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Abstract We consider the problem of simultaneously and optimally clustering
the rows and columns of a real-valued I× J data matrix X = (xi j) by corre-
sponding row and columns partitions A = (A1, ...,Am) and B = (B1, ...,Bn),
with given m and n. We emphasize the need to base the clustering method on a
probabilistic model for the data and then to use standard methods from statis-
tics (e.g., maximum likelihood, divergence) to characterize optimum two-way
classifications. We survey some clustering criteria and algorithms proposed in
the literature for various data types. Special emphasis is given to the maximum
interaction clustering criterion proposed by the author in 1980. It can be shown
that it results as the maximum likelihood clustering method under a two-way
ANOVA model (with individual main effects, but cluster-specific interactions).
After a simple data transformation (double-centering) well-known two-way
SSQ clustering algorithms can directly be used for maximization.
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1 Two-way clustering problems

Two-way clustering means clustering, simultaneously, the rows and columns
of a data matrix X = (xi j)I×J . Synonymns are bi-clustering, co-clustering, or
block clustering. In practice, two-way clustering problems occur, e.g.,

• in microbiology (microarray measurements for I genes and J different times,
situations, or tissues); see, e.g., Martella et al (2008), Cheng and Church
(2000), Madeira and Oliveira (2004), Martella et al (2011), Martella and
Vichi (2012), Turner et al (2005)

• in marketing (purchase data for I consumers described by J social character-
istics); see, e.g., Baier et al (1997), Arabie et al (1988)

• in documentation (I documents or e-mails described by presence/absence
of J keywords); see, e.g., Dhillon et al (2003), Banerjee et al (2007), Li and
Zha (2006), Cho et al (2004), Cho and Dhillon (2008).

Many two-way clustering methods have been proposed since the beginning
of clustering activities in the 1970s (recent surveys were given by Van Mechelen
et al, 2004; Madeira and Oliveira, 2004; Charrad and Ben Ahmed, 2011; Vichi,
2012; Govaert and Nadif, 2013), but the possibility to record automatically
huge sets of data in various application fields has meanwhile increased the
importance of two-way clustering for an adequate and informative analysis of
data.

In this paper we consider a real-valued data matrix X = (xi j)I×J with I
rows, J columns and try to find an m-partition A = (A1, ...,Am) of the row set
I = {1, ..., I} with m classes, and an n-partition B = (B1, ...,Bn) of the column
set C = {1, ...,J} with n classes, such that the joint m ·n-partition A ×B =
{Ar × Bs|r = 1, ...,m,s = 1, ...,n} of the set of pairs {(i, j)|i ∈ I , j ∈J }
(cells of the matrix X) together with a suitable parametric characterization of
the classes fits, approximates or reproduces optimally the hidden row by column
structure (if any) in the given data matrix X . Obviously, such a formulation
requires the specification of some “structure" that should be reconstructed from
the data, and some optimality criterion that should be optimized. The multitude
of proposed two-way clustering algorithms can be largely explained by the
great number of choices for “structure" and “optimality".

We emphasize here the probabilistic approach where “structure" is described
by a parametric and block-specific probability distribution for the data Xi j.
Then, generally, the parameter estimates as well as the bi-clustering (A ,B)
are obtained by the maximum-likelihood (m.l.) approach. Thereby, the choice
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of a distributional model is highly dependent on the way in which the data
were obtained and on their interpretation as measurement values, associations,
frequencies, indicators, etc. In this respect we will consider

• association-type data for a two-mode data matrix (Sect. 2
• measurement-type values xi j with categorical factor levels i, j (Sect. 3)
• frequency-type values Ni j with factor levels i, j (contingency table; Sect. 4)
• object by variable measurements xi j (classical data matrix; Sect. 5)

and provide some exemplary probabilistic clustering approaches. For binary
variables we refer, e.g., to Govaert and Nadif (2005); Li (2005); Govaert and
Nadif (2007, 2008, 2013) and Nadif and Govaert (2010).

Note that we will not comment here on the choice of the numbers m,n of
classes (see, e.g., Schepers et al, 2008) and will present only the so-called “fixed-
partition" or “classification likelihood" approaches (see, e.g., Bock, 1996a,b).
Alternatively, probabilistic clustering approaches can also be formulated in
terms of mixture models (‘random-partition" approach) resulting in EM-type
algorithms and fuzzy bi-partitions in the form of posterior distributions (see,
e.g., Govaert, 1995; Govaert and Nadif, 2005, 2003, 2008, 2010; Bocci et al,
2006; Li and Zha, 2006; Martella et al, 2008, 2011). Other approaches use row-
and column-wise hierarchical clusterings or try to cover the set of IJ matrix
cells with suitably weighted, possibly overlapping “homogenous blocks" A×B
such as plaid methods (described by Lazzeroni and Owen, 2002; Turner et al,
2005) or additive clustering (as in Shepard and Arabie, 1979; Mirkin et al, 1995;
Wilderjans et al, 2013). See also the articles on multi-mode clustering in the
Special Issue on “Statistical learning methods including dimension reduction"
of the journal “Computational Statistics and Data Analysis" (vol. 52, 2007,
edited by H.-H. Bock and M. Vichi).

2 Clustering for association-type data

In this section we suppose that the data xi j represent association values that
measure how “close", “associated", or “interrelated" row i is to column j. Also
we assume a two-mode case, i.e., rows and columns refer to different sets (such
as customers and products, genes and time points, respectively). In this case a
classical two-way clustering criterion is provided by the SSQ:
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g(A ,B,µ) :=
m

∑
r=1

n

∑
s=1

∑
i∈Ar

∑
j∈Bs

||xi j−µrs||2→ minA ,B,µ (1)

where µrs ∈ R is a block-specific prototype value and µ the set of these values1

(Bock, 1980). This criterion amounts to approximating the given data matrix X
by an “ideal" block-matrix X̃I×J with the same value µrs in all cells of a block
(bicluster) Ar×Bs (for all r,s). Given that partial minimization with respect
to µ leads to the average values µ̂rs = x̄Ar×Bs in the blocks Ar×Bs of X , the
criterion (1) is equivalent to the following SSQ clustering criterion:

Qmin(A ,B;X) :=
m

∑
r=1

n

∑
s=1

∑
i∈Ar

∑
j∈Bs

||xi j− x̄Ar×Bs ||2→ min
A ,B

(2)

and to

k(A ,B;X) :=
m

∑
r=1

n

∑
s=1
|Ar| · |Bs| · ||x̄Ar×Bs ||2→max

A ,B
. (3)

In order to optimize these clustering criteria many algorithms (e.g., dou-
ble k-means) have been proposed; see, e.g., Bock (1980); Gaul and Schader
(1996); Baier et al (1997); Hansohm (2002); Vichi (2001); Castillo and Trejos
(2002); Cho et al (2004); Cho and Dhillon (2008); Rocci and Vichi (2008);
Van Rosmalen et al (2009); Schepers and Hofmans (2009); Martella and Vichi
(2012)

3 Clustering for factorial designs

In this section we consider the case where all data values xi j are measurements
of the same target variable which, however, depends on two categorical factors
U (rows) and V (columns) with categories in I = {1, ..., I} and J = {1, ...,J},
respectively. For example, in a diet experiment with many persons, U might
be the initial BMI (discretized body mass index, I = 30, say) of a person, V
the type of diet that this person applies (with J = 15 types, say), and xi j the
average loss of weight after a four-weeks diet for all persons with U = i and
V = j. Assuming a complete factorial design (i.e., observations were made for

1 ||x||means the absolute value |x| for x∈ R1 and the Euclidean norm for multivariate data (see Remark
2). For a set A, |A| means the number of elements of A.
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all IJ combinations (i, j) ∈I ×J ) the clustering problem consists in finding
(a given number m = 6, say, of) BMI classes A1, ...,Am and (a given number
n = 4, say, of) diet classes B1, ...,Bn that best describe the data. In this way, the
large number of categories can be reduced to a smaller and handy number of
category classes or “types".

Classical statistics analyzes such two-way configurations by ANOVA models
with random variables Xi j that are additively obtained from a total mean, row
and column main effects, interaction terms, and normal errors. In the clustering
framework we consider two such models: one with individual main effects, and
one with class-specific main effects. It appears that only the first one provides
new insights while the second one falls back to the criterion (2).

3.1 ANOVA clustering model with individual main effects

Here we assume that the existence of a hidden bi-clustering is exclusively
caused by block-specific interaction terms while main effects do not contribute
to the clustering aspect. In the framework of ANOVA this amounts to suppose
that Xi j are given, for a fixed bi-partition (A ,B), by the additive composition:

Xi j = c+ai +b j + γrs + ei j i ∈ Ar, j ∈ Bs,r = 1, ...,m,s = 1, ...,n. (4)

Here c is a fixed mean value, ai the individual main effect of category i of
U , b j the individual main effect of category j of V , and γrs the class-specific
interaction effect; the latter one is the same for all pairs (i, j) in the bicluster Ar×
Bs. The ei j are independent random error terms with ei j ∼N (0,σ2) where we
consider σ2 to be known here (but see Remark 1). In order to attain identifiability
of parameters, the following zero-means normalization is introduced:

ā• := ∑
I
i=1 ai/I = 0, b̄• := ∑

J
j=1 b j/J = 0,

γ̄•,s := ∑
m
r=1 |Ar| · γrs/I = 0, γ̄r,• := ∑

n
s=1 |Bs| · γrs/J = 0 for all r,s.

For estimating the unknown parameters c,ai,b j,γrs and the unknown (A ,B)
we use the m.l. approach. Due to the normality assumptions this amounts to
minimizing the SSQ:

Q̃(c,a,b,γ,A ,B) :=
m

∑
r=1

n

∑
s=1

∑
i∈Ar

∑
j∈Bs

||xi j− c−ai−b j− γrs||2→ min
c,a,b,γ,A ,B

(5)
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After some algebraic manipulations (or using derivatives) we obtain, for a
fixed bi-partition (A ,B), the following m.l. estimates:

ĉ = x̄•,• overall mean
âi = x̄i,•− x̄•,• and b̂ j = x̄•, j− x̄•,• individual main effects
γ̂rs = x̄Ar×Bs− x̄Ar,•− x̄•,Bs + x̄•,• class-specific interaction effects.

Inserting these estimates into (5) yields the clustering criterion:

Q̃min(A ,B) :=
m

∑
r=1

n

∑
s=1

∑
(i, j)∈Ar×Bs

(xi j− µ̂− âi− b̂ j− γ̂rs)
2 → min

A ,B
(6)

that can be shown, by algebraic transformations (see Bock, 1980; Schepers
et al, 2013), to be equivalent to the following maximum interaction clustering
criterion:

G(A ,B;X) :=
m

∑
r=1

n

∑
s=1
|Ar| · |Bs| · |γ̂(X)

rs |2 (7)

=
m

∑
r=1

n

∑
s=1
|Ar| · |Bs| · (x̄Ar×Bs− x̄Ar,•− x̄•,Bs + x̄•,•)2→ max

A ,B

where we have flagged γ̂
(X)
rs by the superscript X in order to emphasize the

corresponding data matrix X .
This clustering criterion was proposed by Bock (1980) on empirical grounds.

The previous argumentation shows that it derives from the probabilistic factorial
ANOVA approach (4). In Sect. 4 we will show that its minimization can be
easily performed by the algorithms that were developed for the SSQ cluster
criterion (2); so no specific algorithms have to be developed for (7).

Remark 1: It can easily be shown that the criterion (7) results as the m.l.
clustering criterion also in the case of an unknown variance σ2.

Remark 2: In case of vector-valued variables Xi j and observations xi j ∈ Rp the
ANOVA model (4) must be formulated with p-dimensional effects c,ai,b j,γrs

and ei j ∼Np(0, Ip). For this p-dimensional version the m.l. clustering ap-
proach yields the same clustering criteria as before (in particular, the max-
imum interaction criterion (7)) where ||...|| now is the Euclidean norm in
Rp.
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3.2 ANOVA clustering model with class-specific main effects

We may wonder what happens if we assume that in the ANOVA model (4) not
only the interactions, but also the main effects are class-specific. This amounts
to the additive model

Xi j = µrs + ei j = c+αr +βs + γrs + ei j i ∈ Ar, j ∈ Bs,r = 1, ...,m,s = 1, ...,n
(8)

with class-specific “block prototypes" µrs = c+αr +βs + γrs, typically with a
zero-mean standardization for the effects αr,βs,γrs. Note that for given {µrs}
the standardized effects are uniquely determined by c = µ̄•,•, αr := µ̄Ar,•− µ̄•,•,
βs = µ̄•,Bs− µ̄•,• and γrs = µ̄Ar,Bs− µ̄Ar,•− µ̄•,Bs + µ̄•,• such that the parameter
sets {µrs} and {c,ar,bs,γrs} are uniquely determined by each other. Therefore
only the µrs must be estimated.

Due to the normality assumption m.l. clustering is here equivalent to min-
imizing the total SSQ (1) with respect to {µrs} and (A ,B). Therefore all
statements of Sect. 2 apply and insofar also the clustering criteria (2) and (3)
are justified by a probabilistic model (Bock, 1980).

3.3 Maximizing the interaction criterion

Surprisingly it appears that the interaction criterion G(A ,B;X), (7), can be
(approximately) maximized by the same algorithms that have been developed
for minimizing the SSQ criterion Qmin(A ,B;Y ), (2), if the original data matrix
X is suitably transformed before (see also Bock, 1980). In fact:

Theorem 1. Maximizing the interaction criterion G(A ,B;X) from (7) is equiv-
alent to minimizing the SSQ clustering criterion Qmin(A ,B;Y ) from (2) where
the data matrix X has been replaced by the double-centered matrix Y = (yi j)I×J

with entries

yi j := xi j− x̄i,•− x̄•, j + x̄•,• for all i, j.
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Proof. It is easily seen that for all r,s:

ȳAr×Bs = x̄Ar×Bs− x̄Ar,•− x̄•,Bs + x̄•,• = γ̂
(X)
rs .

Therefore the interaction criterion G(A ,B;X) is identical to the criterion
k(A ,B;Y ) from (3). On the other hand, the well-known decomposition formula

I

∑
i=1

J

∑
j=1
||yi j||2 =

m

∑
r=1

n

∑
s=1

∑
(i, j)∈
Ar×Bs

||yi j− ȳAr×Bs ||2

︸ ︷︷ ︸
+

m

∑
r=1

n

∑
s=1
|Ar| · |Bs| · ||ȳAr×Bs ||2︸ ︷︷ ︸

= Qmin(A ,B;Y ) + k(A ,B;Y ). (9)

(where the left hand side is constant with respect to A ,B) shows that maxi-
mizing the criterion k(A ,B;Y ) is equivalent to minimizing the SSQ criterion
Qmin(A ,B;Y ) for the double-centered matrix Y . qed

4 Two-way clustering for a contingency table

In this section we consider again a two-way factorial design with two categorical
characteristics U and V as in Sect. 3, but here we assume that the entries xi j of
the data matrix X are counts Ni j and write X =N = (Ni j)I×J in this case. As an
example we may consider the N clients (contracts) of a car insurance company,
characterized by the profession U of the client and the brand V of the insured
car. Then Ni j is the number of clients with profession i and car make j. For the
company it can make sense to reduce the large numbers of categories I and J to
a smaller number m of (profession) classes Ar and a smaller number n of (brand)
classes Bs such that profession classes are, on the average, most predictive for
the brand class of a client, i.e., with a maximum interaction between both. The
resulting classes Ar,Bs and biclusters Ar×Bs might be the basis for calculating
adequate insurance premiums.

In contrast to Sect. 3 where normal distributions were involved, the new
scenario is modeled by a random sample of N items (clients) such that Ni j is the
number of items assigned to the category combination (i, j) (with ∑i j Ni j = N).
Then N = (Ni j) has a polynomial distribution Pol(N;(pi j)I×J) with unknown
cell probabilities pi j which are typically estimated by p̂i j := Ni j/N.
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In this framework “independence among row and column classes" is modeled
by the “hypothesis" H0:

P(Ar×Bs) = PU(Ar) ·PV (Bs) for all r,s

with P(Ar×Bs) := ∑i∈Ar ∑ j∈Bs pi j, PU(Ar) := ∑i∈Ar ∑
J
j=1 pi j,

PV (Bs) := ∑
I
i=1 ∑ j∈Bs pi j, and can be tested, for a fixed bi-partition (A ,B),

by the classical χ2 test. On the other hand, the contrasting idea of “maximum
interaction between row and column classes" is interpreted here in the way
that the χ2 test is maximally significant for rejecting H0, i.e., that the χ2 test
statistics, termed χ2 clustering criterion

C(A ,B) :=
m

∑
r=1

n

∑
s=1

(P̂(Ar×Bs)− P̂U(Ar) · P̂V (Bs))
2

P̂U(Ar) · P̂V (Bs)
→ max

A ,B
(10)

is maximal with respect to the bi-partition (A ,B). Here P̂ means the m.l. esti-
mate for the probability distribution P, e.g. with P̂U,V (Ar×Bs) = ∑i∈Ar ∑ j∈Bs p̂i j

= ∑i∈Ar ∑ j∈Bs Ni j/N.
In a more general context we note that the χ2 criterion (10) results as a

special case (for φ(λ ) := (λ −1)2) from the classical φ -divergence measure by
Csiszár:

Cφ (A ,B) :=
m

∑
r=1

n

∑
s=1

P̂U(Ar)P̂V (Bs) ·φ
(

P̂(Ar×Bs)

P̂U(Ar)P̂V (Bs)

)
→max

A ,B
(11)

where φ is an arbitrary convex function. This divergence clustering criterion
measures the deviation between the observed probability distribution P̂ and
the product distribution P̂U · P̂V for a given biclustering (A ,B). For φ(λ ) =
− logλ a Kullback-Leibler clustering criterion results. These criteria have been
proposed for clustering by Bock (1983, 1992, 2003, 2004), Celeux et al (1989,
χ2 criterion), Dhillon et al (2003) and Banerjee et al (2005, 2007). Note that
the usage of the χ2 criterion can be justified by theoretical considerations in
terms of maximum power, Bahadur efficiency etc. of the χ2 test (Bock, 1992).

In order to minimize the divergence criterion we may use the classical
alternating maximization scheme (generalized double k-means): Choose an
initial bipartition A (0),B(0) and then alternate between (i) partial maximization
with respect to the row partition A (for fixed B) and (ii) partial maximization
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with respect to the column partition B (for fixed A ). In order to conduct
these partial minimization steps Bock (1992, 2003, 2004) has proposed a k-
means-type algorithm that uses class-specific tangents (subgradients) of the
convex function φ (instead of class means as in the classical SSQ case) and
was therefore termed k-tangent algorithm. See also Dhillon et al (2003) and
Banerjee et al (2005, 2007). For a mixture-type approach see Govaert and Nadif
(2010, 2013).

5 Two-way clustering for an object by variable matrix

In the previous sections clustering of rows and columns of the data matrix
X = (xi j)I×J was performed in a symmetrical way such that the roles of rows
and columns could have been reversed without changing the results. This is
different in the case of an object by variable data matrix since, e.g., objects will
be independently sampled while variables might be more or less dependent.
Also the motivations for grouping objects and variables are different: objects
are assembled in groups because they are supposed to behave similarly (with
respect to all variables) whereas variables from the same group are supposed
to be dependent from each other while independence may hold for variables
of different groups. In this last section we sketch two approaches for modeling
bi-partition structures for X in the case of I objects and J continuous variables.
For more information see, e.g., Vichi (2012); Nadif and Govaert (2010); Govaert
and Nadif (2013).

In a probabilistic framework the rows xi = (xi1, ...,xiJ)
′ of X are considered

as a sample of I independent random (column) vectors Xi = (Xi1, ...,XiJ)
′ with

a distribution that depends on the group Ar of A = (A1, ...,Am) to which object
i belongs to. Any clustering B = (B1, ...,Bn) of the set of columns J (with
group sizes bs := |Bs|, s = 1, ...,n, ∑s bs = J) is supposed to split the set J of
variables into n mutually independent groups of variables. This also amounts to
splitting Xi into n subvectors Xi,B1 , ...,Xi,Bn such that Xi,Bs ∈ Rbs comprizes the
components Xi j of Xi that belong to class Bs. For notational convenience we as-
sume here that the ordering of components in Xi is such that all classes B1, ...,Bn

comprize contiguous sets of variables j ∈J such that Xi = (X ′i,B1
, ...,X ′i,Bn

)′.
A first clustering model is based on the J-dimensional normal distribution:
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Xi :=

Xi1
...

XiJ

=

Xi,B1
...

Xi,Bn

∼NJ(µ
(r)(B);Σ

(r)(B)) for i ∈ Ar (12)

(r = 1, ...,m) where object classes Ar are characterized by class-specific and
partitioned expectations µ(r)(B) ∈ RJ and J× J covariance matrices Σ (r)(B)
according to

µ
(r)(B) =

µr,B1
...

µr,Bn

 Σ
(r)(B) = diag(Σ (r)

11 , · · ·Σ
(r)
nn ) (13)

In particular, we then have, for all i ∈ Ar, that Xi,Bs ∼Nbs(µr,Bs ,Σ
(r)
ss ) with

independent subvectors Xi,Bs ,Xi,Bt for different column classes Bs and Bt .
While, in principle, m.l. clustering might be possible for this general case,

practical applications may concentrate on more parsimonious covariance mod-
els, e.g.:

• with independent variables within each group: Σ
(r)
ss = σ

(r)
s

2
Ibs for all s (and

then, a fortiori, independence among all J variables);

• with the same variances in all object classes Ar: σ
(r)
s

2
= σ2

s for all r and s;
• with the same variances σ2

1 = · · ·= σ2
n for all groups Bs (then variable groups

differ only by the expectation vectors µr,Bs).

A related mixture model approach is described, e.g., by Nadif and Govaert
(2010).

A second modeling approach is based on characteristic subspaces for the
variables in Bs, but is only briefly sketched here in a simple case. Let us denote
the J column variables of X by Y1, ...,YJ . We start from the assumption that
within each column class Bs, the corresponding random vector YBs (that corre-
sponds to the subvector Xi,Bs in the matrix X) is generated by a T -dimensional
random vector U (s) := (U (s)

1 , ...,U (s)
T )′ such that YBs = α(s)+∑

T
t=1 β

(s)
t U (s)

t =

α(s) + β (s)′U (s) is a linear function of the underlying T “factors" or “com-
ponents" U (s)

1 , ...,U (s)
T (which are assumed to be independent, centered and

normalized, with T ≤ bs) with unknown α(s) and coefficients β
(s)
t . Thus, in row

i of X , all data subvectors Xi,Bs are lying in the same T -dimensional subspace
H(s) of Rbs with coordinate vectors U (s)

[i] = (U (s)
i1 , ...,U (s)

iT )′ (typically with T = 1
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or 2). Typically this subspace will be different for different object groups Ar.
Completing the corresponding index r in the previous notation, we obtain the
two-way subspace model

Xi,Bs = α
(s)
r +β

(s)
r
′
U (s)
[i] for i ∈ Ar,r = 1, ...,m,s = 1, ...,n (14)

where the coordinate vectors U (s)
[i] are all supposed to be independent. Applying

this model (under normal distribution assumptions) to the given data X , we
obtain the following two-way subspace clustering criterion:

R(A ,B,α,β ,u) :=
m

∑
r=1

∑
i∈Ar

n

∑
s=1
||xi,Bs−α

(s)
r −β

(s)
r
′
u(s)[i] ||

2→ min
A ,B,α,β ,u

(15)

which is to be minimized with respect to the parameters and the underlying
(factor weighting) vectors u(s)[i] = (u(s)i1 , ...,u(s)iT )′ ∈ RT . Essentially this amounts
to mn block-specific principal component analyses. After all, the component
vectors u(s)[i] can be displayed in RT and then provide an idea about the configura-
tions of the data within the data blocks Ar×Bs. Similar models and algorithms
are surveyed in Vichi (2012); quite generally they provide a remarkable reduc-
tion in data complexity in case of a large number J of variables that is reduced
here to the dimension nT .

Finally we want to point to the fact that two-way clustering can also be seen
in the context of (social) network analysis where we are given, in the simplest
case, a data matrix that describes a binary relation among objects (rows) and
properties (columns). The problem then consists in constructing blocks of ob-
jects (e.g., persons) with a similar behaviour with respect to the properties,
and blocks of similarly related properties, all formulated in graphtheoretical
terms. Suitable probabilistic and non-probabilistic models and methods are
described, e.g., in the seminal publications by Holland and Leinhardt (1981);
Anderson et al (1992); Wasserman and Faust (1994); Nowicki and Snijders
(2001). Another approach is followed by Harris and Godehardt (1998); Gode-
hardt and Jaworski (2003) and Godehardt et al (2010) who consider, to a given
binary relation matrix, the corresponding “intersection graph" for objects and
attributes, and analyze its properties in various probabilistic data models.
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