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Abstract
The Fresnel diffraction phenomenon referred to as Poisson’s spot or spot of Arago has, beside its
historical significance, become relevant in a number offields. Among them are for example
fundamental tests of the super-position principle in the transition fromquantum to classical physics
and the search for extra-solar planets using star shades. Poisson’s spot refers to the positive on-axis
wave interference in the shadowof any spherical or circular obstacle.While the spot’s intensity is equal
to the undisturbed field in the planewave picture, its intensity in general depends on a number of
factors, namely the size andwavelength of the source, the size and surface corrugation of the
diffraction obstacle, and the distances between source, obstacle and detector. The intensity can be
calculated by solving the Fresnel–Kirchhoff diffraction integral numerically, which however tends to
be computationally expensive.Wehave therefore devised an analyticalmodel for the on-axis intensity
of Poisson’s spot relative to the intensity of the undisturbedwavefield and successfully validated it
both using a simple light diffraction setup and numericalmethods. Themodel will be useful for
optimizing future Poisson-spotmatter-wave diffraction experiments and determining underwhat
experimental conditions the spot can be observed.

1. Introduction

One of themost tell-tale properties of waves in general is diffraction: the deviation from rectilinear propagation
in the presence of obstacles due to interference [1]. In the history of science the phenomenon has helped to reveal
thewave-character of light [2] andmaterial particles such as electrons [3, 4], helium atoms and hydrogen
molecules [5], andmore recently C60molecules [6] aswell as large bio-molecules [7] exceeding 10 000 amu in
mass. These latest diffraction experiments have sparked renewed interest in the particle-wave duality and the
role of quantumdecoherence [8] in the quantum-to-macroscopic world transition [9–11].

Diffraction in the Fresnel-regime, as the Talbot–Lau interferometers used in [7] belong to, is particularly
useful in the determination of wave-nature, due to the possibility to observe diffraction fromobstacles that are
much larger than thewavelength of the incident wave. Amost prominent effect in the Fresnel diffraction regime
is Poisson’s spot, also sometimes referred to as spot of Arago. It refers to the bright interference spot that can be
observed in the shadowof an object with a circular rim such as a circular disc or sphere [12] (for brevity we call it
a disc fromhere). Its prediction by SDPoisson and subsequent surprising observation byDFJ Arago established
thewave-nature of light at the beginning of the 19th century. The intensity of Poisson’s spot as a function of
experimental parameters is the subject of this article.

As stated inmany textbooks [13], for an ideal point source at infinity (planewave) the on-axis intensity of
Poisson’s spot is equal to that of the undisturbedwave front (at equal distance from the source). This is referred
to as unit relative intensity I 1rel = in this article. Closer to the obstacle the ideal relative intensity is I b

b Rrel
2

2 2=
+

,

whereR is the radius of the disc and b is the distance between disc and detector (see figure 1) [12].
In practice the intensity of Poisson’s spot is affected by a number of experimental factors. These include

beside the distances g and b, the source size, the diameter of the disc, any additional blocking due to support
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structure and edge corrugation of the disc.Why the last of these parameters influences the spot intensity can be
best understood using the Fresnel zone concept. The spot intensity results from the annular Fresnel zone
adjacent to the rimof the disc [1]. The radial phase profile of thewave passing through this zone depends on the
radius of the rim. A variation of the radius of the order of thewidth of the adjacent Fresnel zone thus results in
destructive interference [14]. Finally, all the aforementioned factorsmust be considered in relation to the
wavelength of thewaves under consideration. Their effect will be discussed in detail in this article.

In the case ofmatter-waves, phase shiftsmay be incurred from interactions such aswith the electro-
magnetic field, which also affect the intensity of Poisson’s spot. For example, the application of an electric field in
awire-interferometer reduces the fringe period in the observed interference pattern [15]. Furthermore, the
quantum-mechanical phase of neutralmatter-waves is also affected in the vicinity of uncharged diffraction
obstacles. This is due to theminute quantum-mechanical fluctuation of electric dipoles and the resulting
attractive Casimir–Polder potential. These contributions to the intensity of Poisson’s spot are beyond the scope
of this article. The effect of the Casimir–Polder potential was covered in detail formatter waves byNimmrichter
et al [16, 17] and in one of our previousworks [14]. A Poisson spot experiment realized formatter-waves
utilizing a supersonic-expansion beam composed of deuteriummolecules [18]did not show any noticeable
effect in this respect, but is expected to become important in the case ofmore polarizable beam species like for
example C60molecules and even indium atoms [19]. The Poisson spot therefore can be used tomeasure
interaction potentials of this kind.

Any ellipticity or an equivalent rotation of the disc are negelected in themodel presented here. They both
result in a lateral shape of the Poisson spot corresponding to the evolute of the elliptical diffracting rim, aswas
found byCoulson andBecknel [20, 21].

In addition to the already indicated applications, namely the study of thewave-particle duality for objects of
increasing size and themeasurement of particle–surface interaction potentials, a number of further applications
have been suggested in the literature. For example, the characterization of wave-front aberrations in annular
high-energy-laser systems using the transverse intensity distribution of Poisson’s spot was proposed byHarvey
and Forgham [22]. Also among them is the characterization of surface corrugation and shape of balls, as used for
example in ball-bearings. In particular, Kouznetsov and Lara [23] proposed the use of the distance at which the
Poisson spot vanishes behind the obstacle as ameasure for its surface corrugation. Themodel we propose here
improves upon this result by describing the decay of the Poisson spot as a function of distance behind the
obstacle with the corrugation as the only free parameter. The extinction of Poisson’s spot is also of relevance in
the search for extra-solar planets, where a petal-shaped star shade has been proposed as part of an external
coronagraph aiming at their detection and spectroscopic characterization [24]. Other applications include the
precise and rapidmeasurement of the position of inertial fusion energy targets [25] and particle velocities in
fluids [26]. Furthermore, the Poisson spot has been used in lithography to fabricatemicrotube arrays [27, 28], for
which its shaping via incomplete spiral phasemodulation [29] has interesting prospects.

This article is structured into fourmain sections. In thefirst onewe present the analyticalmodel as well as its
derivation and limitations. In the secondwe describe the numerical simulation used to calculate the diffraction
images in the detection plane and howwe derived from them the relative intensity of Poisson’s spot. In the third
section, the light diffraction experiment, whichwe used to further validate the analyticalmodel is reported on.
Finally, the results from the analyticalmodel, the numerical simulation and the experiment are compared in a
separate results section. All is followed by a discussion and a conclusion.

Figure 1. Schematic indicating the parameter names used for the analyticalmodel of the relative intensity of Poisson’s spot, shown
here in orange, where the dashed optical axismeets the image plane. The diffraction obstacle of radiusR, shown in a bluish shade, is
here as an example supported by n 4supp = bars each ofwidthwsupp and corrugated using a rectangular function of amplitude corrs as
described in the text. The ideal demagnified source image ofwidthwi is shown in the image plane, in addition to the outline of the
shadow that would be cast by a point source of negligible wavelength.
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2. Analyticalmodel

In this sectionwe derive an analytical formula valid in the Fresnel regime for the relative peak intensity of
Poisson’s spot in the presence offinite spatial coherence and imperfections of the diffraction obstacle. The
starting point for the analyticalmodel is the lateral intensity distribution of Poisson’s spot from a source of plane
waves (point source at infinite distance) in the Fresnel regime, which can be expressed in terms of a zero-order
Bessel function of thefirst kind J0 [22]:
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Here, r x y2 2= + is the radial lateral coordinate in the detection plane. r is assumed to be small.wp is the
full-width at half-maximum (FWHM) of the plane-wave Poisson spot. The latter can be expressed in terms of
the radius of the discR, thewavelengthλ at which the source emits, and the length b, which is the distance from
diffraction obstacle to detection plane asmentioned before. The Fresnel approximation requires that Rl 
and g b R,  . The fraction in front of the Bessel function is thus very close to 1b

b R

2

2 2 »
+

andwewill neglect it

therefore fromhere on.Note that we assumed incoming planewaves in this first step and thus the source
distance g to be infinite.We therefore do expect deviations fromourmodel for small values of g.

The influence of the partial spatial coherence of the source, i.e. the sourcewidth, results in amuchmore
significant variation of the relative on-axis intensity. The derivation of an analyticalmodel that reflects this
variation (see equation (2)), and thus gives the correct dependence on g (g larger than a fewdisc radii), is
presented in the following paragraphs. In brief, we first note that off-axis source points result in 2d point-spread
function images equal to the planewave Poisson spot given in equation (1), but with an offset from the optical
axis. The extended-source Poisson spot corresponds to an incoherent super-position of these point-spread
function images, whichwe express using a 2d convolution integral. For on-axis points the integral has an exact
solution.

First the lateral offset of the off-axis point-source Poisson-spot images in the detection plane can be
explained as follows. The point-source Poisson spot imageswill be at the exact center of the shadow cast by each
off-axis point-source. It is therefore located at the intersection point of the detection plane and the line going

through source point and disc center, giving themagnification factor b

g
. The extended-source Poisson spot

therefore results in amagnified or de-magnified image of the source depending on the value of this factor (see
also [12]).

The lateral intensity distribution Ixs(r) of Poisson’s spot from a source of diameterws is then given by a
convolution of Ipw(r)with the function Ii(r) defined below. The latter represents the ideal image of the source
thatwould be formed by a delta-function as point-spread-function.We assume that the source emits evenly
from a circular area of diameterws and take into account that the self-image formed in the detection plane is

magnified by the factor b

g
as explained above andwould be also the case for a thin lens in geometrical optics:
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= is the FWHMof the ideal source image. The Poisson spot Ixs(r) from a spatially incoherent

source is thus characterized by the following convolution integral in polar coordinates:
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Weare interested in the peak intensity at r=0 and can therefore evaluate the integral as follows [30]:
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This surprisingly simple equation forms the centerpiece of the analyticalmodel and shows that I xsrel, is
independent of b for an extended uniform source and ideal spherical obstacle. For other axially symmetric
shapes, such as that of rectangular obstacles, which also result in an on-axis intensity enhancement, a numerical
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approach as described in section 3must be used. The Bessel-functions in equation (2) can be evaluated directly
inmostmathematics software packages to arbitrary precision, but for completeness we note the following
asymptotic form for large ratios w

w
i

p
[30]:
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2 2
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If we define the transverse coherence length lc of the source of diameterws at a distance g, in the usual way,

namely by lc
g

w2 s
= l

, it is clear that the intensity of Poisson’s spot is directly related to the degree of coherent

illumination of the disc:
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Thus, to observe the intensity of Poisson’s spot to be as large as if the discwas not there, i.e. I 1xsrel, » , one
can as a rule of thumb state that the transverse coherence of the beam incident on the discmust be approximately
equal to the diameter of the disc.

Furthermore, it shouldbenoted that if the sourcewidth exceeds the radius of the disc, i.e w Rs > , the
geometricwidth ofPoisson’s spotwimaybecome larger than the geometrical shadow (umbra shadow)width
w R R w2 2u

b

g s= + -( ),making the observation ofPoisson’s spot increasingly difficult. To ensure that w wi u<
wemust have

b
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w R
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For largewavelengths thewidth of Poisson’s spotwill be even larger and the shadow even narrower than
assumed for this purely geometrical requirement, restricting its visibility to even smaller b/g.

Beside partial spatial coherence a deviation of the shapeof thediffractionobstacle froma circular cross-section
reduces the relative intensity ofPoisson’s spot. The experimental parameterwe consider in this respect is the edge
corrugationof the disc. Its effect on theon-axis diffraction intensity canbebest understood by considering the
vibration curve [1]depicted infigure 2. It is a visual representationof theFresnel–Kirchhoff integral shown in
equation (8)below.The resulting phasorA(P) (pointPon theoptical axis) is composed of the infinitesimal phasors,
each corresponding to a particular radius in the integration plane, thatwhen joined head-to-tail follow the
vibration curve. The endof the spiral is located at pointZ∞, resulting in the expected unit amplitude ofA(P), if
none of the incidentfield is blocked.However, if part of the integrationplane is blocked by a discwith origin at the
optical axis, the resulting phasor starts at thepoint on the vibration curve that corresponds to the radius of the rim
of the disc, instead of the pointZ0.

The edge corrugation can be thus accounted for by an averaging of the phasors that correspond to the
different disc radii. A rotation of the phasor by 180q =  corresponds to a change in the radius by one Fresnel
zone, which results in a near complete cancellation of the amplitude or intensity of Poisson’s spot if the two
phasors are averaged. Thewidth of a Fresnel zone starting from a particular radiusR is approximately given by

w R R
g b

g bfz
2= + -l

+( )
.We assume fromhere that the corrugation is less than thewidth of the adjacent

Fresnel zone, and that the intensity is negligible for corrugation of larger amplitude. The latter is not accurate for
ideally shaped rectangular corrugation profiles, but we aremore interested infinding aworst-case analysis for
random edge corrugation. Neglecting the change in length of the phasors due to the spiral shape of the vibration
curve, the averaging of the phasors can be accomplished by averaging the projections of the phasors in the
direction of the resulting phasor.

The special case of a squarewave corrugationprofilewith a peak-to-peak amplitude R Rcorr max mins = - and
sufficiently small period is depicted infigure 2. The phasorsAmin andAmax correspond to thepart of the corrugated
edgewith radiiRmin andRmax, respectively. As long as wcorr fzs < , the resulting phasorAcorr is then rotated half-
way between the two and its length it thus given by A Acos 2 cos 2min maxq q»∣ ∣ ( ) ∣ ∣ ( ). A rotation of the phasor by
q p= corresponds to a change in the radius bywfz. For simplicitywe assume that thephase angle of thephasors is
approximately proportional toR (more preciselywehave that phase∝R2), andwe can thuswrite

A A
w
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2
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p s
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Since themeasured intensity at point P corresponds to the square of the length of the resulting phasor, the
attenuation due to rectangular-profile corrugation can be accounted for by the following factor (with
attenuationwe here refer to the ratio between the on-axis intensity behind a corrugated disc and the on-axis
intensity behind a disc of perfect circular shape):
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Finally, we take into account that inmost realizations of the Poisson spot experiment the disc needs to be
fixed in space by some type of support structure. In themodel we propose, we assume the use of a number nsupp
of straight radial support bars each of widthwsupp. Together they block a distance n wsupp supp· along the
circumference of the disc. Againwe use the vibration curve and the concept of phasor averaging to derive the
effect on the on-axis intensity. If we set the phasors corresponding to blocked parts of the disc’s circumference to
zero, then it is clear that the attenuation is proportional to the ratio of unblocked circumference to the total
circumference.We thus include the following factorCsupp in themodel with a proportionality constant csupp.

C
c n w

R
1

2
.supp

supp supp supp

p
= -

Wedo expect a certain dependence of csupp on the Fresnel number of the particular setup since the Fresnel
zones at larger radii are blocked at decreasing proportions (see section 5.4).

The complete analyticalmodel for the relative on-axis intensity of Poisson’s spot is thus given by:

I g b w R w n I C C, , , , , , , . 7s rrel,model corr supp supp el,xs corr suppl s =( ) · · ( )

The equation can be evaluated at a small fraction of the computational expense of the numerical simulations
described below. Its validity is going to be tested in the following two sections.

3.Numericalmethods

The intensity of Poisson’s spot can be calculated directly by a numerical evaluation of the Fresnel–Kirchhoff
diffraction integral, which can be used to express the amplitude and phase at a point P in the followingway:
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Here, ρ and θ are the polar coordinates in the integration plane as indicated infigure (3). The binary function
g ,r q( ) evaluates to zero for blocked parts of the integration plane and to one for transparent regions. The
formulationmakes use of the Fresnel approximation, which implies that the inclination factor 1 cos1

2
c+( ( ))

was neglected and the path lengths used to calculate the phase only take into account up to square terms in the

Taylor expansions of g g 2 2r= + and b b2 2r= + . Furthermore, we assume that for the calculation of
arbitrary points P¢ in the image plane g g= ¢ and b b= ¢. These are good approximations as long asχ is small,
which corresponds to the parameter spacewe are interested in here.

The surface integral is solved numerically following the approach discussed in [31] and summarized in
figure (3). Amore efficient and stable numerical solutionwas found byNimmrichter [16] for the special case of
perfectly round discs that usesWigner functions andBabinet’s principle, but is not easily adapted to discs with

Figure 2.Vibration curve. This spiral-shaped graph is often used in literature to visualize the result of the Fresnel–Kirchhoff integral
(equation (8)). Here we use it in particular to explain the corrugation factor defined in equation (6). Points along the spiral starting
from the origin (Z0) correspond to increasing radiiR in the integration plane. For a blocking circular disc the phasor points from the
point on the spiral corresponding to the radius of the disc inwards to the center of the spiral (pointZ∞). PointZ1 corresponds to the
radius of thefirst Fresnel zone. The phasor resulting fromblocking the source with a discwith edge corrugation can be derived by a
weighted averaging of the phasors that correspond to the range of disc radii as explained in the text.
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support structure and/or corrugation. A direct approach to solving the surface integral, for example by
summing phasors corresponding to all pointsQ in the integration plane turns out to be numerically unstable. In
the numerical simulation presented here, for each point P¢ in the point-source diffraction imagewe sumover
N 19997=q line integrals along rays that simplify to a sumover asmany terms as there are intersection points of
the raywith the disc or support structure. The number Nq was chosen to be a prime number in order to avoid
artificial fringes from symmetry in the numerical evaluation. The number results in aminimal resolution of
about 0.3 mm across an integration plane of about 1 mmwidth. This is enough to resolve theminimal Fresnel
zonewidths in the simulated experiments of a fewmicrometer. Unlike in [31], wefind the intersection points of
the rays (shown in blue)with the edges of the blocking structure (disc/sphere and support bars) analytically and
not using the search algorithmproposed there.We implemented the algorithm in theC programming language
and the required computation time for its execution ranged from140 to 250minutes per complete diffraction
image (using a single core of a two-CPUQuadcore AMDOpteron 2376 system equippedwith 64 GBRAM).

The edge corrugation ( corrs )was not taken into account in these calculations, to allow for acceptable
computation times.We studied the effect, however, in the experiments described in the next section. To account
for the size of the source each computed point-source diffraction image is convolutedwith the demagnified
image of the source of widthwi using aMatlab program. The outer aperture was assumed to be of infinite radius
in the simulation, while in the experiments it was 5 mm. Its proper inclusionwould unnecessarily increase the
minimal resolution required in the diffraction images, as the additional oscillations it introduces to the point
source diffraction images are washed out after convolutionwith the source image. Support structure bars of
varying number andwidthwere taken into account in the calculations. Therefore, the calculation of the point-
source diffraction image could not be simplified by only calculatingA for points P¢ along a radial line, with the
full image deducible from axial symmetry. The computed images for supported discs thus covered one half of
the full image plane andwere composed of 1001 by 501 pixels. Before the source image convolution the
remaining half-image could be deduced frommirror symmetry sincewe suitably arranged the simulated
support bars.

4. Experimentalmethods

In order tofind any possible errors of the analyticalmodel and the simulation described above, wemeasured the
relative intensity of Poisson’s spotwith the setup shown schematically infigure 4. It was realized using
components fromThorlab’s 30 mmcage system. Three light emitting devices (LED) of typeCREEXP-E2 and
colors red (XPE-BRD-L1-0000-00801 specified dominant wavelength (DWL) range 625 5( ) nm), green
(XPE-BGR-L1-0000-00F01 DWL 527.5 7.5= ( ) nm), and blue (XPE-BBL-L1-0000-00301
DWL 475 10= ( ) nm)) emitted light into a viewing angle of about 130. An aspherical lens (Thorlabs
C671TMEA, f=4.02mm) then focused the divergent beamof light onto a ground glass screen. Adjacent to the
ground side of this glass slide (whichwas facing away from the LED)we attached a thinmetal sheet with a round

Figure 3. Illustration for the numerical solution of the Fresnel integral in equation (8) that gives thewave amplitude at pointsP or P¢
due to a source at point S. The integral amounts to a summation of phasors corresponding to paths SQP for all pointsQ in the
integration plane that are not blocked by the disc/sphere and its support structure. For an arbitrary point P¢ in the image plane the
origin of the integral is shifted to O¢. The surface integral is then solved in polar coordinates and it thus amounts to a sumover line
integrals along Nq radially evenly spaced rays that originate at point O¢ (indicated as blue arrows). Each of these line integrals reduces
to a sumof phasors evaluated at the intersection points between each ray and the edges of the blocking structure.
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pinhole aperture of different diameters (see table 1 and supplementary information formicroscopy images is
available online at stacks.iop.org/NJP/19/033022/mmedia). The spatial coherence of the light emitted from
the pinhole is thus determined by the pinhole’s dimension, as long as the image of the LED source projected onto
the ground glass screen is larger than the pinhole, whichwas the case for our experiments. In order to block light
not passing through the pinhole the components weremounted in a single Thorlabs cage plate and remaining
stray-light blockedwith black Plasticine-typemodeling clay. Laboratory background-light was suppressedwith
a cardboard encapsulation. Reflections from cage components and other surfaces was reduced by painting them
with black permanentmarker aswell as a varying amount of aperturesmade fromblack cardboard.

The thus spatially filtered light was incident onto a series of different discs varying in disc diameter, disc-edge
corrugation and supporting structure. The discs were laser-cut in-house from thin (0.05 mm thickness) sheets of
stainless steel using a picosecond laser. The discs were supported by two to four support bars inside 5 mm
diameter pinholes (see table 2,figure 5 and supplementary information for a complete collection ofmicroscopy
images stacks.iop.org/NJP/19/033022/mmedia).

The shadow intensities within the shadow cast by each disc was recordedwithout imaging optics using a
monochromeUSBCMOS camera (ThorlabsDCC1545M). The camera’s sensor chip consisted of an array of
1280-by-1024 pixels each approximately 5.2 mm inwidth. It thus provides an imaging area (6.6 mmby 5.5mm)
large enough to capture the light directly incident from the source and at the same time high enough resolution
to image Poisson’s spot at the center of the disc’s shadow. The higher sensitivity provided by EMCCDor sCMOS
chipswould allow for higher precisionmeasurements in the future.Here a custom-programmedNational
Instruments LabviewVirtual Instrument was used to capture and average image-data for sufficient sensitivity.
For each recorded image,first the exposure time andmaster gain (the latter only for the longer source-to-
detector distances)were adjusted such that the undisturbed intensity corresponded to about 70%of the full-
intensity level. To reduce noise, 100 frameswhere accumulated and averaged for each setting. Furthermore, for
each of these averaged images, a background image recordedwith a black-cardboard shutter in place, using
equal exposure time and averaging, was subtracted. The shutter was located approximately half-way between
source and disc, to be able to account for asmuch stray light from the source as possible.

Each recorded diffraction imagewas analyzed using aMatlab script in the followingway. First we
determined a rough center location of the disc’s shadow in each image by finding theminimumof a suitably

Figure 4.Experimental setup. An aspherical lens focuses themonochromatic light from ahigh-brightness light-emitting device onto a
ground glass screen. The image of the light emitting surface of the LED formed there is partially blocked by a pinhole aperture,
defining the sourcewidth. The beam emitted from this aperture was then used to illuminate different circular discs, whichwere laser-
cut frommetal sheet. The shadow cast by the disc is recorded using theCMOS chip of a camerawithout any objective. Tomeasure the
effect of source size, disc diameter, support structure, andwavelength on the intensity of Poisson’s spot the source distance gwas
varied and the imaging distance b keptfixed, while the influence of the disc’s edge corrugationwasmeasured by keeping g constant and
varying b.

Table 1.Parameters of the stainless steel pinhole apertures (named
‘source aperture’ infigure 4) used in the experiment. The given
errors aremainly due to deviations from circularity.

Aperture ID Diameterws (μm) Absolute errorΔws (μm)

50 55.7 5.4

100 104.1 5.5

200 208.8 5.4
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convoluted version of the same image. The precise center location of the Poisson spot in each imagewas
computed by fitting a two-dimensional error-function-basedmodel to the spot (see figures 3-18 in
supplementary information). The Poisson spot intensity IPSwas then taken as the intensity recorded by the pixel
of the CMOS camera closest to this center location (see columns ‘Ipsmark’ of tables 3-18 in supplementary
information for pixel location of each image).

Next we determined the unobstructed intensity I0 in the detection plane, whichwe need to calculate the
relative intensity I I Irel PS 0= . Tomeasure the unobstructed intensity for each data point wemasked any regions
in the recorded images that contained shadows or intensity oscillations due to diffraction (see columns ‘I0mask’
of tables 3-18 in supplementary information). The unobstructed intensity we recorded as the average value of the
unmasked image pixels. The uncertainty of I0 we estimate to be plus andminus one standard deviation of the
intensities of the unmasked pixels. For the uncertainty of IPS we assume the same relative uncertainty as that of
I0. In the data sets used to determine the effect of corrugation andwavelengthwe have additionally removed
varying background intensity by subtracting theminimum intensity valuewithin the shadow region fromboth
IPS and I0.

Fixed distances between pinhole and free-standing disc (object distance g) aswell as between free-standing
disc andCMOS chip (image distance b)weremeasuredwith a hand-held caliper (Hommel, 0.05 mmreading
precision), while the variable one of the two distances wasmeasured and set with an attached digital caliper
(MitutoyoAbsolute 572-211-20, 0.01 mmreading precision, 0.03 mmaccuracy).

The dimensions of the free-standing disc samples aswell as of the pinhole aperture used to restrict the source
sizewere determined fromopticalmicroscopy images. The distances between pixels in themicroscopy images
were determined using a calibration scale (KeyenceOP-51491). Accurate values for the diameter and edge
corrugation of the discs we derived from themicroscopy images using aMatlab script. The script first detects the
edge of the disc using a 2d-convolution based algorithm and thenfinds the center pixel byminimizing the
standard deviation of distances to the disc edge. Themean of the distances of the edge from this pixel less one
standard deviation is taken as the radius of the discR and the disc’s edge corrugation corrs as twice the standard
deviation of those distances.

Table 2.Parameters of the stainless steel discs used in the experiment.

Disc ID RadiusR (μm) corrs (μm) wsupp (μm) nsupp

A 496.1 1.68 198.1 2

B 495.8 1.91 27.8 3

C 496.8 2.54 52.5 3

D 486.3 4.95 49.3 3

E 494.1 2.52 102.3 3

F 495.9 1.94 199.1 3

G 495.9 1.48 197.5 4

H 146.4 1.80 47.9 3

I 246.7 1.74 48.7 3

J 256.3 5.94 46.0 3

Figure 5.Opticalmicrographs in transmissionmode of two of the stainless steel discs used in the experiments (discC (left) and discD
(right) in table 2). Disc ‘D’ (as well as disc ‘J’)was fabricatedwith intentional disc-edge corrugation for the verification of the
corrugation factor used in the analyticalmodel (see equation (6)).
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5. Results

Wehavemeasured the relative intensity of Poisson’s spot for different experimental parameters and compare
the resulting data series with both the proposed analytical and numericalmodels in the following subsections.

5.1. Sourcewidth
In the data sets shown infigure 6we explored the dependence of Irel on the diameter of the approximately
circular source pinhole aperture. For this purpose the apertures whose different diameters are noted in table 1
were used. For each aperture Irel wasmeasured as described in the previous section as a function of the source
distance g. Both analytical and numericalmodel fit well to themeasured datawith some exceptions. These are
discussed in the following paragraphs.

At large distances g especially the small source data set starts to deviate to lower intensities than predicted by
themodels. This occurs when the Poisson spot is of similar or smaller width than the pixel width of the camera.
The pixel readout is then expected to be lower, since only part of the pixel area is lit with the full peak on-axis
intensity to bemeasured. For example, for the dataset corresponding to pinhole ‘50’ at a distance of g=126 mm
the expected imagewidth is w 11.7 mi m= and the FWHMof the point source Poisson spot is w 5.9 mp m= ,
which are both only slightly larger than the pixel width of the camera of 5.2 mm .

At distances g below about 20 mman increase in the relative intensity can be seen in all three data sets. This
we attribute to additional background signal from reflections inside the tubingwhen the source is at close
approach to theCMOS camera. The subtracted background images could not fully remove this effect, since the
central beamblocked by the shutter flag also contributes to reflections inside the black tubing between disc and
camera. The latter effect is particularly strong for small source distances since the divergence of the beam,which
is determined by the outer aperture of the disc sample, is largest there, and the collimated beam effectively lights
amuch larger area than theCMOS chip alone.

The simulation data points confirm the analyticalmodel well. The only deviation between the twomodels
occurs at small g, where the attenuating effect of edge corrugation starts to show in the analyticalmodel. As
mentioned above, the latter was not accounted for in the numerical simulation. For the smallest aperture at large
g the numerical data points show steps, which are due to the limited lateral resolution of the simulated point-
source diffraction images (about 0.3 mm at g= 133.6mm).

5.2.Disc radius
Infigure 7we compare the relative intensity of Poisson’s spot for three different disc sizes. For the smallest disc
diameter of 0.3 mmwe find the best correspondence to the numericalmodel even at large distance g. The large
value of the FWHMof the point-source Poisson spot expected for that data set (w 39.1p m= m), ensures that the
measurement is not limited by the resolution of theCMOS camera (5.2 mm pixel size) to the same extend as in
the pinhole ‘50’ sourcewidth data set. The resolution of the numerical point-source diffraction image (which
was scaled in the range of 0.29–0.09 mm according to thewidth of the geometric shadow)was sufficient aswell.

Table 3.Overview table of the performed diffraction experiments. The uncertainty in g and b is about
0.5 mm.Column ‘Figure’ is used to indicate the graphs where the data sets are displayed. Column ‘F’ gives

the corresponding Fresnel number range F R g b

g b

2
=

l
+( , which corresponds to the number of Fresnel zones

blocked by the disc).

# Figure λ (nm) Aperture Disc g (mm) b (mm) F

1 6 625±5 ‘50’ B 15.9–125.9 29.5 38–17

2 6, 8, 9 625±5 ‘100’ B 15.9–125.9 29.5 38–17

3 6 625±5 ‘200’ B 15.9–125.9 29.5 38–17

4 7 625±5 ‘100’ C 15.9–125.9 29.5 38–17

5 7 625±5 ‘100’ I 15.9–125.9 29.5 9–4

6 7, 9 625±5 ‘100’ H 15.9–125.9 29.5 3–1

7 8 527.5±7.5 ‘100’ B 15.9–125.9 29.5 45–20

8 8 475±10 ‘100’ B 15.9–125.9 29.5 50–22

9 9 625±5 ‘100’ A 15.9–125.9 29.5 38–17

10 9 625±5 ‘100’ E 15.9–125.9 29.5 38–16

11 9 625±5 ‘100’ F 20.9–125.9 29.5 32–17

12 9 625±5 ‘100’ G 15.9–125.9 29.5 38–17

13 11 475±10 ‘100’ I 60.6 4.6–46.6 30–5

14 11 475±10 ‘100’ J 60.6 4.6–46.6 32–5

15 11 475±10 ‘100’ C 60.6 2.8–64.8 194–20

16 11 475±10 ‘100’ D 60.6 4.6–66.6 186–19
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As the de-magnification of the source image increases with g and the smaller value of w 11.7 mp m= for the
1 mmdisc data set, its deviation from the numerical data points is themost significant at large values for g.

A comparison between the graphs of the analytical and the numericalmodel shows that the assumed value of
the constant c 1.5supp = slightly underestimates the dampening effect of the three support bars. Note also that
the experimental data at small g for the 1 mmdisc better corresponds to the numerical simulation. This can be
explained by an overestimate of the effect from surface corrugation in the analyticalmodel, which could be in
part due to the square-wave type shape of the corrugation assumed there. Another likely explanation is
unaccounted for background due to the close vicinity of the source. As shown in section 5.5, the effect of
corrugation is well described using the analyticalmodel, especially if additional care is taken to remove
background. Therefore we deem the latter explanation to be correct.

5.3.Wavelength
To good approximation the relative intensity of Poisson’s spot is directly proportional to thewavelength (see
equation (3)) if w wi p is large. Infigure 8we compare experimental data recorded using three different source
wavelengths and compare it to the numerical and analyticalmodel. The correspondence is good in general. The
relative intensity is expected to deviate from the approximate linear dependence on g in the formof oscillations.
At the largest peak of these oscillations at about g 60 80 mm= – small reductions in themeasured intensities
compared to themodels can be noted. This we attribute to the fact that these oscillations are associatedwith only
part of the source image formed by Poisson’s spot, and thus it would require a higher resolution detector to
reproduce them in the experiment (see alsofigure 10).

The deviation between numerical and analyticalmodel ismore pronounced for the short wavelength data
set. This is expected, since the disc edge corrugation, which is not accounted for in the numerical simulation, is
most significant for the blue-LED light. The small deviation to larger intensity values at small g is equally visible
in the three data sets and ismost likely due to unaccounted for background as in the data sets discussed before.

5.4. Support structure
The effect of width and number of radial support bars on Irel is examined infigure 9. The deviation of the
experimental data from the dashed lines (equation (2)) increases for an increasing amount of blocked disc
circumference, as expected. The analyticalmodel explains the reduction in Irel well as long as a variation in the
proportionality constant csupp in the interval 1.0, 2.0[ ] is allowed. The camera resolution and background related
deviations that also show in these data sets at the edges of the source distance rangewe have discussed already
above. The two experimental data sets recordedwith discs supported by an even number of support bars both
show a trend toward higher intensities within the limits of the analyticalmodel, but to the surprising extend that

Figure 6.The data points show the relative intensity Irel of Poisson’s spotmeasured in experiments 1–3 in table 3, where the source
diameter was varied using apertures with ID ‘50’, ‘100’ and ‘200’. The error bars show the uncertainties estimated using the standard
deviation in the readout of the pixels used tomeasure the unobstructed intensity I0. Beside the experimental data the corresponding
results from the analyticalmodel and the numerical simulation are shown: the dashed lines in the respective colors are plots of
equation (2) using themeasured/datasheet parameters. The fullmodel of equation (7)with a support proportionality constant
c 1.5supp = is displayed using solid lines of the respective color. The shaded regions about the solid lines depict the variation in
equation (7) for the interval c 1.0, 2.0supp = [ ]. The small squared dots give the values of Irel as derived from the numerical solution of
Fresnel’s integral as described in section 3. These take into account the effect of support bars but not edge corrugation corrs .
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the relative intensitiesmeasured behind disc ‘G’ exceed thosemeasured behind disc ‘F’. The relative intensities
measured behind disc ‘A’ exceed those behind disc ‘E’ up to approximately g=100 mm.However, since this
trend is not reproduced by the numerical simulationwe attribute this to a systematic error possibly caused by
additional background.

The effect of the support structure on the shape of Poisson’s spot can be seen infigure 10, wherewe compare
two-dimensional images fromboth experiment and numerical simulation in an exemplary fashion. A complete
set of two-dimensional diffraction images corresponding to the on-axis relative intensity data points in
figures 6–9, 11 and 12 can be found in the supplementary information.

The sensitivity of the support structuremeasurements can be improved in the future by using smaller disc
radii (see figure 7), whichwas not done here due to the increased difficulty in accurately fabricating the smaller
free-standing discs.

5.5.Disc edge corrugation
The accuracy of the proposed factor accounting for the effect of disc edge corrugation on the relative intensity of
Poisson’s spot (equation (6))we investigated in the data sets presented infigures 11 and 12.Note that in contrast

Figure 8.The data points show the relative intensity Irel of Poisson’s spotmeasured in experiments 2, 7 and 8 in table 3, for which all
parameters were the same except for thewavelength of the light used. The red, green and blue LEDwere used, as is also indicated by the
graph colors. For the red-LEDdata set an offset of 0.1 and for the green-LEDdata set an offset of 0.05 in the relative intensity is used for
clarity. The lines and small squared dots show the relative intensities predicted by the twomodels, as described infigure 6, but using
the respective experimental parameters.

Figure 7.The data points show the relative intensity Irel of Poisson’s spotmeasured in experiments 4–6 in table 3, where the disc
diameter was varied by using discs with ID ‘H’, ‘I’ and ‘C’. The lines and small squared dots show the relative intensities predicted by
the twomodels, as described in figure 6, but using the respective experimental parameters.
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to the previous data sets we varied the detector distance ‘b’ instead of ‘g’, which better shows the extinction of
Poisson’s spot due to edge corrugation. Furthermore, in order to increase the sensitivity to edge corrugationwe
used the blue LED. To better account for variations in the background in these data sets, we additionally
subtracted theminimal pixel readout in the geometric shadowof the disc fromboth themeasured on-axis
intensity and themeasured unobstructed intensity I0. Furthermore, the on-axis intensity had to be taken as the
maximal pixel intensity within the geometric image of the source, instead of determining the on-axis pixel via
thefitting procedure aswas done for the other data sets. This was because of the relatively small imagewidths
encounteredwhen reducing b.

The analyticalmodel accounts for the attenuation of Poisson’s spot well. Deviations can bemostly observed
at small b.We expect that the not entirely randomnature of the disc edge corrugation is to blame, but it should
be also noted that themodel is expected to be less accurate for small b. The analyticmodel is expected to

overestimate the on-axis intensity by asmuch as 10%, sincewe neglected the factor b

b R

2

2 2+
in equation (1).We

however observe the opposite trend. It is satisfying though that the experimental data resulted in higher relative
intensities in general, since themodel assumes aworst case rectangular-shaped corrugation. In figure 12 the
corrugation of disc ‘D’ completely extinguishes Poisson’s spot for the data point with the smallest ‘b’ as can be
seen in the recorded image. Themeasured relative intensity for that data point is, however, clearly above zero.
This is because additional noise fromdiffraction keeps the on-axis intensity above the background. This at least
in part also results in the observed deviations from themodel. For the other data sets Poisson’s spot could not be
completely extinguished due to the experimentally limited closest approach to the camera.

6.Discussion

Ourmainmotivation forfinding an analyticalmodel for the intensity of Poisson’s spot is the prediction of its
visibility inmatter-wave diffraction experiments. Themodel will facilitate the choice of source and detection
distances as well as sphere diameters for any particular source and detection system. This will allow to determine
if Poisson spot experiments are feasible withmatter-waves of increasingmass and complexity which aim to test
the quantummechanical super-position principle in systems of increasingmacroscopicity [33]. In order to be
able to distinguish between particle andwave behavior formatter waves in the Poisson spot interferometer it is
important to realize that the attractive Casimir–Polder potential can lead to a classical on-axis bright spot even in
the particle picture. For this reason it would be interesting to derive a similar analyticmodel for the relative
intensity predicted classically, to be able tofind out inwhich parameter regimes a clear distinction between
particle andwave is possible.

The analyticmodel will be relevant aswell inmatter-wave studies as proposed in a recent article, wherewe
discuss the possibility of determiningCasimir–Polder forces bymeasuring Irel of Poisson’s spot in indium
matter-wave diffraction experiments [19]. For example, in the article effects from edge corrugationwere

Figure 9.Number andwidth of support bars. The data points show the relative intensity Irel of Poisson’s spotmeasured in experiments
2, 6, and 9–12 in table 3, forwhich the number andwidth of support bars keeping each disc in placewas varied. The data set shown
withmarkers in light blue (cross), dark blue (asterisk), orange (diamond), brown (triangle), light green (square) and dark green (circle)
indicate data recorded using discs B, C, E, A, F andG, respectively. The uncertainty in the experimental relative intensity is of the order
of themarker size and therefore not shown. The discs are supported by bars that block from2.7% to 25.4%of the disc circumference
(see table 2). Note the offset increased in steps of 0.2 added to the data sets for clarity. The lines and small squared dots show the relative
intensities predicted by the twomodels, as described infigure 6, but using the respective experimental parameters.
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neglected, for which equation (6) can be used as good estimate. TheCasimir–Polder potential results in an
increase of Irel close to the disc (small b), opposing the effect edge corrugation has. Therefore a clear
understanding of the influence of edge corrugation is important in these studies. Finding an analytic
approximation of the increase in Irel due to theCasimir–Polder potentialmaybe an interesting further
development of themodel. Furthermore, the light experiments revealed that caremust be taken bothwith
regard to detector resolution and resolution of numerical simulationswhen comparing theoretical, simulated
and experimental on-axis intensities (as for example infigure 6).

Thefield, also away from the optical axis, behind an opaque disc with random edge roughness was discussed
before by Abramyan [32]. There two asymptotic formulae are given, one for the case when the corrugation is
large compared towfz and the otherwhen it is small.We have plotted both asymptotes as dotted lines in
figures 11 and 12. The prediction fromour equation (6) lies between the two asymptotes, as to be expected. The
experimental data points, however, do not allow a clear conclusion if equation (6) ismore accurate in the
intermediate regime,mainly since the particular edge corrugation of the discs is neither purely randomnor
square-wave shaped. This could be tested in the future, by improving on the fidelity of the edge corrugation of
the discs by using higher resolution lithography techniques for the fabrication of the discs.

The effect of surface corrugation also suggests an interesting application for Poisson’s spot, as was
investigated before [23]. Ameasurement of the relative intensity of Poisson’s spot as a function of distance
behindmetallic balls, such as used in ball bearings, could be used to estimate their surface quality. In the simple
configuration g b R2= = · and using the limit r l the adjacent Fresnel zonewfz is 2l . Then surface
corrugation of the order of 10l would result in a reduction of Irel of about 10%. This could be potentially

Figure 10.Comparison between experimental Poisson spot diffraction images (middle row) and numerically simulated ones (bottom
row) from experiment# 9. The top row shows the entire image recordedwith the camera (6.66 mmby 5.32mm) to indicate the
orientation of the support bars. In the simulated images the support bars were horizontal. The spot images in themiddle and bottom
row correspond to a region of 400 mm by 400 mm at the center of the disc’s shadow (the bottom right image is 200 mm by 200 mm ).
We normalized the color scale to themaximumpixel of each image. The distance g used in the simulation had a positive offset of
0.7 mm,which is negligible here, especially when considering the experimental uncertainty of g of 0.5 mm.Disc Awas used in the
experiment and its parameters applied to the simulation except for the disc’s corrugation and the small variation inwavelength. The
images correspond to the data points shown in figure 9 as brown triangles (experiment) and the brown squared dots (simulation).
Note that the support bars result in an ellipsoidal distortion of the spot. The left and right columns correspond to a distance gwhere
there is a dip in the on-axis relative intensity infigure 9, while for themiddle column there is an oscillationmaximum. These
oscillations are localized around the optical axis to a region smaller than the source image (see also supplementary information).
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measured in a setup of relatively low cost, especially when compared to the optical surface interferometers and
stylus profilers commonly used for this purpose [34]. Note, that the factor neglected in equation (1) can no
longer be omittedwhen g b R2= = · and should therefore be included in a fit of experimental data using
equation (7)with corrs as a free parameter.Moreover, under these conditions the plane-wave assumption used to
derive this factor is a very crude approximation, so thatmore considerations will be needed to arrive at an
accuratemodeling of the Poisson spot intensity for this case. Even though, the Rayleigh–Sommerfeld diffraction
integral is expected to bemore consistent close to the obscuring disc [35, 36], the Fresnel–Kirchhoff integralmay
yield a closer agreementwith observations of the spot [13, 37].

In the search for extra-terrestrial planets it has been suggested to use a circularmask, a so-called external
occulter or star shade, with petal-shaped edge corrugation to block the light from stars in order to be able to
detect themany orders ofmagnitude fainter light reflected by any close-by planets [38, 39]. In analogy to a disc
with an apodized transmission function, the petal-shaped edge corrugation efficiently attenuates diffraction into
the shadowof a circular disc including Poisson’s spot, and thus allows a reduction in the required diameter of the
external occulter, reducing its cost. The proposed shape of the corrugationwas even shown to be close to optimal

Figure 11.Edge corrugationwith discs of nominal diameter of 0.5 mm. The data points show the relative intensity Irel of Poisson’s
spotmeasured in experiments 13 (blue circles) and 14 (orange squares) in table 3, forwhich two discs of differing amounts of edge
corrugationwere used (discs ‘I’ and ‘J’, respectively). Here the detector distancewas kept fixed instead of the image distance. The data
sets shownwithmarkers in blue (sphere) and orange (square) correspond to discs ‘I’ and ‘J’, respectively. The solid lines show the
analyticmodel (equation (7)). The dashed lines show the respective ideal disc result given in equation (2), while themodel shown
using dashed–dotted lines additionally accounts for the support bars. The dotted lines give the analyticmodel using the small and large
corrugation asymptotes derived byAbramyan [32] instead ofCcorr.

Figure 12.Edge corrugationwith discs of nominal diameter of 1 mm. The data points show the relative intensity Irel of Poisson’s spot
measured in experiments 15 (blue circles) and 16 (orange squares) in table 3, forwhich twodiscs of differing amounts of edge
corrugationwere used (discs ‘C’ and ‘D’, respectively). See alsofigure 5. Again, here the detector distancewas keptfixed instead of the
image distance. The solid, dashed, dashed–dotted and dotted lines are analogous tofigure 11, but for discs ‘C’ and ‘D’.
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byVanderbei et al [40]. Partial transparency of the petals reduces the requirement of small curvature radii at the
petal tips [24, 41]. The analyticalmodel presented herewas not aimed at predicting the intensity reductions
required in these studies. The rectangular corrugationwe assumed only achieves a complete cancellation of
Poisson’s spot at a particular wavelength and near-perfect corners of the rectangular wave.One point whichmay
be of interest though is that at least in principle an exactmeasurement of the relative intensity of Poisson’s spot
from a starmay also reveal the presence of a near-by planet (without resolving the two light sources though).
This is because the additionally reflected light from the planet reduces the transverse coherence of the incident
light. The disc acts in fact analogously to aMichelson stellar interferometer [13], which can be used tomeasure
the angular diameters of near-by stars.

7. Conclusion

Wehave presented an analyticalmodel for the relative on-axis intensity of Poisson’s spot, and verified it against a
numerical simulationmodel and experimental data from a light diffraction experiment. Themodel successfully
describes the influence of themost important experimental parameters, namelywavelength, source distance,
detector distance, disc radius, edge corrugation and the disc’s support structure. Equation (7) thatmakes up the
analyticalmodel can be evaluated fast over awide range of the parameters, especially when compared to the
numericalmethods described here. It is thus very useful forfinding the optimal parameters or the range of
parameters for which the spot can be observed. Themodel thus forms a good starting point for planning future
Poisson-spot experiments.We thus expect that themodel will facilitate investigations ranging fromPoisson spot
lithography [27, 28] to themetrology of the surface corrugation of balls used in bearings [23]. In particular, our
plannedmatter-wave Poisson spot experiments aimed at testing the foundations of quantum-mechanics or
measuring theCasimir–Polder interactionwill benefit.
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