the Jordan Valley Authority. All water types were 

investigated from origin to target for each area. Samples were always taken from WWTPs, 

the KAC (and KTR in the middle LJV), groundwater and irrigation pools. Groundwater site 

selection was driven mainly by an equal distribution in each area, although the wells were 

not always accessible, as farms are usually fenced and farmers sometimes were not 

willing to provide access. However, there was no particular search for heavily polluted 

sites. Due to the dominating share of KAC water in the pools, they were classified as 

surface water. 

Apart from the wells AN 1025, AN 1026, and Shuna well no.5, which were screened in the 

limestone aquifer, all remaining groundwater samples were taken from the alluvial 

aquifer. Groundwater depths range from 5 – 10 m in the northern and middle parts and 

down to ~ 60 m in the southern part. 
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Figure 14: Location of King Abdullah Canal (KAC), King Talal Reservoir (KTR), and all sampling sites in the LJV. 

Areas featuring irrigated agriculture are marked yellow. 

2.2.2.2. Sampling and analysis 

At each location, grab samples were taken for the analysis of pharmaceuticals and major 

ions. In-situ measurements of electric conductivity, redox, temperature, and oxygen were 

carried out using a WTW Multi 3430 device. Samples for the analysis of pharmaceuticals 

were collected in 1 l, rinsed PE bottles and acidified using 1.5 ml hydrochloric acid (HCl, 

33 %) per liter sample. They were stored refrigerated and dark at 4 to 8°C until dispatch 

by air. The cold chain was always interrupted for some days. 

At the laboratory, extraction was performed within 24 h after arrival. Samples were never 

filtrated, but suspended particles were decanted before extraction. The analyses were 

done using an HPLC–ESI-MS–MS, the method is described in Sacher et al. (2008). Analyses 

were conducted within one week after arrival. The internal quality management at the 
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laboratories included the accuracy of measurement methods and results as well as 

possible matrix effects. Blank values, checking samples, and deuterated standards were 

used for validation during all analyses. The overall measurement inaccuracy for ICM and 

pharmaceuticals is around 30 %. The limit of detection (LOD) was determined in 

accordance with DIN-32645. 

Table 3: Screened substances (and acronyms used in the text) sorted by generic product category 

Analgetics / antiphlogistics X-ray contrast media (ICM) Lipid lowering agents 

Pentoxifylline Diatrizoic acid (DIA) Bezafibrate (BEZ) 

Diclofenac (DIC) Iodipamid Clofibric acid (CFA) 

Ibuprofen (IBU) Iohexol (IHE) Etofibrate 

Indomethacin Iomeprol (IME) Fenofibrate (FFI) 

Naproxen (NAP) Iopamidol (IPA) Fenofobric acid 

Phenacetin Iopromide (IPR) Gemfibrozil (GEM) 

Anti-inflammatory drugs Iotalamic acid (ITA) Antipsychotic drugs 

Fenoprofen Ioxaglic acid (IXA) Diazepam 

Ketoprofen Ioxithalamic acid (IXI) Antiepileptic drugs 

  Carbamazepine (CBZ) 

2.3. Results 

The results for the pharmaceutical substances contained in all groundwater, surface 

water, and treated wastewater samples are listed in Table 4 and SM1. While Table 4 

summarizes the results over the whole sampling period, SM1 gives detailed 

concentrations at selected sampling sites for the most frequently detected substances of 

DIA, IPA, CBZ, IPR, and IHE. 

2.3.1. Detection frequencies 

The substances most frequently found in groundwater (Table 4) of the LJV are the X-ray 

contrast media DIA (in 79 % of all groundwater samples), IPA (49 %), IPR (16 %), and 

IHE (14 %), followed by the antiepileptic CBZ (14 %). The lipid lowering agent FFI, the 

analgesic IBU, and the ICM IME and ITA were found in less than 10 % of the groundwater 

samples. Detection frequency decreased from treated wastewater towards groundwater 

for almost all substances. Only DIA showed lower frequencies in treated wastewater than 

in groundwater samples. Substances found in treated wastewater were usually found in 

the receiving surface water and groundwater body as well. However, BEZ, CFA, DIC, GEM, 
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and NAP were only present in surface water and treated wastewater, but could not be 

detected in any groundwater sample. 

2.3.2. Concentration ranges 

Similar to the detection frequency, the median concentration decreased from treated 

wastewater to groundwater for all substances except DIA (see Table 4). DIA showed 

almost the same concentrations in all water types. IME and IHE reached higher 

concentrations in surface water than in treated wastewater, but showed the smallest 

concentrations in groundwater. Typical concentrations in groundwater ranged between 

10 ng/L and several 100 ng/L for all substances. Typical concentrations in surface water 

were between 100 ng/L and 2000 ng/L. 

Treated wastewater showed the widest range of concentrations, with median 

concentrations ranging from 28 ng/L for IXA up to 6600 ng/L for IPA. Especially surface 

water and treated wastewater concentrations showed a high variability, often featuring 

concentration differences by an order of magnitude for two subsequent samplings at the 

same site. For instance, CBZ concentration in the northern KAC (at KAC-28) rose from 

76 ng/L in March 2011 to 1700 ng/L in September 2011, whereas IPR decreased from 

280,000 ng/L to 2100 ng/L at Es Sir WWTP within the same period. Of all substances, 

highest concentrations were found for the X-ray contrast medium IPA reaching 

36,000 ng/L in groundwater, 78,000 ng/L in surface water, and up to 680,000 ng/L in 

treated wastewater. All these maximum concentrations were detected in the southern 

LJV. 
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Table 4: Concentrations of pharmaceuticals and X-ray contrast media in three water types of the Jordan Valley. 

GW = groundwater, SW = surface water, TWW = treated wastewater. Total number of samples: 95, total number 

of sampling points: 26. Numbers of GW samples: 43, SW: 34, and TWW: 18. Limit of detection (LOD) for ICM is 

10 ng/L in GW and SW and 50 ng/L in TWW. LOD for pharmaceuticals is 20 ng/L in GW and SW and 50 ng/L in 

TWW. Bold: Substance present in GW. 

  
Above limit of 

detection 
Median of positives Maximum concentration Median ratios 

  GW SW TWW GW SW TWW GW SW TWW SW/GW 
TWW/

GW 

  [%] [ng/L] [ng/L] [-] [-] 

P
h

a
rm

a
ce

u
ti

ca
ls

 

Bezafibrate 0 21 56  89 195  390 480   

Carbamazepine 14 71 89 74 800 3500 500 2100 17,000 10.8 47.3 

Clofibric acid 0 9 6  31 150  33 150   

Diazepam 0 3 11  13 404  13 720   

Diclofenac 0 18 28  78 270  160 430   

Etofibrate 0 0 0         

Fenofibrate 2 0 6 74  260 74  260  3.5 

Fenofibric acid 0 0 6   160   160   

Fenoprofen 0 0 0         

Gemfibrozil 0 62 61  230 1200  2100 4800   

Ibuprofen 9 41 72 56 80 250 59 1400 750 1.4 4.5 

Indomethacin 0 0 0         

Ketoprofen 0 0 11   64   64   

Naproxen 0 15 17  71 95  550 240   

Pentoxifylline 0 0 0         

Phenacetin 0 0 0         

X
-r

a
y

 c
o

n
tr

a
st

 m
e

d
ia

 

Diatrizoic acid 79 47 17 120 140 120 940 850 300 1.2 1.0 

Iodipamid 0 0 0         

Iohexol 14 65 61 31 645 270 180 1600 9000 20.8 8.7 

Iomeprol 9 59 50 39 2200 1400 790 6900 360,000 56.4 35.9 

Iopamidol 49 82 94 59 1100 6600 36,000 78,000 680,000 18.6 111.9 

Iopromide 16 65 72 24 650 860 250 4500 280,000 27.1 35.8 

Iotalamic acid 2 6 6 10 21 42 10 23 42 2.1 4.2 

Ioxaglic acid 0 0 6   28   28   

Ioxithalamic acid 0 12 0  19   51    

 

2.3.3. Detection of single substances as indicators of the influence of treated 

wastewater 

As the composition of substances was variable at most sites during this study, the 

respective samples did not always feature the same cluster of pharmaceuticals. Although 

some of the frequently found substances like DIA or IPA were usually present, the total 

spectrum changed. Consequently, the detection rate, i.e. the number of detected 
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substances at each sampling site, was used to indicate the degree of pollution of the water 

source by (treated) wastewater. This method had already been verified by Schaider et al. 

(2014), who correlated substance numbers, pharmaceutical concentrations, boron and 

nitrate concentrations with the extent of unsewered households to identify the 

probability of a polluted well. 

Highest numbers of substances in this study were found in treated wastewater. Of the 25 

screened single substances, six up to eleven were detected. Hence, unpolluted 

groundwater was indicated by zero detected substance. Most groundwater samples 

ranged between one and two detected substances. As shown in Table 5, the number of 

substances detected in groundwater increased from north to south, except for September 

2011, where detection rates in groundwater decreased slightly from north to south. In 

general, increasing detections in groundwater from north to south were accompanied by 

increasing detections in surface water as well. Throughout the period investigated, no 

temporal trend was visible between years or over the whole investigation period. 

Table 5: Total number of detections in groundwater (GW) and surface water (SW) samples for each sampling 
campaign in the sampling areas. No: number of samplings, GW = groundwater, SW = surface water. 

 North JV Middle JV South JV 

 GW no. SW no. GW no. SW no. GW no. SW no. 

2008 April 0 3 0 2 4 3 13 3 12 7 30 4 

2011 March 1 3 1 1 3 2 20 3 6 5 19 3 

2011 September 15 3 6 2 2 2 14 3 10 5 18 3 

2012 February 2 3 11 2 6 2 21 3 19 5 25 3 

Total 18 12 18 7 15 9 68 12 47 22 92 13 

Average 

detection per 

sample 

1.5 2.6 1.7 5.7 2.1 7.1 

2.3.4. Diatrizoic acid (DIA) 

The spatial distribution of DIA concentrations in the LJV is given in Figure 15. DIA is the 

most frequently found substance within this study, reaching detection rates in 

groundwater between 73 % (2008) and 90 % (2012). Only low amounts of DIA were 

found in groundwater in the northern part of the valley, with concentrations between 13 

and 22 ng/L. In this area, DIA could not be detected in the source water of the KAC and 

was found in surface water in 2012 only, when its concentration in an irrigation pool 

reached 140 ng/L. In the middle LJV, high concentrations of DIA ranging between 
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160 ng/L and 490 ng/L were found in all groundwater samples during the investigation 

period from 2008 to 2012. While the corresponding surface water from the KAC showed 

DIA concentrations in March 2011 (140 ng/) only, DIA was present in the KTR with a 

maximum concentration of 850 ng/L. This was the highest DIA concentration in surface 

water throughout this study. The southern part showed medium to high concentrations 

with a maximum contamination of 760 ng/L in groundwater. There, DIA concentrations 

exhibited a broad distribution in groundwater. Just one negative sample was found in 

2008. DIA was detected in all reservoirs and the KAC in September 2011 and February 

2012. In 2008 and March 2011, it was present only at the Kafrein reservoir and the Shueib 

reservoir, respectively. In surface waters, DIA reached medium concentrations of up to 

270 ng/L. The southern WWTPs showed only minor DIA concentrations with 110 ng/L in 

2008 at As Salt WWTP, 120 ng/L in March 2011 at Fuheis WWTP, and 300 ng/L in 2012 

at Es Sir WWTP. 

DIA was most frequently detected in groundwater (79 % of all samples; LOD: 10 ng/L), 

followed by surface water (47 %; LOD: 10 ng/L) and treated wastewater (17 %; LOD: 

50 ng/L). Even when taking into account the differing LOD of DIA depending on the water 

type, still 61 % of the groundwater samples and 42 % of the surface water samples 

revealed concentrations higher than 50 ng/L. Hence, the sequence of occurrence does not 

change. 

Just two out of eight samples from the WWTPs close to Salt and Fuheis contained DIA. 

This is in strong contrast to the IPA occurrence shown in Figure 16. Median DIA 

concentrations for all three water types were in the same order of magnitude, ranging 

from 55 to 226 ng/L in groundwater, 26 to 280 ng/L in surface water, and 110 to 

300 ng/L in treated wastewater throughout the investigation period. Especially in surface 

water and treated wastewater, variations in DIA concentrations were much smaller than 

for other substances. Additionally, DIA concentrations did not decrease along the flow 

path from the origin to the target, as was observed for all other substances. 
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Figure 15: Spatial distribution of diatrizoic acid concentrations [ng/L] in the Lower Jordan Valley between 2008 and 2012 in different water types. LOD for groundwater and 
surface water: 10 ng/L, for treated wastewater: 50 ng/L. Numbers in the maps are absolute concentrations. 
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2.3.5. Iopamidol 

With regard to the three sampling compartments, IPA showed highest concentrations in 

wastewater and lowest concentrations in groundwater, as it had been expected. The most 

important observations are the increasing IPA detection rate and the generally increasing 

IPA concentrations since the first sampling event in 2008. For the southern part of the 

Jordan Valley, Figure 16 shows that IPA was found in just two groundwater samples each 

taken in 2008 and March 2011. During the subsequent years, however, IPA was present 

in all groundwater samples, with the concentrations increasing at most sampling sites. In 

general, median and mean concentrations increased from 2008 to 2012 (see SM1). The 

maximum concentration in groundwater was found in the southern LJV (36,000 ng/L) in 

2012. In the same area, maximum concentrations were measured in surface water 

(78,000 ng/L) and in treated wastewater (680,000 ng/L at Es Sir WWTP) in September 

2011. Nevertheless, no clear temporal concentration trend is visible due to the high 

variability especially in surface water and treated wastewater (see SM1). 

2.3.6. Carbamazepine and ibuprofen 

During this study, CBZ had a total detection frequency of 14 % for groundwater samples, 

corresponding to six positive detections, four of which were found in the southern LJV 

(2008, 2012) and two in the northern LJV (Sept 2011), including the sample with the 

maximum CBZ concentration found in groundwater (500 ng/L). Detections in surface 

water ranged between 63 % and 75 % for each sampling campaign (compare SM1), with 

a maximum concentration of 2100 ng/L found in the KTR in March 2011. All KAC samples 

in the northern and middle parts were below the LOD. CBZ reached a maximum 

concentration of 17,000 ng/L in treated wastewater at the Tal Mantah WWTP and was 

found in all wastewater samples except for two samples at As Salt WWTP in 2008 and 

2012. 

IBU was found in one groundwater sample in the middle LJV and in three groundwater 

samples in the southern area in 2012, with the maximum concentration reaching 59 ng/L. 

This finding is similar to that in surface water, where positive detections were found in 

samples of the KTR (85 ng/L), middle KAC (58 ng/L), and one pool of the northern LJV in 

2012. WWTPs showed a detection rate of 72 %, with the maximum concentration being 

750 ng/L. This means that the maximum concentration of surface water (1400 ng/L) is 

higher than that of treated wastewater. 
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Figure 16: Spatial distribution of iopamidol concentrations [ng/L] in the Lower Jordan Valley between 2008 and 2012 in different water types. LOD for groundwater and 
surface water: 10 ng/L, for treated wastewater: 50 ng/L. Numbers in the maps are absolute concentrations. 
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Median concentrations values and detection rates decreased from treated wastewater to 

surface water to groundwater (see Table 4 and Table 5). The median relation coefficient 

is 1.4 for surface water to groundwater and 4.5 for treated wastewater to groundwater 

concentrations. 

2.4. Discussion 

2.4.1. Occurrence, frequency, concentrations 

The maximum concentration of IPA in this study is the highest concentration of all 

pharmaceuticals found in groundwater by the studies considered (Table 7) in this context. 

Detection frequencies for IPA and DIA in the Jordan Valley are much higher than in most 

other studies, which is probably caused by climate conditions and wastewater reuse in 

irrigation. Maximum DIA concentrations in groundwater are similar to other studies (e.g. 

Sacher et al., 2001), but still do not reach the values measured in aquifers influenced by 

urban settlements (Wolf et al. 2012). DIA sources other than irrigation seem unlikely, as 

the area is sparsely populated and many farms are uninhabited. The only hospital in the 

LJV is located in South Shuna, whereas highest DIA concentrations were found several km 

northwards. However, single pollution events like infiltrating domestic sewage cannot be 

excluded due to the broad study area. 

Altogether, it must be mentioned that each of the comparative studies (see Table 7) is 

strongly influenced by different site selection and sampling strategies. Except for IPA, 

pharmaceuticals and ICM showed similar concentration ranges (upper ng/L to lower µg/L 

level) in the effluents of wastewater treatment plants as other studies, e.g. Busetti et al. 

(2008), Ternes et al. (2007), Loos et al. (2013), and Wolf et al. (2012). Frequencies and 

maximum concentrations found in groundwater in this study are similar to those found 

in other studies, e.g. for CBZ, IBU, and CFA (see Table 7). 

IBU occurrence and behavior also were in agreement with results of laboratory studies 

(Table 6), according to which IBU was reported to be highly mobile with almost no 

retardation and soil organic matter (SOM) concentrations were low (Rauch-Williams et 

al., 2010; Banzhaf et al., 2012; Hoppe-Jones et al., 2012). High SOM concentrations 

resulted in 100 % retardation during column experiments according to the OECD 

guideline 312 (Oppel et al., 2004). The dependency of retardation on SOM concentration 

was confirmed by Xu et al. (2009). 
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Table 6: Retardation factor, sorption coefficients, elimination rates, and half-lives of ibuprofen (IBU) and carbamazepine (CBZ) found in literature on laboratory studies. b = 
batch, c = column, l = lysimeter, m = microcosm, SOM = soil organic matter, h = high, m = medium, l = low, sl = sludge. 

Author Retardation Sorption coefficient Elimination Half-lives 
Study 
type 

Banzhaf et al. (2012) IBU: < 1.5 | CBZ: 8.5  IBU: 47 % | CBZ: 26 %  c 

Chefetz et al. (2008) 
CBZ: 5.3 - 6.8 (hSOM), 1.6 

- 3.3 (lSOM) 
CBZ: kf = 11.46 - 12.63 (hSOM), 0.87 - 1.21 (lSOM) CBZ: 54 % (hSOM/TWW), 25 % (hSOM/tap)  c 

Drillia et al. (2005)  CBZ: kf = 57 (hSOM), 0.51 (lSOM), 49 (activated sl), 
396 (anaerobic sl). Kd = 37 (hSOM), 0.49 (lSOM) 

  b & l 

Fono et al. (2006)    IBU: 8.6 - 13.8 d m 

Hoppe-Jones et al. 
(2012) 

IBU: 1.0  IBU: 86 - 100 %  c 

Hua et al. (2003)   IBU: 100 %  (c), 96.3 % (segments)  c 

Joss et al. (2006)   IBU:  > 90 % (in MBR) IBU: 0.006 - 0.02 d b 

Kunkel and Radke 
(2008) 

   IBU: 2.5 - 5.1 d m 

Lam et al. (2004)    CBZ: 69.7 - 92.6 d m 

Loffler et al. (2005)  IBU: sorption = 9 - 17 % | CBZ: sorption =  40 % IBU: mineralization = 77 % 
IBU: < 6 d | CBZ: 328 

d 
b 

Maeng et al. (2011)   IBU: 49 - 93 % (c), 94 – 98 % (b), 2 % (abiotic) | CBZ: 0 - 6.7 % 
(c), 0 - 15 % (b) 

 b & c 

Mersmann et al. 
(2002) 

CBZ: 2.8  IBU: 100 % | CBZ: 17 %  b & c 

Muller et al. (2013) CBZ: 1.06 - 1.37   CBZ: 18990 y c 

Onesios and Bouwer 
(2012) 

  IBU: > 99 % (low acetate), > 99 % (high acetate)  c 

Oppel et al. (2004) IBU: 100 % | CBZ: 100 %    c 

Patterson et al. 
(2010) 

CBZ: 12  CBZ: < 1 µg/l and day CBZ: > 100 d c 

Preuß et al. (2001)   
IBU: 60 - 80 % (sand filtration), 0 - 40 % (aerob, anaerob, 

sand, gravel). Lag time  ~ 5 d | CBZ: 20 - 40 % (sand filtration), 
0 - 20 % (areob, anaerob, sand, gravel). Lag time 15 - 17 d 

 c 

Rauch-Williams et al. 
(2010) 

IBU: 1.1 | CBZ: 1.9 
IBU: Kd = 0.03 mL/g (abiotic) | CBZ: Kd = 0.24 

mL/g 
IBU: > 83 % (anoxic),  > 85 % (aerobic) | CBZ: 0 %  c 

Schaffer et al. (2012) 
CBZ: 5.3 (pH 4), 3.6 (pH 

8) 
   c 

Scheytt et al. (2004) IBU: 3.00 | CBZ: 1.84  IBU: 54 % | CBZ: 0 %  c 

Stevens-Garmon et al. 
(2011) 

 IBU: Kd < 30 L/kgss | CBZ: Kd = 36 - 65 L/kgs   b 

Xu et al. (2009)  IBU: 0.27 - 3.42 L/kg  IBU: 0.91 - 31.2 d b 

Yu et al. (2009)  IBU: Kf = 0.1 (sand), 2.1 (mSOM), 14.3 (hSOM). Kd 
= 0.17 (sand), 0.18 (mSOM), 11.3 (hSOM) 

  b 
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In addition, IBU shows high elimination rates under both aerobic and anaerobic 

conditions (Hua et al., 2003; Joss et al., 2006; Rauch-Williams et al., 2010; Maeng et al., 

2011; Hoppe-Jones et al., 2012; Onesios and Bouwer, 2012). Calculated half-lives are in 

the range of several days to up to two weeks (Loffler et al., 2005; Fono et al., 2006; Joss et 

al., 2006; Kunkel and Radke, 2008). In combination, these attributes indicate a negligible 

potential for IBU as an environmentally relevant substance. Subsequently, there have 

been only minor detections of IBU in different groundwater monitoring studies (compare 

Table 7) as well as in this study (see supplementary materials (SM) 1). Removal 

efficiencies above 70 % for IBU were reported for biofilters, sand filters, different 

constructed wetlands, and conventional wastewater treatment (Ternes, 1998; Llorens et 

al., 2009; Matamoros et al., 2009; Zorita et al., 2009; Gros et al., 2010; Bueno et al., 2012). 

A general increase in biological degradation with the sludge retention times (e.g. DIC, 

bezafibrate (BEZ), IBU) was found in lab-scale pilot plants. (Kreuzinger et al., 2004). 

CBZ, by contrast, was present in higher concentrations and more frequently in all water 

types (see SM 1). According to laboratory studies (see Table 6), CBZ was more retarded 

than IBU. Retardation and sorption coefficients in these laboratory studies were closely 

connected to the SOM. A high SOM led to high retardation and sorption, while low 

amounts resulted in faster transport with minor sorption (Drillia et al., 2005; Chefetz et 

al., 2008; Yu et al., 2009; Muller et al., 2013). Elimination rates during different laboratory 

studies usually were very small (Preuß et al., 2001; Scheytt et al., 2004; Rauch-Williams 

et al., 2010; Maeng et al., 2011). Higher removal rates can be attributed to sorption 

processes (Chefetz et al., 2008). However, biodegradation rates between 17 % 

(Mersmann et al., 2002) and 26 % (Banzhaf et al., 2012) were observed in column 

experiments. Calculated half-lives ranged from 70 to 100 days (Lam et al., 2004; Patterson 

et al., 2010) up to years (Loffler et al., 2005; Muller et al., 2013). The poor biodegradability, 

combined with the SOM-bound sorption rates, indicated the potential for high 

environmental residence times. Although sorption of CBZ by activated sludge seemed to 

be high in batch experiments (Drillia et al., 2005; Stevens-Garmon et al., 2011), removal 

rates by WWTP all over the world are poor to non-existent (Castiglioni et al., 2006; Ternes 

et al., 2007; Vieno et al., 2007; Arye et al., 2011; Bueno et al., 2012). Subsequently, CBZ 

was frequently present in groundwater (see Table 7) and may be considered a persistent 

substance with a high potential for groundwater pollution. 
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Almost all pharmaceutical and ICM concentrations decreased from treated wastewater to 

surface water to groundwater, following the flow path from origin to target. In accordance 

with other studies, the pharmaceuticals are subject to dilution processes (Heberer et al., 

2004; Arye et al., 2011), retardation (Chefetz et al., 2008), sorption (Ternes et al., 2002; 

Scheytt et al., 2005; Xu et al., 2009) or biodegradation processes (Preuß et al., 2001; Xu et 

al., 2009; Onesios and Bouwer, 2012). 

2.4.2. Spatial distribution 

Rising pharmaceutical detection frequencies from the north to the south of the LJV were 

observed for every sampling campaign except that of September 2011. Surface water 

concentrations also increased from the north to the middle, e.g. for CBZ or IPA, and 

decreased slightly (CBZ) or even increased further (IPA) towards the southern LJV. This 

corresponds to the geographical setting of Jordanian drinking water and wastewater 

infrastructure facilities and in particular to the increasing influence and import of treated 

wastewater and the decreasing availability of fresh water along the LJV from the north to 

the south (see Figure 12). The increased values in September 2011 may be explained by 

seasonal effects, as all other campaigns were conducted during or short after the rainy 

season, therefore featuring higher dilution rates of the irrigation water. However, an 

individual pollution event cannot be excluded, as the input of pharmaceuticals into the 

aquatic environment is controlled by human activity and may occur via untreated 

wastewater, treated wastewater or seepage from landfills receiving pharmaceuticals. In 

the north, the feeding streams into the KAC as the main source of irrigation water are 

fresh waters from the Yarmouk River and the Sea of Galilee. Further south, there is a 

widespread and unmonitored input of leaky or missing sewage systems as well as a large 

number of cesspits of smaller settlements. Nevertheless, the major input comes from the 

capital Amman. At Deir Alla, water from the KTR, which is catching the effluent of 

Amman’s largest WWTP, As Samra, is led into the KAC. From here on, an increased 

occurrence of pharmaceuticals in groundwater reflects the influence of wastewater on the 

aquatic environment. Therefore, the occurrence of pharmaceuticals in the LJV follows a 

distinct geographical pattern induced by anthropogenic modifications of the water cycle. 
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Table 7: Comparison of the pharmaceuticals and ICM detection frequencies and maximum concentrations in groundwater given by different screening studies. Absolute 
numbers are given in brackets. TWW = treated wastewater, GW = groundwater, LOD = limit of detection 

Study This study  
Wolf et al. 

(2012) 

Sacher et al. 

(2001) 

Teijon et al. 

(2010) 

Hanke et al. 

(2007) 

Ternes and 

Hirsch (2000) 

Focazio et al. 

(2008) 

Loos et al. 

(2010) 

Environment setting 

and location 

TWW 

application in 

agriculture, 

Jordan Valley 

(Jordan) 

Leaky sewers, GW 

influenced by urban 

settlements, Rastatt 

(Germany) 

GW monitoring, 

Baden-

Württemberg 

(Germany) 

TWW injection, 

Llobregat delta 

(Spain) 

National GW 

monitoring 

(Switzerland) 

Infiltration of 

TWW-affected 

rivers, Hessian 

Ried (Germany) 

National GW (US) 
EU-wide survey on 

GW 

Substances [%] [ng/L] [%] [ng/L] [%] [ng/L] [%] [ng/L] [%] [ng/L] [%] [ng/L] [%] [ng/L] [%] [ng/L] 

Bezafibrate (BEZ) 0  8 19 0          0  

Carbamazepine (CBZ) 14 500 33 35 13 900 24.5 118 19 45   21.6 190 42.1 390 

Clofibric acid (CFA) 0  4 1350 0    2 41       

Diclofenac (DIC) 0  2 129 3.8 590 3.7 477       4.9 24 

Fenofibrate (FFI) 2 74 0  0            

Gemfibrozil (GEM) 0  2 23 1 14 11.3 574     0  0  

Ibuprofen (IBU) 9 59 2 104 0  1.9 185     1.4 270 6.7 395 

Indomethacin 0  0  1 22           

Naproxen (NAP) 0    0  3.8 263       0  

Diatrizoic acid (DIA) 79 940 27 3 4240 20 1100   28 92 80 (10) 170     

Iohexol (IHE) 14 180 4 1 187             

Iomeprol (IME) 9 790 2 3 1655 0            

Iopamidol (IPA) 49 36,000 4 2 79 5 300 13.4 396 17 130 76 2400     

Iopromide (IPR) 16 250 2 1 39 0  6.9 687   47 210     

Iotalamic acid (ITA) 2 10 7 3 238       19 (16) 49     

Ioxithalamic acid (IXI) 0  9 0 204       7 (14) 10     

Number of samples 43 
51 (0 = 113, 1 = 114, 

2 = 115, 3 = 165) 
105 77 47 

17 (differing 

number) 
74 164 

LOD [ng/L] 20 (10 for ICM) 10 (25 for IME) 10 10 10 10 
11 (15 for GEM,  

18 for IBU) 
0.2 (0.5 for CBZ) 
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2.4.3. Spatio-temporal relationships 

The highest concentrations in groundwater were detected for IPA in February 2012 at the 

wells AN 1025 (36 µg/L) and AN 1026 (33 µg/L) which are located about 350 m 

downstream of the Kafrein reservoir. These high concentrations can be explained by a 

medical center which is located in a suburb of Amman at the upper edge of Wadi Kafrein. 

Wastewater from this center is treated at Es Sir WWTP and subsequently released into 

the Kafrein reservoir. Another possible explanation might be the fact that the two biggest 

pharmaceutical companies pass their wastewater on to El Sir WWTP (Alahmad and Alawi, 

2010). The hydraulic connection of these two wells to the reservoir has already been 

confirmed by a tracer test (Lenz, 1999). The high IPA concentrations found by this study 

in 2012 also correspond to the maximum concentrations found in surface water at the 

Kafrein reservoir and the treated wastewater concentrations at Es Sir WWTP in 

September 2011. Both wells were found to respond quickly to increasing concentrations 

in the Kafrein reservoir despite their depth of approximately 100 m. Additionally, they 

provide evidence of the spatial and temporal relationship between surface water and 

groundwater at this site. 

2.4.4. Trend analyses 

In some parts of the LJV, irrigation triggers a local reuse cycle of groundwater. Local 

groundwater from shallow aquifer systems and blended wastewater, including a relevant 

load of pharmaceuticals, from the KAC are used for irrigation. Most of the irrigation water 

evaporates before reaching deeper parts of the soil, leaving behind dissolved substances, 

including salts and pharmaceuticals which can precipitate in the soil. The surplus 

irrigation water seeps down towards the groundwater table, along with persistent trace 

organics. This groundwater is then pumped up again for irrigation. The water is exposed 

to evaporation in every cycle. The process was described e.g. by Milnes and Perrochet 

(2006). Thus, persistent substances like ICM can leave this cycle only via precipitation, 

plant uptake or evaporation. The two latter seem implausible, as plant uptake is only very 

small (Herklotz et al., 2010) and volatilization is assumed negligible for most ICMs (Joss 

et al., 2006). Due to the degree of irrigation, any water-soluble precipitated substance is 

expected to resolve and reach the groundwater with a delay only. Similar to salinity, which 

has already been verified for the LJV by Ammari et al. (2013), the concentrations of 

persistent substances are expected to increase over time under the given local conditions. 

These are: 
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 High temperatures and high evaporation rates, combined with hardly any 

precipitation. 

 A substantial, long-term input of treated wastewater used for irrigated agriculture. 

 Low natural groundwater recharge which is mainly supplemented by irrigation 

water. 

 All surface flow remains in the LJV, with the Dead Sea being the deepest point and 

acting as a final sink. 

However, there will be some degradation over time. Consequently, accumulation will not 

be as rapid as for chloride. 

Considering all data collected in the Jordan Valley, the increasing detection frequencies 

and mean concentrations e.g. for IPA already exhibit an upward trend. Due to the absence 

of normal distributed data, linear regression and correlation coefficients could not be 

calculated. Performing the Mann-Kendall test (rank correlation, inclusive of values < LOD 

which were set to 0.5*LOD) for median IPA concentrations for all surface water samples 

proved an increasing trend hypothesis with a significance level of 4.2 %. The significance 

level for groundwater and as well for mean concentrations in both water types reached 

at least 16.7 %. DIA, on the other hand, resulted in a significance level of 37.5 % for the 

mean groundwater concentrations, while median groundwater concentrations showed a 

37.5 % level for decreasing concentrations. Since those numbers are much higher than 

the usually applicable level of 5 %, most of the trend assumptions do not seem to be 

sustainable. Similar results are calculated for CBZ or IME, but do not show any clear trend 

due to the huge data gaps. Results of the Mann-Kendall test for individual sampling sites 

(S-values) are listed in SM 2. Although there generally is a higher probability of upward 

trends in IPA than in DIA concentrations regarding the S-values, only surface water 

coming from the KTR is clearly fulfilling the 5 % significance requirement which indicates 

an increasing trend in IPA concentrations. The KTR, however, features one of the largest 

mass flux in the area, bringing approx. 80 MCM blended water down to the LJV per year. 

Therefore, it has a major impact on the irrigation water quality. 

However, the lowest acceptable number to perform the Mann-Kendall test is four. This 

also was the minimum number used in this study to calculate the mean and median values 

at each sampling site. Additionally, a minimum of 50 % measurements > LOD is 

recommended. In groundwater, this requirement was met for DIA and IPA only. Rank 
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correlations for constant values included a 30 % measurement inaccuracy to consider 

errors of the laboratory. 

Trend analyses did not confirm any accumulation, as either no trend or both increasing 

trends in groundwater and surface water were detected. Any kind of enrichment would 

postulate increasing groundwater concentrations and corresponding stable 

concentrations in surface water. However, accumulation might still be a relevant process 

under the given conditions. 

2.4.5. Comparing the occurrences of DIA and IPA 

Both DIA and IPA are present in the groundwater of the LJV with similar median 

concentration ranges (compare SM1). The input of IPA corresponds well to the known 

sources of treated wastewater that enters the LJV via KTR, KAC, and adjacent reservoirs. 

Although not much DIA originates from the monitored WWTPs, concentrations at Kafrein 

and in the Shueib reservoir suggest at least one unmonitored input, maybe from 

unconnected households. Further downstream, both substances were present in the 

surface water of KAC and KTR. The mean and median IPA concentrations were about one 

order of magnitude higher than those of DIA. As already mentioned, IPA concentrations 

decreased from treated wastewater to surface water to groundwater, while DIA 

concentrations stayed the same in all water types. 

The similar concentrations of DIA and IPA in groundwater and the different 

concentrations in the source water might be caused by a number of reasons. The 

possibility of accumulation was discussed above and ruled out, which is why it will not be 

considered any further. Firstly, the substances may be subject to different environmental 

behaviors, i.e. sorption capacity and biodegradation, and secondly, IPA and DIA may be 

subject to differing application and utilization patterns of the ICM. 

Both substances are reported to be very stable. Their low sorption and high resistance to 

biodegradation during wastewater treatment was reported many times, showing poor to 

no degradation from influent to effluent (Ternes and Hirsch, 2000; Ternes et al., 2007; 

Margot et al., 2013). Batch studies and column tests confirmed the resistance of DIA 

against biodegradation in a simulated WWTP (Kalsch, 1999; Hua et al., 2003; Haiss and 

Kummerer, 2006) and poor sorption rates on activated sludge (Kalsch, 1999). A kow of -

2.5 for IPA indicates a similar poor sorption behavior (Hebig et al., 2014). Degradation 

rate constants in a conventional activated sludge simulation showed a kbiol of < 0.1 day-1 
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for DIA and < 0.36 day-1 for IPA (Joss et al., 2006). Aerobic soil-water batch systems 

showed no biotransformation of DIA, while IPA was transformed with a kbiol of 0.27 – 

0.29 day-1 at 20 to 22°C and 2.48 day-1 at 30°C. Total concentrations of iopamidol and its 

transformation products were found to be 80 to 120 % of the initial concentration after 

160 days (Kormos et al., 2010). Infiltration of river water led to a decrease of IPA from 

0.5 nmol/L to 0.1 nmol/L after bank filtration. In contrast to three other ICM investigated, 

however, no transformation products of IPA could be detected in groundwater (Kormos 

et al., 2011). 

These results reveal a high environmental persistence especially of DIA and IPA. Some 

authors presume an adaptation of degrading organisms during the tests, as different test 

setups led to different metabolites (Hua et al., 2003; Haiss and Kummerer, 2006). Hence, 

the degradability found might not be the same for all substances. 

2.4.6. Shifting application patterns 

The high persistence of DIA and IPA therefore suggests different application and 

utilization patterns of the respective ICM. A very high number of adverse reactions after 

prescriptions of so-called “ionic” or high osmolar ICM like DIA compared to non-ionic (low 

osmolar) ICM (e.g. IME, IPA) was found in one application study (Katayama et al., 1990). 

This led to the prohibition of DIA for intravascular administration in Germany in 2000 

(Arztneimittelkommission der deutschen Ärzteschaft, 2000). Nevertheless, DIA might 

still be used for other than intravascular applications (Internationale Kommission zum 

Schutz des Rheins, 2010), as it is still present in wastewater in Jordan and Germany, but 

at lower concentrations than in the 1990s. In this context, Wolf et al. (2012) could not 

identify significant temporal trends of DIA concentrations in groundwater between 2002 

and 2008 in the city of Rastatt (Germany). 

According to a Jordan University Hospital (JUH) official, the prescription at JUH changed 

in the period from 1990 to 1994 (Table 8) from high to low osmolar contrast media. The 

National Jordan Drug Formulary (Jordan Food and Drug Administration, 2006) 

recommends to change from high osmolar to low osmolar ICM to reduce adverse effects 

caused by osmolality. 
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Table 8: ICM used in the Jordanian University Hospital (Amman) before and after 1994. HOCM = high osmolar 

contrast media, LOCM = low osmolar contrast media. 

HOCM/ ionic LOCM/ non-ionic 

used before1994 used since 1994 

Agent Brand name Agent Brand name 

Diatrizoic acid Urografin/Renografin Iopromide Ultravist 

Metrizoate Isopaque/Trios Iohexol Omnipaque 

Iodamide Uromiro Iopamidol Iopamiro 

Iocarmate Dimer-X/Meglumine 

Iocarmate 

Iodixanol Visipaque 

 

Three of the four non-ionic contrast agents listed were detected by the sampling 

campaigns. The remaining agent iodixanol was not part of the analytical program. 

Consequently, it is assumed that the use of DIA as an ICM was significantly reduced within 

the last 15 years. Nevertheless, it is still present in groundwater of the LJV, which is 

probably due to the long residence time of the groundwater which acts as a memory of 

past contamination events. Similar mechanisms have also been reported for CBZ and the 

anticonvulsant primidone. They were prescribed at different times in Berlin, Germany, 

and applied as groundwater age markers recently (Scheytt, 2008). IPA concentrations in 

treated wastewater, surface water, and groundwater reflect the increasing application of 

IPA in the past decades. 

2.5. Conclusions 

Within the framework of the study reported here, pharmaceuticals and X-ray contrast 

media were screened in the water resources of the Lower Jordan Valley to assess the 

degree of groundwater pollution caused by irrigation farming with mixtures of treated 

wastewater and fresh water. Overall, the following conclusions can be drawn: 

 Pharmaceutical residues, especially X-ray contrast media, are spread widely in all 

water types of the Jordan Valley (groundwater, surface water, treated 

wastewater). This indicates that the local water resources are strongly affected by 

anthropogenic influences. 

 Increasing concentrations and positive detections of pharmaceutical residues 

along the flow path of the King Abdullah Canal and the King Talal Reservoir effluent 
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reflect the environmental impact of the discharge of Amman`s biggest wastewater 

treatment plant As Samra. 

 Median iopamidol concentrations in treated wastewater exceed those in 

groundwater by two orders of magnitude. Diatrizoic acid reaches similar 

concentrations in groundwater, surface water, and treated wastewater. Often, 

concentrations in groundwater are even higher than in treated wastewater. These 

clearly different environmental distributions of non-ionic and ionic iodinated X-

ray contrast media might be caused either by the more recent introduction of the 

non-ionic X-ray contrast medium iopamidol or by the lower environmental 

persistence of iopamidol. Considering both, the similar environmental persistence 

reported in current literature and the reported changes in prescription practice in 

Jordan, the latter is suggested to be responsible for the observed patterns. 

 The data obtained suggest ongoing groundwater quality deterioration with time, 

but the variability and rising concentrations in surface water do not provide any 

proof of evaporative accumulation processes. 

Due to the shifting usage patterns of ionic and non-ionic X-ray contrast media, diatrizoic 

acid and iopamidol might be used as age markers in groundwater. Also spatio-temporal 

relationships at single sampling sites prove the suitability of X-ray contrast media as 

groundwater tracers. Furthermore, a long-term monitoring program and systematic 

studies are suggested to assess the long-term evolution and potential enrichment of 

persistent trace organics in groundwater of the Lower Jordan Valley. 
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SM 1: Concentrations of the five substances DIA, IPA, CBZ, IPR and IBU at specific locations from 2008 to 20112. GW: groundwater, SW: surface water, TWW: treated wastewater. 

Limit of detection (LOD) for pharmaceuticals in GW and SW: 20 ng/L, for ICM: 10 ng/L. LOD for TWW: 50 ng/L. Mean concentrations were calculated using 0.5*LOD for results 

<LOD.  

  Diatrizoic acid Iopamidol Carbamazepine Iopromide Ibuprofen 

Sampling sites 
Water 

type 

2008 
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2011 
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2011 

Sep 

2012 

Feb 

2008 

Apr 

2011 
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2011 
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2011 

Mar 

2011 
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2011 
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2011 
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2012 
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2008 
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2011 
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2011 
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2012 
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  [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] 

JVN 1 GW < LOD 22 13 18 < LOD < LOD 910 39 < LOD < LOD 500 < LOD < LOD < LOD 250 < LOD < LOD < LOD < LOD < LOD 

JVN 2 GW < LOD < LOD < LOD < LOD < LOD < LOD 64 < LOD < LOD < LOD 64 < LOD < LOD < LOD < LOD 11 < LOD < LOD < LOD < LOD 

Sp 027  -22 GW 250 290 190 490 38 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 

Sp 026 - 22 GW 370 350 160 380 < LOD 14 < LOD 730 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 54 

AB 1110 GW 110 140 n.s. n.s. < LOD < LOD n.s. n.s. < LOD < LOD n.s. n.s. < LOD < LOD n.s. n.s. < LOD < LOD n.s. n.s. 

Shuna no.5 GW 66 330 100 580 44 < LOD 19 37 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 59 

FU 192 DA 28 GW 130 11 17 37 < LOD < LOD 16 87 < LOD < LOD < LOD 78 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 

We 1 - 28 GW 130 710 360 760 < LOD 23 25 13 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 

AN 1025 GW 88 n.s. 55 71 72 n.s. 1400 36,000 < LOD n.s. < LOD 83 < LOD n.s. < LOD 18 < LOD n.s. < LOD 58 

AN 1026 GW 86 97 45 54 < LOD 4400 1300 33,000 34 < LOD < LOD 70 70 96 < LOD 24 < LOD < LOD < LOD 54 

JVN 3 -- FU 40 Da 13 GW < LOD < LOD 16 < LOD < LOD < LOD 59 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 14 < LOD < LOD < LOD < LOD 

JVN2 pool SW < LOD n.s. < LOD 140 < LOD n.s. 990 1200 < LOD n.s. 470 810 < LOD n.s. 270 220 < LOD n.s. < LOD 74 

T.O. 33 (KAC) SW < LOD < LOD < LOD < LOD < LOD 13 12 78 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 

T.O. 65 (KAC) SW < LOD 140 < LOD < LOD < LOD 18 12 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 58 

KTR SW < LOD 850 75 350 590 1000 1800 6000 760 2100 1500 1200 600 880 640 720 1400 < LOD < LOD 85 

IW 22 pool SW < LOD 290 < LOD 290 4200 970 2200 3500 1000 1900 1300 1700 1400 810 550 980 53 65 < LOD 130 

KAC 28 SW < LOD < LOD 98 260 3800 57 2100 7800 990 76 1700 1400 1400 23 800 680 74 < LOD < LOD 120 

Shueib Reservoir SW < LOD 270 27 220 72 1600 700 1000 210 1200 410 340 < LOD 790 19 22 32 < LOD < LOD 430 

Kafrein Reservoir SW 26 < LOD 100 120 < LOD 8000 78,000 17,000 88 170 470 73 74 4500 130 500 < LOD < LOD < LOD 250 

Tal Mantah WWTP TWW < LOD < LOD < LOD < LOD 33,000 36 1300 6600 10,000 17,000 4300 2800 < LOD 1700 51 < LOD < LOD 95 280 340 

Es Sir WWTP TWW < LOD < LOD < LOD 300 2300 160,000 680,000 600,000 1800 3700 3400 200 2200 280,000 2100 24,000 < LOD 130 180 380 

As Salt WWTP TWW 110 < LOD < LOD < LOD 1600 810 6900 13,000 < LOD 82 2800 < LOD 190 1900 120 260 750 < LOD 200 290 

Fuheis WWTP TWW < LOD 120 < LOD < LOD 2200 15,000 15,000 6600 3600 6900 7900 3800 860 < LOD 120 16 < LOD < LOD 110 280 

Statistical numbers                      

Mean GW [ng/L] 113 196 96 240 18 447 380 6992            29 

Mean SW [ng/L] 8 224 40 174 1085 1665 10,727 4573         200 18  145 

Mean TWW [ng/L] 46 49 25 94 9775 43,962 175,800 156,550 3856 6921 4600 1706 819 70906 598 6075 195 61 193 323 

Detections GW [%] 73 80 90 90 27 30 80 70 9 0 20 30 9 10 10 40 0 0 0 40 

Detections SW [%] 13 57 50 75 50 100 100 88 63 71 75 75 50 71 75 75 50 14 0 88 

Detections TWW [%] 25 25 0 25 100 100 100 100 75 100 100 75 75 75 100 75 25 50 100 100 

Median of positive detects in GW [ng/L] 120 215 55 226 44 23 62 87 34  282 78 70 96 250 16    56 

Median of positive detects in SW [ng/L] 26 280 87 240 2195 970 1395 3500 760 1200 1300 1200 1000 810 550 680 64 65  125 

Median of positive detects in TWW [ng/L] 110 120  300 2250 7905 10,950 9800 3600 5300 3850 2800 860 1900 120 260 750 113 190 315 

Ratio of Median SW/GW [-] 0.2 1.3 1.6 1.1 50 42 23 40 22  5 15 14 8 2 43    2 

Ratio of Median TWW/GW [-] 0.92 0.56 0.00 1.33 51 344 178 113 106  14 36 12 20 0.48 16    6 
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SM 2: Accumulated numbers of different S-values for all individual sampling sites for diatrizoic acid (DIA) and 

iopamidol (IPA) and their corresponding significance level. Positive S-values indicate increasing trends, negative S- 

values indicate decreasing trends. 

Significance level S-value Number of groundwater sites Number of surface water sites 

[%] [-] DIA IPA DIA IPA 

4,20 6 0 0 0 1 

 5 0 1 1 1 

16,70 4 1 1 0 1 

 3 2 2 3 0 

37,50 2 1 0 2 2 

 1 1 4 0 1 

62,50 0 2 0 1 0 

 -1 1 0 1 1 

37,50 -2 0 0 0 0 

 -3 0 1 0 0 

 -4 1    

total S  8 16 14 19 
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3. Tracking Changing X-ray Contrast Media Application Practice to 

an Urban Influenced Karst Aquifer in the Wadi Shueib, Jordan 

 

Reproduced from: Zemann M., Wolf L., Grimmeisen F., Tiehm A., Klinger J., Hötzl H., 

Goldscheider N. (2015): Tracking Changing X-ray Contrast Media Application to an Urban- 

influenced Karst Aquifer in the Wadi Shueib, Jordan. Environmental Pollution 198: 133-143, 

doi: 10.1016/j.envpol.2014.11.033. The final publication is available at 

www.sciencedirect.com. 

 

Abstract: Sewage input into a karst aquifer via leaking sewers and cesspits was 

investigated over five years in an urbanized catchment. Of 66 samples, analyzed for 25 

pharmaceuticals, 91 % indicated detectable concentrations. The former standard 

iodinated X-ray contrast medium (ICM) diatrizoic acid was detected most frequently. 

Remarkably, it was found more frequently in groundwater (79 %, median: 54 ng/l) than 

in wastewater (21 %, 120 ng/l), which is supposed to be the only source in this area. In 

contrast, iopamidol, a possible substitute, spread over the aquifer during the investigation 

period whereas concentrations were two orders of magnitude higher in wastewater than 

in groundwater. Knowledge about changing application of pharmaceuticals thus is 

essential to assess urban impacts on aquifers, especially when applying mass balances. 

Since correlated concentrations provide conclusive evidence that, for this catchment, 

nitrate in groundwater rather comes from urban than from rural sources, ICM are 

considered useful tracers. 

  

http://dx.doi.org/10.1016/j.envpol.2014.11.033
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3.1. Introduction 

Despite the worldwide release and occurrence of pharmaceutical residues in the aquatic 

environment, little is still known about the long-term evaluation of concentrations, 

especially in groundwater. Many studies deal with concentrations in effluents from 

wastewater treatment plants (WWTP) (Ternes and Hirsch, 2000; Bueno et al., 2012; Loos 

et al., 2013; Kostich et al., 2014), surface water (Schwab et al., 2005; Sacher et al., 2008; 

Loos et al., 2009; Vulliet and Cren-Olivé, 2011), and groundwater (Sacher et al., 2001; Loos 

et al., 2010; Maeng et al., 2011; López-Serna et al., 2013), although most of them address 

single sampling campaigns. Time series data related to groundwater have been scarcely 

published (Wolf et al., 2012; Zemann et al., 2014) despite the fact that they can contribute 

significantly to a better understanding of substance behavior and long-term threads. As 

groundwater resources are often used for drinking water supply, special attention needs 

to be directed to exposed locations (Tiehm et al., 2011) such as karst aquifers and urban 

areas. Karst aquifers are known to be highly vulnerable because contaminants can easily 

enter the subsurface through cracks and swallow holes and are quickly transported via 

conduits (Ford and Williams, 2007). Urban areas, on the other hand, endanger the 

groundwater quality as they feature multiple pollution sources for the underlying 

aquifers. Consequently, a conglomerate of cities in karst areas has an increased potential 

for groundwater contamination. 

Until today, only a few studies in karst areas have focused on pharmaceutical 

contaminations in groundwater, e.g. Einsiedl et al. (2010), Metcalfe et al. (2011); Reh et 

al. (2013), Katz et al. (2009) or Morasch (2013). However, there is vivid evidence of 

contaminant transport in karst, e.g. of nitrate (Huebsch et al., 2013), herbicides 

(Hillebrand et al., 2014), fecal bacteria (Pronk et al., 2006), pesticides (Mahler and Massei, 

2007) or chloride used as a wastewater indicator (Schmidt et al., 2013). 

Pharmaceuticals in urban groundwater primarily come from leaking sewers infiltrating 

wastewater into the subsoil (Osenbrück et al., 2007; Musolff et al., 2009). The urban 

impact on groundwater, regarding pharmaceuticals, was documented by various studies 

such as Wolf et al. (2012) or Reinstorf et al. (2008). Exfiltration rates calculated from 

pharmaceutical concentrations could be described as percentage of the dry weather flow. 

They show huge variations ranging from around 1 % in the cities of Linz (Fenz et al., 2005) 

or Tokyo (Kuroda et al., 2012), 9.9 to 13.0 % in Leipzig (Musolff et al., 2010), and between 

6 and 50 % in Barcelona (Jurado et al., 2014). Other possible contamination sources might 
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come from infiltrating rivers fed with effluents from WWTP (López-Serna et al., 2013). 

The first possibility in particular introduces the highest concentrations of 

pharmaceuticals, comparable to inflows of WWTP. Pharmaceuticals may enter the entire 

urban sewage system, e.g. via the analgetics and anti-inflammatories used at home or as 

point sources from hospitals (Escher et al., 2011; Orias and Perrodin, 2013). Whereas, in 

Switzerland, 50 % of the X-ray contrast media (ICM) were found to have been 

administered in the investigated hospital, the respective remaining quantities were 

administered to out-patients. Concentrations in the hospital wastewater thus correlate 

with the daily consumption in the hospital reaching up to 580 g/d for iomeprol (IME) and 

384 g/d for iopamidol (IPA) (Weissbrodt et al., 2009). A total contribution of 51 % 

analgetics and 49 % antibiotics from hospitals to the aggregate pharmaceutical inflow of 

the related WWTP was detected in Coimbra (Portugal). ICM reached 13 %, although only 

IME was investigated (Santos et al., 2013). Mean ICM effluent concentrations were 

determined at a Swiss hospital with 348 µg/l for diatrizoic acid (DIA), 2599 µg/l for IPA, 

and 439 µg/l for IME (Kovalova et al., 2012). 

The prevalent occurrence of pharmaceuticals in Jordan water sources was first described 

by Tiehm et al. (2011) and Wolf et al. (2009). The first long-term assessment of trace 

organics in the Lower Jordan Valley indicated increasing groundwater pollution due to 

the intense reuse of treated wastewater for irrigation in agriculture. Concentrations and 

occurrences of the X-ray contrast media IPA and DIA were identified to show shifting 

prescription patterns in Jordan hospitals (Zemann et al., 2014). Wastewater 

concentrations measured upstream and downstream of two hospitals in Amman 

documented an increased input with concentrations between 3 to 7 µg/l of the analgetic 

diclofenac (DIC) and a single detection (26 µg/l) of the anti-inflammatory ibuprofen 

(IBU). However, they could not be related to influent concentrations at three local WWTP 

(Alahmad and Alawi, 2010). 

The present study focuses on two wadis located around 40 km southeast of Amman, the 

capital of Jordan. The area features a high groundwater pollution risk as the vulnerable 

outcropping karst is covered by urban areas. Against this background, the following 

research issues were investigated: 

 What substances occur in the urban karst aquifer of Wadi Shueib and Kafrein? 

What concentration levels do they reach? 
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 How can we make use of pharmaceutical occurrence and concentrations above the 

qualitative level? 

 How can pharmaceuticals be used as tracers? 

 Do temporal trends of X-ray contrast media (ICM) fit with recent findings of 

iopamidol (IPA) and diatrizoic acid (DIA) in the Jordan Valley, which were 

assumed to be due to prescription changes? 

3.2. Materials and methods 

3.2.1. Study area 

Around 130,000 inhabitants live mainly in the upper part of Wadi Shueib in the cities Salt 

and Fuheis. The investigated area is rather steep with a dense drainage network. The 

Wadi Shueib course acts as a receiving stream for the entire area, and discharges into the 

Shueib reservoir at the southwestern outlet of the wadi towards the Jordan Valley (Werz, 

2006). Two WWTPs in Fuheis and Salt release their effluents into this stream where they 

mix with the unused spring discharge. Within this study, the urban impact was 

investigated for five springs (Azzraqu, Baqquriah, Hazzir, Shoreia, and Farkha) and two 

wells (Yesidia, Um Attija). The main catchment of the Hazzir and Shoreia spring 

groundwater contribution zone lies directly within the urban area of Salt (Figure 17). The 

catchment zone for the Baqquriah spring is located downstream of the city, including 

parts of the upper aquifer discharged by the Hazzir, Shoreia, and Azzraqu springs (Figure 

18). The Yesidia wells are located upstream of the city while the Um Attija well is located 

inside the city of Salt. Because the geology of the whole area is mainly characterized by 

outcropping karstified limestone (Figure 18), the groundwater in the area is highly 

vulnerable to anthropogenic hazards (Werz, 2006). Although an extensive sewer network 

exists inside the city, people still use septic tanks to avoid paying the costs of sewage 

connection. As costs for suction trucks are expensive as well, permeable bottoms and 

overflowing pits are common (Margane et al., 2010). In a survey performed in 2007, 58 % 

of the interviewees said they never emptied their cesspits (GTZ and WMIA, 2007). 

Therefore, large quantities of untreated wastewater extensively infiltrates into the 

subsoil. In 2009, the number of septic tanks in Salt was 3664, i.e. septic tanks were found 

in around 25 % of the households (Al-Kharabsheh et al., 2013). This is similar to 

estimations made for urban areas in northern Jordan (van Afferden et al., 2010). 
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Groundwater is mainly present in two aquifer systems (see Figure 18), Es Sir Limestone 

(A7) on top and the Hummar formation (A4) below. Both are assumed to be locally 

interconnected due to the tectonic conditions. All springs mentioned above drain from the 

As Sir limestone, whereas the Yesidia wells pump from the Hummar formation. 

Being characterized by similar geologic conditions, Wadi Kafrein is located adjacent to the 

south of Wadi Shueib. A suburb of the capital Amman conveys its wastewater to the Es Sir 

WWTP, from where it is discharged into the wadi stream and later on stored in the Kafrein 

reservoir before being used for irrigation in the Jordan Valley. A medical center in the area 

discharges to this WWTP together with two pharmaceutical manufacturers (Alahmad and 

Alawi, 2010). 

 

Figure 17: Sampling locations in Wadi Shueib, settlements, wastewater treatment plants (WWTP), and 
subsurface catchments of the main springs. Subsurface catchments were extracted from Margane et al. (2010). 
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Figure 18: Schematic geological cross section (S- N – NW) through Wadi Shueib cutting two springs and one 
well1. 

3.2.2. Sampling campaigns and site selection 

From 2008 to 2012, four water quality sampling campaigns were conducted in the study 

area. Some locations were already screened in 2007, including 5 samples from Kafrein 

reservoir taken within one week. In 2008, WWTPs and the reservoirs were sampled in 

April, while groundwater samples were taken in November. Minor parts of the dataset 

(some WWTPs and reservoirs) were already included in Zemann et al. (2014). In March 

2012, six samples were taken at Hazzir spring during a 24-hour campaign and two others 

were taken in June 2013. All in all, 25 substances (Table 9), including 16 pharmaceuticals 

and 9 ICM, major ions, fecal bacteria, and physico-chemical parameters (EC), were 

monitored in the groundwater, surface water and treated wastewater with a total of 66 

samples. The general sampling strategy was to completely assess all main water sources 

in the area, together with the effluents of the local WWTP as a possible contamination 

source. Sampling times were chosen to be before and at the end of the rainy season 

(November to March). No seasonal effects could be found within this study, however due 

to the limited samples, such effects cannot be excluded. Samples were taken from the 

WWTPs (Fuheis, As Salt, Es Sir), reservoirs (Shueib and Kafrein), and the main springs 

(Hazzir, Farkha, Azzraqu, Baqquriah, Shoreia, Tujabyl) and wells (Um Attija, Yesidia). 

Sampling locations are given in Figure 17. 

                                                        
1 Due to the schematic character of the profile, the location of the wells with regards to the stratigraphy is 
not drawn at the exact position. A temporal sequence of normal faults and reverse faults should also not be 
drawn from the profile. 
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3.2.3. Sampling and analysis 

At each location, grab samples were taken for pharmaceuticals and major cations and 

anions. In situ measurements of EC, redox, temperature, and oxygen were done using a 

WTW Multi 3430 device. Sampling preparation, storage, transport, and quality 

assessment at the laboratory were described in detail in Zemann et al. (2014). The 

pharmaceutical analysis method is described in Sacher et al. (2008), whereas the analyses 

of both studies were performed in the same laboratory using the same method. Samples 

for ion analysis were filtered with cellulose mixed ester (CME) filters (Roth: 0.45 µm). 

Cation samples where acidified with concentrated nitric acid (60 %) (1 ml per 100 ml 

sample) and analyzed by IC (DIONEX 1100) following DIN 38406. Anion analyses where 

conducted at the laboratories of the Water Authority of Jordan (WAJ) according to Eaton 

et al. (2005). The E. coli were identified by the most probable number (MPN) method 

using the Colilert system (IDEXX Laboratories Inc.). 

Table 9: Screened substances sorted by generic product categories and acronyms used in the text. 

Analgetics / Antiphlogistics X-ray Contrast Media (ICM) Lipid Lowering Agents 

Pentoxifylline (PEN) Diatrizoic acid (DIA) Bezafibrate (BEZ) 

Diclofenac (DIC) Iodipamid (IDI) Clofibric acid (CFA) 

Ibuprofen (IBU) Iohexol (IHE) Etofibrate (ETO) 

Indomethacin (IND) Iomeprol (IME) Fenofibrate (FFI) 

Naproxen (NAP) Iopamidol (IPA) Fenofobric acid (FFA) 

Phenacetin (PHE) Iopromide (IPR) Gemfibrozil (GEM) 

Anti-inflammatory Drugs Iotalamic acid (ITA) Antipsychotic Drugs 

Fenoprofen (FEN) Ioxaglic acid (IXA) Diazepam (DZP) 

Ketoprofen (KET) Ioxithalamic acid (IXI) Antiepileptic Drugs 

  Carbamazepine (CBZ) 

3.3. Results 

3.3.1. Pharmaceutical concentrations and detection rates 

Six pharmaceuticals could be detected in the groundwater: The X-ray contrast media DIA 

(79 % detection frequency), IPA (51 %), and IHE (5 %) (Table 10). Besides, IBU was found 

in 14 % of the samples, CBZ in 13 %, and FFI in 6 %. Most substances showed lower 

detection frequencies in groundwater than in surface water and treated wastewater. Only 

DIA was found more frequently in groundwater than in treated wastewater. For most 

substances, e.g. ICM, detection frequencies in treated wastewater were slightly lower than 
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in surface water. Again, DIA showed the biggest discrepancy with 21 % in treated 

wastewater as compared to 85 % in surface water. BEN, IBU, and NAP showed decreasing 

frequencies from treated wastewater through to surface water to groundwater. FEN was 

only present in groundwater. 

Table 10: Occurrence of pharmaceuticals and X-ray contrast media in three water types in the wadis Shueib 
and Kafrein. GW = groundwater, SW = surface water, TWW = treated wastewater. Total of samples = 66, total of 
sampling points = 14. Samples in GW = 39 for ICM and 32 for other pharmaceuticals, SW = 13, TWW = 14. LOD 
for ICM is 10 ng/l in GW and SW and 50 ng/l in TWW. LOD for pharmaceuticals is 20 ng/l in GW and SW and 50 
ng/l in TWW. The bold substances were present in GW. 

  GW SW TWW GW SW TWW GW SW TWW 

 Detection frequency Median of positives Maximum values 

  [%] [%] [%] [ng/l] [ng/l] [ng/l] [ng/l] [ng/l] [ng/l] 

Bezafibrate (BEZ) 0 15 64   26 270   89 480 

Carbamazepine (CBZ) 13 100 86  80 240 3100  100 1200 7900 

Clofibric acid (CFA) 0 0 7     150     150 

Diazepam (DZP) 0 0 14     404     720 

Diclofenac (DIC) 0 38 21   35 240   140 390 

Etofibrate (ETO) 0 0 0             

Fenofibrate (FFI) 6 0 0 110     130     

Fenofibric acid (FFA) 0 0 7     160     160 

Fenoprofen (FEN) 0 0 0             

Gemfibrozil (GEM) 0 100 71   150 1300   510 4800 

Ibuprofen (IBU) 14 23 71 56 250 225 65 430 750 

Indomethacin (IND) 0 0 0             

Ketoprofen (KET) 0 0 14     64     64 

Naproxen (NAP) 0 8 21   69 95   69 240 

Pentoxifyllin (PEN) 0 0 0             

Phenacetin (PHE) 0 0 0             

Diatrizoic acid (DIA) 79 85 21 54 110 120 220 270 300 

Iodipamid (IDI) 0 0 0             

Iohexol (IHE) 5 77 71 19 5800 315 27 39,000 9000 

Iomeprol (IME) 0 77 64   88 1400   5300 360,000 

Iopamidol (IPA) 51 92 93 65 850 6900 1900 78,000 680,000 

Iopromide (IPR) 0 92 79   995 860   4500 280,000 

Iotalamic acid (ITA) 0 0 0             

Ioxaglic acid (IXA) 0 0 0             

Ioxithalamic acide (IXI) 0 0 0             

 

The term “pharmaceutical detection rates” is used in this study to describe the number of 

pharmaceutical substances detected at a sampling site within the set of 25 pharmaceutical 

substances screened in this study. This term was already introduced by Schaider et al. 

(2014). The different water types (SM 3) show a clear decreasing trend for this parameter 
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from treated wastewater through to surface water to groundwater for all campaigns, 

except for that of 2012. However, no temporal trends are visible from 2008 to 2012. 

Furthermore, until 2012, almost exclusively DIA and IPA were present in groundwater. 

Most substances showed the highest concentrations in treated wastewater and the lowest 

in groundwater (Table 10). As an exception, DIA, NAP, IHE, and IPR featured higher 

median concentrations in surface water than in treated wastewater, but again had the 

lowest concentrations in groundwater (except for DIA). Median concentrations ranged 

between 19 and 110 ng/l in groundwater, 26 and 995 ng/l in surface water, and 64 and 

6750 ng/l in treated wastewater. Maximum concentrations were found for IPA in all 

water types, where the maximum concentration in groundwater was 1900 ng/l at Tujabyl 

spring. 

3.3.2. Diatrizoic acid 

DIA was present in all groundwater samples of Baqquriah, Farkha, Hazzir, Shoreia, 

Tujabyl, and Um Attija from 2008 to 2012. It was never found at Azzraqu and Yesidia wells 

(compare SM 4), therefore showing a high, constant presence within this study. A spatio-

temporal overview is given in Figure 19. Concentrations in groundwater ranged between 

13 and 180 ng/l. Concentrations in surface water were between 26 and 270 ng/l, whereas 

it was only present twice in treated wastewater with 110 and 120 ng/l. Regarding Wadi 

Shueib, DIA showed constant occurrence at four springs and two wells, while it was 

present only once in treated wastewater. Mean and median values (see SM 4) for all water 

types range in the same order of magnitude, indicating no dilution effects from treated 

wastewater to groundwater or biodegradation processes. In none of the water types, 

concentrations reveal a distinct temporal trend. 
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Figure 19: Diatrizoic acid concentrations in wells and springs around the city Salt between 2008 and 2012. 

 

3.3.3. Iopamidol 

Absolute numbers for IPA concentrations are given in the supplementary materials 

(SM 4) while their spatio-temporal occurrences are shown in Figure 20. In 2008, IPA was 

only found at Hazzir spring. Henceforth, detection rates were increasing gradually until 

2012, when IPA was found in 75 % of the groundwater samples. Over the whole period, it 

was never found at Azzraqu spring and Yesidia well. Along with the detection rates, mean 

concentrations were gradually increasing as well. Except for Kafrein reservoir in 2008 

and Es Sir WWTP in 2007, IPA was present in all samples of surface water and treated 

wastewater. Concentrations range from 11 to 1900 ng/l in groundwater, from 72 to 

78,000 ng/l in surface water, and from 810 to 680,000 ng/l in treated wastewater. 

Therefore, concentrations of IPA decreased from treated wastewater through to surface 

water to groundwater. 
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Figure 20: Iopamidol concentrations in wells and springs around the city Salt from 2008 to 2012.  

 

3.3.4. Occurrence of other anthropogenic contaminants (fecal bacteria, 

nitrate) 

Samples for fecal bacteria tests were always taken in parallel to the pharmaceutical 

samples. As some of the locations could not be considered during all campaigns, an 

overview of the dates and the sampled locations is given in Table 11. At each groundwater 

sampling site, E. coli was present at least once. While Um Attija and Yesidia showed only 

minor rates with 2 MPN/100 ml, Shoreia, Baqquriah, and Azzraqu featured rates between 

18 and 72 MPN/100 ml. The highest E. coli rates were found at Hazzir and Tujabyl spring 

with a mean of 582 and 1260 MPN/100 ml, respectively. Nitrate concentration in the 

groundwater ranges from 25 to 64 mg/l in springs and from 1 to 38 mg/l in wells. Highest 

concentrations were detected at Hazzir spring, while the lowest were found at Yesidia 

well. 
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Table 11: E. coli, nitrate, and pharmaceutical detections (number of detected substances out of 25) at springs 
and wells in Wadi Shueib between 2008 and 2012. PHA = pharmaceutical, NOS = number of single substances, 
n.a. = not analyzed. 

  February 2012 September 2011 March 2011 April/November 2008 
 

PHA E. coli Nitrate PHA E. coli Nitrate PHA E. coli Nitrate PHA E. coli Nitrate 

  [NOS] [MPN/ 

100 ml] 

[mg/l] [NOS] [MPN/ 

100 ml] 

[mg/l] [NOS] [MPN/ 

100 ml] 

[mg/l] [NOS] [MPN/ 

100 ml] 

[mg/l] 

Azzraqu spring 1 17 27.0 0 33 25.1 0 < 1.8 27.3 0 < 1.8 n.a. 

Baqquriah 

spring 

3 5 43.3 2 170 36.1 2 33 36.9 1 79 n.a. 

Farkha spring 3 920 57.1 2 23 64.1 1 6.8 61.6 1 49 n.a. 

Hazzir spring 2 110 50.6 2 490 53.9 3 1600 54.5 2 130 n.a. 

Shoreia spring 2 13 34.5 1 33 28.8 1 n.a. 30.1 1 8 n.a. 

Tujabil spring 3 1600 49.9 1 920 56.6 2 n.a. 50.8 n.a. n.a. n.a. 

Um Attija well 2 n.a. 38.0 1 < 1.8 37.0 1 n.a. 37.3 1 2 n.a. 

Yesidia well 0 2 6.6 0 n.a. 21.0 0 n.a. 0.8 0 < 1.8 n.a. 

Total detections 16 in 8 7 in 7  9 in 8 6 in 7  10 in 8 3 in 4  6 in 7 5 in 7  

Mean 

concentration 

[mg/l] 

  38.4   40.3   34.6    

 

3.3.5. Correlation of pharmaceuticals with nitrate and E. coli 

The simultaneous occurrence of different pollution indicators at many sampling sites 

suggested that high numbers of pharmaceutical detections might correlate with high 

nitrate and E. coli values. The different indicators are plotted against each other (Figure 

21). Correlation analyses (Spearman and Kendall) confirm the positive correlation of 

increasing pharmaceutical detection rates with both, increasing nitrate concentrations 

(Figure 22) and E. coli (Figure 23) numbers for a significance level of < 1 %. 
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Figure 21: Correlation of E. coli and nitrate with the pharmaceutical detection rate in the groundwater of Wadi 
Shueib/Kafrein for samples taken between 2008 and 2012. 

 

 

Figure 22: Pharmaceutical detection rates plotted 
against nitrate. 

 

 

Figure 23: Pharmaceutical detection rates plotted 
against  E. coli. 

 

Due to the frequent detection of DIA, correlation analyses (as above plus Spearman) were 

also performed for nitrate and DIA (see Figure 24). DIA is strongly positively correlated 

with nitrate (significance level < 10-6). 
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Figure 24: Correlation of nitrate and diatrizoic acid concentrations in the groundwater of Wadi Shueib and 
Kafrein for all samples taken between 2008 and 2012. Concentrations < LOD were calculated with 0.5*LOD. 
LOD for DIA = 10 ng/l. 

 

3.4. Discussion 

3.4.1. Pharmaceuticals in karst and urban aquifers 

The following section tries to give an overview of published research related to 

pharmaceuticals in urban groundwater and in karst, indicating concentration ranges and 

substance spectrums. However, only few studies on pharmaceuticals in karst systems are 

available. 

Concentrations reported in karst springs and groundwater usually range in the lower ng/l 

level. Springs at the Frankonian Alb (Germany) featured concentrations of IBU between 4 

and 15 ng/l and DIC between 1 and 7 ng/l with an effluent from a wastewater treatment 

plant as the most likely source (Einsiedl et al., 2010). CBZ concentrations between 1.5 and 

1.9 ng/l were detected in a large karstic basin (Florida/USA), coming from the land 

application of treated wastewater (Katz et al., 2009). Two karst springs in Switzerland 

showed different pharmaceuticals, amongst them DIC (0.7 to 1 ng/l), KET (4 to 8 ng/L), 

and NAP (4 ng/l) (Morasch, 2013). Results from a two year study in a German karst 

system underlying an urban area (Reh et al., 2013) are more similar to the results from 

Jordan documented in this study. Although many more substances were detected, 
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frequencies and concentrations were similar for CBZ (detection frequency: 12.9 %, 

median concentration: 38.4 ng/l), iohexol (4.3 %, 26.2 ng/l), and IBU (0.6 %, 23.0 g/l). A 

recently published study of the Lower Jordan Valley mainly showed similar results 

regarding concentration ranges and detected substances and frequencies (Zemann et al., 

2014), e.g. DIA occurred in 79 % of all water samples, while IPA was present in 49 % and 

CBZ in 13 %. The differences in maximum concentrations or detection frequencies can be 

explained by the smaller investigation area, featuring a potentially more specific 

administration of single substances and different transport mechanisms.  

Studies in urban areas typically show a broad spectrum of pharmaceuticals in 

groundwater (Ellis, 2006; Wolf et al., 2012; López-Serna et al., 2013). Therefore, the total 

of six substances found in groundwater within this study does not represent a vast urban 

impact. However, there could be different reasons (dilution, biodegradation, local 

description and application practice) for the absence of substances. CBZ could not be 

detected in any groundwater sample between 2008 and February 2012, despite its 

constant occurrence in the local WWTP (Table 10). During two short-term sampling 

campaigns at Hazzir spring in March 2012 and June 2013, CBZ could be detected 

occasionally with a maximum concentration of 100 ng/l. CBZ is known to be persistent 

against biodegradation processes and has often been suggested as a suitable 

anthropogenic tracer. Consequently, various reports exist on its frequent occurrence in 

urban groundwater, e.g. (Fenz et al., 2005; Osenbrück et al., 2007; Kuroda et al., 2012; 

Jurado et al., 2014). The overall detection frequency (13 %) is significantly lower than in 

other studies, for example the 33 % detected in Rastatt (Germany) (Wolf et al., 2012), 

66 % in Linz (Austria) (Fenz et al., 2005) or the 96 % in Barcelona (Spain) (Jurado et al., 

2014). The comparatively scarce occurrence of CBZ in the springs in this study might be 

attributed to the LOD, which was 10 ng/l for ICM but 25 ng/l for CBZ. 

In contrast to CBZ, the X-ray contrast media DIA and IPA were found frequently within 

this study with concentrations in the range of 10 ng/l to a few hundred ng/l (compare 

Table 10 and SM 4). Wolf et al. (2012) detected DIA in groundwater (Rastatt, Germany) 

with 27 % frequency, IPA with 4 %, and average concentrations of DIA with 66 ng/l and 

IPA with 12 ng/l. IPA concentrations ranging from 6 to 272 ng/l were reported after 

different drinking water treatment processes in Berlin (Germany) (Kormos et al., 2011). 

Creeks in the Hessian Ried (Germany) receive relatively large amounts of treated 
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wastewater, which infiltrates into the aquifer. Concentrations in groundwater were 

determined for DIA (median: 30 ng/l) and IPA (160 ng/l). While the detection frequency 

for DIA (80 %) is similar to that found by this study, the one for IPA (75 %) is much higher 

(Ternes and Hirsch, 2000). 

Compared to a European screening of 90 WWTPs (Loos et al., 2013), concentrations and 

detection frequencies in treated wastewater were similar for most pharmaceuticals, e.g. 

CBZ, NAP, BEZ, GEM, and IBU. While DIC and DIA frequencies were much smaller in this 

study, frequencies for all other detected ICM were much higher than the European 

average. Concentrations of ICM were also much higher than the European average, while 

DIA concentrations were much smaller. 

3.4.2. Use and usefulness of pharmaceuticals for hydrogeological 

interpretation 

Any detection of pharmaceuticals in groundwater indicates an anthropogenic influence. 

Pharmaceuticals are solely used in human and veterinary application and diagnostics. As 

there are no natural background concentrations, their occurrence in groundwater can be 

attributed to wastewater or manure. In urban areas, leaking sewers and cesspits were 

assumed to be the main pollution sources to the groundwater. Mass balance approaches 

are often uncertain due to missing information on amounts of leaking wastewater or 

applied pharmaceuticals. Therefore, their absolute input is difficult to measure but might 

be estimated indirectly. Within this study, input functions for the investigated substances 

(i.e. DIA and IPA) were as well not available. The monitoring of WWTP effluents 

contributes important information regarding the pharmaceutical substances applied in 

an urban catchment. Effluent concentrations might thus serve as a lower bound for 

released concentrations from a leaking sewer or cesspit into the subsoil, although leakage 

concentrations were expected to be higher. 

Pharmaceuticals were rarely detected continuously (except for DIA and IPA) within this 

study. Mostly, they occurred scattered in the investigated area and at different times. An 

aim to utilize these single records, is the pharmaceutical detection rate (see chapter 

3.3.1.). The number of all detected substances might serve as comparative pollution 

parameter. The correlation of increasing detection rates along with other increasing 

parameters in this study indicates the potential of these parameters for a semi-

quantitative assessment. High detection rates indicate a high pollution degree. Persistent 
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substances like CBZ or some ICM can be detected much longer than fecal bacteria, which 

die off within weeks up to months (Auckenthaler, 2003). Therefore the pharmaceutical 

impact might be measurable much longer than such parameters. However, the detection 

rate depends on the number of investigated substances and their respective limits of 

detection (LOD). Results from different studies were therefore difficult to compare and 

conclusions might rather be of local relevance. 

Comparing different pollution indicators at Wadi Shueib resulted in a spatial distribution 

of groundwater pollution within the context of the catchment. Springs and wells 

extracting groundwater upstream (Yesidia) or sideways (Azzraqu) of the city show 

typically low concentrations of nitrate and E. coli (Table 11) combined with no or few 

detections of pharmaceuticals (Yesidia and Azzraqu, each with only a single detection in 

2012). Springs downstream of the city showed higher nitrate concentrations and E. coli 

numbers accompanied by multiple detections of pharmaceutical substances (see SM 3 and 

Table 11). The spatial distribution of DIA and IPA findings (Figure 19 and Figure 20) 

shows similar patterns. As Hazzir and Farkha show the highest values for each indicator, 

the distance to the urban area appears to have an influence as well. Both were located 

closest to the city, with big shares of their catchments inside the urban area (Figure 17). 

Shoreia and Baqquriah, located further downstream, subsequently showed lower 

concentrations of all indicators. These results were in accordance with findings in the city 

of Rastatt (Germany), where decreasing detection frequencies for ICM and their 

decreasing concentration could be correlated with the distance of the next upstream 

sewer. Carbamazepine and the artificial sweetener acesulfame occurred primarily in the 

city center (Wolf et al., 2012). Increasing concentrations could be found in the 

groundwater of Halle (Germany) along the underground passage of the city for most 

investigated xenobiotics (Reinstorf et al., 2008). 

Correlation analysis was applied to identify possible causal connections between two 

pollution indicators. A significant correlation was found for DIA and nitrate in the entirety 

of all groundwater samples at Wadi Shueib. The reason for this could be similar sources 

or transport mechanisms. Nitrate might come both from wastewater or agricultural 

activities. On the other hand, DIA is mostly applied in hospitals end excreted there or at 

home. No reports on its usage in livestock breeding were documented for Jordan. Thus, 

for DIA, the source and transport mechanism via sewer leakages and infiltration (see 
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chapter 3.2.1.) into the unsaturated aquifer seems to be confined to urban areas. In 

consequence, the strong correlation between DIA and nitrate (Figure 24) suggests that 

the nitrate pollution at Wadi Shueib originates rather from urban than from rural sources. 

However, due to the limited amount of samples and sampling sites, other influences (e.g. 

fertilizer, precipitation) could not be excluded although their impact might be of minor 

relevance or seem unlikely. 

3.4.3. Occurrence, fate, and possible pollution sources of DIA and IPA 

Except for some scattered detections for other pharmaceuticals, DIA and IPA were the 

only substances occurring area-wide and with very high detection frequencies. DIA was 

present in all groundwater samples inside and downstream of Salt, but was only present 

in one out of nine treated wastewater samples in Wadi Shueib (see SM 4). Both substances 

were reported to behave very conservatively regarding biodegradation and sorption 

under different environmental conditions, e.g. in laboratory studies (Kalsch, 1999; Joss et 

al., 2006; Kormos et al., 2010; Hebig et al., 2014), during wastewater treatment (Ternes 

and Hirsch, 2000; Deblonde et al., 2011; Margot et al., 2013), and in groundwater (Kormos 

et al., 2011). Therefore, their environmental persistence suggests to enable long residence 

times in the groundwater and subsurface. 

The distribution of concentrations of DIA differs from that found by other studies as they 

are in the same order of magnitude in all water types. This is in contrast to an assumed 

concentration decrease from source (wastewater) to sink (groundwater) which is mainly 

driven by dilution. In the urban water cycle of Berlin, this has already been described for 

primidone (Hass et al., 2012). Dilution factors from treated wastewater to groundwater 

between 100 and 1000 were determined for IBU and DIC in a karst aquifer (Einsiedl et al. 

2010). This is in accordance with the IPA concentrations in Wadi Shueib which were 

decreasing from the WWTP to surface water to groundwater (SM 4). The detection 

frequencies in groundwater were increasing over time with constantly high effluent 

concentrations in all WWTPs. 

The main sources for ICM are typically hospitals, with two being located in the study area, 

the Al Hussein Hospital, in Salt with 150 facilities, and the National Psychiatric Center in 

Fuheis. The radiology of Al Hussein Hospital is doing approx. 60 X-ray diagnostics per day 

(Storz, 2004). Around 50 % of a hospital`s patients were usually outpatients, which 

implies that ICM administered in diagnostics were excreted at home (Weissbrodt et al., 
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2009). Furthermore, due to the widespread use of “perforated” septic tanks, a relevant 

share of ICM does not reach the WWTP but may infiltrate area-wide into the unsaturated 

zone. Leaky sewers might also contribute an important share. The unsaturated zone only 

exists in the upper limestone aquifer and varies between 50 and 75 m (Werz, 2006). 

Water and contamination transport in such aquifers are assumed as mixtures of highly 

mobile (conduit and fracture flow) and rather immobile (matrix flow) components which 

can be affected by exchange processes between them (Ford and Williams, 2007). This 

exchange was observed, e.g. during dye tracer transport in alpine karst systems 

(Goldscheider, 2005). Whereas fast components may react within hours to days after a 

precipitation event, the matrix flow is much slower with typical flow velocities for 

limestone and dolomite between 0.01 – 10 m/y (Freeze and Cherry, 1979). Other 

processes, like storage and slow release of water in immobile fluid regions (Goldscheider, 

2008), are possible as well. A persistent contaminant such as DIA might therefore be 

omnipresent in the whole matrix after several decades of infiltration. 

After the ban on DIA for intravascular application (DCGMA, 2000) and the local advice to 

change application from high osmolar to low osmolar ICM to avoid adverse effects (Jordan 

Food and Drug Administration, 2006) the fresh input of DIA today is assumed to be 

considerably reduced. Reports from shifting application practice in a Jordan hospital 

(Zemann et al., 2014) accompanied by low DIA concentrations found in wastewater 

support this as well. However, the residual DIA in the matrix could still leach through the 

unsaturated zone. There, it may be slowly drained by conduits and subsequently released 

at springs (Figure 19) with constant, but low concentrations. This is in accordance with 

the findings of this study, where DIA was found in the majority of well and spring samples, 

while it was hardly documentable in the WWTP effluents. The whole process is illustrated 

in Figure 25 with the situation for DIA being presented on the left. Minor amounts at the 

WWTP may result from an outstanding but reduced oral administration of DIA as ICM. A 

similar transport mechanism was already assumed for IBU and DIC. Both appeared in 

groundwater at the Franconian Alb 20 years after WWTP effluent infiltration was 

terminated (Einsiedl et al., 2010). 

Simultaneously to the reduced DIA administration, IPA, a possible substitute for DIA, is 

detected with increasing frequency within the last 5 years (Figure 20) along with constant 

high loads in the local WWTPs which might indicate the increased use of IPA. The impact 

on the local aquifer system is assumed to take place at an earlier stage of spreading 
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(Figure 25, left) with the main transport occurring fast via the conduits. Direct responses 

of flow volumes or water quality to precipitation events, usually within days or few weeks, 

are documented for the springs in the area (Werz, 2006). 

 

Figure 25: Conceptual model of two different pharmaceutical pathways in a karstified urban limestone aquifer 
with an extensive unsaturated zone. Left: Recent spreading of IPA (red). Right: Leaching of DIA (green) from 
the unsaturated zone. 

This conceptual model is also in accordance with the significant correlation of nitrate and 

DIA (see chapter 3.3.5). Nitrate is also assumed to be ubiquitously distributed in the 

unsaturated zone due to prolonged input into the environment, e.g. by infiltrating 

wastewater. Nitrate pollution sources were thus likely to be related to the input of DIA. 

Due to the lacking use of DIA in agriculture, relevant shares of nitrate were assumed to 

come from urban sources. The rather new IPA displays poor correlation with nitrate (see 

SM 5), which might indicate a more recent entry. Similar approaches were used for the 

artificial sweetener acesulfame together with different pharmaceuticals to identify single 

WWTPs as groundwater contamination sources (Van Stempvoort et al., 2013). A similar 

behavior for DIA and IPA was already reported for water resources in the Lower Jordan 

Valley (Zemann et al., 2014). 

3.5. Conclusions 

Within this study, pharmaceuticals and X-ray contrast media were screened in the water 

resources of Wadi Shueib and Wadi Kafrein to assess the influence of urban pollution on 

the local karst aquifer. Overall, the following conclusions can be drawn: 
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 The occurrence of pharmaceuticals, especially X-ray contrast media, demonstrates 

the urban impact on the karst aquifer at Wadi Shueib and Kafrein where they were 

first of all infiltrated via leaking sewers and cesspits. Pharmaceuticals could be 

detected in 91 % of the 66 samples. Concentrations of the investigated substances 

were higher than in other karst studies whereas the number of detected 

substances was lower than in comparable urban studies. 

 Diatrizoic acid showed continuous occurrence in groundwater during the 5-year 

period while only few detections were observed in the wastewater, which is 

supposed to be the only source in the catchment. Concentrations in groundwater 

and wastewater thus appeared in the same order of magnitude. Diatrizoic acid was 

a standard substance in X-ray diagnostics in the years before 2008, but its 

application has been reduced. Therefore, the observed distribution pattern can be 

explained by residual concentrations in the unsaturated zone and matrix of the 

limestone aquifer that are now leaching towards the groundwater and main 

conduit network. 

 In contrast, the possible substitute iopamidol was increasingly detected over the 

5-year investigation period. Concentrations in wastewater were two orders of 

magnitude higher than in groundwater. 

 The statistically significant correlation of diatrizoic acid and nitrate concentrations 

points to sewage as the most likely source of nitrate in the investigated area as X-

ray contrast media were not applied to livestock in Jordan agriculture. Therefore, 

diatrizoic acid can be considered as potential tracer for the urban impact on an 

aquifer. 

 Combined assessment of the pharmaceutical detection rate, E. coli and nitrate in 

groundwater quantifies the anthropogenic influence on the karst aquifer in Wadi 

Shueib. Spatial occurrence of these pollution indicators can be linked to the 

hydrogeological setting (e.g. flow direction, aquifer system) and the distance to the 

city. Highest rates occurred downstream of the urban areas, while the upstream 

springs and wells were mostly unpolluted or showed less impact. The significant 

correlation of the three pollution parameter identifies the pharmaceutical 

detection rate as a suitable tool on a semi-quantitative level and therefore makes 

use of single scattered detections of different substances. 
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The results show that knowledge about changing application patterns of pharmaceuticals 

is essential to assess the urban impact on aquifers, i.e. when applying mass balance 

techniques. Future water quality assessments are highly recommended to verify the 

hypothesis of increasing iopamidol concentrations and the expected disappearance of 

diatrizoic acid within the coming years. Additionally, the effects of upcoming sewer 

rehabilitation in the karst springs should be monitored for nitrate and pharmaceuticals. 
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3.8. Supplementary materials (SM) 

SM 3: Total detections in the different water types of Wadi Shueib and Kafrein. TWW = treated 
wastewater, GW = groundwater, SW = surface water. Numbers in SW and TWW were taken in April 
2008. * = 2008 

 
number of samples 2008 Nov/Apr 2011 May 2011 Nov 2012 Feb 

TWW 3 21 18 19 24 

SW 2 12 14 11 17 

GW 8 (7*) 6 10 9 18 

 

SM 4: Concentrations for the different sampling campaigns for diatrizoic acid and iopamidol at each 
sampling site. LOD is 10 in GW and SW and 50 for TWW. Calculations of means and median values 
were done by calculating values > LOD as 0.5 * LOD. n.s. = no sample. * = mean values from a 24h 
sampling campaign. # = reservoir and WWTP samples were taken in April. 

  
 

Diatrizoic acid Iopamidol 

Sampling date 
 

Nov 07 Nov 08# Mar 11 Sep 11 Feb 12 Nov 07 Nov 08 Mar 11 Sep 11 Feb 12 

  Water 
type 

[ng/l] [ng/l] [ng/l] [ng/l] [ng/l] [ng/l] [ng/l] [ng/l] [ng/l] [ng/l] 

Azzraqu spring GW 
 

< LOD < LOD < LOD < LOD 
 

< LOD < LOD < LOD < LOD 

Baqquriah 
spring 

GW 
 

61 38 26 38 
 

< LOD < LOD 69 72 

Farkha spring GW 
 

170 73 85 74 
 

< LOD < LOD 170 29 

Hazzir spring GW 
 

150 51 60 55 
 

69 11 360 46 

Shoreia spring GW 
 

31 28 13 16 
 

< LOD < LOD < LOD 39 

Um Attija well GW 
 

27 42 21 22 
 

< LOD < LOD < LOD 13 

Yesidia well GW 
 

< LOD < LOD < LOD < LOD 
 

< LOD < LOD < LOD < LOD 

Tujabyl spring GW 
 

n.s. 220 66 180 
 

n.s. 180 < LOD 1900 

Kafrein 
reservoir 

SW 103* 26 < LOD 100 120 803* < LOD 8000 78,000 17,000 

Shueib 
reservoir 

SW < LOD < LOD 270 27 220 1000 72 1600 700 1000 

Es Sir WWTP 
effluent 

TWW < LOD 110 < LOD < LOD 300 < LOD 2300 160,000 680,000 600,000 

As Salt WWTP 
effluent 

TWW < LOD < LOD < LOD < LOD < LOD 4500 1600 810 6900 13,000 

Fuheis WWTP 
effluent 

TWW 
 

< LOD 120 < LOD < LOD 
 

2200 15,000 15,000 6600 

Detections GW [%] 
 

71 75 75 75 
 

14 25 38 75 

Mean GW [ng/l] 
 

64 58 35 49 
 

14 28 78 264 

Mean SW [ng/l] 
 

16 138 64 170 
 

39 4800 39,350 9000 

Mean TWW [ng/l] 
 

53 57 25 117 
 

2033 58,603 233,967 206,533 

Median GW [ng/l] 
 

61 46,5 43 46,5 
 

69 95,5 170 42,5 

Maximum GW [ng/l] 
 

170 220 85 180 
 

69 180 360 1900 

Maximum SW [ng/l] 
 

26 270 100 220 
 

72 8000 78,000 17,000 

Maximum 
TWW 

[ng/l] 
 

110 120 
 

300 
 

2300 160,000 680,000 600,000 
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SM 5: Correlation of nitrate and iopamidol for all groundwater samples in Wadi Shueib and Kafrein 
from 2008 to 2012. Values < LOD were calculated as 0.5 * LOD. 
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4. Accumulation of Pharmaceuticals in Groundwater under Arid 

Climate Conditions – Results from Unsaturated Column 

Experiments 

 

Reproduced from: Zemann M., Majewsky M., Wolf L. (2016): Accumulation of 

Pharmaceuticals in Groundwater under Arid Climate Conditions – Results from Unsaturated 

Column Experiment. Chemosphere 154, pp. 463-471, doi: 

10.1016/j.chemosphere.2016.03.136. The final publication is available at 

www.sciencedirect.com. 

 

Abstract: Intense reuse of treated wastewater in agriculture is practiced all over the 

world, especially in arid and water-scarce regions. In doing so, pharmaceutical residues 

in the water are irrigated to the soil and subsequently can percolate into the local aquifers. 

Since evaporation rates in these areas are typically high, persistent substances might 

enrich in the groundwater recharge of closed catchments like the Jordan Valley. Against 

this background, unsaturated column tests were conducted to investigate the potential 

for evaporative accumulation of the two pharmaceuticals bezafibrate and carbamazepine 

under simulated arid climate conditions. Parallel tests were conducted with inhibited 

microbiological activity where both substances showed an increase in the effluent 

concentrations proportional to the evaporation loss of the inflow solution. The mean 

accumulation factors of the pharmaceuticals correspond to the evaporated water loss. 

The experiments indicate the accumulation potential for pharmaceuticals with high 

persistence against biodegradation. For the first time, the overall potential for 

evaporative enrichment could be demonstrated for pharmaceuticals. Under the given 

experimental conditions, the two investigated pharmaceuticals did not enrich faster than 

chloride, which might result in soil salting prior to reaching harmful pharmaceutical 

concentrations in soil water. The findings are relevant to future assessments of 

environmental impacts of persistent trace substances, which need to take into account 

that concentrations in the aquatic cycle might increase further due to evaporative 

enrichment. 

http://dx.doi.org/10.1016/j.chemosphere.2016.03.136
http://dx.doi.org/10.1016/j.chemosphere.2016.03.136
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4.1. Introduction 

The intensive use of treated wastewater in agriculture bears the potential of introducing 

emerging pollutants into the groundwater. Although some substances are degraded while 

percolating through the unsaturated zone, many persistent pharmaceuticals were found 

in aquifers underlying agricultural areas irrigated with treated wastewater (Kinney et al., 

2006; Siemens et al., 2008; Avisar et al., 2009; Grossberger et al., 2014). Laboratory 

results indicate the potential of pharmaceuticals of reaching the groundwater after 

irrigation with treated wastewater as well (Chefetz et al., 2008; Siemens et al., 2010). 

Recent monitoring results in the Lower Jordan Valley (LJV) showed higher 

pharmaceutical concentrations in groundwater than in the infiltrating surface water 

(Wolf et al., 2009). As irrigation is mostly applied in dry climates, such substances could 

be assumed to accumulate in the shallow groundwater due to high evaporation rates in 

semi-arid areas. For the LJV, the short-cycled agricultural use of mixtures of treated 

wastewater with the locally pumped groundwater, combined with the closed character of 

the catchment with the Dead Sea as final sink, supports an enrichment as well. 

Nevertheless, the issue of evaporative accumulation of pharmaceutical substances has not 

been addressed to date. 

Pharmaceuticals in the aquatic environment are ubiquitous and their negative effects at 

environmental concentrations were already reported for e.g. fish (Kidd et al., 2007; 

Pomati et al., 2008; Brodin et al., 2013). However, after treatment, levels of residues in 

drinking water are very low and are considered unproblematic (Webb et al., 2003; 

Schwab et al., 2005; Houeto et al., 2012). Due to the assumed accumulation, 

environmental concentrations might increase to up to harmful levels and therefore entail 

increasing effort for drinking water treatment. 

Against this background, the hypothesis of accumulating pharmaceutical concentrations 

over time was investigated following two approaches: Long-term field investigations and 

small-scale column studies at lab scale. While the field studies were insufficient to provide 

statistically valid evidence for the Lower Jordan Valley (Zemann et al., 2014), the studies 

showed that the tempo-spatial distributions of x-ray contrast media concentrations were 

most likely due to shifting medication and application patterns in this area (Zemann et al., 

2015). However, the idea of accumulating persistent substances by evaporation 

processes, e.g. similar to salt enrichment during salting of soil, seems still realistic. The 

increase in pharmaceutical concentrations in wastewater-irrigated soils was already 
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investigated in China (Chen et al., 2011) and Tunisia (Fenet et al., 2012). Soils irrigated 

with treated wastewater in Colorado (USA) showed rising carbamazepine (CBZ) 

concentrations after several months of irrigation, while the soil organic matter (SOM) was 

assumed to be the controlling factor for pharmaceutical retention (Kinney et al., 2006). 

However, none of these studies considered evaporative processes. 

The experiments of this study were conducted under most realistic natural conditions, i.e. 

by choosing temperatures, humidity and irrigation rates as they were measured in the LJV 

(Ministry of Water and Irrigation, 2004). In addition, this includes the use of real treated 

wastewater, the use of natural sand, and the consideration of the relevant processes, i.e. 

degradation and sorption under unsaturated flow conditions. Substances were selected 

according to the range of pharmaceuticals detected in previous studies in the LJV (Zemann 

et al., 2014). Out of this spectrum, pharmaceuticals with different persistence against 

biodegradation were selected. Those were the rather easily biodegradable lipid lowering 

agent bezafibrate (BEZ) and the antiepileptic CBZ. Their degradability (BEZ) and 

persistence (CBZ) was reported by different authors, e.g. (Maeng et al., 2011; Grossberger 

et al., 2014; Rühmland et al., 2015). 

4.2. Methodology 

4.2.1. Experimental setup and conceptual idea 

The experiments were conducted in six stainless steel columns filled with prewashed 

quartzous sand and packed by a pounder. Relevant experimental characteristics are listed 

in Table 12. Each column had a percolation length of 50 cm and a diameter of 10 cm, with 

a total volume of 3695 cm³. A ceramic filter plate at the outlet prevented leaching of sand 

and a potential clogging of the outflow pipe and led to uniform drainage at the column 

bottom. The grain size of the used sand was determined as medium-fine sand with shares 

of fine sand (57 %), medium sand (41 %), coarse sand (~1 %), and silt (~1 %), 

respectively. The hydraulic conductivity of 3*10-4 m/s was determined according to 

Hazen from the grain size distribution. Each column was spiked with four equally 

distributed soil moisture sensors (ECH2O EC-5) from UMS Co. as shown in the 

supplementary materials (SM 6, left). 
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Table 12: Physio-chemical soil parameters and experimental conditions for all columns. 

Soil properties Column conditions 

ps [g/cm] 2.65 L [cm] 50 

n [%] 36 A  [cm2] 73.9 

kf [m/s] 3*10-4 Q [ml/day] 108 

Corg [wt.%] 0.13 - 0.23 T [°C] 30 

   Ф [%] 45 

   C0 [µg/l] 20 

ps = Grain density 

n = Porosity 

kf = Hydraulic conductivity 

Corg = Carbon content 

L = Length 

A = Surface area 

Q = Flow rate 

T = Temperature 

Ф = Humidity 

C0 = Spiked pharmaceutical concentration 

 

All columns were operated under unsaturated conditions. The feeding solution was 

trickled onto the top of each column by four cannulas at a distance of 1 cm (see SM 6, left). 

The feeding solution was stored in a fridge and supplied to the columns by a peristaltic 

pump via stainless-steel pipes 0.5 mm in diameter (SM 6, bottom right). The specified 

pumping rate according to the hose diameter (0.51 mm) was 108 ml/day. This rate 

features a mean daily irrigation amount used by farmers in the LJV (Ministry of Water and 

Irrigation, 2004). The effluent of each column was pumped back to the fridge where it was 

stored as a collective sample in separated glass bottles. The columns were placed on a 

table in one row (SM 6, top right). Of the six columns, respectively three were operated 

under the same conditions to obtain replicate results. Column numbers I1, I2 and I3 (I = 

inhibited) were operated with a toxic feeding solution to inhibit microbiological activities 

during percolation. The columns operated under normal, uninhibited conditions were 

labeled U1, U2 and U3 (U = uninhibited). Columns U3 and I3 did not have internal 

monitoring facilities. The three inhibited and the three uninhibited columns were each 
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fed from the same storage bottle. Subsequently, the inflowing amount of each column was 

calculated from mean weight differences of the feeding solution bottles divided by three 

and related to the share of the effluent at each column. 

To obtain semi-arid evaporation conditions, the whole experiment was built inside a 

climatic chamber (approx. 2.5 m*4 m) adjustable for temperature and humidity. The 

temperature was kept at 30°C and the humidity at 45 % during the whole experiment. 

The numbers were chosen according to mean values for the LJV (Ministry of Water and 

Irrigation, 2004). Beside the sampling and control times, the room was kept dark to avoid 

any photochemical degradation processes. During the whole experiment, the columns 

were placed on scales to monitor the water balance. 

The feeding solutions consisted of treated wastewater from a local wastewater treatment 

plant (WWTP) in Karlsruhe Neureut and were spiked with the investigated 

pharmaceuticals and LiBr as conservative tracer. Pharmaceuticals were added to a 

concentration of 20 µg/l from an aqueous stock solution. Residual concentrations in the 

treated wastewater might even increase this concentration. The feed solution of three 

columns was acidified with NaN3 (0.1 %) to inhibit microbiological degradation and 

growth. This feeding solution was mixed in 2.5 l volumes and refreshed once a week. 

Bezafibrate (CAS: 41859-67-0) and CBZ (298-46-4) were purchased from Sigma-Aldrich. 

The LiBr concentration was 20 mg/l. LiBr and NaN3 were used in pure quality supplied 

by Merck. 

4.2.2. Experimental execution and monitoring 

The experiment started on March 27th 2012 and ended on August 8th 2012, lasting a total 

duration of 134 days. For the first 53 days, the initially dry columns were operated with 

final effluent from the Karlsruhe Neureut WWTP which was refreshed regularly. During 

this adaption phase, the growth of a microbial community inside each column should be 

enabled. After this initial phase, the columns were fed with autoclaved treated wastewater 

taken during one single sampling. The autoclave treatment was done to avoid 

biodegradation during storage. Subsequently, nutrient and ion inflow concentrations 

were obtained constant during the whole experiment. The addition of pharmaceuticals 

started after 53 days. The initial phase lasted for 4.6 pore volumes (PVs) while the main 

experiment with the pharmaceutical accumulation lasted for 81 days (7.3 PVs). 



Chapter 4 

102 

Water samples were taken from the column outlet on a regular basis at short intervals 

(0.3, 1 and 3 days) at the beginning of the spiking and larger intervals (one week) after 

three weeks of spiking with pharmaceuticals. The surplus feeding solution was sampled 

almost every week. All effluent samples were weighed and measured for EC, pH, redox 

and dissolved oxygen. Afterwards, the inflow and all effluent samples of the uninhibited 

experiments were acidified with HNO3.  The inflow and effluent samples of the inhibited 

experiments were not acidified, as the NaN3 should inhibit any microbiological 

degradation effects. All samples were stored cool and dark in glass bottles until analysis. 

Mass differences in the feeding solution bottles were weighed on a daily basis. Water 

samples were analyzed for pharmaceuticals, major ions including Li+ and Br-, and 

DOC/TOC. 

The soil moisture was measured once a day. The scales were logged at 15 min intervals. 

At the end of the experiment, the columns were dismantled and segmented. The soil was 

analyzed for water content by drying at 105 °C and for soil organic matter (SOM) by 

ignition loss. Additionally, parts of the soil were dry frosted and eluted with methanol. 

The aliquot was analyzed for pharmaceuticals. However, residual pharmaceutical 

concentrations in the sediment remained negligible. 

4.2.3. Analysis 

Pharmaceutical analyses of CBZ and BEZ were carried out using an LC-ESI-MS/MS system 

from PE SCIEX (API 3000) with an HP 1100 pump. Chromatographic separation was 

performed with a Gemini C18 column (150 x 3 mm, 5 µm) from Phenomenex. 100 ml 

aliquots of each sample were enriched (enrichment factor 1:100) via solid-phase 

extraction cartridges HRX from Chromabond (6 ml, 200 mg) from Macherey-Nagel. CBZ 

d10 was spiked prior to enrichment as a surrogate standard for loss correction during 

SPE. Calibration was done externally in pure water. Limits of quantification (LOQ) were 

searched experimentally with a criterion of a standard deviation of 10 % and found 

between 100 to 150 ng/L before enrichment. 

Samples for ion analysis were filtered with cellulose mixed ester (CME) filters (Roth: 

0.45 µm). Cation samples where acidified with concentrated nitric acid (60 %) (1 ml per 

100 ml sample) and analyzed by IC (DIONEX 1100) following DIN 38406. The 

measurement error is in the range of +/- 3 %. 
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4.3. Results and discussion 

4.3.1. Water, chloride mass balances, and soil humidity 

To illustrate the general evaporation concept of the experiments, water balances were 

calculated in the first step. As shown in Figure 26a and Figure 26b, the outflow volume 

per day is always lower than the inflowing volume. This effect can be attributed solely to 

evaporation. The mean water mass difference for all uninhibited columns was -18.3 % 

and -17.6 % for all inhibited columns (see Table 13). Water mass balances were calculated 

from the total amount of feeding solution and the total effluent of each column plus the 

remaining pore water in the columns after the experiment. This was necessary, as all 

columns were dry at the beginning of the experiment. This was done in the same way for 

chloride and bromide and the pharmaceuticals. The results are shown in SM 7, with 

feeding rates of approx. 120 ml/day and corresponding outflow rates of 100 ml/day. 

Especially the inflow rates were rather stable, therefore being a good indicator for 

constant flow conditions through the columns during the whole experiment. 

 

 
Figure 26, a-b: Inflow and effluent rates of the uninhibited (a) and inhibited (b) columns. Inflow was 
calculated as mean value for all columns. The grey line marks the beginning of pharmaceutical addition. 

 

The soil moisture profiles remained almost stable for all columns after several days of 

operation (Figure 27). The moisture content decreased from the top (10 cm) of the 

column to the middle (20 cm to 30 cm) from where it increased again towards the bottom 

of the columns (40 cm). The moisture at a depth of 40 cm was varying over time within a 

small range which was accompanied by changes in the column weight in a range of around 

60 g. This led to the conclusion that a specific minimum water table was necessary inside 

each column before the pressure head was high enough to release the water at the bottom. 
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During the first week after pharmaceutical spiking with the short scheduled sampling, 

only two out of three samples could be taken due to the small effluent amount. 

The chloride mass balance was calculated for the whole experiment. The mass balance 

errors are given in SM 7. Balances include the remaining chloride inside the columns at 

the end of the experiment. The balance discrepancy ranges between -4.1 % to 1.7 % for 

the uninhibited and 2.5 % to 8.8 % for the inhibited columns. These values were mostly 

within the range of the analysis errors and therefore, indicating no substantial mass losses 

during the experiment. 

 

Figure 27: Mean measured humidity profiles for U1, U2, I1 and I2 from May 19th 2012 until August 8th 2012. 

4.3.2. Conservative transport 

Travel times through the columns were determined using the breakthrough of the 

conservative tracer bromide. Bromide was spiked to the feeding solution parallel to the 

pharmaceuticals after 53 days (Figure 28a and Figure 28b). The higher inflow 

concentrations in the inhibited columns are due to residual bromide in the NaN3. The 

mean bromide travel velocity was calculated from the time when 50 % of the outflow 

concentration was met. The time of this inflection point represents the mean travel 

velocity (Boulding and Ginn, 2003). The bromide travel time for each column was derived 

after curve fitting via Origin™ from the Boltzmann function. The calculations were given 

in the supplementary materials (SM 8). The mean travel time for bromide over all columns 

was 3.7 days (3.3 to 4.4 days). This results in an overall mean travel velocity of 

0.135 m/day. The mean travel time for the uninhibited columns was 4.0 days while the 

mean travel time for the inhibited columns was 3.4 days. One explanation of this faster 

travel time within the inhibited columns would be due to the missing microorganisms, 

including the missing sorption effects of the associated biofilms (Wunder et al., 2011). 
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However, the overall SOM within the presented study was rather small with values 

between 0.13 to 0.23 wt.%. Therefore, sorption seems to be of minor relevance for these 

experiments. This was confirmed by the results from the eluted soil samples which were 

taken after the end of the column experiment where the soil samples showed only 

negligible concentrations of BEZ and CBZ. According to the travel times of BEZ and CBZ 

which were each contrarily in the inhibited and the uninhibited columns (see SM 9), this 

variation might possibly result from the temporal resolution of the sampling events. 

Mean travel times for CBZ were calculated as 4.7 days which is around 1 day slower than 

the bromide travel time. Mean BEZ travel time was calculated as 4.2 days. This is in 

accordance with contemporary literature, where the smaller bromide ion is expected to 

be more mobile and travel faster than larger molecules (Ptak et al., 2004). The travel times 

were also used to calculate retardation factors for CBZ and BEZ which were 1.26 and 1.14, 

respectively. The observed travel times of BEZ and CBZ were in the same range as the 

small sorption and retardation rates of other lab-scale transport studies: 

BEZ retardation was determined in an irrigation setup on unsaturated columns with 1.46 

(Siemens et al., 2010). Biodegradation batch test on BEZ in river sediment found sorption 

as well of minor importance (Kunkel and Radke, 2008). Ternes et al. (2007) predicted 

poor sorption rates to soil (KOC) from KOW values for BEZ and CBZ. CBZ showed no sorption 

during unsaturated column experiments (Patterson et al., 2011) and as well negligible 

sorption to sterilized sediment in batch test (Martínez-Hernández et al., 2014). Only small 

retardation factors of 1.8 could be detected during the percolation through sand-filled 

unsaturated columns (Scheytt et al., 2006). Similar CBZ retardation rates between 1.06 

and 1.37 were calculated from saturated column studies with thermal treated sediment 

(Muller et al., 2013). Theoretical retardation was determined between 2.1 to 3.1 in soils 

irrigated with treated wastewater (Durán-Álvarez et al., 2012). Saturated-column studies 

with river sediment showed higher retardation between 5.3 at pH 4 and 3.6 at pH 8 

indicating only a weak dependency of the pH (Schaffer et al., 2012). CBZ retardation was 

reported to increase with increasing amounts of SOM (Drillia et al., 2005; Chefetz et al., 

2008; Yu et al., 2009). This was as well shown for CBZ and BEZ in sterilized soil 

experiments (Revitt et al., 2014). 
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Figure 28, a-d: Inflow and outflow concentrations of the uninhibited (a) and inhibited (b) bromide columns and 
of the uninhibited (c) and inhibited (d) chloride columns. The grey line marks the beginning of pharmaceutical 
addition. 

Chloride was already present in the used treated wastewater (Figure 28c and Figure 28d). 

The chloride effluent concentrations were always higher than in the inflow for all 

columns. This shows that the effect of evaporation was working for conservative species 

during the whole experiment under both, inhibited and uninhibited conditions. The same 

effect was expected for the pharmaceuticals as well. Due to a rain event shortly before the 

final abstraction at the WWTP Neureut, the chloride concentrations in the autoclaved 

water (starting from day 53) were smaller than the preceding concentrations during the 

adaption phase (first 53 days). This can be seen by a drop of the red inflow line in Figure 

28c and Figure 28d where the concentrations decreased to a lower level. The effluent 

concentrations follow this trend and stabilized again with a shift of approximately 

10 days. Because of this concentration decrease and the subsequent stabilization period, 

the following accumulation considerations were only calculated for the last 69 days of the 

experiment (May 31th 2012 to August 8th, 2012). Focusing on this 69 day period ensured 

constant and uniform flow and transport conditions 12 days after the onset of the 

pharmaceutical spiking. 
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4.3.3. Biodegradation 

Due to separation of the experiments into a sterile (inhibited) and a non-sterile 

(uninhibited) environment, biodegradation and elimination effects could be observed. 

The uninhibited columns showed almost complete degradation of BEZ after a short initial 

concentration increase of up to 7 µg/l in all three columns (Figure 29a). This short peak 

is attributed to the adaption of the microbiology to the new introduced carbon source. A 

second peak which started after around 100 days is possibly a result of a one-day 

overheating inside the chamber with temperatures climbing up to 50 degrees for some 

hours. As a result, the microbiological activity might be either decreased or even stopped. 

The high temperature event matches as well with travel velocity as the outflow 

concentrations rise between 3 to 8 days after the heating event. A higher resolution was 

not available as the sampling interval was seven days. Desorption of adsorbed BEZ seems 

unlikely as this peak did neither show in the inhibited columns of BEZ (Figure 29b) nor 

for the CBZ concentrations. 

The inhibited-columns (Figure 29b) effluent showed concentrations in the range of the 

inflow or above during the whole experiment. As biodegradation effects are of negligible 

relevance here, this difference can solely be attributed to accumulation. 

Half-lives for BEZ and CBZ were calculated assuming first-order degradation kinetics and 

by using the mean inflow and effluent concentration of the uninhibited columns together 

with the mean travel times. Concentrations were corrected by the evaporation rates 

(Table 13). Sorption was reflected as well by considering the mean mass balance of the 

inhibited columns (see Table 13), as they should not feature any degradation and 

therefore the difference in their mass balance must be either attributed to measurement 

errors or to sorption. While sorption could not be proven by the elution test it was 

neglected for half-life calculation. BEZ showed a mean half-life of 1.3 days while the mean 

half- life for CBZ was 9.7 days. 
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Figure 29, a-b: Inflow and outflow concentrations of bezafibrate of the uninhibited (a) and inhibited (b) 
columns. 

Half-lifes of BEZ were in accordance with literature values as shown below. For better 

understanding, some half-lives needed to be translated from the original results by first-

order kinetics: 

BEZ half-lives were determined in bed sediments between 4.3 to 8.4 days (Kunkel and 

Radke, 2008). Aerobic soil aquifer treatment column experiments on lab scale operated 

with treated wastewater showed BEZ half-lives < 1.5 days (Schmidt, 2014). BEZ 

elimination in aerobic sand columns showed half-lives between 0.7  to 1.2 days (Maeng et 

al., 2011). BEZ was investigated in a setup irrigating natural soil with spiked treated 

wastewater in Israel. BEZ half-lives were determined in microcosm studies between 

0.5 days to 1.2 days (Grossberger et al., 2014). 

In contrast to BEZ, CBZ (Figure 30a and Figure 30b) did show much smaller mass balance 

differences between the inhibited and the uninhibited setup (Table 13). However, the 

mean CBZ half-life of 9.7 days is inconsistent to other soil column experiments where 

biodegradation of CBZ is mostly reported to be negligible (Scheytt et al., 2006; Monteiro 

and Boxall, 2009; Rauch-Williams et al., 2010; Maeng et al., 2011; Grossberger et al., 

2014). Calculated half-lives were reported from microcosm studies with 69.7  to 92.6 days 

(Lam et al., 2004), from water/sediment batch studies with 328 days (Loffler et al., 2005), 

and from anaerobic column studies simulating managed aquifer recharge with > 100 days 

(Patterson et al., 2010). One reason for the inconsistent CBZ results might be the 

measurement error of the pharmaceutical analyses of our experiment. Besides, the high 

CBZ elimination rates might also be explained by the higher temperature of the column 

experiments. Comparing the typical laboratory temperature of 20°C or even colder field 
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conditions with 35°C2 in the climatic chamber, microbiological activities are most likely 

increased. 

4.3.4. Pharmaceutical accumulation 

Considering conditions of constant in- and outflow to the columns, negligible sorption, 

and inhibited biodegradation, pharmaceutical concentrations should reach higher 

concentrations in the effluent than in the feeding water due to the evaporative water loss. 

For uninhibited conditions, at least biodegradation needs to be considered which might 

lead to lower effluent concentrations compared to the effluent concentrations of the 

inhibited columns. 

For BEZ (Figure 29b) and CBZ (Figure 30b), the columns partly show the expected 

accumulation within the single experiments. For all columns, the inflowing concentration 

(red line) starts to increase at the spiking date and establishes a constant inflow level 

while the effluent concentrations increase with approx. 5 days delay. Especially for 

column I2 (blue line), both substances show a clear accumulation with higher effluent 

than influent concentrations after ~80 days. The other columns only show a slight 

accumulation. The CBZ concentration in column I1 is even slightly reduced compared to 

its inflow. Due to these variations and the replicate experimental setup, the following 

accumulation calculations were done as arithmetic mean over the inhibited and the 

uninhibited columns, respectively. 

While there are many ways to decrease the concentrations (sorption, degradation, 

precipitation) of pharmaceuticals within the experimental setup, only evaporative 

processes can increase concentrations in a closed experimental environment. Therefore, 

the positive results of BEZ and CBZ under inhibited conditions give strong evidence of an 

evaporative pharmaceutical accumulation. 

While BEZ showed, the expected reduction in the effluent concentration due to 

biodegradation (Figure 29a), CBZ (Figure 30a) concentrations in column U2 (blue line) 

showed accumulation even under uninhibited conditions. The results for CBZ from this 

uninhibited column indicate the potential for accumulation under conditions with active 

                                                        
2 The temperature during the experiment was not 35°C but 30° as it is mentioned multiple times in the 
publication. 
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microbiological degradation processes. Thus accumulation of CBZ may occur also under 

real world conditions in the field. 

 

Figure 30, a-b: Inflow and outflow of the CBZ concentration of the uninhibited (a) and the inhibited (b) 
columns3. 

For a better comparison of evaporation rates and accumulation rates, accumulation 

factors were calculated for each column by dividing the mean outflow concentration by 

the mean inflow concentration. This was only done over the period of the last 69 days, 

assuming stable flow and accumulation conditions. A weighted mean was not calculated 

due to some data gaps in the analysis results. For the water flow, the value was calculated 

by diverting the mean inflow rate by the mean outflow rate. Final factors as given in Table 

13 were calculated as mean from the three replicates of the uninhibited and inhibited 

columns, respectively. The flow rate thereby shows mean evaporation factors between 

1.21 and 1.22 for water. Mean chloride factors were in the same range with 1.28 to 1.29 

while mean bromide accumulation factors were slightly higher ranging from 1.24 to 1.42. 

Considering bromide as conservative tracer, this range is assumed to be the maximum 

accumulation for persistent substances within this experiment under the given 

conditions. Mean factors of the inhibited columns for e.g. BEZ and CAR were in similar 

ranges than the evaporative water loss, therefore indicating that no relevant sinks had 

been neglected. Factors smaller one, for CBZ and especially BEZ in the uninhibited 

columns, indicate the amount of biodegradation during the percolation. One single result 

from CBZ in column U2 (Figure 30a) even indicated the potential of accumulation under 

uninhibited conditions with an accumulation factor of 1.03. 

                                                        
3 The concentrations scale of carbamazepine in all experiments of this publication was not ng/l but µg/l. All 
discussions and results are based on the actual concentration scale. 
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Table 13: Accumulation factors and mass balance as mean of the each three inhibited and uninhibited replicate 
columns calculated for the final 69 days of the experiment. Numbers in brackets give the standard deviation 
(n=3). 

 
Uninhibited (U1, U2, U3) Inhibited (I1, I2, I3) 

 
Mean 

concentration 

accumulation 

factor 

Mean mass 

balance 

Mean 

concentration 

accumulation 

factor 

Mean mass 

balance 

 
cout/cin [-] mout-min [%] cout/cin [-] mout-min [%] 

Chloride 1.28 (± 0.06) 3.4 1.29 (± 0.03) 2.6 

Bromide 1.42 (± 0.07) -1.5 1.24 (± 0.08) -9.4 

Lithium 1.28 (±0.06) -17.4 1.16 (± 0.04) -6.2 

Bezafibrate 0.14 (± 0.04) -83.3 1.20 (± 0.07) -6.5 

Carbamazepi

ne 

0.86 (± 0.12) -31.6 1.20 (± 0.29) -6.2 

 Mean evaporation 

factor 

 Mean evaporation 

factor 

 

 Flow ratein/Flow 

rateout [-] 

 Flow ratein/Flow 

rateout [-] 

 

Water 1.22 (± 0.03) -18.3 1.21 (± 0.04) -17.6 

 

4.3.5. Relevance and transfer of the results with regards to risk assessment for 

BEZ and CBZ 

The presented accumulation experiment was setup close to conditions observed in the 

LJV. Therefore the relevance of the results and their transferability to other field 

conditions needs to be discussed. The experimental accumulation factors describe a setup 

with very uniform climate, irrigation and contamination conditions. Comparing this to the 

real conditions in the LJV, temperatures and contaminant concentrations might shift in 

daily patterns including shifting evaporation rates and contamination peaks and lows. On 

the other hand, irrigation is usually not applied continuously but during intense times 

with lower evaporation (e.g. morning and evening). Therefore, real flow rates will be 

much higher with subsequently lower evaporation shares. Plant uptake and photo-

degradation effects might reduce the pharmaceutical concentrations additionally. Taking 
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all this into account, the obtained accumulation factors can be seen as an orientation to 

upper limits and worst case scenarios. 

Environmental concentrations were reported by Zemann et al. (2014) with mean CBZ 

concentrations of 74 ng/l and a maximum detection of 500 ng/l in groundwater of the 

LJV. Concerning a risk assessment, a “predicted no-effect concentration” (PNEC) 

consumend via drinking water for humans for CBZ was reported with 232 µg/l by 

Cunningham et al. (2010) and with 7.86 µg/l by Khan et al. (2015). A drinking water 

guideline value for CBZ was derived with 1 µg/l (Schriks et al., 2010). Kümmerer (2008) 

suggested a provisional drinking water limit of 50µg/l. Consequently, reported 

concentrations in groundwater of 211 ng/l detected in Tunesia (Fenet et al., 2012) and 

the 500 ng/l reported from Jordan (Zemann et al., 2014) were therefore uncritical. 

Corresponding with its degradability, BEZ was only detected in surface water of the LJV 

with 89 ng/l (Zemann et al., 2014). Discussing the risk assessment of BEZ, no mutagen or 

genotoxic effects could be found for BEZ and its photoproducts (Isidori et al., 2007). A 

PNEC for humans via drinking water was assessed with 39.3 µg/l (Khan et al., 2015). The 

Australian drinking water guideline calculated a threshold for drinking water for a 

therapeutic dose of BEZ with 300 µg/l (EPHC-NHMRC-NRMMC, 2008). Kümmerer (2008) 

suggested a provisional drinking water limit of 35 µg/l. Consequently, the environmental 

risk of BEZ needs to be considered despite its good degradability and the published 

guideline values which suggest that there is no acute concern regarding the 

concentrations in the LJV. 

Given that groundwater concentrations already reach PNEC of e.g. CBZ, it must be 

mentioned, that due to treatment and purification processes prior to consumption of 

ground- and surface water, concentrations in drinking water are usually very low and 

considered unproblematic (Webb et al., 2003; Schwab et al., 2005; Houeto et al., 2012). 

Considering closed cycles, where the local groundwater is used again for irrigation, a long-

term accumulation of persistent substances needs to be taken into account. However, in 

such closed-loop situations, also salt will enrich in the irrigation water, possibly causing 

soil salinization prior to hazardous pharmaceutical concentration levels. 
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4.3.6. Inconsistencies within experiments and results 

Despite a regular refreshment of the feeding solution, the inflow concentrations of many 

substances showed variations of up to ~20 %. In the outflow concentrations, these 

variations cannot always be distinguished from the natural variations which result from 

preferential flow paths in unsaturated soil. Such variations were observed in numerous 

unsaturated percolation experiments documented in the literature (Lewis and Sjöstrom, 

2010). To address this issue, calculations in the paper rely on mean values. Some data 

gaps (missing samples) needed to be filled as well, which was mostly done using average 

values of the previous and the following samples. For the bromide inflow concentration, 

the first sample at the beginning of spiking is missing, as the feeding solution ran dry for 

the uninhibited columns due to a technical problem. This value therefore was taken from 

the inhibited feeding solution, which was based on the same wastewater. 

Variations of the experimental setup, i.e. reduction of the flow rate would possibly have 

fostered the validity of the results. Though, due to possible interpretation of the results 

for the LJV, concentrations, flow rates and evaporation rates were not elevated artificially. 

4.4. Conclusions 

To investigate the hypothesis of evaporative accumulation of pharmaceuticals in 

groundwater under arid climate conditions, unsaturated-column studies were performed 

in a climatic chamber. The experiments were designed analogous to the use of treated 

wastewater in irrigated agriculture such as the Jordan Valley. The analysis focuses on two 

pharmaceuticals, the more easily biodegradable bezafibrate and the rather persistent 

carbamazepine. Experiments were conducted under close-to-natural conditions. A 

control was run with a toxic feeding solution to inhibit microbiological activities. For each 

environmental condition, three parallel columns were operated as replicate with similar 

flow conditions. Based on the results, the following conclusions can be drawn: 

 Evaporative enrichment of pharmaceuticals must be taken into account under arid 

conditions. In the experiment, columns with inhibited microbiological activity 

showed higher concentrations of the pharmaceuticals carbamazepine and 

bezafibrate in the outflow water compared to the inflowing water. 

 Biodegradation processes during groundwater recharge might effectively prevent 

concentrations from becoming higher than in the irrigation water for most 

pharmaceuticals. For columns with uninhibited microbiology, outflow 
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concentrations remained lower (bezafibrate) or equal (carbamazepine) compared 

to the inflow concentrations. 

 The observed microbiological degradation of carbamazepine is higher at 30°C than 

in comparable studies from the literature at 20°C. Carbamazepine showed losses 

of approx. 30 % along the 50 cm soil passage with mean travel times of 4.7 days. 

 For persistent pharmaceuticals and micro-pollutants, enrichment can occur at the 

same rate as the well-documented enrichment of salts. For columns with inhibited 

microbiology, both bezafibrate and carbamazepine showed enrichment similar to 

that of chloride. 

Consequently, the observed concentrations provide conclusive evidence that a 

sufficiently persistent pharmaceutical with negligible biodegradation can accumulate in 

soil water if irrigated under arid conditions. The hypothesis of evaporative enrichment in 

arid environments therefore can be accepted for the given experiment conditions. Further 

research is required with similar methods to investigate the accumulation risk of other 

persistent substances such as e.g. artificial sweeteners or iodinated X-ray contrast media. 
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4.7. Supplementary materials (SM) 

SM 6: Schematic column setup (left). Columns arrangement on scales named U1, I1, U3, I3, U2 and I2 from left 
to right (right top). Storage fridge and peristaltic pumps (right bottom). 

 

 

 

 

SM 7: Chloride, bromide and water mass balances and the mean flow rate calculated over the whole experiment 
time. 

Column 

number 

Mass balance Mean 

inflow 

Mean 

outflow  

 H2O Cl- Br- H2O H2O 

 [%] [%] [%] [ml/day] [ml/day] 

U1 -18.3 -1.6 5.6 122.9 98.7 

U2 -18.3 -4.1 -1.0 122.9 103.9 

U3 -18.3 1.7 12.8 122.9 98.7 

I1 -17.6 5.1 7.9 121.8 97.4 

I2 -17.6 2.5 -3.1 121.8 98.2 

I3 -17.6 8.6 2.8 121.8 121.8 
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SM8-1: Bromide concentrations and derived Boltzmann fit for column U1 (uninhibited). 

 
 

 

SM8-2: Bromide concentrations and derived Boltzmann fit for column U2 (uninhibited). 

  

 

SM8-3: Bromide concentrations and derived Boltzmann fit for column U3 (uninhibited). 
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SM8-4: Bromide concentrations and derived Boltzmann fit for column I1 (inhibited). 

 
 

 

SM8-5: Bromide concentrations and derived Boltzmann fit for column I2 (inhibited). 

 
 

 

SM8-6: Bromide concentrations and derived Boltzmann fit for column I3 (inhibited). 

 
 

 

 



 Accumulation of Pharmaceuticals in Groundwater under Arid Climate Conditions 

 121 

 

SM 9: Travel times of bromide, BEZ and CBZ for all columns. 

 
Bromide travel time CBZ travel time BEZ travel time 

 
[days] [days] [days] 

U1 4.4 5.2 4.5 

U2 3.7 5.0 3.8 

U3 3.8 4.6 4.1 

I1 3.5 4.7 4.6 

I2 3.5 4.2 4.1 

I3 3.3 4.5 4.2 

Mean 3.7 4.7 4.2 

Mean uninhibited 4.0 4.9 4.1 

Mean inhibited 3.5 4.5 4.3 
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5. Conclusions and Perspectives 

The accumulation potential of different pharmaceuticals under arid climate conditions 

was investigated within the framework of a multilateral water management project 

(BMBF-SMART) for the area of the Lower Jordan Valley. The two step approach included 

long term field investigations combined with unsaturated column percolation tests under 

laboratory conditions. 

The investigated substances were chosen on the basis of a previously conducted 

screening campaign in 2007 which showed higher concentrations of the X-ray contrast 

media diatrizoic acid in groundwater in comparison to the related surface water and 

treated wastewater inflow and therefore indicated a possible accumulation. The local 

setup provides favorable conditions for accumulation as an intensive reuse of treated 

wastewater in irrigation is combined with the usage of locally pumped groundwater, high 

temperatures and evaporation rates, almost no precipitation and the closed nature of the 

Dead Sea basin. Samples were taken from groundwater, surface water and treated 

wastewater in three areas of the valley (north, middle, south) and from two Wadis 

(Shueib, Kafrein) of the eastern escarpment over a period of five years (2008 – 2012). 

These study areas were chosen in order to represent aquifer systems with expositions to 

different regimes of anthropogenic pollution. The shallow alluvial aquifers of the Jordan 

Valley on the one hand, where irrigation water includes large volumes of treated 

wastewater, and on the other hand the limestone aquifer of the steep declining wadis, 

where urban pollution sources impact the karstic environment. 

The results of the sampling campaigns show first and foremost the prevailing occurrence 

of multiple pharmaceuticals in groundwater, surface water and treated wastewater over 

the whole investigated area. This indicates that the local water sources are strongly 

affected by anthropogenic influences. In particular, the two X-ray contrast media 

diatrizoic acid (79 % detection rate) and iopamidol (~50 %) were present in 

groundwater samples of the whole area. Other substances like carbamazepine, ibuprofen 

or fenofibrate were detected in groundwater samples as well but with much smaller 

detection rates (< 14 %). 

For the Lower Jordan Valley, the pharmaceutical detections can mainly be attributed to 

the intensive reuse of treated wastewater for irrigation in agriculture. Concentrations and 
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detection rates increase from north to south along the flow of the King Abdullah Canal, 

thereby reflecting the environmental impact of Amman`s biggest wastewater treatment 

plant As Samra. The detections in groundwater of Wadi Shueib and Wadi Kafrein originate 

most likely from leaking sewers or cesspits and illegal effluent disposal. 

The data evaluation regarding the supposed accumulation of pharmaceuticals revealed 

particular trends for the two X-ray contrast diatrizoic acid and iopamidol in comparison 

to other substances. Almost all detected substances showed decreasing concentrations 

along their transport from wastewater sources to surface water and finally to 

groundwater with a roughly 1 log reduction from one compartment to the next. This is 

mostly due to dilution but might as well be attributed to microbiological degradation or 

sorption effects. The sole exception was diatrizoic acid which showed similar 

concentrations in all water types while it was mostly detected in groundwater and beside 

was almost always absent in treated wastewater. This would undergird the accumulation 

hypothesis. However, this observation was made for both investigated areas, the Lower 

Jordan Valley and the Wadis. While evaporation plays an important role in the alluvial 

aquifers of the Lower Jordan Valley, the limestone aquifers in Wadi Shueib and Kafrein 

feature an unsaturated zone of 50 to 70 m and hence should not be subjected to 

evaporative processes. The tempo-spatial occurrence of iopamidol showed increasing 

detection rates over the five year investigation period which might as well be interpreted 

as an indicator for slowly increasing concentrations caused by evaporation. However this 

trend could again be observed for all investigated areas, including Wadi Shueib. Improved 

detection limits over time could be ruled out after consulting the analyzing laboratory. 

In respect to concentration and the tempo-spatial evolution in groundwater, surface 

water and treated wastewater, the non-ionic X-ray contrast media iopamidol and the ionic 

diatrizoic acid showed a clear different environmental behavior. Possible reasons might 

be caused either by a more recent introduction of the non-ionic iopamidol or by its lower 

persistence. As both substances were reported with a similar environmental persistence 

the findings points to the more recent introduction of iopamidol. This goes along with 

reported changes in X-ray contrast media prescription practice for Jordan which the 

author therefore suggests as reason for the observed patterns. Information obtained from 

different hospitals as well as literature indicates that the ionic contrast media diatrizoic 

acid was banned for intravascular application between 2000 and 2006 due to adverse 

health effects. The non-ionic iopamidol as one possible substitute in radiology diagnostics 
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was afterwards used predominantly. Those observations fit to the tempo-spatial 

evolution of the two substances in the study area that showed a constant occurrence of 

diatrizoic acid combined with a spreading of iopamidol. The observed diatrizoic acid 

therefore should be described as residual concentration resulting from its high 

environmental persistence. Within the alluvial aquifer of the Lower Jordan Valley, such 

residual concentrations might easily be explained by the combination of slow 

groundwater movement and the constant reuse use of locally pumped groundwater for 

irrigation. The karstic aquifers in Wadi Shueib and Wadi Kafrein however would release 

this pollutant much faster via the springs. A possible explanation for the observed 

concentrations at the springs are residual concentrations which are still present in the 

huge unsaturated zone (50 - 75 m) and the matrix of the limestone aquifers after years of 

exfiltration from leaking sewers and cesspits. Nowadays, they are leaching towards the 

groundwater and the main conduit network. 

Summarizing this discussion, an accumulation of pharmaceuticals could neither be 

deduced from the available dataset nor could the assumption be declined. Instead 

persistent pharmaceuticals particularly showed their potential as suitable tracers to 

backtrack and interpret anthropogenic impacts or pollutant fluxes. Another assessment 

evaluating the tracer potential of pharmaceuticals was performed within this study 

including additional anthropogenic wastewater indicators like E. coli and nitrate. For 

Wadi Shueib and Kafrein, the correlation of diatrizoic acid and nitrate concentrations 

showed a significant, almost linear, correlation of both substances in all groundwater 

resources throughout the investigated period. This leads to the conclusion that nitrate 

concentrations result from the same source as the pharmaceuticals. Since X-ray contrast 

media were not applied to livestock in Jordan, the infiltration of slurry can be neglected 

which makes infiltrating sewage the most likely source. Diatrizoic acid therefore was 

utilized successfully as an anthropogenic tracer. 

In order to quantify the anthropogenic influence to the karst aquifer, a combined 

assessment of the “pharmaceutical detection rate”, which describes the number of 

detected substances at one sampling point, together with E. coli and nitrate 

concentrations, was performed. For the same area, the spatial occurrence of those 

pollution indicators could be linked to the hydrological setting (flow direction) and the 

distance to the city Salt. The highest rates of all three indicators could be observed 

downstream of the urban areas, while the upstream wells and springs were unpolluted 
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most of the time. The significant correlation of all three indicators recommends the 

pharmaceutical detection rate as a suitable tool for pollution indication on a semi-

quantitative level as it makes use of single scattered detections of different substances. 

Restrictions must be made with respect to the number of analyzed pharmaceuticals, as 

the detection rate only reflects the investigated substances which always might only be a 

small share of the unknown total number. However, the higher the number of analyzed 

substances, the higher is the significance of the pharmaceutical detection rate. 

While pharmaceuticals showed their potential as suitable tracers on various levels within 

this study, they unfortunately offer a restricted applicability. High costs for analysis are 

only one reason. Many substances are subject to sorption or degradation processes and 

thereby enhance the natural attenuation process which is highly appreciated in reducing 

xenobiotics or other anthropogenic trace substances as a pretreatment step before water 

abstraction. Distinct substances like some persistent X-ray contrast media might feature 

the potential as ideal tracers and can add valuable information if their presence in 

groundwater is evaluated and interpreted in an adequate way. However, concerning a 

sustainable groundwater management it is unwanted to introduce such substances 

artificially into drinking water aquifers. 

As the accumulation of pharmaceutical substances could not be validated in the field 

during the five year observation period of this study, the question remains whether 

persistent pharmaceuticals can accumulate under “suitable” conditions. Processes like 

soil salting as result of inadequate irrigation in arid areas seems very comparable to the 

assumed enrichment of persistent pharmaceuticals in the Lower Jordan Valley. In 

addition to the described field investigations, the hypothesis of evaporative 

pharmaceutical accumulation under arid climate conditions was subsequently addressed 

in laboratory experiments based on unsaturated columns which were trickled with 

treated wastewater in a climatic chamber. 

The experimental setup was designed as analogy to the use of treated wastewater in 

irrigated agriculture such as found in the Lower Jordan Valley. This was done to evaluate 

the risk of the long term application of treated wastewater to the area. In order to create 

near to natural conditions, the columns were operated with treated wastewater, adapted 

flow rates, temperature and humidity according to measured data from the Lower Jordan 

Valley. The analysis focused on two pharmaceuticals, the more easily biodegradable lipid 
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lowering agent bezafibrate and the rather persistent antiepileptic carbamazepine. By 

operating different columns with active and inhibited microbiological environment, the 

most important aspects of pharmaceutical transport (sorption, degradation) were 

investigated along with their evaporative enrichment. For each environmental condition, 

three parallel columns were operated as replicates with similar flow conditions. 

The column experiments showed an accumulation of both pharmaceuticals under 

inhibited microbiological conditions with higher concentrations of bezafibrate and 

carbamazepine in the outflow, compared to the inflow of the columns. The hypothesis of 

evaporative enrichment of pharmaceuticals under the given conditions can therefore be 

accepted and is furthermore a process which must be taken into account under arid 

conditions. The observed accumulation occurred at the same rate for bezafibrate and 

carbamazepine and was similar to the enrichment of chloride and in the ratio of the 

evaporated water. For persistent pharmaceuticals and micro-pollutants, enrichment 

therefore can occur at the same rate as the well documented enrichment of salts. 

Biodegradation processes during groundwater recharge might effectively prevent 

concentrations from becoming higher than the irrigation water for most pharmaceuticals. 

This was observed in the experiments, where columns with uninhibited microbiology 

showed lower (bezafibrate) or equal (carbamazepine) outflow concentrations compared 

to the inflow concentration. The observed biodegradation of carbamazepine (half-life: 9.7 

days) is higher at 30°C than in comparable studies from literature under 20°C. This might 

be attributed to a more active microbiological community at higher temperatures. 

Carbamazepine showed losses of approx. 30 % along the 50 cm soil passage with a mean 

travel time of 4.7 days. Bezafibrate showed a biodegradation (half-life: 1.3 days) similar 

to results reported from comparable studies. The loss along the column was around 80 % 

with a mean travel time of 4.2 days. Retardation rates were determined as well with 1.26 

for carbamazepine and 1.14 for bezafibrate. 

One single column showed enrichment of carbamazepine for the uninhibited 

microbiological environment, therefore indicating that an accumulation in the field might 

be possible as well. However, such enrichment might only take place under idealized 

conditions where other persistent substances like salts would enrich in parallel. 

Regarding a risk assessment, the pharmaceutical concentration levels found in the Jordan 

Valley were far below the levels of e.g. chloride or other salts. They therefore should be 
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given a higher priority as effects like soil salting, inedibility of drinking water or harmful 

effects on plant growth will occur prior to toxic pharmaceutical levels. Even though the 

experiments where conducted under near to natural conditions, they may still 

overestimate the real conditions in the Lower Jordan Valley (temperature changes, 

intermitted irrigation etc.). Against this background, combining the pharmaceutical 

concentrations documented for the Lower Jordan Valley and their temporal fate together 

with the laboratory result, no risk is arising regarding harmful pharmaceutical levels for 

humans. From this follows, that, from a pharmaceutical point of view, the use of treated 

wastewater in irrigation can be continued without objection for the foreseeable future. 

However, the use of treated wastewater in agricultural irrigation should be monitored 

carefully, as other wastewater borne ingredients like endocrine disruptors or heavy 

metals bear their own risk potential. 

Within the scope of this work, only four sampling campaigns were conducted. While the 

results are valuable to characterize the pharmaceutical concentrations and the 

anthropogenic impact to the groundwater resources in the Lower Jordan Valley, 

especially the question of pharmaceutical accumulation in the field still needs to be 

evaluated on a much wider data base in order to gain statistical evidence. Hence, further 

monitoring campaigns are highly recommended. As shown within this work, 

pharmaceutical residues offer multiple evaluation possibilities with regard to 

anthropogenic contamination due to their unique origin. Other markers for sewage-born 

anthropogenic impacts may be cheaper to analyze, but mostly the combination of 

different substances gives distinct evidence of a contamination source. For example 

coliform bacteria might as well originate from livestock farming or nitrate and salts may 

bear geogenic backgrounds. 

In the future, other matters related to pharmaceuticals might become of interest, like the 

upcoming issue of antibiotic residuals in wastewater treatment plant effluents. Antibiotic 

resistances are a well-known problem in medicine and spread from hospital wastewater 

to treatment plants and further to the aquatic environment where they could already be 

detected in agricultural soils. Residual endocrine disrupters from birth control pills are 

under suspicion to be responsible for mutations observed in male fish for years. The 

release of pharmaceuticals into the environment is recently observed more critically and 

restrictions in effluent concentrations are already being discussed. As a consequence, 

decision makers are starting to include these substances in their environmental 
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monitoring concepts. Regarding the release of pharmaceuticals into the environment, the 

EU started in 2013 to add three substances (2 hormones and diclofenac) to the watch list 

of their water framework directive. Substances on this list are monitored and their impact 

on the aquatic environment is documented. Three antibiotics were added in 2015 and 

further measures are delayed until 2017. Australia implemented thresholds for 

pharmaceuticals in groundwater recharge and drinking water augmentation. The public 

awareness is nowadays increasing towards all kinds of contaminants, including 

pharmaceuticals. As of late, environmental politics are going towards precautionary 

principles like the restricted usage of pesticides and pharmaceuticals. Such principles 

might eventually substitute the end-of-pipe treatment that is actually practiced in 

wastewater treatment and might even lead towards a more sustainable management of 

pharmaceutical substances in the future. 
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