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1. Underexpanded jets

1.1. Overview of underexpanded jets

The jet formed by the exhausting of a fluid through a nozzle can be classified as an un-
derexpanded jet if the pressure at the nozzle exit (pe) is higher than the ambient pressure
(p∞) where the jet develops. Otherwise the jet is considered overexpanded.

Indeed, the exhausting of a high-pressure fluid flow into a quiescent and low-pressure
medium produces a penetration and rapid expansion of the flow into the low-pressure
chamber. This adiabatic expansion is characterized by supersonic (or even hypersonic)
speeds in the core of the jet, an fast increase in the cross-section area of it and a dramatic
dropping in the values of pressure and temperature, reaching values even much below the
ambient conditions.

The expansion fan, generated at the nozzle lip, originates and complex interaction of
expansion and compression waves, which finally produce a well known shock-structure in
the jet. In Sec. 5.3.5 a description about the formation mechanism and the configuration
of this shock-pattern can be found. The behavior of this shock-structure can change in de-
pends of the pressure ratio NPR = pe/p∞. According with the NPR parameter, [FPGB15]
classified this kind of jets as moderately, highly and very highly underexpanded.

In case of highly and very highly underexpanded jets the most important element of
the shock-structure is the named Mach disk. This is a normal shock, slightly curved, lo-
cated at the end of the adiabatic expansion and through which a recompression process
of the fluid takes place. The size and position of this discontinuity has been extensively
studied and empirical expressions for different ranges of NPR ratio can be found [FPGB15].

The underexpanded jets are in a wide variety of applications such as in the rocket propul-
sion [SB10], in mass spectrometry [JGT+04], in the combustion processes (e.g. in direct-
injection of hydrogen [BVM13]), in the drilling and rock breaking [LLK+13], or in the
production of small particles by the process called rapid expansion of supercritical solu-
tions (RESS ) [THH+02, HTS00].

1.2. Rapid Expansion of Supercritical Solutions (RESS)

The RESS is a process, mainly used for the micronization (or microencapsulation) of solids,
characterized by the production of very uniform size-particles less than 1➭m [HTS00]. In
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2 1. Underexpanded jets

this process a substance in supercritical state is used to dissolve a solid solute, taking
advantage of the high dissolving power of the solvent at this state. At this high pressure-
temperature conditions, the solution is then expanded, through a micronized channel, into
a chamber at atmospheric conditions. The dropping in the pressure and temperature,
result of the adiabatic expansion, greatly reduces the solvent power, generating a strong
supersaturation in the solution and formating of a large number of nuclei. Later, as prod-
uct of the coagulation, the nuclei grow and the solute is precipitated as fine particles from
the solution, now at gas state. [HHH+01].

The RESS process is a relatively new technology used for example in the production
of high purity and ultrafine powders for the pharmaceutical industry [GGKS16, THH+02],
or for obtaining precursors materials as polymer microspheres or ceramic powders [YF15].

Because of its multiple advantages, the CO2 is one of the most common solvents used
in the RESS process. Indeed, the carbon dioxide is nontoxic, nonflammable, chemically
inert, relatively inexpensive, environmentally friendly, and principally it has a relatively
low critical point [LADQ14, GGKS16].

The modeling of this physical-chemical process is not a simple task. On one side, the
high ratio between the supercritical pressure and the atmospheric conditions at expansion
chamber configures, at the nozzle exit, a highly (or very highly) underexpanded jet. Thus,
a complex shock-structure in the near field of the jet is formed, and hence strong variations
in the thermophysical properties of the solvent in this region. Here, the precise prediction
of the fields of velocity, pressure, temperature and density, not only in the supersonic-core
of the jet but also in the rest of the expansion chamber, and even into the nozzle, is crucial
for the correct numerical modeling of the process. In each of these regions occur important
particle phenomena.

In fact, although the nucleation can start near to the nozzle exit, as soon as the pres-
sure cross down the critical value, several works report that this process starts early in the
pre-expansion located within the throttle device [HTS03, HHH+01, YF15]. Furthermore,
the particle growth, which mainly takes place in the supersonic region of the jet, continues
behind the Mach disk along the subsonic regions of the expansion chamber [HHH+01].

On the other hand, the modeling of the thermophysical properties of the fluid is another
important, but not simple issue here. At supercritical conditions, small changes in the
pressure values produce strong variations of the thermophysical properties of the solvent,
specially at conditions near to the critical point. Thus, the use of a precise thermophysical
model for the solvent is mandatory not only in the context of the hydrodynamic model
but also for the particle formation prediction. Indeed, this thermophysical relation, called
equation of state, in addition to complete the hydrodynamic model also allows to compute
caloric properties such as the speed of sound, the specific heats and the solubility, all them
required for modeling this type of processes.

There exist different equations of state to model the thermodynamic behavior of the CO2.
Although, the Span & Wagner EOS [SW96] is considered the most precise equation avail-
able for the carbon dioxide[LADQ14, WWFF13], its complexity does not allow to use it
efficiently in the context of computational fluid dynamic. Additionally, while the use of
this equation is restricted to conditions above of the triple point, multiple experiments
have shown that, during the adiabatic expansion occurred in the RESS process, the jet
can find states below the triple point [WWFF13]. On the other hand, there is a type of
mathematically simpler equations, called cubic EOS, such as the Peng–Robinson equation
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1.2. Rapid Expansion of Supercritical Solutions (RESS) 3

[PR76]. Nevertheless, the cubic-type EOS does not allow to predict accurately caloric
properties, specially near to the critical point [Tür99, Tür00], and then these relations are
not advisable in the context of RESS process. A third type of EOS is the named extended
generalized Bender equation (egB-EOS ) [Ben71]. This model, although is considerably
more complex than the cubic-type equations, has a wider range of validity than the previ-
ous EOS and is strongly recommended for modeling of the RESS process [Tür99, HTS00].
Nevertheless, here a good computational implementation is required in order to get an
efficient numerical model.

Although the underexpanded jets have been extensively studied both experimental and
numerically (see e.g. [CSG66, OKM+08, FPGB15]), there exist at present limited in-
formation about experimental results and accurate numerical models about the RESS
process, given that the called supercritical fluid technologies were only introduced since
the end of 20th century [GGKS16]. In this topic, the several works published by Türk
et al. should be highlighted. In these publications the experimental results are compared
with numerical approximations obtained from 1D models are used to predict the hydro-
dynamic behavior of the jet, within the capillary nozzle [Tür99, HTS00, HHH+01] and in
the expansion chamber [HTS03]. In these works, the CO2 is mainly used as solvent and
substances as naphthelene, benzoic acid and cholesterol are used as solute.

More recently, some 2D models for the RESS process have been developed, although
with relative success. In [YF15] a hydrodynamic model for CO2 based on finite volumes
along with a preconditioned flux splitting scheme is presented. For this work the thermo-
physical properties for the solvent are computed using the PROPATH library [PRO08],
which employs the EOS defined by the International Union of Pure and Applied Chemistry
(IUPAC ). Nevertheless, the pressure ratio NPR used for the numerical experiments is rel-
atively low (po = 20.5MPa and p∞ = 2.5MPa are used) and it does not correspond to real
operational conditions of the RESS process. On the other hand, the solution presented
exhibits some spurious oscillations originated at Mach disk and propagated downstream.
Additionally, the EOS employed can be only used above of the triple point. For conditions
below this point a linearization for the EOS was incorporated.

In [GGKS16] experimental results are complemented with a numerical model built on
the commercial software ANSYS-Fluentr, which uses finite volumes for the spatial dis-
cretization. For the experiments reported in this work, real operational condition for the
RESS process were assumed. Thus, whereas a high-pressure condition (po) was taken equal
to 25.0MPa, atmospheric pressure (p∞ = 0.1MPa) was considered inside of the expansion
chamber. Here, the ideal gas assumption was incorporated into the hydrodynamic model.
The numerical results reported for the velocity field show an excessively diffusive solution
with a very poor resolution in the shocks captured.

In [LDQA15] the simulation of the rapid expansion of supercritical carbon dioxide was de-
veloped by using of P1 continuous finite elements along with the characteristic-based split
(CBS ) method. Here, the time integration was developed using the first-order forward
Euler scheme. The system of Navier–Stokes equation was completed using the extended
generalized Bender EOS (egB-EOS ), which, as previously, is strongly recommended for
modeling CO2 in this kind of process. Nevertheless, the numerical results reported were
computed employing a pressure at nozzle inlet po = 7.5MPa and atmospheric pressure in
the expansion chamber. These values configure a low and not a realistic value for the NPR
ratio into the RESS process.

Finally, in [WWFF13] the set on Navier–Stokes equations, complemented by a modified
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4 1. Underexpanded jets

Peng–Robinson EOS, is solved using finite volumes with a second-order Godunov method
for the time marching scheme.

1.3. Scope of this work

The objective of this work is to develop an accurate, efficient and stable numeric strategy
to simulate the hydrodynamic component of the RESS process using real high nozzle pres-
sure ratios. The numerical model should allow the precise capture of the shock-structure
in the underexpanded jet formed, a accurate prediction of the thermophysical properties
of the fluid, as well as provided a efficient time marching scheme. The process parameters
used in the present work correspond to the case analyzed in [HTS03], which considers
the rapid expansion of supercritical CO2 from a micronized nozzle, with inlet pressure
po = 20MPa, to an expansion chamber at atmospheric pressure (p∞ = 0.1MPa).

Henceforth, this document is organized in four chapters. In Chapter 2 the conserva-
tion equations for the modeling of the hydrodynamic component of RESS process are
formulated. These balance equations, in form of the Navier–Stokes equations, are simpli-
fied for the case of problems with radial symmetric conditions, as in the free expanded
jets. Because of the high-pressure condition at supercritical state, then the fluid cannot
be assumed an ideal gas, and hence an equation of state (EOS ) for real gas should be
included in the numerical model. Considering its relatively low complexity, as well as
the wide range of states in which the EOS is valid, including supercritical state, liquid,
gas and liquid-gas mixtures conditions, the extended generalized Bender EOS (egB-EOS )
was implemented in this work. Additionally, in this chapter the mathematical effects on
the inviscid terms of Navier–Stokes equations by the use of real gas equations are analyzed.

In Chapter 3 the formulation used for the spatial semidiscretization, via discontinuous
Galerkin elements, is discussed. Here, a complete analysis about numerical fluxes suitable
for using with real gas equations is presented. Besides, in order to find stable and high-
resolution approximation in the regions with non-smooth behavior, e.g. near to the Mach
disk, the shock capturing and the adaptive mesh strategies are introduced. At the end of
this chapter the implementation of the numerical boundary conditions is described.

The rapid expansion of fluid produced by a very high pressure gradient, as in the case
of RESS process, multiple characteristic times are expected. On one hand, high speed
regions in the core of the jet, that corresponds to supersonic or even hypersonic regimens,
and on the other, regions with very low Mach numbers in a vast volume of the expan-
sion chamber. Thus, the maximum allowable time step with explicit time-schemes will be
strongly restricted by the fastest characteristics, whereas the physical time scale will be
defined by slower characteristics. Here, even stronger restriction in the time step will arise
if a local mesh refinement (adaptive refinement) is introduced. It configures a stiff problem
and hence the implementation of a stable and efficient time marching scheme is necessary.
In Chapter 4 an introduction to the exponential integrators used is included. Here, both
exponential Runge–Kutta and exponential Rosenbrock methods are discussed. In these
kind of methods the computation of the exponential of large-scale matrices is required,
then a method based on projections onto Krylov subspaces using Arnoldi’s algorithm is
described. Additional implementation details, as the reorthogonalization scheme, the stop-
ping criteria for Arnoldi’s algorithm, and the computation of the matrix exponential via
rational Chebyshev polynomials, are presented at the end of this chapter.

The numeric strategies described in previous chapter were implemented in a computa-
tional code, written in C++ language, using several libraries such as deal.ii [BHK07],
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1.3. Scope of this work 5

Trilinos [HBH+05] and Intel
➤

TBB [Int16]. In Chapter 5 a general description of the
compressible flow solver implemented is introduced. Besides, the results achieved in the
test problems simulated with the compressible flow solver implemented are presented.
Here, different benchmark problems were employed and different characteristic were ana-
lyzed. Initially, a linear diffusion-advection 2D-problem is solved and a convergence anal-
ysis for space and time is reported. Information about the computational performance of
the code is also included. After the classic Sod’s shock tube problem is used to evaluate the
convergence rates in space and time for nonlinear problems. Later, the GAMM -channel
problem and the forward facing step problem are used to evaluated the resolution in which
the shocks are captured. The last test problem included consists in an underexpanded
air-jet with a moderate pressure ratio. Finally the results obtained in the simulation of
a very highly underexpanded CO2-jet are shown. Here, multiple plots for Mach number,
temperature, density and pressure are reported. Additionally, an analysis of the changes
of phase occurred in the jet is presented using phase diagrams.

At the end of the document some conclusion and future works are listed.
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2. Conservation Laws

2.1. The Navier–Stokes equations

2.1.1. The transport theorem

Consider a fluid that occupies a domain Ωt ⊂ Rd with d ∈ {1, 2, 3} at time t, and let
V(t) ⊂ Ωt be a bounded fluid volume called control volume. Thus, if t0 ∈ (t1, t2) is a fixed
time instant and V(t0) ⊂ Ωt0 , the volume V(t) is defined by

V(t) = {ϕ(X, t) : X ∈ V(t0), t ∈ (t1, t2} . (2.1)

Here, X ∈ V(t0) → x = ϕ(X, t) ∈ V(t) will be consider a continously differentiable one-
to-one mapping of V(t0) onto V(t) with a continuous and bounded Jacobian det∇ϕ(·, t)
that satisfies the condition

det∇ϕ(X, t) > 0, for all X ∈ V(t0), t ∈ (t1, t2) .

Let F : M → R be the Eulerian function that represents a physical quantity transported
by the fluid, with x = ϕ(X, t) and M = {(x, t) : t ∈ (0, T ), x ∈ Ωt} ⊂ Rd+1 being the set
that defines the domain of the function F . Thus, the total amount of F contained in the
volume V(t) at time t is defined by

F(t) =

∫

V(t)
F (x, t) dx,

and its variation respect to the time can be expressed by

dF
dt

(t) =
d

dt

∫

V(t)
F (x, t) dx.

Definition 2.1.1. If A (x) ∈ Rm,n, m,n ∈ N, is a tensor function on x ∈ Ωt, then its
divergence operator is defined by

divA =




n∑

j=1

∂A1j

∂xj
, . . . ,

n∑

j=1

∂Amj

∂xj




T

.

7



8 2. Conservation Laws

Theorem 2.1.2 (The transport theorem). Let the function F have continuous and bounded
first order derivatives into M and let v : M → Rd, v(x, t) = ∂

∂t
ϕ(X, t), be the velocity

field of the fluid. Then, the time derivative of F can be expressed by

dF
dt

(t) =

∫

V(t)

[
∂F

∂t
(x, t) + div (Fv)(x, t)

]
dx, (2.2)

where the divergence operator applied to a tensor was presented in Def. 2.1.1.

2.1.2. The continuity equation (mass conservation)

Let ρ : M → R>0 be the density function, thus the total mass of fluid into the control
volume V(t) can be expressed as

m(t) =

∫

V(t)
ρ(x, t)dx

and its time derivative as
dm

dt
(t) =

d

dt

∫

V(t)
ρ(x, t)dx.

Because of the fluid particles in the control volume are the same in any time, this time
derivative is equal to zero.

dm

dt
(t) = 0.

In other words, the mass into the control volume is conserved. Now, applying the Theo-
rem 2.1.2, we get the equation

∫

V(t)

[
∂ρ

∂t
(x, t) + div(ρv)(x, t)

]
dx = 0.

Considering that this expression is true for any arbitrary control volume V(t), then the
equation

∂ρ

∂t
+ div(ρv) = 0 (2.3)

holds.

2.1.3. The momentum equations (momentum conservation)

Applying the second Newton’s law to the control volume V(t), we get that the rate of
change of the total momentum of V(t) is equal to the net force acting on this volume.
Then, if H(V(t)) ∈ Rd is the total momentum of V(t), expressed as

H(V(t)) =
∫

V(t)
ρ(x, t)v(x, t) dx

and F(V(t)) = (Fi(V(t)))i ∈ Rd is the resultant force over the control volume, the motion
equation for this body is

dH(V(t))
dt

= F(V(t)).

Now, using the transport Theorem 2.1.2, we get the system of equations

∫

V(t)

[
∂

∂t
(ρ(x, t)vi(x, t)) + div(ρ(x, t)vi(x, t)v(x, t))

]
dx

= Fi(V(t)), i = 1, . . . , d.

(2.4)

8



2.1. The Navier–Stokes equations 9

Further, we should distinguish two kind of forces acting on the volume, the volume force
and the surface force. The volume force Fv(V, t) ∈ Rd acts on every fluid particle in the
control volume in such way that if we define a force density f(x, t) ∈ Rd, the total volume
force is calculated by

Fv(V(t), t) =
∫

V(t)
ρ(x, t)f(x, t)dx.

On the other hand, the resultant surface force is calculated using the loads on the surface
of the control volume

Fs(V(t), t) =
∫

∂V(t)
T (x, t,n(x, t))dx,

where n(x, t) = (nj)j ∈ Rd is the unit vector outer normal to ∂V and T (x, t,n) =

(Ti(x, t,n))i ∈ Rd is the stress vector. This vector can be written using the stress tensor
T (x, t) = (Tij(x, t))i,j ∈ Rd,d in the way

Ti(x, t) =

d∑

j=1

Tij(x, t)nj(x, t).

Introducing the previous definitions for Fv and Fs into the Eq. 2.4, we get
∫

V(t)

[
∂

∂t
(ρ(x, t)vi(x, t)) + div(ρ(x, t)vi(x, t)v(x, t))

]
dx

=

∫

V(t)
ρ(x, t)fi(x, t)dx+

∫

∂V(t)

d∑

j=1

Tij(x, t)nj(x, t)dS,

or equivalently (using Green’s theorem)

∫

V(t)

[
∂

∂t
(ρ(x, t)vi(x, t)) + div(ρ(x, t)vi(x, t)v(x, t))

]
dx

=

∫

V(t)


ρ(x, t)fi(x, t) +

d∑

j=1

∂

∂xj
Tij(x, t)


 dx.

Now, considering an arbitrary control volume in the last expression, it is possible to write

∂

∂t
(ρv) + div(ρv ⊗ v) = ρf + divT . (2.5)

In Eq. 2.5 the stress tensor is composed by a hydrostatic pressure term plus a viscous stress
component τ (v) (x, t) ∈ Rd,d, i.e.,

T = −p I+ τ , (2.6)

where p (x, t) ∈ R is the pressure of the fluid. There are multiple physical models to
describe the rheological behavior of a fluid, but a simple and commonly used model assumes
that the viscous shear stress τ is linearly proportional to the deformation velocity tensor
D(v)(x, t) ∈ Rd,d , which is defined as

Dij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, i, j = 1, . . . , d.

If this condition is satisfied, the fluid is called Newtonian and the viscous stress can be
expressed as

τ = 2µ

(
D(v)− 1

3
div(v) I

)
, (2.7)

9



10 2. Conservation Laws

where µ (x, t) ∈ R is the dynamic viscosity and I ∈ Rd,d is the identity matrix.

Finally, including this definition for the stress tensor in Eq. 2.6, the momentum equation
Eq. 2.5 is

∂

∂t
(ρv) + div(ρv ⊗ v) = ρf −∇p+ div τ . (2.8)

2.1.4. The energy equation (energy conservation)

Writting the energy balance for the control volume V(t), we can express that the rate
of change of the total energy E(V(t)) ∈ R is equal to the power developed by all forces
(volume and surface forces) plus the total amount of heat transmitted to the control volume
Q(V(t)) ∈ R. This balance can be written as

d

dt
E(V(t)) =

∫

V(t)
ρ(x, t)f · v dx+

∫

∂V(t)
T (x, t,n(x, t)) · v(x, t)dS +Q(V(t)).

The total energy is calculated as the sum of the specific energy E : M → R over each fluid
particle in V(t), i.e.

E(V(t)) =
∫

V(t)
E(x, t) dx,

while, the specific energy can be expressed as the sum of the specific internal energy
e : M → R plus the kinetic energy

E(x, t) = ρ(x, t)e(x, t) +
1

2
ρ(x, t)|v(x, t)|2, (2.9)

and the total heat transfered is equal to the heat introduced by internal heat sources
q : M → R plus the conductive heat flux q : M → Rd

Q(V(t)) =
∫

V(t)
ρ(x, t)q(x, t) dx−

∫

∂V(t)
q(x, t) · n(x, t) dS,

or using the Fourier’s law for thermal conductivity

Q(V(t)) =
∫

V(t)
ρ(x, t)q(x, t) dx+

∫

∂V(t)
k(x, t)∇θ(x, t) · n(x, t) dS,

where k (x, t) ∈ R is the thermal conductivity and θ (x, t) ∈ R is the temperature.

Thus, the energy balance equation is written now as

d

dt

∫

V(t)
E(x, t)dx

=

∫

V(t)
ρ(x, t)f(x, t) · v(x, t) dx+

∫

∂V(t)

d∑

i,j=1

Tij(x, t)nj(x, t)vi(x, t) dS

+

∫

V(t)
ρ(x, t)q(x, t) dx+

∫

∂V(t)
k(x, t)∇θ(x, t) · n(x, t) dS.

Applying the Theorem 2.1.2, the Eq. 2.6, Green’s theorem and proceeding as in the pre-
vious cases, we get

∂

∂t
E + div(Ev) = ρf · v − div(pv)

+ div(λdiv(v)v) + div(2µD(v)v) + div (k∇θ) + ρq.
(2.10)

10



2.1. The Navier–Stokes equations 11

2.1.5. The set of Navier–Stokes equations for fluid dynamics

The set of equations (2.3), (2.8) and (2.10), that represent the balance of mass, momentum
and energy, are called compressible Navier–Stokes equations. In a compact form, we can
write the compressible Navier–Stokes problem as

∂w

∂t
+ div(Fs(w)) = div(Fv(w,∇w)) + F (w)

in M = Ωt × (0, T ), (2.11)

subject to boundary conditions

B (w,∇w) = 0 on ∂Ω× (0, T ), (2.12)

and endowed with the intial condition

w(x, 0) = w0(x) with x ∈ Ω0. (2.13)

Here w (x, t) ∈ Rm is the vector of conserved quantities, Fs(w) = (f s1 . . . f
s
d) =

(
f sj (w)

)
j
∈

Rm,d is the inviscid flux tensor, Fv(w) = (f v1 . . . f
v
d ) =

(
f vj (w)

)
j
∈ Rm,d is the viscous

flux tensor, F (w) ∈ Rm is the load vector, B (w,∇w) is some boundary operator and
m = d + 2 is the number of system components. Particularly, for d = 3 these quantities
are defined as

w =
(
ρ ρv1 ρv2 ρv3 E

)T
, (2.14)

Fs(w) =




ρv1 ρv2 ρv3

ρv2
1 + p ρv1v2 ρv1v3

ρv2v1 ρv2
2 + p ρv2v3

ρv3v1 ρv3v2 ρv2
3 + p

(E + p)v1 (E + p)v2 (E + p)v3




, (2.15)

Fv(w,∇w) =




0 0 0

τ11 τ21 τ31

τ12 τ22 τ32

τ13 τ23 τ33
3∑

i=1

τ1ivi + k
∂θ

∂x1

3∑

i=1

τ2ivi + k
∂θ

∂x2

3∑

i=1

τ3ivi + k
∂θ

∂x3




, (2.16)

F (w) =
(
0 ρf1 ρf2 ρf3 ρf · v + ρq

)T
, (2.17)

where τij, for i, j = 1, . . . , d, denotes the corresponding component of the viscous stress in
Eq. 2.7.

2.1.6. Equation of state

This set of Navier–Stokes equations (Eq. 2.11) should be closed by a equation of state
(EOS), usually with the form

p = p(ρ, θ) or p = p(ρ, e). (2.18)

11



12 2. Conservation Laws

Under gas conditions such that the work of the molecular interactions is much lower than
the kinetic energy of the molecules, a basic gas model (called ideal gas model) can be used.
Usually these ideal gas conditions are high temperatures and low pressures. For some
gases like oxygen, nitrogen, hydrogen and carbon dioxide, the ideal gas model can be used
under moderate temperature and pressure conditions. According to the ideal gas model

p

ρRθ
= 1, (2.19)

where R = Cp − Cv ∈ R>0 is the specific gas constant, Cp ∈ R>0 is the isobaric specific
heat and Cv ∈ R>0 is the isochoric specific heat. By definition, for an ideal gas the specific
internal energy can be expressed as

e = Cvθ, (2.20)

and thus the EOS Eq. 2.19 will be

p = (γ − 1)ρe, (2.21)

or using the conservative variables (through Eq. 2.9)

p = (γ − 1)

(
E − ρ|v|2

2

)
, (2.22)

where γ = Cp/Cv ∈ R>1 is the heat capacity ratio. From the previous equations also it is
possible to write

θ =
1

Cv

(
E

ρ
− |v|2

2

)
. (2.23)

Nevertheless, to high pressures when the molecular interactions are important to describe
the gas behavior, the gas ideal simplification is not valid and a real gas model should be
used. Some of these more complex models for EOS are presented in Sec. 2.4.

2.1.7. Dimensionless form of Navier–Stokes equations

The set of Navier–Stokes equations is a dimensionally homogeneous system. However,
to use these equations in a non-dimensional form results more convenient from different
perspectives. From the physical point of view, a mathematical model built via the dimen-
sionless Navier–Stokes equations is able to represent not only a particular physical case
but also a wide set of similar cases. From a numerical perspective, the solution of this
set of equations involve conservative variables with different orders of magnitude, this can
cause numerical instabilities. To use a dimensionless form let to keep all the variables in
a common range (ideally 0 to 1). There are multiple ways to reduce the Eq. 2.11 to a
dimensionless form ([Mon13]). Here a technique commonly used for compressible flows is
presented ([FFS03]). Defining reference quantities for length L∗, velocity U∗, density ρ∗,
force density f∗, viscosity µ∗ and thermal conductivity k∗, it is possible to write dimen-
sionless variables as follows:

x̃ =
x

L∗ ,

p̃ =
p

ρ∗U∗2 ,

k̃ =
k

k∗
,

t̃ =
tU∗

L∗ ,

Ẽ =
E

ρ∗U∗2 ,

µ̃ =
µ

µ∗
,

ṽ =
v

U∗ ,

θ̃ =
Cvθ

U∗2 ,

λ̃ =
λ

µ∗
,

ρ̃ =
ρ

ρ∗
,

f̃ =
f

f∗
,

q̃ =
qL∗

U∗3 .

(2.24)

12



2.1. The Navier–Stokes equations 13

Introducing the definitions in Eq. 2.24, the Eq. 2.11 can be written using dimensionless
variables

∂w̃

∂t̃
+ div(Fs(w̃)) =

1

Re
div(F̃v(w̃,∇w̃)) + F̃ (w̃)

in M = Ω̃t̃ × (0, T̃ ), (2.25)

where, for d = 3

w =
(
ρ̃ ρ̃ṽ1 ρ̃ṽ2 ρ̃ṽ3 Ẽ

)T
, (2.26)

F̃v(w̃,∇w̃) =




0 0 0

τ̃11 τ̃21 τ̃31

τ̃12 τ̃22 τ̃32

τ̃13 τ̃23 τ̃33
3∑

i=1
τ̃1iṽi +

γk̃

Pr

∂θ̃

∂x̃1

3∑
i=1

τ̃2iṽi +
γk̃

Pr

∂θ̃

∂x̃2

3∑
i=1

τ̃3iṽi +
γk̃

Pr

∂θ̃

∂x̃3




, (2.27)

F̃ (w̃) =

(
0

ρ̃f̃1

Fr2
ρ̃f̃2

Fr2
ρ̃f̃3

Fr2
ρ̃f̃ · ṽ + ρ̃q̃

)T

, (2.28)

τ̃ = λ̃divṽI+ 2µ̃D(ṽ), (2.29)

and Fr, Re and Pr are the Froude, Reynolds and Prandtl numbers, respectively. These
dimensionless numbers are defined as:

Fr =
U∗

√
L∗f∗

, Re =
ρ∗U∗L∗

µ∗
, Pr =

Cpµ
∗

k∗
. (2.30)

In Eq. 2.25 and Eq. 2.27 the operators ∇ and div, as well as the tensor D (into the
viscous stress tensor), are calculated with respect to the dimensionless coordinates x̃. In
similar fashion, the thermodynamical relations (2.22) and (2.23) can be written using
dimensionless variables as follows

p̃ = (γ − 1)

(
Ẽ − ρ̃|ṽ|2

2

)
, (2.31)

θ̃ =
Ẽ

ρ̃
− |ṽ|2

2
. (2.32)

Onwards the Navier–Stokes equations in (2.25) will be considered, but for simplicity the
tilde character will be omitted.

2.1.8. Navier–Stokes equations in cylindrical coordinates

In the previous analysis a rectangular system of coordinates was chosen, such that e1×e2 =
e3, where the unit vector ei, for i = 1, 2, 3, defines the axis direction. Now, a cylindrical
coordinate system will be choosen. In this system e1 represents the axial direction, e2 the
radial direction and e3 the azimuthal direction. Considering this coordinate system, the
operators ∇ and div can be expressed as follows [KCG05].

13



14 2. Conservation Laws

Definition 2.1.3. If (A)ij = (aij)ij ∈ Rm,3 is a tensor function on x ∈ Rd, where the
x-components correspond with a cylindrical coordinates system, then the ∇ operator is
defined as

∇ =
(

∂
∂x1

∂
∂x2

1
x2

∂
∂x3

)

and the div operator is defined as

divA =




∂a11

∂x1

+
∂a12

∂x2

+
1

x2

∂a13

∂x3
...

∂am1

∂x1

+
∂am2

∂x2

+
1

x2

∂am3

∂x3



.

Using cylindrical coordinates (d = 3) and the operators in Def. 2.1.3, the set of Navier–
Stokes equations is rewritten as

∂w

∂t
+ div(Fs(w)) =

1

Re
div(Fv(w,∇w))− 1

x2

D + F (w), (2.33)

where

D =




ρv2

ρv1v2 − τ21/Re

ρv2
2 − ρv2

3 − (τ22 − τ33)/Re

2(ρv2v3 − τ32/Re)

v2(E + p)− 1
Re

(
3∑

i=1
τ2ivi +

γk
Pr

∂θ
∂x2

)




.

Some 3D-problems have a behavior symmetric respect to an axis. These models, called
axisymmetric models, can be reduced to a 2D-problem analyzing only the plane that by
revolution generates the full volume. This symmetry condition implies

∂

∂x3
= 0. (2.34)

Thus, Navier–Stokes equations for an axisymmetric model can be getting from Eq. 2.33
and applying the condition Eq. 2.34. Further, if the velocity component in the azimuthal
direction (swirl component) can be neglected, the system of Navier–Stokes equations be-
comes [Kim03]

∂w

∂t
+ div(Fs(w)) =

1

Re
div(Fv(w,∇w))− 1

x2

D + F (w), (2.35)

where

w =
(
ρ ρv1 ρv2 E

)T
, (2.36)

Fs(w) =




ρv1 ρv2

ρv2
1 + p ρv1v2

ρv2v1 ρv2
2 + p

(E + p)v1 (E + p)v2



, (2.37)

Fv(w,∇w) =




0 0

τ11 τ21

τ12 τ22
2∑

i=1
τ1ivi +

γk
Pr

∂θ
∂x1

2∑
i=1

τ2ivi +
γk
Pr

∂θ
∂x2



, (2.38)
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2.2. Inviscid case: Euler equations 15

D =




ρv2

ρv1v2 − τ21/Re

ρv2
2 − (τ22 − τ33)/Re

v2(E + p)− 1
Re

(
2∑

i=1
τ2ivi +

γk
Pr

∂θ
∂x2

)




(2.39)

and, div and τij defined as previous with ∂/∂x3 = 0 and v3 = 0.

2.2. Inviscid case: Euler equations

Previously the conservation equations for mass, momentum and energy for a fluid were
presented. Now, considering an adiabatic (i.e., the heat conduction is neglected) and
inviscid fluid (i.e., all the viscous stress are neglected), and ignoring any body force, the
Navier–Stokes problem Eq. 2.11 is reduced to

∂w

∂t
+ div(Fs(w)) = 0 in M = Ωt × (0, T ), (2.40)

subject to the boundary conditions

Bs (w) = Bs (wD) on ∂Ω× (0, T ) (2.41)

and equiped with the initial condition

w(x, 0) = w0(x) with x ∈ Ω0. (2.42)

Here wD represents the prescribed boundary values and Bs a boundary operator used to
enforce properly the boundary conditions, i.e. in such a way that the problem Eq. 2.40–
Eq. 2.42 is well-posed. More about inviscid boundary conditions is discussed in Sec. 2.3
and Sec. 3.6. The system composed by Eq. 2.40–Eq. 2.42 is called compressible Euler
equations.

2.2.1. Quasilinear form of Euler equations

Let Fn(w,n) ∈ Rm be the projection of Fs(w) = (f s1 . . . f
s
d) =

(
f sj (w)

)
j
∈ Rm,d, over an

arbitrary direction n = (nj)j ∈ Rd, i.e.

Fn(w,n) =
d∑

j=1

f sj (w)nj ,

and let P(w,n) ∈ Rm,m be the Jacobi matrix of Fn

P(w,n) =
∂Fn(w,n)

∂w
=

d∑

j=1

Aj (w)nj , (2.43)

where

Aj(w) =
∂f sj (w)

∂w
.

Thus, using the chain rule in the Euler equations Eq. 2.40 it is possible to write this set
of equations in a quasilinear form

∂w

∂t
+

d∑

j=1

Aj(w)
∂w

∂xj
= 0. (2.44)

15



16 2. Conservation Laws

2.2.2. Homogeneity property of the inviscid flux vector

Lemma 2.2.1. Let d = 3 and let p = p(ρ, e) be the EOS with derivatives ∂p
∂ρ

= pρ

and ∂p
∂e

= pe, thus the matrix P(w,n) can be written as a sum of homogeneous and
inhomogeneous parts ([LLS90])

P(w,n) = Ph(w,n) +Pρ(w,n), (2.45)

where

Ph(w,n) =




0 n1 n2 n3 0

−v1vn + p
ρ
n1 vn + v1n1 v1n2 v1n3 0

−v2vn + p
ρ
n2 v2n1 vn + v2n2 v2n3 0

−v3vn + p
ρ
n3 v3n1 v3n2 vn + v3n3 0

−vnE
ρ

hn1 hn2 hn3 vn




− pe
ρ




0 0 0 0 0

(e− |v|2/2)n1 v1n1 v2n1 v3n1 −n1

(e− |v|2/2)n2 v1n2 v2n2 v3n2 −n2

(e− |v|2/2)n3 v1n3 v2n3 v3n3 −n3

(e− |v|2/2) vn v1vn v2vn v3vn −vn




,

(2.46)

Pρ(w,n) =




0 0 0 0 0

(pρ − p/ρ)n1 0 0 0 0

(pρ − p/ρ)n2 0 0 0 0

(pρ − p/ρ)n3 0 0 0 0

(pρ − p/ρ) vn 0 0 0 0




, (2.47)

h is the specific enthalpy defined by

h =
1

ρ
(E + p) (2.48)

and vn the normal velocity

vn =

d∑

j=1

vjnj. (2.49)

Remark 2.2.2. Using the EOS for ideal gas (Eq. 2.21) into the matrix P(w,n) in
Lemma 2.2.1, it is found that Pρ(w,n) = 0 and thus the complete matrix takes the values
([Roh01])

P(w,n) =



0 n1 n2 n3 0

γ1
|v|2
2 n1 − v1vn vn − γ2v1n1 v1n2 − γ1v2n1 v1n3 − γ1v3n1 γ1n1

γ1
|v|2
2 n2 − v2vn v2n1 − γ1v1n2 vn − γ2v2n2 v2n3 − γ1v3n2 γ1n2

γ1
|v|2
2 n3 − v3vn v3n1 − γ1v1n3 v3n2 − γ1v2n3 vn − γ2v3n3 γ1n3(

γ1
|v|2
2 − h

)
vn hn1 − γ1v1vn hn2 − γ1v2vn hn3 − γ1v3vn γvn




, (2.50)
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2.2. Inviscid case: Euler equations 17

where γ1 = γ − 1 and γ2 = γ − 2.

Theorem 2.2.3. Let p = p(ρ, e) be a general EOS, then the inviscid flux vector f sj (w) in
Eq. 2.40 is a homogeneous function of degree one, and therefore can be written as

f sj (w) = Aj(w)w, (2.51)

if and only if the pressure p(ρ, e) depends linearly of ρ [FFS03], such as in the case of a
thermally perfect gas, for which the EOS is given by

p(ρ, e) = ρθ(e). (2.52)

Proof. Apply the matrix P(w,n) in Eq. 2.45 to the vector w

P(w,n)w = Ph(w,n)w +Pρ(w,n)w

=
d∑

j=1

Ah
j (w)njw +

d∑

j=1

Aρ
j(w)njw,

(2.53)

where Ah
j (w) and A

ρ
j(w) are defined by Eq. 2.43, and verify that

Ah
j (w)w = f sj .

As from Eq. 2.43 and Eq. 2.53

Aj(w) = Ah
j (w) + Aρ

j(w),

and, in order to satisfy the expression Eq. 2.51, the non-homogeneous component Aρ
j (w)

should be equal to zero. Thus, using Eq. 2.47 it is concluded that the pressure function
should satisfy the condition

p(ρ, e) = ρ
∂p

∂ρ
.

This condition is clearly satisfied by a thermally perfect gas.

Remark 2.2.4. The ideal gas can be considered a perfect gas and therefore the inviscid
flux vectors can be expressed as in Eq. 2.51. This condition can be easily verified using
the expression in Remark 2.2.2, from where Aj(w) is only composed by the homogeneous
component.

2.2.3. Hyperbolicity of Euler equations

Lemma 2.2.5. Let d = 3 and let p = p(ρ, e) be a general EOS with the derivatives ∂p
∂ρ

= pρ

and ∂p
∂e

= pe, then the matrix P(w,n) has a set of eigenvalues defined by ([Gla89])

λ =
(
vn − c vn vn + c vn vn

)
, (2.54)

where c is the speed of sound expressed as

c2 =
p

ρ2
pe + pρ. (2.55)

Further, if we compute the eigenvalues of matrix components Ph(w,n) and Pρ(w,n), we
get respectively ([LLS90])

λh =
(
vn − ce vn vn + ce vn vn

)
(2.56)

and
λρ =

(
0 0 0 0 0

)
, (2.57)

where c2e = c2 −
(
pρ − p

ρ

)
.

17



18 2. Conservation Laws

Lemma 2.2.6. Let d = 3 and let p = p(ρ, e) be a general EOS with the derivatives ∂p
∂ρ

= pρ

and ∂p
∂e

= pe, then the matrix A1(w) has a set of eigenvalues given by

λ =
(
v1 − c v1 v1 + c v1 v1

)
, (2.58)

and a set of eigenvectors

R =
(
R1 R2 R3 R4 R5

)

=




1 1 1 0 0

v1 − c v1 v1 + c 0 0

v2 v2 v2 1 0

v3 v3 v3 0 1

h− v1c
E
ρ
− ρ

pρ
pe

h+ v1c v2 v3




.
(2.59)

Further, the inverse of the eigenvector matrix R is given by

R−1 =
1

2hoc




|v|2c+ hov1 − ekc − (ho + v1c) −v2c −v3c c

2 (h− |v|2) c 2v1c 2v2c 2v3c −2c

|v|2c− hov1 − ekc ho − v1c −v2c −v3c c

−2hov2c 0 2hoc 0 0

−2hov3c 0 0 2hoc 0




, (2.60)

where ek = E
ρ
− ρ

pρ
pe

and ho = h− ek.

Remark 2.2.7. If the EOS for ideal gas (Eq. 2.21) is used into matrix A1, then the
expressions for eigenvalues Eq. 2.58 and eigenvectors Eq. 2.59-Eq. 2.60 are now calculated
using

c2 =
γp

ρ
= γγ1e, (2.61)

ek =
|v|2
2
, (2.62)

h = ho +
|v2|
2

(2.63)

and
ho = γe. (2.64)

Definition 2.2.8. Let D be an open set in Rm. We say that system Eq. 2.44 is hyperbolic
in the region D, if every linear combination of the matrices Aj(w) has a set of eigenvalues
λ = (λi)i ∈ Rm and a complete set of eigenvectors for any w ∈ D ([HLLM98]). Or in other
words, if every matrix P(w,n) (see Eq. 2.43) is diagonalizable over R, i.e., there exist a
nonsingular matrix R(w,n) such that

R−1PR = diag(λ1, · · · , λm)

for any n = (nj)j ∈ Rd and w ∈ D.

Theorem 2.2.9. Let p = p(ρ, e) be a general EOS with the derivatives ∂p
∂ρ

= pρ and
∂p
∂e

= pe, hence the system of Euler equations is an hyperbolic system only if

c2 =
p

ρ2
pe + pρ > 0. (2.65)

18



2.2. Inviscid case: Euler equations 19

Proof. Using Def. 2.2.8 and the result shown in Eq. 2.54, it is possible to conclude that the
set of eigenvalues of P(w,n) is real only if c ∈ R, which requires that c2 ≥ 0. Additionally,
the value c = 0 can be excluded in order to ensure a nonsingular matrix R(w,n), how
can be verified in the results of Lemma 2.2.6. Then, the hyperbolicity condition holds for
c2 > 0.

Remark 2.2.10. For the ideal gas EOS the speed of sound is given by Eq. 2.61 and the
condition Eq. 2.65 is clearly satisfied.

Lemma 2.2.11. Let d = 3 and let p = p(ρ, e) be the ideal gas EOS Eq. 2.21, then from
Eq. 2.54, the matrix P(w,n) has a set of eigenvalues defined by

λ =
(
vn − c vn vn + c vn vn

)
(2.66)

with the speed of sound c calculated according with Eq. 2.61. Further, this matrix has a
complete set of eigenvectors given by ([Roh01])

R =
(
r1 r2 r3 r4 r5

)

=




1 1 1 0 0

v1 − cn1 v1 v1 + cn1 n2 −n3

v2 − cn2 v2 v2 + cn2 −n1 0

v3 − cn3 v3 v3 + cn3 0 n1

h− cvn ek h+ cvn v1n2 − v2n1 v3n1 − v1n3




,
(2.67)

with h, ek defined according with Eq. 2.62–Eq. 2.64. The eigenvectors r2, r4 and r5 span
a subspace, thus any vector in this subspace is also an eigenvector. Therefore, it is also a
proper set of eigenvectors

R =
(
r1 r2 r3 r4 r6

)
(2.68)

or

R =
(
r1 r2 r3 r5 r6

)
, (2.69)

with

r6 =
(
0 0 n3 −n2 v2n3 − v3n2

)T

. (2.70)

The matrix R in Eq. 2.67 is a nonsingular matrix for n1 6= 0 and its inverse is given by
([Roh01])

R−1 =




γ1ek+cvn
2c2

−γ1v1+cn1

2c2
−γ1v2+cn2

2c2
−γ1v3+cn3

2c2
γ1
2c2

c2−γ1ek
c2

γ1v1
c2

γ1v2
c2

γ1v3
c2

−γ1
c2

γ1ek−cvn
2c2

−γ1v1−cn1

2c2
−γ1v2−cn2

2c2
−γ1v3−cn3

2c2
γ1
2c2

v2−vnn2
n1

n2

n2
2−1
n1

n2n3
n1

0

vnn3−v3
n1

−n3 −n2n3
n1

1−n2
3

n1
0




. (2.71)

Analogously, the eigenvector matrix in Eq. 2.68 is nonsingular for n2 6= 0 and its inverse
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20 2. Conservation Laws

is defined by

R−1 =




γ1ek+cvn
2c2

−γ1v1+cn1

2c2
−γ1v2+cn2

2c2
−γ1v3+cn3

2c2
γ1
2c2

c2−γ1ek
c2

γ1v1
c2

γ1v2
c2

γ1v3
c2

−γ1
c2

γ1ek−cvn
2c2

−γ1v1−cn1

2c2
−γ1v2−cn2

2c2
−γ1v3−cn3

2c2
γ1
2c2

vnn1−v1
n2

1−n2
1

n2
−n1 −n1n3

n2
0

v3−vnn3
n2

n1n3
n2

n3

n2
3−1
n2

0




, (2.72)

while the matrix Eq. 2.69 is nonsingular for n3 6= 0 and its inverse is given by

R−1 =




γ1ek+cvn
2c2

−γ1v1+cn1

2c2
−γ1v2+cn2

2c2
−γ1v3+cn3

2c2
γ1
2c2

c2−γ1ek
c2

γ1v1
c2

γ1v2
c2

γ1v3
c2

−γ1
c2

γ1ek−cvn
2c2

−γ1v1−cn1

2c2
−γ1v2−cn2

2c2
−γ1v3−cn3

2c2
γ1
2c2

v1−vnn1
n3

n2
1−1
n3

n1n2
n3

n1 0

vnn2−v2
n3

−n1n2
n3

1−n2
2

n3
−n2 0




. (2.73)

2.2.4. Rotational invariance of Euler equations

Given the vector state w(x, t) that satisfies the Euler system

∂w

∂t
+

d∑

k=1

∂f sk(w)

∂xk

= 0 in M = Ωt × (0, T ), (2.74)

and, considering a change in the frame of reference such that for x ∈ R3 we have

x = Q (n)x, (2.75)

where

n =
(
cosα cosβ sinα cosβ sinβ

)T

(2.76)

and Qo (n) ∈ R3,3 is the rotation matrix

Qo (n) =




cosα cosβ sinα cosβ sinβ

− sinα cosα 0

− cosα sinβ − sinα sinβ cosβ


 , (2.77)

then it is possible to prove that, under the new Cartesian frame x, the Euler system
remains unchanged, i.e.,

∂q

∂t
+

d∑

k=1

∂f sk(q)

∂xk

= 0, (2.78)

where q (x, t) is the vector state w (x, t) expressed under the new frame of reference

q (x, t) = Q (n)w (Qo

−1 (n)x, t) , (2.79)
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2.2. Inviscid case: Euler equations 21

with

Q (n) =




1 0 0 0 0

0 cosα cosβ sinα cosβ sinβ 0

0 − sinα cosα 0 0

0 − cosα sinβ − sinα sinβ cosβ 0

0 0 0 0 1




. (2.80)

Analogously, it is possible to write

f sk (w) · n = Q−1 (n) f sk (Q (n)w) . (2.81)

This property is called rotational invariance of Euler equations. The proof of this property
can be found in [Tor99].

2.2.5. Riemann problem for the Euler equations

We consider the one dimensional system of Euler equations (Eq. 2.40) for an ideal gas and
subject to the initial condition

w(x, 0) =

{
wL, x < 0,

wR, x > 0
, for wL,wR ∈ R3. (2.82)

According to Lemma 2.2.11, for this case the Jacobian matrix of the vector flux has a set
of eigenvalues given by

λ =
(
v1 − c v1 v1 + c

)
, (2.83)

as well as a complete set of eigenvectors defined by

R =
(
r1 r2 r3

)
=




1 1 1

v1 − c v1 v1 + c

h− v1c
v21
2 h+ v1c


 , (2.84)

with h defined according with Eq. 2.63. Thus, it is possible to conclude that three char-
acteristic fields are present in the solution of this problem. For non-linear systems these
characteristic fields can be entropy discontinuity waves or rarefactions waves. At the same
time, some of these fields can be genuine nonlinear or linearly degenerate, also named
contact discontinuities.

Definition 2.2.12. If rk(w) and λk(w) are, correspondingly, the eigenvector and the as-
sociated eigenvalue that define k-th characteristic field for a non-linear hyperbolic system,
then this characteristic field (and its corresponding eigenvector) is called linearly degener-
ate if

∇λk(w) · rk(w) = 0, for all w ∈ Rm,

otherwise, if

∇λk(w) · rk(w) 6= 0, for all w ∈ Rm,

it will be named genuinely nonlinear ([Lax57]). In other words, the characteristic field will
be genuinely nonlinear if the corresponding eigenvalue increase or decrease monotonically
as w varies along the integral curves of rk, but if the eigenvalue stills constant along this
curves, the field is linearly degenerate.
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Using Eq. 2.83 and Eq. 2.84, the following products are obtained

∇λ1 · r1 = −γ + 1

2

c

ρ
, (2.85)

∇λ2 · r2 = 0, (2.86)

∇λ3 · r3 =
γ + 1

2

c

ρ
, (2.87)

and, from Def. 2.2.12, it is possible conclude that two of the characteristic fields in this
system are genuinely nonlinear (first and third fields), while the second field is linearly
degenerate (see Fig. 2.1). Specifically the characteristic fields can be classified as follows:

❼ 1st-characteristic field : from result in Eq. 2.85 this field is genuinely non-linear,
where the states wL and w∗

L (see Fig. 2.1) are connected by a rarefaction.

❼ 2nd-characteristic field : as previous, the second field is a contact discontinuity, where
the value of λ2(w) = v1 is constant along the integral curves belonging to r2(w).
From it follows that r2, that is only in terms of v1, is constant along this curves,
and then these integral curves are lines on the phase diagram. Thus, examining
the Rankine-Hugoniot condition between the states w∗

L and w∗
R (see Fig. 2.1), the

following expressions are found:

ρ∗
Lv

∗
1,L − ρ∗

Rv
∗
1,R =s(ρ∗

L − ρ∗
R),(

1

2
ρ∗
Lv

∗
1,L

2 + p∗L

)
−
(
1

2
ρ∗
Rv

∗
1,R

2 + p∗R

)
=s
(
ρ∗
Lv

∗
1,L − ρ∗

Rv
∗
1,R

)
, (2.88)

v∗
1,L (E

∗
L + p∗L)− v∗

1,R (E∗
R + p∗R) =s (E

∗
L − E∗

R) ,

where s is the propagation speed of the wave. This set of conditions are satisfied
if s = v∗

1,L = v∗
1,R and p∗L = p∗R. From this result it is possible to conclude that

the contact discontinuity travel to the same speed that the fluid, and on the other
hand, that both velocity and pressure are constant through the contact discontinuity
and only there exist a jump in the density. Because this density discontinuity, other
quantities, as momentum, temperature and entropy, also present a jump across the
contact discontinuity. Precisely, the jump in entropy shows that this discontinuity
is an entropy discontinuity wave. Further, as there is no a jump in the pressure,
then there is no a net force over the fluid particles to cross from the left region to
the right one, and thus the particles on this line will move parallel to the contact
discontinuity.

❼ 3rd-characteristic field : from result in Eq. 2.87 this field is a non-linear wave. In this
case, the states w∗

R and wR (see Fig. 2.1) are connected by a shock wave.

A complete solution and analysis of this problem can be found in [FFS03, Wes01].

2.3. Boundary conditions

The Navier–Stokes system in Eq. 2.25 should be equipped with a set of boundary con-
ditions, such that these correspond with the physical nature of the problem and, at the
same time, with the character of the equations. For the viscous Navier–Stokes problem it
is usual to classify the borders as either Dirichlet boundary (ΓD) or Neumann boundary
(ΓN), in such a way that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. Particularly, the boundary will
be called to be of Dirichlet-type if at least one of the conservative variables are prescribed
on this border, otherwise the border will be Neumann-type.
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2.4. Equations of state for carbon dioxide

Some of the most used EOS for carbon dioxide are:

2.4.1. Span and Wagner equation of state

The Span and Wagner EOS ([SW96]) is considered the most precise model to describe the
behavior of CO2 ([Tür99, LDQA15]), even in the supercritical region. Unfortunately its
complexity makes it extremely expensive to use into computational models. In this model
the equation of state is derived from the fundamental equation [PN98]

p(ρ, θ) = ρ2
∂A

∂ρ
(ρ, θ) , (2.95)

where A(ρ, θ) ∈ R is the Helmholtz free energy, which is defined by

A (ρ, θ) =

ρ∫

0

p(r, θ)−Rθr

r2
dr +Rθ ln(ρ) +Ao(θ), (2.96)

with Ao(θ) being the Helmholtz energy for the ideal gas state and R the specific gas con-
stant.

Particularly, in [SW96] the dimensionless Helmholtz energy φ (δ, ζ) is expressed in terms
of an ideal gas part φo(δ, ζ) and a residual energy φr(δ, ζ)

φ (δ, ζ) =
A(ρ, θ)

Rθ
= φo(δ, ζ) + φr(δ, ζ),

where

δ =
ρ

ρc
, ζ =

θc
θ
, (2.97)

and ρc and θc are the critical density and the critical temperature, respectively. The
expressions for φo(δ, ζ) and φr(δ, ζ), and the coefficients to compute them, as well as the
accuracy of this model in the different regions of the pressure-temperature diagram, can
be found in [SW96].

2.4.2. IUPAC equation of state

The International Union of Pure and Applied Chemistry (IUPAC ) standardized the CO2

properties and defined as model for the EOS

p(ρ, θ)

ρRθ
= 1 + δ

9∑

i=0

Ji∑

j=0

aij (ζ − 1)j (δ − 1)i , (2.98)

where δ and ζ are defined in Eq. 2.97, and the coefficients aij and the numbers Ji can be
found in [AAR76]. The IUPAC-EOS is able to determine accurately pressure values for
CO2 in liquid and gas phase, as well as in the supercritical region, nevertheless it is not
able to work under supercooled conditions ([AAR76, YF15]). The IUPAC-EOS and the
Span and Wagner model are included in the PROPATH library ([PRO08]) for the computing
of the thermophysical properties of CO2.
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2.5. Thermophysical properties of CO2 25

2.4.3. Extended and generalized Bender equation of state

In ([PM89]) a generalized version of the Bender EOS ([Ben71]) is presented. This model,
named extended generalized Bender EOS (egB-EOS ), is described by the equation

p(ρ, θ)

ρRθ
= 1+δ (ǫ1 − ǫ2ζ − ǫ3ζ

2 − ǫ4ζ
3 − ǫ5ζ

4) + δ2 (ǫ6 + ǫ7ζ + ǫ8ζ
2)

+δ3 (ǫ9 + ǫ10ζ) + δ4 (ǫ11 + ǫ12ζ) + δ5 (ǫ13ζ)

+δ2
[
ǫ14ζ

3 + ǫ15ζ
4 + ǫ16ζ

5 + δ2(ǫ17ζ
3 + ǫ18ζ

4 + ǫ19ζ
5)
]
e−δ2 ,

(2.99)

where δ and ζ were defined in Eq. 2.97. One of the most relevant characteristics of this
model is that only four parameters are required to characterized the substance: critical
density (ρc), critical temperature (θc), acentric factor (ω) and polar factor (χ). In fact, all
the ǫ−coefficients into Eq. 2.99 are computed using 95 general parameters (see [PM89]) and
the four specific parameters mentioned. The egB-EOS is adequate to describe the behavior
of the CO2 in a wide range of states in liquid phase as well as in gas phase. This range is
bounded by 0.3 ≤ 1/ζ ≤ 16, δ ≤ 3.3 and p/pc ≤ 3.3, where pc is the value of the pressure in
the critical point. Therefore this model can be used for supercritical and subcritical states,
and also for supercooled conditions. According with several researches ([Tür99, LDQA15,
KTSG96]), the egB-EOS is able to derive the thermodynamical properties of the CO2 with
sufficient accuracy, even under supercritical conditions. In Sec. B the egB-EOS, with the
ǫ-coefficients computed for CO2, is presented.

2.4.4. Peng–Robinson equation of state

The Peng–Robinson is a well known EOS that belong to the family of cubic equations of
state. This model defines the pressure as ([PR76])

p(ρ, θ) =
Rmθ

Vm − b
− aα

V 2
m + 2bVm − b2

, (2.100)

where Rm = RM is the universal gas constant, Vm = M/ρ is the molar volume and the
coefficients a, b and α are defined as

a = 0.457235
R2

mθ
2
c

pc
,

b = 0.077796
Rmθc
pc

and

α =

(
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

)(
1− 1√

ζ

))2

,

with M being the molar mass and ω is the acentric factor. Although this model is able
to describe densities in the liquid-gas phases, even into the supercritical region, it is not
able to describe accurately some caloric properties ([DCT98, Tür99, LDQA15]).

2.5. Thermophysical properties of CO2

The equation of state in Eq. 2.18, either in form of an ideal gas equation or using some real
gas equation, is mainly used as a constitutive relation to close the Navier–Stokes system.
Nevertheless, in this set of conservation equations some additional thermodynamic proper-
ties, which are derived from the EOS, are involved. In fact, properties as the specific heat
(Cv or Cp), the specific heat ratio (γ), the temperature (θ) and the speed of sound (c) are
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26 2. Conservation Laws

also required for the modeling of these problems. These properties, called caloric proper-
ties, are deduced from thermodynamic relations and using the EOS. A complete analysis
of these thermodynamic properties, as well as the mathematical relations between them,
can be found in advanced thermodynamic books, e.g. in [HK07, JD96].

When the ideal gas EOS is employed, the values of Cp, Cv and γ can be considered con-
stant, whereas the other properties can be easily obtained from Eq. 2.21. Thus, Eq. 2.23
for temperature and Eq. 2.61 for the speed of sound are derived. Nevertheless, in case
of real gases, which have substantially more complex EOS, the caloric properties should
be derived for each particular EOS used. Next, the deduction of the thermodynamic
properties of the CO2, calculated from the egB-EOS, is presented.

2.5.1. Physical constants for CO2

Table 2.1 include the most relevant physical constants for CO2.

Table 2.1.: Physical constants for CO2 (taken from [SW96]).

M : Molar mass M = 44.0098± 0.0016 g/mol

R: Specific gas constant R = 0.1889241± 0.0000116 kJ/kgK

θc: Critical temperature θc = 304.1282± 0.015 K

pc: Critical pressure pc = 7.3773± 0.0030 MPa

ρc: Critical density ρc = 467.6± 0.6 kg/m3

θt: Triple point temperature θt = 216.592± 0.002 K

pt: Triple point pressure pt = 0.51795± 0.00010 MPa

θ0: Reference temperature θ0 = 298.15 K

p0: Reference pressure p0 = 0.101325 MPa

e0: Reference specific internal energy e0 = 0 kJ/kg

2.5.2. Isochoric specific heat

Considering an EOS with the form p = p(ρ, θ), the isochoric specific heat (or heat capacity
at constant volume) Cv, can be computed using the expression ([PN98])

Cv (ρ, θ) = −θ
(
∂2A

∂θ2
(ρ, θ)

)
. (2.101)

Introducing Eq. 2.96 into Eq. 2.101 the following expression is found

Cv (ρ, θ) = −θ
∫ ρ

0

∂2p

∂θ2
(r, θ)

dr

r2
+ Co

v(θ). (2.102)

Here, the term

Co
v(θ) = −θd

2Ao

dθ2
(θ)

is the isochoric specific heat for the ideal gas state. According to [SW96], this term can
be approximated by the relation

Co
v(θ)

R
= 1 + a1 +

6∑

i=2

ai(Θiζ)
2 exp(Θiζ)

(exp(Θiζ)− 1)2
, (2.103)
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2.5. Thermophysical properties of CO2 27

along with the coefficients in Table 2.2. Here, as previous, ζ = θc/θ. The behavior of Cv in
the p− θ diagram, computed from Eq. 2.102 and using the egB-EOS, is shown in Fig. 2.2.
On the other hand, a comparison between the Cv values found using egB-EoOS and Span
& Wagner-EOS is presented in Fig. 2.3.

Table 2.2.: List of numeric coefficients to compute Co
v ([SW96]).

i 1 2 3 4 5 6

ai 2.50000000 1.99427042 0.62105248 0.41195293 1.04028922 0.08327678

Θi 3.15163 6.11190 6.77708 11.32384 27.08792

Figure 2.2.: Isochoric specific heat for CO2 calculated using egB-EOS.
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Figure 2.3.: Differences in the values of the isochoric specific heat for CO2 using two dif-
ferent EOS (Span&Wagner-EOS and egB-EOS ).
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2.5.3. Isobaric specific heat

In order to compute the isobaric specific heat, also called heat capacity at constant pressure,
the expression ([PN98])

Cp(ρ, θ) = Cv(ρ, θ) +

θ

(
∂ p

∂θ
(ρ, θ)

)2

ρ2

(
∂ p

∂ρ
(ρ, θ)

) (2.104)

is used. In Fig. 2.4 is shown the behavior of Cp, calculated using Eq. 2.104 and the egB-
EOS, for different values of pressure and temperature. The differences in the Cp values for
two different EOS (egB-EOS and Span & Wagner-EOS ) are presented in Fig. 2.5.

Figure 2.4.: Isobaric heat capacity for CO2 calculated using egB-EOS.
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Figure 2.5.: Differences in the values of the isobaric specific heat for CO2 using two different
EOS (Span&Wagner-EOS and egB-EOS ).
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2.5. Thermophysical properties of CO2 29

2.5.4. Heat capacity ratio

From Eq. 2.104, the heat capacity ratio can be calculated using the expression

γ (ρ, θ) = 1 +

θ

(
∂ p

∂θ
(ρ, θ)

)2

ρ2Cv (ρ, θ)

(
∂ p

∂ρ
(ρ, θ)

) . (2.105)

Using the last expression it is possible to plot the behavior of γ in the p − θ diagram,
as in the Fig. 2.6. Additionally, differences in γ values, computed using both Span &
Wagner-EOS and egB-EOS, are showed in Fig. 2.7.

Figure 2.6.: Heat capacity ratio for CO2 calculated using egB-EOS.
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Figure 2.7.: Differences in the values of the specific heat ratio for CO2 using two different
EOS (Span&Wagner-EOS and egB-EOS ).
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2.5.5. Speed of sound

One of the most important properties for compressible flows is the speed of sound, here
this quantity can be computed from the expression ([PN98])

c (ρ, θ) =

√
γ (ρ, θ)

∂p

∂ρ
(ρ, θ). (2.106)
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30 2. Conservation Laws

The Fig. 2.8 shows the behavior of the speed of sound c, computed using Eq. 2.106 and
the egB-EOS, in terms of pressure and temperature. On the other hand, in Fig. 2.9 are
shown the differences in the values of the speed of sound computed using both egB-EOS
and Span & Wagner-EOS.

Figure 2.8.: Speed of sound for CO2 calculated using egB-EOS.
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Figure 2.9.: Differences in the values of speed of sound in CO2 using two different EOS
(Span&Wagner-EOS and egB-EOS ).
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2.5.6. Specific internal energy

The specific internal energy is computed using the equation ([HK07])

e (ρ, θ) = e0 − θ

∫
ρ

ρ0

∂

∂θ

(p
θ

) dr
r2

+

∫ θ

θ0

Co
v (T ) dT. (2.107)

Here, the reference values for temperature θ0, pressure p0 and specific internal energy e0,
are listed in Table 2.1, while the reference density is calculated using the relation for ideal
gas

ρ0 =
p0
Rθ0

. (2.108)
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2.5. Thermophysical properties of CO2 31

The analytic expression for e obtained from Eq. 2.107, as well as its partial derivatives
∂e/∂ρ and ∂e/∂θ, are included in Sec. A .

The corresponding graphic for the specific internal energy in the θ− p diagram, and using
the egB-EOS, is plotted in Fig. 2.10. The differences introduced by using two different
EOS are shown in Fig. 2.11 for egB-EOS and Span & Wagner-EOS.

Figure 2.10.: Specific internal energy for CO2 calculated using egB-EOS.
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Figure 2.11.: Differences in the values of the specific internal energy for CO2 using two
different EOS (Span&Wagner-EOS and egB-EOS ).
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2.5.7. Dynamic viscosity

The dynamic viscosity is calculated using the correlation presented by [AS72]

µ(ρ, θ) = µo(θ) exp




4∑

i=1

1∑

j=0

aijδ
iζj


 , (2.109)

where the coefficients aij are listed in Table 2.3,

µo(θ) =
1√
ζ
(27.2246461− 16.6346068ζ + 4.66920556ζ2) . (2.110)
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32 2. Conservation Laws

and, as in Eq. 2.97, ζ = θc/θ and δ = ρ/ρc. Here, all values are given in SI units, i.e., θ
is given in K, ρ in kg/m3 and µ in ➭Pa s. Eq. 2.109 is used to show, in Fig. 2.12 and

Table 2.3.: List of numeric coefficients to compute µo ([AS72]).

a10 0.248566120 a30 0.363854523

a11 0.004894942 a31 −0.774229021

a20 −0.373300660 a40 −0.0639070755

a21 1.22753488 a41 0.142507049

Fig. 2.13, the behavior of µ on a wide range of pressure and temperature.

Figure 2.12.: Behavior of the dynamic viscosity of CO2 on the θ − p domain.
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Figure 2.13.: Dynamic viscosity for CO2.
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2.5.8. Thermal conductivity

According to [VWO+90], the thermal conductivity can be expressed as a zero-density
basic approximation ko(θ), plus a term to incorporate the effect of the density ∆k(ρ),
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2.5. Thermophysical properties of CO2 33

Table 2.4.: List of numeric coefficients to compute µo ([AS72]).

i ai bi ci i ai bi ci

0 0.4226159 − − 4 0.0 7.981590 6.594919E-11

1 0.6280115 0.02387869 2.447164E-2 5 0.0 -1.940558 −
2 -0.5387661 4.350794 8.705605E-5 6 -0.4362677 − −
3 0.6735941 -10.33404 -6.547950E-8 7 0.2255388 − −

and an additional correction term to enhance the approximation near to the critical point
∆ck (ρ, θ), i.e.

k (ρ, θ) = ko(θ) + ∆k(ρ) + ∆ck (ρ, θ) . (2.111)

Here, the basic approximation is given by the expression

ko (θ) = 0.475598

√
θ(1 + 0.4k∗)

G (θ∗)
, (2.112)

with θ∗ = θ/251.196 ,

G (θ∗) =
7∑

i=0

ai

θ∗i
(2.113)

and

k∗ = 1.0 + exp

(
−183.5

θ

) 5∑

i=1

bi

(
θ

100

)2−i

. (2.114)

On the other hand, the first correction term is estimated through the equation

∆k (ρ) =

4∑

i=1

ciρ
i. (2.115)

For Eq. 2.112–Eq. 2.115 all quantities are expressed in SI -units, i.e. θ in K, ρ in kg/m3

and k in mW/mK. Likewise, for these equations the list of coefficients ai, bi and ci is given
in Table 2.4.

In [VWO+90] a second correction term ∆ck is included in order to improve the quality of
the correlation near to the critical point, nevertheless this term is of high complexity, and
its use will reduce efficiency in the computational sense, for this reason it will not take in
account to compute the thermal conductivity in this work.

From Eq. 2.111–Eq. 2.115, the behavior of k can be plotted in terms of temperature
and pressure, as in Fig. 2.14 and Fig. 2.15.
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34 2. Conservation Laws

Figure 2.14.: Behavior of the thermal conductivity for CO2 in the θ − p domain.
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Figure 2.15.: Thermal conductivity for CO2.
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36 3. Spatial semidiscretization for Navier–Stokes equations

faces Sj adjacent to ∂Ω. Thus, κ(i) will denote an index set such that

κ(i) = {j ∈ Ib : Sj is a face of Ki},

with Ib = {−1,−2, . . . }. Therefore, Ki will named internal element if κ(i) = ∅. In similar
fashion κD(i) ⊂ κ(i) will denote the set of indices of faces adjacent to the Dirichlet border
(ΓD), i.e., where at least one conservative variable is prescribed, while κN(i) will represent
the set of faces adjacent to the Neumann boundary (ΓN), thus κ(i) = κD(i) ∪ κN(i).
Further, S(i) will be the complete index set for the element Ki, i.e., S(i) = s(i) ∪ κ(i).

3.2. Weak formulation of inviscid problems using discontin-
uous Galerkin finite element method (DGFEM)

3.2.1. Broken Sobolev spaces

Defining a broken Sobolev space over the triangulation Th, such that

Hr(Ω, Th) = {v ∈ L2(Ω) : v|K ∈ Hr(K) for all K ∈ Th}, (3.1)

with r ≥ 0. For v ∈ H1(Ω, Th) the following notation is introduced:

❼ v|Γij
is the trace of v|Ki

on the edge Γij .

❼ v|Γji
is the trace of v|Kj

on the edge Γji. Note that in general v|Γij
6= v|Γji

.

❼ The jump of v in the edge Γji is defined by

[[v]]Γij
= −[[v]]Γji

= v|Γij
− v|Γji

. (3.2)

❼ The average of v on Γji is defined by

{|v|}Γij
= {|v|}Γji

=
1

2

(
v|Γij

+ v|Γji

)
. (3.3)

3.2.2. Weak formulation

Taking the set of Euler equations Eq. 2.40, multiplying by the vector-valued function
ϕ ∈ [H2(Ω, Th)]

m and integrating over Ωh one finds

d

dt

∑

i∈I

∫

Ki

w ·ϕ dx+
∑

i∈I

∫

Ki

div (Fs(w)) ·ϕ dx = 0. (3.4)

Now, applying Green’s theorem, it is possible to write

d

dt

∑

i∈I

∫

Ki

w ·ϕ dx−
∑

i∈I

∫

Ki

d∑

k=1

Fs
k(w) · ∂ϕ

∂xk

dx

+
∑

i∈I

∑

j∈S(i)

∫

Γij

d∑

k=1

Fs
k(w)nk ·ϕ dS = 0,

(3.5)

or defining the forms

(w,ϕ)
h
=
∑

i∈I

∫

Ki

w ·ϕ dx (3.6)

36



3.3. Numerical flux 37

and

bh (w,ϕ) =−
∑

i∈I

∫

Ki

d∑

k=1

Fs
k(w) · ∂ϕ

∂xk

dx

+
∑

i∈I

∑

j∈S(i)

∫

Γij

d∑

k=1

Fs
k(w)nk ·ϕ dS,

(3.7)

the expression Eq. 3.4 is
d

dt
(w,ϕ)

h
+ bh (w,ϕ) = 0. (3.8)

3.2.3. Discrete approximation

Let w : M → Rm be the exact solution of Eq. 3.8, and we will denote the function
w (t) : Ω → Rm such that w (t) = w (·, t). Then, approximating w locally by discrete
functions wh ∈ C1 ([0, T ] ;Sh), where

Sh = [Sh]
m ,

Sh = {v : Th 7→ R : v|K ∈ P q for all K ∈ Th}
(3.9)

and P q is the space of polynomials over K with degree lower than q, thus, the discrete
version of Eq. 3.8 is

d

dt
(wh(t),ϕ)h + bh (wh(t),ϕ) = 0. (3.10)

As usual, the normal flux component
∑d

k=1 f
s
k(wh)nk in Eq. 3.7 will be approximated

using a numerical flux H. This term corresponds to a physical model that represents the
interaction between neighboring cells. Hence, this numerical term should incorporate not
only the values of the conservative vector wh over the interface of Ki, but also the values
of wh over the neighbor Kj. Thus, the corresponding term in Eq. 3.7 is written now as

∫

Γij

d∑

j=1

f sj (wh) ·ϕnj dS ≈
∫

Γij

H (w+,w−,n) ·ϕ dS, (3.11)

where w+ = wh|Γij
, w− = wh|Γji

and n is the unit vector normal to the interface Γij .
Thus, the operator bh (wh(t),ϕ) now can be written as

bh (wh(t),ϕ) = −
∑

i∈I

∫

Ki

d∑

k=1

Fs
k(wh) ·

∂ϕ

∂xk

dx

+
∑

i∈I

∑

j∈S(i)

∫

Γij

H (w+,w−,n) ·ϕ dS.
(3.12)

The proper selection of a numerical flux is a main part for an efficient and accurate
numerical solution, therefore this topic is discussed in a separate section.

3.3. Numerical flux

As previously was mentioned, a basic ingredient for a precise, stable and efficient numerical
scheme is an adequate numerical flux. From the characteristic theory is well known that
for a supersonic flow the waves travel from upstream to downstream, and correspondingly
the information w used by the numerical flux must come from upstream side of interface
Γ. Nevertheless, for subsonic case the waves can travel from upstream to downstream or
vice versa. In these cases the numerical flux should take the information from both sides
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38 3. Spatial semidiscretization for Navier–Stokes equations

of the interface, i.e. it must take in account both w|Γij = w+ and w|Γji = w−. A bigger
challenge to design (or select) an efficient numerical flux is found in cases where subsonic
and supersonic flows there exist into the time-space domain, e.g. in the shock waves a
subsonic region is found at one side of the shock, along with a supersonic region at the
other.

Definition 3.3.1. Let H (w+,w−,n) be a generic numerical flux, let D be the domain of
the flux f sj (w) and let S = {n ∈ Rd : |n| = 1}, then the numerical flux H should satisfy
the next properties ([LeV02]):

❼ H is defined and is Lipschitz continuous on the domain D ×D × S.
❼ H is consistent, i.e.

H (u,u,n) = Fn(u,n) =

d∑

j=i

Fs
j (u)nj

for all u ∈ D and n ∈ S.
❼ H is conservative, i.e.

H (u,v,n) = −H (v,u,−n)

for all u,v ∈ D and n ∈ S.

There exist a big number of research works focused on developing adequate numerical
fluxes for different kind of problems. Here, these numerical fluxes are classified into two
general groups: central schemes and upwind schemes.

3.3.1. Central schemes

The basic prototype for a central scheme is given by

H (w+,w−,n) =
1

2

(
Fn(w+,n) + Fn(w−,n)

)
+ Fad, (3.13)

where the first term at right hand side represents a simple average flux, which is generally
instable for hyperbolic problems ([LeV02]), while the term Fad represents a stabilization
term, necessary in order to damp (via numeric diffusion) the oscillations produced by the
first term.

3.3.1.1. Lax–Friedrichs numerical flux

One of the most popular central schemes is the Lax–Friedrichs numerical flux, which is
defined as

HLF (w
+,w−,n) =

1

2
(Fn(w+,n) + Fn(w−,n))− α (w− −w+) , (3.14)

where α is defined as the spectral radii of the Jacobi matrix of Fn, i.e.

α =
1

2
max

v=w
+,w−

{|λ (P(v,n))|}.

3.3.1.2. Lax–Wendroff numerical flux

Unlike Lax–Friedrichs numerical flux (with first order of accuracy), a scheme with second
order of accuracy in space and time can be formulated using ([LW60]):

HLW (w+,w−,n) =
1

2
(Fn(w+,n) + Fn(w−,n))

− τ

2hK

P

(
1

2
(w+ +w−) ,n

)
(Fn(w−,n)− Fn(w+,n)) ,

(3.15)

where τ is the time step size and hK is a measure for the mesh size.
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3.3.2. Upwind schemes

The basic idea around this methods is to use the characteristics theory in order to predict
how the waves are traveling, and then to identify from where the information are com-
ing. Although for the scalar linear case the application of this strategy is straight, for
nonlinear systems these techniques represent a harder challenge. These group of methods
can be classified in three subgroups: flux difference splitting methods (FDSM), flux vector
splitting methods (FVSM) and advection upstream splitting methods (AUSM).

Lemma 3.3.2. Consider the Riemann problem given by the linear system

∂w

∂t
+ A

∂w

∂x
= 0, (3.16)

with the initial condition

w(x, 0) =

{
w+, if x < 0,

w−, if x > 0,
(3.17)

where A ∈ Rm,m is a diagonalizable matrix. From it follows that there exist a matrix R
such that

A = RΛR−1

with

R = (r1 . . . rm)

and

Λ = diag (λ1, . . . , λm) ,

being λi ∈ R, i = 1, . . . ,m, the i-th eigenvalue and ri ∈ Rm the associated eigenvector.
Thus, assuming that w is constant in the domain Ωi = {(x, t); t > 0, λi < x/t < λi+1} it
is possible to show that for all (x, t) ∈ Ωi the following flux expressions are equivalent

❼ Aw(x, t) = A+w+ + A−w−,

❼ Aw(x, t) = Aw+ +

∫
w

−

w
+

A−dw,

❼ Aw(x, t) = Aw− −
∫

w
−

w
+

A+dw,

❼ Aw(x, t) = 1
2 (Aw

− + Aw+)− 1
2

∫
w

−

w
+

|A|dw,

where

A = A+ + A−, (3.18)

A± = RΛ±R−1, (3.19)

|A| = R|Λ|R−1 = A+ − A− (3.20)

|Λ| = diag (|λ1|, . . . , |λm|) (3.21)

and

Λ± = diag (λ±
1 , . . . , λ

±
m) . (3.22)

Proof. Proof of this lemma can be found in [FFS03].
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Remark 3.3.3. Considering the nonlinear Riemman problem

∂w

∂t
+

∂

∂x
f s(w) = 0, (3.23)

with the initial condition Eq. 3.17, where f s(w) ∈ Rm. Thus, in analogy with the linear
case in Lemma 3.3.2, it is possible to write the Godunov numerical flux HR as

HR (w
+,w−) =f s(w+) +

∫
w

−

w
+

A− dw

=f s(w−)−
∫

w
−

w
+

A+ dw

=
1

2

(
f s(w+) + f s(w−)

)
− 1

2

∫
w

−

w
+

|A| dw,

(3.24)

where A±, and |A| are given by Eq. 3.19 and Eq. 3.20, respectively.

3.3.2.1. Flux difference splitting schemes

A natural idea consists in treating each interface jump as a 1D-Riemann problem, thus the
exact solution allows to compute the numerical flux. This idea was presented by Godunov
in his seminal paper ([God59]) and onwards it inspired a wide amount of numerical meth-
ods (also named Godunov methods). This scheme has shown a good accuracy, even in
presence of shock waves and contact discontinuities ([Tor99]), preserving the positivity of
density and pressure. Nevertheless, as in the Eq. 3.24, the exact solution of the Riemann
problem implies the analytical integration of Riemann invariants and it involves two basic
drawbacks:

❼ On the one hand, in practical 2D-3D models, to solve this problem on each interface
can demand a huge computational cost and make the method unfeasible. Hence, a
lot of efforts are focus on to develop approximate solutions to Riemann problems.
Some of the most recognized methods were presented by Roe ([Roe81]), Osher and
Solomon ([OS82]) and Harten et al. ([HL81]).

❼ The analytical formulation of integral in Eq. 3.24 should be built for each specific
problem, but may not be possible for some problems. Particularly, in the context of
inviscid gases obeying a non-ideal EOS, some authors have proposed exact Riemann
solutions for specific cases, e.g. Colella and Graz ([CG85]) present an exact solution
considering a general convex EOS, while Surel et al. ([SLL94]) develop a solution
taking a EOS of the form p = p(ρ, θ) and Quartapelle et al. ([QCGQ03]) focus on
the van der Waals EOS.

Roe linear approximation

In order to reduce complexity of computing the exact solution of the Riemann problem
Eq. 3.24, involved in the numerical solution of Euler equations, Roe and Pike ([Roe81])
presented a linearization technique. The basic idea behind this approach, which is one of
the most accurate methods available, is to replace the nonlinear Riemann problem by a
linear case that approximates as well as the original nonlinear formulation. Thus, Roe’s
linear problem is

∂w

∂t
+ Ã(w+,w−)

∂w

∂x
= 0, (3.25)

with the initial condition Eq. 3.17. Here Ã is a matrix (locally constant) with the following
properties:
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❼ Ã(w+,w−) is diagonalizable.

❼ Ã(w+,w−) is consistent with the exact Jacobian, i.e.

Ã(w,w) = A(w).

❼ Ã(w+,w−) is conservative across discontinuities, i.e.

f s(w+)− f s(w−) = Ã(w+,w−)(w+ −w−).

For the Euler equations and using the ideal gas EOS, Roe defines the matrix Ã equal to
matrix A1 in Remark 2.2.7, but evaluated in an average state ŵ, i.e.,

Ã(w+,w−) = A1(ŵ),

where the average state is given by

ŵ =
(
ρ̂ ρ̂ v̂1 ρ̂ v̂2 ρ̂ v̂3 Ê

)T

,

√
ρ̂ =

1

2

(√
ρ+ +

√
ρ−

)
,

v̂1 =

√
ρ+ v+

1 +
√
ρ− v−

1√
ρ+ +

√
ρ−

,

v̂2 =

√
ρ+ v+

2 +
√
ρ− v−

2√
ρ+ +

√
ρ−

,

v̂3 =

√
ρ+ v+

3 +
√
ρ− v−

3√
ρ+ +

√
ρ−

,

Ê =
1

γ
ρ̂ ĥ+

γ − 1

2γ
ρ̂ |v̂|2,

ĥ =

√
ρ+ h+ +

√
ρ− h−

√
ρ+ +

√
ρ−

.

(3.26)

Finally, knowing the eigenvalues and eigenvectors of A1(ŵ) from Remark 2.2.7, and using
the average speed of sound

â = (γ − 1)

(
ĥ− 1

2
|v̂|2
)
,

the numerical flux can be computed using any of the expressions in Lemma 3.3.2. Some
extra details to implement the method can be found in ([FFS03]).

As have been reported in multiple works, this scheme is able to reproduce linear waves
(contact discontinuities) with a high resolution, whereby it is a suitable method to capture
boundary layers when Navier–Stokes are used to model problems. Nevertheless, it formu-
lation allows to have non-physical expansion waves which are clearly undesirable ([CL95]).

Some authors have extended this method to the case of real gases, e.g. Glaister ([Gla89])
solves 1D Euler equations along with a convex EOS using a linearized Riemann problem.
Extensions to 2D-3D problems were developed by the same author using an splitting oper-
ator. Vinokur and Montagné ([VM90]) present a generalized Roe average approximation
to Riemann problems to arbitrary equilibrium gas laws. Likewise, Grossman and Walters
([GW89a]), and later Liou and van Leer ([LLS90]), developed an approach to the solu-
tion of Euler equations for real gases adapting the Roe formulation through an equivalent
function γ̄ such that γ̄ = γ̄(ρ, e).
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42 3. Spatial semidiscretization for Navier–Stokes equations

Later, Guardone and Vigevano ([GV02]) present a extension to Roe linearization for prob-
lems with van der Waal gases, and Cinnella ([Cin06]) proposes some simplifications to the
Roe method applied to problems with dense gases. More recently, Moon et al. ([MSC11])
deduce an average state for Roe linearization considering that the compressibility factor
is locally constant between the interfaces.

3.3.2.2. Flux vector splitting schemes

Considering the fluid flow as a group of particles moving in and out of each cell, then it is
natural to express the total flux through a cell interface as a sum of a positive flux (leaving
the cell) and a negative flux (going into the cell), i.e.

Fn(w,n) = F+(w,n) + F−(w,n). (3.27)

This family of methods leads to simpler techniques (normally supported by a less sophis-
ticated theory), which are easier to implement and have lower computational cost than
the Gudunov methods (FDSM). Nevertheless, the solutions found with this schemes are
regularly less accurate and exhibit an excessive numerical diffusion, producing poor reso-
lution in discontinuities for inviscid problems ([Tor99]) and smearing boundary layers in
applications to the Navier–Stokes equations ([LTR87]).

Steger–Warming flux-vector splitting

Steger and Warming ([SW81]) represent the forward and backward fluxes, respectively, as

F±(w±,n) = P±(w±,n)w±,

hence the numerical flux can be written as

HSW (w+,w−,n) = P+ (w+,n)w+ +P− (w−,n)w−, (3.28)

where

P±(w,n) =
d∑

j=1

A±
j (w)nj.

A equivalent formulation, inspired by Eq. 3.24, is

HSW (w+,w−,n) =
1

2
(Fn(w+,n) + Fn(w−,n))

−1

2
(|P (w−,n) |w− − |P (w+,n) |w+) ,

(3.29)

where |P(w±,n)| is expressed according to the definitions in Lemma 3.3.2. From Eq. 3.28
or Eq. 3.29 it follows that the homogeneity property in Lemma 2.2.3 should be satisfied,
and then this split can only be applied in cases with flows of thermally perfect gases or
ideal gases. Nevertheless, some extensions to real gases have been developed by Liou
and Van Leer ([LLS90]), Montagné et al. ([MY89, VM90]) and Grossman and Walters
([GW89a, GW89b]).

Vijayasundaram flux-vector splitting

A partial upwind scheme can be derived from Eq. 3.28 evaluating the Jacobi matrix in a
average state ([Vij86]), i.e.

HVY (w+,w−,n) = P+

(
w+ +w−

2
,n

)
w+ +P−

(
w+ +w−

2
,n

)
w−. (3.30)

As in Steger–Warming splitting, the flux vector should be a homogeneous function of degree
one in order to apply this scheme. Thus, this formulation is only reserved to thermally
perfect gases.
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Lemma 3.3.4. Let d = 1 and let p be defined by the ideal gas EOS, then the inviscid flux
term Fs(w) in Eq. 2.40 can be expressed as

Fs
M(ρ,M(w), c(w)) =




ρcM

ρc2

γ
(γM2 + 1)

ρc3M
(

1
γ−1 + M2

2

)


 , (3.31)

where

M(w) =
v1
c(w)

(3.32)

is the dimensionless Mach number.

Proof. From Mach number definition to use v1 = Mc, as well as p = c2ρ/γ from Eq. 2.61,
to change v1 and p in Fs(w) (Eq. 2.15) by their equivalent expressions in terms of ρ, M
and c.

Van Leer flux-vector splitting

Using the inviscid flux expression given in Lemma 3.3.4, van Leer ([L82]) proposes a
numerical flux based on the splitting of the Mach number as follows:

❼ Mass flux splitting: the term ρcM is rewritten using a splitting for the Mach number
such that

ρcM ≡ f+
m (w+) + f−

m (w−) , (3.33)

where

f±
m (w±) = ρ±c (w±)M±

(2) (M(w±)) , (3.34)

M±
(2) (M(w)) =

{
±1

4 (M± 1)2 , if |M| < 1,

M±
(1), otherwise.

(3.35)

and

M±
(1) (M(w)) =

1

2
(M± |M|) . (3.36)

❼ Momentum flux splitting: the momentum flux is split using

ρc2

γ
(γM2 + 1) ≡ f+

V (w+) + f−
V (w−) , (3.37)

where

f±
V =

ρ±c2 (w±)

γ
M±

(3) (M(w±)) , (3.38)

M+
(3) (M(w)) =





0, if M ≤ −1,
1
4 (M + 1)2 ((γ − 1)M + 2) , if − 1 < M < 1,

γM2 + 1, otherwise

(3.39)

and

M−
(3) (M(w)) =





γM2 + 1, if M ≤ −1,

−1
4 (M− 1)2 ((γ − 1)M− 2) if − 1 < M < 1,

0, otherwise.

(3.40)
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44 3. Spatial semidiscretization for Navier–Stokes equations

❼ Energy flux splitting: the energy flux is rewritten using the splitting

ρMc3
(

1

γ − 1
+

M2

2

)
≡ f+

E (w+) + f−
E (w−) , (3.41)

where

f+
E (w) =





0, if M ≤ −1,

γ2

2(γ2−1)

f+
M

2

f+
m
, if − 1 < M < 1,

ρMc3
(

1
γ−1 + M2

2

)
, otherwise,

(3.42)

and

f−
E (w) =





ρMc3
(

1
γ−1 + M2

2

)
, if M ≤ −1,

γ2

2(γ2−1)

f−
M

2

f−
m
, if − 1 < M < 1,

0, otherwise.

(3.43)

Thus, for a one dimensional case, the final numerical flux formula can be expressed as

HVL(w
+,w−) = F+

M (w+) + F−
M (w−) , (3.44)

with

F±
M (w) =




f±
m (w)

f±
V (w)

f±
E (w)


 . (3.45)

This strategy produces a total upwind formulation for supersonic flows and a kind of
centered formulation for subsonic regime. The second order polynomial used to define
the Mach number in the subsonic range allows to solve the continuity problems in sonic
points (M = 1) and stagnation points (|v| = 0) encountered with the Steger-Warming
formulation. Nevertheless, it is well known that this scheme introduces excessive numerical
diffusion over contact discontinuities ([L82]). An alternative multidimensional form for this
numerical flux is given by ([FFS03])

HVL (w
+,w−,n) =

1

2
(Fn(w+,n) + Fn(w−,n))

−1

2

∣∣∣∣P
(
w+ +w−

2
,n

)∣∣∣∣ (w
− −w+)

. (3.46)

Some extensions of this numerical flux to real gases are presented in ([LLS90, MY89,
GW89a]).

Lemma 3.3.5. Let d = 1 and let p = p(w) be a general EOS, then the inviscid flux term
Fs(w) in Eq. 2.40 can be expressed as the sum of a convective and an acoustic term

Fs
MP (w,M(w), c(w)) = ρcM




1

v1

h


+




0

p

0


 , (3.47)

where the Mach number is M(w) = v1/c and the specific enthalpy h(w) is defined in accor-
dance with Eq. 2.48.
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Liou–Steffen flux-vector splitting

Recognizing the physical differences between convective and acoustic waves, Liou and
Steffen ([LS93]) propose an improved version of the van Leer flux-vector splitting. Thus,
using the inviscid flux expression given in Lemma 3.3.5, a different splitting is designed
for each flux component: a Mach number splitting for the convective flux and a pressure
splitting for the acoustic term. Using this idea, the numerical flux for an one-dimensional
problem can written as

HLS(w
+,w−) = ρ 1

2
(w+,w−)c 1

2
(w+,w−)M 1

2
(w+,w−)F 1

2
(w+,w−)

+ FP (w
+,w−),

(3.48)

where

M 1
2
(w+,w−) = M+

(2) (M(w+)) +M−
(2) (M(w−)) , (3.49)

ρ 1
2
(w+,w−) =

{
ρ+, if M 1

2
≥ 0,

ρ−, otherwise,
(3.50)

c 1
2
(w+,w−) =

{
c(w+), if M 1

2
≥ 0,

c(w−), otherwise,
(3.51)

F 1
2
(w+,w−) =

{
FC(w

+), if M 1
2
≥ 0,

FC(w
−), otherwise,

(3.52)

FC(w) =




1

v1

h


 , (3.53)

FP (w
+,w−) =




0

P+ (M(w+)) p+ + P− (M(w−)) p−

0


 (3.54)

and

P± (M(w)) =

{
1
2 (1± sign(M)) , if |M| ≥ 1,
1
4 (M± 1)2 (2∓M) , otherwise.

(3.55)

This scheme allows to get at the same time a simple formulation, as with the flux-vector
splitting methods, and an accuracy comparable to Roe’s method. Additionally, this
method is easily extended to multiple dimensions and it does not require that the flux
satisfies the homogeneity property of Lemma 2.2.3, hence it can be applied indistinctly to
ideal or real gases. This scheme has inspired multiple extensions and enhanced versions,
giving birth to a family of methods termed AUSM -schemes.

3.3.3. The AUSM +-up scheme

A third category of numerical fluxes are the called advection upstream splitting methods
(AUSM ). These methods share the good characteristics of FDSM and FVSM. On the
one hand, these are as low dissipative and highly accurate as FDSM ([Lio01]), and on
the other hand they exhibit an easy formulation and a high computational efficiency as
the flux-vector splitting methods. Part of the simplicity of these methods lies in they
do not require to compute any Jacobi matrix or to develop an eigen-decomposition in
the inviscid flux term. Consequently the AUSM can be easily extended to real gases
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46 3. Spatial semidiscretization for Navier–Stokes equations

([RCG13, EFL00, EFL99]) and to other systems of conservation laws as multiphase flows,
chemical nonequilibrium flows or turbulence models ([CL07, GCP06, MEKS03]). In their
seminal work, Liou and Steffen ([LS93]) present a double splitting: the first, based on a
Mach number splitting, is applied to the convective flux, and a second splitting applied to
the pressure flux. However, despite its good accuracy in many cases, both the AUSM and
its improved version, called AUSM + ([Lio96]), report pressure oscillations in regions with
low Mach numbers ([Lio06]). Multiple versions have been developed, inspired in AUSM
and AUSM +, looking for a robust method with a wide range of Mach numbers ([Lio10]).
Here we only will present one of the most robust and accurate method of this family,
the AUSM +-up. The scheme AUSM +-up ([Lio06]) is derived from the original splitting
of Liou and Steffen, but some enhancement have been included in order to improve the
accuracy specially with small Mach numbers. The numerical flux with this scheme can be
expressed as

HAUSM(w
+,w−,n) = ρ 1

2
(w+,w−)c 1

2
(w+,w−)M 1

2
(w+,w−,n)F 1

2
(w+,w−)

+ FP (w
+,w−),

(3.56)

where

❼ The ρ 1
2
and c 1

2
terms are computed as a simple average

ρ 1
2
=
ρ+ + ρ−

2
, (3.57) c 1

2
=
c(w+) + c(w−)

2
. (3.58)

❼ The average Mach number M 1
2
is defined using a splitting with higher order polyno-

mials, with respect to the Liou–Steffen scheme, in order to increase the accuracy of
the AUSM scheme ([Lio96]). Additionally, a pressure diffusion term Mp was intro-
duced with the purpose of conserving the coupling between velocity and pressure,
specially at small Mach numbers. M 1

2
is written as

M 1
2
(w+,w−,n) = M+

(4) (M(w+)) +M−
(4) (M(w−))−Mp(w

+,w−,n), (3.59)

where

M±
(4) (M(w)) =

{
M±

(2)

(
1∓ 16βM∓

(2)

)
, if |M| < 1,

M±
(1), otherwise,

(3.60)

Mp(w
+,w−,n) =

Kp

fa
max

(
1− σM 2, 0

) p+ − p−

ρ 1
2
a 1

2

2
, (3.61)

M±
(2) was defined in Eq. 3.35, β = 1

8 ([Lio06]), 0 ≤ Kp ≤ 1, σ ≤ 1 and fa ∈ [0, 1] is
a scaling factor that increases the pressure diffusion term as M → 0. This term is
computed as

fa(Mo) =Mo(2−Mo), (3.62)

with

M 2
o = min

(
1,max

(
M 2,M 2

∞

))
, (3.63)

M 2 =
v+
n

2 + v−
n

2

2c 1
2

2
, (3.64)

and M∞ being the far field Mach number. As in Eq. 3.64, in this scheme each Mach
number should be computed using the average speed of sound, i.e.

M =
vn
c 1
2

. (3.65)
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❼ The acoustic term FP is splitting using the expression

FP (w
+,w−) = P+

(5) (M(w+)) p+ + P−
(5) (M(w−)) p− + pu, (3.66)

where

P±
(5) (M(w)) =

{
M±

(2)

(
(±2−M)∓ 16αMM∓

(2)

)
, if |M| < 1,

1
MM±

(1), otherwise,
(3.67)

α = 3/16 ([Lio06]) and pu is a diffusion term expressed as

pu = −KuP+
(5) (M(w+))P−

(5) (M(w−)) fac 1
2
(ρ+ + ρ−) (v−

n − v+
n ) , (3.68)

with 0 ≤ Ku ≤ 1. The terms P+
(5) and P−

(5) are used to switch off the velocity diffusion
term in the supersonic regime.

Extensive numerical tests and applications to physical problems have shown that this
scheme is reliable and effective in an wide range of Mach numbers, as in the subsonic level
as in the supersonic regime. Additionally, Liou ([Lio06]) showed that this method allows
to capture exactly contact discontinuities and shocks waves, and to preserve the positivity
property in mass (density).

3.3.4. Hybrid-flux methods

In general, the FDSM are able to reproduce linear waves (contact discontinuities) with
a high resolution, but normally with a high computational demand. On the other hand,
the FVSM are very robust to capture genuinely non-linear waves in a computational
efficient way, although it is well known that these methods introduce excessive numerical
diffusion in contact discontinuities. Thus, a lot of efforts lead to develop robust and
efficient hybrid schemes combining the strengths of two or more numerical fluxes. Coquel
and Liou ([CL95]) proposed a hybrid upwind splitting (HUS ) where an Osher scheme is
used in fields where linear waves are presented, and a van Leer flux splitting in regions
where nonlinear waves are localized. De Vuyst ([V04]) presents a numerical hybrid flux
calculated using a weighted average of a Lax-Wendroff second order numerical flux and a
first order Lax-Friedrichs flux, as follows

HHYB = ΘHLF + (1−Θ)HLW, (3.69)

where the combination coefficient 0 ≤ Θ ≤ 1, designed to locally control the amount of
numerical entropy dissipation, switches off the high order flux in regions near to discon-
tinuities, activating the lower order flux, looking for preserving the stability. In smooth
regions one lets Θ → 0 and the numerical flux is close to Lax-Wendroff scheme. A similar
technique is presented in [Hab95], but combining a FDSM and a FVSM to produce a
hybrid scheme. In similar fashion to Eq. 3.69, these flux combination hybrid schemes can
be written as

HHYB = HHO −Θ(HHO −HLO) , (3.70)

where HHO and HLO represent a generic high order and low order numerical flux, respec-
tively. Thus, these hybrid schemes are equivalent to the flux corrected transport schemes
(FCT ) proposed by Boris and Brook ([BB73]) and extended by Zalesak ([Zal79]). In this
last scheme a first stage is used to compute the flux using a high order scheme, while in
a second stage this flux is corrected using the difference with a lower order numerical flux
(the difference is called antidiffusive flux).

In all this schemes a big part of the success consists in identifying regions (or cells) where
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48 3. Spatial semidiscretization for Navier–Stokes equations

a higher diffusive scheme (with a lower order of accuracy) should be used. Normally these
regions correspond to the vicinity of steep gradients or discontinuities. Thus, it is impor-
tant to employ efficient and reliable discontinuity indicators to save the accuracy of the
hybrid method. In [DFS03, QS05a, LQ10a, KXR+04] some discontinuity indicators, in
the context of discontinuous Galerkin methods, are presented and evaluated.

As is natural, a lot of these hybrid formulations are employed to capture discontinuities
saving high accuracy and preserving the stability of the method. In the following section
will be presented more details about shock capturing.

3.4. Shock capturing and Gibbs phenomenon

One of the most challenging problems in the modeling of compressible flows is the existence
of discontinuous solutions, even when smooth initial conditions are employed. It is well
known that higher order schemes (with a low numerical diffusion) exhibit non-physical os-
cillations, wiggles, overshoots and undershoots near to steep gradients and discontinuities,
this effect is named Gibbs phenomenon.

A generalized way to avoid this problem is to smooth the local discrete solution in the
vicinity of discontinuities. This effect is found via addition, explicitly or implicitly, of
some sort of extra dissipation into the numerical scheme. Normally, the numeric tech-
niques developed to suppress the Gibbs oscillations are composed by two parts: a trouble
cell indicator, or discontinuity indicator, that identifies the group of cells where the solution
should be smoothed, and second, a method to smooth the approximation, or equivalently,
to introduce some sort of numerical dissipation. As is natural, to introduce this extra
numerical diffusion into the scheme tends to sacrifice the accuracy in the region where it
was applied.

3.4.1. Discontinuity indicator

As was previously mentioned, the design of a efficient and precise indicator is important for
the success of the numerical technique. Doleǰśı and Feistauer ([DFS03, DF03]) show that
the jumps of the discrete solution through the interfaces are of order O(hK) in regions with
discontinuities and of order O(hK

2) in zones where the solution is smooth. Thus, these
jumps can be used as discontinuity sensors. Using this idea Doleǰśı and Feistauer propose
as discontinuity indicator for the element Ki ∈ Th the expression

g(i) =
∑

j∈S(i)

∫

Γij

[[wh]]
2

hKi
|Ki|3/4

dS, (3.71)

for all i ∈ I and where |Ki| denotes the d-dimensional volume of Ki, hKi
= diam(Ki)

and wh corresponds to some representative component of the discrete vector solution wh.
Subsequent works ([FK07, FKP10]) show that this formulation is suitable to detect dis-
continuities in the density of compressible flows. In these works the elements are marked
as trouble cells when

g(i) =
∑

j∈S(i)

∫

Γij

[[ρh]]
2

hKi
|Ki|3/4

dS > 1. (3.72)

Krivodonova ([KXR+04]) developed an indicator based on the convergence properties of
DGFEM. In accordance with this idea the indicator for the edge j, that belongs to element
Ki, is defined by

g(i) =
∑

j∈S(i)

∣∣∣
∫
Γij

[[wh]]dS
∣∣∣

(
hKi

) p+1
2 |Γij|‖wh‖

, (3.73)
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for all i ∈ I and where |Γij| denote the (d − 1)-dimensional volume of Γij. An complete
analysis of different discontinuity indicators can be found in [QS05a].

On the other hand, in the context of the multi-dimensional optimal order detection
(MOOD) ([DL16, DZLD14, LDD14]) two detection criteria to identify trouble cells are
employed: first a physical admissibility criteria, e.g. positivity in pressure and fluid den-
sity in the case of compressible flows, and second a numerical admissibility criteria, which
normally uses a form of the discrete maximum principle.

3.4.2. Artificial viscosity method

With regard to the method to smooth the discrete solution in the problematic cells, in a
coarse sense these methods can be classified in two groups: methods that introduce explic-
itly an artificial viscosity term and a second group that uses limiters to correct the discrete
solution, e.g. the FCT method, presented in the previous section, the weighted essentially
non-oscillatory schemes WENO ([LQ10a, QS05b]), or the MOOD-type methods.

The idea about introducing artificial viscosity to stabilize discrete solutions in presence
of shock waves was originally presented by von Neumann and Richtmyer ([NR50]), and
because of its efficiency and simplicity to be implemented, it has been extensively used,
specially in the context of DGFEM. This method consists in to add the artificial term

βh (wh(t),ϕ) =
∑

i∈I

∫

Ki

µa

d∑

k=1

∂wh

∂xk

· ∂ϕ
∂xk

dx (3.74)

to Eq. 3.10, where µa ∈ Rm,m is, in general, a matrix with the artificial-viscosity coefficients.
Feistauer and Kučera ([FK07]) introduced a simple expression for the artificial viscosity
based only on the size of the element

βh (wh(t),ϕ) = ν1
∑

i∈I
hKi

G(i)

∫

Ki

d∑

k=1

∂wh

∂xk

· ∂ϕ
∂xk

dx, (3.75)

where ν1 = O(1) and G(i) is a switch-variable that turns equal to 1 when the discontinuity
indicator exceeds a threshold and turns to 0 otherwise. In order to strengthen the effect
of the neighboring elements into the viscosity term, and inspired on the interior penalty
DGFEM (see Sec. 3.7), the authors in [FFS03] propose to add an extra term of the form

Jh (wh(t),ϕ) = ν2
∑

i∈I

∑

j∈S(i)

1

2
(G(i) +G(j))

∫

Γij

[[wh]] · [[ϕ]]dS, (3.76)

with ν2 = O(1).

Authors as Hartmann ([Har06, HH02]) and Bassi and Rebay ([BR95]) use the residu-
als of the discrete solution to estimate the regions where an artificial viscosity should be
added and to evaluate the amount of viscosity that should be introduced. According to
Hartmann, a variant of Eq. 3.74 is given by

βh (wh(t),ϕ) = ν3
∑

i∈I
h2−β

Ki

∫

Ki

∣∣div (Fs(wh))
∣∣

d∑

k=1

∂wh

∂xk

· ∂ϕ
∂xk

dx, (3.77)

where ν3 > 0, 0 < β < 1/2. In a similar fashion, Guermond et al. ([GPP11, ZGMP13]) use
the size of the local entropy production to define the intensity of this numeric dissipation.
Note that in these last focus, as well as in Eq. 3.77, a switch to activate or deactivate
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50 3. Spatial semidiscretization for Navier–Stokes equations

the shock capturing is not necessary because the stabilization term is applied in the full
domain, but regulating locally the amount of numerical viscosity required. Some other
formulations for µa can be found in ([BD10, Har06]).

For the capturing of strong shocks can be convenient to combine the introduction of
the stailization terms, e.g. Eq. 3.75–Eq. 3.76, with the use of the hybrid numerical flux
formulation presented in Eq. 3.70. Thus, in the context of this work, the G-switch vari-
able, activated by the shock indicator, will be incorporated with a double purpose. First,
it introduces only in the critical elements the artificial viscosity via stabilization terms
Eq. 3.75–Eq. 3.76. Second, if a hybrid numerical flux is used (see Sec. 3.3.4), the value of
G is introduced instead of Θ in Eq. 3.70. As result, the lower-order numerical flux HLO

is activated in the same elements where the stabilization terms were added. Here, critical
elements should be understood as the cells with discontinuity indicator values upper than
a limit value preset.

3.5. Adaptive grid strategy

In order to increase the resolution in the non-smooth regions of the solution a mesh grading
is required. The idea of the adaptive mesh strategy is to locally refine cells such that the
local error is constant on each element. Here no formal error estimate will be used and
instead of we will use a simple and well known idea. According to that, if a field of values
f ∈ R is to be accurately predicted, then the product between the preferable size of the
cell h∗

Ki
and the field gradient on the cell should be constant for each cell, i.e.,

h∗
Ki
‖∇f‖Lp(Ki)

≈ C, for i = 1, . . . ,Nc, (3.78)

where Nc is the total number of cells in the actual triangulation and we will take p = 2.
This idea was adopted by Bathe at al. [BZ09] to formulate an adaptive mesh strategy,
which inspired the adaptive method used at the present work. Following the idea in [BZ09],
the constant C in Eq. 3.78 can be computed as

C =
Λr

Nc

Nc∑

i=1

hKi
‖∇f‖L2(Ki)

, (3.79)

where hKi
is the size of cell Ki in the actual triangulation and Λr ∈ R is a parameter to

control the total cell number in the adapted mesh. Thus, the preferable size for the cell
Ki can be calculated as

h∗
Ki

=
Λr

Nc‖∇f‖L2(Ki)

Nc∑

j=1

hKj
‖∇f‖Lp(Kj)

. (3.80)

In order to prevent extremely small or huge cells, the Eq. 3.80 can be reformulated as

h∗
Ki

=
C

max
(
min

(
‖∇f‖L2(Ki)

, C
hmin

)
, C
hmax

) , (3.81)

where hmin and hmax represent the maximum and minimum allowable cell-size values, re-
spectively. Beside, in the practice huge number of cells should be prevent, it is found
through the parameter Λr, which can be estimated as

Λr = max

((
Nc

Nc,max

) 1
d

, 1

)
, (3.82)
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where Nc,max is a maximum number of cells prescribed.

In the practice, for the scalar field f , quantities as density, pressure, Mach number, or
any other meaningful value can be used. Besides, in other cases the vorticity function
∇ × v can be employed, instead of ∇f , to improve the resolution of the approximation
in the boundary layers [BZ09]. Sometimes only one criterion is not enough to get a good
mesh, hence different criteria can be employed and then the several sets of cells to be
refined/coarsened can be combined.

Algorithm 1: Adaptive grid strategy employed.

Data: Th,wh (·, tn−1) ,wh (·, tn) ,Nc,max, rL,max, rL,min

Result: Th

∗

1 C = 0;
2 w̃h (·) = 2wh (·, tn)−wh (·, tn−1);
3 for i = 1 : Nc do
4 C = C + hKi

‖f (w̃h)‖L2(Ki)
;

5 end

6 Λr = max

((
Nc

Nc,max

) 1
d

, 1

)
;

7 C = Λr

C

Nc

;

8 for j = 1 : rL,max do
9 for i = 1 : Nc do

10 h∗

Ki
=

C

‖f (w̃h)‖L2(Ki)

;

11 if
(
hKi

> h∗

Ki

)
∧ (rL < rL,max) then

12 Ki → mark cell to be refined

13 else if
(
hKi

< h∗

Ki

)
∧ (rL > rL,min) then

14 Ki → mark cell to be coarsened
15 end

16 end
17 execute coarsening and refinement to get Th

∗ ;
18 project w̃h (·) onto Th

∗ ;

19 end

For the implementation of this strategy, the direct control of the size of the each element
is not the easiest way. Instead of that, the preferable size in Eq. 3.80 can be used as a
refinement indicator. Then, if the actual size of Ki is larger than h∗

Ki
then the element

should be refined, conversely if hKi
< h∗

Ki
then the cell should be coarsened. In the context

of this work the library deal.ii [BHK07] is used to handle the triangulation, hence to
refine a cell should be understood as to split it in four new elements one refinement level
upper. Likewise, to coarsen cells here mean to merge four adjacent cells to create a new
element one refinement level lower. By default all cells into the initial triangulation have
a refinement level rL = 0.

In this form, eventually the value of h∗
Ki

can be too much smaller than the current cell-size,
and then a single refinement is not enough to find the preferable size. A similar effect can
happen with too small cells that should be coarsened. Hence, a iterative procedure of
coarsening/refinement can be used to close the current cell-size to h∗

Ki
.

In order to prevent very small or large cells, the idea in the Eq. 3.81 can be reformu-
lated restricting the refinement level of each cell (rL) according to a maximum (rL,max) and
minimum (rL,min) levels prescribed for the triangulation. Further, if something about the
behavior of the solution is known a priori, then different values of rL,max and rL,min can be
defined along the domain.
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52 3. Spatial semidiscretization for Navier–Stokes equations

Finally, in order to improve this strategy, the quantity (or quantities) used as criterion
for the adaptation is computed using an estimation of the solution in the next time step
(tn+1 = tn + τ). In this work the simple predictor

wh (x, tn+1) ≈ wh (x, tn) + τ
∂wh

∂t

≈ wh (x, tn) + τ
wh (x, tn)−wh (x, tn−1)

τ
= 2wh (x, tn)−wh (x, tn−1)

(3.83)

is used.

The Algorithm 1 summarizes the adaptive grid strategy implemented here.

3.6. Inviscid boundary conditions

As was mentioned in Sec. 2.3, for the inviscid problem the boundary condition should
represent the physical behavior of the fluid in the borders, but in addition should be in
accordance with the hyperbolic character of the system in Eq. 2.40.

As was reported by Bazilevs and Hughes ([BH07]) that strongly enforced Dirichlet bound-
ary conditions can produce spurious oscillations in the vicinity of inlet/oulet borders. Con-
versely, a weak imposition of the boundary conditions avoids this non-physical oscillations
and is even able to improve the accuracy in the case of boundary layers in Navier–Stokes
problems. A consequence of using DGFEM is that the weak imposition of Dirichlet bound-
ary condition can be done in a natural way.

Thus, using the definitions of Sec. 3.1 and the discontinuous approximation DGFEM,
the inviscid boundary conditions can be imposed weakly via the numerical flux, i.e. using
the flux integral in Eq. 3.12

∫

Γij

H (w+,w−,n) ·ϕ dS, (3.84)

with w− = w|Γji
and Γji ⊂ ∂Ωh, i.e., for all j ∈ κ(i) and i ∈ I.

In order to consider different kinds of physical boundary conditions, ∂Ωh will be rep-
resented as

∂Ωh = Γsup
IN ∪ Γsub

IN ∪ Γsup
O ∪ Γsub

O ∪ ΓW, (3.85)

where Γsup
IN/O represent the supersonic inlet/outlet boundaries, Γsub

IN/O are the subsonic in-
let/outlet borders and ΓW represents the impermeable walls.

3.6.1. Inlet-outlet boundary condition

At the inlet/outlet borders it is necessary to use non-reflecting boundary conditions in
order to avoid that acoustic waves propagate back from these boundaries into the domain.
A way to avoid this effect is to use a formulation for boundary conditions based on the
local characteristics of the system ([FKP10, FK07]).
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3.6. Inviscid boundary conditions 53

3.6.1.1. Subsonic inlet/outlet boundary conditions

Defining a coordinate system x̄, with origin in x ∈ ∂Ωh and x̄1-direction parallel to the
unit normal-boundary vector n, a rotation is applied to the conservative variable vector
w in order to express it according to the local coordinate system x̄, i.e.

q = Q (n)w, (3.86)

where Q (n) is the rotation matrix defined in Eq. 2.80, and

n =
(
cosα cosβ sinα cosβ sinβ

)T

. (3.87)

From using the rotational invariance property of the Euler equations (Sec. 2.2.4), it follows
that it is possible to write the hyperbolic system as

∂q

∂t
+ A1 (qij)

∂q

∂x̄1

= 0 in −∞ < x̄1 <∞, (3.88)

equipped with the boundary condition

q (0, t) = qji in t > 0 (3.89)

and the initial condition
q (x̄1, 0) = qij on x̄1 < 0, (3.90)

where qij = Q (n)w+. Thus, to impose a numerically suitable boundary condition is
equivalent to find an adequate value for qji such that the problem Eq. 3.88– Eq. 3.90 has
a unique solution.

If λs and rs represent the eigenvalues and eigenvector of the matrix A1 (qij) (see Lemma 2.2.6)
and q∗

ji = Q (n)wD, where wD is a prescribed boundary state in the inlet/outlet border,
the vectors qij and q∗

ji can be written using spectral decomposition as follows

qij =

m∑

s=1

αsrs, (3.91)

q∗
ji =

m∑

s=1

βsrs, (3.92)

and the vector state qji can be expressed as a combination of qij and q∗
ji based on the

characteristic speed λs

qji =

m∑

s=1

γsrs, with γs =

{
αs, λs ≥ 0,

βs, λs < 0.
(3.93)

Finally, the vector state w− is computed as

w− = w|Γji
= Q−1 (n)qji on Γsub

IN/O. (3.94)

3.6.1.2. Supersonic inlet/outlet boundary conditions

According to the theory of characteristics in supersonic inlet boundaries all the eigenvalues
of P (w,n) are negative (see Eq. 2.54), this means that all the information is carried from
the boundary toward the interior, and then the complete vector state w− = w|Γji

should
correspond to the prescribed boundary values, i.e.,

w− = wD on Γsup
IN . (3.95)

On the other hand, at supersonic outlet boundaries all the eigenvalues of P (w,n) are
positive, and therefore the boundary conditions should be extrapolated from the flowfield,
i.e.,

w− = w+ on Γsup
O . (3.96)
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54 3. Spatial semidiscretization for Navier–Stokes equations

3.6.2. Impermeable wall boundary condition

The wall condition for the inviscid case corresponds to a slipping boundary condition, also
named reflecting boundary condition. This condition is built using

v|Γji
= v|Γij

− 2
(
v|Γij

· n
)
n,

or equivalently

w− =




1 0 0 0 0

0 1− 2n2
1 −2n1n2 −2n1n3 0

0 −2n1n2 1− 2n2
2 −2n2n3 0

0 −2n1n3 −2n2n3 1− 2n2
3 0

0 0 0 0 1




w+ on ΓW. (3.97)

3.7. Numerical treatment of viscous terms

3.7.1. Scalar convection-diffusion problem

Considering the scalar convection-diffusion problem

∂w

∂t
+

d∑

k=1

∂fsk
∂xk

(w) = ν∆w in M = Ω× (0, T ), (3.98)

subject to the boundary and initial conditions

w = wD on ΓD,

ν∇w · n = qn on ΓN ,
(3.99)

and
w(x, 0) = w0(x), with x ∈ Ω, (3.100)

where ν ∈ R>0, f s = (fsk)k : w → Rd, ∂Ω = ΓD ∪ ΓN , wD : ΓD × (0, T ) → R and
qn : ΓN × (0, T ) → R.

In order to solve the convection-diffusion problem using a DGFEM spatial discretization
it is possible to split the Eq. 3.98 into two coupled equations ([Coc99])

∂w

∂t
+

d∑

k=1

∂fsk(w)

∂xk

=
d∑

k=1

∂qk(w)

∂xk

q + ν∇w = 0,





in M = Ω× (0, T ), (3.101)

where q = (qk)k ∈ Rd. Nevertheless this change converts the scalar differential equation
Eq. 3.98 into a system of differential equations, and therefore new degrees of freedom have
to be introduced for the numerical solution.

The interior penalty method (IPM ), originally proposed by Arnold ([Arn82]), can be used
to formulate a discrete solution of the convection-diffusion problem Eq. 3.98 using discon-
tinuous elements.

Assuming w(·, t) ∈ H2(Ω), multiplying the equation Eq. 3.98 by ϕ ∈ H2(Ω, Th), inte-
grating by parts and using the identity

[[(∇w)ϕ]] = {|∇w|}[[ϕ]] + [[∇w]]{|ϕ|},
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it is possible to obtain the weak formulation

d

dt
(w,ϕ)

h
+ bh (w,ϕ) + ah (w,ϕ) = 0, (3.102)

with

(w,ϕ)
h
=
∑

i∈I

∫

Ki

w ϕ dx, (3.103)

bh (w,ϕ) = −
∑

i∈I

∫

Ki

d∑

k=1

f s
k(w)

∂ϕ

∂xk

dx+
∑

i∈I

∑

j∈S(i)

∫

Γij

d∑

k=1

f s
k(w)nk ϕ dS, (3.104)

and

ah (w,ϕ) =
∑

i∈I

∫

Ki

ν∇w · ∇ϕ dx−
∑

i∈I

∑

j∈S(i)

∫

Γij

ν{|∇w|} · n[[ϕ]] dS. (3.105)

Thus, in order to preserve the symmetry property in the viscous bilinear operator ah (w,ϕ),
the term

−
∑

i∈I

∑

j∈S(i)

∫

Γij

ν{|∇ϕ|} · n [[w]] dS (3.106)

can be added, without losing consistency, to get

asym
h (w,ϕ) =

∑

i∈I

∫

Ki

ν∇w · ∇ϕ dx

−
∑

i∈I

∑

j∈S(i)

∫

Γij

ν ({|∇w|} · n [[ϕ]] + {|∇ϕ|} · n [[w]]) dS.
(3.107)

Now, considering that ([PE11])

asym
h (wh, wh) = ‖∇wh‖2

L2(Ω)
− 2

∑

i∈I

∑

j∈S(i)

∫

Γij

{|∇wh|} · n [[wh]] (3.108)

for all wh ∈ H2(Ω, Th), the discrete coercivity in the operator asym
h can be recovered with

the addition of a sufficient larger term. Thus, the interface penalty term
∑

i∈I

∑

j∈S(i)

∫

Γij

σ

|Γij|
[[w]][[ϕ]] dS with σ ∈ R>0, (3.109)

is introduced into asym
h to establish the coercivity property of the operator. This numerical

formulation is named symmetric interior penalty Galerkin method (SIPG).

A non-symmetric formultation can be found changing the sign of the term in Eq. 3.106,
recovering thus the coercivity in the viscous operator for any size of the coefficient σ. This
version is usually named non-symmetric interior penalty Galerkin method (NIPG).

If the integrals on boundary faces are written explicitly, the complete weak formulation is

d

dt
(w,ϕ)

h
+ bh (w,ϕ) + aIPM

h (w,ϕ) + Jh (w,ϕ) = lh (w,ϕ) , (3.110)

where

aIPM
h (w,ϕ) =

∑

i∈I

∫

Ki

ν∇w · ∇ϕ dx

−
∑

i∈I

∑

j∈s(i)

∫

Γij

ν{|∇w|} · n [[ϕ]] dS ±
∑

i∈I

∑

j∈s(i)

∫

Γij

ν{|∇ϕ|} · n [[w]] dS

−
∑

i∈I

∑

j∈κD(i)

∫

Γij

ν∇w · n ϕ dS ±
∑

i∈I

∑

j∈κD(i)

∫

Γij

ν∇ϕ · n w dS,

(3.111)
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Jh (w,ϕ) =
∑

i∈I

∑

j∈s(i)

∫

Γij

σ

|Γij|
[[w]][[ϕ]] dS +

∑

i∈I

∑

j∈κD(i)

∫

Γij

σ

|Γij|
w ϕ dS, (3.112)

lh (ϕ) =
∑

i∈I

∑

j∈κN (i)

∫

Γij

qn ϕ dS±
∑

i∈I

∑

j∈κD(i)

∫

Γij

ν∇ϕ · n wD dS

+
∑

i∈I

∑

j∈κD(i)

∫

Γij

σ

|Γij|
wD ϕ dS

(3.113)

and κ(i) = κD(i) ∪ κN(i). In Eq. 3.111 and Eq. 3.113 select the − sign for SIPG and +
sing for non-symmetric formulation (NIPG).

3.7.2. Interior penalty method applied to Navier–Stokes problem

The IPM have been implemented by different authors in the context of the numerical
solution of Navier–Stokes equations via DGFEM ([PE11, HH06a, HH06b, FFS03]). The
extension from the IPM, presented in Sec. 3.7.1 for linear convection-diffusion, to Navier–
Stokes equations is straightforward.

Recalling the Navier–Stokes system in Eq. 2.89, multiplying by ϕ ∈ [H2(Ω, Th)]
m, inte-

grating by parts and operating in a similar fashion to Sec. 3.7.1, it is possible to write the
discrete weak formulation for this problem in the form

d

dt
(wh(t),ϕ)h = βh (wh(t),ϕ)− bh (wh(t),ϕ)− ah (wh(t),ϕ)− Jh (wh(t),ϕ) , (3.114)

with wh (x, t) ∈ Sh. Here,

(wh(t),ϕ)h =
∑

i∈I

∫

Ki

wh ·ϕ dx, (3.115)

bh (wh(t),ϕ) = −
∑

i∈I

∫

Ki

d∑

k=1

Fs
k(wh) ·

∂ϕ

∂xk

dx

+
∑

i∈I

∑

j∈S(i)

∫

Γij

H (w+,w−,n) ·ϕ dS,
(3.116)

ah (wh(t),ϕ) =
∑

i∈I

∫

Ki

d∑

k=1

Fv
k (wh,∇wh) ·

∂ϕ

∂xk

dx

−
∑

i∈I

∑

j∈s(i)

∫

Γij

d∑

k=1

{|Fv
k (wh,∇wh) |}nk · [[ϕ]] dS

±
∑

i∈I

∑

j∈s(i)

∫

Γij

d∑

k=1

{|Fv
k (wh,∇ϕ) |}nk · [[w]] dS

−
∑

i∈I

∑

j∈κD(i)

∫

Γij

d∑

k=1

Fv
k (wh,∇wh)nk ·ϕ dS

±
∑

i∈I

∑

j∈κD(i)

∫

Γij

d∑

k=1

Fv
k (wh,∇ϕ)nk ·w dS,

(3.117)
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Jh (wh(t),ϕ) =
∑

i∈I

∑

j∈s(i)

∫

Γij

σ

|Γij|
[[wh]] · [[ϕ]] dS +

∑

i∈I

∑

j∈κD(i)

∫

Γij

σ

|Γij|
wh ·ϕ dS (3.118)

and

βh (wh(t),ϕ) =
∑

i∈I

∫

Ki

F (wh) ·ϕ dx

±
∑

i∈I

∑

j∈κD(i)

∫

Γij

d∑

k=1

Fv
k (wh,∇ϕ)nk ·wD dS

+
∑

i∈I

∑

j∈κD(i)

∫

Γij

σ

|Γij|
wD ·ϕ dS.

(3.119)

3.7.3. Implementation of the viscous flux

In order to implement computationally the viscous terms Fv
k (w,∇w), k = 1, 2, 3, the

viscous flux expression in Eq. 2.16 should be written in terms of the conservative variables
w defined in Eq. 2.14. If the viscous stress τ is written as

τij = λ div v δij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
, for i, j = 1, . . . , d, (3.120)

then introducing the relation

∂vi
∂xj

=
1

w1

(
∂wi+1

∂xj

− wi+1

w1

∂w1

∂xj

)
(3.121)

into Eq. 3.120, all τij stress in Eq. 2.16 are expressed in terms of w. In the same way, the
derivative ∂θ/∂xi in Eq. 2.16 should also be expressed in terms of w. However, when a real
gas formulation is been used, θ normally cannot be written explicitly in terms of w, then
we use the relation

∂θ

∂xi

=
1

∂e/∂θ

(
∂e

∂xi

− ∂e

∂ρ

∂ρ

∂xi

)
(3.122)

and the total energy definition in Eq. 2.9

e =
E

ρ
− 1

2
|v|2. (3.123)

The internal energy can be written in terms of w as

e =
wm

w1

− 1

2w2
1

d∑

j=1

w2
j+1, (3.124)

where, as previously, d is the number of spatial dimensions and m = d + 2 is the number
of components in w. Thus, the derivative ∂e

∂xi
can be written as

∂e

∂xi

=
1

w1


∂wm

∂xi

− wm

w1

∂w1

∂xi

− 1

w1

d∑

j=1

wj+1

∂wj+1

∂xi

+
1

w2
1

∂w1

∂xi

d∑

j=1

w2
j+1


 . (3.125)

Now, Eq. 3.125 can be replaced in Eq. 3.122 to obtain

∂θ

∂xi

=
1

eθw1


∂wm

∂xi

− wm

w1

∂w1

∂xi

− 1

w1

d∑

j=1

wj+1

∂wj+1

∂xi

+
1

w2
1

∂w1

∂xi

d∑

j=1

w2
j+1


− ∂w1

∂xi

eρ
eθ
.

(3.126)
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Then, for example with d = 2, the flux terms Fv
1 (w,∇w) and Fv

2 (w,∇w) are given by

Fv
1 (w,∇w) =




0

2
3

µ
w1

(
2
(
∂w2
∂x1

− w2
w1

∂w1
∂x1

)
−
(
∂w3
∂x2

− w3
w1

∂w1
∂x2

))

µ
w1

((
∂w3
∂x1

− w3
w1

∂w1
∂x1

)
+
(
∂w2
∂x2

− w2
w1

∂w1
∂x2

))

w2
w1

(
Fv

1 (w,∇w)
)

2

+ w3
w1

(
Fv

1 (w,∇w)
)

3

+ k
eθw1

(
∂w4
∂x1

− w4
w1

∂w1
∂x1

· · ·

· · · − 1
w1

(
w2

∂w2
∂x1

+ w3
∂w3
∂x1

)
+ 1

w2
1
(w2

2 + w2
3)

∂w1
∂x1

)
− eρ

eθ

∂w1
∂x1




(3.127)
and

Fv
2 (w,∇w) =




0

µ
w1

((
∂w3
∂x1

− w3
w1

∂w1
∂x1

)
+
(
∂w2
∂x2

− w2
w1

∂w1
∂x2

))

2
3

µ
w1

(
2
(
∂w3
∂x2

− w3
w1

∂w1
∂x2

)
−
(
∂w2
∂x1

− w2
w1

∂w1
∂x1

))

w2
w1

(
Fv

2 (w,∇w)
)

2

+ w3
w1

(
Fv

2 (w,∇w)
)

3

+ k
eθw1

(
∂w4
∂x2

− w4
w1

∂w1
∂x2

· · ·

· · · − 1
w1

(
w2

∂w2
∂x2

+ w3
∂w3
∂x2

)
+ 1

w2
1
(w2

2 + w2
3)

∂w1
∂x2

)
− eρ

eθ

∂w1
∂x2




,

(3.128)

where
(
Fv

k (w,∇w)
)
i
represents the i-th component of Fv

k (w,∇w).

Additionally, the derivatives eθ = ∂e/∂θ and eρ = ∂e/∂ρ are calculated using the EOS.
For the ideal gas assumption e = Cvθ (eρ = 0 and eθ = Cv) and the expressions for
Fv

k (w,∇w) used in [FFS03] are obtained.

In this work the thermodynamic behavior of CO2 is modeled by the egB-EOS (Eq. 2.99)
and the derivatives eθ and eρ, used in Eq. 3.126–Eq. 3.128, are calculated analytically from
Eq. 2.107. In Sec. A the expressions for these derivatives are included.

3.7.4. Viscous boundary conditions

In dependence on the physical nature of the boundary, different sets of values should be
prescribed as boundary conditions in the vector wD. Here, the idea about imposition of
boundary condition used by several authors, as Feistauer et al. [FFS03] and Hartmann et
al. [HH02, Har06], is employed in the present work. As previous, w+ = wΓij .

3.7.4.1. Subsonic inlet boundary condition

An option for the treatment of the subsonic inlet-boundaries, which is used in the present
work, is to prescribe the boundary values for pressure pD, temperature θD and velocity

58
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vD. In this case the vector wD is defined by

wD =




ρ̄

ρ̄vD
1

ρ̄vD
2

ρ̄vD
3

ē+ 1
2 ρ̄|vD|2




on Γsub
IN . (3.129)

Here, the values of density (ρ̄) and energy density (ē) correspond to the thermodynamic
state defined by pD-θD. For ideal gas these values are computed as

ρ̄ =
pD

(γ − 1)CvθD
(3.130)

and

ē =
pD

γ − 1
. (3.131)

For cases where CO2 and real gas assumption are used, the values of ē and ρ̄ are calculated
employing the library PROPATH [PRO08], which offers a good accuracy in the computation
of the thermodynamic properties of different substances, and particularly for the CO2 at
states above the triple point.

3.7.4.2. Subsonic outlet boundary condition

On the subsonic outlet boundary the vector wD, for d = 3, is written as

wD =




w+
1

w+
2

w+
3

w+
4

ē+ 1
2w+

1

∑3
i=1

(
w+

i+1

)2




on Γsub
O , (3.132)

where the energy density ē for ideal gas can be calculated using Eq. 3.131. For real gases
ē is defined for a thermodynamic state, then in this case pressure pD and temperature θD

are prescribed on Γsub
O . In this work the values of ē for CO2, at state defined by pD and

θD, are computed using the PROPATH library.

Additionally, this condition is complemented with a zero normal component for the stress
tensor and for the heat flux, i.e.,

d∑

k=1

τkj nk = 0 j = 1, . . . , d,

∇θ · n = 0





on Γsub
O . (3.133)

3.7.4.3. Supersonic inlet boundary condition

According to the theory of characteristics, and in the same fashion as in the case of inviscid
boundary conditions, on the supersonic inlet flow all the conservative variables should be
prescribed. Thus, on this border we define values for velocity vD, temperature θD and
pressure pD, and for computing the vector wD we proceed as in Sec. 3.7.4.1.

59



60 3. Spatial semidiscretization for Navier–Stokes equations

3.7.4.4. Supersonic outlet boundary condition

On the supersonic outlet no value should be prescribed. Nevertheless, in practice the
conditions in Eq. 3.133 are frequently incorporated into the viscous flux at this border.

3.7.4.5. No-slip wall boundary condition

Unlike the slip boundary condition, this condition imposes a zero velocity on the wall (not
only in the normal component). In the case of an adiabatic wall, besides the null-velocity
terms, the other components in the state vector wD are taken from w+

wD =




w+
1

0

0

0

w+
5




on Γadia
W . (3.134)

Additionally, because the adiabatic condition on the wall, the heat conduction term (∇θ·n)
in Fv should be set to zero.

In the case of an isothermal wall, the internal energy is computed using the prescribed
temperature θD, i.e., for d = 3 the vector wD is defined by

wD =




w+
1

0

0

0

w+
1 ẽ+

1
2w

+
1 |v+|2




on Γiso
W , (3.135)

where, for ideal gas ẽ is computed as

ẽ = Cvθ,

and in the real gas case, the expression for specific internal energy, derived from the EOS
(see Eq. 2.107), is used. For the CO2 the specific internal energy, in terms of density and
temperature, is included in Sec. A, and ẽ is calculated as

ẽ = e (w+
1 , θ

D) .
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4. Time integration

Recalling the semidiscrete weak formulation for the Navier–Stokes equations written in
Eq. 3.114, and considering that the approximation in one cell wh ∈ C1 ([0, T ] ;Sh) can be
expressed as the linear combination of the nodal functions wh : [0, T ] → Rn

wh (x, t) = Nh (x)wh(t),

where Nh : Ωh → Rm,n is the matrix function

Nh (x) = diag
(
N,N, . . . ,N

)
,

with

N =
(
N1 (x) N2 (x) · · · Nnd

(x)
)
,

and beingNj : Ωh → R, j = 1, . . . , nd, the nodal basis, m the number of system components
(m = d + 2), nd the number of nodes per cell and n the number of unknowns per cell
(n = nd × m). The system in Eq. 3.114 can be written as a set of ordinary differential
equations (ODEs)

M
dw(t)

dt
= B(w(t)), (4.1)

where M ∈ RNu,Nu is the global mass matrix, the operator B : RNu → RNu represents the
right hand side of Eq. 3.114, w(t) represents the vector of nodal functions and Nu is the
total number of unknowns. Here, the global matrix M is a block diagonal matrix, with
as many symmetric matrices on the diagonal as elements K in the discretization. Hence,
the inverse of M can be computed easily, or even, for a fixed grid, can be precomputed
during preprocessing.

Premultiplying at both sides of Eq. 4.1 by M−1, the system of ODEs can be rewritten in
the form

dw(t)

dt
= F (w(t)) , (4.2)

subject to the initial condition

w(t0) = w0. (4.3)

Various numerical techniques to solve this temporal systems of ODEs have been developed.
In general, the implicit methods are prohibitively expensive for large-scale systems, since
the computational demand is dominated by the numerical linear algebra involved into the
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62 4. Time integration

nonlinear solver employed. On the other hand, explicit strategies exhibit strong time step
restrictions, especially in case of stiff systems.

For Navier–Stokes problems there exist different sources of stiffness. The inviscid terms of
Navier–Stokes equations have an acoustic time scale, defined by the characteristic speed
(eigenvalue) |v| + c, and a convective time scale defined by the eigenvalue |v|. Thus, for
problems into low Mach number regime, i.e. |v|/c→ 0, the time step for explicit schemes
will be strongly restricted by the faster acoustic phenomenon. There, a large time scale,
defined by slow convective terms, should be discretized using extremely small time steps.
Another example is found when special behaviors of the fluid should be captured, e.g.
boundary layers or shock waves. For these problems fine, or extremely fine, grids are nor-
mally employed in specific parts of the domain, reducing the allowable time step (in case of
explicit methods). This small cell-size requirement can also derive from large aspect ratios
in the lengths of the domain, this condition is sometimes called geometric stiffness. A
third example of stiff problems in fluid dynamic is the introduction of stiff source terms to
the Navier–Stokes equations, as in the case of modeling of the gas dynamic of combustion
processes.

Considering the simulation of the rapid expansion of a jet into a quiescent atmosphere,
which is the central problem of this work, two of these stiffness sources can be expected.
First, although high speed regions will be found which corresponds to the supersonic (or
even hypersonic) regime in the core of the jet, other subsonic regions with very slow con-
vective terms are also expected inside and outside of the jet. On the other hand, the large
aspect ratio between the diameter of the nozzle and the characteristic dimension of the ex-
pansion chamber demands the use of spatial discretization with small cells (comparatively
with the size of the domain). Additionally, the capturing of shocks and the boundary
layers presented between the jet boundary and the stagnant fluid will require of an extra
local refinement. Therefore, under this analysis, the selection of an efficient and stable
time marching scheme is crucial aspect in the solution of this problem.

4.1. Runge–Kutta methods

Considering the system Eq. 4.2, the exact solution at time tn+1 = tn + τ can be written in
the form

w (tn+1) = w (tn) +

∫ τ

0
F (w (tn + σ)) dσ. (4.4)

The named Runge–Kutta methods are based on the approximation of the integral term
in Eq. 4.4 using a quadrature formula with nodes 0 ≤ c1 < · · · < cs ≤ 1, and weights
b1, . . . , bs. Then, defining the approximation of w on the i-th node as

Wn,i ≈ w (tn + ciτ) , i = 1, . . . , s, (4.5)

an approximation to Eq. 4.4 can be expressed as

w (tn+1) ≈ wn + τ
s∑

i=1

biF (Wn,i) . (4.6)

From now on wn ≈ w (tn). Further, Wn,i can be computed using another quadrature
formula, i.e.,

w (tn + ciτ) = w (tn) +

∫ tn+ciτ

tn

F (σ) dσ,

Wn,i = wn + τ
s∑

j=1

aijF (Wn,j) , i = 1, . . . , s.

(4.7)
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A complete scheme to approximate Eq. 4.4 can be formulated as

Wn,i = wn + τ

s∑

j=1

aijF (Wn,j) , i = 1, . . . , s,

wn+1 = wn + τ

s∑

i=1

biF (Wn,i)

(4.8)

Particularly, schemes with aij = 0 for i ≤ j correspond to explicit Ruge–Kutta methods.

4.2. Strong stability preserving Runge–Kutta methods

A lot of efforts in this field focused on developing schemes to improve the stability proper-
ties. Particularly, the named strong stability preserving Runge–Kutta methods (SSPRK )
[SR02, Got05] were developed to solve semidiscrete formulations of hyperbolic conservation
laws, where discontinuous solutions can be present. These schemes preserve the stability
properties satisfied by the forward Euler method, incorporating relaxed time-step restric-
tions. Although several optimal SSPRK schemes, in which the number of stages s equals
the order of the scheme p, have been built and tested, more recent works propose new ver-
sions of SSPRK (s, p) with stage-exceeding-order (s > p) [SR02, KWD07, Ruu06, SR03],
thereby relaxing the linear stability CFL constraints, allowing hence the use of larger time
steps. Here, the optimal concept should be understood in the sense of allowing the maxi-
mum time-step size possible among all schemes with the same order and equal number of
stages. Low-storage implementations of SSPRK are presented in [Ket08, Ruu06], optimal
implicit versions of SSPRK are presented in [KMG09].

4.3. Exponential integrators

A different kind of methods are based on the idea of using exponential functions (or related
functions) of the Jacobian matrix A

A (w) = − dF

dw
(w) . (4.9)

From [HLS98], this family of methods is named exponential integrators. The idea about
to use the exponential function eτAwn to predict the function w (tn+1), with tn+1 = tn + τ ,
is not new, but its use in the practice of numerical schemes was restricted until mid of
eighties, when the first applications of the Krylov subspace theory in the efficient com-
putation of matrix exponential functions were developed. The first works on this way
were done in the field of the quantum dynamics [NW83, PL86] and later some applica-
tions in heat-conduction and general parabolic problems [CMV69, CZ11, HO05], chem-
ical kinetics in combustion process [OY99, Bis12, Pus11], advection-diffusion [CVB04,
MBCV09], diffusion-reaction [CZ11], shallow water equations [GP16] and fluid dynamics
[SS91, ETFS94, SSS09, CP13], have been developed.

Here, only two family of methods will be briefly presented: the exponential Runge–Kutta
methods and the exponential Rosenbrock methods. A extended explanation of these meth-
ods can be found in [HO05, HO10, HOS09, CO09] .

4.3.1. Exponential Runge-Kutta methods

This kind of methods are based on a fixed linearization of F (t,w (t)), i.e.

F (t,w (t)) = −Aw (t) +G (t,w (t)) , (4.10)
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where the system matrix is computed as

A ≈ − dF

dw
(w0) ,

and G (t,w (t)) is the nonlinear remainder. Then, the system Eq. 4.2 is now written in the
semilinear form

dw(t)

dt
+Aw (t) = G (t,w (t)) , (4.11)

and, using the Volterra integral equation (variation-of-constants formula), it is possible to
write its exact solution as

w(t+ τ) = e−τAw(t) +

∫ τ

0
e−(τ−σ)AG (t+ σ,w (t+ σ)) dσ. (4.12)

Thus, selecting nodes 0 ≤ c1 < · · · < cs ≤ 1 to approximate the integral term in Eq. 4.12
using a quadrature formula, the expression

w(t+ τ) ≈ wn+1 = χ (−τA)wn + τ
s∑

i=1

bi (−τA)G (tn + ciτ,Wn,i) (4.13)

is obtained. Further, as in Eq. 4.5,

Wn,i ≈ w (tn + ciτ) , i = 1, . . . , s,

and, in the same spirit of the standard Runge–Kutta schemes, terms Wn,i will be approx-
imated using a second quadrature rule

Wn,i = χi (−τA)wn + τ

s∑

j=1

aij (−τA)G (tn + cjτ,Wn,j) . (4.14)

In Eq. 4.13 and Eq. 4.14, the functions χ (z) and χi (z), as well as the weights aij (z) and
bi (z), for z ∈ RNu,Nu , are constructed from exponential operators or related functions.
Here, in order to get consistency in these formulas the conditions

χ(0) = χi(0) = 1 (4.15)

will be assumed.

The scheme

Wn,i = χi (−τA)wn + τ

s∑

j=1

aij (−τA)G (tn + cjτ,Wn,j) ,

wn+1 = χ (−τA)wn + τ

s∑

i=1

bi (−τA)G (tn + ciτ,Wn,i) ,

(4.16)

is termed exponential Runge–Kutta method.

Remark 4.3.1. If A = 0 in the semilinear form Eq. 4.11, i.e. F (t,w (t)) = G (t,w (t)),
the scheme Eq. 4.16 reduces to the so called underlying Runge–Kuta method with coeffi-
cients bj = bi (0) and aij = aij (0). Besides, in order to keep this scheme invariant under
transformation of Eq. 4.11 into autonomous form, the conditions

s∑

j=1

bj (0) = 1,
s∑

j=1

aij (0) = ci, for i = 1, . . . , s, (4.17)

should be satisfied.
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If w∗ represents an equilibrium state of the autonomous system

dw(t)

dt
+Aw (t) = G (w (t)) , (4.18)

then it is desirable that the numerical scheme preserves the equilibrium, i.e. if w0 = w∗,
thenwn = Wn,i = w∗ for all n ≥ 1. This requirement gives rise to the additional conditions

s∑

j=1

bj (z) =
χ (z)− 1

z
,

s∑

j=1

aij (z) =
χi (z)− 1

z
, for i = 1, . . . , s.

(4.19)

Definition 4.3.2. Let be X a Banach space with seminorm ‖.‖. Then, defining the family
of functions φk : RNu,Nu → RNu,Nu , as

φk (z) =





ez, for k = 0,
∫ 1

0
e(1−σ)z σk−1

(k − 1)!
dσ, for k ≥ 1,

(4.20)

it is possible to show that these operators are bounded on X. Additionally, these functions
satisfy φk (0) = 1/k!, as well as the recurrence relation

φk+1 (z) =
φk (z)− φk (0)

z
. (4.21)

Restricting the methods presented in Eq. 4.16 to χ-functions with the form

χ (z) = ez, χi (z) = eciz, for i = 1, . . . , s, (4.22)

the conditions Eq. 4.19 can now be written as

s∑

j=1

bj (z) = φ1 (z) ,

s∑

j=1

aij (z) = ciφ1 (ciz) , for i = 1, . . . , s.

(4.23)

Remark 4.3.3. The set of conditions Eq. 4.23 reduces to Eq. 4.17 for z = 0.

From Eq. 4.22 and restricting this analysis to explicit schemes, i.e. aij = 0 for i ≤ j, it
follows that the exponential Runge–Kutta scheme Eq. 4.16 can be expressed in the form

Wn,i = e−τciAwn + τ

i−1∑

j=1

aij (−τA)G (tn + cjτ,Wn,j) ,

wn+1 = e−τAwn + τ
s∑

i=1

bi (−τA)G (tn + ciτ,Wn,i) .

(4.24)

Further, considering that Eq. 4.24 involves calculation of matrix functions applied to vec-
tors, then an efficient implementation of these operations is decisive in the general com-
putational performance of the time integrator. Thus, using Eq. 4.23, a preferable form to
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write Eq. 4.24 is

Wn,i = wn + ciτφ1 (−ciτA)F (wn) + τ
i−1∑

j=2

aij (−τA)Dn,j,

wn+1 = wn + τφ1 (−τA)F (wn) + τ

s∑

i=2

bi (−τA)Dn,i.

(4.25)

where Dn,i = G (tn + ciτ,Wn,i) − G (tn,wn). Here, s computations of matrix functions
applied to vectors are involved: s − 1 products using vectors Dn,j with ‖Dn,j‖ = O (τ),
and only one product using the vector F (wn) with ‖F (wn)‖ = O (1). Therefore, it is
to be expected that if Krylov subspaces are used to compute the matrix exponentials,
only one expensive operation has to be computed, and its cost should dominate the global
computational cost of the scheme.

4.3.1.1. Exponential Euler method

The simplest exponential Runge–Kutta scheme is built using s = 1 and is termed expo-
nential Euler method. Thus, the Eq. 4.23, for this case yields

b1 (−τA) = φ1 (τA)

and from Eq. 4.24 we get

wn+1 = wn + τφ1 (−τA)F (tn,wn) . (4.26)

Hence, the comparative low cost associated to this scheme comes from the computation of
a single product matrix-exponential (φ1 (−τA)) times vector (F (tn,wn)).

Assumption 4.3.4. Let be X a Banach space with seminorm ‖.‖
X
. In the context of this

text it will be assumed that A is an linear operator on X and that −A is an infinitesimal
generator of the strongly continuous semigroup e−τA on X.

Theorem 4.3.5. Considering that the system Eq. 4.11, subject to the initial condition
w (t0) = w0, satisfies the Assumption 4.3.4, and assuming that G : [0, T ] → X is differen-
tiable with G′ ∈ L∞ ([0, T ] ;X), then the error generated by the exponential Euler scheme
Eq. 4.26 is uniformly bounded by

‖wn −w (tn)‖X
= Cτ sup

0≤t≤tn

‖G′ (t)‖
X
, (4.27)

where C is a constant independent of n and τ , but dependent on T .

Proof. The proof of this theorem can be found in [HO10].

4.3.1.2. Convergence of higher order exponential Runge–Kuta methods

Assumption 4.3.6. Let be X a Banach space with seminorm ‖.‖
X
. We will assume that

w is a sufficiently smooth solution of Eq. 4.11, and that G : [0, T ]×X → X is a sufficiently
often differentiable function in the sense of Fréchet in a neighborhood of the exact solution.
Thus, all derivatives involved can be assumed uniformly bounded.

Theorem 4.3.7. Let the system Eq. 4.11, endowed with the initial condition w (t0) = w0,
satisfies the Assumption 4.3.4 and the Assumption 4.3.6. Consider that this initial value
problem is solved using the explicit exponential Runge–Kutta method presented in Eq. 4.24,
complying the conditions in Eq. 4.23. Then, assuming that for 2 ≤ p ≤ 4, the order
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Table 4.1.: Stiff order conditions for explicit exponential Runge–Kutta methods.

No. Order Order condition

1 1 ψ1 (−τA) = 0

2 2 ψ2 (−τA) = 0

3 2 ψ1,i (−τA) = 0

4 3 ψ3 (−τA) = 0

5 3
∑s

i=1 bi (−τA) Jψ2,i (−τA) = 0

6 4 ψ4 (−τA) = 0

7 4
∑s

i=1 bi (−τA) Jψ3,i (−τA) = 0

8 4
∑s

i=1 bi (−τA) J
∑i−1

j=2 aij (−τA) Jψ2,j (−τA) = 0

9 4
∑s

i=1 bi (−τA) ciKψ2,i (−τA) = 0

conditions in Table 4.1 hold up to order p − 1, with ψp (0) = 0, and that the remaining
conditions of order p hold in a weaker form, with bi (0) instead of bi (−τA), for i = 2, . . . , s,
the error involved in the numerical solution wn is uniformly bounded as

‖wn −w (tn)‖ ≤ Cτ p, (4.28)

where C is a constant independent of τ and n, but dependent on T .

Proof. All the details about the proof of this theorem can be found in [HO10].

Note that in Table 4.1, J and K denote arbitrary bounded operators on X, and that the
functions ψj and ψj,i are defined in Eq. 4.29 and Eq. 4.30, respectively.

ψj (−τA) = φj (−τA)−
s∑

i=1

bi (−τA)
cj−1
i

(j − 1)!
(4.29)

ψj,i (−τA) = φj (−ciτA) cji −
i−1∑

k=1

aik (−τA)
cj−1
k

(j − 1)!
. (4.30)

4.3.1.3. Second order exponential Runge-Kutta method

For a second order exponential Runge–Kutta method, two internal stages s = 2 are re-
quired, thus from Theorem 4.3.7 the conditions

φ1 (−τA) = b1 (−τA) + b2 (−τA) ,

φ2 (−τA) = c1b1 (−τA) + c2b2 (−τA) ,

φ1,1 (−τA) = φ1 (−c1τA) c1 = 0,

φ1,2 (−τA) = φ1 (−c2τA) c2 − a21 (−τA) = 0,

(4.31)

from Table 4.1 should be satisfied. From these conditions it follows that a c2-parameter
family of methods can be formulated as

c1

c2 a21

b1 b2

=

0

c2 c2φ1 (−c2τA)

φ1 (−τA)− 1
c2
φ2 (−τA) 1

c2
φ2 (−τA)

. (4.32)

67



68 4. Time integration

Besides, using the weak form

φ2 (0) = c2b2 (0) =
1

2
,

instead of the second condition in Eq. 4.31, the second order scheme

0

c2 c2φ1 (−c2τA)

φ1 (−τA)
(
1− 1

2c2

)
1
c2
φ2 (−τA)

. (4.33)

is achieved. Here, an attractive version is found with c2 = 1/2, which simplifies the scheme
because then b1 = 0.

4.3.2. Rosenbrock-type methods

In contrast to the exponential Euler methods, the Rosenbrock-type methods [CO09, HOS09,
HO10] are based on the continuous linearization of Eq. 4.2. Thus, using the linearization

F (w (tn)) = −Anw (tn) +G (w (tn)) , (4.34)

with

An ≈ − ∂F

∂w
(wn) , (4.35)

the autonomous system Eq. 4.2 can be written as

dw(t)

dt
+Anw (tn) = G (w (tn)) . (4.36)

Proceeding as in Sec. 4.3.1, a general exponential Rosenbrock scheme is given by

Wn,i = wn + ciτφ1 (−ciτAn)F (wn) + τ
i−1∑

j=2

aij (−τAn)Dn,j, for 1 ≤ i ≤ s,

wn+1 = wn + τφ1 (−τAn)F (wn) + τ

s∑

i=2

bi (−τAn)Dn,i,

(4.37)

where
Dn,i = G (Wn,i)−G (wn) .

4.3.2.1. Convergence order of the exponential Rosenbrock methods

Theorem 4.3.8. Let the system Eq. 4.11, endowed with the initial condition w (t0) = w0,
satisfies the Assumption 4.3.4 and the Assumption 4.3.6. Consider that this initial value
problem is solved using the explicit exponential Rosenbrock method presented in Eq. 4.37,
complying the conditions in Eq. 4.23. Thus, assuming that for 2 ≤ p ≤ 4 the order
conditions in Table 4.2 hold up to order p, and that the step size sequence satisfy the
condition

n−1∑

k=1

k−1∑

j=0

τ p+1
j ≤ CH , (4.38)

with CH being a constant uniform for t0 ≤ t ≤ T , then for sufficiently small values of CH

the numerical error of the scheme is uniformly bounded by

‖wn −w (tn)‖ ≤ C
n−1∑

j=0

τ p+1
j , (4.39)

where C is a constant independent of the time step sequence.
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Table 4.2.: Stiff order conditions for exponential Rosenbrock methods.

No. Order Order condition

1 1
∑s

i=1 bi (−τA) = φ1 (−τA)

2 2
∑i−1

j=1 aij (−τA) = ciφ1 (−ciτA) , for 2 ≤ i ≤ s

3 3
∑s

i=2 bi (−τA) c2i = 2φ3 (−τA)

4 4
∑s

i=2 bi (−τA) c3i = 6φ4 (−τA)

Note that for constant time-steps, the condition Eq. 4.38 holds with

CH =
1

2
τ p−1 (tn − t0)2 , (4.40)

and since p ≥ 2, CH tends to zero if τ → 0. Additional details about this condition for
non-constant time-steps can be found in [HOS09].

Proof. The proof of this theorem can be found in [HOS09, HO10].

4.3.2.2. Exponential Rosenbrock–Euler method

The simplest exponential Rosenbrock scheme, called exponential Rosenbrock–Euler method,
is given by

wn+1 = wn + τφ1 (−τAn)F (wn) . (4.41)

Thus, according with Theorem 4.3.8, it is a second order convergent scheme with one stage
and with only one operation matrix-function times vector involved.

4.3.2.3. Higher order Rosenbrock-type methods

In order to allow higher order schemes with variable time-steps, an embedded approxima-
tion should be included into the basic Rosenbrock-type stencil in Eq. 4.37

ŵn+1 = e−τnAn + τn

s∑

i=1

b̂i (−τnAn)G (Wn,i) .

Third order exponential Rosenbrock method (exprb32)

The exprb32 scheme [HO10, HOS09] is a third-order Rosenbrock scheme with a second-
order error estimator (exponential Rosenbrock-Euler scheme). Thus, the coefficients for
this methods are given by

c1

c2 a21

b1 b2

b̂1

=

0

1 φ1

φ1 − 2φ3 2φ3

φ1

. (4.42)
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Fourth order exponential Rosenbrock method (exprb43)

This scheme [HO10, HOS09, CO09] consists of a fourth-order Rosenbrock scheme along
with a third-order error estimator. Thus, the coefficients for this methods are given by

c1

c2 a21

c3 a31 a32

b1 b2 b3

b̂1 b̂2 b̂3

=

0
1
2

1
2φ1

(
1
2 ·
)

1 0 φ1

φ1 − 14φ3 + 36φ4 16φ3 − 48φ4 −2φ3 + 12φ4

φ1 − 14φ3 16φ3 −2φ3

. (4.43)

exp4 method

The exp4 method, presented initially in [HLS98], is one of the most known exponential
integrators. In its efficient-implementation form, this scheme consists of seven stages, which
demand only three function evaluations and involve only computations of the φ1-operator.
In this form, the scheme can be written as:

w (tn + τ) = w (tn) + τ

(
k3 + k4 −

4

3
k5 + k6 +

1

6
k7

)
, (4.44)

where the first three stages are given by

k1 =φ1

(
−1

3
τAn

)
F (w(tn)) ,

k2 =φ1

(
−2

3
τAn

)
F (w(tn)) ,

k3 =φ1 (−τAn)F (w(tn)) ,

(4.45)

the fourth, fifth and sixth stages are computed using

w4 =− 7

300
k1 +

97

150
k2 −

37

300
k3,

u4 =w(tn) + τw4,

r4 =F (u4)− F (w(tn)) + τAnw4,

k4 =φ1

(
−1

3
τAn

)
r4,

k5 =φ1

(
−2

3
τAn

)
r4,

k6 =φ1 (−τAn) r4,

(4.46)

while the last stage is computed as

w7 =
59

300
k1 −

7

75
k2 +

269

300
k3 +

2

3
(k4 + k5 + k6) ,

u7 =w(tn) + τw7,

r7 =F (u7)− F (w(tn)) + τAnw7,

k7 =φ1

(
−1

3
τAn

)
r7.

(4.47)

Although this scheme can be interpreted as a three-stages exponential Ronsebrock method,
which is fourth-order convergent, the use of only φ1-operators restricts it, according to the
conditions in Table 4.2, to be second-order convergent. A good comparative analysis about
the performance of this scheme is included in [TL10].
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4.4. Approximation of the matrix exponential operators

All different schemes presented in the previous section involve computations of matrix
exponentials or related functions. Thus, an efficient implementation of these operations is
crucial in the global performance of the time-stepping scheme.

Off course the first idea to compute a matrix exponential applied to a vector is using
its representation in a convergent power series

ezv =
∞∑

n=0

1

n!
znv, (4.48)

for z ∈ RNu,Nu and v ∈ RNu . Nevertheless, the implementation of a truncated series is
one of the lowest performance options to select [ML03]. Even, other techniques as Padé
approximations [ACF96, LZG11, ML03] or rational Chebyshev polynomials [GS92, ML03]
are not applicable for large scale problems, as is the case of ODE -systems derived from
spatial semidiscretization of partial differential equations. For large-scale problems special
strategies, as approximations using Leja points [CVB04] or methods based on Krylov sub-
spaces [HL97, GS89, GS92, Saa92], should be implemented.

Particularly, using projections onto Krylov subspaces, the approximation of e−τAv or
φ1 (−τA)v operations, involved into the exponential integrators, converges considerably
faster than the Krylov projection of (I− τA)−1 v for implicit Euler scheme, as long as a
good preconditioner is not available [HL97].

4.4.1. Approximation of matrix exponential operators using Krylov sub-
spaces

The idea here is to approximate the matrix-vector product at the left hand side of Eq. 4.48
using a polynomial expression, i.e.

ezv ≈ Pm−1 (z)v, (4.49)

where Pm−1 represents a (m− 1)-degree polynomial. As this approximation is an element
of

Km = span{v, zv, z2v, ..., zm−1v}, (4.50)

the problem can be reformulated. The idea now consists in identifying the element in
the m-dimensional Krylov subspace Km that best approximates the term ezv. In order
to build the Krylov subspace, Arnoldi’s algorithm (see Algorithm 2) can be used. This
method constructs an orthonormal base

V = [V1, V2, · · · , Vm]

of Km, with Vi ∈ RNu , i = 1, 2, . . . ,m, which satisfies the relation

zV = VH+Hm+1,mVm+1e
T
m, (4.51)

and

VTV = I, (4.52)
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where em ∈ Rm denotes the m-th unit vector and Hi,j denotes an element of the upper
Hessenberg matrix H ∈ Rm,m.

Algorithm 2: Arnoldi’s decomposition algorithm.

Data: z,v
Result: V, H

1 V1 = v/‖v‖;
2 for j = 1 : m do
3 p = zVj ;
4 for (i = 1 : j) do
5 Hi,j = V T

i p;
6 p = p−Hi,jVi;

7 end
8 Hj+1,j = ‖p‖;
9 Vj+1 = p/Hj+1,j ;

10 end

Theorem 4.4.1. Let the function φ (z) : RNu,Nu → RNu,Nu be analytic in a neighborhood
of its numerical range

F (z) = {yTzy : y ∈ RNu , yTy = 1}

and let v ∈ RNu. Then, using the Hessenberg matrix H derived from Arnoldi’s algorithm,
it is possible to approximate the product φ (z)v by the expression

φ (z)v ≈ βVφ (H) e1, (4.53)

where β = |v|.

Proof. Writing the Cauchy integral

φ (z)v =
1

2πi

∫

Γ
φ (λ) (λI− z)−1 vdλ =

1

2πi

∫

Γ
φ (λ)x (λ) dλ, (4.54)

where Γ is a suitable contour that surrounds the field of values F (z). This relation
contains, for each λ ∈ Γ, the solution of the linear system

(λI− z)x (λ) = v. (4.55)

Now, considering that by definition this linear system can be solved approximately using
the relation [HL97]

xm (λ) = βV (λI−H)−1 e1, (4.56)

and that F (H) ⊂ F (z), then the Eq. 4.54 can be written now as

φ (z)v ≈ 1

2πi

∫

Γ
φ (λ)xm (λ) dλ =

1

2πi

∫

Γ
φ (λ)βV (λI−H)−1 e1dλ, (4.57)

and from this relation, the expression

φ (z)v ≈ βVφ (H) e1

holds.

Using Eq. 4.51, it is possible to write

H ≈ VTVz, (4.58)
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and then, the Hessenberg matrix can be understood as the projection of the large system
matrix z onto the Krylov subspace Km. Likewise, from Theorem 4.4.1, it is possible to
approximate the matrix-vector products ezv and φk (z)v as

ezv ≈ βVeHe1 (4.59)

and

φk (z)v ≈ βVφk (H) e1, for k = 1, 2, ..., (4.60)

respectively. Here, β = |v| and φk-functions are defined according to Def. 4.3.2.

It is important to note that, in Eq. 4.59 and Eq. 4.60, the exponential functions of large-
scale matrices z ∈ RNu,Nu was replaced by exponential operations of a Hessenberg matrix
H ∈ Rm, with m≪ Nu.

4.4.2. Computation of the exponential of H

In previous section the computation of large-scale matrix exponentials was replaced by ex-
ponential operators that involve Hessenberg matrices considerably smaller than the original
system matrix. In practical applications the size of the Krylov subspaces built via Arnoldi
decomposition use to be less than 50 vectors [Sid98].

Nevertheless, the cost of computing the exponential of Hessenberg matrices is nonneg-
ligible [GS92]. Thus, a stable, precise and low cost method to approximate these opera-
tions should be implemented. One common option is to use rational approximation and
computation through partial fraction expansions, i.e.

ez ≈ Rν1,ν2
(z) =

[
Qν2

(z)
]−1

Pν1
(z), for z ∈ Rm,m (4.61)

and where Pν1
and Qν2

denote polynomials of degrees ν1 and ν2, respectively. Two methods
derived from Eq. 4.61 are the rational Chebyshev approximation [GS92, Saa92, Sid98]
and the Padé approximation [Sid98]. A good collection of methods to compute matrix
exponential can be found in [ML03]. An comparative analysis, in terms of accuracy and
efficiency, between Padé methods and rational Chebyshev approximations is presented in
[OY99].

4.4.2.1. Rational Chebyshev approximations

The idea with this method is to seek the rational Chebyshev approximation that minimizes
the maximum error in z ∈ [0,+∞), i.e.

‖Rν,ν (z)− e−z‖L∞[0,+∞) = min
rν,ν∈Cν,ν

max
z∈[0,+∞)

|rν,ν (z)− e−z|, (4.62)

where Cν,ν represents the full set of rational Chebyshev functions of degree (ν, ν). Further
more, the rational approximation can be expressed as a expansion in partial fractions

e−z ≈ Rν,ν (z) = α0 +

ν∑

i=1

αi

z − λi

, (4.63)

where both coefficients αi and poles λi, that solve the problem configured in Eq. 4.62 can
be precomputed. In [GS92] a complete set of coefficients and poles for ν = 10 and ν = 14
is presented. A more accurate set of values for αi and λi were computed and presented in
[Pus11] and are used in the present work.
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For cases where z is real, the poles form conjugate pairs and then the computational
cost of Eq. 4.63 can be reduced to half using

e−z ≈ Rν,ν (z) = α0 + 2Re

ν
2∑

i=1

αi

z − λi

. (4.64)

Additionally, for z ∈ Rm,m and v ∈ Rm, a more efficient implementation of Eq. 4.64,
avoiding inversion of matrices, can be achieved using a matrix-vector product formulation

e−zv ≈ α0v + 2Re

ν
2∑

i=1

αi(z − λiI)
−1v. (4.65)

According to the problem definition in Eq. 4.62, the Chebyshev rational approximation is
more suited to use for symmetric and definite positive matrices. In this case, the error in
the approximation is bounded by [Sid98]

‖Rν,ν (z)− e−z‖ ≤ Λν,ν , (4.66)

where Λν,ν = 10ν . However, [GS92] reports accurate approximations are also achieved in
case of matrices with eigenvalues near to the positive real axis. In [Sid98] an interesting
analysis about the behavior of the error in case of matrices with complex spectrum is
presented.

4.4.2.2. Diagonal Padé approximations

An alternative approximation to the matrix exponential ez consists in to use a (ν1, ν2)-type
Padé approximation, i.e.

ez ≈ Rν1,ν2
(z) = [Qν1,ν2 (z)]

−1Pν1,ν2
(z), (4.67)

where

Pν1,ν2 (z) =

ν1∑

i=0

(ν1 + ν2 − i)!ν1!

(ν1 + ν2)!i! (ν1 − i)!
zi (4.68)

and

Qν1,ν2 (z) =

ν2∑

i=0

(ν1 + ν2 − i)!ν2!

(ν1 + ν2)!i! (ν2 − i)!
(−z)i . (4.69)

It is possible to show that this approximation match the Taylor series expansion up to
order ν1 + ν2 [Sid98]. A stable and economy version of Eq. 4.67 is found using ν1 = ν2,
configuring the termed diagonal Padé rational approximation. In an efficient form this
approximation can be computed as

ez ≈ Rν,ν (z) =
Pν,ν (z)

Pν,ν (−z)
=





1 + 2
z

∑ν/2−1
i=0 C2i+1z

2i

∑ν/2
i=0 C2iz

2i−z

∑ν/2−1
i=0 C2i+1z

2i
, if p is even ,

−1− 2
∑(ν − 1)/2

i=0 C2iz
2i

z

∑(ν − 1)/2
i=0 C2i+1z

2i−
∑(ν − 1)/2

i=0 C2iz
2i
, if p is odd,

(4.70)
where C0 = 1 and

Ci = Ci−1

ν + 1− i

(2ν + 1− i) i
.

Because the Padé method can only produce accurate approximations near to the origin,
i.e. for small values of ‖z‖, then to incorporate strategies as the scaling-squaring method
[ML03, Hig09, Sid98] is recommended in case of matrices with large norms.
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The scaling and squaring method

The idea of the scaling-squaring method is initially to reduce the norm of z in such a way
that 2−s‖z‖ ≈ 1, allowing the computation of the exponential via of Padé approximation.
Then, the computation of the exponential of the original matrix is completed applying s
successive squaring operations, i.e.

ez ≈
(
Rν,ν

( z

2s

))2s

. (4.71)

However, for matrices with too large norms s≫ 1 is required. Then the cost increases sig-
nificantly with the number of squaring employed, as well as the rounding errors introduced
into the approximation. Hence, choosing of an adequate pair (ν, s) is crucial in order to
conserve a good balance between accuracy and performance.

In [ML03] it is shown that if ‖z‖ ≤ 2s−1, then

(
Rν,ν

( z

2s

))2s

= ez+E, (4.72)

where

‖E‖
‖z‖ ≤ (ν!)2

(2ν)! (2ν + 1)!

(
1

2

)2ν−3

≈





0.34× 10−15 with ν = 6,

0.11× 10−18 with ν = 7,

0.27× 10−22 with ν = 8

. (4.73)

In [ML03] this result is used for computing optimal pairs (ν, s) for some combinations of
matrix norms ‖z‖ and desirable error tolerances ǫ such that

‖E‖
‖z‖ ≤ ǫ.

Likewise, from Eq. 4.73 it follows that an error bound for the diagonal Padé approximation
with scaling-squaring method has the form [ML03]

‖
(
Rν,ν

(
z

2s

))2s − ez‖
‖z‖ ≤ ǫ‖z‖eǫ‖z‖. (4.74)

4.4.3. Computation of φk (H)-functions

The numerical schemes discussed in Sec. 4.3 involve not only the computation of the
matrix exponential ez, but also the computation of φk (z)-functions (see Def. 4.3.2). There
exist different ways to compute these functions, here only two widely used techniques are
presented.

Theorem 4.4.2. Let z ∈ Rm,m, v ∈ Rm and

z̃ =




z v 0 · · · 0

0 1
. . .

...

0
. . . 0
. . . 1

0 0




, (4.75)
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then the exponential of the extended matrix z̃ ∈ Rm+p,m+p is given by

ez̃ =




ez φ1 (z)v φ2 (z)v · · · φp (z)v

1 1
1! · · · 1

(p−1)!

1
. . .

...
. . . 1

1!

0 1




, (4.76)

Proof. The proof of this theorem can be found in [Sid98].

A first method raises from Theorem 4.4.2. Thus, for example, the matrix function φ1 (z)
can be compute using [Saa92]

exp

(
z v

0 1

)
=

(
ez φ1 (z)v

0 1

)
. (4.77)

Although Theorem 4.4.2 is clearly useful because allows to compute simultaneously the
matrix exponential ez and the first p φ-functions, or more precisely the product of this
functions times the vector v, numerically it can exhibit problems because it involves the
computation of the exponential of a nonsymmetric matrix.

A second method, presented in [Saa92], is restricted to the computation of φ1 (z)-function.
This method proposes an approximation to φ1 (z) based on rational Chebyshev polynomi-
als

φ1 (z) ≈ Rν,ν (z) =

ν∑

i=1

αi

λi

(z − λiI)
−1 , (4.78)

where the coefficients αi and the poles λi used for Eq. 4.63 can be employed also here.

4.4.4. Reorthogonalization process

The Arnoldi’s algorithm previously presented contains a modified Gram-Schmidt sequence
(see lines 4–7 in Algorithm 2) in order to produce an orthonormal base of Km. It is well
known that in the context of exact arithmetic this procedure ensures Eq. 4.52, i.e.

VTV − I = 0,

however, using finite arithmetic precision this algorithm can produce severe loss of orthog-
onality in the calculated vectors [GLR05]. In fact, if Q = (Q1, . . . , QM) ∈ RNu,M represents
the original subspace, the orthogonality error introduced by the modified Gram-Schmidt
algorithm at the iteration j is bounded by [BP92]

‖VTV − I‖ ≤ ζ (Nu, j) εκ (Qj) , (4.79)

where ε is the machine precision, κ (Qj) is the condition number of the matrix Qj =
(Q1, . . . , Qj) and ζ (Nu, j) is a polynomial of low degree.

An option to reduce this error in Arnoldi’s algorithm, getting orthogonal vectors to full
working precision, is including additional reorthogonalization stages. In [GS89] reorthogo-
nalization steps in Arnoldi’s algorithm are recommended in case of non-symmetric matri-
ces. Normally one additional reorthogonalization step is enough [GLR05], but sometimes
rounding errors persist in this correction and some other reorthogonalization steps could
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be necessary [HRT07]. The Arnoldi algorithm with selective reorthogonalization proposed
in [HRT07], and included in Algorithm 3, is used in the present work.

Algorithm 3: Arnoldi’s algorithm with reorthogonalization.

Data: z,v
Result: V, H

1 V1 = v/‖v‖;
2 for j = 1 : m do
3 p = zVj ;
4 ρ = ‖p‖;
5 for (i = 1 : j) do
6 Hi,j = V T

i p;
7 p = p−Hi,jVi;

8 end
9 Hj+1,j = ‖p‖;

10 while Hj+1,j < ηρ do
11 for (i = 1 : j) do
12 c = V T

i p;
13 Hi,j = Hi,j + c;
14 p = p− cVi;

15 end
16 Hj+1,j = ‖p‖;
17 end
18 Vj+1 = p/Hj+1,j ;

19 end

The lines 10–17 in Algorithm 3 represent the additional reorthogonalization steps, which
are developed if the condition

Hj+1,j < ηρ

is satisfied. Here, according to [DGKS76], the parameter η will be taken equal to 1/
√
2.

4.4.5. Error control and size of the Krylov subspace

Theorem 4.4.3. Let A be a matrix with numerical range contained in the disk |z + ̺| ≤ ̺,
then the error in the Arnoldi approximation of eτAv is bounded by

‖eτAv −VeτHe1‖ ≤ 12e−̺τ

(e̺τ
m

m
)
, m ≥ 2̺τ. (4.80)

Proof. The proof of this theorem can be consulted in [HL97].

As was discussed previously, the idea with the Arnoldi algorithm is to build a relatively
small Krylov subspace, i.e. with m ≪ Nu, to approximate the exponential operations
employing a reduced Hessenberg matrix H instead of a large-scale system matrix A. Here,
the size of the Krylov subspace built should be large enough to ensure a rounding error,
stemmed from the matrix exponential approximation, much less that the error introduce
by the time marching scheme.

From Theorem 4.4.3 it follows that, in the rough sense, the error in the approximation
of the matrix exponential using Arnoldi’s decomposition is bounded by C (m) τm, where
C (m) is a function of m. This means that the error in the projection can be reduced
limiting the time-step size or increasing the number of vectors in the Krylov subspace. In
the present work the time-step size will be considered constant for each problem, therefore
the error control will be based on the size of Km.
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78 4. Time integration

In order to limit adequately the number of vectors in Km, a stopping-criterion was intro-
duced in Arnoldi’s algorithm. Hochbruck et al. in [HLS98] suggested as stopping-criterion
the condition

err = τ‖v‖τHm+1,m

∣∣∣
[
(I− τH)−1 φ1 (τH)

]
m,1

∣∣∣ ‖Vm+1‖tol
< 0.1. (4.81)

Here,

‖d‖
tol

=

(
1

n

n∑

i=1

(
di

wi

)2
) 1

2

, (4.82)

wi = atol +max (|wn,i| , |wn−1,i|)rtol, (4.83)

and, atol and rtol are the given absolute and relative error tolerances, respectively.

On the other hand Sidje [Sid98] proposed to stop the iterations in Arnoldi’s algorithm
if

err ≤ atol, (4.84)

where the error is computed in accordance with Algorithm 4.

Because in Algorithm 4 no inverse matrix should be computed, and besides the matrix-

Algorithm 4: Estimation of the error for the Arnoldi algorithm.

Data: β,A,H,V,τ
Result: err

1 err1 = β |Hm+1,mτe
T

m
φ1 (τH) e1|;

2 err2 = β |Hm+1,mτ
2eT

m
φ2 (τH) e1| ‖AVm+1‖2

;
3 if err1 ≫ err2 then
4 err = err2;
5 else if err1 > err2 then
6 err = err2/ (1− (err2/err1));
7 else
8 err = err1;
9 end

vector products involved (φ1 (τH) e1 and φ2 (τH) e1) can be computed using Theorem 4.4.2
in only one operation, in the present work the stopping-criterion in Eq. 4.84 was imple-
mented. Additionally, if the condition Eq. 4.84 is satisfied the term φ1 (τH) e1 used to
evaluate the error can be used latter to compute Eq. 4.60. Here, the tolerance value atol

used by default is 1E− 7.

Thus, Algorithm 3 can be modified to get Algorithm 5 used in all examples in this work.
Note that in line 22 of Algorithm 5 the error is not computed in each iteration of the
algorithm. Here, as in [HL97], to save computational time the stopping criteria is only
computed for some steps in the iteration process.
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4.4. Approximation of the matrix exponential operators 79

Algorithm 5: Arnoldi’s algorithm with reorthogonalization and stop condition.

Data: z,v
Result: V, H

1 V1 = v/‖v‖;
2 err=1;
3 j=1;
4 while err ≥ atol do
5 p = zVj ;
6 ρ = ‖p‖;
7 for (i = 1 : j) do
8 Hi,j = V T

i p;
9 p = p−Hi,jVi;

10 end
11 Hj+1,j = ‖p‖;
12 while Hj+1,j < ηρ do
13 for (i = 1 : j) do
14 c = V T

i p;
15 Hi,j = Hi,j + c;
16 p = p− cVi;

17 end
18 Hj+1,j = ‖p‖;
19 end
20 Vj+1 = p/Hj+1,j ;
21 if j ∈ {1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 34, 42, 53, 67, 84, 106, 133, 167, 211} then
22 Compute the error (err) from Algorithm 4;
23 end
24 j = j + 1;

25 end
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5. Compressible Navier-Stokes solver

In order to simulate the rapid expansion of a supercritical CO2-flow a generic Navier–
Stokes compressible flow solver was implemented and tested. The solver was written in
C++ language and it uses several libraries as deal.ii [BHK07], Trilinos [HBH+05] and
Intel

➤
TBB [Int16].

5.1. Characteristics of the compressible Navier-Stokes solver

In a brief description, the solver implemented has the following characteristics:

❼ Spatial discretization using DG-elements for 2D/3D or axisymmetric models. Di-
mension independent structure of deal.ii library (based on templates) allowed to
develop a generic solver for 2D/3D spatial discretizations.

❼ Use of both structure and unstructured quadrilateral (or hexahedral for 3D cases)
meshes is possible.

❼ Generic programming incorporated in deal.ii library allowed to use both bilinear
P1 or higher order polynomial basis. Likewise, it is possible to select linear or higher
order mapping for curvilinear boundaries. Thus, eventually it is possible to work
with subparametric, isoparametric or superparametric formulations.

❼ Global or adaptive mesh refinement are available. The used adaptive strategy is
presented in Sec. 3.5. Use of the gradient of density, velocity, Mach number or
pressure as refinement indicator is possible.

❼ Multiple time marching scheme can be used. Very efficient exponential time inte-
grators as the exponential Rosenbrock-Euler method (see Sec. 4.3.2.2) or the exp4
method (see Sec. 4.3.2.3) can be selected. Explicit schemes as the strong stability
preserving Runge–Kutta methods (SSPRK ) or the forward Euler method are also
available. The backward Euler method is the only implicit scheme included.

❼ The Jacobian matrix, required in the exponential time integration, is computed
through automatic differentiation tools from Sacado-Trilinos are used for these
computations [HBH+05]. This technique allows to compute exact Jacobians with a
reduced computational cost [LT13].

❼ Computation of thermophysical properties of the fluid can be done using the ideal
gas assumption. Real gas formulation is available only for CO2. In this last case,
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82 5. Compressible Navier-Stokes solver

the extended generalized Bender EOS (egB-EOS ) (see Sec. 2.99) is used to model
the gas behavior. A computationally less efficient version for real gases using the
PROPATH library [PRO08] is also available.

❼ Compressible flow problems can exhibit discontinuous solutions. Therefore, the shock
capturing strategy described in Sec. 3.4 was implemented in the code. Discontinuity
indicators based on the jumps of density, Mach number, pressure, or velocity can be
chosen. Multiple indicators can also be used.

❼ Multiple numerical flux formulations are included: Lax–Friedrichs (see Sec. 3.3.1.1),
Lax–Wendroff, Vijayasundaram (see Sec. 3.3.2.2), Steger–Warming and AUSM +-up
(see Sec. 3.3.3). A FCT formulation (see Sec. 3.3.4) for the numerical flux can be
used, too.

❼ A parallelization strategy based on shared memory is used in the code. Intel➤ TBB -
library is employing for scheduling tasks to available threads.

A summary of these characteristics is included in Fig. 5.1.

5.2. Algorithm description

In this section a summary of the algorithms and equations used in the implemented solver
is presented. In general, known the vector wn, the computation of the next time step
follows these steps:

❼ Compute the discontinuity indicator. In this work the value of the discontinuity
indicator g for each cell of the current triangulation is calculated using Eq. 3.71.

❼ Define the G-switch value for each cell. A threshold value for the discontinuity
indicator glim is defined (as in Eq. 3.72) and the value ofG for the i-th cell is computed
according to

G(i) =

{
0, if g(i) < glim,

1, otherwise.

❼ Compute the term bh (wh(tn),ϕ) in Eq. 3.116. If a hybrid numerical flux is used
(see Sec. 3.3.4), then the G variable replaces Θ in Eq. 3.70.

For a non-interior element Ki with face Γij such that j ∈ κ(i), the term w− in
the numerical flux H (w+,w−,n) is defined following the considerations presented
in Sec. 3.6. Here, the eigenvectors and eigenvalues of the matrix A1 are computed
with the expressions in Lemma 2.2.6. Likewise, the derivative ∂p

∂ρ
is taken from the

analytic expression in Sec. B and the derivative ∂p
∂e

is calculated from Eq. 2.55, i.e.,

∂p

∂e
=

(
c2 − ∂p

∂ρ

)
ρ2

p
.

For the special case of an ideal gas, the simplifications included in Remark 2.2.7
should be considered.

❼ Compute the term ah (wh(tn),ϕ) in Eq. 3.117. Here, the flux terms Fv
k (wh,∇wh)

are calculated as in Sec. 3.7.3. In the formulation of this term the non-symmetric
interior penalty method (NIPG) was employed (see Sec. 3.7.1 and Sec. 3.7.2).

❼ Compute the term Jh (wh(tn),ϕ) defined in Eq. 3.118 plus the stabilization term in
Eq. 3.76.
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84 5. Compressible Navier-Stokes solver

❼ Compute the term βh (wh(tn),ϕ) in Eq. 3.119 along with the stabilization term in
Eq. 3.75. For a non-interior element Ki with face Γij such that j ∈ κD(i), the vector
wD is estimated in accordance with Sec. 3.7.4.

❼ Compute the operation B(wn) in Eq. 4.1.

❼ Compute the mass matrix M in Eq. 4.1.

❼ Compute the operation F (wn) = M−1B(wn) in Eq. 4.2.

❼ The Jacobian matrix

A (wn) = − dF

dw
(wn)

is computed employing automatic differentiation via the Sacado-Trilinos library.

❼ Given A (wn) and τ , the corresponding Krylov subspace (V) and the Hessenberg
matrix (H) are obtained using Algorithm 5. The stopping criterion for the Arnoldi
algorithm is given in Eq. 4.84 and Algorithm 4. By default, the error tolerance atol

is set to 1E− 7.

❼ The term
φ1 (−τAn)F (wn)

is computed using Eq. 4.53, i.e.,

φ1 (−τAn)F (wn) ≈ ‖F (wn)‖Vφ1 (τH) e1,

where the matrix-vector product φ1 (τH) e1 is calculated using Eq. 4.76 in Theo-
rem 4.4.2. Here the matrix exponential is approximated by the rational Chebyshev
method in Eq. 4.65.

❼ Finally, the state vector wn+1 is computed using the exponential Rosenbrock–Euler
method in Eq. 4.41, i.e.,

wn+1 = wn + τφ1(−τAn)F (wn) .

❼ As general note, when the temperature value is required, e.g. to compute the vis-
cosity in Eq. 2.109, we proceed using the values of density ρ and specific internal
energy e, which are known from the conservative vector w, and with the analytic
expressions for e(ρ, θ) and ∂e/∂θ in Sec. A, we compute the temperature value through
the Newton–Raphson root-finding method.

5.3. Numerical tests

In order to validate the implemented code, multiple benchmark problems were simulated.
The problems presented in the following involve flows in a wide range of Mach regimes:
subsonic, transonic and supersonic cases are shown. Finally, in Sec. 5.4 the achieved results
in the simulation of the rapid expansion of supercritical CO2 are reported.

5.3.1. Two dimensional rotating Gaussian pulse

Rotating functions are problems commonly used in order to evaluate the performance of
numerical schemes, e.g. stability, numerical diffusion, spurious oscillations or phase prob-
lems. Here a two dimensional rotating Gaussian pulse problem is introduced to validate
the numerical scheme presented in Sec. 4 and Sec. 5. This problem, also used in [WDE+99],
is defined through the equation

∂w

∂t
− 0.0001∆w + div(vw) = 0, in M = Ω× (0, T ), (5.1)
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5.3. Numerical tests 85

with w(x, t) ∈ R, Ω = {x ∈ R2 : xi ∈ (−0.5, 0.5) , i = 1, 2}, v(x) = [−4x2 4x1]
T , T = π/2,

and endowed with the initial condition

w (x, 0) = exp

(
−(x1 + 0.25)2 + x2

2

0.004

)
for x ∈ Ω. (5.2)

The analytical solution for this problem is given by the function

u (x, t) =
1.0

1.0 + 0.1t
exp

(
−(x̄1 + 0.25)2 + x̄2

2

0.004(1 + 0.1t)

)
, (5.3)

where
x̄1 = x1 cos(4t) + x2 sin(4t) and x̄2 = −x1 sin(4t) + x2 cos(4t). (5.4)

Here, Dirichlet boundary conditions, defined by Eq. 5.3, are employed.

This problem was solved using four different quadrilateral meshes with 20× 20 elements,
40×40 elements, 80×80 elements and 160×160 elements, respectively. For the time integra-
tion procedure, twenty time stepping configurations were used: nine configurations using
implicit backward Euler and time steps given by

{
T

20000 ,
T

15000 ,
T

10000 ,
T

6000 ,
T

4000 ,
T

2000 ,
T

1000 ,
T
500 ,

T
200

}
, as well as eleven configurations using the Rosenbrock–Euler method with time

steps given by
{

T
2000 ,

T
1000 ,

T
500 ,

T
200 ,

T
100 ,

T
50 ,

T
25 ,

T
10 ,

T
5 ,

T
2 , T

}
. In all cases the Vijayasundaram

numerical flux (see Sec. 3.3.2.2) was used for the advection term, as well as the NIPG for-
mulation for the diffusion term with σ = 0.1 (see Sec. 3.7.1).

In Fig. 5.2 eight depictive cases are contrasted: two grids with 20 × 20 and 160 × 160
P1 DG-elements, as well as four time marching procedures, two of these employing the
implicit Euler method and other two cases employing the Rosenbrock–Euler method. In
all these cases the approximations are plotted in t = T . In Fig. 5.3 a similar comparisons
are presented for P3 DG-elements. Further, in Fig. C.1 results using P2 DG-elements are
shown. As is suggested in these figures, the analysis of the results found will focus on the
error introduced by the spatial semidiscretization, as well as the error produced by the
time marching schemes.

For a qualitative analysis, comparing the contour plots found in Fig. 5.2 and Fig. 5.3,
using the Rosenbrock–Euler scheme with ∆t = T

2000 and ∆t = T , for a given mesh, no
difference can be noted. Even more, no difference is found comparing the maximum and
minimum values for w. Now, comparing the approximations built using both coarsest and
the finest mesh, using Rosenbrock–Euler scheme for a given ∆t, is clear that increasing
the number of unknowns raise the resolution of the approximation and bring the peak
values closer to the analytical value of about 0.8642. These observations allow to suspect
that the error in these approximations, computed employing DG-elements in space and
Rosenbrock–Euler as time integrator, is dominated by the error component introduced by
the spatial discretization. This conclusion can be verified checking the convergence graphic
presented in Fig. 5.4. Here, in fact the error behavior does not depend on the size of the
time step, but it is only related to the mesh size used.

For scalar hyperbolic problems discretized with arbitrary triangulations using discontinu-
ous Galerkin, formal proofs [JP86, Pet91] provide an error estimate of the form

‖wh − w‖
L2(Ω)

≤ Chq+1
2 ‖w‖

Hq+1(Ω)
, (5.5)

where h is the mesh size, q is the polynomial degree of the basis employed, and C is a posi-
tive constant independent of w and h. Although, according to this estimate, solutions with
DG discretizations only find suboptimal rates of convergence, but optimal rates O (hq+1)
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86 5. Compressible Navier-Stokes solver

Figure 5.2.: Contours of w for the rotating Gaussian-pulse problem at t = T using P1 DG-
elements. Coarse mesh conformed by 20× 20 elements and fine mesh formed
by 160× 160 elements.
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Figure 5.3.: Contours of w for the rotating Gaussian-pulse problem at t = T using P3 DG–
elements. Coarse mesh conformed by 20× 20 elements and fine mesh formed
by 160× 160 elements.
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88 5. Compressible Navier-Stokes solver

Figure 5.4.: Experimental order of convergence in time for the rotating Gaussian pulse
problem using (a) P1, (b) P2 and (c) P3 DG–elements. Continuous lines repre-
sent solutions with the backward Euler method, whereas dashed lines represent
solutions that employ the Rosenbrock–Euler method.
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are commonly found in practice [JJS95]. For example some works report optimal conver-
gence rates using special grids [Ric88, CDG08, Ric08], or even superconvergent solutions
of order 2q + 1 or higher [AH09].

For diffusion-advection problems Cookburn and Shu [CS98a] reported, for local discon-
tinuous Galerkin (LDG), an error estimate with a suboptimal rate of convergence O (hq)
in energy norm. This result was corroborated in [CD99] for problems with variable dif-
fusion coefficient and velocity field, in a bounded spatial domain. Despite the theoretical
estimation in [CS98a], we present in this work several numerical experiments where, with
the suitable choice of a numerical flux, optimal convergence rates can be found. Later,
in [Cas00] it was mathematically proved that for the linear diffusion-advection problems
with constant coefficients, the LDG method can converge with an optimal rate O (hq+1)
using an appropriate numerical flux.

In order to determine the convergence rate of the implemented DG formulation, the space-
time error in the L2-norm was computed for different grids. The error graphics for P1, P2

and P3 DG-elements are presented in Fig. 5.5, and the corresponding convergence rates
computed are reported in Table 5.1. These results show that, for approximations com-
puted using the Rosenbrock–Euler scheme, the behavior of the error does not depend on
∆t, and it is dominated by the error generated by the spatial discretization. Additionally,
it is possible to observe that this spatial error has, in all cases analyzed, an order of con-
vergence near to the optimal value O (hq+1). As was discussed previously, although some
theoretical error estimates predict an suboptimal convergence rate for diffusion-advection
problems discretized with DG elements, optimal experimental order of convergence are
frequently reported in the literature.

P1 P2 P3

h ‖error‖ EOC ‖error‖ EOC ‖error‖ EOC

7.07−2 2.93−2 2.94−3 1.73−4

3.54−2 8.76−3 1.74 2.26−4 3.70 9.52−6 4.19

1.77−2 1.78−3 2.30 2.56−5 3.14 6.80−7 3.81

8.84−3 3.58−4 2.31 4.20−6 2.61 5.62−8 3.60

Table 5.1.: Experimental order of convergence (EOC ) for rotating Gaussian pulse problem
using DG-elements and Rosenbrock–Euler method. Consider
‖error‖ = ‖wh − w‖

L2(L2).

From the last results, it is possible to conclude that, using numerical scheme conformed
by DGFEM in space and Rosenbrock–Euler for time marching, for this linear case it is
possible to employ a time step as long as ∆t = T without detriment of the precision or
restrictions in the CFL number. For this case, the CFL number is computed as

CFL =
|v|∆t
h

. (5.6)

In Table 5.2 the maximum values for the CFL numbers, computed using the maximum
velocity |v| = 2

√
2, are listed for the cases of Fig. 5.2. Here, e.g. a relatively high Courant

number (CFL≈ 500) could be used, conserving a high accuracy in time integration and
without loss of stability in the numerical scheme.

Although, from the theoretical point of view (see Sec. 4.3.2.2), the Rosenbrock–Euler
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90 5. Compressible Navier-Stokes solver

Figure 5.5.: Experimental order of convergence in h for the rotating Gaussian pulse prob-
lem using (a) P1, (b) P2 and (c) P3 DG–elements. Continuous lines represent
solutions with the backward Euler method, whereas dashed lines represent
solutions that employ the Rosenbrock–Euler method.
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∆t = T
2000 ∆t = T

200 ∆t = T
25 ∆t = T

5

∆t = T
20000 ∆t = T

10000 ∆t = T
2000 ∆t = T

500

CFL number

∆t Coarse mesh Fine mesh

Backward Euler
T

20000
π

1000
π
125

T
200

π
10

4π
5

Rosenbrock–Euler
T

2000
π
100

2π
25

T 20π 160π

Table 5.2.: Maximum CFL values found the cases included in Fig. 5.2.
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method is exact for integration of linear systems of ODE ’s, there exist an error introduced
by the approximation of the exponential matrix via the Krylov subspaces. In the numeri-
cal scheme presented, an error control strategy was used (see Sec. 4.4.5) in order to keep
this error below a prescribed threshold through adapting the size of the Krylov subspace.

In Fig. 5.6, for every mesh and time steps used, the Courant number vs. the size of
the employed Krylov subspace are plotted. Here, the CFL number was again calculated
using |v| = 2

√
2, which is the maximum velocity on M. From this graphic it is possible to

observe how the number of vectors required in the Krylov subspace is linearly proportional
to the CFL number used. As expected, for a fixed mesh the amount of vectors required in
the Krylov subspace is proportional to the size of the time step, and therefore proportional
to the computational effort demanded. Note that, at the left of this graphic an irregular
behavior is observed, but it is because an artificial limit was imposed in the error control
algorithm in order to have at least 4 vectors in the Krylov subspace.

Additionally, in Fig. 5.7 is plotted, for every mesh and for the different time steps em-
ployed, the total computational cost vs. the corresponding number of vectors used in the
Krylov subspace. From this graphic, it is possible to identify an optimal point at m ≈ 15,
which corresponds to CFL ≈ 1.25. Thus, for a given mesh, CFL numbers smaller than
the critical value, produce simulations with a lot of time steps, each one computationally
cheaper in the tasks related to the computation of the exponential matrix (because small
Krylov subspaces are enough), but with high fix costs derived mainly from the assembly
process. On the other hand, CFL numbers higher than the critical one, correspond to
simulation with few, but extremely expensive, time steps (because m is linear propor-
tional to the Courant number). In this situation the fix costs in each time step are not
representative compared to the cost of computing the exponential matrix function.

Figure 5.6.: CFL number vs. size of the Krylov subspace used for the rotating Gaussian
pulse. All meshes conformed by P1 DG-elements.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
−2

−1

0

1

2

3

1
1

log10(m)

lo
g
1
0
(C

F
L
)

h =
√
2

20

h =
√
2

40

h =
√
2

80

h =
√
2

160

5.3.2. Sod’s shock tube problem

This test case, originally presented in [Sod78], consists of a long tube filled with an ideal
gas and endowed with a thin diaphragm, located in x1 = 0, that separates a high pressure-
density region (ρL, pL) at x1 < 0, from a low pressure-density zone (ρR, pR) at x1 > 0. At
initial time t = 0 the fluid in both sides is at rest, then at t > 0 the membrane is broken
and a high speed flow is produced.
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92 5. Compressible Navier-Stokes solver

Figure 5.7.: Computational cost demanded vs. size of Krylov subspace used for the rotat-
ing Gaussian pulse. All meshes conformed by P1 DG–elements. The CPU
times reported correspond to computations using 8 cores in an Intel Core
i7-3770@3.4GHz processor.
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This problem is modeled using the set of Euler equations Eq. 2.40, complemented with the
ideal gas equation of state. This system of equation was solved for the rectangular domain
shown in Fig. 5.8, using the boundary conditions

∂Ω = ΓIN ∪ ΓO ∪ ΓW ,

where

❼ ΓIN = {x ∈ R2 : x1 = −0.5, x2 ∈ (0, 0.1)} represents the inlet boundary,

❼ ΓO = {x ∈ R2 : x1 = 0.5, x2 ∈ (0, 0.1)} is outlet boundary,

❼ ΓW = {x ∈ R2 : x1 ∈ [−0.5, 0.5] , x2 = 0} ∪ {x ∈ R2 : x1 ∈ [−0.5, 0.5] , x2 = 0.1}
defines the slip walls.

Figure 5.8.: Spatial domain defined for Sod’s shock tube problem.
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Likewise, the initial conditions that define the thermodynamic condition at both sides of
the diaphragm, are given by

ρ (x, 0) =

{
ρL, x1 < 0,

ρR, x1 > 0
, p (x, 0) =

{
pL, x1 < 0,

pR, x1 > 0
, v (x, 0) = 0, (5.7)

with ρL = 3 density units, ρR = 1 density-units, pL = 3 pressure-units and pR = 1 pressure-
units.

The initial discontinuity in density and pressure produces, once the membrane is bro-
ken, a supersonic flow with a shock pattern conformed by: an expansion fan (region II
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in Fig. 5.9), a rarefaction (between regions III and IV in Fig. 5.9) and a genuine shock
wave (between regions IV and V in Fig. 5.9).

Figure 5.9.: Analytic solution for the 1D shock tube problem at t = 0.2. For this graphic
the reference values ρL = 3, pL = 3 and vmax = 0.46411 were taken.
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The rectangular domain in Fig. 5.8 was discretized using four different quadrilateral struc-
tured meshes: a base grid conformed by 60×6 elements (h =

√
2/60), and three grids formed

by successive global refinements of the base mesh, i.e., meshes with h =
√
2/120, h =

√
2/240

and h =
√
2/480, respectively. The numerical formulation for spatial semidiscretization em-

ployed both P1 and P2-DG elements, and incorporated a FCT strategy (see Sec. 3.3.4) to
estimate the inviscid flux in the borders of the elements. Here, the upwind Vijayasundaram
flux in Eq. 3.30 was used as low order term and the AUSM -flux in Eq. 3.56 as high order
term. Additionally, in order to avoid the Gibbs phenomenon near to the discontinuities,
the stabilization technique based on the introduction of artificial viscosity presented in
Sec. 3.4.2 was employed. For this case, the computation of the discontinuity indicator was
done using the jump in the value of density, accordintg to Eq. 3.72. Thus, for the cells
identified by the shock indicator, the stabiliztions terms Eq. 3.75 and Eq. 3.76 were added
to the numeric formualtion (with ν1 = ν2 = 0.5) and the Θ parameter in Eq. 3.70 was
set to 1. For all other cells no stabilization terms are added and Θ = 0 is taking by default.

For the time marching scheme, the Rosenbrock–Euler method, presented in Sec. 4.3.2.2,
was implemented. In order to evaluate the experimental order of convergence in time,
11 time step sizes were used: {T/2000, T/1000, T/500, T/250, T/100, T/70, T/40, T/20, T/10, T/5, T},
where T = 0.2 time-units.

In Fig. 5.10 two different approximations, found using a coarse grid with 60× 6 elements
and a finer mesh with 480×48 elements, are plotted. These profiles are presented at t = T
and using time steps ∆t = T/2000. In the solution with the coarsest grid small oscillations
are detected near to the shock wave (x1 ≈ 0.3), nevertheless this spurious behavior are
not present in the finest solution. This effect is associated with the ability of the shock
capturing strategy to detect steep gradients, while on the coarse mesh the discontinuity is
approximated as a smooth step function and then the discontinuity indicator is not able
to detect the elements adjacent to the jump. On the finest grid the shock is captured
with a higher resolution, allowing to detect precisely where the artificial viscosity should
be introduced. On the other hand, from Fig. 5.10 it is possible to note that how the error
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94 5. Compressible Navier-Stokes solver

sources are located in the shock wave, as well as at the begin and end of the rarefaction,
but mainly on the contact discontinuity. This behavior is in accordance with the results
reported in previous works [BHS09, GHS02].

Figure 5.10.: Numerical profiles for density, pressure and velocity along the center line
x2 = 0 at t = T for the shock tube problem. Approximation built using (a) a
grid with 60× 6 P1-elements, and (b) a finer grid with 480× 48 P1-elements.
In both cases a time step ∆t = T/2000 was used. Thick lines represent the
numerical approximations and thin lines the analytic solutions.
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A convergence analysis over space and time was developed for this problem. The analysis
involved four meshes with element sizes of h

√
2/60, h

√
2/120, h

√
2/240 and h

√
2/480, two types of

DG-elements (P1 and P2), and eleven time step sizes {T/2000, T/1000, T/500, T/250, T/100, T/70,
T/40, T/20, T/10, T/5, T}. Fig. 5.11 and Table 5.3 show the results for the convergence anal-
ysis in space. Here, the error was computed for any of the conservative variables (ρ, ρv1,
ρv2, E) and then the resulting error was calculated.

The experimental order of convergence found conforms to the theoretical error estima-
tion proposed by [JJS95], which predicts a suboptimal convergence rate O (h1/2), solving
hyperbolic conservation equations with discontinuous Galerkin in case of non-regular so-
lutions. Likewise, multiple numerical experiments solving Euler equations, such as those
presented in [GHS02, HLR99], report convergence orders slightly above 0.5 for solutions
with discontinuities.

Fig. 5.12 shows the behavior of the error in time. This plot shows that for every used
mesh the error stays constant for time steps ∆t < T/100, i.e. in these cases even using
the finest mesh and a higher polynomial basis P2, the global error is dominated by the
spatial component. We also observe high accuracy using the exponential Rosenbrock–
Euler method. Further, for larger time steps (∆t > T/100), the approximations computed
using the finest grid (h =

√
2/480) exhibits oscillations and eventually loss of stability. This

conditional-stability behavior can be observed in all the meshes analyzed. The set of
approximations that have spurious oscillations are shown in Fig. 5.12 with solid markers.

In Fig. 5.13 is plotted the relation between the CFL number and the size of the Krylov
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P1 P2

h ‖error‖ EOC ‖error‖ EOC

2.36−2 3.47−2 2.90−2

1.18−2 2.53−2 0.46 2.09−2 0.47

5.89−3 1.81−2 0.49 1.47−2 0.51

2.95−3 1.31−2 0.46 1.06−2 0.47

Table 5.3.: Experimental order of convergence (EOC ) for Sod’s shock tube problem us-
ing DG-elements and Rosenbrock–Euler method. Consider ‖error‖ = ‖wh −
w‖

L2(L2).

Figure 5.11.: Experimental order of convergence in h for Sod’s shock tube problem using
P1 (black lines) and P2 (blue lines) DG-elements.
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Figure 5.12.: Experimental order of convergence in time for Sod’s shock tube problem using
P1 (black lines) and P2 (blue lines) DG-elements. Solid markers correspond
to solutions with spurious oscillations.
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subspace computed for the shock tube problem. For this problem, and onwards for all
compressible flow problem, the CFL number was computed as

CFL =
(|v|+ c)∆t

h
. (5.8)

As expected, for a given mesh, increasing the time step (or equivalently the CFL number)
requires a higher number of vectors m. These numerical experiments indicate a propor-
tionality relation m ∝ CFL2/3. On the other hand, in Fig. 5.14 the time consumption is
evaluated in terms of the size of Krylov subspace employed. As in previous cases, a high
cost is observed for small time steps, like with explicit time marching methods, as well
as a reduction of the computational cost when larger time steps are employed. Here, in
similar fashion to Fig. 5.7, there will be a critical value for m (and then for CFL and ∆t),
after which the excessive cost for computing the exponential of a large Hessenberg matrix
dominates the total cost.

Figure 5.13.: CFL number vs. size of the Krylov subspace used for the Sod’s shock tube
problem. Black lines correspond to solutions with P1 elements and blue lines
represent approximations built with P2 elements.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−2

−1

0

1

2

3

log10(m)

lo
g
1
0
(C

F
L
)

h =
√
2

20 h =
√
2

40 h =
√
2

80 h =
√
2

160

5.3.3. GAMM channel problem

The flow along a channel with a circular arc bump on the lower wall is commonly named
GAMM -channel problem (see Fig. 5.15). This case was originally proposed as test prob-
lem in the context of a workshop of the Society for Applied Mathematics and Mechanics
(GAMM – german abbreviation ofGesellschaft für Angewandte Mathematik und Mechanik)
[RV81], and it is commonly used to evaluate the performance of numerical schemes [FFS03,
FP02, Ni82]. Here, as in [FP02], three different cases are presented: subsonic, transonic
and supersonic problems are analyzed respectively. This problem was modelled using
inviscid Euler equations along with the ideal gas EOS.

5.3.3.1. Subsonic case

For this case the domain represented in Fig. 5.15 was used and the thickness-to-cord ratio
of the bump was set to 10%. The boundary ∂Ω is defined as

∂Ω = ΓIN ∪ ΓO ∪ Γu
W ∪ Γl

W ,

where
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Figure 5.14.: Computational cost demanded vs. size of Krylov subspace used for the Sod’s
shock tube problem. Black lines correspond to solutions with P1 elements
and blue lines represent approximations built with P2 elements. The CPU
time reported correspond to computations with 8 cores in an Intel Core i7-
3770@3.4GHz processor.
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Figure 5.15.: GAMM -channel domain.
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❼ ΓIN = {x ∈ R2 : x1 = −1.5, x2 ∈ (0, 1.0)} represents the inlet boundary,

❼ ΓO = {x ∈ R2 : x1 = 1.5, x2 ∈ (0, 1.0)} is outlet boundary,

❼ Γu
W = {x ∈ R2 : x1 ∈ [−1.5, 1.5] , x2 = 1.0} is upper wall, and

❼ Γl
W ={x ∈ R2 : x1 ∈ [−1.5,−0.5) , x2 = 1.0}

∪ {x ∈ R2 : x1 ∈ [−0.5, 0.5] , x2 =
√
1.69− x2

1 − 1.2}
∪ {x ∈ R2 : x1 ∈ (0.5, 1.5] , x2 = 1.0}

defines the lower wall.

Here, a subsonic inflow condition with M = 0.5 was prescribed on ΓIN , slip wall boundary
condition was adopted on Γu

W and Γl
W , and an atmospheric pressure value, p = 0.11MPa,

was set on the outlet boundary ΓO.

For the spatial semidiscretization of this problem, four different structured grids were
generated as follows: a base grid consisting of 27×9 quadrilateral elements was built, then
it was refined three times by element splitting, producing meshes with 54 × 18 elements,
108× 36 elements and 216× 72 elements, respectively. In Fig. 5.16 the coarsest base-grid
and the finest grid employed for this problem are shown. The AUSM +-up numerical flux
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98 5. Compressible Navier-Stokes solver

Figure 5.16.: Initial grids used for solving the subsonicGAMM -channel problem. (a) coars-
est grid with 27× 9 elements and (b) finest grid with 216× 72 elements.

(a)

(b)

(see Sec. 3.3.3) was employed for all the tests carried out.

According to [BR97], in the context of Euler equations solved via DG elements, in or-
der to get good quality in the numerical solution a sufficiently accurate approximation of
the geometry is required. Thus, e.g. if a linear mapping Q1 is used to represent a curved
boundary, every vertex of the polygonal approximation of this boundary gives rise to a
spurious entropy production [FFS03], which normally is convected downstream, polluting
other regions in the domain. To avoid this effect, a finer mesh can be introduced for the
cells next to curved walls. Here, in all simulations of this test case, a second order mapping
Q2 was implemented in order to ensure a precise geometric approximation of the bump.

The temporal domain was set to (0, 0.5s) and the Rosenbrock–Euler scheme was used
as time marching scheme. In all cases a time step size ∆t = 0.1ms was used. The initial
condition is given by

w (x, 0) =
(
ρ0 ρ0v0

1 ρ0v0
2 E0

)T

,

where ρ0 = 1.2785kg/m3, v0
1 = 173.5312m s−1 and v0

2 = 0. Here, the specific energy E0 is
computed from Eq. 2.22

E0 =
p0

γ − 1
+ ρ0 |v0

1|2
2
,

with p0 = 0.11MPa and γ = 1.4.

In Fig. 5.17 the Mach number contours are plotted at steady state for the different grids
used. In Fig. 5.17(a) can be noted that a layer is formed on the lower wall, downstream
from the position x1 = −0.5. This boundary layer is also formed in the test of Fig. 5.17(b)–
(d), although the thickness of this decreases when finer grids are used. In Fig. 5.28 the
Mach number profiles along the lower and upper walls are plotted. These graphics show
that the Mach values computed along the upper wall agree with the profile reported in
[FP02], even for the coarsest mesh. Nevertheless, on the lower wall the profile exhibit
an error in the bump region, and specially along the straight wall after the bump. The
plots in Fig. 5.28 also show that the error decreases slowly as finer meshes are employed,
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although the difference remains even in the test with the finest mesh. This spurious layer
is also present in solutions with high order polynomial basis, as is shown in Fig. 5.19.

Figure 5.17.: Mach number contours for the subsonic GAMM -channel problem at steady
state. Results found employing P1 DG-elements along with grids conformed
by (a) 27 × 9 elements, (b) 54 × 18 elements, (c) 108 × 36 elements and (d)
216× 72 elements.
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Using as entropy production indicator the term κ = p
ργ
, in Fig. 5.20 is displayed the entropy

production for every grid used. Considering that the solution reported in [FP02] does not
exhibit shock waves, and thus cannot appear any entropy production in the domain, the
entropy layer at lower wall shown in Fig. 5.20 can be considered a numerical artifact. This
spurious layer is formed when the entropy production on the bottom wall, produced at
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Figure 5.18.: Mach number profiles along lower and upper walls in subsonic GAMM -
channel using different grids. All solutions were computed using P1 DG–
elements.
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Figure 5.19.: Mach number profiles along lower and upper walls in subsonic GAMM -
channel using different polynomial DG-basis. All solutions were computed
using the base grid (27× 9 elements).
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x1 = −0.5m and x1 = −0.5m where the slope of the wall changes suddenly, is advected
downstream, polluting the approximation in the elements next to the wall. In order to
reduce the entropy production in the extreme points of the bump, a locally refined grid,
as in Fig. 5.21, can be implemented.
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Figure 5.20.: κ-indicator for entropy production for the subsonic GAMM -channel problem.
The contours correspond to the steady state. Approximations computed
using P1 DG-elements along with grids conformed by (a) 27×9 elements, (b)
54× 18 elements, (c) 108× 36 elements and (d) 216× 72 elements.
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(c) (d)

Figure 5.21.: Base grid locally refined in the extreme points of the bump. Total of 387
elements in the grid.

Increasing the mesh resolution at the extreme points of the bump reduces the entropy pro-
duction, as can be noted in Fig. 5.22, suppresses the boundary layer at the downstream
bottom wall and improves dramatically the approximation. This effect on the quality of
the approximation can be appreciated in Fig. 5.23, where a comparison between the solu-
tion with the base mesh and the approximation using the locally refined mesh in Fig. 5.21
is shown. Finally, in Fig. 5.24 can be noted as the reduction in the spurious entropy pro-
duction allows to fit better the Mach profile along both walls, even using a coarse mesh.

For the time step used (∆t = 0.1ms) and considering the four uniform grids employed,
maximum values for the CFL number equal to 0.5, 1.0, 2.0 and 4.0 were found. In Fig. 5.25
a sublinear relation between the CFL number and the number of vectors employed in the
Krylov subspace is shown, as well as a quadratic relation between the CFL number and the
total CPU -time demanded in every case. Here, the CFL number was computed according
to Eq. 5.8.

5.3.3.2. Transonic case

This case is similar to subsonic GAMM -channel problem but the velocity in the inlet
boundary is increased up to M = 0.675. Under this inflow condition the solution (see
[FP02]) exhibit a shock wave on the bump, approximately at 72% of chord [Ni82], and
immediately downstream a minimum value for the Mach number, named Zierep singular-
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Figure 5.22.: Entropy production for the subsonic GAMM -channel problem at steady state
using an (a) uniform grid with 27 × 9 P1 elements, and (b) a locally refined
grid on the extreme points of the bump.

(a) (b)

Figure 5.23.: Mach number contours for the subsonic GAMM -channel problem at steady
state using an (a) uniform grid with 27 × 9 P1 elements, and (b) a locally
refined grid on the extreme points of the bump.
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ity, is localized. The challenge with this test case is to capture precisely the shock wave,
avoiding the Gibbs phenomenon in the neighborhood of the discontinuity and allowing a
good approximation of the Zierep singularity. This problem is extensively described and
solved in [FFS03].

Initially, to solve this test case two quadrangular uniform grids with 27× 9 and 216× 72
P1 DG–elements were used. The AUSM +-up numerical flux was incorporated for all the
transonic tests developed. Further, in order to avoid a spurious entropy production at the
bump corners, the coarsest grid was locally refined at these points as in Fig. 5.21. For the
time marching strategy the Rosenbrock–Euler method with ∆t = 0.1ms was implemented.

Taking in account the presence of discontinuities in the solution, a shock capturing strategy
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Figure 5.24.: Mach number profiles along lower and upper walls in subsonic GAMM -
channel. Solutions computed using a uniform grid with 27 × 9 P1 elements
and a locally refined grid.
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Figure 5.25.: Size of the Krylov subspace m (solid line) and computational cost (dashed
line) vs. CFL number used to solve the subsonic GAMM -channel problem.
The CPU times reported correspond to computations using 8 cores in an
Intel Core i7-3770@3.4GHz processor.
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was included for this case. The discontinuity indicator procedure described in Sec. 3.4.1,
using the density jumps as indicator variable, was used to detect the elements in the
neighborhood of the discontinuity. Besides, the artificial viscosity technique presented in
Sec. 3.4.2, using ν1 = ν2 = 1.0, was introduced in order to avoid spurious oscillations on
these elements.

Fig. 5.26(a) shows the Mach number contours found at steady state using the coarsest
grid (≈ 3 900 unknowns). Further, in Fig. 5.27 the corresponding Mach number profiles
along upper and lower walls are plotted. As in the previous test case this coarse grid is
enough to find a good approximation in the regions where the solution is smooth, how-
ever, it shows a poor resolution to capture properly both shock waves and the Zierep
singularity. Looking for increasing the accuracy in the approximation, the coarsest mesh
with cubic polynomial DG-basis (≈ 15 500 unknowns) were used in the solution shown
in Fig. 5.26(b) and Fig. 5.27(solid line). Here, this higher order approximation allows to
capture the Zierep singularity, although the improvement in the resolution of the shock
wave is not remarkable. Further, as is shown in Fig. 5.26(c) and Fig. 5.28, using a finer
grid, a high resolution and very good location of the shock wave is found. Nevertheless, a
high computational cost, derived from the 250 000 unknowns employed, has to be payed.

A way to ensure a good resolution in both discontinuity and Zierep singularity is employ-
ing an adaptive meshing strategy. Here, the adaptive mesh refinement technique proposed
in Sec. 3.5 was implemented. Then, using the gradient of the Mach number as the refine-
ment indicator, a dynamic adaptive grid, able to capture and to follow the shock waves
through the domain, was obtained. Particularly, based on the coarsest mesh and limiting
the maximum refinement level of each element to 4, the grid shown in Fig. 5.29 was found.
Thus, the higher element density in the critical non-smooth regions increases the resolution
without a notable raising of the total unknowns (579 P1 elements and ≈ 9 300 unknowns).
This effect can be appreciated in Mach number contours of Fig. 5.26(d), but specially in
the Mach profile along the lower wall plotted in Fig. 5.28 (solid line) where the steepness
of the shock wave is even better than the one presented in [FP02].

In Fig. 5.30 the κ-indicator for entropy production is plotted for the different discretiza-
tions used. In these graphics, specially in Fig. 5.30(c) and (d), the parallel isentropic lines
show that the entropy produced along the shock wave is convected downstream, and no
spurious entropy sources are detected throughout the domain. Additionally, as expected,
the magnitude of the entropy produced in the discontinuity reflects how precise the shock
wave was approximated.

On the other hand, in the right column in Fig. 5.30 the discontinuity indicator used to sta-
bilize the solution in the neighborhood of the shock wave is plotted. There, it is noted that
a better grid resolution in the region of the discontinuity allows to define precisely where
to introduce the stabilizations terms. The precise shock capturing registered, using both
finest mesh and the adaptive grid, as well as the absence of oscillations near to the Mach
jump in the lower-wall profiles of Fig. 5.28, show that the stabilization terms, used into
marked elements, introduced enough artificial viscosity to reduce the Gibbs phenomenon
in the solution without detriment of its resolution.

Finally, Fig. 5.31 shows the CFL numbers found with both the finest uniform grid and
with the adaptive mesh. Here, the CFL number was computed according to Eq. 5.8. It
is necessary to highlight that the wide stability region of the Rosenbrock–Euler method
allows e.g. to implement an adaptive grid strategy, where local small elements can produce
high CFL numbers, without loss of stability.
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Figure 5.26.: Mach number contours for the transonic GAMM -channel problem at steady
state. Results found employing grids with (a) 27 × 9 P1 DG-elements, (b)
27 × 9 P3 DG-elements, (c) 216 × 72 P1 DG-elements and (d) an adaptive
grid with 579 P1 DG-elements.
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5.3.3.3. Supersonic case

In this case a 4% bump is employed along with a supersonic inflow boundary condition
(M = 1.65). The solution presented in [FP02] shows a shock wave generated just when the
flow reaches the bump. Then, this shock crosses the channel until it reaches upper wall,
where it is reflected downward to cross a second shock wave, generated at the end of the
bump, and to finally arrive to the outflow boundary. In contrast to the previous tests, here
supersonic speeds are registered on all domain and the shock waves are extended along
the channel. The challenge here is to achieve stability of the solver at supersonic regime,
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Figure 5.27.: Mach number profiles along lower and upper walls in transonic GAMM -
channel using different polynomial DG-basis. All solutions were computed
using the base grid (27× 9 elements).
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Figure 5.28.: Mach number profiles along lower and upper walls in transonic GAMM -
channel using different grids with P1 DG-elements.
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as well as the accuracy of the shock capturing strategy implemented.

For this test case two different grids were employed: an uniform grid with 216 × 72 P1

DG-elements and a dynamically adaptive grid with 4 596 P1 DG-elements at steady state
(see Fig. 5.32). The AUSM +-up numerical flux (see Sec. 3.3.3) was employed for all the
tests with supersonic inlet condition. As in the transonic GAMM -channel case, the shock
indicator in Eq. 3.72 was used to identify the cells where the stabilization terms should
be included, although in this case the parameters ν1 and ν2 were set equal to 1.5. For the

106



5.3. Numerical tests 107

Figure 5.29.: Adaptive grid for the shock capturing in the transonic GAMM -channel prob-
lem. Total of 579 elements in the grid.
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Figure 5.30.: κ-entropy production indicator (first column) and G-switch indicator (second
column) for the transonic GAMM -channel problem. Contours correspond to
the steady state. Values computed using (a) 27 × 9 P1 DG-elements, (b)
27 × 9 P3 DG-elements, (c) 216 × 72 P1 DG-elements and (d) an adaptive
grid with 579 P1 DG-elements.
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local mesh refinement the strategy in Algorithm 1, employing the gradient of the Mach
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108 5. Compressible Navier-Stokes solver

Figure 5.31.: CFL numbers achieved for the transonic GAMM -channel problem. Values
correspond to the steady state using (a) an uniform grid with 216 × 72 ele-
ments and (b) an adaptive grid with 579 elements.
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number as indicator, was incorporated. In this case the maximum refinement level was set
to 4. For the time marching strategy the Rosenbrock–Euler method with ∆t = 0.1ms was
implemented.

Figure 5.32.: Adaptive grid for the shock capturing in the supersonic GAMM -channel
problem. Total of 4596 elements in the grid.
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In Fig. 5.33 the predicted Mach number contours at steady state are plotted for both
uniform grid (a) and adaptive mesh (b). On the other hand, in Fig. 5.34 the Mach number
profiles along upper and lower walls are traced. Here, it is noted that in both grids the
shock waves are localized with high precision, although the steepness of the shock captured
using an adaptive meshing is slightly better. This better behavior in the second case is
produced not only for the better mesh resolution along the discontinuities, but also be-
cause of the stabilization terms introduced in a narrow region, as is illustrated in Fig. 5.35.
It allows to control more precisely the amount of artificial viscosity incorporated into the
solution.

Finally, in Fig. 5.36 is reported the CFL number reached at steady state using each mesh.
As in the previous examples, the DG discretization along with the exponential time inte-
grator allow to reach high local CFL numbers, and then it is possible to use locally refined
grids without loss of the stability or a strong penalization in the size of the time step.
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Figure 5.33.: Mach number contours for the supersonic GAMM -channel problem at steady
state. Results found employing grids with (a) 216× 72 P1 DG-elements and
(b) an adaptive grid with 4596 P1 DG-elements.
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Figure 5.34.: Mach number profiles along lower and upper walls in supersonic GAMM -
channel using different grids with P1 DG-elements.
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5.3.4. Supersonic forward-facing step problem

This case test, originally presented in [Eme68] and widely discussed in [WC84, WC81],
consists of a wind tunnel with 3 length-units long and 1 length-units of height. As is
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110 5. Compressible Navier-Stokes solver

Figure 5.35.: κ-entropy production indicator (first row) and G-switch indicator (second
row) for the supersonic GAMM -channel problem. Contours correspond to
the steady state. Values computed using (a) an uniform grid with 216 × 72
P1 DG-elements and (b) an adaptive grid with 4596 P1 DG-elements.
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Figure 5.36.: CFL numbers achieved for the supersonic GAMM -channel problem. Val-
ues correspond to the steady state using (a) an uniform grid with 216 × 72
elements and (b) an adaptive grid with 4596 elements.
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showed in Fig. 5.37, at 0.6 length-units from the inlet border a step with 0.2 length-units
of height is localized. Thus, the boundary ∂Ω is defined as

∂Ω = ΓIN ∪ ΓO ∪ Γu
W ∪ Γl

W ,

where

❼ ΓIN = {x ∈ R2 : x1 = 0, x2 ∈ (0, 1.0)} represents the inlet boundary,

❼ ΓO = {x ∈ R2 : x1 = 3.0, x2 ∈ (0.2, 1.0)} is outlet boundary,

❼ Γu
W = {x ∈ R2 : x1 ∈ [0, 3.0] , x2 = 1.0} is upper wall, and

❼ Γl
W ={x ∈ R2 : x1 ∈ [0, 0.6) , x2 = 0}

∪ {x ∈ R2 : x1 ∈ [0.6, 3.0] , x2 = 0.2}
defines the lower wall.

On the inflow boundary ΓIN a supersonic condition with M = 3 was imposed. Addition-
ally, a reflective slip boundary condition is assumed on Γu

W ∪Γl
W and a supersonic outflow
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condition is taken on ΓO. For the initial condition the values ρ0 = 1.4 density-units,
v0 = (3 0)T velocity-units and p0 = 1 pressure-units, were taken for the entire domain.

Figure 5.37.: Forward-facing step domain.
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In this problem, widely used to test multiple numerical techniques for compressible flows,
an initial shock emanating from the step expands through the channel and reflects on the
upper and lower walls, creating a complicated effect of shock interactions. Although the
steady state for this problem is found after t = 12 time-units, multiple works analyze the
unsteady state at t = 4 time-units, because of the complex interactions of shocks waves,
rarefactions and contact discontinuities at this time [WC81]. In Fig. 5.38 density contours
reported by [ZQSD08] at t = 4 time-units are plotted. This figure shows, on the upper
side, a λ-type shock with its Mach stem aligned with the step, and a contact discontinuity
arises from its triple point. Along this contact discontinuity a Kelvin-Helmholtz instabil-
ity can be appreciated. Despite this is a physical instability, according with [WC84] it is
numerically triggered by very small entropy oscillations produced in the Mach shock. On
the lower wall, the Fig. 5.38 shows the rarefaction fan generated in the step corner, as well
as a weak contact discontinuity arising from the step. Additionally, on the upper surface
of the step appears a shock reflection, along with a artificial Mach stem (small in the case
of Fig. 5.38), and spurious boundary layer.

In addition to the proper capturing of the multiple shocks, one of the most challeng-
ing problems in the numerical solution of this case is the numerical treatment for the
neighborhood around the corner of the step. This point is the origin of a rarefaction,
thus a singular point. A poor resolution in the corner singularity produces an error source
that introduce spurious entropy, which is advected downstream along the top of the step,
forming an erroneous entropy layer on this surface. Then, the shock wave reflected on
the lower wall will be altered by this boundary layer, creating a Mach stem (see item e
in Fig. 5.38) whose length will depend of the layer thickness. In fact, a bad treatment of
this problem can degenerate drastically the whole solution. In order to solve this problem
some works propose to implement a special boundary condition near to the step corner
[WC84], and others improve the resolution in this region either employing local refinement
[CS98b] or using high order polynomial basis [HCP12].

This test case was modeled using inviscid Euler equations for ideal gas. For the spa-
tial discretization an initial grid with 696 P1 DG-elements was employed (see Fig. 5.39),
along with the adaptive grid technique described in Sec. 3.5, using the ∇ρ to compute the
refinement indicator and a maximum refinement level rL,max = 4. In this test we employ a
numerical flux based on the FCT strategy which uses AUSM -flux as high order term and
the Vijayasundaram-flux as low order component.
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112 5. Compressible Navier-Stokes solver

Here, in spite of other works [WC84], no special boundary condition for the regions near
to the singular point was used, but looking for limiting the entropy production in the step
corner, a local refinement around this point was done. Thus, taking the initial mesh, a
small neighborhood around the corner, with radius r = 0.02, was defined and the ele-
ments inside were refined by splitting six times. The refinement level in these cells was
forced into the adaptive strategy to conserve this local high resolution in the dynamic grid.

For time marching scheme a Rosenbrock–Euler method, with ∆t = 0.005 time-units, was
implemented. In order to avoid the Gibbs-phenomenon in the neighborhood of the shocks,
the shock capturing strategy described in Sec. 3.4.1 was engaged, using a discontinuity in-
dicator based on the jumps in density, as in Eq. 3.72. The parameters ν1 and ν2, included
in the stabilization terms in Eq. 3.75 and Eq. 3.76, were set to 0.2 for this test.

Figure 5.38.: Density contours for the forward-facing step problem at t = 4 time-units.
Thirty contourlines uniformly spaced from 0.32 to 6.15. Here (a) points to
the upper Mach stem, (b) shows the triple point, (c) points to the shock
wave, (d) shows the contact discontinuity that arises from the step, (e) point
to the lower Mach stem, (f) shows the spurious entropy boundary layer,
(g) shows to the contact discontinuity that emanate from the triple point,
and (h) shows the Kelvin–Helmholtz instability developed along the upper
contact discontinuity. Results reported by [ZQSD08].
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Figure 5.39.: Coarse grid used for solving the forward-facing step problem.

In Fig. 5.40 and Fig. 5.41 the predicted values for density and Mach number at different
times are plotted. Here, at t = 4 it is possible to identify most of the relevant flow-
characteristics previously described. Thus, the λ-type wave on the upper wall of the
channel was accurately captured. Its location, with the Mach stem aligned with the step,
as well as the length of the stem lλ ≈ 0.24, are in accordance with the results reported by
multiple authors, e.g. [WC84, CS98b]. On the other hand, arising from the triple point of
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this λ-shock, it is possible to identify a contact discontinuity, which extends downstream
and weakly crosses the shock wave reflected on the upper wall in x1 ≈ 2.4. Citing Wood-
ward and Colella [WC81], this effect is one of the most difficult to capture in this test case.
Here, unfortunately, no Kelvin–Helmholtz instability could be reproduced, most probably
because the lack of the resolution in the contact discontinuity captured.

Figure 5.40.: Density contours at different times for the forward-facing step problem using
adaptive grid. Thirty contourlines uniformly spaced from 0.32 to 6.15.
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On the upper wall of the step (x2 = 0.2), the proper location of the lower shock reflection
(at x1 ≈ 1.3) and the lack of a Mach stem in it, show a reduced amount of entropy gen-
erated in the corner. This effect can be verified in the graphic of the entropy production
indicator of Fig. 5.42. However, the isentropic lines display a thin entropy layer on the
upper wall of the step, although it is not enough to perturb neither the shock reflection
and the shock sliding on the wall.

On the other hand, the rarefaction fan with origin in the step corner was high-accurately
reproduced, while the lower contact discontinuity that arises from the step was detected
early and reproduced along the entire simulation.

Along the simulation, the steepness of the shock waves, as well as the lack of spurious
oscillations in the solution, show the good performance of the shock capturing and stabi-
lization techniques used here. In Fig. 5.42 the values for the G-switch variable, which is
employed to identify the elements where the stabilization terms need to be introduced, are
plotted.
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114 5. Compressible Navier-Stokes solver

Figure 5.41.: Mach number contours at different times for the forward-facing step problem
using adaptive grid. Thirty contourlines uniformly spaced from 0 to 3.
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In Fig. 5.43 the values of the CFL number achieved at t = 4 time-units are plotted.
Here, the CFL number was computed according to Eq. 5.8. It is important to highlight
that the maximum CFL value found is approximately 18 and it is located in the region
near to the step corner, where the mesh was refined to avoid the spurious entropy. Nev-
ertheless, in Fig. 5.43 the maximum value in the colormap was limited to 5 in order to
appreciate the lower CFL values distributed along the domain.

Figure 5.42.: (a) κ-entropy production indicator and (b)G-switch indicator for the forward-
facing step problem.
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Finally, Fig. 5.44 illustrates the changes in the dynamic grid over time, following the dis-
continuities and allowing a high resolution of these.
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Figure 5.43.: CFL numbers achieved for the forward-facing step problem at t = 4.
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Further, for comparative purposes, time evolution of the density contours for this bench-
mark problem can be found in [WC84, AMJ14]. In Sec. D a similar set of results, using a

Figure 5.44.: Time evolution of the adaptive grid implemented for the forward-facing step
problem.
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uniform grid with h ≈ 1/150, is presented.
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5.3.5. Axisymmetric free underexpanded air-jet

In this section the releasing of a fluid from a round nozzle (or hole) and their free expan-
sion into a quiescent medium is modeled. Depending of the value of the ratio between the
static pressure at the exit of the nozzle (pe) to the ambient pressure (p∞), named nozzle
pressure ratio NPR, the jet obtained can be: subsonic (NPR < 1), moderately underex-
panded (1.1 . NPR . 3.0), highly underexpanded (2.0 . NPR . 4.0) or very highly
underexpanded (NPR & 4.0) [FPGB15].

The structure formed by the underexpanded circular-jets have been studied widely theoret-
ically, experimentally and numerically. A good description of the supersonic jet structures
can be found in [CSG66, AN59, DS71]. A actual and complete review about experimental
and computational researches of underexpanded jets is found in [FPGB15].

In underexpanded case, as soon as the fluid come up from the nozzle exit, it is accelerated
through a Prandtl–Meyer expansion located at the lip of the nozzle, until a supersonic
speed and away from the axis line. These expansion waves cross the core of the jet until
reach the constant-ambient pressure streamline, where these are reflected as compression
waves (see Fig. 5.45). These acoustic waves coalesce to conform a oblique shock, commonly
named intercepting shock, incident shock or barrel shock. For moderately underexpanded
jets the intercepting shock reaches the axis line, and then it is reflected producing another
oblique shock (usually called reflected shock).

For moderately underexpanded jets, along the axis line a high expansion, followed by
a recompression of the fluid, is produced. At NPR ≈ 2 the limit value of recompression for
conical shocks is reached, and then the recompression is given now through a normal shock
[DS71]. Thus, for NPR > 2 the barrel shock is not longer regular and a normal shock,
termed Mach disk, is formed. The Mach disk is a slightly curved shock, with form of a lens,
and normal to the axis line. Under this condition, both the position from the nozzle exit
and the diameter of this disk increase as the NPR grows. For very highly underexpanded
jets, this shock cannot be considered as normal shock and its curvature should be taken in
account [DS71]. Here, the meeting point of the barrel shock, the reflected shock and the
Mach disk is named triple point.

Further, in the point where the reflected shock reaches the jet boundary, a new expansion
fan is developed, and so the previous cell structure is repeated until the viscous effects be-
come dominant and where the jet is perfectly expanded. As higher NPR values are taken,
the lower the number of repetitions of this shock-structure, and finally the potential core
of the jet will be conformed by a single cell [FPGB15].

Thus, as soon as the fluid emerges from the nozzle exit, it suffers an isentropic expansion,
accelerating until it reaches supersonic speeds (or in some cases hypersonic speeds), as
well as very low values of density, pressure and temperature at the core of the jet (see
Fig. 5.46). Further, when the fluid crosses the Mach disk, it is suddenly recompressed to
match the ambient pressure, and it decelerates into a subsonic regime. On the other hand,
the flow between the intercepting shock and the jet boundary is also supersonic, but with
a lower Mach number than the core of the jet, and it is still supersonic after crossing the
reflected shock. Thus, in the downstream of the jet, an inner subsonic region, as well as
an outer supersonic region, appears. These two regions are separated by a slip line along
which a shear layer is developed.

For this test case the very highly underexpanded jet problem presented in [OKM+08] is
modeled. In this problem the exhausting of an ideal gas through a round nozzle, as well as
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and velocity ve = (347.0 0)T m/s were prescribed. On the outlet boundary ΓO an atmo-
spheric pressure value p∞ = 0.11MPa was taken. Additionally, a reflective slip boundary
condition is used to simulate the behavior on the axis line ΓA. For the initial condition
values for density ρ0 = 1.28kg/m3, velocity v0 = 0 and pressure p0 = 0.11MPa were taken
homogeneous for the entire domain.

Figure 5.47.: Domain used for the underexpanded air-jet problem.
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The problem was modeled using the axisymmetric version of the Navier–Stokes equations
(see Sec. 2.1.8) for an ideal gas with γ = 1.4.

For the spatial semi-discretization a formulation with P1 DG-elements was implemented.
In this formulation a numerical flux based on the FCT strategy presented in Eq. 3.70,
using AUSM -flux (see Sec. 3.3.3) as high order term and the Vijayasundaram-flux (see
Sec. 3.3.2.2) as low order term, was incorporated. Additionally, in order to improve the
shock-capturing performance of this discretization, an adaptive grid strategy, based on the
technique presented in Sec. 3.5 and using the gradient of the Mach number as indicator,
was used here. In this test the stabilization parameters ν1 and ν2 were set to 1.5 and
the non-symmetric interior penalty method NIPG, with σ = 0.1, was used for the viscous
terms. The Fig. 5.48 shows a grid endowed with 792 quadrilateral elements, which it was
employed as initial mesh.

On the other hand, the Rosenbrock–Euler method with ∆t = 0.1➭s was employed for
time integration. The simulation was computed until t = 300➭s, when the jet was consid-
ered totally developed and stable in time.

Figure 5.48.: Initial grid used for solving the underexpanded air-jet problem.
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Fig. 5.49 shows the evolution over time for Mach number contours. The graphic at quasi-
steady state (t = 300➭s) shows a very fast, regular and isentropic expansion of the fluid,
as soon as it exits from the nozzle. This expansion accelerates the fluid in the core of
the jet until M = 4.7, while the pressure drops until p ≈ 4kPa and temperature decrease
dramatically from 300K to a minimum of 56K (see Fig. 5.50). Then the fluid is suddenly
recompressed throughout the Mach disk, up to a pressure even higher than the pressure
chamber (p∞). Subsequently slight expansion-compression cycles are repeated along the
core of the jet. As for the extremely high underexpanded jet, an unique shock-cell struc-
ture is present.

From the third frame in Fig. 5.49, at t = 20➭s, it is possible to identify the formation
of a shock-cell with all elements cited previously, i.e. a jet boundary, a Mach disk, a barrel
shock and a reflected shock (along with the triple point where these shocks are connected).

A zoom in to the near-field at t = 300➭s can be found in Fig. 5.51. This graphic shows that
the shock-cell structure of the predicted jet presents a good agreement with the numerical
results reported in [OKM+08, DKBT11], specially in terms of the Mach disk, but also in
the position and form of the barrel shock and the reflected shock. The detail at the left of
Fig. 5.51 shows the good resolution reached in the approximation of the expansion fan at
the nozzle lip.

Here, one of the most relevant characteristics to be analyzed is the position of the Mach
disk. A lot of experimental studies point out that the position of the Mach disk is mainly
governed by the pressure ratio NPR, although it also can be influenced by the Mach num-
ber at nozzle exit, or even by the geometry of the nozzle [FPGB15]. Further, different
empirical formulas have been proposed to calculate the LMD, which is the position of the
Mach disk measured from nozzle exit. According to [FPGB15], one of the most precise
expressions to estimate LMD is the equation presented in [CSG66]

LMD

De

=

(
1 +

γ − 1

2
M2

e

) γ
2(γ−1)

√
pe

2.4p∞
, (5.9)

which returns the value LMD ≈ 2.8De for the simulated problem.

On the other hand, from [FPGB15] the size of the Mach disk, for the actual pressure
ratio, can be predicted using the empirical equation

DMD
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2
M2

e

) γ
γ−1 pe

p∞
, (5.10)

which returns the value DMD ≈ 1.1De for this case.

Thus, comparing the empirical predictions calculated via Eq. 5.9 and Eq. 5.10, with the
numerical results shown in Fig. 5.51 and Fig. 5.52, which presents a Mach disk, with di-
ameter D ≈ 1.3De, located at x1 ≈ 3.0De, it is possible to note the good accuracy reached
with our numerical implementation.

Fig. 5.52 shows the predicted profiles for the Mach number, temperature and pressure
along the axis line. Here, in the rapid expansion region (near field) these profiles coincide
well with the results reported in [DKBT11]. Away from the Mach disk, the profiles follow
the same oscillatory behavior that represents cyclic expansion-compression processes, al-
though the position and magnitude of this events are slightly different.
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Figure 5.49.: Mach number contours at different times for the underexpanded air-jet prob-
lem using an adaptive grid. Thirty contourlines uniformly spaced from 0 to
5.2.
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In Fig. 5.53 the evolution over time of the adaptive grid is shown. Here, it is possible to
identify that the finest elements are located mainly near to the shock waves, although also
in the region of the outer and inner shear layer (see markers (a) and (c) in Fig. 5.46). The
formation of the shear layers is especially clear in the schlieren plots of Fig. 5.54. Addi-
tional results about evolution over time of temperature, pressure, density and velocity for
this problem can be found in Sec. E.
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Figure 5.50.: Contours of temperature (a), pressure (b) and density (c) predicted at t =
300➭s for the underexpanded air-jet problem.
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Figure 5.51.: Predicted Mach disk position for the underexpanded air-jet problem at t =
300➭s using an adaptive grid. White curves show the results reported in
[OKM+08].
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Figure 5.52.: Predicted profiles of Mach number (solid black), dimensionless temperature
(solid blue) and dimensionless pressure (solid red) along the center line for the
underexpanded air-jet problem. Dashed lines represent the profiles reported
in [DKBT11].
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5.4. Highly underexpanded CO2-jet

In this section the results found in the simulation of the rapid expansion of a supercritical
carbon dioxide flow are presented. In this problem, originally formulated in [HTS03],
supercritcal CO2 flows from a high-pressure line (po = 20MPa, θo = 393K), throughout
a capillary nozzle with diameter De = 50➭m and length 50➭m, to a quiescent and low-
pressure medium. The conditions at this expansion chamber are p∞ = 0.1MPa and θ∞ =
298K. In Fig. 5.55 the domain used for the simulation is shown. The domain consists of an
axisymmetric 2D model with three zones: a stretch of the high-pressure line (x1/De < 2.2),
the capillary nozzle (2.2 < x1/De < 3.2) and the expansion chamber (x1/De > 3.2). Here,
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Figure 5.53.: Time evolution of the adaptive grid implemented for the underexpanded air-
jet problem.

t = 5➭s t = 10➭s

6 384 cells – 102 144 dofs 10 149 cells – 162 384 dofs

t = 20➭s t = 30➭s

22 533 cells – 360 528 dofs 28 545 cells – 456 720 dofs

t = 50➭s t = 75➭s

33 711 cells – 539 376 dofs 33 546 cells – 536 736 dofs

t = 100➭s t = 300➭s

34 338 cells – 549 408 dofs 34 446 cells – 551 136 dofs

Refinement level of cells

0 1 2 3 4

a region with diameter of 40De and length equal to 45De is taken to represent the expansion
chamber.
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124 5. Compressible Navier-Stokes solver

Figure 5.54.: Schlieren-plots computed at different times for the underexpanded air-jet
problem using an adaptive grid.

t = 5➭s t = 10➭s

t = 20➭s t = 30➭s

t = 50➭s t = 75➭s

t = 100➭s t = 300➭s

For this problem the boundary ∂Ω is defined as

∂Ω = ΓIN ∪ ΓO ∪ ΓW ∪ ΓA,

where

❼ ΓIN = {x ∈ R2 : x1 = 0} represents the inlet boundary,

❼ ΓO = {x ∈ R2 : x1 ∈ [3.2De, 48.2De) , x2 = 20De} ∪ {x ∈ R2 : x1 = 48.2De}
is outlet boundary,

❼ ΓW ={x ∈ R2 : x1 ∈ (0, 2.2De] , x2 = −3.8

2.2
x1 + 4.3}

∪{x ∈ R2 : x1 ∈ (2.2De, 3.2De] , x2 = 0.5De}
∪{x ∈ R2 : x1 = 3.2De, x2 ∈ (0.5De, 20De)}

is an adiabatic wall, and
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Figure 5.55.: Domain used for simulating the underexpanded CO2-jet problem.
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❼ ΓA = {x ∈ R2 : x1 ∈ (0, 48.2De) , x2 = 0} is the axis line.

The problem was modeled using the set of axisymmetric Navier–Stokes equations pre-
sented in Sec. 2.1.8. In order to close these set of equations, the egB equation for CO2,
presented in Sec. 2.4.3, was used as equation of state. Likewise, Eq. 2.109 was employed
to compute the dynamic viscosity of CO2, and Eq. 2.111 was implemented to calculate the
heat conductivity of the fluid.

On the inflow boundary ΓIN , values for pressure po = 20MPa, temperature θo = 393K
and velocity vo = (0 0)T m/s were prescribed. On the outlet boundary ΓO atmospheric
values for pressure p∞ = 0.1MPa and temperature θ∞ = 298K were taken. A reflective slip
boundary condition is used to simulate the behavior on the axis line ΓA, while conditions
for adiabatic walls were applied on ΓW .

For the initial conditions, a supercritical state with p0 = 20MPa and θ0 = 393K was
taken in {x ∈ R2 : x1 < 2.7De}, while a subcritical state given by p0 = 0.1MPa and
θ0 = 298K was assumed in the rest of the domain. Besides, in the complete domain we
set the states initially to be at rest, i.e., v0 = 0.

The domain in space was discretized with a structured mesh using 1432 P1 DG-elements
(see Fig. 5.56). Onwards it will be named base grid. The time integration was computed
using a Rosenbrock–Euler method with ∆t = 5ns, until a final time T = 54➭s, where the
jet can be considered as totally developed.

Initially four simulations were done, two of them used Lax–Friedrichs numerical flux, and
the others using the AUSM +-up flux (see Sec. 3.3.3). Likewise, in these simulations two
grids were employed, one with 5 728 P1 elements, generated by the global refinement of
the base grid, and the second with 22 912 P1 elements, obtained with a new global refine-
ment of the previous grid. In all cases a discontinuity indicator based on Eq. 3.71 and the
jump in the magnitude of the velocity was employed. Here, the preliminary tests show
that this quantity in the discontinuity indicator allows to identify the elements next to the
shock structure in the core of the jet. Further, in these tests we found that a limit value
glim = 0.15 for the discontinuity indicator is adequate for the precise identification of the
critical cells. In these cells the stabilization terms in Eq. 3.75 and Eq. 3.76 were introduced
using the parameters ν1 = ν2 = 1.3. For all simulations in this section the penalization
parameter σ in the NIPG method was taken equal to 0.1.
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126 5. Compressible Navier-Stokes solver

Figure 5.56.: Grid, forming by 1432 P1 cells, used as initial mesh for the highly underex-
panded CO2-jet problem.

As was discussed in Sec. 5.3.5, this type of jets present a single shock-cell structure formed
by a jet boundary, a barrel shock, a reflective shock and a Mach disk. Fig. 5.57 shows
the Mach number contour lines for the four cases previously defined. In these plots can
be observed that the shock structure in the core of the jet was captured in all the cases.
However, corresponding to problems with discontinuous solutions the resolution of the
shocks, and in this case specially in the shock barrel, improves rapidly when a finer grid
is used. Here, the solutions obtained with the AUSM flux look slightly more diffusive
than the equivalent ones computed with Lax–Friedrichs flux. Besides, in the graphics can
be appreciated that the position and diameter of the Mach disk are essentially constant
independently of the grid resolution.

As in all previous test case, the shock capturing strategy, based on the idea of introducing
artificial viscosity terms only in the elements where the G-switch variable is activated,
allows to avoid the spurious oscillations without a considerable reduction in the resolution
of the discontinuities. In Fig. 5.58 the behavior of the G variable in the near field of the
jet can be observed.

In Table 5.4 the CPU time demanded in the computation of each of these simulations is
reported. In this table the time required for the assembly process, which includes the com-
putation of the vector F (wn) and its Jacobian, is included as percentage of the total CPU
time, as well as the time required for the Arnoldi decomposition algorithm. The results in
the table show that the most relevant computational cost in each time step is the assembly
process. Further, the total time consumed using the AUSM flux is approximately 14%
larger with respect to the time demanded using the Lax–Friedrichs flux in the case of the
coarsest grid, and approximately 10% higher in the case of the finest grid.
As in the previous test cases, an adaptive grid strategy can be useful to improve the shock
capturing capability. Thus, in the next simulation an adaptive strategy based on the Mach
number gradient was implemented. Starting from the base grid in Fig. 5.56, i.e., consid-
ering in this condition rL = 0, the parameter rL,max was set to 3 for this simulation (see
Algorithm 1). Besides, in order to increase the resolution of the expansion fan presents in
the lip of the nozzle, a local refinement was applied in a small area around this point (see
Fig. 5.65).

In this case we used a numerical flux based on the FCT strategy (see Eq. 3.70), with
the AUSM -flux as high order term and the Lax–Friedrichs flux as low order component.
The parameters for the shock capturing are conserved from the previous simulations, as
well as the time marching scheme and the time step size.
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5.4. Highly underexpanded CO2-jet 127

Figure 5.57.: Mach number contours computed using (a) Lax–Friedrichs numerical flux and
5728 P1 elements, (b) Lax–Friedrichs numerical flux and 22912 P1 elements,
(c) the AUSM -flux with 5728 P1 elements, and (d) theAUSM -flux with 22912
P1 elements.

(a)

0

2

4

6

x2/De

2 4 6 8 10 12 14 16 18 20 22 x1/De

(b)

0

2

4

6

x2/De

2 4 6 8 10 12 14 16 18 20 22 x1/De

(c)

0

2

4

6

x2/De

2 4 6 8 10 12 14 16 18 20 22 x1/De

(d)

0

2

4

6

x2/De

2 4 6 8 10 12 14 16 18 20 22 x1/De

M

0 1 2 3 4 5 5.6

The simulation, that consumed a total of 40.4h of computation time using 8 cores in
an Intel Core i7-3770@3.4GHz processor, employed 58.5% of this CPU time for assem-
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128 5. Compressible Navier-Stokes solver

Figure 5.58.: G-variable computed using (a) Lax–Friedrichs numerical flux and 5728 P1 el-
ements, (b) Lax–Friedrichs numerical flux and 22912 P1 elements, (c) the
AUSM -flux with 5728 P1 elements, and (d) AUSM -flux with 22912 P1

elements.
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bling tasks, a 38.7% computing the Krylov projections and the remaining time in other
tasks.

Fig. 5.59 shows a close up of the shock-cell structure formed in this case. In this fig-
ure it is possible to identify all shocks formed in the near field of this type of jets, and
especially the Mach disk, which was accurately captured .
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Lax–Friedrichs AUSM +-up

Grid A Grid B Grid A Grid B

Assembly time [%] 85.7 74.3 82.5 81.9

Time for Krylov projections [%] 13.4 23.3 14.9 16.4

Time in other processes [%] 0.9 2.4 2.6 1.7

Total time [h] 6.5 31.5 7.4 34.8

Number of vectors in Km 34 67 42 53

Table 5.4.: CPU times employed in the solution of the underexpanded CO2-jet using dif-
ferent grids and numerical fluxes. Here, Grid A is conformed by 5 728 cells –
91 648 dofs, whereas the Grid B is composed 22 912 cells – 366 592 dofs. The
CPU times reported correspond to computations using 8 cores in an Intel Core
i7-3770@3.4GHz processor.

Figure 5.59.: Predicted Mach disk position for the underexpanded CO2-jet problem using
an adaptive grid.
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Using the analytical expression given in [CSG66], and recommended by [FPGB15], to
estimate LMD

LMD

De

=

√
po

2.4p∞
≈ 9.1, (5.11)

as well as the empirical equation proposed by [FPGB15] to compute DMD

DMD

De

= 0.28

(
po
p∞

)0.53

≈ 4.6, (5.12)

and comparing these values with the corresponding quantities for the Mach disk posi-
tion x1 ≈ 8.3De and Mach disk diameter DMD ≈ 4.0De, taken from Fig. 5.59 (see also
Fig. 5.61), it is possible to note the good precision achieved in the capturing of this shock
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130 5. Compressible Navier-Stokes solver

Figure 5.60.: Predicted density profile along the center line for the highly underexpanded
CO2-jet problem.
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In Fig. 5.61 the density profile, along the center line, is plotted. Here, it is possible to iden-
tify an early expansion along the nozzle, as is reported in many works ([HHH+01, HTS03]),
followed by a strong expansion after the nozzle until to reach the Mach disk. In this figure
the profile found is compared with results reported in [HTS03], where a 1D model was
implemented to simulate this problem. As is shown in Fig. 5.59 the rapid and isentropic ex-
pansion after the nozzle accelerates the CO2-jet until to find a maximum speed of 585m/s,
approximately M = 5.6 (see Fig. 5.61 and Fig. F.12). At the same time, CO2 in the core of
the jet suffers a strong drop of pressure and temperature, until to find a supercooled state
at θ ≈ 39K and p ≈ 3.0kPa, just before the Mach disk. Behind the Mach disk, smoother
expansion-compression cycles repeat downstream until the viscous component dominates
the jet behavior. Because of the high pressure ratio NPR prescribed in this case, only one
proper shock-cell structure is formed [FPGB15].

In Fig. 5.62 the thermodynamic behavior of CO2, along the axis line at t = 54➭s, is plot-
ted into phase diagrams p− θ and p− V . There, the point XI represents the nozzle inlet,
behind this point, and along the nozzle, the flow suffers an early expansion, crossing the
critical pressure and changing the phase from supercritical to gas. At the exit of the nozzle
(point XII), the CO2 in gas phase begins a rapid expansion, and soon behind this point,
condensed liquid phase is produced.

In Fig. 5.62 (b) it is possible to observe where the expansion process (solid black-line)
crosses the saturated vapor line and then CO2 in liquid phase starts to be formed. Thus,
during part of this isentropic expansion, which is represented by the piece of solid black-
line inside of saturation dome, two phases gas and liquid coexist in equilibrium.

Later, as is noted in Fig. 5.62(a), the free expansion curve crosses the melting line and
then starts the solidification of the liquid phase. Further, pressure and temperature still
decrease, even below of the triple point, until a minimum value for pressure (p = 3kPa)
and temperature (θ = 39K) is reached (point XIII). After this point, a recompression pro-
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Figure 5.61.: Predicted profiles of Mach number, temperature, pressure and velocity along
the center line for the underexpanded CO2-jet problem. Here θo = 393K,
po = 20MPa and |vmax| = 591.0m/s.
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duced on the Mach disk increases the pressure and temperature, crossing the sublimation
line, until the point XIV in the vapor region. Thus, the sudden compression on the Mach
disk dissolves the solid phase, bringing it to gaseous phase again.

The blue lines in Fig. 5.62 (a) and (b) represent the gas behavior downstream of the
Mach disk, i.e. after the XIV point. Here, it is possible to observe some smooth and suc-
cessive expansion-compression cycles, which further do not change the phase of the fluid.

In Fig. 5.63 a general view of the Mach number evolution along the time is plotted. Like-
wise, contours of temperature, pressure and density, at t = 54➭s, are shown in Fig. 5.64.
In Sec. F illustrative graphics for time evolution of temperature, pressure, density and
velocity, are included. Finally in Fig. 5.65 the evolution along the time of the adaptive
grid computed is illustrated.
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132 5. Compressible Navier-Stokes solver

Figure 5.62.: Thermodynamic behavior of CO2-flow along the axis line at t = 54➭s. In (a)
the expansion process is represented into the pressure-temperature diagram,
while in (b) this process is presented in the pressure-specific volume diagram.
Here XI = 2.2De is the nozzle inlet, XII = 3.2De is the nozzle outlet and
XIII = XIV = 11.5De represent the beginning and the end of the recompres-
sion process (Mach disc), respectively. Physical phases are defined by SC

(supercritical state), G (gas phase), L (liquid phase) and S (solid phase).
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Figure 5.63.: Mach number predicted at different times for the highly underexpanded
CO2-jet problem using an adaptive grid. Twenty five contourlines uniformly
spaced from 0 to 5.6.
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Figure 5.64.: Contourlines of temperature (a), pressure (b) and density (c) predicted at
t = 54➭s for the highly underexpanded CO2-jet problem.
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Figure 5.65.: Time evolution of the adaptive grid implemented for the highly underex-
panded CO2-jet problem.
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6. Conclusions

6.1. Summary

A numerical model to simulate the formation of a very highly underexpanded jet was devel-
oped. The jet formation was analyzed in the context of the process called rapid expansion
of supercritical solutions (RESS ), using carbon dioxide as solvent. The mathematical
model consisted of the Navier–Stokes equations along with the extended generalized Ben-
der equation of state egB-EOS [Ben71]. This equation of state was used because it covers
a wide range of states (supercritical, vapor, liquid and vapor-liquid mixtures), allows to
compute precisely caloric properties (as the specific heats and speed of sound) and has
relatively low complexity.

For the numerical model, an axisymmetric spatial-domain, conformed by a section of
the high pressure line, a capillary nozzle and an expansion chamber, was employed. The
domain was discretized using discontinuous Galerkin finite elements. A very precise shock
capturing strategy was employed to identify the cells in the neighborhood of the discon-
tinuities, preserving the stability of the method in this regions and preventing spurious
entropy production. Additionally, in order to improve the resolution of the shocks cap-
tured, a simple mesh adaptive procedure was incorporated.

Considering that very high speeds, which corresponds to supersonic or even hypersonic
regimens, and locally refined meshes are present in this case, especially in the core of
the jet, a stable and efficient time marching scheme was implemented. Here, an time in-
tegration method, named exponential Rosenbrock–Euler, was used. Also all the matrix
exponential terms involved in this method are approximated via projection onto Krylov
subspaces, employing the Arnoldi decomposition algorithm.

The compressible flow solver was implemented in C++ language using several libraries
as deal.ii [BHK07], Trilinos [HBH+05] and Intel

➤
TBB [Int16]. Diverse benchmark

problems were simulated using this solver in order to evaluate not only the accuracy of the
approximation but also the computational efficiency at subsonic, supersonic and subsonic-
supersonic conditions.

The solution achieved for the very highly underexpanded CO2-jet problem, generated
by a pre-expansion pressure equal to 20MPa and a pressure at expansion chamber of
0.1MPa, shows that the complex shock-structure present in this kind of rapid expansions
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was accurately captured. All shocks, and specially the Mach disk, do not exhibit neither
spurious oscillations or overly artificial viscosity, which shows the good performance in the
shock capturing strategy employed. The position and size of the Mach disk captured fit
well with the empirical expressions used to predict this values. The density profile along
the axis line agrees with the results showed in [HTS03], obtained from a one-dimensional
model. Likewise, the profiles of pressure, temperature and Mach number plotted along
the axis line, show an early expansion within the nozzle, where the fluid cross the critical
point toward the the gas phase, as well as a stronger rapid-expansion after the nozzle exit.
Product of this last expansion, the temperature and pressure of CO2 drop until 39K and
3 kPa, respectively, whereas the Mach number finds a maximum value M = 5.6, just before
to find the Mach disk.

6.2. Contributions

The main contributions of the present work can be summarized as follows:

❼ Although the underexpanded jets have been studied both experimental and numer-
ically, there are few research works where these type of jets, under real operative
condition of the RESS process, are simulated. Besides, the numerical results pre-
sented in these works exhibit either spurious oscillations or smearing discontinuities.
Here, an accurate numerical model for a very highly underexpanded CO2-jet, using
real gas considerations, was developed. All shocks, produced in this kind of rapid
expansion, were captured with high resolution thanks to an precise shock capturing
strategy along with a simple and useful adaptive grid technique.

❼ A robust exponential time integrator scheme was incorporated into the compressible
flow solver. The use of this kind of methods in the different test cases simulated
showed that they are very useful in problems with strong time-step restrictions de-
rived from either high speed characteristics or very fine meshes (as in case of local
refinement). In fact, although there exists some few publications where exponential
time integrators are used in the context of fluid dynamic problems, mainly focused
on the incompressible flows, in knowledge of the author the use of exponential time
integrators for the compressible high-speed flow problems has not been consider be-
fore. Further, the current implementation allows easily to incorporate other different
exponential time-integrator schemes.

❼ A flexible and robust computational implementation for solving compressible flows
was developed and tested. The current implementation incorporates spatial dis-
cretization, for 2D, 3D and axisymmetric geometries, using discontinuous Galerkin
method and diverse numerical fluxes (central scheme fluxes, upwind fluxes and
AUSM -type fluxes). As previously was mentioned, for the time-marching proce-
dure the exponential Rosenbrock–Euler method was included, as well as the classical
forward/backward Euler methods. Additionally, some schemes of the family called
strong stability preserving Runge–Kutta (SSPRK ) are available to use. Further, a
shock capturing strategy and a adaptive grid refinement technique were also included
in order to ensure a high resolution in regions with discontinuous solutions. The flex-
ible computational implementation allows to use directly or to adapt the solver to
simulate different kind of problems with compressible flows.

6.3. Future research

The work developed in this thesis could be extended in two main directions, on one hand,
improving the mathematical model for simulating the RESS process, and on the other
hand enhancing the numerical implementation.
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6.3.1. Mathematical model

❼ After an exact prediction of the hydrodynamic field, and in order to complete the
modeling of the RESS process, submodels for the nucleation and the particle growth
should be included. Therefore the nucleation-growth models developed by Türk and
Helfgen in [Tür99, HTS03, HHH+01, HTS00], as well as the experimental results
presented in these works, are a very important starting point.

❼ Some authors report that the condensed CO2-particles into the nozzle and in the later
rapid expansion can modify the size-particle distribution in the RESS process [YF15].
Thus, a multiphase model to analyze the influence of the solvent condensation could
be adequate to improve the current model. Here, multiple researches in condensing-
steam flows (e.g. within divergent-convergent nozzle or in a turbine cascade) can
be a good guideline. In this topic the works published by Halama et al. [HBF10,
HDF+10, HF14] are recommended.

❼ Although the egB-EOS employed in this work allows to cover a wide range of pressure
and temperature, even below the triple point, the adiabatic expansion, generated by
very high nozzle pressure ratios (NPR), produces extremely low values of tempera-
tures and pressure in the core of the jet. At this conditions a sublimation process can
occur and some solid crystals can be formed. Hence, an better model to predict the
carbon dioxide behavior under this low pressure-temperature conditions is required.
A good candidate to model this behavior is the modified Peng–Robinson equation
presented in [MBM13].

6.3.2. Numerical implementation

The compressible flow solver implemented, because of its versatility, can be used to simulate
a wide variety of problems. Nevertheless, the implementation can be improved in aspects
as:

❼ The parallelization strategy, based on shared memory, showed to be efficient for
small to medium size problems, i.e., when the number of unknowns allowed the com-
putation in a desktop computer (or a workstation). However, large scale problems
demand to use computer clusters, and a distributed-memory strategy should be used.
The finite element library deal.ii, used in this work, incorporates classes for this
kind of parallelization, but the implementation of the exponential time integrator in
this case is not straightforward.

❼ The complexity of the equation of state, as well as its efficient implementation into
the solver, are two very important aspects in the global performance of the code.
Therefore, it is important to explore and evaluate other alternatives to incorporate
the real gas considerations to the compressible solver. An alternative way to in-
troduce the EOS is to build look-up tables on a thermodynamic region of interest
and pre-compute all thermophysical properties using an accurate EOS or specialized
library [PSPR15, PRC12]. Then the values required on runtime can be obtained by
simple interpolation during the simulation of the real gas flow. Another alternative
is to use all expressions derived from ideal gas assumption but computing the heat
capacity ratio from a real gas EOS [LLS90, GW89a].

❼ Finally, in some problems the turbulence is an important effect to be considered,
as for example in the simulation of flows into the combustion chambers. Hence,
incorporating a turbulence model into this compressible flow solver can offer new
horizons of applications.
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Appendix

A. Specific internal energy equations

In the present work the thermodynamic behavior of CO2 is modeled by the egB-EOS
described in Sec. 2.4.3. This equation is used to compute the caloric properties of the
substance, as was explained in Sec. 2.5. In this way, the expression for the specific internal
energy can be analytically derived from Eq. 2.107 to get

e (δ, ζ) =
(
−547973.8422 δ2 e−δ2 + 30172.1147 e−δ2 − 30172.1147

)
ζ4

+
(
737799.3688 δ2 e−δ2 − 172793.3145 e−δ2 + 22383.9652 δ + 172793.3145

)
ζ3

−
(
220989.4477 δ2 e−δ2 − 123888.6843 e−δ2 − 177296.0833 δ + 123888.6843

)
ζ2

+ (31547.0112 δ2 + 138505.8822 δ) ζ

+
93484.3862

ζ
+

65741.7898

ζ2
− 8333.6339

ζ3
+

440.4745

ζ4

+ 1696.6026 δ5 − 9114.4995 δ4 + 4223.5262 δ3 + 7706.7840 δ2

− 158472.6882 δ − 203712.1958,

(6.1)

where δ = ρ/ρc and ζ = θc/θ. Likewise, the partial derivatives of e were calculated and we
obtained

∂e

∂ζ
(δ, ζ) =

(
−2191895.3688 δ2 e−δ2 + 120688.4590 e−δ2 − 120688.4590

)
ζ3

+
(
2213398.1064 δ2 e−δ2 − 518379.9436 e−δ2 + 67151.8956 δ + 518379.9436

)
ζ2

−
(
441978.8954 δ2 e−δ2 − 247777.3686 e−δ2 + 354592.1666 δ + 247777.3686

)
ζ

− 93484.3862

ζ2
− 131483.5796

ζ3
+

25000.9016

ζ4
− 1761.898011

ζ5

+ 31547.0112 δ2 + 138505.8822 δ

(6.2)

and

∂e

∂δ
(δ, ζ) = e−δ2

(
(1095947.6844 δ3 − 1156291.9139 δ) ζ4

− (1475598.7376 δ3 − 1821185.3666 δ) ζ3 + (441978.8954 δ3 − 689756.264 δ) ζ2

)

+ 22383.9652 ζ3 − 177296.0833 ζ2 + 63094.0223 δ ζ + 138505.8822 ζ

+ 8483.01321 δ4 − 36457.9978 δ3 + 12670.5786 δ2 + 15413.56808 δ

− 158472.6882.

(6.3)
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B. Analytic expressions derived from egB-EOS

Computing the ǫ-coefficients in accordance with [Ben71], the equation of state Eq. 2.99
can be written as

p (δ, ζ) = e−δ2
(
(102493027.4439 δ5 − 108136419.7850 δ3) ζ4

− (172497492.4217 δ5 − 212896569.3612 δ3) ζ3

+(68889777.1613 δ5 − 107510009.6770 δ3) ζ2

)

− (2616685.5303 ζ3 + 27634549.5184 ζ2 − 32382675.2499 ζ) δ2

+ 14751382.4240 δ3 ζ + 3966656.9764 δ6 − 17047759.7847 δ5

+ 5924762.5441 δ4 + 7207384.4347 δ3 − 7.4101828.9921 δ2

+
1

ζ

(
3717335.5572 δ5 + 4356125.1356 δ4 − 6884640.0889 δ3

+32557847.9672 δ2 + 26866961.6892 δ
)
,

(6.4)

whereas its partial derivatives ∂p
∂δ

and ∂p
∂ζ

are given by

∂p

∂δ
(δ, ζ) = e−δ2

(
− (204986054.8878 δ6 − 728737976.7894 δ4 + 324409259.3550 δ2) ζ4

+ (344994984.8434 δ6 − 1288280600.8309 δ4 + 638689708.0835 δ2) ζ3

− (137779554.3226 δ6 − 559468905.1606 δ4 + 322530029.0310 δ2) ζ2

)

+ (5233371.0607 ζ3 − 55269099.0368 ζ2 + 64765350.4999 ζ) δ

+ 44254147.2720 δ2 ζ + 23799941.8585 δ5 − 85238798.9237 δ4

+ 23699050.1765 δ3 + 21622153.304 δ2 − 148203657.9841 δ

+
1

ζ

(
18586677.7859 δ4 + 17424500.5425 δ3 − 20653920.2666 δ2

+65115695.9345 δ + 26866961.6892
)

(6.5)

and

∂p

∂ζ
(δ, ζ) = e−δ2

((
409972109.7755 δ5 − 432545679.1400 δ3

)
ζ3

−
(
517492477.2651 δ5 − 638689708.0835 δ3

)
ζ2

+
(
137779554.3226 δ5 − 2.1502001935401726 108 δ3

)
ζ

)

+
(
7850056.5910 ζ2 − 55269099.0368 ζ + 32382675.2499

)
δ2

+ 14751382.4240 δ3 − 1

ζ2

(
3717335.5572 δ5 − 4356125.1356 δ4

+6884640.0889 δ3 − 32557847.9672 δ2 − 26866961.6892 δ
)
.

(6.6)

C. Two dimensional rotating Gaussian pulse

In Sec. 5.3.1 the results achieved for the rotating Gaussian pulse, using P1 and P3 DG
elements for the spatial discretization, were presented. Here, in order to completed the set
of these results, the solution found with P2 DG-elements is shown.
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Figure C.1.: Contours of w for the rotating Gaussian-pulse problem at t = T using P2

DG–elements. Coarse mesh conformed by 20 × 20 elements and fine mesh
formed by 160× 160 elements.
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D. Solution using an uniform grid with P1 DG-elements

In Sec. 5.3.4 the supersonic forward-facing step problem was introduced and a solution
employing a adaptive grid was presented. Here, a similar set of results, computed using a
uniform mesh with h ≈ 1/150 (i.e. 46254 P1 cells and 740064 dofs), is shown.

Figure D.2.: Density contours at different times for the forward-facing step problem using
an uniform grid with 46254 P1 DG-elements.
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Figure D.3.: Mach number contours at different times for the forward-facing step problem
using an uniform grid with 46254 P1 DG-elements.
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Figure D.4.: (a) κ-entropy production indicator, (b) G-switch indicator and (c) CFL num-
ber achieve for the forward-facing step problem at t = 0.2 using an uniform
grid with 46254 P1 DG-elements.

(a) (b)

(c)

1 1.2 1.6 2 2.4

CFL

164
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E. Axisymmetric free underexpanded air-jet

In Sec. 5.3.5 the results found with the simulation of an underexpanded air-jet were shown.
Here, some additional results are presented.

Figure E.5.: Temperature predicted at different times for the underexpanded air-jet prob-
lem using an adaptive grid.
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Figure E.6.: Pressure predicted at different times for the underexpanded air-jet problem
using an adaptive grid. Thirty contourlines uniformly spaced from 0.004 to
1.1 MPa.

t = 5➭s t = 10➭s

t = 20➭s t = 30➭s

t = 50➭s t = 75➭s

t = 100➭s t = 300➭s

p [MPa]

0.004 0.2 0.4 0.6 0.8 1.0 1.1

166



E. Axisymmetric free underexpanded air-jet 167

Figure E.7.: Density predicted at different times for the underexpanded air-jet problem
using an adaptive grid. Thirty contourlines uniformly spaced from 0.25 to
12.8 kg/m3.
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Figure E.8.: Magnitude of velocity predicted at different times for the underexpanded air-
jet problem using an adaptive grid. Twenty contourlines uniformly spaced
from 0 to 780 m/s.
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F. Highly underexpanded CO2-jet

In Sec. 5.4 the results achieved in the simulation of a highly underexpanded CO2-jet were
presented. Here some complementary results are shown.

Figure F.9.: Temperature predicted at different times for the highly underexpanded CO2-
jet problem using an adaptive grid. Twenty five contours uniformly spaced
from 39 to 393 K.
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Figure F.10.: Pressure predicted at different times for the highly underexpanded CO2-
jet problem using an adaptive grid. Twenty five contours distributed in
logarithmic scale from 0.003 to 20 MPa.
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Figure F.11.: Density predicted at different times for the highly underexpanded CO2-jet
problem using an adaptive grid. Twenty five contours distributed in loga-
rithmic scale from 0.4 to 400 kg/m3.
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Figure F.12.: Magnitude of velocity predicted at different times for the highly underex-
panded CO2-jet problem using an adaptive grid. Twenty five contours uni-
formly spaced from 0 to 585 m/s.
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