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Abstract. Combined X-ray absorption spectroscopy (XAS) and diffuse reflectance infrared Fou-
rier transform spectroscopy (DRIFTS) were applied to investigate the interaction between reac-
tion atmosphere, adsorbates and Pt oxidation state of Pt/Al,O3 model diesel oxidation catalysts
under CO/NO oxidation conditions. The Pt oxidation state was correlated to the adsorbates on
the catalyst’s surface. Even at low temperature the reaction atmosphere had a strong impact on
the oxidation state of the catalyst, and the oxidation state in turn strongly affected CO adsorption
on the Pt particles.

1. Introduction

Understanding catalysts at work is a key challenge for the rational design of new catalysts. In the past
decades an arsenal of in sifu techniques was particularly developed to investigate heterogeneous cata-
lysts whose performance is determined by the interaction of numerous factors, e.g. oxidation state and
adsorbate coverage [1-3]. However, in order to gain a deeper understanding of catalytic processes under
relevant conditions also the reactor design has to be considered, which demands furthermore spatially
resolved examination of the catalytic material [ 1, 4-6]. By combining characterization techniques which
provide complementary information about the catalysts structure on different length scales an in depth
understanding of catalytic processes under reaction conditions can be established.

Herein, results on the oxidation of CO and NO over a Pt based diesel oxidation catalyst are reported,
which were obtained by combining XAS for oxidation state evaluation and DRIFTS for identification
of adsorbed species. This combination of techniques allows to probe simultaneously bulk and surface
properties of catalysts [7-9], and they were used to unravel the interdependence of the reaction atmos-
phere, adsorbates and the Pt oxidation state. DRIFTS can not only detect adsorbates on the surface but
also provide information on the catalyst’s surface structure. The results illustrate that these factors are
closely correlated and sensitively depend on each other. This approach can therefore significantly con-
tribute to understand the role of the noble metal oxidation state during these oxidation reactions.
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2. Experimental

The model 2 wt.% Pt/Al,O; catalysts were prepared by incipient wetness impregnation using hexachlo-
roplatinic acid (HCP) in an aqueous solution or platinum acetylacetonate (PAA) in acetone as precur-
sors. The samples were dried overnight at 80 °C, calcined at 500 °C for 2h and reduced in 5 % H»/He at
400 °C for 4h. A Titan 80-300 (FEI Company) FEG electron microscope was used in STEM mode to
study the distribution and the size of the resulting Pt nanoparticles on the alumina support.

Simultaneous XAS/DRIFTS experiments were performed at the X18A beamline at the National Syn-
chrotron Light Source (Brookhaven National Laboratory, Brookhaven, USA). The bending magnet ra-
diation was monochromatized by a Si (111) channel-cut crystal monochromator in step scanning mode,
to record XANES at the Pt Lij-edge (11564 eV, beam with a spot size 0.75mm x 0.75 mm) in transmis-
sion mode using ionization chambers. The XANES data was evaluated by linear combination analysis
using spectra of a Pt-foil and a PtO, reference with the IFEFFIT package [10]. DRIFTS data of the
samples were simultaneously recorded using a special setup consisting of a DaVinci arm (Harrick) at-
tached to a modified Praying Mantis DRIFTS accessory (Harrick) [11].

About 40 mg of the respective catalyst (P44, HCP) was loaded into the sample cup. After pre-re-
duction in 5 % Haz/He (15mL/min) at 200 °C the catalyst was heated to 450 °C in He and background
spectra for DRIFTS were acquired in 50 °C intervals during cooling to room temperature. At room tem-
perature, the catalyst was first exposed to 5000 ppm CO, 10 % O, and He and then NO was added
resulting in a 15 ml/min flow of 5000 ppm CO, 5000 ppm NO, 10 % O; and He. After 30 min the cata-
lyst was heated stepwise (temperature plateaus in 50 °C intervals) to 450 °C and cooled back to 50 °C.
At each temperature plateau XANES and DRIFTS data were acquired using the corresponding, previ-
ously recorded DRIFTS background spectra. When comparing with other data one should bear in mind
that due to the temperature gradients within the DRIFTS cell [12] the actual temperature was usually
lower than the set temperature.

3. Results & Discussion

According to the TEM results (Figure 1, left, evaluation of more than 400 particles), impregnation with
HCP resulted in small (1.1 nm), finely dispersed Pt particles. Impregnation with acetylacetonate also led
to very small Pt particles (1.1 nm), however, several very large particles (~50nm) were also found on
this sample (Figure 1, right side).
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Figure 1. TEM images and respective particle size distribution for 2%Pt/Al,O; catalyst prepared with
HCP (left) and PAA (right).

Figure 2 shows XANES and DRIFTS spectra of a pre-reduced catalyst (PAA), simultaneously ac-
quired during the introduction of the reaction mixture at 50 °C in two steps: (1) only CO along with
oxygen (blue spectra), (2) addition of NO (red spectra). During the first step the catalyst remained re-
duced: the XANES spectra did not change and the only visible peak in the DRIFTS spectra at 2096 cm'!
was attributed to CO adsorbed on reduced platinum [13, 14].
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Figure 2. Simultaneously measured XANES (left) and DRIFTS (right) during the introduction of
5000 ppm CO, 10 % O,, He (blue) over the pre-reduced PAA catalyst, followed by the addition of

5000 ppm NO (red).

After addition of NO the DRIFTS spectra changed significantly. A broad feature between 1200 cm’!
and 1600 cm™!, which can be attributed to NO, NO, and NOs species adsorbed on the Al,O3 support
[15, 16], started to dominate the spectra. At 1600 — 1800 cm™' weak bands, corresponding to linear, non-
linear or bent Pt>-NO species [17], were observed. The appearance of these features was accompanied
by changes in the CO frequency. The peak at 2096 cm™! vanished while a new peak emerged at 2124
cm! representing CO adsorbed on partially oxidized platinum [18]. The DRIFTS spectra suggest that,
unlike the previously dosed CO/O; feed, the CO/NO/O, mixture led to partial oxidation of Pt sites al-
ready at room temperature. This is supported by the simultaneously recorded XANES spectra: The Pt-
Ls-edge white line increased significantly when NO was added to the reaction mixture. This change in
oxidation state at low temperature is probably due to the oxidation of very small Pt particles, which are
present in the sample prepared with the PAA precursor [5, 19].

As a next step this interplay between adsorbates and oxidation state was monitored at different tem-
peratures. In Figure 3 the results of the linear combination fitting (LCF) of the XAS data are presented
together with simultaneously acquired DRIFTS spectra at several temperature plateaus in the CO/NO/
O, reaction mixture for the HCP (left) and the PAA (right) catalysts.

At room temperature the HCP sample (Figure 3, left) was covered by CO and NOx species. CO
molecules were adsorbed to Pt sites, which got partially oxidized upon introduction of the reaction mix-
ture, whereas NOx species covered mainly the Al,Os support. With increasing temperature Pt was fur-
ther oxidized, while more CO adsorbed to oxidic platinum sites (2129 cm™). At the same time the
DRIFTS bands corresponding to NOx species adsorbed at Pt sites (1600-1800 c¢m™) disappeared and the
NOx coverage on the alumina surface (between 1200 cm™ and 1650 cm™) decreased slightly. At ele-
vated temperature (T > 350°C) all adsorbates desorbed, while the catalyst was reduced again even
though exposed to an oxidizing atmosphere. During cooling the Pt oxidation state followed a similar
profile as during heating. Again, the catalyst was oxidized accompanied by CO adsorption, before Pt
was partially reduced during cooling to 50 °C, however, the reoxidation and reduction was shifted to
lower temperatures. On the other side NOx-species on the support adsorbed during heating and cooling
in the same manner. According to the LCF results the catalyst ended up slightly more oxidized after the
heating-cooling procedure. This was also reflected in the CO adsorption peak, which was slightly shifted
to higher wave numbers in the respective DRIFTS spectrum.
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Figure 3. DRIFTS and results of LCF from simultaneously measured XANES/DRIFTS during
CO/NO over the 2% Pt/Al,O; catalyst HCP (left) and PAA (right) during heating (red) and cooling
(blue).

In case of the PAA catalyst changes in the oxidation state of platinum during the CO/NO oxidation
temperature cycle were less pronounced, since this catalyst contains also several larger particles (~50
nm) in addition to very small Pt nanoparticles and, accordingly, the fraction of surface Pt atoms, which
easily get oxidized is lower. As shown in Figures 2 and 3 the Pt sites were partially oxidized at room
temperature in the CO/NO/O; mixture. During heating Pt oxidized further also on this catalyst, accom-
panied by an uptake of adsorbed CO to oxidic Pt sites. At elevated temperatures the Pt oxidation state
decreased, as did the CO coverage. When the temperature was decreased again the catalyst remained
reduced at elevated temperatures and got partially oxidized at lower temperatures, while CO adsorbed
again on oxidic Pt sites. Also on the PAA the NOx adsorption and desorption on the support followed
the same trend during cooling and heating. Note that significant concentration and temperature gradients
could have evolved along the catalyst bed due to the low gas flow entering the reactor and the rather
large diameter of the reactor compared to its length [3, 9]. Therefore, XAS and DRIFTS data might not

be any more directly comparable at elevated temperature, even though it was measured in the same cell
at the same time.

4. Conclusion

According to these experiments the adsorption of CO appears to be strongly dependent on the Pt
oxidation state. Changes in the reaction atmosphere significantly influenced the catalyst’s oxidation state
already at room temperature. On the other side the oxidation state determined the adsorption on the Pt
particles. CO adsorption, which poisons Pt sites with respect to oxygen adsorption and therefore inhibits
CO oxidation at low temperatures [5, 19], was found to be significantly more pronounced on oxidized
Pt. The combination of XAS and DRIFTS shows the highly sensitive interdependence between the com-
position of the gas atmosphere, adsorbates and oxidation state, which should be furthermore in close
relationship to the noble metal morphology and atomic structure [20]. All these factors are known to
influence the catalyst performance and therefore have to be studied and considered, also emphasizing
the importance of spatially resolved studies [4, 5].
This study illustrates the interdependence of the reaction gas composition, adsorbates and oxidation state
of Pt nanoparticles in exhaust gas catalysts. The combined set-up used for these measurements allowed
to see correlations between surface coverage and oxidation state. Features in the IR spectra, which are
in turn sensitive to the oxidation sate, like the CO band, could be unambiguously assigned. This combi-
nation of two powerful characterization techniques can contribute significantly to a better understanding
and rational design of catalysts.
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