

 Karlsruhe Reports in Informatics 2017,5
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

On Secrecy and Performance Models for
Query Processing on Outsourced Graph

Data

Gabriela Suntaxi, Aboubakr Achraf El Ghazi, Klemens Böhm

 2017

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

On Secrecy and Performance Models for Query
Processing on Outsourced Graph Data

Gabriela Suntaxi
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany

gabriela.suntaxi@kit.edu

Aboubakr Achraf El Ghazi
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany

elghazi@kit.edu

Klemens Böhm
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany

klemens.boehm@kit.edu

ABSTRACT

Database outsourcing is a challenging task concerning data

secrecy. Even if an adversary, including the service provider,

accesses the data, she should not be able to learn any information

from the accessed data. In this paper we address this problem for

graph-structured data. First, we define a secrecy notion for graph-

structured data based on the concept of indistinguishability. The

notion ensures that an adversary can learn the edges existing

between the nodes only with negligible probability. To address

this problem, we propose an approach based on bucketization.

Next to bucketization, it makes use of obfuscated indexes and

encryption. We show that finding an optimal bucketization

tailored to graph-structured data is NP-hard; therefore we come up

with a heuristic. We prove that the proposed bucketization

approach fulfills our secrecy notion. In addition, we present a

performance model which consists of (1) a number of buckets

model that estimates the number of buckets obtained after

applying our bucketization approach and (2) a query-cost model.

Finally, we demonstrate with a set of experiments (1) the accuracy

of our number of buckets model for scale-free networks and (2)

the efficiency of our approach with respect to query processing.

1. INTRODUCTION
Outsourcing databases to a third-party service provider has

become ubiquitous. While economic and organizational

advantages are obvious, database outsourcing remains challenging

concerning data secrecy. Databases contain sensitive information

that needs to be protected against adversaries, including the

service provider. If an unauthorized user accesses the data, she

should not be able to learn anything.

A broad range of real-world datasets exhibits a graph structure.

Furthermore, many real graphs such as the email network or the

World Wide Web follow a scale-free power-law distribution [3].

At the same time, these graphs often contain sensitive information.

In addition to the information attached to nodes, information is

also attached to edges. In general, a node can be identified by its

label as well as by its degree (number of edges). Therefore,

approaches for secure storage of graph-structured data should

protect against leaking this kind of information. Only encrypting

node labels is not enough. Next, there have to be secrecy

guarantees that are provable. At the same, the approaches should

not do away with the advantages of database outsourcing, and

query processing in particular should take place on the server as

much as possible. While we are not aware of any previous work

on secure storage featuring a cost model for query processing, this

actually is important, to (1) have a good understanding of the

expected performance of query processing, (2) facilitate

comparisons between alternatives and (3) predict the impact of

parameter changes.

So there are two requirements on a secure storage scheme for

graph-structured data. R1: An adversary, including the service

provider, must not be able to learn the label of nodes or their

degree. This must be provable (i.e., secrecy). R2: The approach

should support a broad range of queries. It should do so

efficiently, with controlled effort. To quantify this, a performance

model is needed.

The first requirement calls for a rigid definition of secrecy. This

includes specifying the assumed knowledge of the adversary and

the security property, i.e., a description of what constitutes a

breach of the scheme. We consider adversaries with knowledge of

(i) the algorithm used to secretize the graph 𝐺, (ii) the labels of all

the nodes in 𝐺 and (iii) the multiset that contains the degree of

each node in 𝐺, without stating the correspondence between nodes

and degrees. The secrecy property ensures that, given a secretized

graph, an adversary cannot say with non-negligible probability if

the secretized graph corresponds to the original graph 𝐺.

Since existing secrecy notions are different from this, we propose

a new one, i.e., formalize the notion just sketched. Related secrecy

notions deal with different types of adversaries. Notions such as

[7], [23] offer guarantees against chosen plaintext attacks. In our

scenario, these guarantees are not enough. This is because the

edges of the graph can also reveal information. Wang et al. [22]

define a secrecy notion for XML documents. It is based on the

definition of perfect secrecy. As an XML document has a tree

structure, they assume that an adversary knows the domain values

of the data and the distribution on the leaf nodes. We additionally

assume that the adversary knows the degree distribution of the

complete graph 𝐺.

Secure database storage has been widely studied. However, exist-

ing techniques such as [19], [1] either cannot be applied to graph-

structured data, or they do not cover both requirements R1 and

R2. Approaches for graph-structured data such as [19], [18] do not

keep the structure of the graph. Then they cannot answer certain

queries, such as neighbor and adjacency queries. Other

approaches like [1], [10], [2] could exhibit unwanted behavior

when being adapted to graph-structured data, e.g., leak

information, see Section 2. Next, none of these approaches

features a model of the costs of query processing that considers

relevant characteristics of the graph.

We propose a bucketization approach for secure storage of graph-

structured data that meets our requirements. It has turned out that

subtle design decisions have a significant impact. For example, it

makes a big difference regarding secrecy whether we partition

nodes into buckets instead of edges. This is because partitioning

nodes could leak information on the graph structure, as we will

explain. While our approach works for all types of graph queries

in principle, we focus on neighbor and adjacency queries. These

queries are essential information needs regarding graphs [17].

Then in what follows we describe the specifics, such as division

of work between client and server, for these queries.

Summing up, our contributions are as follows: First, we propose a

secrecy notion for graph-structured data based on indistinguish-

ability [13]. Second, after showing that existing design alterna-

tives do not cope with all requirements, given that notion, we

propose a solution featuring bucketization for graph-structured

data. Our approach partitions edges into buckets. In order to

answer queries, we store index information. It contains, next to

other information, the labels of the nodes. We show that finding

an optimal bucketization is NP-hard. Consequently, we propose a

heuristic, which we also evaluate empirically later, with positive

results. Third, we prove that our bucketization scheme fulfills our

secrecy notion. Fourth, we come up with a performance model for

query processing on graphs that are scale-free. Our performance

model consists of (1) a number-of-buckets model, which estimates

the number of buckets obtained after applying our bucketization

approach and (2) a query-cost model. Finally, we conduct sys-

tematic experiments both on synthetic and on real datasets. They

validate the accuracy of our estimation model and demonstrate the

efficiency of the proposed bucketization technique.

2. RELATED WORK
In this section, we first review existing secrecy notions. Then we

analyze work on bucketization for relational databases and on

secure storage of graph-structured data. We omit related work that

we have already discussed in the introduction.

Secrecy notions: Adaptive semantic secrecy is proposed in [6] and

[5]. This concept is adapted for answering approximate shortest

distance queries in graphs in [18]. Their notion uses leakage

functions, i.e., information revealed to the server. These

approaches assume that the adversaries only have access to

information that has leaked, but not to any other sources. We

consider adversaries with additional information on the original

graph 𝐺, i.e., the labels of all nodes of 𝐺 and the multiset that

contains the degree of each node in 𝐺.

Bucketization on relational databases: Data secrecy in relational

databases has been investigated extensively [10], [2], [9]. Several

approaches are based on bucketization. In this context, bucketiza-

tion (1) encrypts each tuple in an original relation as one string,

(2) groups the tuples in partitions, each partition represents a

bucket, and (3) stores index values. Each index value is related to

a partition of the domain of an original attribute. The server stores

the secretized relation and the index information. In what follows,

we sketch two adaptations of these approaches to graphs and show

that these alternatives are not appropriate to solve our problem.

With both adaptations, we represent the edges in a two-attribute

relation, 𝑇𝐸𝑑𝑔𝑒𝑠, where each attribute stores one node of the edge.

Borrowing from bucketization schemes for relational databases,

two alternatives come to mind, one-dimensional bucketization and

multidimensional bucketization.

- One dimensional bucketization. Here, the domains of the two

attributes in TEdges are considered as one domain and then

divided into partitions. This solution cannot be considered

secure because it could exhibit some of the original graph

structure, see Example 2.1.

Example 2.1: Consider a graph with edges E={(A,B), (B,C),

(C,A)}. If bucketization assigns Nodes A, B and C to different

buckets, the connections between the buckets will share the

same structure as the original graph. Table 2.1 shows the

secretized relation. The partitions are

[𝑏1, {𝐴}], [𝑏2, {𝐵}], [𝑏3, {𝐶}]. The relationship between the

index values (b1,b2), (b2,b3) and (b3,b1) share the same

structure as the original edges E.

Table 2.1. Secretized relation of Example 2.1

e-tuple Node_1 Node_2

𝑒𝑛𝑐(𝐴, 𝐵) b1 b2

𝑒𝑛𝑐(𝐵, 𝐶) b2 b3

𝑒𝑛𝑐(𝐶, 𝐴) b3 b1

- Multidimensional bucketization. With this option, the domain

of each attribute is partitioned individually. Given an optimal

multidimensional bucketization, this bucketization can be

secure. However, the effort of finding an optimal

multidimensional bucketization with respect to query

performance is NP-hard [15]. Nevertheless, this NP-hard

problem can be solved with heuristics such as in [15] and [21].

But, these solutions do not consider certain graphs

characteristics such as the distribution of edges per node or

grouping edges of a node in the same partition to answer

important graph queries such as neighbor queries efficiently.

So these approaches do not solve our problem.

Secure storage for graph-structured data: An approach for

finding the shortest path between two nodes in a directed graph is

presented in [12]. Random perturbation of the edges is required in

order to offer edge privacy. The perturbation modifies the

structure of the graph to some extent. Therefore, queries results

can only be approximate. As XML documents are a specific kind

of graph, we briefly turn to this research direction as well. The

approaches in [22] and [4] require the existence of a domain

hierarchy, such as parent-child, in order to create blocks or

vectors, respectively. In graph-structured data, such a hierarchy

typically does not exist.

To summarize, none of the related approaches we are aware of

does address Requirements R1and R2.

3. PRELIMINARIES AND NOTATION
We now present some notation that we will use in the paper.

Definition 3.1: A graph 𝐺 is a tuple (𝑉, 𝐸), where 𝑉 is a finite set

of nodes and 𝐸 ⊆ 𝑉 × 𝑉 is a relation between nodes. |𝑉| is the

number of nodes, |𝐸| the one of edges existing in 𝐺, and 𝒢 is the

set of all graphs.

For a given graph 𝐺, 𝑉(𝐺) = 𝑉 and 𝐸(𝐺) = 𝐸. Without loss of

generality, we assume that the relationships between the nodes are

directed. This means that (𝑢, 𝑣) ∈ 𝐸 does not imply (𝑣, 𝑢) ∈ 𝐸.

An undirected edge can be represented by two directed edges.

Definition 3.2: Given a graph 𝐺 = (𝑉, 𝐸) and a node 𝑢 ∈ 𝑉, the

degree of u, 𝑑𝑒𝑔(𝑢), is the number of outgoing edges of node 𝑢.

Definition 3.3: A Neighbor Query 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) of a graph

𝐺 = (𝑉, 𝐸) and a node 𝑢 ∈ 𝐸 returns the set of all nodes adjacent

to 𝑢 in 𝐺: 𝑄Neigbhor(𝐺, 𝑢) = {𝑣 ∈ 𝑉|(𝑢, 𝑣) ∈ 𝐸}.

Definition 3.4: An Adjacency Query 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) of a

graph 𝐺 = (𝑉, 𝐸) and a pair of nodes 𝑢, 𝑣, checks whether node

𝑢 is adjacent to node 𝑣: 𝑄Adjacency(𝐺, 𝑢, 𝑣) = true iff (𝑢, 𝑣) ∈ 𝐸.

Definition 3.5: A deterministic encryption scheme 𝛦𝑑 =

(𝑘𝑔𝑒𝑛, 𝑒𝑛𝑐𝑑
𝐾 , 𝑑𝑒𝑐𝑑

𝐾) applied to a plaintext 𝑚 consists of three

parts: (1) a key generation algorithm 𝑘𝑔𝑒𝑛 that returns a

cryptographic key 𝐾; (2) a deterministic encryption

algorithm 𝑒𝑛𝑐𝑑
𝐾 that takes the cryptographic key 𝐾 and the

plaintext 𝑚 to compute a ciphertext 𝑐𝑖 in the 𝑖-th run of the

algorithm, such that, if 𝑒𝑛𝑐𝑑 runs 𝑛 times, 𝑐𝑖 = 𝑐𝑗 for all 𝑖, 𝑗 ∈

{1, … . , 𝑛}, and (3) a deterministic decryption algorithm 𝑑𝑒𝑐𝑑
𝐾 that

takes the cryptographic key 𝐾 and the ciphertext 𝑐𝑖 to revert the

deterministic encryption, such that 𝑑𝑒𝑐𝑑
𝐾 (𝑒𝑛𝑐𝑑

𝐾(𝑚)) = 𝑚 for all

encryption runs.

Definition 3.6: A probabilistic encryption scheme 𝛦𝑝 =

(𝑘𝑔𝑒𝑛, 𝑒𝑛𝑐𝑝
𝐾 , 𝑑𝑒𝑐𝑝

𝐾) applied to a plaintext 𝑚 consists of three

parts: (1) a key generation algorithm 𝑘𝑔𝑒𝑛 that returns a crypto-

graphic key 𝐾, (2) a probabilistic encryption algorithm 𝑒𝑛𝑐𝑝
𝐾 that

takes the cryptographic key 𝐾 and the plaintext 𝑚 to compute a

ciphertext 𝑐𝑖 in the 𝑖-th run of the algorithm, such that, if 𝑒𝑛𝑐𝑝

runs 𝑛 times, 𝑐𝑖 ≠ 𝑐𝑗 for all 𝑖, 𝑗 ∈ {1, … . , 𝑛}, 𝑖 ≠ 𝑗, and (3) a

probabilistic decryption algorithm 𝑑𝑒𝑐𝑝
𝐾 that takes the

cryptographic key 𝐾 and the ciphertext 𝑐𝑖 to revert the

deterministic encryption, such that 𝑑𝑒𝑐𝑝
𝐾 (𝑒𝑛𝑐𝑝

𝐾(𝑚)) = 𝑚 for all

encryption runs.

Definition 3.7: Given a graph 𝐺 = (𝑉, 𝐸), the multiset of degrees

𝑁𝐸 is the multiset that contains the degree of each node 𝑢 ∈ 𝑉.

4. THE SECRECY MODEL
In this section, we describe the prior knowledge of the adversary

and the secrecy notion we target at.

4.1 The adversary knowledge
Let 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑(𝐺) denote the transformed graph after the

graph transformation function has been applied to the graph 𝐺.

We assume an adversary with the following knowledge:

K1: The adversary 𝒜 has access to the transformed graph,

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑(𝐺). The adversary also knows the algorithm

used to transform the graph.

K2: 𝒜 knows the labels of all nodes in 𝐺.

K3: 𝒜 knows 𝑁𝐸, but she does not know which degree of the

multiset corresponds to which node.

Knowledge K1 is based on Kerckhoffs’ principle, and it is a

standard assumption from cryptology. Knowledge K2 and K3

describe realistic assumptions on external knowledge that the

adversary could have. In what follows, when we refer to an

adversary 𝒜, we assume that 𝒜 to not have any knowledge

beyond K1, K2 and K3.

4.2 Our secrecy notion
We propose a secrecy notion for graph-structured data called

Indistinguishability under Independent Node Permutation, Ind-

INP. Our secrecy notion is based on the concept of

indisinguishability presented in [13]. [13] has proven that this

concept is equivalent to the standard semantic secrecy, i.e., an

adversary is not able to learn any partial information on the

plaintext of a given ciphertext. The reason why we use the

concept of indistinguishability as our secrecy notion is the one

featured in [13]: Having an algorithm, it is easier to show that it

fulfills indistinguishability than the concept of semantic secrecy.

However, the secrecy guarantees are the same.

Definition 4.1: A graph transformation function 𝑓: 𝒢 → 𝒢 is a

function that transforms a graph 𝐺 to another graph 𝐺′. The set of

all graph transformation functions is ℱ.

Conventional examples of graph transformation functions are

addition of edges or deletion of nodes.

Let 𝐺 = (𝑉, 𝐸) be the original graph-structured data and 𝐺’ =
(𝑉, 𝐸′) be another graph with the same nodes as 𝐺, but with

different edges 𝐸’. Permuting the nodes of the original graph 𝐺

perturbs the edges and yields 𝐸’. Node permutation is also a graph

transformation function. It is defined as follows:

Definition 4.2: An Independent Node Permutation function 𝔭 is

a function 𝔭 ∈ ℱ where 𝑉(𝔭(𝐺)) = 𝑉(𝐺) for all graphs 𝐺 ∈ 𝒢

and |𝐸(𝔭(𝐺))| = |𝐸(𝐺)|.

Node permutation can be implemented as follows. Given a

graph G, replace each node 𝑣 ∈ 𝑉 with a random node 𝑥 ∈ 𝑉. The

identity function is a valid node permutation.

Let 𝒜 be an adversary, 𝜏 a graph transformation function and 𝔭 an

independent node permutation. Figure 4.1 features the experiment

needed to define the secrecy notion Ind-INP. 𝐺0 is the trans-

formed graph of 𝐺, and 𝐺1 is the transformed graph of the

permuted graph 𝔭(𝐺). A random bit 𝑏 ∈ {0,1} is chosen. The

transformed graph 𝐺𝑏 is given to the adversary 𝒜. 𝒜 does not

know whether 𝜏 has had 𝐺 or 𝔭(𝐺) as input. The challenge of the

adversary is to “guess” which one of the two graphs 𝐺0 or 𝐺1 has

been the input of the transformation. 𝒜 outputs a bit 𝑏̅. The output

of the experiment is defined to be 1 if 𝑏 = 𝑏̅, and 0 otherwise. If

𝐼𝑛𝑑 − 𝐼𝑁𝑃𝒜,𝜏 (𝐺) = 1, we say that 𝒜 has succeeded.

Definition 4.3: A graph transformation 𝝉 is called Ind-INP

secure if the function

𝐴𝑑𝑣𝒜
𝜏 (𝐺) ≔ |𝑃𝑟[Ind-INP𝒜,𝜏(𝐺) = 1] −

1

2
|

is negligible for any adversary 𝒜 with knowledge K1, K2, and K3

whose computational effort is bounded to run in polynomial time.

Definition 4.4: A function 𝒇 is negligible 𝑖𝑓𝑓 ∀𝑐 ∈ ℕ ∃𝑛𝑜 ∈ ℕ

such that for 𝑛 ≥ 𝑛0, 𝑓(𝑛) < 𝑛−𝑐.

Although indistinguishability offers guarantees equivalent to

semantic secrecy, it is not intuitive what this secrecy notion

guarantees. Therefore, we describe a property of our secrecy

definition Ind-INP, which will help users understanding the

secrecy guarantees offered by our secrecy notion. It will be

Theorem 4.1 that actually introduces this property, and before

introducing it, some notation and definitions are needed. The

following explains the probability of guessing the degree of a

node in 𝐺, 𝑃𝒜, by an adversary 𝒜. Next to other things, 𝒜 knows

the set of nodes 𝑁 and the multiset of degrees 𝑁𝐸. Calculating 𝑃𝒜

requires the identification of all possible permutations of the

elements of 𝑁𝐸.

Figure 4.1. The experiment 𝐈𝐧𝐝 − 𝐈𝐍𝐏𝓐,𝓣(𝐆)

Definition 4.5: Given a multiset of degrees 𝑁𝐸 of a graph 𝐺, the

frequency of an element 𝑖 ∈ 𝑁𝐸 is the number of times the

element 𝑖 occurs in 𝑁𝐸. The set of the frequencies of the different

elements in 𝑁𝐸 is 𝑁𝐸
̅̅ ̅̅ = ⋃ 𝑑𝑖

𝑘
𝑖=1 , where 𝑑𝑖 is the frequency of

element 𝑖 and 𝑘 is the number of different elements in 𝑁𝐸
1.

Lemma 4.1. Given a multiset of degrees 𝑁𝐸 of a graph 𝐺, the

number of different permutations of the elements of the multiset

 𝑁𝐸 , 𝑃𝑒𝑟(𝑁𝐸) is given by the function

𝑃𝑒𝑟(𝑁𝐸) =
|𝑁𝐸|!

∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ ̅
 (4.1)

PROOF: Let 𝑘 be the number of different elements in the multiset

 𝑁𝐸 and 𝑑𝑖, the frequency of element 𝑖, where 𝑖 ∈ {1,⋯, 𝑘}. There

are (
|𝑁𝐸|

𝑑1
) ways to place the first different element, (

|𝑁𝐸| − 𝑑1

𝑑2
)

ways to place the second different element, and so on. Then the

total number of different permutations 𝑃𝑒𝑟(𝑁𝐸) is

𝑃𝑒𝑟(𝑁𝐸) =
|𝑁𝐸|!

𝑑1!∙(|𝑁𝐸|−𝑑1)!
∙

(|𝑁𝐸|−𝑑1)!

𝑑2!∙(|𝑁𝐸|−𝑑1−𝑑2)!
∙ ⋯ ∙

(|𝑁𝐸|−𝑑1−⋯−𝑑𝑘−1)!

𝑑𝑘!

=
|𝑁𝐸|!

∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ ̅
 ∎

Lemma 4.2. An adversary 𝒜 can guess the degree of a node in a

graph 𝐺 with probability 𝑃𝒜 = (
1

𝑃𝑒𝑟(𝑁𝐸)

).

PROOF: From Lemma 4.1, we know the number of all possible

permutations of elements of the multiset 𝑁𝐸. The probability of

identifying the degree of the nodes is 1 divided by the number of

permutations 𝑃𝑒𝑟(𝑁𝐸). ∎

We now introduce Lemmas 4.3 and 4.4, which will help us to

prove Theorem 4.1 subsequently.

Lemma 4.3. Given a multiset of degrees 𝑁𝐸 of a graph 𝐺,
|𝑁𝐸|!

(|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!
 is a lower bound of the function 𝑃𝑒𝑟(𝑁𝐸).

PROOF: Consider the denominator of the function 𝑃𝑒𝑟(𝑁𝐸),

∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ = (1 × ⋯ × 𝑑1)(1 × ⋯ × 𝑑2) ⋯ (1 × ⋯ × 𝑑|𝑁𝐸̅̅ ̅̅ |)

The number of factors 𝑟 different from 1 in ∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ , is

𝑟
(∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ ̅)

= ∑ (𝑑𝑖 − 1) =
|𝑁𝐸̅̅ ̅̅ |
𝑖=1

|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ |

Consider now the term (|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | + 1)!

The number of factors 𝑟 different from 1 in (|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | + 1)! is

𝑟((|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!) = |𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ |

Consequently, for each factor 𝑎 in ∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ , there exists a factor

𝑏 in (|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | + 1)! such that 𝑏 ≥ 𝑎.

Altogether (|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | + 1)! ≥ ∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ and

|𝑁𝐸|!

(|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!
 is a

lower bound of the function 𝑃𝑒𝑟(𝑁𝐸). ∎

Lemma 4.4. The lower bound of the function 𝑃𝑒𝑟(𝑁𝐸),
|𝑁𝐸|!

(|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!
 grows asymptotically faster than any polynomial for

|𝑁𝐸
̅̅ ̅̅ | ≥ 𝑛0 if the condition 𝑛0 =

|𝑁𝐸|

𝑐
 is fulfilled and 𝑐 ∈ ℝ>1.

1 We use 𝑑1 ∪ 𝑑2 as a short hand for {𝑑1} ∪ {𝑑2}.

PROOF: Without loss of generality we set |𝑁𝐸
̅̅ ̅̅ | =

|𝑁𝐸|

𝑐
 for 𝑐 ∈ ℝ>1.

Next, we consider the function 𝑔(𝑥) =
𝑥!

(𝑥−
𝑥

𝑐
+1)!

. 𝑔(𝑥) behaves

like the term 𝐴 =
|𝑁𝐸|!

(|𝑁𝐸|−
|𝑁𝐸|

𝑐
+1)!

 with respect to |𝑁𝐸| as the

argument of the function. Now we analyze the limits of the

denominator of the function 𝑔(𝑥): lim𝑥→∞ 𝑥 −
𝑥

𝑐
+ 1 = 1

Then
|𝑁𝐸|!

(|𝑁𝐸|−
|𝑁𝐸|

𝑐
+1)!

tends to |𝑁𝐸|! Consequently 𝐴 grows faster

than any polynomial for |𝑁𝐸
̅̅ ̅̅ | ≥

|𝑁𝐸|

𝑐
. ∎

Lemma 4.4 says that for any polynomial 𝑝(𝑁𝐸) there exists a

𝑛0 such that
|𝑁𝐸|!

(|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!
≥ 𝑝(𝑁𝐸) for all |𝑁𝐸

̅̅ ̅̅ | ≥ 𝑛0. In the

following we give some examples to illustrate how this 𝑛𝑜 looks

like. Figure 4.2shows 𝑛0 for the functions 𝑝(𝑁𝐸) = |𝑁𝐸|10

and 𝑃𝑒𝑟(𝑁𝐸). We have conducted experiments with different

polynomial functions, and we have always found a 𝑛0 for which

Lemma 4.4 holds.

Theorem 4.1. If a graph transformation 𝜏 fulfills Definition 4.3,

the probability 𝑃𝒜 that an adversary learns the degree of a node

in the graph given K1, K2 and K3 is negligible for |𝑁𝐸
̅̅ ̅̅ | ≥

|𝑁𝐸|

𝑐
,

where 𝑐 ∈ ℝ>1.

PROOF: 𝑃𝒜 is the inverse of the function 𝑃𝑒𝑟(𝑁𝐸) (Lemma 4.1).

From Lemma 4.2, we know that the lower bound of the function

𝑃𝑒𝑟(𝑁𝐸) grows asymptotically faster than any polynomial for any

|𝑁𝐸
̅̅ ̅̅ | >

|𝑁𝐸|

𝑐
. Therefore, its inverse decreases faster than any

polynomial. Then 𝑃𝒜 is negligible. ∎

5. OUR SECRECY APPROACH
In this section, we describe our bucketization approach for graphs.

We first give an overview and describe the underlying system

architecture. Then we describe the challenges, formalize the

problem and present our approach.

5.1 Overview and System Architecture
We consider a database-as-a-service setting where a third-party

service provider stores the data owned by the clients. Clients

apply techniques to secretize the data before passing it to the

service provider, in order to maintain data secrecy.

Definition 5.1: Given a graph 𝐺, a bucket 𝑏 is a finite set of edges

of 𝐺. Each bucket has a 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷 denoted by 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷(𝑏).

There is a maximum capacity of any bucket, denoted by

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. The set of buckets of graph 𝐺 is denoted by 𝑆𝐵.

Definition 5.2: Given a graph 𝐺 and its corresponding set of

buckets 𝑆𝐵, the index information is a map of type 𝑚: 𝑉 → 𝑆𝐵

Figure 4.2. Functions 𝒑(𝑵𝑬) and 𝑷𝒆𝒓(𝑵𝑬)

that, for each node 𝑢 ∈ 𝑉, contains the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 of

buckets that store at least one outgoing edge of 𝑢.

Definition 5.3: A bucketization structure B of a given graph 𝐺 is

a representation of 𝐺 consisting of two parts, (1) a set of buckets

𝑆𝐵 and (2) the index information. We call the set of all possible

bucketization structures Bucketizations.

Figure 5.1 illustrates a bucketization structure.

Definition 5.4: A bucketization function 𝑏𝑢𝑐𝑘: 𝒢 →
𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 is a function that generates a bucketization

structure 𝐵 for a graph 𝐺.

Section 5.5 will present the bucketization functions which we use.

Definition 5.5: Given bucketization structure 𝐵, an encryption

function 𝑒𝑛𝑐: 𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 → 𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 performs the

actual encryption of 𝐵 as follows: (1) In the index information,

each label of a node is encrypted deterministically, and the

𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 are encrypted probabilistically. (2) In the buckets,

each edge is encrypted deterministically.

Before outsourcing a graph 𝐺, the client applies a bucketization

function on 𝐺. After encryption the bucketization structure is

outsourced to the service provider. Figure 5.1 shows this process.

Query evaluation in the outsourced bucketization structure

requires translating client-side queries to corresponding server-

side queries. We assume that there are two components for query

processing at the client side: (1) the query translator and (2) the

query postprocessor, see Figure 5.2. The query translator

translates the queries supported to server-side queries, the

translation process is explained in Section 5.6. The server-side

queries are sent to the server. The query post-processor is in

charge of (1) receiving the encrypted results of the server-side

query from the server, (2) unencrypting the results and (3)

filtering any false positive, by applying the original client-side

query. The final result is sent to the user.

5.2 Bucketization – Challenges
Even though using an encryption function solves the problem of

chosen-plaintext attacks, this does not yield secrecy guarantees

against frequency attacks. We for our part use bucketization to

solve this problem. However, this is challenging in order to

facilitate both good query performance as well as data secrecy.

This is because it is not obvious how to assign edges to buckets,

see Examples 5.1 and 5.2.

Definition 5.6: The frequency of a bucket is the number of edges

that the bucket stores.

Example 5.1: Consider an email network with nodes V={Alice,

Bob, Carol, Dan, Eva} and edges E={(Alice, Bob), (Alice, Dan),

(Alice, Carol), (Alice, Eva), (Bob, Dan), (Carol, Eva), (Carol,

Alice), (Dan, Carol), (Eva, Bob)}. Assume that we apply a

bucketization algorithm that assigns edges randomly and stores 2

edges per bucket. In the worst case, the four edges of Alice are

assigned to four different buckets. This means that it is necessary

to access four buckets to retrieve Alice’s edges. Then the overall

query processing effort and the client workload are rather large,

i.e., the client has to filter more data.

Example 5.2: Consider the email network from Example 5.1. If

each bucket stores all the edges belonging to only one node and

no other edges, the frequency of each bucket reveals the node

degree. If an adversary knows that Alice is the user that has sent

more emails than any other user, followed by Carol, the adversary

can conclude that the bucket with four edges corresponds to Alice

and the one with 3 edges to Carol. So the adversary has learned

the actual degree of Alice and Carol. Moreover the adversary can

learn that Alice has sent an email to Carol.

So assigning edges to buckets randomly is likely to bog down

query performance. The edges of a node should be stored in as

few buckets as possible. At the same time, storing all edges of a

node in one bucket creates a link between the degree of nodes and

their corresponding buckets, which might affect secrecy.

Although encryption offers some secrecy guarantees, they are not

enough. To avoid information leakage, as illustrated in

Example 5.2, buckets should be undistinguishable. We aim for an

equal frequency of buckets, i.e., all buckets should reach their

maximal capacity. Since a simple assignment may not always

yield full buckets, it is promising to merge them a posteriori

and/or add dummy edges; our approach will feature both. Of

course, the total number of dummy edges should be as small as

possible. Preliminary experiments of ours have shown that

dummy edges do increase query-processing time significantly

because the client must filter more false positives.

We proceed now to formalize our bucketization problem.

5.3 The Bucketization Problem
The bucketization problem is as follows:

Figure 5.1. Bucketization and Encryption on Graph 𝑮

Figure 5.2. Query process

Given as input a graph 𝐺 = (𝑉, 𝐸) we search for a bucketization

𝐵 that meets Constraints c1-c4:

c1 Each edge (𝑢, 𝑣) ∈ 𝐸 is assigned to one bucket.

c2 Each bucket stores at most 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 edges.

c3 Edges adjacent to the same node are placed in as few

buckets as possible. Formally, let the function 𝑖𝑛𝑑: 𝑉 ×
𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 → ℕ be as follows:

 𝑖𝑛𝑑(𝑢, 𝐵): = |{𝑏 ∈ 𝐵| ∃ 𝑥 ∈ 𝑉| (𝑢, 𝑥) ∈ 𝑏}|.
Then ∀𝐵′ ∈ 𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠: 𝑖𝑛𝑑(𝑢, 𝐵) ≤ 𝑖𝑛𝑑((𝑢, 𝐵′)

c4 The total number of buckets should be as small as possible

(while prioritizing Constraint c3).

We prioritize Constraint c3 over c4, so that query performance is

not affected.

Definition 5.7: An optimal bucketization is a bucketization that

meets Constraints c1 to c4.

In the next subsection we show that the problem of finding the

bucketization defined by Constraints c1-c4 is NP-hard.

5.4 Hardness Result
Our bucketization problem is NP-hard. To prove this, we reduce

the Bin-packing problem (BP problem) [20] to our problem. The

BP problem has been proven to be NP-hard in [20]. We start by

introducing the BP problem.

Definition 5.8: Let a set of 𝑛 bins 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} and the same

number of 𝑛 items 𝐼 = {𝑎1, 𝑎2, … , 𝑎𝑛 } be given. All bins have

equal capacity 𝑤𝑐 , and the weight of each item 𝑎𝑖 ∈ 𝐼, 𝑤𝑎𝑖
, is

smaller than or equal to the capacity 𝑤𝑐 . The Bin-packing

problem is finding a function 𝐵𝑃: 𝐼 → 𝐶 that maps each item in 𝐼

to one bin in 𝐶 such that the following Constraints bp1, bp2 and

bp3 are met.

bp1 An item is assigned to only one bin.

bp2 The sum of the weight of all items assigned to a bin does not

exceed the bin capacity 𝑤𝑐 . ∀𝑐𝑗 ∈ 𝐶: 𝑊𝑐𝑗
≤ 𝑤𝑐 where

𝑊𝑐𝑗
= ∑ 𝑤𝑎𝑖𝑖∈|{𝑎∈𝐼|𝐵𝑃(𝑎)=𝑐𝑗}| .

bp3 The number 𝑚 of bins used is as small as possible, i.e.,

 𝑚 = ∑ 𝑚𝑖𝑛(1, |𝐵𝑃(𝑐𝑗)|)𝑐𝑗∈𝐶 .

For the hardness proof, we introduce Lemmas 5.1 and 5.2. They

help us (1) to show that an instance of the BP problem, called

initial BP, can be reduced in polynomial time to an instance of the

bucketization problem, called transformed BP, and (2) to prove

that a given solution of the transformed BP can be transformed to

a solution of the initial BP in polynomial time.

We start by identifying the steps required to construct the

transformed BP.

Input construction process: Given a set of items 𝐼, the

transformed BP is constructed as follows:

- For each item 𝑎𝑖 ∈ 𝐼, create the set of nodes

𝑉𝑖={𝑎𝑖 , 𝑎𝑖1, 𝑎𝑖2,…, 𝑎𝑖𝑤𝑎𝑖
} and the set of edges

𝐸𝑖={(𝑎𝑖 , 𝑎𝑖1), (𝑎𝑖 , 𝑎𝑖2),…, (𝑎𝑖 , 𝑎𝑖𝑤𝑎𝑖
)}.

- The graph is (⋃ 𝑉𝑖
𝑛
𝑖=1 , ⋃ 𝐸𝑖

𝑛
𝑖=1).

Lemma 5.1. Input transformation. Given an initial BP, the

transformed BP can be constructed in polynomial time.

PROOF: For each item 𝑎𝑖 ∈ 𝐼, in order to build the transformed BP

we need (𝑤𝑎𝑖
+ 1) nodes and 𝑤𝑎𝑖

 edges. Altogether this requires

∑ (𝑤𝑎𝑖
+ 1)𝑛

𝑖=1 steps. However, ∑ (𝑤𝑎𝑖
+ 1)𝑛

𝑖=1 ≤ (𝑤𝑐 + 1) ∙ 𝑛

and 𝑤𝑐 is a constant, so the construction is still polynomial. Then

an initial BP can be transformed to a transformed BP in

polynomial time. ∎

Example 5.3 illustrates the construction of the transformed BP.

Example 5.3: Consider the initial BP with set of items

𝐼 = {𝑎1, 𝑎2, 𝑎3, 𝑎4} with weights 𝑤𝑎1
= 3, 𝑤𝑎2

= 1, 𝑤𝑎3
= 2,

𝑤𝑎4
= 4 and the set 𝐶 of bins with capacity 𝑤𝑐=5. Figure 5.3

shows the transformed BP.

Once we have built the transformed BP, we can run an algorithm

that solves the bucketization problem, by setting 𝑤𝑐 to

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. The solution of the transformed BP is a

bucketization 𝐵. Figure 5.4.a shows the set of buckets 𝑆𝐵 of

Example 5.3, 𝑏1 and 𝑏2 are the 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠. Since we set

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 = 𝑤𝑐 , it holds for all buckets 𝑏 ∈ 𝑆𝐵 that |𝑏| ≤ 𝑤𝑐.

The next lemma, Lemma 5.2, states that a solution of the initial

BP can be constructed in polynomial time from a solution of the

transformed BP. Before moving to Lemma 5.2, we first explain

the solution construction process.

Solution transformation process: A solution of the initial BP can

be constructed from a solution of the transformed BP as follows:

- Identify the number of bins 𝑚 needed to store the items. Each

bucket represents one bin. Then 𝑚 = |𝑆𝐵|.
- Identify the set of items that each bin will store.

𝑐𝑖={𝑥|∃(𝑥, 𝑦) ∈ 𝑏𝑖}. Figure 5.4.b shows the solution

constructed for the initial BP of Example 5.3.

Lemma 5.2. Output transformation. A solution of the

transformed BP can be transformed to one of the initial BP in

polynomial time.

PROOF: Consider a bucketization of the transformed BP that

fulfills Constraints c1-c4. We transform it to a BP solution with

the solution construction process. Now we proceed to

demonstrate that the transformed solution fulfills the constraints

of the BP problem, bp1 to bp3 with respect to the initial BP

problem. We start by analyzing the constraints of the BP problem

and of the bucketization problem.

Figure 5.3. Transformed BP of Example 5.3.

Figure 5.4. Solution of Example 5.3

𝑆𝐵 = {
{(𝑎1, 𝑎11), (𝑎1, 𝑎12), (𝑎1, 𝑎13), (𝑎3, 𝑎31), (𝑎3, 𝑎32)}𝑏1

{(𝑎2, 𝑎21), (𝑎4, 𝑎41), (𝑎4, 𝑎42), (𝑎4, 𝑎43), (𝑎4, 𝑎44)}𝑏2

}

a) The set of buckets 𝑆𝐵 solution of the transformed BP

b) The solution of the initial BP

𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4} 𝑐1 = {𝑎1, 𝑎3}

𝑚 = |𝑆𝐵| = 2 𝑐2 = {𝑎2, 𝑎4}

First, Constraint bp1 is fulfilled because of Constraints c1 and c3

of the bucketization problem. Constraint c1 ensures that each edge

is assigned to only one bucket. Then ∀𝑖 ≠ 𝑗, 𝑐𝑖 ∩ 𝑐𝑗 = ∅.

Together with the fact that for all items 𝑎𝑖 ∈ 𝐼, 𝑤𝑎𝑖
≤ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠,

Constraint c3 ensures that the edges belonging to the same node

are placed in the same bucket.

Second, Constraint bp2 is fulfilled because of Constraint c2 of the

bucketization problem. For all bins 𝑐𝑖 ∈ 𝐶, |𝑐𝑖| = |𝑏𝑖| and

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 = 𝑤𝑐 , then |𝑏𝑖| ≤ 𝑤𝑐 , which fulfills bp1.

Third, bp3 is fulfilled because of Constraint c4. The number of

buckets is the number of bins used in the initial BP solution. Then

minimizing the buckets is the same as minimizing the number of

bins used.

Finally, a bucketization solution of a transformed BP can be

transformed to a solution of the initial BP in polynomial time. For

all buckets 𝑏𝑖 ∈ 𝑆𝐵, |𝑏𝑖| = |𝑐𝑖| and ∑ |𝑐𝑖| = ∑ 𝑤𝑎𝑖

𝑛
𝑖=1

𝑛
𝑖=1 . Then the

complexity of the reconstruction is Ο(𝑚), where 𝑚 is the total

number of edges and 𝑚=∑ 𝑤𝑎𝑖

𝑛
𝑖=1 . ∎

Theorem 5.1. Finding an optimal bucketization that meets

Constraints c1 - c4 is NP-hard.

PROOF: With Lemmas 5.1 and 5.2 we have shown that an instance

of the BP problem can be reduced to an instance of the

bucketization problem in polynomial time. Since the BP problem

is NP-hard [20], the bucketization problem is NP-hard as well. ∎

In the next section we present our bucketization approach.

5.5 The Bucketization Algorithm
Due to the complexity of the problem, we use heuristics to find an

approximate solution to an optimal bucketization.

The bucketization algorithm consists of (1) partitioning the edges

of a graph 𝐺 into buckets with the constraints established in

Section 5.3 and (2) creating the corresponding index information.

The algorithm has an initialization phase and a merging phase.

5.5.1 The Initialization Phase
Algorithm 1 is the initialization phase of our bucketization

approach for a graph 𝐺. It starts by padding the labels of the nodes

to ensure that all strings that represent an edge have the same

length. Then the algorithm follows the next steps: (1) create the

buckets needed to store the edges of 𝐺, (2) assign 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠

edges belonging to the same node to each bucket randomly and

(3) generate the index information.

We justify the need for padding in Section 5.7. Example 5.4

illustrates how the assignment of edges works, and Example 5.5

explains the need for randomness with this assignment.

Example 5.4: We set 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 = 10. Given a node 𝑣 that has

27 edges, three buckets will be created. 10 random edges are

chosen from the 27 edges and are assigned to the first buckets, 10

random edges are chosen from the remaining ones for the second

bucket, and the 7 remaining edges go to the third bucket.

Example 5.5: For the sake of an easy example, image a setting

where emails can be revoked without difficulty. For this example,

we consider the buckets in Figure 5.5. Assume that the

bucketization algorithm does not assign edges randomly. If an

adversary knows that user 𝐴 has sent 4 emails, learns that the

system has revoked one of the emails and sees that Bucket b2 is

deleted, although the edges are encrypted, she will learn that the

revoked email was the last one, i.e., the email sent to user 𝐸. A

random assignment of edges reduces the probability of the

adversary learning extra information.

Algorithm 1: Initialization()

INPUT: Graph: 𝐺(𝑉, 𝐸), int: maxEdges

OUTPUT: initial bucketization: 𝐵0

1: //Step 0: pad the length of all nodes

2: pad.labelOfNodes();

3: //Step 1: create a sufficient number of buckets for each node

4: for each 𝑣 in 𝑉 {

5: create (ceil(1, v.numberOfEdges()/maxEdges)) buckets;

6: //Step 2: assign edges of each node to a corresponding bucket

7: assign randomly up to maxEdges edges of 𝑣 to each bucket;

8: generate the corresponding index information;

9: }

Definition 5.9: Given a graph 𝐺, the initial bucketization 𝐵0 is

the result of the initialization phase of the bucketization algorithm

applied to 𝐺.

After the initialization phase of the bucketization process, all

edges have been placed into their buckets. At this point, some

buckets may not have reached their maximal capacity. Even if we

encrypt the buckets at this stage, the initial bucketization is not

secure. Recall that edges are encrypted individually. Then an

adversary can learn the frequency of buckets. Furthermore, if the

degree of a node is less than or equal to 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠, its edges

have been placed in one bucket exclusively. An adversary could

now gain extra knowledge by analyzing the initial bucketization,

see Example 5.2.

5.5.2 The Merging Phase
Definition 5.10: Bucket merge is a process that puts the content

of two buckets in a new one and then deletes the two emptied ones.

In this phase, the algorithm merges buckets in order to fulfill

Constraint c4.

Definition 5.11: Given a graph 𝐺, a final bucketization 𝐵 is a

bucketization resulting from the initialization and merging phases

applied to 𝑮.

Algorithm 2 identifies pairs of buckets that can be merged in

order to obtain buckets with the same frequency, to address the

secrecy issues from Section 5.5.1. Different heuristics are

conceivable at this stage. We choose a First Fit Decreasing

approach (FFD) [8]. We will justify this decision after having

explained the algorithm. When the algorithm starts, Lines 1-3, it

creates three sets: (1) 𝐵′, which contains buckets that do not yet

have 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠; 𝐵′ is sorted based on the frequency of each

bucket in descending order, (2) 𝐵𝑓, which contains full buckets,

and (3) 𝐵𝑚, an auxiliary set that contains the buckets resulting

from a merge. For each Bucket 𝑏𝑖 ∈ 𝐵′, the algorithm searches for

the first Bucket 𝑏𝑗 in 𝐵𝑚 that can be merged with 𝑏𝑖, Lines 4-6. If

it finds one, the function 𝑚𝑒𝑟𝑔𝑒(𝑏𝑖 , 𝑏𝑗), Line 7, creates a new

Bucket 𝑏 to store the edges of 𝑏𝑖 and 𝑏𝑗 . The Buckets 𝑏𝑖 and 𝑏𝑗 are

Figure 5.5 Illustration of Example 5.5

removed from 𝐵’ and 𝐵𝑚, and the index information is updated. If

the new bucket 𝑏 reaches its maximal capacity, 𝑏 is placed in 𝐵𝑓,

Lines 8-9. Otherwise it is placed in 𝐵𝑚 so that it can be

considered again for a merge, Line 11. If there is not a Bucket

𝑏𝑗 available for a merge, 𝑏𝑖 is placed in 𝐵𝑚, Lines 15-16. Once the

merging process has finished, dummy edges are added to the

buckets that have not reached 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠, Lines 18-20. The edges

inside each bucket are encrypted with 𝑒𝑛𝑐𝑑
𝐾 individually. In the

index information the labels of the nodes are encrypted with

𝑒𝑛𝑐𝑑
𝐾, and the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 is encrypted with 𝑒𝑛𝑐𝑝

𝐾.

Algorithm 2: Merge buckets()

INPUT: initial bucketization 𝐵0, int: maxEdges

OUTPUT: final bucketization: 𝐵𝑓

1: Initialize: 𝐵′:={ 𝑏 ∈ 𝐵𝑖| b.numberOfEdges() < maxEdges}

2: Initialize: 𝐵𝑓: = 𝐵𝑖\𝐵′; 𝐵𝑚: = {0}

3: Order 𝐵′ by number of edges in decreasing order;

4: for each 𝑏𝑖 ∈ 𝐵′{

5: for each 𝑏𝑗 ∈ 𝐵𝑚 {

6: if 𝑏𝑖 fits in 𝑏𝑗

7: 𝑏 ← merge(𝑏𝑖 , 𝑏𝑗);

8: if b.numberOfEdges() = maxEdges

9: add b to 𝐵𝑓;

10: else

11: add b to 𝐵𝑚;

12: delete 𝑏𝑖, 𝑏𝑗;

13: break the loop and continue with the next 𝑏𝑖;

14: }

15: if 𝑏𝑖 does not fit in any available 𝑏𝑗 ∈ 𝐵𝑚

16: move 𝑏𝑖 to 𝐵𝑚;

17: }

18: for each b in 𝐵𝑚{

19: addDummyEdges();

20: add b to 𝐵𝑓;

21: }

22: enc(𝐵𝑓);

Analysis of the Merging Phase: Because finding an optimal

bucketization solution is computationally intractable (NP-hard),

we introduce a heuristic to solve the problem. However, different

heuristics are conceivable for the merging. We for our part use a

First Fit Decreasing (FFD) approach. Garey et al. have

demonstrated in [8] that the worst case solution for the bin

packing problem with the FFD approach is far of the optimal by a

factor of
11

9
. Other approaches, such as Best Fit (BF) and Next Fit

(NF), have a worse approximation ratio,
17

10
 and 2 respectively [8].

5.6 Query Transformation
Unlike other approaches such as [18], our bucketization approach

does not lose any information regarding the original graph.

Consequently, there is no limitation regarding the kind of query

we can process in principle. However, with respect to the client

workload, our approach is more efficient answering neighbor and

adjacency queries than answering other queries such as finding a

path between two given nodes. In the following, we discuss the

processing of neighbor and adjacency queries. These queries are

essential information needs regarding graphs [17].

Algorithm 3: Neighbor Query Processing given a

bucketization structure 𝑩

INPUT: 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), key

OUTPUT: Edges:= {}

1: Initialize: EncBucketIDs:={}, BucketIDs:={}, EncEdges:={},

EdgesTem :={}, Edges:={};

2: encNode ←client.𝑒𝑛𝑐𝑑
𝑘𝑒𝑦(𝑢);

3: if server.indexInformation.node=encNode

4: EncBucketIDs ← indexInformation.BucketIDs(encNode);

5: for each 𝑏𝑖in EncBucketIDs

6: 𝑏 ←client. 𝑑𝑒𝑐𝑝
𝑘𝑒𝑦(𝑏𝑖);

7: add 𝑏 to BucketIDs;

8: for each 𝑏 in BucketIDs

9: for each bucket in server.SetOfBuckets

10: if bucket.bucketID = 𝑏
11: eEdge ← SetOfBuckets.Edge(bucket);

12: add eEdge to EncEdges;

13: for each eEdge in EncEdges

14: edge ←client. 𝑑𝑒𝑐𝑑
𝑘𝑒𝑦

(eEdge);

15: add edge to EdgesTemp;

16: for each edge in EdgesTemp

17: if (edge.isFalsePositive!=true)

18: add edge to Edges;

19: return Edges;

Algorithm 4: Adjacency Query Processing given a

bucketization structure B

INPUT: 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣), 𝑘𝑒𝑦

OUTPUT: Boolean isEdge ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

1: Initialize: Boolean isEdge = 𝑓𝑎𝑙𝑠𝑒;

2: encEdge ←client.𝑒𝑛𝑐𝑑
𝑘𝑒𝑦(𝑢, 𝑣)

3: if server.SetOfBuckets.Edge contains encEdge

4: isEdge= 𝑡𝑟𝑢𝑒;

5: return isEdge;

Client-side queries are transformed to server-side queries. Algo-

rithm 3 shows the transformation process for neighbor queries,

𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐺, 𝑢). The client starts by encrypting Node 𝑢 and

generating the server-side query, Lines 2-3. This query retrieves

the set of b𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 of the encrypted node 𝑒𝑛𝑐𝑑
𝑘𝑒𝑦(𝑢) from the

index information and returns it to the client, Line 4. The client

unencrypts it and generates a new server-side query Lines 5-7.

This new query retrieves the edges stored in buckets whose

𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷 corresponds to one of the unencrypted b𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠,

Lines 8-12. Finally the client unencrypts the edges and filters false

positives, Lines 13-19. Algorithm 4 shows the procedure for

adjacency queries, 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣). The client starts by

encrypting the two nodes in the query with encryption

𝑒𝑛𝑐𝑑
𝑘𝑒𝑦(𝑢, 𝑣), Line 2. The server-side query searches in the set of

buckets for this encrypted edge, Lines 3-4. Iff there exists such an

edge, the nodes are adjacent.

5.7 Our Bucketization Approach is Ind-INP
Recall that the output of the bucketization algorithm consists of

two parts, the index information and the set of buckets. See Figure

5.6 where |𝐶(𝑛𝑜𝑑𝑒)| is the length of the ciphertext representing an

encrypted node, |𝐶(𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠)| is the length of the ciphertext

representing the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠, |𝐶(𝑒𝑑𝑔𝑒)| is the length of the

ciphertext representing an encrypted edge, |𝑁(𝑒𝑛𝑐)| is the number

of encrypted nodes and |𝐸𝐵| is the number of buckets. In this

section we will prove that our Bucketization Approach fulfills the

secrecy notion Ind-INP defined in Section 4.2. To facilitate the

proof, we first prove that our bucketization algorithm is Ind-INP

with respect to the set of buckets output, Lemma 5.3, and with

respect to the index information output, Lemma 5.4.

Lemma 5.3. Given the set of buckets the Bucketization algorithm

has generated, an adversary 𝒜 cannot distinguish whether the

graph 𝐺 or the permuted graph 𝔭(𝐺) has been the input of the

bucketization algorithm.

PROOF: All buckets Index information have the same frequency,

namely 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. So buckets are undistinguishable. The only

characteristic that can change in the set of buckets when the input

of the bucketization algorithm changes is the number of buckets
|𝐸𝐵|. |𝐸𝐵| depends on the number of nodes |𝑁| and the multiset

of degrees of the nodes 𝑁𝐸. With knowledge K1, K2 and K3, (K2

and K3, to be exact) an adversary has access to |𝑁| and 𝑁𝐸.

However, since 𝔭(𝐺) is just a permutation of 𝐺, |𝑁| and 𝑁𝐸 of

both graphs are identical. Consequently, an adversary cannot

distinguish whether 𝐺 or 𝔭(𝐺) has been the input of the

bucketization algorithm, given knowledge K1, K2 and K3. ∎

Lemma 5.4. Given the index information the Bucketization

algorithm has generated, an adversary 𝒜 cannot distinguish

whether the graph 𝐺 or the permuted graph 𝔭(𝐺) has been the

input of the bucketization algorithm.

PROOF: The only characteristic that can change in the index

information when the input of the algorithm changes are the

number of encrypted nodes |𝑁(𝑒𝑛𝑐)| and the length of the

ciphertext of the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠, |𝐶(𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠)|. |𝑁(𝑒𝑛𝑐)| and

|𝐶(𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠)| depend on the number of nodes |𝑁| and the multiset

of degrees 𝑁𝐸. With knowledge K2 and K3, an adversary has

access to |𝑁| and 𝑁𝐸. However, the permutation does not modify

the nodes in the graph. Also, since 𝔭(𝐺) is just the permutation of

𝐺, 𝑁𝐸 of both graphs are identical. Consequently, an adversary

cannot distinguish whether 𝐺 or 𝔭(𝐺) has been the input of the

algorithm given knowledge K1, K2 and K3. ∎

Theorem 5.2. Our bucketization algorithm fulfills the secrecy

notion Ind-INP (Definition 4.3).

PROOF: The bucketization algorithm produces two outputs, the

index information and the set of buckets. The only characteristics

that change when the input of the algorithm changes are |𝐸𝐵|,

|𝑁(𝑒𝑛𝑐)| and |𝐶(𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠)|. We have proven in Lemmas 5.3 and

5.4 that the three characteristics are identical for graphs 𝐺 or

𝔭(𝐺). Then any combination of these characteristics does not

violate Definition 4.3. Thus, our algorithm is Ind-INP. ∎

6. PERFORMANCE MODEL
We start this section by describing scale-free networks. Then we

present our performance model which consists of (1) the Number-

of-Buckets Model and (2) the Query-Cost Model.

A performance model is important because it allows predicting

the behavior of an algorithm and facilitates meaningful

comparisons or evaluations of algorithms. In our approach, the

number of buckets obtained after applying our bucketization

algorithm to a graph 𝐺 is a crucial parameter for query performance.

Estimating the number of buckets is cumbersome, and we

estimate a range. But even to estimate this range, it is necessary to

have a model that describes relevant properties of a given graph.

In the next section, due to the importance of scale-free networks,

we review some of their characteristics. Based on these properties,

we derive the so-called number-of-buckets model and the query-

cost model.

6.1 Scale-free Networks
Real-world networks have two important features: growth and

preferential attachment. These features are responsible for the

power-law distribution of scale-free networks. Many real-world

networks, such as genetic networks or the actor network, follow a

scale-free power-law distribution [3].

Growth. Real-world networks often are the result of a continuous

growth process. At each time step, a new node is added to the

network and connected with existing nodes.

Preferential attachment. Nodes with higher degree will have

higher probability to be connected to a new node. This property

has the effect that most nodes in the network will have only few

edges, and a few nodes gradually turn into hubs, i.e., their degree

greatly exceeds the average.

Barabasi et al. have introduced a model capturing the properties of

scale-free networks, the Barabasi-Albert Model (BA) [3]. In the

following, we review some important BA parameters.

Degree Exponent, 𝛾. The degree exponent is the exponent of the

power-law distribution of scale-free networks. It plays an im-

portant role in predicting many properties of these networks, e.g.,

the highest node degree. Barabasi et al. have observed that the

degree exponent of many real networks is between 2 and 3.

Growing parameter, 𝑚. At each time step a new node is added to

the network with 𝑚 edges that connect it to 𝑚 existing nodes.

Probability of a node with degree k, 𝜌𝑘. Given the degree

exponent and the growing parameter, it is possible to calculate the

probability that a randomly chosen node has degree of 𝑘 [3]. The

probability is

𝜌𝑘 =
2𝑚(𝑚+1)

𝑘(𝑘+1)(𝑘+2)
 (6.1)

Edges. The number of edges |𝐸| in the BA is |𝐸| = 𝑚 ∙ 𝑁, where

𝑁 is the number of nodes.

Largest node degree, 𝑘𝑚𝑎𝑥. The expected value of the largest

node degree in the BA is 𝑘𝑚𝑎𝑥 ~ 𝑁
1

𝛾−1.

Figure 5.6. Abstract output of the bucketization algorithm

Lowest node degree, 𝑘𝑚𝑖𝑛. It is the minimum degree in the

network. For 𝑘𝑚𝑖𝑛 there is no characterization, each graph can

have different values of 𝑘𝑚𝑖𝑛.

Based on these BA characteristic, we derive a model of the

expected number of buckets with our bucketization algorithm.

6.2 The Number-Of-Buckets Model NBM
Recall that after the initialization phase of the algorithm, some

buckets are full and some are not. Lemma 6.1 captures the number

of buckets that have reached their maximal capacity after the

initialization phase of the algorithm.

Lemma 6.1. The number of full buckets after the initialization

phase of the algorithm is

𝐵𝑢𝑐𝑘𝑒𝑡Full-ini = ∑ (𝑁 ∙ 𝜌𝑘 ∙ ⌊
𝑘

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌋)

𝑘𝑚𝑎𝑥
𝑘=𝑘𝑚𝑖𝑛

 (6.2)

PROOF: Given a node 𝑢𝜖𝑉 in a graph 𝐺 with degree 𝑘𝑢, the

number of full buckets generated for 𝑢 after the initialization

phase is 𝐸𝐵𝐹𝑢𝑙𝑙𝑢
= ⌊

𝑘𝑢

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌋. 𝐸𝐵𝐹𝑢𝑙𝑙𝑢

 is calculated regardless of

the other nodes in 𝐺. Next, it is required to calculate 𝐸𝐵𝐹𝑢𝑙𝑙𝑢
 for

all nodes 𝑢 ∈ 𝑉. According to the BA properties, the probability

that a randomly chosen node has degree of 𝑘 is given by 𝜌𝑘. Then

the total number of nodes with degree 𝑘 is 𝑁 · 𝜌𝑘. For all the

nodes with degree 𝑘, the total number of buckets is 𝑁 ∙ 𝜌𝑘 ∙

⌊
𝑘𝑢

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌋. Finally, to estimate the total number of buckets after

the initialization phase, we have to consider all node degrees,

which are between 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥. ∎

If we know the number of full buckets, we know the number of

edges that have been already stored in these full buckets. Then we

can calculate the number of edges stored in non-full buckets, see

Lemma 6.2.

Lemma 6.2. The number of edges that have been assigned to

buckets that are not full is

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵 = |𝐸| − 𝐵𝑢𝑐𝑘𝑒𝑡Full-ini ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 (6.3)

PROOF: The number of edges already stored in full buckets after

the initialization phase is 𝐵𝑢𝑐𝑘𝑒𝑡Full-ini ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. We subtract

this number from the total number of edges |𝐸| to obtain

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵.∎

Using these two lemmas, we introduce the range of the Bucket

Estimation Model, see Theorem 6.1.

Theorem 6.1. Given a graph 𝐺 = (𝑉, 𝐸) that follows the BA

Model, the expected number of buckets, 𝐸𝐵, is in the range:

𝐵𝑢𝑐𝑘𝑒𝑡Full-ini + ⌈
𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ≤ 𝐸𝐵 ≤

𝐵𝑢𝑐𝑘𝑒𝑡Full-ini +
11

9
∙ ⌈

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ (6.4)

The lowest value of the range represents an optimal solution, and

the highest value represents the worst case scenario of our

bucketization algorithm.

PROOF: The lowest value of the range is the number of buckets

obtained with the optimal bucketization. With this optimal

bucketization, the non-full buckets are merged so that their edges,

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵, fill exactly ⌈
𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ buckets. For the upper bound

of the model, the worst performance ratio of the FFD approach

used in our algorithm is
11

9
 of the optimal solution. Consequently,

the upper bound is the sum of the number of full buckets after the

initialization phase, 𝐵𝑢𝑐𝑘𝑒𝑡Full-ini, and the number of buckets after

the merging in the worst case, i.e.,
11

9
∙ ⌈

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉. ∎

Corollary 6.1 gives a range of the expected number of dummy

edges.

Corollary 6.1. Given a graph 𝐺 = (𝑉, 𝐸) that follows the BA

Model, the expected number of dummy edges, 𝐷𝐸, is in the range

(𝐵𝑢𝑐𝑘𝑒𝑡Full-ini + ⌈
𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉) ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 − |𝐸| ≤ 𝐷𝐸 ≤

 (𝐵𝑢𝑐𝑘𝑒𝑡Full-ini +
11

9
∙ ⌈

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉) ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 − |𝐸| (6.5)

PROOF: The lower bound of the expected number of buckets from

Theorem 6.1 multiplied with 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 yields the total number

of edges stored in the buckets. Subtracting from this number the

real number of edges yields the lower bound of expected dummy

edges. The analogous argument applies for the upper bound. ∎

The number-of-buckets model helps us to predict the query

performance. Depending on the type of queries, the query

workload is divided between the client and the server, e.g., with

neighbor queries the client has to filter false positives. Lemma 6.1

gives the number of buckets that do not generate false positives,

because they are full and store edges belonging to the same node.

We obtain the percentage of buckets that produce false positives

by comparing 𝐵𝑢𝑐𝑘𝑒𝑡Full-ini to the expected number of buckets

from Theorem 6.1. Buckets that contain false positives result in

more work at the client. A low percentage of full buckets

increases the average query processing effort at the client. Note

that the number of full buckets does not only depend on the

characteristics of the given graph, e.g., distribution of number of

edges per node, but also on parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. As mentioned,

adjacency queries do not require work at the client. However,

dummy edges affect the query performance at the server.

Preliminary experiments of ours show that more dummy edges

increase the query execution time at the server proportionally.

6.3 Query-Cost Model
Given a query 𝑄, let 𝑆𝑅𝑄-𝐺 and 𝐶𝑅𝑄-𝐺 be the runtime complexity

of 𝑄 with the original graph 𝐺, without index, at the server and

the client respectively and 𝑆𝑃𝑄-𝐵 and 𝐶𝑃𝑄-𝐵 the run time

complexity of 𝑄 with the bucketization structure 𝐵, without index,

at the server and the client respectively.

Definition 6.1: The query performance ratio of a given query 𝑄,

an original graph 𝐺 and its corresponding bucketization structure

𝐵 at the server side is 𝑆𝑃𝑄 = 𝑆𝑅𝑄-𝐵 𝑆𝑅𝑄-𝐺 ⁄ and the query

performance ratio at the client side is 𝐶𝑃𝑄 = 𝐶𝑅𝑄-𝐵 𝐶𝑅𝑄-𝐺 ⁄ .

We start by analyzing the processing of neighbor queries,

followed by adjacency queries. We focus on the case without any

index structure either on the original graph G or on the

bucketization structure 𝐵. Then a single lookup in the original

graph 𝐺 has a complexity of 𝛰(|𝐸|). In the bucketization

structure, a single lookup in the index information has complexity

of 𝛰(|𝑉|) and a single lookup in the set of buckets has a

complexity of 𝛰(|𝐸| + |𝐷𝐸|), where |𝐷𝐸| is the number of

dummy edges.

Lemma 6.3. Let a Graph 𝐺 = (𝑉, 𝐸), its bucketization structure 𝐵

and a neighbor query 𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺, 𝑢) be given. The server-side

and the client-side performance ratio are as follows, with 𝑑𝑒𝑔(𝑢)

being the degree of u:

 𝑆𝑃𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢) =
Ο(⌈

𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉∙(|𝐸|+|𝐷𝐸|))

Ο(|𝐸|)
 (6.6)

𝐶𝑃𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺,𝑢) = Ο (⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠) (6.7)

PROOF: In the original graph, we need to access the edges 𝐸,

which are stored at the server, and retrieve all edges that belong to

𝑢. Then the effort of executing a neighbor query on the server side

is 𝑆𝑅𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢)
= Ο(|𝐸|). At the client, no work is necessary.

With our bucketization in turn, the following steps are required:

1. Encrypt node 𝑢 for querying. The effort is Ο(1).

2. Retrieve the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 of node 𝑢 from the index

information. This step has a complexity of Ο(|𝑉|). Using the

BA model, we can write |𝑉| as
|𝐸|

𝑚
.

3. Decrypt the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠. The decryption operation has a

complexity of Ο (⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉).

4. For each 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷, one lookup in the set of buckets is

required. The number of buckets of 𝑢 is |𝐸𝐵𝑢| = ⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉.

The complexity of this step is Ο (⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ (|𝐸| + |𝐷𝐸|)).

5. Decrypt and filter the ⌈
𝑘𝑢

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 edges. The

decryption and filtering is in Ο (⌈
𝑘𝑢

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠).

The server performs Steps 2 and 4, the client Steps 1, 3 and 5. The

step with the highest complexity at the client is Step 5 and at the

server it is Step 4. Consequently, the effort for executing a

neighbor query at the server and at the client is:

𝑆𝑅𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢)-𝐵
= Ο (⌈

𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ (|𝐸| + |𝐷𝐸|))

𝐶𝑅𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢)-𝐵
= Ο (⌈

𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠).

Finally,

𝑆𝑃𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢) =
Ο(⌈

𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉∙(|𝐸|+|𝐷𝐸|))

Ο(|𝐸|)
,

𝐶𝑃𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺,𝑢) = Ο (⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠) ∎

Lemma 6.4. Let a Graph 𝐺 = (𝑉, 𝐸), its bucketization structure 𝐵

and an adjacency query 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) be given. The server-

side and client-side performance ratio are 𝑆𝑃𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺,𝑢,𝑣) =

Ο((|𝐸|+|𝐷𝐸|))

Ο(|𝐸|)
 and 𝐶𝑃𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺,𝑢) = Ο(1).

PROOF: In the original graph, in order to check if Edge (𝑢, 𝑣) ∈ 𝐸,
it is necessary to execute one lookup on the edges 𝐸. Then the

effort of executing an adjacency query at the server is

𝑆𝑅𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺,𝑢,𝑣)
= Ο(|𝐸|). At the client, no work is necessary.

In the transformed graph the following steps are required:

1. Encrypt Edge (𝑢, 𝑣) for querying. The effort is Ο(1).

2. Execute one lookup in the encrypted edges, which are stored in

the set of buckets. The complexity of this step is Ο(|𝐸| + |𝐷𝐸|).

Step 1 takes place at the client, it is an encryption operation in

Ο(1). So the ratio at the client is 𝐶𝑃𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺,𝑢) = Ο(1). At the

server, the effort is 𝑆𝑅𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺,𝑢,𝑣)-𝐵
= Ο(|𝐸| + |𝐷𝐸|).

Then 𝑆𝑃𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺,𝑢,𝑣) =
Ο((|𝐸|+|𝐷𝐸|))

Ο(|𝐸|)
 ∎

From the Query-Cost Model we can learn that for adjacency and

neighbor queries the parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 plays an important

role in the query performance effort at client and server. If

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 increases, the number of dummy edges increases and

the server requires more effort in order to answer queries. At the

client-side, for answering neighbor queries if 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠

increases, the workload at the client increases too, because the

client has to filter more false positives.

7. EXPERIMENTS
In this section we present experiments to evaluate (1) the accuracy

of our number-of-buckets model and (2) the performance of our

bucketization approach.

7.1 Experiment Setup

7.1.1 Input datasets
In our experiments we use synthetic and real datasets.

Synthetic datasets: We have used Networkx [11] to generate 8

different undirected graphs that follow the BA Model. Table 7.1

shows the characteristics of the data, where 𝑁 is the number of

nodes, 𝑚 the growing parameter and 𝐸 the number of edges.

Table 7.1. Characteristics of the synthetic data

Synthetic Data N m E

G1 5000 6 29964

G2 5000 8 39936

G3 10000 6 59964

G4 10000 8 79936

G5 40000 8 319936

G6 40000 10 399900

G7 150000 8 1199936

G8 150000 10 1499900

Real datasets: We have used as real datasets the actor network

[14] and the Web network [16]. Barabasi et al. have proven that

both networks are scale-free. The actor network contains 1048575

edges and 1137725 nodes, 89150 nodes represent actors and

1048575 nodes represent movies. An edge connects a movie with

an actor who has played in it. The actor network exhibits the

preferential attachment feature. This is because, if an actor has

played in more movies, a casting director is more familiar with his

or her skills. Then an actor with higher degree has higher chances

to be considered for a new role. The Web network contains

2381903 nodes and 2312497 edges, and its growing parameter 𝑚

is 5. The nodes in the Web network are web pages, and the edges

represent hyperlinks between them.

7.1.2 Queries
Based on initial experiments, we observe that node degree plays

an important role in the query performance evaluation. Therefore,

the nodes that will be part of the experiments sample should be

carefully selected in order to have a representative sample of

queries. In the context of neighbor queries, there are two kinds of

nodes, hubs and non-hubs, with very different query performance.

So, to have equally represented hubs and non-hubs in our query

sample, we divide neighbor queries in two groups

𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) and 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢). For

𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), we select the input node 𝑢 randomly

from the set of nodes 𝑉 without considering the hubs in the graph.

For 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), we identify the hubs in the graph and

use them as input.

For adjacency queries, 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣), the nodes 𝑢, 𝑣 were

selected randomly from the set of nodes 𝑉. The execution time of

adjacency queries depends on the total number of edges including

dummy edges (Section 6.3). So a distinct consideration of hubs is

not necessary in this case.

7.1.3 Evaluation Measures
We use six metrics which let us evaluate the accuracy of the NBM

and the performance of the bucketization approach.

The NBM metrics are:

𝑬𝑻𝒐𝒕𝒂𝒍𝑬𝑩: This metric quantifies the number of buckets obtained

when applying our bucketization algorithm to Graph 𝐺.

𝑬𝒅𝒖𝒎𝒎𝒚: This is the percentage of dummy edges when applying

our bucketization algorithm to Graph 𝐺.

𝑬𝑩𝒖𝒄𝒌𝒆𝒕𝒔𝑭𝒖𝒍𝒍−𝒊𝒏𝒊
: This is the percentage of buckets that are full after

the initialization of the bucketization algorithm on Graph 𝐺.

The bucketization performance metrics are:

𝑷𝑻𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: This metric quantifies the total query processing

time using our bucketization structure 𝐵, i.e., it adds up the

processing time at the client and at the server.

𝑷𝑪𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: This metric quantifies the client query processing

time when using a bucketization structure, i.e., the time required

by the client to decrypt the results returned from the server and

filter false positives.

𝑷𝑹𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: This is the ratio of the total query processing time

using a bucketization structure 𝐵 and its original graph 𝐺.

7.2 Results
We now present the results of the experiments. First, the evalua-

tion of the NBM is discussed, then performance. We study the

effect of each parameter from Section 7.1.3 one by one.

7.2.1 NBM Evaluation
𝑬𝑻𝒐𝒕𝒂𝒍𝑬𝑩: Figure 7.1 shows the numbers of buckets obtained with

the synthetic data. Figure 7.2 shows the numbers of buckets

obtained with the real datasets. For both types of datasets we have

considered different values for Parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒. The markers

on each bar of both figures are the lower and upper bounds

calculated with our NBM. For all experiments, the number of

buckets obtained is always inside the range calculated with

Theorem 6.1.

If 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 ≤ 𝑚, the number of buckets obtained is between

the lower bound and the middle of the range given by the NBM. If

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 > 𝑚, the number of buckets gets closer to the upper

bound of the NBM. We explain this effect as follows: In scale-

free networks, most of the nodes in the graph have degree equal to

𝑚. If the parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒 is set to 𝑚, most buckets will have

reached their maximal capacity after the initialization phase and

fewer buckets will be considered for merging. Then the total

number of buckets gets closer to the optimal solution.

𝑬𝒅𝒖𝒎𝒎𝒚: We calculate the percentage of dummy edges in

comparison with the size of the original graph for the synthetic

data and real datasets. For space constraints, Table 7.2 shows the

average percentage of dummy edges for the synthetic data, i.e.,

eight datasets.

Table 7.3 shows the exact percentage of dummy edges for the real

datasets. The number of dummy edges needed increases, as

parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 takes greater values than 𝑚. More dummy

edges means a larger database. This is likely to affect the

efficiency of the querying process on the server as well, this will

be examined in Section 7.2.2.

Table 7.2. 𝑬𝒅𝒖𝒎𝒎𝒚 for the synthetic datasets

Synthetic

Data
1<maxEdges<m maxEdges=m maxEdges>m

1.217% 0.889% 26.513%

Table 7.3. 𝑬𝒅𝒖𝒎𝒎𝒚 for the real datasets

Actor

network

maxEdges=2 maxEdges=4 maxEdges=16

0.028% 0.748% 7.629%

Web

network

maxEdges=3 maxEdges=5 maxEdges=10

0.223% 1.112% 6.349%

Figure 7.1. 𝑬𝑻𝒐𝒕𝒂𝒍𝑬𝑩 obtained for the synthetic data

Figure 7.2. 𝑬𝑻𝒐𝒕𝒂𝒍𝑬𝑩 obtained for the real datasets

𝑬𝑩𝒖𝒄𝒌𝒆𝒕𝒔Full-ini
: Table 7.4 shows the average percentage of full

buckets after the initialization phase for the synthetic data. For the

real datasets the exact percentage is given, see

Table 7.5. The number of full buckets decreases, as parameter

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 takes greater values than 𝑚. If there are edges that

belong to different nodes inside a bucket, then the client will have

to do more work. Full buckets after the initialization phase contain

edges that belong to a single node. More full buckets right after

initialization implies fewer buckets for the merging process, fewer

dummy edges and fewer false positives when querying.

Table 7.4. 𝑬𝑩𝒖𝒄𝒌𝒆𝒕𝒔Full-ini
 for the synthetic datasets

Synthetic

Data
1<maxEdges<m maxEdges=m maxEdges>m

88.79% 86.81% 46.65%

Table 7.5. 𝑬𝑩𝒖𝒄𝒌𝒆𝒕𝒔Full-ini
 for the real datasets

Actor

network

maxEdges=2 maxEdges=4 maxEdges=16

59.15% 55.78% 14.49%

Web

network

maxEdges=3 maxEdges=5 maxEdges=10

81.38% 80.18% 47.96%

7.2.2 Performance Evaluation
As in the previous section, we have conducted experiments with

synthetic and real datasets. The result analysis is the same for both

cases. For space constraints, we only present the results on the

real data.

𝑷𝑻𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: Figure 7.3(a) and (b) shows the total average query

processing time for the three groups of queries defined in Section

7.1.2 in the actor and Web networks. For

𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) and 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) the total

execution time increases as 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 decreases. This is

because, if 𝑚𝑎𝑥𝐸𝑑𝑔𝑒 decreases, the edges of a node will be

distributed in more buckets, and when executing a query, more

buckets have to be retrieved from the server.

𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) requires greater processing time than

𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), because hubs are nodes with many

edges. In contrast, 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) increases as 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠

takes higher values. The increase is due to the dummy edges

inserted. Our experiments show that the number of dummy edges

needed grows as 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 increases.

𝑷𝑪𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: For this part of the evaluation we only consider

two groups of queries, 𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) and

𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢). We omit adjacency queries because they do

not require any post-processing. See Figure 7.3(c) and (d). The

time at the client increases as 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 takes larger values.

From the experiments and analysis of 𝑃𝑇𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 and

𝑃𝐶𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, we can see that the best value to set 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 is

the growing parameter 𝑚. In scale-free networks, most nodes

have a degree equal to 𝑚, so most buckets will be full after

initialization. For the last experimental results, 𝑃𝑅𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, we

set 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 to the best option, i.e., 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 = 𝑚.

𝑷𝑹𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: In Figure 7.4, each two boxes of each plot show

for each type of query executed, the total query processing time

with our bucketization and the original graphs. The plots are for

three kinds of queries, i.e., 𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢),

𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) and 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣). We deem the total

execution time on the original graph the optimum. So we evaluate

our approach depending on how much query processing time

increases in comparison with the original graph. Regarding the

actor network, 𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) with our bucketization

approach is on average 3.44 times slower than with the original

graph, 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) is 5.12 times slower and

𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) is 2.88 times slower. Regarding the Web

graph, 𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) with our bucketization approach

is 2.90 times slower than with the original graph on average,

𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) is 10.15 times slower and

𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) 4.76 times. Except for 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢),

with our approach the query execution time is 3.5 times slower

than with the original graph. In our opinion, this is a reasonable

price for secrecy guarantees. So our bucketization approach is

effective and feasible for graph-structured data secrecy.

8. CONCLUSIONS
A core challenge when outsourcing a database is to ensure the

secrecy of the data. In this paper, we have studied this problem for

graph-structured data. We have proposed a secrecy model for this

kind of data based on the concept of indistinguishability. Existing

proposals, such as [7] [23] [22], deal with different types of

adversaries. In graph-structured data not only the node labels but

Figure 7.4. Total query processing time real datasets

Figure 7.3. 𝑷𝑻𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 and 𝑷𝑪𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 in the Actor and Web Networks

also the edges of a node can reveal sensitive information.

Therefore, our approach offers secrecy so that an adversary will

not find out the edges and the degree of a node. While a

bucketization of the edges gives way to the secrecy envisioned

here, as we have shown, finding an optimal bucketization is NP-

hard. We have proposed a heuristic that guarantees that the worst

bucketization solution will be
11

9
 off the optimal solution. Next, to

facilitate query planning, we propose a performance model that

allows estimating (1) the number of buckets and (2) the query

processing complexity. Our experiments with both real and

synthetic datasets confirm the accuracy of our model and the

effectiveness of our approach.

9. REFERENCES
[1] G Aggarwal et al. Two can keep a secret: A distributed

architecture for secure database services. In Conference on

Innovative Data Systems Research (CIDR), 2005, pp. 186-199.

[3] A. L. Barabási and R. Albert. Emergence of scaling in random

networks. Science, vol. 286, pp. 509-512, October 1999.

[4] J. Cao, F.-Y. Rao, M. Kuzu, E. Bertino, and M.

Kantarcioglu. Efficient tree pattern queries on encrypted

XML documents. In Joint EDBT/ICDT 2013 Workshops,

ACM, 2013, pp. 111-120.

[5] M. Chase and S. Kamara. Structured encryption and controlled

disclosure. In Advances in Cryptology-ASIACRYPT 2010,

Springer Berlin Heidelberg, 2010, pp. 577-594.

[6] R. Curmola, J. Garay, S. Kamara, and R. Ostrovsk.

Searchable symmetric encryption: improved definitions and

efficient constructions. Journal of Computer Security, vol.

19, no. 5, pp. 895-934, January 2011.

[7] Z. Fan et al. Structure-Preserving subgraph query services.

IEEE Transactions on Knowledge and Data Engineering,

vol. 27, no. 8, pp. 2275-2290, August 2015.

[8] Michael Garey and David Johnson, Computers and

Intractability, A Guide to the Theory of NP-Completeness,

1st ed. United States of America: W. H. Freeman, 1979.

[9] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing

SQL over encrypted data in the database-service-provider

model. In 2002 ACM SIGMOD international conference on

Management of data, ACM, 2002, pp. 216-227.

[10] H. Hacigümüs, B. Iyer, and S. Mehrotra. Query optimization

in encrypted database systems. In Database Systems for

Advanced Applications. Beijing, China: Springer Berlin

Heidelberg, 2005, pp. 43-55.

[11] A. Hagberg, D. Schult, and P. Swart. Exploring network

structure, dynamics, and function using NetworkX. In 7th

Python in Science Conference (SciPy2008), Pasadena, CA

USA, 2008, pp. 11-15.

[12] X. He, J. Viadya, B. Shafiq, N. Adam, and X. Lin.

Reachability analysis in privacy-preserving perturbed graphs.

In 2010 IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, 2010, pp. 691-

694.

[2] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving

index for range queries. In 30th International Conference on

Very Large Databases, 2004, pp. 720-731.

[13] J. Katz and Y. Lindell, Introduction to Modern

Cryptography. Boca Raton, United States: Chapman & Hall,

2008.

[14] KONECT. (2016, October) Movies network dataset.

[Online]. http://konect.uni-koblenz.de/networks/dbpedia-

starring

[15] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian

multidimensional k-anonymity. In Data Engineering, 2006.

ICDE'06. Proceedings of the 22nd International Conference,

2006, p. 25.

[16] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.

Community structure in large networks: Natural cluster Sizes

and the absence of large well-defined clusters. Internet

Mathematics, vol. 6, no. 1, pp. 29--123, 2009.

[17] H. Masserrat and J. Pei. Neighbor query friendly

compression of social networks. In 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, Washington, DC, USA, 2010, pp. 533-542.

[18] X. Meng, S. Kamara, K. Nissim, and G. Kollios. GRECS:

Graph encryption for approximate shortest distance queries.

In 22nd ACM SIGSAC Conference on Computer and

Communications Security, ACM, 2015, pp. 504- 517.

[19] G. S. Poh, M. S. Mohamad, and M. R. Z'aba. Structured

encryption for conceptual graphs. In Advances in Information

and Computer Security, Berlin, November 2012, pp. 105-122.

[20] V. V. Vazirani, Approximation algorithms. Springer

Science&Business Media, 2013.

[21] J. W. and X. Du. A secure multi-dimensional partition based

index in DAS. In Asia-Pacific Web Conference, Springer,

2008, pp. 319-330.

[22] H. Wang and L. Lakshmanan. Efficient secure query

evaluation over encrypted XML databases. In 32nd

international conference on Very large data bases, 2006, pp.

127-138.

[23] Y. Zhang, S. Sen, W. Yulong, C. Weifeng, and Y. Fangchun.

Privacy‐assured substructure similarity query over encrypted

graph‐structured data in cloud. Security and Communication

Networks, vol. 7, no. 11, pp. 1933-1944, 2014.

