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Abstract

Corneal confocal microscopy (CCM) has revealed reduced corneal nerve fiber (CNF) length

and density (CNFL, CNFD) in patients with diabetes, but the spatial pattern of CNF loss has

not been studied. We aimed to determine whether spatial analysis of the distribution of cor-

neal nerve branching points (CNBPs) may contribute to improving the detection of early

CNF loss. We hypothesized that early CNF decline follows a clustered rather than random

distribution pattern of CNBPs. CCM, nerve conduction studies (NCS), and quantitative sen-

sory testing (QST) were performed in a cross-sectional study including 86 patients recently

diagnosed with type 2 diabetes and 47 control subjects. In addition to CNFL, CNFD, and

branch density (CNBD), CNBPs were analyzed using spatial point pattern analysis (SPPA)

including 10 indices and functional statistics. Compared to controls, patients with diabetes

showed lower CNBP density and higher nearest neighbor distances, and all SPPA parame-

ters indicated increased clustering of CNBPs (all P<0.05). SPPA parameters were abnor-

mally increased >97.5th percentile of controls in up to 23.5% of patients. When combining

an individual SPPA parameter with CNFL,�1 of 2 indices were >99th or <1st percentile of

controls in 28.6% of patients compared to 2.1% of controls, while for the conventional

CNFL/CNFD/CNBD combination the corresponding rates were 16.3% vs 2.1%. SPPA

parameters correlated with CNFL and several NCS and QST indices in the controls (all

P<0.001), whereas in patients with diabetes these correlations were markedly weaker or

lost. In conclusion, SPPA reveals increased clustering of early CNF loss and substantially

improves its detection when combined with a conventional CCM measure in patients with

recently diagnosed type 2 diabetes.
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Introduction

Diabetic sensorimotor polyneuropathy (DSPN) which affects around one-third of all diabetic

patients [1] predicts diabetic foot ulcers [2], cardiovascular morbidity [3], and mortality [4].

Thus, objective measures to accurately detect early nerve pathology indicating incipient DSPN

that may be more susceptible to intervention than late-stage alterations are required. One such

an emerging non-invasive technique, corneal confocal microscopy (CCM), is being used to

assess the corneal subbasal nerve plexus (SNP) localized between the basal epithelium and

Bowman’s membrane to quantify corneal nerve fiber pathology in patients with or without

clinically manifest DSPN [5,6]. Most widely used and generally accepted corneal nerve param-

eters include corneal nerve fiber length (CNFL), density (CNFD), and branch density (CNBD)

[7]. Using these measures, numerous studies have demonstrated that corneal nerve fiber loss

augments in relation to increasing severity of DSPN [5,6] and also may precede the develop-

ment of clinical DSPN [8].

It is generally agreed that it is important to understand ways to optimize the ability of CCM

to serve as a sensitive and specific marker of DSPN [9]. A worldwide normative reference data-

base has recently been established to provide the basis for wider use of CCM as a diagnostic

test [7]. Indeed, recent studies indicate continuing efforts aimed at improving the diagnostic

performance of CCM, albeit with limited success. Different corneal regions such as the corneal

apex (central cornea) and the whorl-like area usually located 1–2 mm inferior to the corneal

apex have been compared, but yielded contrasting results with respect to diagnostic accuracy

[10,11]. Standardizing CNFL for nerve tortuosity resulted only in a marginal improvement in

diagnostic performance compared to CNFL [9]. Furthermore, the vast majority of previous

studies using CCM in diabetes patients have analyzed relatively small image frames of 0.16

mm2 that may not be representative of larger corneal areas. As possible solutions, both multi-

ple non-overlapping image frames per patient or larger mosaic images generated from image

sequences have been proposed [12–14].

The aforementioned conventional CCM measures adequately reflect SNP morphometry,

but cannot describe the spatial configuration of corneal nerve fiber networks. This can be theo-

retically accomplished using methods that characterize spatial point patterns on different

scales and estimate the presence of a spatial dependence among the points [15,16]. These

methods enable the distinction between random, regular or clumped patterns. In this compre-

hensive study, we analyzed the spatial distribution of branching points from skeletonized sub-

basal corneal nerve fiber networks both on nearest neighbor level and over larger distances.

We hypothesized that the early corneal nerve fiber loss in recent-onset type 2 diabetes subjects

reported using conventional CCM morphometry [14] follows a clustered rather than random

distribution pattern which could contribute to improving the detection of early SNP abnor-

malities shortly after diabetes diagnosis.

Materials and methods

The study was conducted in accordance with the Declaration of Helsinki and was approved by

the ethics committee of Heinrich Heine University, Düsseldorf, Germany. All participants

provided a written informed consent. Included were 86 patients with recently diagnosed type

2 diabetes and 47 age- and sex-matched controls. Patients with diabetes were participants of

the German Diabetes Study (GDS), which evaluates the long-term course of diabetes and its

sequelae (ClinicalTrials.gov Identifier: NCT01055093) [17]. Inclusion criteria for entry into

the GDS are type 1 or type 2 diabetes, known diabetes duration�1 year and age of 18–69

years at baseline assessment. Exclusion criteria for the present study were type 3 diabetes, preg-

nancy, severe diseases (cancer), psychiatric disorders, immunosuppressive therapy, limited
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Baden-Württemberg (AZ 33-7533-7-11.6-9/3/1).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0173832


cooperation ability, corneal disorders, and neuropathy from causes other than diabetes. Inclu-

sion criteria for the control group were age of�18 years and normal OGTT [18], while exclu-

sion criteria were neuropathy from any cause and those applied to the diabetes group. Among

type 2 diabetes patients from the GDS who were asked to participate in the present study,

approximately 50% agreed. Control subjects were volunteers largely recruited by newspaper

and online advertisement.

CCM examination

CCM was performed using a Heidelberg Retina Tomograph II (HRT II) with the Rostock Cor-

nea Module-RCM (Heidelberg Engineering, Heidelberg, Germany) as previously described

[14]. In brief, the acquired images had a resolution of 384 x 384 pixels and the field of view was

0.16 mm2. Experienced ophthalmologists (AZ and SP), who were blinded to all study data,

except for CCM, carried out the examinations. Using a modified, oscillating volume scan oper-

ating mode of the HRT II, in which the focus plane of the microscope is continually shifted

back and forth, a number of image stacks (with an axial image distance of 0.5 μm) were

acquired for each patient. The stack size was individually adjusted to the height of present

ridge-like tissue deformations [14,19,20]. A stack size of 96 images (scan depth: 48 μm) was

chosen for ridge heights of less than 48 μm, and 120 images (60 μm) otherwise. At least three

scans were performed and one or more mosaic images of the SNP generated for each patient

[21,22]. The total duration of microscopy was about 15 minutes. The following conventional

CCM parameters were determined as previously reported [14]: corneal nerve fiber length

(CNFL), defined as the total length of all nerve fibers (mm/mm2); corneal nerve fiber density

(CNFD), defined as the number of nerve fiber segments per mm2; and corneal nerve branch

density (CNBD), defined as the number of branching points per mm2.

Ocular surface examination including lid margins, cornea and conjunctiva was performed

to exclude eyes of controls and patients with dry eye signs and symptoms. Subjects wearing

contact lenses were excluded, while in those with history of e.g. corneal scars or inflammation

in one eye, the non-affected eye was examined.

Spatial point pattern analysis

The coordinates of branching points in thinned fiber network images and the respective binary

masks of the valid image areas from the segmentation images (actual acquired SNP layer con-

tent) formed the basis for the automated quantitative spatial analysis. A more detailed descrip-

tion is available in the Supporting Information (S1 Supporting Information).

For each image the number of branching points (BPs) and point density (BPD) (number of

BPs normalized to the acquired image area) were determined. Empty space distance (ESD)

between BPs was calculated by applying a distance transform to the whole image area. The

resulting distance map characterizes the empty space extents between BPs and contains dis-

tance information of all image pixels to the nearest BP. All local distance map values were aver-

aged to calculate the mean ESD (cardinality of empty space) of an image. Spatially adjacent

BPs were determined using a Delaunay triangulation [23] algorithm that was modified for

application on image areas with irregular border shape. Nearest neighbor indices were derived

from distances between neighboring BPs from which the minimum (MINN) and mean

(MENN) nearest neighbor distances along with their respective standard deviations (MINNSD

and MENNSD) were calculated. MINNSD and MENNSD provide information on the homo-

geneity or fluctuation of distances between adjacent BPs. The mean Voronoi cell area (VCA)

with its standard deviation (VCASD) of the point patterns was computed as an alternative

measure of inter-point distance based on Voronoi tesselation [24]. VCA reflects the amount of
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empty space around single BPs while VCASD describes its variation. The spatial structure of

point patterns (random, regular or clustered) on a nearest neighbor level was characterized by

the edge-corrected Clark-Evans aggregation index (CEAI) [25,26].

Each spatial point pattern was then submitted to second-order spatial analysis which pro-

vided information about the spatial structure of point patterns over different scales. This analy-

sis included the calculation of Besag’s L-function [27] which is the standardized and easier to

interpret version of Ripley’s K-function [28] and the pair-correlation-function [29] as well as

the visualization of these functions along with their respective Monte-Carlo envelopes [28].

Tests for complete spatial randomness (CSR) of point patterns based on L- and pair-correla-

tion (L, PC) functions were performed using the Maximum Absolute Deviation (MAD) test

[28,30] that provided the test statistics for deviation from CSR (MADL and MADPC, respec-

tively). This test indicates the presence and the degree of clustering within a given point pat-

tern. To test for differences between spatial point patterns of the control and diabetic groups as

a whole, the studentized permutation test [31] for L-functions and pair-correlation functions

was employed and the latter were visualized along with their Monte-Carlo envelopes in the

two groups. This test allows the direct comparison of point pattern groups on the basis of their

functional summary characteristics.

Peripheral nerve function

Peripheral nerve function tests were performed as previously described [14]. Motor NCV was

measured in the median, ulnar, and peroneal nerves, while sensory NCV and sensory nerve

action potentials (SNAP) were determined in the median, ulnar, and sural nerves at a skin

temperature of 33–34˚C using surface electrodes (Nicolet VikingQuest, Natus Medical, San

Carlos, CA). Quantitative sensory testing included measurement of the vibration perception

threshold (VPT) on the medial malleolus using the method of limits (Vibrameter, Somedic,

Stockholm, Sweden) and thermal detection thresholds (TDT) including warm and cold

thresholds on the dorsum of the foot using the method of limits (TSA-II NeuroSensory Ana-

lyzer, Medoc, Ramat Yishai, Israel). Neurological examination was carried out using the Neu-

ropathy Disability Score (NDS) and Neuropathy Symptom Score (NSS) [32]. These and all

other clinical examinations were performed by operators, who were blinded to the corneal

findings in all subjects.

Statistical analysis

Continuous data were expressed as mean±SD. Categorical data were given as absolute or rela-

tive frequencies with 95% CI and were analyzed by Fisher’s exact test. For normally distributed

data, parametric tests (t-test or Pearson product-moment correlation), otherwise nonparamet-

ric tests (Mann-Whitney U test or Spearman rank correlation) were applied. To determine

associations between two variables, univariate correlations and multiple linear regression anal-

yses were performed. The level of significance was set at α = 0.05.

Results

The demographic and clinical characteristics of the patients and controls have been published

elsewhere [14]. The mean number of corneal nerve BP was 142.83±98.80 in the controls and

88.65±70.32 in the diabetes group (P<0.001), while BPD was 0.00024±0.00011 n/pixel in the

controls and 0.00018±0.00010 n/pixel in the diabetic subjects (P<0.001). The mean values of

SPPA parameters are shown in Table 1. Nine of the 10 indices studied were significantly

higher, while CEAI was lower in the diabetes group as compared to the control subject (all

P<0.05).

Spatial pattern of corneal nerve fiber loss in recent-onset type 2 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0173832 March 15, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0173832


Table 2 shows the percentages of abnormal SPPA parameters above the 97.5th percentile

and abnormal CEAI and CNFL below the 2.5th percentile of the control group. The percent-

ages of abnormal MINN, MINNSD, VCASD, MADL, and CNFL were significantly higher in

the diabetes group compared to the control subjects (all P<0.05), while borderline significance

was observed for MADPC (P = 0.051). No significant differences between the groups were

noted for the rates of abnormal MENN, MENNSD, CEAI, ESD, and VCA. The most favorable

discriminatory power was observed for MADL, MINN, and MINNSD. The highest rate of

abnormal values in the diabetes group was found for MADL (23.5%), while MINN showed the

lowest percentage of abnormal values among controls (2.1%).

Table 3 displays the percentages of combined abnormalities in�1 out of 2 and�1 out of 3

SPPA parameters above 97.5th and 99th percentiles and corneal nerve fiber length (CNFL)

below 2.5th and 1st percentiles of the control group, respectively. Among the four combinations

including two parameters, one of which was CNFL, three showed inadequately high rates of

�1 abnormality in the controls (8.5%) when using the<2.5th/>97.5th percentiles, while the

<1st/>99th percentiles yielded an appropriate range in the controls (2.1–6.4%) and highest

percentage for the CNFL/MADL combination (31.8%) which was markedly higher than that

obtained with the individual SPPA measures or CNFL. The combination of two SPPA indices

showed the highest rate of�1 abnormal parameter for MINNSD/MADL >97.5th percentile of

35.3% in the diabetes group compared to 6.4% in controls. When combining three parameters,

one of which was CNFL, the best discriminatory power between diabetic and control subjects

was obtained using the combination CNFL <1st percentile/MINN/MADL >99th percentile

with 38.8 vs 6.4% showing�1 abnormal parameter. In contrast, the combination of�1 abnor-

mality out of 3 conventional parameters (CNFL, CNFD, CNBD) showed percentages identical

with those obtained with CNFL as a single parameter (18.6 vs 4.3%).

The correlations between CNFL and SPPA parameters are shown in Table 4. Associations

were highly significant for all indices in the control group, whereas in the diabetes group the

correlation coefficients were markedly lower, and no significant associations with CNFL were

noted for MINNSD, MENNSD, CEAI, and MADPC.

Table 1. Parameters of spatial analysis of corneal nerve fibers in the diabetic and control groups studied.

Control (n = 47) Diabetes (n = 86) P value

ESD (μm) 47.57 ± 15.93 69.21 ± 46.59 <0.001

MINN (μm) 26.65 ± 6.80 31.20 ± 11.07 0.013

MINNSD (μm) 22.83 ± 6.74 28.86 ± 13.88 0.019

MENN (μm) 75.70 ± 26.56 85.92 ± 32.98 0.011

MENNSD (μm) 56.56 ± 21.41 67.46 ± 27.98 0.006

VCA (μm2) 5287 ± 4034 7994 ± 7080 0.005

VCASD (μm2) 4673 ± 2661 8535 ± 9724 0.002

CEAI 0.6821 ± 0.1034 0.6244 ± 0.1362 0.028

MADL 28.93 ± 14.31 40.45 ± 26.92 0.029

MADPC 38.08 ± 27.44 60.43 ± 57.64 0.017

Values are mean±SD. MINN: minimum nearest neighbor distances between branching points, MENN: mean nearest neighbor distances between branching

points, MINNSD: standard deviation of minimum nearest neighbor distances between branching points, MENNSD: standard deviation of mean nearest

neighbor distances between branching points, CEAI: Clark and Evans aggregation index, ESD: mean empty space distance for a branching point pattern,

VCA: Voronoi cell area, VCASD: standard deviation of Voronoi cell area, MADL: maximum absolute deviation from complete spatial randomness based on

L-functions, MADPC: maximum absolute deviation from complete spatial randomness based on pair-correlation functions, CSR: complete spatial

randomness

https://doi.org/10.1371/journal.pone.0173832.t001
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Fig 1A and 1B illustrates the high correlation between CNFL and MINNSD in the control

group (r = -0.765; P<0.001) and lack of correlation between these indices in the diabetes

group (r = -0.118; P = 0.290). Fig 1C and 1D illustrates the relatively weak correlations between

MADL and MINN in the control group (r = 0.321; P = 0.028) and diabetes group (r = 0.320;

P = 0.003).

The highest correlations of SPPA parameters with age and measures of peripheral nerve

function in the control group were found for MENNSD, CEAI, ESD, MADL, and MADPC

(Table 5). In the diabetes group, these associations were considerably weaker and rarely statis-

tically significant (data not shown).

The correlations between the SPPA parameters in the entire study population are shown in

Table 6. Each of these indices correlated significantly with one another, except for CEAI and

MINN. The highest correlation coefficients (r>0.8) were obtained between MINN, MENN,

VCA and their SDs as well as between VCA, VCASD, MENN, and MENNSD. The lowest cor-

relation coefficients (r<0.35) were found for the relationships between CEAI and MINN,

MINNSD, and MENN as well as between MINN and both MADL and MADPC.

The studentized permutation test showed a significant difference in the spatial point pat-

terns between controls and diabetic patients for L functions (p = 0.026), but not pair-correla-

tion functions (p = 0.056). The pooled graphs showed a higher deviation from CSR in point

patterns of diabetes patients than those of controls (Fig 2).

Table 2. Percentages (95% CIs) of subjects with abnormal spatial point pattern analysis parameters

>97.5th percentile and abnormal CEAI and CNFL *<2.5th percentile of the control group.

Control (n = 47) Diabetes (n = 86) P value

ESD (%) 8.5 (3.0–18.4) 18.6 (12.0–26.9) 0.136

MINN (%) 2.1 (0.1–9.7) 19.3 (12.5–27.8)† 0.005

MINNSD (%) 4.3 (0.8–12.8) 21.7 (14.5–30.4)† 0.01

MENN (%) 4.3 (0.8–12.8) 8.4 (4.0–15.3)† 0.487

MENNSD (%) 6.4 (1.8–15.7) 12.0 (6.7–19.6)† 0.374

VCA (%) 4.3 (0.8–12.8) 14.5 (8.6–22.4)† 0.084

VCASD (%) 6.4 (1.8–15.7) 21.7 (14.5–30.4)† 0.026

CEAI (%)* 4.3 (0.8–12.8) 11.9 (6.6–19.4)‡ 0.210

MADL (%) 4.3 (0.8–12.8) 23.5 (16.2–32.3)§ 0.003

MADPC (%) 4.3 (0.8–12.8) 16.5 (10.2–24.5)§ 0.051

CNFL (%)*|| 4.3 (0.8–12.8) 18.6 (12.0–26.9) 0.019

||Previously published in ref. [14];

missing values:
§n = 1;
‡n = 2;
†n = 3.

MINN: minimum nearest neighbor distances between branching points, MENN: mean nearest neighbor

distances between branching points, MINNSD: standard deviation of minimum nearest neighbor distances

between branching points, MENNSD: standard deviation of mean nearest neighbor distances between

branching points, CEAI: Clark and Evans aggregation index, ESD: mean empty space distance for a

branching point pattern, VCA: Voronoi cell area, VCASD: standard deviation of Voronoi cell area, MADL:

maximum absolute deviation from complete spatial randomness based on L-functions, MADPC: maximum

absolute deviation from complete spatial randomness based on pair-correlation functions, CSR: complete

spatial randomness, CNFL: corneal nerve fiber length

https://doi.org/10.1371/journal.pone.0173832.t002
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Discussion

In this study using a novel approach of SPPA we demonstrate increased clustering of corneal

nerve branching points (CNBPs) indicating a patchy pattern of early corneal nerve fiber loss in

recently diagnosed type 2 diabetes patients. Among the 10 individual SPPA parameters stud-

ied, the highest discriminatory power was obtained for MADL, which was abnormally

increased in 23.5% of diabetes patients and 4.3% of controls. Using a conservative percentile

approach and the definition of�1 of 3 indices being abnormal, the conventional CNFL/

CNFD/CNBD combination yielded abnormality in 16.3% of the diabetes subjects and in 2.1%

of the controls, whereas the corresponding rates increased to 28.6 vs 2.1% when combining

MINN with CNFL. Thus, the combination of an individual SPPA parameter with a conven-

tional CCM measure achieved a substantially increased detection of early pathology indicating

not only CNF loss but also its spatial pattern of enhanced clustering, while the specificity in

controls remained identical. The highest rate of abnormality (38.8%) was achieved when com-

bining MINN and MADL with CNFL, albeit this approach came at the cost of a concomitant

increase in the controls (6.4%), thus indicating lower specificity.

Table 3. Prevalence (95% CIs) of combined abnormal (�1 out of 2 and�1 out of 3) parameters of Spatial Point Pattern Analysis (SPPA) above

97.5th and 99th percentiles and CNFL, CNFD, aor CNBD below 2.5th and 1st percentiles of control group.

Control (n = 47) Diabetes (n = 86) P value

CNFL and SPPA parameter combined

CNFL <2.5th / MINN >97th centile (%) 4.3 (0.8–12.8) 29.8 (21.6–39.0) <0.001

CNFL <1st / MINN >99th centile (%) 2.1 (0.1–9.7) 28.6 (20.5–37.8) <0.001

CNFL <2.5th / MINNSD >97th centile (%) 8.5 (3.0–18.4) 34.5 (25.9–44.0) 0.001

CNFL <1st / MINNSD >99th centile (%) 6.4 (1.8–15.7) 27.4 (19.5–36.5) 0.003

CNFL <2.5th / MADL >97th centile (%) 8.5 (3.0–18.4) 35.3 (26.7–44.7) 0.001

CNFL <1st / MADL >99th centile (%) 6.4 (1.8–15.7) 31.8 (23.5–41.1) 0.001

CNFL <2.5th / VCASD >97th centile (%) 8.5 (3.0–18.4) 33.3 (24.8–42.7) 0.001

CNFL <1st / VCASD >99th centile (%) 4.3 (0.8–12.8) 31.0 (22.7–40.3) <0.001

Two SPPA parameters combined

MINN / MADL >97th centile (%) 6.4 (1.8–15.7) 34.1 (25.6–43.5) <0.001

MINN / MADL >99th centile (%) 6.4 (1.8–15.7) 30.6 (22.4–39.8) 0.001

MINNSD / MADL >97th centile (%) 6.4 (1.8–15.7) 35.3 (26.7–44.7) <0.001

MINNSD / MADL >99th centile (%) 6.4 (1.8–15.7) 25.9 (18.2–34.9) 0.006

MADL / VCASD >97th centile (%) 8.5 (3.0–18.4) 29.4 (21.3–38.6) 0.004

MADL / VCASD >99th centile (%) 4.3 (0.8–12.8) 25.9 (18.2–34.9) 0.002

CNFL and two SPPA parameters combined

CNFL <2.5th / MINN / MADL >97th centile (%) 8.5 (3.0–18.4) 41.2 (32.2–50.7) <0.001

CNFL <1st / MINN / MADL >99th centile (%) 6.4 (1.8–15.7) 38.8 (29.9–48.3) <0.001

CNFL <2.5th / MINNSD / MADL >97th centile (%) 10.6 (4.3–21.1) 43.5 (34.4–53.0) <0.001

CNFL <1st / MINNSD / MADL >99th centile (%) 8.5 (3.0–18.4) 35.3 (26.7–44.7) 0.001

CNFL <2.5th / MADL / VCASD >97th centile (%) 10.6 (4.3–21.1) 38.8 (29.9–48.3) 0.001

CNFL <1st / MADL / VCASD >99th centile (%) 6.4 (1.8–15.7) 35.3 (26.7–44.7) <0.001

CNFL / CNFD / CNBD <2.5th centile (%) 4.3 (0.8–12.8) 18.6 (12.0–26.9) 0.019

CNFL / CNFD / CNBD <1st centile (%) 2.1 (0.1–9.7) 16.3 (10.1–24.3) 0.011

MINN: minimum nearest neighbor distances between branching points, MINNSD: standard deviation of minimum nearest neighbor distances between

branching points, VCASD: standard deviation of Voronoi cell area, MADL: maximum absolute deviation from complete spatial randomness based on L-

functions, CNFL: corneal nerve fiber length, CNFD: corneal nerve fiber density, CNBD: corneal nerve branch density

https://doi.org/10.1371/journal.pone.0173832.t003
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In early studies, even cases with mild DSPN showed loss of myelinated fibers, a decrease in

the median diameter, and an increase in the variability of density among frames and among

fascicles that began in proximal nerve and extended to distal levels. These findings were

explained by multifocal fiber loss along the length of nerves and sprouting [33]. Likewise,

intraepidermal nerve fiber (IENF) loss due to neuropathy does not seem to occur in a random

way, but rather, the remaining nerves seem arranged in ‘clusters’ and exhibit some spatial pat-

tern, possibly due to collateral branching by the surviving nerve fibers [34,35]. Preliminary

attempts to describe this pattern indicate that the spatial distribution of nerve fibers in the foot

becomes more ‘clustered’ as neuropathy advances [35].

Previous CCM studies indicated a variable nature of corneal nerve fiber loss in advanced

neuropathy, but quantitative analyses have not been undertaken [36,37]. Although the rela-

tionship between the right and left corneal nerve fiber morphometry was highly significant

among control subjects and diabetic patients with increasing severity of neuropathy, this was

not the case in patients with severe neuropathy. It has been suggested that this may reflect vari-

ability and perhaps the patchy nature of central corneal nerve damage in advanced neuropa-

thy, which has been also shown in a small whole corneal nerve mapping study in a diabetic

patient with severe neuropathy [36,37]. Qualitative comparison of the two maps showed an

overall reduction in the number of nerve fibers in the diabetic patient with neuropathy. The

density of the entire nerve plexus was reduced and branching was markedly reduced. Overall,

there seemed to be fewer nerve fibers in the inferior and temporal sectors and the inferior

whorl seems to be affected more severely [37]. Since the spatial distribution of the SNP fiber

networks shows considerable variability across the cornea, the relatively small size of the

widely used corneal area (0.16 mm2) may contribute to variable results of the conventional

CCM parameters [38].

This is the first study addressing the spatial pattern of CNBP loss. We reported early CNF

loss with percentages of CNFL <2.5th percentile of 18.6% in the present group of recent-onset

Table 4. Correlations between Corneal Nerve Fiber Length (CNFL) and parameters of spatial point pattern analysis.

Control (n = 47) Diabetes (n = 86)

r P value r P value

BP 0.767 <0.001 0.332 0.002

BPD 0.925 <0.001 0.402 <0.001

ESD -0.909 <0.001 -0.365 0.001

MINN -0.688 <0.001 -0.244 0.026

MINNSD -0.765 <0.001 -0.118 0.290

MENN -0.804 <0.001 -0.259 0.018

MENNSD -0.844 <0.001 -0.169 0.127

VCA -0.788 <0.001 -0.374 0.001

VCASD -0.869 <0.001 -0.275 0.012

CEAI 0.658 <0.001 0.197 0.072

MADL -0.654 <0.001 -0.220 0.043

MADPC -0.693 <0.001 -0.110 0.318

BP: number of branching points, BPD: branching point density, MINN: minimum nearest neighbor distances between branching points, MENN: mean

nearest neighbor distances between branching points, MINNSD: standard deviation of minimum nearest neighbor distances between branching points,

MENNSD: standard deviation of mean nearest neighbor distances between branching points, CEAI: Clark and Evans aggregation index, ESD: mean empty

space distance for a branching point pattern, VCA: Voronoi cell area, VCASD: standard deviation of Voronoi cell area, MADL: maximum absolute deviation

from complete spatial randomness based on L-functions, MADPC: maximum absolute deviation from complete spatial randomness based on pair-

correlation functions

https://doi.org/10.1371/journal.pone.0173832.t004
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type 2 diabetes patients [14]. Here we extend this finding by demonstrating that SPPA has the

potential to markedly improve the diagnostic performance of CCM in detecting early corneal

nerve fiber loss in diabetes by adding data on the non-random distribution pattern of CNBPs

to conventional CCM morphometry.

The properties of the various SPPA indices used herein and their different discriminatory

performance deserve comment. While BPs only reflect the total number of CNBPs in an

image, BPD represents a weighted measure due to its dependence on the actual size of the

image area and correlates better with CNFL which is calculated in the same context. MINN

and MENN are both calculated from adjacent CNBPs. While MINN measures the distance to

the single nearest CNBP only, MENN averages the distances to all adjacent CNBPs. Higher

SDs of these two parameters reveal irregular distance patterns caused by inhomogeneous spa-

tial distribution of CNBPs. In this study, both MINN and MINNSD were clearly more sensitive

indices in detecting increased early clustering in diabetic patients than MENN and MENNSD.

The empty space between CNBPs is being characterized by both ESD and VCA. ESD is cal-

culated using a distance transformation for all pixels of the image area [39]. VCA is based on a

Fig 1. A, B. Correlations between CNFL and MINNSD in control (r = -0.765; P<0.001) and diabetic subjects (r = -0.118; P = 0.290). C, D: Correlations

between MADL and MINN in control (r = 0.321; P = 0.028) and diabetic subjects (r = 0.320; P = 0.003).

https://doi.org/10.1371/journal.pone.0173832.g001
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tiling of the image plane, where the “area of influence” of each CNBP is computed and repre-

sented by a corresponding Voronoi cell [40]. Hence, these two methods handle empty space

from fundamentally different perspectives. ESD correlated better with CNFL than VCA in

controls in terms of empty space characterization, but VCASD can be used to characterize the

underlying spatial point pattern regarding irregular distances. We found similarly high rates of

abnormalities in the diabetes group for VCASD and MINNSD which can both be used in com-

bination with CNFL to improve the diagnostic performance of CCM.

Among the nearest neighbor indices, CEAI can practically be used for the distinction of the

three basic point patterns. A randomly distributed pattern shows CEAI = 1.0, regularity of a

point pattern is indicated by CEAI>1.0, while a clumped or clustered point pattern can be

assumed for CEAI<1.0 [25]. This parameter reveals that both controls and diabetes subjects

Table 5. Correlations between selected parameters of spatial analysis and age and measures of peripheral nerve function in the control group.

ESD MENNSD CEAI MADL MADPC

Age 0.294* 0.289 -0.467* 0.306* 0.511*

Median motor NCV -0.344* -0.312* 0.357* -0.251 -0.308*

Peroneal motor NCV -0.122 -0.144 0.394* -0.223 -0.340*

Ulnar sensory NCV -0-248 -0-165 0.442* -0.330* -0.383*

Sural SNAP -0.388* -0.367* 0.409* -0.340* -0.425*

Metacarpal VPT 0.467* 0.482* -0.453* 0.445* 0.536*

Malleolar VPT 0.341* 0.383* -0.493* 0.337* 0.515*

Warm TDT foot 0.397* 0.314* -0.319* 0.330* 0.392*

Cold TDT foot -0.283 -0.191 0.393* -0.211 -0.402*

*P<0.05.

NCV: nerve conduction velocity, SNAP: sensory nerve action potential, VPT: vibration perception threshold, TDT: thermal detection threshold, MENNSD:

standard deviation of mean nearest neighbor distances between branching points, CEAI: Clark and Evans aggregation index, ESD: mean empty space

distance for a branching point pattern, MADL: maximum absolute deviation from complete spatial randomness based on L-functions, MADPC: maximum

absolute deviation from complete spatial randomness based on pair-correlation functions

https://doi.org/10.1371/journal.pone.0173832.t005

Table 6. Correlation coefficients (r) for the relationships between parameters of spatial analysis in the entire study population (n = 133).

MINN MINNSD MENN MENNSD CEAI ESD VCA VCASD MADL

MINNSD 0.869*

MENN 0.858* 0.838*

MENNSD 0.654* 0.758* 0.887*

CE -0.009 -0.197* -0.330* -0.531*

ESD 0.600* 0.714* 0.782* 0.866* -0.698*

VCA 0.761* 0.793* 0.908* 0.854* -0.504* 0.928*

VCASD 0.644* 0.759* 0.807* 0.870* -0.603* 0.977* 0.944*

MADL 0.341* 0.531* 0.499* 0.713* -0.704* 0.862* 0.692* 0.837*

MADPC 0.309* 0.537* 0.559* 0.678* -0.745* 0.781* 0.705* 0.753* 0.726*

*P<0.05.

MINN: minimum nearest neighbor distances between branching points, MENN: mean nearest neighbor distances between branching points, MINNSD:

standard deviation of minimum nearest neighbor distances between branching points, MENNSD: standard deviation of mean nearest neighbor distances

between branching points, CEAI: Clark and Evans aggregation index, ESD: mean empty space distance for a branching point pattern, VCA: Voronoi cell

area, VCASD: standard deviation of Voronoi cell area, MADL: maximum absolute deviation from complete spatial randomness based on L-functions,

MADPC: maximum absolute deviation from complete spatial randomness based on pair-correlation functions

https://doi.org/10.1371/journal.pone.0173832.t006
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show rather clustered patterns, but it also indicates that patterns are more clustered in those

with diabetes. However, CEAI was relatively insensitive in discriminating between controls

and diabetes subjects and thus, may not be useful in detecting early increased clustering in dia-

betic patients in clinical practice. Since CEAI is calculated only from the number of CNBPs,

image area, and image border, this parameter does not consider the SD of neighboring dis-

tances which obviously detects early clustering of corneal nerve fiber loss more sensitively.

Furthermore, we employed second-order analysis that characterizes point patterns on a far

greater scale. L functions and pair-correlation functions display the spatial configuration of the

analyzed point patterns (random, regular or clustered) along with the respective radius r at

which these features occur. The L function includes all points within the radius r, while the

pair-correlation function only involves points between the radius r and a narrow annulus of

diameter d. Thus, the results of the L function at larger distances are always influenced by the

shorter distances within the point patterns. This may obscure the spatial association at any

given scale.

In order to quantify the departure from CSR, L functions and pair-correlation functions

were tested for CSR using the Maximum Absolute Deviation test. The resulting test statistic

provides a measure for this deviation, and the results showed that MADPC was slightly more

sensitive than MADL in discriminating between point patterns between control and diabetes

subjects. Better applicability of non-cumulative pair-correlation functions and considerably

lower reliability of cumulative L functions was already reported for the analysis of IENFs [35].

L functions and pair-correlation functions can be computed for point patterns of individual

images as well as for groups of images. Such pooled graphs provide additional information

since they show the average spatial configuration at group level. The pooled spatial patterns

can also be tested for group differences using the studentized permutation test. This test allows

the direct comparison of point pattern groups on the basis of their functional summary charac-

teristics without the need for extracting scalar characteristics from the functions and thereby

omitting valuable spatial information. In contrast to the slightly better performance of the

pair-correlation function in conjunction with MADPC, the studentized permutation test yields

better results for the L function. This apparent contradiction arises from the two different

approaches. MADL and MADPC are based on the deviation from CSR, while the studentized

Fig 2. A, B. Pooled L-functions (A) and pair-correlation functions (B). Both functions show a higher deviation from complete spatial randomness (CSR)

point patterns (blue line) in diabetic patients than in controls (red line). The respective Monte-Carlo envelopes (blue and red areas) in A are separated

for the most part, while they are slightly superimposed in B. Results from studentized permutation test confirm these visual findings. A significant

difference between the groups was noted for L functions (p = 0.026) but not for pair-correlation functions (p = 0.056).

https://doi.org/10.1371/journal.pone.0173832.g002
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permutation test directly compares the two-point pattern groups and investigates group differ-

ences without regard to CSR [31]. Nevertheless, departure from CSR and the distinctly higher

degree of clustering in diabetic subjects can be derived from the pooled graphs of the L and

pair correlation functions. In practical terms, the studentized permutation test yielded results

compatible with the categorical approach of classifying the rates of abnormally increased clus-

tering which gave preference to MADL over MADPC. Thus, we selected MADL for combina-

tion with CNFL to optimize the diagnostic performance of CCM.

Interesting observations were the strong correlations between CNFL and SPPA measures in

the control group as opposed to the diabetes group in which these correlations were consider-

ably weaker or even lacking. It is conceivable that these parameters are associated only if

CNBP clustering is within the normal range. In contrast, significant clustering may not be ade-

quately reflected by reduced CNFL. The weak correlation of SPPA measures with CNFL in the

diabetes group underlines the usefulness of SPPA as an additional CCM measure largely inde-

pendent of the conventional ones.

A major strength of this work is the inclusion of a comprehensive array of SPPA parameters

using state of the art methods of functional statistics applied to a relatively large and homoge-

nous study population with recently diagnosed type 2 diabetes. A limitation is the relatively

small control sample and the cross-sectional nature of this study so that the predictive value

and further course of the described increased spatial clustering cannot be determined at pres-

ent. Finally, selection bias cannot be excluded, since patients and controls included in this

study may not be representative of the general population.

Conclusions

The present study suggests that the detection of early corneal nerve fiber loss in recent-onset

type 2 diabetes patients is considerably fostered by SPPA as a novel technique to analyze

CNBPs added to conventional CCM morphometry. This approach yields a markedly increased

detection of early pathology with a high rate of reduced CNFL and/or increased clustering cor-

neal nerve fiber loss in 28.6% of diabetes patients compared with 2.1% of controls. The precise

temporal sequence of enhanced clustering in relation to the incidence, severity, and progres-

sion of DSPN remains to be established in prospective studies.
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22. Allgeier S, Eberle F, Köhler B, Maier S, Zhivov A, Bretthauer G. Mosaicking images of the corneal sub-

basal nerve plexus using hierarchical block-based image registration. Biomed Tech (Berl) 2012; 57

(suppl 1).

23. Delaunay Boris N. Sur la sphère vide. Bulletin of Academy of Sciences of the USSR 7 1934; 6: 793–

800.

24. Voronoi G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J
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