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An adaptive weighting algorithm for
accurate radio tomographic image in
the environment with multipath and
WiFi interference
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Abstract
Radio frequency device-free localization based on wireless sensor network has proved its feasibility in buildings. With
this technique, a target can be located relying on the changes of received signal strengths caused by the moving object.
However, the accuracy of many such systems deteriorates seriously in the environment with WiFi and the multipath
interference. State-of-the-art methods do not efficiently solve the WiFi and multipath interference problems at the same
time. In this article, we propose and evaluate an adaptive weighting radio tomography image algorithm to improve the
accuracy of radio frequency device-free localization in the environment with multipath and different intensity of WiFi
interference. Field experiments prove that our approach outperforms the state-of-the-art radio frequency device-free
localization systems in the environment with multipath and WiFi interference.
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Introduction

In recent years, localization awareness applications have
been attracting more and more attentions. Global posi-
tioning system (GPS) is used for outdoor environment
navigation. Radio frequency identification (RFID) and
radio frequency (RF) are adopted for indoor localiza-
tion and asset tracking. All the aforementioned tech-
niques belong to the active localization, which can only
work with the cooperation of the objects, carrying the
electronic device.1–3 However, these techniques cannot
be used in scenarios where the objects do not wish to
take any electronic device (e.g. terrorist attack, criminal
behavior, and patients in the hospital). For this reason,
Radio Frequency Device-free Localization (RFDFL) is
adopted to locate the object without attaching any
electronic tags.4–6 This technique has proved its feasibil-
ity in fall detection,7 roadside surveillance,8 ambient

assisted living9 non-invasive breathing monitoring,10

residential monitoring,11 and multi-object localization.12

Compared with the traditional security schemes (i.e.
ground patrols and aerial surveillance from manned or
unmanned aircraft), RFDFL can be used for illegal
abroad crossings surveillance in a resource-intensive
and a low-cost way.8
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Compared with other device-free localization (DFL),
RFDFL can be utilized to locate/track objects in the
environment with obstruction and without illumina-
tion. In addition, this technique has no invasion of pri-
vacy. Compared with the infrared system and radar
system, it can monitor larger area. What’s more, it is
much cheaper than the ultra wideband system.4,5,13 The
essence of RFDFL is that wireless sensor nodes are
deployed around the perimeter of the monitored area,
each sensor takes turns to send packets to all other sen-
sors at a high frequency. The received signal strength
(RSS) of the communication link will be attenuated
because of the obstruction of the object in the moni-
tored area. By observing attenuations of all links,
RFDFL is able to extract the location of the object by
analyzing the changes in the RF propagation field of
the located area.4

For RFDFL systems, there are three widely utilized
methods including the fingerprint method,6,13 the
Bayesian inference approaches (e.g. Sequential Monte
Carlo method),5 and the imaging approach referred to
as the radio tomographic imaging (RTI).4,14 For the
fingerprint method, it needs an offline phase, which is
used to collect the radio maps when the object stands
on different predetermined locations, and then the sys-
tem maps the estimated location to one of the trained
locations based on the changes of the communication
link RSS, the closest matching is utilized to refer to as
the object’s location during the online phase. In order
to achieve a stable accuracy, the offline phase should be
repeated when the radio transmission environment
changes, which is really time- and manpower-consum-
ing. The Bayesian inference approach relies on recursive
computation of the large number of particles, which is
not applicable to real-time localization. In RTI, a radio
tomography image inferring the object’s location can be
obtained by analyzing the attenuation of all radio links
in the monitored area. It has been proved that it is an
efficient way for localization through the wall, monitor
or locate a breathing in the residential area.

Radio signal (2.4 GHz) is more sensitive than any
other frequency signals.15 The reason is that the reso-
nant frequency 2.4 GHz frequency and water are the
same and more than 70% of the human body is
omposed of water. Thus, 2.4 GHz radio signal is more
sensitive than any other frequency signals.15 The state-
of-the-art RFDFL systems 4,5,14,16,17 extensively use 2.4
GHz (IEEE 802.15.4 compliant) sensor nodes to locate
the object. Consequently, the problems at hand are
twofold. First, how to guarantee the accuracy of
RFDFL localization under WiFi interference. WiFi
networks share the same operating frequency with
IEEE 802.15.4 sensor network. The burst and concur-
rent communication of WiFi networks lead to severe
interference to 2.4 GHz sensor network, resulting in
serious packet drops.18,19 If packet drops, RFDFL

cannot obtain the real-time RSS measurement of radio
links. Instead, it uses the previous RSS measurement to
calculate the object localization, which introduces a
large location error.20 However, state-of-the-art meth-
ods cannot solve this problem. Second, multipath inter-
ference also degrades the accuracy of RFDFL severely.
The state-of-the-art RFDFL assumes that the obstruc-
tion of the object attenuates the RSS of the radio link.
However, the RSS at the receiver is determined by the
summation of radio waves phasor from multipath.
Therefore, RSS variance introduced by a human or an
object is probably to be increased, reduced, or con-
stant. This is highly related to the transmission RF.
For a given link, if the chosen RF is not the one attenu-
ated by the object, it will cause large accuracy errors.
Although there is research work presenting solution to
this problem, it is still not sufficiently settled.

In this article, we propose a novel adaptive channel
weight model to solve these problems at the same time.
First, we obtain the fade level of each measurement
channel for every communication link during the cali-
bration time. Second, the real-time packet drop rate
(PDR) of the measurement channels can be calculated
with an online observation window. Then, we propose
an adaptive channel weight model to obtain the adap-
tive weight for each measurement channel, by fusing
the two aforementioned factors. Due to considering
both the WiFi interference and multipath interference,
we benefit from the adaptive channel weight model in
the environment with multipath and WiFi interference.

The rest of the article is organized as follows: section
‘‘Related work’’ discusses the related work. In section
‘‘Adaptive weighting RTI,’’ shadowing-based RTI is
introduced. The influence factors to the accuracy of
RFDFL and our new adaptive weight model are pre-
sented in section ‘‘Experiments.’’ Section ‘‘Experiments’’
describes the experiment setup and shows our experi-
mental results. Finally, the article is concluded in sec-
tion ‘‘Conclusion.’’

Related work

In this section, we review the previous works related to
RFDFL methods and the accuracy enhancement of
RFDFL with wireless sensor network. The fingerprint
model6,21,22 is composed of the offline phase and the
online phase. During the offline phase, a radio map is
generated for predetermined location of the target and
stored in the database. During the online localization,
the obtained radio map is compared with the stored
radio maps. The closest matching is used to infer the
target’s location. The scalability of this method is very
limited. If the topology of the WiFi network is changed,
the offline phase must repeat, which is a very time-
consuming process. Chen et al.5 proposed to use
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Sequential Monte Carlo algorithm for DFL. This
method suffers from intensive computation and is not
suitable for real-time localization. In 2010, Wilson and
Patwari4 introduced the RTI method for DFL,4,16,23–25

which is more effective. They localize the target in the
RF propagation area using attenuation of RSS values
caused by the target. However, all RTI methods are
based on 2.4 GHz IEEE 802.15.4 sensor network and
their accuracy is not only highly influenced by multi-
path interference but also WiFi interference, which are
not well addressed in the previous work. Kaltiokallio
et al.23 proposed to use the multi-channel mechanism to
stand up to multipath interference in the indoor envi-
ronment. In this method, all sensor nodes operate on
multi-channel. Each communication link ranks the
channels from anti-fade to deep fade based on the fade
level. The measurement of the top m (set by users) anti-
fade channels were used for RTI localization. Their
later work in Bocca et al.12 weights all the measurement
channels based on their fade level to improve the locali-
zation accuracy. However, WiFi interference is not con-
sidered in both of the works. Anti-fade channels may
suffer from severe PDR and lose extreme important
localization information because of the WiFi interfer-
ence. In Zhao and Patwari,24 although subspace decom-
position method is adopted to improve the localization
accuracy by reducing the effect of the environment
noise (e.g. vibration of tree branches, wind blowing) on
the RSS value, multipath and WiFi interference are still
not addressed. Their later work in Zhao et al.16 presents
a method to improve the localization accuracy by calcu-
lating kernel distance. With this method, the kernel dis-
tance between a long-term histogram and a short-term
histogram is adopted to obtain the temporal RSS
changes caused by the target. However, they only use
channel 26 of 2.4 GHz sensor network for RFDFL
which is assumed not to be interfered by WiFi network.
To improve accuracy, a multi-scale spatial weight
model is proposed in Kaltiokallio et al.,25 where differ-
ent spatial weights are assigned to each link based on
the fade level. However, deterioration of localization
accuracy caused by WiFi interference is not taken into
consideration. Similarly, dual-band sensor network
only solves the problem of WiFi interference, the accu-
racy deterioration caused by multipath is still not effi-
ciently solved.20

Adaptive weighting RTI

Characteristics of the RSS in the WiFi environment

In order to clarify the effect of the WiFi interference on
the localization accuracy and determine the main rea-
son leading to deterioration of the localization accu-
racy, we extract the following data under different
intensity of WiFi interference during the experiment:

PDR of each communication link working on channel
18, and the localization accuracy of RFDFL operating
on channel 18 as shown in Figure 10. Clearly, we can
see that the PDR and the accuracy of RFDFL are both
deteriorated and have the same trend. In fact, we also
obtain the similar experiment results with channel 26.
For simplicity, only the results using channel 18 are
shown here. The experimental setup is described in
detail in section ‘‘Experimental setup.’’

In RFDFL systems, the RSS variance caused by
obstruction of the object is used to do localization. The
one and only reasonable explanation to deterioration
of RFDFL accuracy is that the variance of RSS is not
aroused by the object, but the WiFi interference. As
shown in Figure 1, we use different WiFi transmission
volume to indicate diverse intensities of WiFi interfer-
ence.26 Clearly, the accuracy of RFDFL becomes worse
with the increase in the WiFi interference, as shown in
Figure 1.

Intuitively, accuracy of RFDFL has tight relation-
ship with PDR because PDR holds the same trend as
the accuracy of RFDFL under WiFi interference. To
further verify this, the real-time sampling RSS values
and their corresponding variance are shown in
Figure 2. From this figure, it can be seen that WiFi
interference almost has no obvious influence on
changes of RSS itself. Based on the aforementioned
analysis, PDR is the main reason to decrease the accu-
racy of RFDFL. In other words, if the packets are
dropped, RFDFL cannot obtain the up-to-date RSS
values, which comprise the location information of the
object at this moment. Instead of using the up-to-date
RSS values, the previous RSS measurements are used
to extract the location of the object by RFDFL. Hence,
the main reason causing the deterioration of RFDFL
accuracy is not the variance of RSS value, but rather
PDR caused by WiFi interference. So, it is reasonable
for us to utilize PDR of IEEE 802.15.4 communication

Figure 1. The changes of PDR and accuracy of RFDFL system
working on IEEE 802.15.4, with WiFi interference increasing.
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link to represent the intensity of WiFi interference and
adopt the criterion of PDR to choose the most robust
communication channel for each of the communication
link.

Characteristics of the RSS in multipath environment

Fade level23 is used to depict the relationship between
steady-state, narrow-band fading and variance of RSS
introduced by human body’s obstruction on the radio
communication link. The metric of the fade level cate-
gorizes the communication channels of a given link into
two extremes: deep fade channel and anti-fade channel.
For the link operating on the deep fade channel, the
RSS, on average, increases when the object obstructs
the link. Additionally, the presence of the object, which
is even far away from the link, will result in obvious
RSS changes in deep fade channel (e.g. channel 15 as
shown in Figure 3). In contrast, the RSS value of anti-
fade channel, on average, attenuates when the object
obstructs the link. In addition, the RSS of anti-fade
channel will not change until the target is in proximity
to the link (e.g. channel 11 and channel 18 as shown in
Figure 3). Because of more precise position of the
human are contained in the anti-fade channel, thus, we
can achieve more accurate result, if all communication
links in RFDFL adopt their corresponding anti-fade
channel. Mathematically, the fade level can be
expressed as follows23

gi, c = ~Pc � Li, c � Si, c +Fi, c � ni, c ð1Þ

where gi, c is the RSS measurement of the ith link on
channel c, ePc is the transmission power, Li, c is the large
scale path loss, Si, c is the shadowing loss caused by an
object, Fi, c is the fade level,27 and ni, c is the measure-
ment noise.

Then, the fade level can be expressed as

Fi, c = gi, c � ePc + Li, c + Si, c|fflfflfflfflfflffl{zfflfflfflfflfflffl} + ni, c ð2Þ

For IEEE 802.15.4-complaint sensor network, it has
16 frequency channels spanning over 80 MHz band,
with only 5 MHz frequency interval.28 Thus, the large
scale path loss Li, c and shadowing loss Si, c (as shown in
Formula (3)) change very slowly with the center fre-
quency. Based on this, we assume that Li, c and Si, c

almost have no relationship with frequency channel c.
Then, Formula (2) can be rewritten as

Fi, c ’ gi, c � ~Pc + ni, c ð3Þ

In practice, because ni, c, Li, c, and Si, c are not known,
it is difficult to obtain the fade level on each channel
from the measurement, precisely. We perform an initial
phase (no human in the monitored area) and measure
the average RSS, gi, c. The minimum min

c
gi, c of the link

i on channel c is adopted as the reference to calculate
the fade level of link i. Thus, instead of Formula (3),
we use Formula (4) to calculate the fade level.
Experimental results proved its feasibility in section
‘‘Experiments’’

Fi, c = �gi, c �min
c

�gi, c ð4Þ

where for the link i, the channel c2 is in a deeper
fade, if Fi, c1

.Fi, c2
. In addition, for every communica-

tion link, Fi, c � 0 and Fi, c = 0 for one channel.
Based on the aforementioned analysis of fade level,

we know that the anti-fade channels are more informa-
tive than the deep fade channels for RFDFL in the
environment with multipath interference because of its
restrictive sensitivity area to human body obstruction.
However, all IEEE 802.15.4 channels (channels 11–26)

Figure 2. RSS and PDR of 2.4 GHz communication link
working on channel 18 under different intensity of WiFi
interference. Figure 3. RSS of 2.4 GHz communication link operating on

different channels in indoor environment (with a person
existence).
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are overlapped by IEEE 802.11 WiFi networks. For
RTI systems, even though most anti-fade channels are
selected for localization during the calibration time,
they have quite high probability interfered by WiFi sig-
nals operating on the adjacent channels, which results
in severe PDR of the most anti-fade channel and loca-
tion information loss, which lead to deteriorative locali-
zation accuracy.

Adaptive channel weight model

WiFi networks share the same operating frequency with
IEEE 802.15.4 sensor network. The burst or concurrent
communication of WiFi networks lead to severe inter-
ference to 2.4 GHz sensor network resulting in serious
packets drops, which causes the RFDFL cannot obtain
the up-to-date measurement of communication link,
and results in the deterioration of localization accuracy
of RFDFL.

In addition, multipath is another severe problem,
which should be taken into consideration. The state-of-
the-art RFDFL assumes that the obstruction of the
human body attenuates the RSS of radio link.
However, RSS variance introduced by the human in
the multipath environment is probable to increased,
reduced, or constant. This is highly related to the trans-
mission RF. For a given link, if the chosen radio chan-
nel is not the one attenuated by the object, it will cause
large accuracy error.

The state of the art does not settle the aforemen-
tioned problems efficiently at the same time.
Considering both the WiFi interference and multipath
interference simultaneously, we propose a combined
weight model (seen in Formula (6)) to assign different
weights to each channel according to the intensity of
multipath and WiFi interference. Specifically, for the
communication link i, working on n different channels
(c= ½ch1, . . . , chi, . . . , chn�), the channel chi holds the
maximum weight when it owns the lowest PDRi, c and
the largest Fi, c (suffering from the lowest multipath
and WiFi interference), compared with the other
(n� 1) channels. In addition, compared with the state
of the art,23 the measurement information from all
other channels are also taken into consideration in our
model, which also contributes to the localization accu-
racy. Mathematically, it can be expressed as

gi, c(n)=
1P

c2K Wi, c

X
c2K

Wi, cjDgi, c(n)j ð5Þ

where Wi, c is the weight of the cth channel for the ith
communication link as shown in equation (6)

Wi, c =
Fi, c

e+PDRi, c

ð6Þ

where Fi, c is the fade level of the ith communication
link operating on channel c, K is the predetermined
channel set of the communication link. e in (equation
(6)) is used to avoid division by zero, PDRi, c is the
packet drop rate of the ith communication link work-
ing on channel c

Dgi, c(n)= �gi, c � gi, c(n) ð7Þ

Here, Dgi, c(n) is the RSS change of the ith communica-
tion link at time n, compared with the calibration value.
We use pseudo-code to explain more concretely the pro-
cess of the adaptive channel weight model as shown in
algorithm 1.

Measurement model of the RTI

In RTI, 2.4 GHz sensor nodes are deployed around the
monitored area and form an observation area.
Logically, RTI splits the monitored area into small
voxels. For a given link, the change of RSS is assumed
to be the accumulation of all the small voxels of the
monitored area. Some voxels contribute to the link,
whereas others do not. Mathematically, it can be
expressed as

Dgi =
XN

j= 1

wijDxi + ni ð8Þ

where Dxi is attenuation caused by voxel i, ni is the
measurement noise of link i, N is the number of vox-
els, Dgi. is the RSS change of the link i, and wij is the
weight of voxel j for link i. We use an ellipse model
4,14,23 to calculate, how each voxel affects each link.
As shown in Figure 4, only voxels located in the
ellipse can affect the communication link i. For exam-
ple, according to the ellipse model, a voxel j at the
position of Cj contributes to the RSS change of the
link i with the weight wij, which is inversely propor-
tional to the area of the ellipse

wij =
1

Si

1, if dt
ij(xj)+ dr

ij(xj)\dtr
ij + l

0, otherwise

�
ð9Þ

Figure 4. Weight model.
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where Si is the area of the ellipse, dt
ijxj = Cit � Cj

�� ��,
dr

ijxj = Cir � Cj

�� ��, dtr
ij = Cit � Cirk k, Cit is the coordi-

nator of transmitter, Cir is the coordinator of receiver,
and l is the parameter used to adjust the width of the
ellipse.

Mathematically, if we consider all the communica-
tion links, RSS changes of all the communication links
in the radio propagation field can be expressed as 4,29,30

Dg =WDx+ n ð10Þ

where Dg is an L 3 1 vector representing the RSS
change of all communication links. W is the weight
matrix with size of L 3 N . n is the measurement noise
of all communication links with size of L 3 1.

RTI estimates the location of the object according
to the value of the voxel. The coordinator of the voxel
with maximum value in Dx is referred to as the location
of the object. Due to the measurement noise of n, the
same RSS change Dg results in multiple Dx, here we
use a regularized least-square approach to solve the ill-
posed inverse problem. Mathematically, it is denoted
by the following equations

x̂=PDg ð11Þ

where

P=(WTW+ d2
NC
�1
x )WT ð12Þ

in which d2
N is the variance of the environment noise,

and Cx is a covariance matrix representing by an expo-
nential spatial decay

½Cx�jk = d2
xe�djk=dc ð13Þ

where d2
x is variance of the voxel attenuation, dc is the

voxels’ correlation distance, and djk is the Euclidean dis-
tance between voxel j and voxel k. The vector P is cal-
culated only once at the beginning of the localization
process, thus RTI needs only L 3 N operations to calcu-
late the x̂. So it can do the calculation in real time. The
aforementioned parameters and their values are listed
in Table 1 in the adaptive weighting RTI algorithm.
Note that we could tune these parameters for a particu-
lar experiment to obtain higher localization accuracy.

Experiments

Experimental setup

In order to evaluate the effect of the adaptive weighting
RTI algorithm, we implemented the experiments in the
Internet of Things (IOT) exhibition hall of China
University of Mining and Technology (CUMT) during
the midnight, when there is almost no WiFi interference.

Figure 5(a) shows a picture of the experiment envi-
ronment. A total of 20 USB dongles with IDs, from 0
to 19, are distributed along the perimeter of a

Algorithm 1: Adaptive Channel Weight Model

Initialize:
All sensor nodes operate on the predetermined channel list C.

Input:
The coordinators of the sensor nodes (xm, ym)m= 1, 2, .
Measuring the RSS of all communication links working on channel list C= ½ch1, ch2, . . . , chK�.

Output:
The estimated location of the person in the monitored area: (xt, yt).

Calculate:
Calculating the projection matrix P=(WTW+ d2

NC�1
x )WT .

Calculating the fade level of each measurement channel for every communication link Fi, c = gi, c �min
c

gi, c.
while: (1) do

1. obtaining the PDRi,C ; /* the observation length is L*/
2. calculating the combination weight: Wi, c = Fi, c=(e+ PDRi, c);
3. calculating the RSS change of every communication link: gi, c(n)= 1=

P
c2K Wi, c � (

P
c2K Wi, cjDgi, c(n)j);

4. obtaining the RSS value of every communication link at time n: g = ½g1(n),g2(n), . . . ,gN(n)�; /* N is the number of the
communication link*/

5. calculating the radio tomography image: x̂=Pg ;
6. obtaining the location of the person: (xt, yt)= arg max

N
(x̂). /* N is the number of the grid */

End

Table 1. RTI parameters.

Parameter Value Description

d2
N 1 Variance of environment noise

d2
x 0.5 Variance of pixel attenuation

dc 3 Correlation used to smooth the image
l 0.25 Half minor axis length (m)
p 0.2 Pixel width (m)
e 0.01 Avoid division by zero in seconds.

RTI: radio tomographic imaging.
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rectangular area as shown in Figure 5(b). Each USB
dongles (seen in Figure 6) is put on a tripod at a height
of 1.2 m, as given in Figure 5(a).

At the beginning of the experiments, 40-s calibration
time is needed to obtain the mean RSS value on each
communication link without any person in the moni-
toring area. During the experiments, a person stands at
24 pre-marked locations as shown in Figure 5(b).
Figure 5(b) shows the distribution of 20 USB dongles
operating on 2.4 GHz band31 with IDs from 0 to 19.
The USB dongles are put on a tripod, as shown in
Figure 6. Figure 5(a) gives a picture of the experimental
environment.

Each USB dongle working at 2.4 GHz is composed
of a CC2531 microchip. Their transmission power is
4.5 dBm. They all run the multi-spin communication
protocol4 for communication. The procedure of Spin is
that all nodes in network take turns to transmit data
according to their node IDs, which is programmed
beforehand. At any particular time, only one node is
transmitting while the others are listening. When a
packet is dropped or a node fails to transmit, a timer

will fire to make sure that the next node moves on. At
the end of each communication cycle, all nodes switch
synchronously to the next channel. The available chan-
nels are pre-defined. Channels 11, 18, 21, and 26 are
used in our experiment.

To generate different intensities of WiFi interfer-
ence, we followed the same approach as in Liang
et al.19 We used two laptops and one WiFi access
point to build a WiFi network. One laptop acted as a
server, while the other one used the iperf tool32 to
produce different intensities of WiFi interference by
requesting different transmission rates from the ser-
ver, as shown in Figure 7.

Results and discussion

In this subsection, we focus on evaluating the perfor-
mance of the adaptive weighting RTI algorithm using
the aforementioned experimental setup. The experimen-
tal results show that our adaptive weighting RTI algo-
rithm outperforms the state of the art.

In the following experiments, the intensity of WiFi
interference was set to 0 kbps, 800 kbps, 1 Mbps, 2
Mbps, 4 Mbps, 6 Mbps, and 10 Mbps, respectively. As
shown in Figure 8, PDR of each communication link
(working on channel 18) between the 1st node and the
others (e.g. L1, L2, ., L19), increased with increasing
of the WiFi interference. For example, PDRs of the
communication link L1 was almost 0 in the environ-
ment without WiFi interference, and became the worst
(63.6%) under 10 Mbps WiFi interference, the other

Figure 5. Experiment layout and environment: (a) environment
and (b) layout of the experiment, distance between two node is
set to 1.2 m.

Figure 6. Wireless sensor node (CC2531 USB Dongle).

Figure 7. The topology of WiFi interference network.
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communication links follow the same trend. In addi-
tion, the PDR of each communication link is not the
same as each other under the same intensity of WiFi
interference, this is because the distance between the
communication link and the WiFi interference is differ-
ent. For example, under 10 Mbps WiFi interference,
the PDR of the communication link L5 and L6 are
63.6% and 54.6%, respectively.

Clearly, we can see that PDR of the communication
link reflects the WiFi interference strength. Due to the
relationship between the accuracy of RFDFL system
and PDR (seen in Figure 1), more accurate localization
results can be obtained, by assigning higher weights to
the communication channels according to the PDR.

As shown in Figure 9, we evaluate the performance
of our adaptive weighting RTI. With the increase in the
WiFi interference, our adaptive weighting RTI can
adjust the usage percentage of each channel, adaptively.
For example, because of suffering from different inten-
sity of WiFi interference, the usage ratios of channel 18
is 29.47% in the environment without WiFi interference
and drops to 2.63% when the intensity of WiFi interfer-
ence is 10 Mbps. At the same time, the usage percen-
tages of the other three channels increase accordingly.

We can also see from Figure 9 that the usage ratios
of each channel are 37.89% for channel 11, 29.47% for
channel 18, 24.74% for channel 21, and 7.89% for
channel 26, respectively, in the environment without
WiFi interference (0 kbps). According to the work in
Kaltiokallio et al.,23 the aforementioned percentages
keep the same, no matter how strong the WiFi interfer-
ence is in the environment. Due to the reason that no
WiFi interference was taken into consideration, the
localization accuracy of multi-channel RTI deterio-
rated severely, from 0.4435 m (without WiFi interfer-
ence) to 0.990 m (with 10 Mbps WiFi interference), a
123.3% deterioration, as shown in Figure 10.

In addition, we can see that our adaptive weighting
RTI model is able to change the usage percentage of
each channel according to the intensity of WiFi inter-
ference. As shown in Figure 9, channel 18 is not always
the best measurement frequency for some communica-
tion links because of the WiFi interference. Its usage

ratio changes dynamically according to the WiFi inter-
ference. The stronger the WiFi, the smaller the usage
ratio. For example, the usage ratios of channel 18 is
29.47% in the environment without WiFi interference
and dropped to 1.84% in the environment with 10
Mbps WiFi interference. Accordingly, the usage ratio
of channels 11, 21, and 26 increases by 12.11%, 7.90%,
and 7.62%, respectively.

As shown in Figure 10, the localization accuracy of
the adaptive weighting RTI is 0.5941 m, a 4.51%
improvement compared with the multi-channel RTI,23

in the environment with 1 Mbps WiFi interference.
Although the localization accuracy of adaptive weight-
ing RTI also becomes worse with increasing of the
WiFi interference, the adaptive weighting RTI outper-
forms the multi-channel RTI in all WiFi interference
scenarios. The reason is that the adaptive weighting
RTI can not only dynamically rank the measurement
channel for each communication link according to the
combination weight (as described in section ‘‘Adaptive
channel weight model’’) but also utilizing the measure-
ment information of all channel by assigning the com-
bination weight.

We also present more detailed views of localization
data in Figures 11–13. Figures 11(a) and (b) and 12(a)

Figure 8. Packet drop rate of each communication link (on
channel 18) between the 1th node and the others under
different WiFi interference.

Figure 9. Channel distribution of the IEEE 802.15.4 sensor
network under different intensities of WiFi interference.

Figure 10. The localization accuracy comparison between the
adaptive weighting RTI algorithm and the multi-channel RTI.
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Figure 11. Experiment results in the environment without WiFi interference: (a) channel diversity RTI layout, (b) adaptive
weighting RTI layout, (c) multi-channel RTI, and (d) our adaptive weighting RTI.

Figure 12. Experiment results in the environment with 2M WiFi interference: (a) channel diversity RTI layout, (b) adaptive
weighting RTI layout, (c) channel diversity RTI, and (d) our adaptive weighting RTI.

Figure 13. Cumulative distribution functions (CDFs) of localization errors: (a) CDFs in the environment without WiFi interference
and (b) CDFs in the environment with 2 Mbps WiFi interference.
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and (b) show the relationship between the estimated
and the actual localization. In general, the estimation
results from adaptive weighting RTI are closer to the
known locations than that from multi-channel RTI
(seen in Figures 11(a) and (b) and 12(a) and (b)).
What’s more, radio tomography images from adaptive
weighting RTI (seen in Figures 11(d) and 12(d)) also
outperform the results in multi-channel RTI (seen in
Figures 11(c) and 12(c)), respectively. From the view of
the cumulative distribution functions (CDFs), as shown
in Figure 13, we can also benefit from the adaptive
weighting model. Such as, in the environment with 2
Mbps WiFi interference, for the adaptive weighting
model, 95% of localization errors are below 1 m, while
79% of errors from multi-channel are below 1 m, a
16% improvement.

Conclusion

In this article, we introduced an adaptive weighting
RTI to improve the accuracy of RTI in the environ-
ment with multipath and WiFi interference. In order to
locate the target more accurately, we proposed the
adaptive weighting RTI method relying on the adaptive
channel weight, which is determined by the fade level
and the PDR. Extensive experimental results show that
our adaptive weighting RTI outperforms the method
by channel diversity. In the environment without
WiFi interference, there is still an improvement of
4.9%. The stronger the WiFi interference in the multi-
path environment, the better performance we can
obtain from the adaptive weighting RTI (e.g. the
improvements of 5.23%, 10.58%, and 12:67%, respec-
tively, in the environment with 4, 6, and 10 Mbps WiFi
environment).
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