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ABSTRACT 

Database outsourcing is a challenging task concerning data 

secrecy. Even if an adversary, including the service provider, 

accesses the data, she should not be able to learn any information 

from the accessed data. In this paper we address this problem for 

graph-structured data. First, we define a secrecy notion for graph-

structured data based on the concept of indistinguishability. The 

notion ensures that an adversary can learn the edges existing 

between the nodes only with negligible probability. To address 

this problem, we propose an approach based on bucketization. 

Next to bucketization, it makes use of obfuscated indexes and 

encryption. We show that finding an optimal bucketization 

tailored to graph-structured data is NP-hard; therefore we come up 

with a heuristic. We prove that the proposed bucketization 

approach fulfills our secrecy notion. In addition, we present a 

performance model which consists of (1) a number of buckets 

model that estimates the number of buckets obtained after 

applying our bucketization approach and (2) a query-cost model. 

Finally, we demonstrate with a set of experiments (1) the accuracy 

of our number of buckets model for scale-free networks and (2) 

the efficiency of our approach with respect to query processing. 

1. INTRODUCTION 
Outsourcing databases to a third-party service provider has 

become ubiquitous. While economic and organizational 

advantages are obvious, database outsourcing remains challenging 

concerning data secrecy. Databases contain sensitive information 

that needs to be protected against adversaries, including the 

service provider. If an unauthorized user accesses the data, she 

should not be able to learn anything.  

A broad range of real-world datasets exhibits a graph structure. 

Furthermore, many real graphs such as the email network or the 

World Wide Web follow a scale-free power-law distribution [3]. 

At the same time, these graphs often contain sensitive information.  

In addition to the information attached to nodes, information is 

also attached to edges. In general, a node can be identified by its 

label as well as by its degree (number of edges). Therefore, 

approaches for secure storage of graph-structured data should 

protect against leaking this kind of information. Only encrypting 

node labels is not enough. Next, there have to be secrecy 

guarantees that are provable. At the same, the approaches should 

not do away with the advantages of database outsourcing, and 

query processing in particular should take place on the server as 

much as possible. While we are not aware of any previous work 

on secure storage featuring a cost model for query processing, this 

actually is important, to (1) have a good understanding of the 

expected performance of query processing, (2) facilitate 

comparisons between alternatives and (3) predict the impact of 

parameter changes. 

So there are two requirements on a secure storage scheme for 

graph-structured data. R1: An adversary, including the service 

provider, must not be able to learn the label of nodes or their 

degree. This must be provable (i.e., secrecy). R2: The approach 

should support a broad range of queries. It should do so 

efficiently, with controlled effort. To quantify this, a performance 

model is needed.  

The first requirement calls for a rigid definition of secrecy. This 

includes specifying the assumed knowledge of the adversary and 

the security property, i.e., a description of what constitutes a 

breach of the scheme. We consider adversaries with knowledge of 

(i) the algorithm used to secretize the graph 𝐺, (ii) the labels of all 

the nodes in 𝐺 and (iii) the multiset that contains the degree of 

each node in 𝐺, without stating the correspondence between nodes 

and degrees. The secrecy property ensures that, given a secretized 

graph, an adversary cannot say with non-negligible probability if 

the secretized graph corresponds to the original graph 𝐺. 

Since existing secrecy notions are different from this, we propose 

a new one, i.e., formalize the notion just sketched. Related secrecy 

notions deal with different types of adversaries. Notions such as 

[7], [23] offer guarantees against chosen plaintext attacks. In our 

scenario, these guarantees are not enough. This is because the 

edges of the graph can also reveal information. Wang et al. [22] 

define a secrecy notion for XML documents. It is based on the 

definition of perfect secrecy. As an XML document has a tree 

structure, they assume that an adversary knows the domain values 

of the data and the distribution on the leaf nodes. We additionally 

assume that the adversary knows the degree distribution of the 

complete graph 𝐺. 

Secure database storage has been widely studied. However, exist-

ing techniques such as [19], [1] either cannot be applied to graph-

structured data, or they do not cover both requirements R1 and 

R2. Approaches for graph-structured data such as [19], [18] do not 

keep the structure of the graph. Then they cannot answer certain 

queries, such as neighbor and adjacency queries. Other 

approaches like [1], [10], [2] could exhibit unwanted behavior 

when being adapted to graph-structured data, e.g., leak 

information, see Section 2. Next, none of these approaches 

features a model of the costs of query processing that considers 

relevant characteristics of the graph.  

We propose a bucketization approach for secure storage of graph-

structured data that meets our requirements. It has turned out that 

subtle design decisions have a significant impact. For example, it 

makes a big difference regarding secrecy whether we partition 

nodes into buckets instead of edges. This is because partitioning 

nodes could leak information on the graph structure, as we will 

explain. While our approach works for all types of graph queries 

in principle, we focus on neighbor and adjacency queries. These 

queries are essential information needs regarding graphs [17]. 

Then in what follows we describe the specifics, such as division 

of work between client and server, for these queries. 



Summing up, our contributions are as follows: First, we propose a 

secrecy notion for graph-structured data based on indistinguish-

ability [13]. Second, after showing that existing design alterna-

tives do not cope with all requirements, given that notion, we 

propose a solution featuring bucketization for graph-structured 

data. Our approach partitions edges into buckets. In order to 

answer queries, we store index information. It contains, next to 

other information, the labels of the nodes. We show that finding 

an optimal bucketization is NP-hard. Consequently, we propose a 

heuristic, which we also evaluate empirically later, with positive 

results. Third, we prove that our bucketization scheme fulfills our 

secrecy notion. Fourth, we come up with a performance model for 

query processing on graphs that are scale-free. Our performance 

model consists of (1) a number-of-buckets model, which estimates 

the number of buckets obtained after applying our bucketization 

approach and (2) a query-cost model. Finally, we conduct sys-

tematic experiments both on synthetic and on real datasets. They 

validate the accuracy of our estimation model and demonstrate the 

efficiency of the proposed bucketization technique. 

2. RELATED WORK  
In this section, we first review existing secrecy notions. Then we 

analyze work on bucketization for relational databases and on 

secure storage of graph-structured data. We omit related work that 

we have already discussed in the introduction.  

Secrecy notions: Adaptive semantic secrecy is proposed in [6] and 

[5]. This concept is adapted for answering approximate shortest 

distance queries in graphs in [18]. Their notion uses leakage 

functions, i.e., information revealed to the server. These 

approaches assume that the adversaries only have access to 

information that has leaked, but not to any other sources. We 

consider adversaries with additional information on the original 

graph 𝐺, i.e., the labels of all nodes of 𝐺 and the multiset that 

contains the degree of each node in 𝐺.  

Bucketization on relational databases: Data secrecy in relational 

databases has been investigated extensively [10], [2], [9]. Several 

approaches are based on bucketization. In this context, bucketiza-

tion (1) encrypts each tuple in an original relation as one string, 

(2) groups the tuples in partitions, each partition represents a 

bucket, and (3) stores index values. Each index value is related to 

a partition of the domain of an original attribute. The server stores 

the secretized relation and the index information. In what follows, 

we sketch two adaptations of these approaches to graphs and show 

that these alternatives are not appropriate to solve our problem.   

With both adaptations, we represent the edges in a two-attribute 

relation, 𝑇𝐸𝑑𝑔𝑒𝑠, where each attribute stores one node of the edge. 

Borrowing from bucketization schemes for relational databases, 

two alternatives come to mind, one-dimensional bucketization and 

multidimensional bucketization. 

- One dimensional bucketization. Here, the domains of the two 

attributes in TEdges are considered as one domain and then 

divided into partitions. This solution cannot be considered 

secure because it could exhibit some of the original graph 

structure, see Example 2.1. 

Example 2.1: Consider a graph with edges E={(A,B), (B,C), 

(C,A)}. If bucketization assigns Nodes A, B and C to different 

buckets, the connections between the buckets will share the 

same structure as the original graph. Table 2.1 shows the 

secretized relation. The partitions are 

[𝑏1, {𝐴}], [𝑏2, {𝐵}], [𝑏3, {𝐶}]. The relationship between the 

index values (b1,b2), (b2,b3) and (b3,b1) share the same 

structure as the original edges E. 

 

Table 2.1. Secretized relation of Example 2.1 

e-tuple Node_1 Node_2 

𝑒𝑛𝑐(𝐴, 𝐵) b1 b2 

𝑒𝑛𝑐(𝐵, 𝐶) b2 b3 

𝑒𝑛𝑐(𝐶, 𝐴) b3 b1 

 

- Multidimensional bucketization. With this option, the domain 

of each attribute is partitioned individually. Given an optimal 

multidimensional bucketization, this bucketization can be 

secure. However, the effort of finding an optimal 

multidimensional bucketization with respect to query 

performance is NP-hard [15]. Nevertheless, this NP-hard 

problem can be solved with heuristics such as in [15] and [21]. 

But, these solutions do not consider certain graphs 

characteristics such as the distribution of edges per node or 

grouping edges of a node in the same partition to answer 

important graph queries such as neighbor queries efficiently. 

So these approaches do not solve our problem. 

Secure storage for graph-structured data: An approach for 

finding the shortest path between two nodes in a directed graph is 

presented in [12]. Random perturbation of the edges is required in 

order to offer edge privacy. The perturbation modifies the 

structure of the graph to some extent. Therefore, queries results 

can only be approximate. As XML documents are a specific kind 

of graph, we briefly turn to this research direction as well. The 

approaches in [22] and [4] require the existence of a domain 

hierarchy, such as parent-child, in order to create blocks or 

vectors, respectively. In graph-structured data, such a hierarchy 

typically does not exist. 

To summarize, none of the related approaches we are aware of 

does address Requirements R1and R2. 

3. PRELIMINARIES AND NOTATION 
We now present some notation that we will use in the paper.  

Definition 3.1: A graph 𝐺 is a tuple (𝑉, 𝐸), where 𝑉 is a finite set 

of nodes and 𝐸 ⊆ 𝑉 × 𝑉 is a relation between nodes. |𝑉| is the 

number of nodes, |𝐸| the one of edges existing in 𝐺, and 𝒢 is the 

set of all graphs. 

For a given graph 𝐺, 𝑉(𝐺) = 𝑉 and 𝐸(𝐺) = 𝐸. Without loss of 

generality, we assume that the relationships between the nodes are 

directed. This means that (𝑢, 𝑣) ∈ 𝐸 does not imply (𝑣, 𝑢) ∈ 𝐸. 

An undirected edge can be represented by two directed edges.  

Definition 3.2: Given a graph 𝐺 = (𝑉, 𝐸)   and a node 𝑢 ∈ 𝑉, the 

degree of u, 𝑑𝑒𝑔(𝑢), is the number of outgoing edges of node 𝑢.  

Definition 3.3: A Neighbor Query 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) of a graph 

𝐺 = (𝑉, 𝐸) and a node 𝑢 ∈ 𝐸 returns the set of all nodes adjacent 

to 𝑢 in 𝐺: 𝑄Neigbhor(𝐺, 𝑢) = {𝑣 ∈ 𝑉|(𝑢, 𝑣) ∈ 𝐸}. 

Definition 3.4: An Adjacency Query 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) of a 

graph 𝐺 = (𝑉, 𝐸)  and a pair of nodes 𝑢, 𝑣, checks whether node 

𝑢 is adjacent to node 𝑣: 𝑄Adjacency(𝐺, 𝑢, 𝑣)  = true iff (𝑢, 𝑣) ∈ 𝐸. 

Definition 3.5: A deterministic encryption scheme 𝛦𝑑 =

(𝑘𝑔𝑒𝑛, 𝑒𝑛𝑐𝑑
𝐾 , 𝑑𝑒𝑐𝑑

𝐾) applied to a plaintext 𝑚 consists of three 



parts: (1) a key generation algorithm 𝑘𝑔𝑒𝑛 that returns a 

cryptographic key 𝐾; (2) a deterministic encryption 

algorithm 𝑒𝑛𝑐𝑑
𝐾 that takes the cryptographic key 𝐾 and the 

plaintext 𝑚 to compute a ciphertext 𝑐𝑖 in the 𝑖-th run of the 

algorithm, such that, if 𝑒𝑛𝑐𝑑 runs 𝑛 times, 𝑐𝑖 = 𝑐𝑗 for all 𝑖, 𝑗 ∈

{1, … . , 𝑛}, and (3) a deterministic decryption algorithm 𝑑𝑒𝑐𝑑
𝐾  that 

takes the cryptographic key 𝐾 and the ciphertext  𝑐𝑖 to revert the 

deterministic encryption, such that 𝑑𝑒𝑐𝑑
𝐾 (𝑒𝑛𝑐𝑑

𝐾(𝑚)) = 𝑚 for all 

encryption runs. 

Definition 3.6: A probabilistic encryption scheme 𝛦𝑝 =

(𝑘𝑔𝑒𝑛, 𝑒𝑛𝑐𝑝
𝐾 , 𝑑𝑒𝑐𝑝

𝐾) applied to a plaintext 𝑚 consists of three 

parts: (1) a key generation algorithm 𝑘𝑔𝑒𝑛 that returns a crypto-

graphic key 𝐾, (2) a probabilistic encryption algorithm 𝑒𝑛𝑐𝑝
𝐾 that 

takes the cryptographic key 𝐾 and the plaintext 𝑚 to compute a 

ciphertext 𝑐𝑖 in the 𝑖-th run of the algorithm, such that, if 𝑒𝑛𝑐𝑝 

runs 𝑛 times, 𝑐𝑖 ≠ 𝑐𝑗  for all 𝑖, 𝑗 ∈ {1, … . , 𝑛}, 𝑖 ≠ 𝑗, and (3) a 

probabilistic decryption algorithm 𝑑𝑒𝑐𝑝
𝐾  that takes the 

cryptographic key 𝐾 and the ciphertext 𝑐𝑖 to revert the 

deterministic encryption, such that 𝑑𝑒𝑐𝑝
𝐾 (𝑒𝑛𝑐𝑝

𝐾(𝑚)) = 𝑚 for all 

encryption runs. 

Definition 3.7: Given a graph 𝐺 = (𝑉, 𝐸), the multiset of degrees 

𝑁𝐸 is the multiset that contains the degree of each node 𝑢 ∈ 𝑉. 

4. THE SECRECY MODEL 
In this section, we describe the prior knowledge of the adversary 

and the secrecy notion we target at.  

4.1 The adversary knowledge 
Let  𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑(𝐺) denote the transformed graph after the 

graph transformation function has been applied to the graph 𝐺. 

We assume an adversary with the following knowledge: 

K1: The adversary 𝒜 has access to the transformed graph, 

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑(𝐺). The adversary also knows the algorithm 

used to transform the graph. 

K2: 𝒜 knows the labels of all nodes in 𝐺.  

K3: 𝒜 knows 𝑁𝐸, but she does not know which degree of the 

multiset corresponds to which node. 

Knowledge K1 is based on Kerckhoffs’ principle, and it is a 

standard assumption from cryptology. Knowledge K2 and K3 

describe realistic assumptions on external knowledge that the 

adversary could have. In what follows, when we refer to an 

adversary 𝒜, we assume that 𝒜 to not have any knowledge 

beyond K1, K2 and K3. 

4.2 Our secrecy notion  
We propose a secrecy notion for graph-structured data called 

Indistinguishability under Independent Node Permutation, Ind-

INP. Our secrecy notion is based on the concept of 

indisinguishability presented in [13]. [13] has proven that this 

concept is equivalent to the standard semantic secrecy, i.e., an 

adversary is not able to learn any partial information on the 

plaintext of a given ciphertext. The reason why we use the 

concept of indistinguishability as our secrecy notion is the one 

featured in [13]: Having an algorithm, it is easier to show that it 

fulfills indistinguishability than the concept of semantic secrecy. 

However, the secrecy guarantees are the same.  

Definition 4.1: A graph transformation function 𝑓: 𝒢 → 𝒢 is a 

function that transforms a graph 𝐺 to another graph 𝐺′. The set of 

all graph transformation functions is ℱ. 

Conventional examples of graph transformation functions are 

addition of edges or deletion of nodes. 

Let 𝐺 = (𝑉, 𝐸) be the original graph-structured data and 𝐺’ =
(𝑉, 𝐸′) be another graph with the same nodes as 𝐺, but with 

different edges 𝐸’. Permuting the nodes of the original graph 𝐺 

perturbs the edges and yields 𝐸’. Node permutation is also a graph 

transformation function. It is defined as follows: 

Definition 4.2: An Independent Node Permutation function 𝔭 is 

a function 𝔭 ∈ ℱ where 𝑉(𝔭(𝐺)) = 𝑉(𝐺) for all graphs 𝐺 ∈ 𝒢 

and |𝐸(𝔭(𝐺))| = |𝐸(𝐺)|. 

Node permutation can be implemented as follows. Given a 

graph G, replace each node 𝑣 ∈ 𝑉 with a random node 𝑥 ∈ 𝑉. The 

identity function is a valid node permutation. 

Let 𝒜 be an adversary, 𝜏 a graph transformation function and 𝔭 an 

independent node permutation. Figure 4.1 features the experiment 

needed to define the secrecy notion Ind-INP. 𝐺0 is the trans-

formed graph of 𝐺, and 𝐺1 is the transformed graph of the 

permuted graph 𝔭(𝐺). A random bit 𝑏 ∈ {0,1} is chosen. The 

transformed graph 𝐺𝑏 is given to the adversary 𝒜.  𝒜 does not 

know whether 𝜏 has had 𝐺 or 𝔭(𝐺) as input. The challenge of the 

adversary is to “guess” which one of the two graphs 𝐺0 or 𝐺1 has 

been the input of the transformation. 𝒜 outputs a bit 𝑏̅. The output 

of the experiment is defined to be 1 if 𝑏 = 𝑏̅, and 0 otherwise. If 

𝐼𝑛𝑑 − 𝐼𝑁𝑃𝒜,𝜏 (𝐺) = 1, we say that 𝒜 has succeeded.  

 

 

Definition 4.3: A graph transformation 𝝉 is called Ind-INP 

secure if the function 

𝐴𝑑𝑣𝒜
𝜏 (𝐺) ≔ |𝑃𝑟[Ind-INP𝒜,𝜏(𝐺) = 1] −

1

2
| 

is negligible for any adversary 𝒜 with knowledge K1, K2, and K3 

whose computational effort is bounded to run in polynomial time. 

Definition 4.4: A function 𝒇 is negligible 𝑖𝑓𝑓 ∀𝑐 ∈ ℕ ∃𝑛𝑜 ∈ ℕ 

such that for 𝑛 ≥ 𝑛0, 𝑓(𝑛) < 𝑛−𝑐. 

Although indistinguishability offers guarantees equivalent to 

semantic secrecy, it is not intuitive what this secrecy notion 

guarantees. Therefore, we describe a property of our secrecy 

definition Ind-INP, which will help users understanding the 

secrecy guarantees offered by our secrecy notion. It will be 

Theorem 4.1 that actually introduces this property, and before 

introducing it, some notation and definitions are needed. The 

following explains the probability of guessing the degree of a 

node in 𝐺, 𝑃𝒜, by an adversary 𝒜. Next to other things, 𝒜 knows 

the set of nodes 𝑁 and the multiset of degrees 𝑁𝐸. Calculating 𝑃𝒜 

requires the identification of all possible permutations of the 

elements of 𝑁𝐸.  

Figure 4.1. The experiment 𝐈𝐧𝐝 − 𝐈𝐍𝐏𝓐,𝓣(𝐆)  

 



Definition 4.5: Given a multiset of degrees 𝑁𝐸 of a graph 𝐺, the 

frequency of an element 𝑖 ∈ 𝑁𝐸 is the number of times the 

element 𝑖 occurs in 𝑁𝐸. The set of the frequencies of the different 

elements in  𝑁𝐸 is 𝑁𝐸
̅̅ ̅̅ = ⋃ 𝑑𝑖

𝑘
𝑖=1 , where 𝑑𝑖 is the frequency of 

element 𝑖 and 𝑘 is the number of different elements in  𝑁𝐸
1. 

Lemma 4.1. Given a multiset of degrees 𝑁𝐸 of a graph 𝐺, the 

number of different permutations of the elements of the multiset 

 𝑁𝐸 ,  𝑃𝑒𝑟(𝑁𝐸) is given by the function 

𝑃𝑒𝑟(𝑁𝐸) =
|𝑁𝐸|!

∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ ̅
   (4.1) 

PROOF: Let 𝑘 be the number of different elements in the multiset 

 𝑁𝐸 and 𝑑𝑖, the frequency of element 𝑖, where 𝑖 ∈ {1,⋯, 𝑘}. There 

are (
|𝑁𝐸|

𝑑1
) ways to place the first different element, (

|𝑁𝐸| − 𝑑1

𝑑2
) 

ways to place the second different element, and so on. Then the 

total number of different permutations 𝑃𝑒𝑟(𝑁𝐸) is  

𝑃𝑒𝑟(𝑁𝐸) =
|𝑁𝐸|!

𝑑1!∙(|𝑁𝐸|−𝑑1)!
∙

(|𝑁𝐸|−𝑑1)!

𝑑2!∙(|𝑁𝐸|−𝑑1−𝑑2)!
∙ ⋯ ∙

(|𝑁𝐸|−𝑑1−⋯−𝑑𝑘−1)!

𝑑𝑘!
  

=
|𝑁𝐸|!

∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ ̅
  ∎ 

Lemma 4.2. An adversary 𝒜 can guess the degree of a node in a 

graph 𝐺 with probability 𝑃𝒜 = (
1

𝑃𝑒𝑟(𝑁𝐸)

). 

PROOF: From Lemma 4.1, we know the number of all possible 

permutations of elements of the multiset 𝑁𝐸. The probability of 

identifying the degree of the nodes is 1 divided by the number of 

permutations 𝑃𝑒𝑟(𝑁𝐸). ∎ 

We now introduce Lemmas 4.3 and 4.4, which will help us to 

prove Theorem 4.1 subsequently. 

Lemma 4.3. Given a multiset of degrees 𝑁𝐸 of a graph 𝐺, 
|𝑁𝐸|!

(|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!
 is a lower bound of the function 𝑃𝑒𝑟(𝑁𝐸). 

PROOF: Consider the denominator of the function  𝑃𝑒𝑟(𝑁𝐸), 

∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ = (1 × ⋯ × 𝑑1)(1 × ⋯ × 𝑑2) ⋯ (1 × ⋯ × 𝑑|𝑁𝐸̅̅ ̅̅ |)  

The number of factors 𝑟 different from 1 in ∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ , is 

𝑟
(∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ ̅  )

= ∑ (𝑑𝑖 − 1) =
|𝑁𝐸̅̅ ̅̅ |
𝑖=1

|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | 

Consider now the term (|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | + 1)! 

The number of factors 𝑟 different from 1 in (|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | + 1)! is 

𝑟((|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!  ) = |𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | 

Consequently, for each factor 𝑎 in ∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅ , there exists a factor 

𝑏 in (|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | + 1)! such that 𝑏 ≥ 𝑎.  

Altogether  (|𝑁𝐸| − |𝑁𝐸
̅̅ ̅̅ | + 1)! ≥ ∏ 𝑑𝑖!𝑑𝑖∈𝑁𝐸̅̅ ̅̅  and 

|𝑁𝐸|!

(|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!
 is a 

lower bound of the function 𝑃𝑒𝑟(𝑁𝐸). ∎ 

Lemma 4.4. The lower bound of the function 𝑃𝑒𝑟(𝑁𝐸), 
|𝑁𝐸|!

(|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!
 grows asymptotically faster than any polynomial for 

|𝑁𝐸
̅̅ ̅̅ | ≥ 𝑛0  if the condition 𝑛0 =

|𝑁𝐸|

𝑐
  is fulfilled and  𝑐 ∈ ℝ>1. 

                                                                 

1 We use 𝑑1 ∪ 𝑑2 as a short hand for {𝑑1} ∪ {𝑑2}. 

PROOF: Without loss of generality we set |𝑁𝐸
̅̅ ̅̅ | =

|𝑁𝐸|

𝑐
 for 𝑐 ∈ ℝ>1. 

Next, we consider the function 𝑔(𝑥) =
𝑥!

(𝑥−
𝑥

𝑐
+1)!

. 𝑔(𝑥) behaves 

like the term 𝐴 =
|𝑁𝐸|!

(|𝑁𝐸|−
|𝑁𝐸|

𝑐
+1)!

  with respect to |𝑁𝐸|  as the 

argument of the function. Now we analyze the limits of the 

denominator of the function 𝑔(𝑥): lim𝑥→∞ 𝑥 −
𝑥

𝑐
+ 1 = 1 

Then 
|𝑁𝐸|!

(|𝑁𝐸|−
|𝑁𝐸|

𝑐
+1)!

tends to |𝑁𝐸|!  Consequently 𝐴 grows faster 

than any polynomial for |𝑁𝐸
̅̅ ̅̅ | ≥

|𝑁𝐸|

𝑐
. ∎ 

Lemma 4.4 says that for any polynomial 𝑝(𝑁𝐸) there exists a 

𝑛0 such that 
|𝑁𝐸|!

(|𝑁𝐸|−|𝑁𝐸̅̅ ̅̅ |+1)!
≥ 𝑝(𝑁𝐸) for all |𝑁𝐸

̅̅ ̅̅ | ≥ 𝑛0. In the 

following we give some examples to illustrate how this 𝑛𝑜 looks 

like. Figure 4.2shows 𝑛0 for the functions 𝑝(𝑁𝐸) = |𝑁𝐸|10 

and 𝑃𝑒𝑟(𝑁𝐸). We have conducted experiments with different 

polynomial functions, and we have always found a 𝑛0 for which 

Lemma 4.4 holds.  

 

 
Theorem 4.1. If a graph transformation 𝜏 fulfills Definition 4.3, 

the probability 𝑃𝒜 that an adversary learns the degree of a node 

in the graph given K1, K2 and K3 is negligible for  |𝑁𝐸
̅̅ ̅̅ | ≥

|𝑁𝐸|

𝑐
, 

where 𝑐 ∈ ℝ>1. 

PROOF: 𝑃𝒜 is the inverse of the function 𝑃𝑒𝑟(𝑁𝐸) (Lemma 4.1). 

From Lemma 4.2, we know that the lower bound of the function 

𝑃𝑒𝑟(𝑁𝐸) grows asymptotically faster than any polynomial for any 

|𝑁𝐸
̅̅ ̅̅ | >

|𝑁𝐸|

𝑐
. Therefore, its inverse decreases faster than any 

polynomial. Then 𝑃𝒜 is negligible. ∎ 

5. OUR SECRECY APPROACH 
In this section, we describe our bucketization approach for graphs. 

We first give an overview and describe the underlying system 

architecture. Then we describe the challenges, formalize the 

problem and present our approach. 

5.1 Overview and System Architecture 
We consider a database-as-a-service setting where a third-party 

service provider stores the data owned by the clients. Clients 

apply techniques to secretize the data before passing it to the 

service provider, in order to maintain data secrecy. 

Definition 5.1: Given a graph 𝐺, a bucket 𝑏 is a finite set of edges 

of 𝐺. Each bucket has a 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷 denoted by 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷(𝑏). 

There is a maximum capacity of any bucket, denoted by 

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. The set of buckets of graph 𝐺 is denoted by 𝑆𝐵. 

Definition 5.2: Given a graph 𝐺 and its corresponding set of 

buckets 𝑆𝐵, the index information is a map of type 𝑚: 𝑉 → 𝑆𝐵 

Figure 4.2. Functions 𝒑(𝑵𝑬) and 𝑷𝒆𝒓(𝑵𝑬)  

 



that, for each node 𝑢 ∈ 𝑉, contains the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 of 

buckets that store at least one outgoing edge of 𝑢. 

Definition 5.3: A bucketization structure B of a given graph 𝐺 is 

a representation of 𝐺 consisting of two parts, (1) a set of buckets 

𝑆𝐵 and (2) the index information. We call the set of all possible 

bucketization structures Bucketizations. 

Figure 5.1 illustrates a bucketization structure.  

Definition 5.4: A bucketization function 𝑏𝑢𝑐𝑘: 𝒢 →
𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 is a function that generates a bucketization 

structure 𝐵 for a graph 𝐺. 

Section 5.5 will present the bucketization functions which we use. 

Definition 5.5: Given bucketization structure 𝐵, an encryption 

function 𝑒𝑛𝑐: 𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 → 𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 performs the 

actual encryption of 𝐵 as follows: (1) In the index information, 

each label of a node is encrypted deterministically, and the 

𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 are encrypted probabilistically. (2) In the buckets, 

each edge is encrypted deterministically. 

Before outsourcing a graph 𝐺, the client applies a bucketization 

function on 𝐺. After encryption the bucketization structure is 

outsourced to the service provider. Figure 5.1 shows this process. 

 

 

 

Query evaluation in the outsourced bucketization structure 

requires translating client-side queries to corresponding server-

side queries. We assume that there are two components for query 

processing at the client side: (1) the query translator and (2) the 

query postprocessor, see Figure 5.2. The query translator 

translates the queries supported to server-side queries, the 

translation process is explained in Section 5.6. The server-side 

queries are sent to the server. The query post-processor is in 

charge of (1) receiving the encrypted results of the server-side 

query from the server, (2) unencrypting the results and (3) 

filtering any false positive, by applying the original client-side 

query. The final result is sent to the user.  

5.2 Bucketization – Challenges 
Even though using an encryption function solves the problem of 

chosen-plaintext attacks, this does not yield secrecy guarantees 

against frequency attacks. We for our part use bucketization to 

solve this problem. However, this is challenging in order to 

facilitate both good query performance as well as data secrecy. 

This is because it is not obvious how to assign edges to buckets, 

see Examples 5.1 and 5.2. 

Definition 5.6: The frequency of a bucket is the number of edges 

that the bucket stores. 

Example 5.1: Consider an email network with nodes V={Alice, 

Bob, Carol, Dan, Eva} and edges E={(Alice, Bob), (Alice, Dan), 

(Alice, Carol), (Alice, Eva), (Bob, Dan), (Carol, Eva), (Carol, 

Alice), (Dan, Carol), (Eva, Bob)}. Assume that we apply a 

bucketization algorithm that assigns edges randomly and stores 2 

edges per bucket. In the worst case, the four edges of Alice are 

assigned to four different buckets. This means that it is necessary 

to access four buckets to retrieve Alice’s edges. Then the overall 

query processing effort and the client workload are rather large, 

i.e., the client has to filter more data.  

Example 5.2: Consider the email network from Example 5.1. If 

each bucket stores all the edges belonging to only one node and 

no other edges, the frequency of each bucket reveals the node 

degree. If an adversary knows that Alice is the user that has sent 

more emails than any other user, followed by Carol, the adversary 

can conclude that the bucket with four edges corresponds to Alice 

and the one with 3 edges to Carol. So the adversary has learned 

the actual degree of Alice and Carol. Moreover the adversary can 

learn that Alice has sent an email to Carol. 

So assigning edges to buckets randomly is likely to bog down 

query performance. The edges of a node should be stored in as 

few buckets as possible. At the same time, storing all edges of a 

node in one bucket creates a link between the degree of nodes and 

their corresponding buckets, which might affect secrecy. 

Although encryption offers some secrecy guarantees, they are not 

enough. To avoid information leakage, as illustrated in 

Example 5.2, buckets should be undistinguishable. We aim for an 

equal frequency of buckets, i.e., all buckets should reach their 

maximal capacity. Since a simple assignment may not always 

yield full buckets, it is promising to merge them a posteriori 

and/or add dummy edges; our approach will feature both. Of 

course, the total number of dummy edges should be as small as 

possible. Preliminary experiments of ours have shown that 

dummy edges do increase query-processing time significantly 

because the client must filter more false positives. 

We proceed now to formalize our bucketization problem. 

5.3 The Bucketization Problem  
The bucketization problem is as follows: 

Figure 5.1. Bucketization and Encryption on Graph 𝑮 

Figure 5.2. Query process 

 



Given as input a graph 𝐺 = (𝑉, 𝐸) we search for a bucketization 

𝐵 that meets Constraints c1-c4: 

c1 Each edge (𝑢, 𝑣) ∈ 𝐸 is assigned to one bucket.  

c2 Each bucket stores at most 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 edges. 

c3 Edges adjacent to the same node are placed in as few 

buckets as possible. Formally, let the function 𝑖𝑛𝑑: 𝑉 ×
𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 → ℕ be as follows:  

 𝑖𝑛𝑑(𝑢, 𝐵): = |{𝑏 ∈ 𝐵| ∃ 𝑥 ∈ 𝑉| (𝑢, 𝑥) ∈ 𝑏}|.  
Then ∀𝐵′ ∈ 𝐵𝑢𝑐𝑘𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠: 𝑖𝑛𝑑(𝑢, 𝐵) ≤ 𝑖𝑛𝑑((𝑢, 𝐵′) 

c4 The total number of buckets should be as small as possible 

(while prioritizing Constraint c3).  

We prioritize Constraint c3 over c4, so that query performance is 

not affected. 

Definition 5.7: An optimal bucketization is a bucketization that 

meets Constraints c1 to c4. 

In the next subsection we show that the problem of finding the 

bucketization defined by Constraints c1-c4 is NP-hard. 

5.4 Hardness Result 
Our bucketization problem is NP-hard. To prove this, we reduce 

the Bin-packing problem (BP problem) [20] to our problem. The 

BP problem has been proven to be NP-hard in [20]. We start by 

introducing the BP problem.  

Definition 5.8: Let a set of 𝑛 bins 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} and the same 

number of 𝑛 items 𝐼 = {𝑎1, 𝑎2, … , 𝑎𝑛 } be given. All bins have 

equal capacity 𝑤𝑐 , and the weight of each  item 𝑎𝑖 ∈ 𝐼, 𝑤𝑎𝑖
, is 

smaller than or equal to the capacity 𝑤𝑐 . The Bin-packing 

problem is finding a function 𝐵𝑃: 𝐼 → 𝐶 that maps each item in 𝐼 

to one bin in 𝐶 such that the following Constraints bp1, bp2 and 

bp3 are met. 

bp1 An item is assigned to only one bin.  

bp2 The sum of the weight of all items assigned to a bin does not 

exceed the bin capacity 𝑤𝑐 . ∀𝑐𝑗 ∈ 𝐶: 𝑊𝑐𝑗
≤ 𝑤𝑐  where 

𝑊𝑐𝑗
= ∑ 𝑤𝑎𝑖𝑖∈|{𝑎∈𝐼|𝐵𝑃(𝑎)=𝑐𝑗}|  . 

bp3 The number 𝑚 of bins used is as small as possible, i.e., 

 𝑚 = ∑ 𝑚𝑖𝑛(1, |𝐵𝑃(𝑐𝑗)|)𝑐𝑗∈𝐶 . 

For the hardness proof, we introduce Lemmas 5.1 and 5.2. They 

help us (1) to show that an instance of the BP problem, called 

initial BP, can be reduced in polynomial time to an instance of the 

bucketization problem, called transformed BP, and (2) to prove 

that a given solution of the transformed BP can be transformed to 

a solution of the initial BP in polynomial time. 

We start by identifying the steps required to construct the 

transformed BP. 

Input construction process: Given a set of items 𝐼, the 

transformed BP is constructed as follows: 

- For each item 𝑎𝑖 ∈ 𝐼, create the set of nodes 

𝑉𝑖={𝑎𝑖 , 𝑎𝑖1, 𝑎𝑖2,…, 𝑎𝑖𝑤𝑎𝑖
} and the set of edges 

𝐸𝑖={(𝑎𝑖 , 𝑎𝑖1), (𝑎𝑖 , 𝑎𝑖2),…, (𝑎𝑖 , 𝑎𝑖𝑤𝑎𝑖
)}.  

- The graph is (⋃ 𝑉𝑖
𝑛
𝑖=1 , ⋃ 𝐸𝑖

𝑛
𝑖=1 ). 

Lemma 5.1. Input transformation. Given an initial BP, the 

transformed BP can be constructed in polynomial time. 

PROOF: For each item 𝑎𝑖 ∈ 𝐼, in order to build the transformed BP 

we need (𝑤𝑎𝑖
+ 1) nodes and 𝑤𝑎𝑖

 edges. Altogether this requires 

∑ (𝑤𝑎𝑖
+ 1)𝑛

𝑖=1  steps. However, ∑ (𝑤𝑎𝑖
+ 1)𝑛

𝑖=1  ≤ (𝑤𝑐 + 1) ∙ 𝑛 

and 𝑤𝑐  is a constant, so the construction is still polynomial. Then 

an initial BP can be transformed to a transformed BP in 

polynomial time.   ∎ 

Example 5.3 illustrates the construction of the transformed BP.  

Example 5.3: Consider the initial BP with set of items               

𝐼 = {𝑎1, 𝑎2, 𝑎3,  𝑎4} with weights 𝑤𝑎1
= 3, 𝑤𝑎2

= 1,  𝑤𝑎3
= 2, 

𝑤𝑎4
= 4 and the set 𝐶 of bins with capacity 𝑤𝑐=5. Figure 5.3 

shows the transformed BP. 

Once we have built the transformed BP, we can run an algorithm 

that solves the bucketization problem, by setting 𝑤𝑐 to 

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. The solution of the transformed BP is a 

bucketization 𝐵. Figure 5.4.a shows the set of buckets 𝑆𝐵 of 

Example 5.3, 𝑏1 and 𝑏2 are the 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠. Since we set 

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 = 𝑤𝑐 , it holds for all buckets 𝑏 ∈ 𝑆𝐵 that |𝑏| ≤ 𝑤𝑐.  

The next lemma, Lemma 5.2, states that a solution of the initial 

BP can be constructed in polynomial time from a solution of the 

transformed BP. Before moving to Lemma 5.2, we first explain 

the solution construction process. 

 

 

Solution transformation process: A solution of the initial BP can 

be constructed from a solution of the transformed BP as follows: 

- Identify the number of bins 𝑚 needed to store the items. Each 

bucket represents one bin. Then 𝑚 = |𝑆𝐵|. 
- Identify the set of items that each bin will store. 

𝑐𝑖={𝑥|∃(𝑥, 𝑦) ∈ 𝑏𝑖}. Figure 5.4.b shows the solution 

constructed for the initial BP of Example 5.3.  

Lemma 5.2. Output transformation. A solution of the 

transformed BP can be transformed to one of the initial BP in 

polynomial time. 

PROOF: Consider a bucketization of the transformed BP that 

fulfills Constraints c1-c4. We transform it to a BP solution with 

the solution construction process. Now we proceed to 

demonstrate that the transformed solution fulfills the constraints 

of the BP problem, bp1 to bp3 with respect to the initial BP 

problem. We start by analyzing the constraints of the BP problem 

and of the bucketization problem. 

Figure 5.3. Transformed BP of Example 5.3. 

 

Figure 5.4. Solution of Example 5.3 

𝑆𝐵 = {
{(𝑎1, 𝑎11), (𝑎1, 𝑎12), (𝑎1, 𝑎13), (𝑎3, 𝑎31), (𝑎3, 𝑎32)}𝑏1

{(𝑎2, 𝑎21), (𝑎4, 𝑎41), (𝑎4, 𝑎42), (𝑎4, 𝑎43), (𝑎4, 𝑎44)}𝑏2

} 

a) The set of buckets 𝑆𝐵 solution of the transformed BP 

 

b) The solution of the initial BP 

𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}  𝑐1 = {𝑎1, 𝑎3} 

𝑚 = |𝑆𝐵| = 2   𝑐2 = {𝑎2, 𝑎4} 

 



First, Constraint bp1 is fulfilled because of Constraints c1 and c3 

of the bucketization problem. Constraint c1 ensures that each edge 

is assigned to only one bucket. Then ∀𝑖 ≠ 𝑗, 𝑐𝑖 ∩ 𝑐𝑗 = ∅. 

Together with the fact that for all items 𝑎𝑖 ∈ 𝐼, 𝑤𝑎𝑖
≤ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠, 

Constraint c3 ensures that the edges belonging to the same node 

are placed in the same bucket.  

Second, Constraint bp2 is fulfilled because of Constraint c2 of the 

bucketization problem. For all bins 𝑐𝑖 ∈ 𝐶, |𝑐𝑖| = |𝑏𝑖| and 

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 = 𝑤𝑐 , then |𝑏𝑖| ≤ 𝑤𝑐 , which fulfills bp1. 

Third, bp3 is fulfilled because of Constraint c4. The number of 

buckets is the number of bins used in the initial BP solution. Then 

minimizing the buckets is the same as minimizing the number of 

bins used. 

Finally, a bucketization solution of a transformed BP can be 

transformed to a solution of the initial BP in polynomial time. For 

all buckets 𝑏𝑖 ∈ 𝑆𝐵,  |𝑏𝑖| = |𝑐𝑖| and ∑ |𝑐𝑖| = ∑ 𝑤𝑎𝑖

𝑛
𝑖=1

𝑛
𝑖=1 . Then the 

complexity of the reconstruction is Ο(𝑚), where 𝑚 is the total 

number of edges and 𝑚=∑ 𝑤𝑎𝑖

𝑛
𝑖=1 . ∎ 

Theorem 5.1. Finding an optimal bucketization that meets 

Constraints c1 - c4 is NP-hard. 

PROOF: With Lemmas 5.1 and 5.2 we have shown that an instance 

of the BP problem can be reduced to an instance of the 

bucketization problem in polynomial time. Since the BP problem 

is NP-hard [20], the bucketization problem is NP-hard as well. ∎ 

In the next section we present our bucketization approach. 

5.5 The Bucketization Algorithm 
Due to the complexity of the problem, we use heuristics to find an 

approximate solution to an optimal bucketization. 

The bucketization algorithm consists of (1) partitioning the edges 

of a graph 𝐺 into buckets with the constraints established in 

Section 5.3 and (2) creating the corresponding index information. 

The algorithm has an initialization phase and a merging phase.  

5.5.1 The Initialization Phase  
Algorithm 1 is the initialization phase of our bucketization 

approach for a graph 𝐺. It starts by padding the labels of the nodes 

to ensure that all strings that represent an edge have the same 

length. Then the algorithm follows the next steps: (1) create the 

buckets needed to store the edges of 𝐺, (2) assign 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 

edges belonging to the same node to each bucket randomly and 

(3) generate the index information.  

We justify the need for padding in Section 5.7. Example 5.4 

illustrates how the assignment of edges works, and Example 5.5 

explains the need for randomness with this assignment.  

Example 5.4: We set 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 = 10. Given a node 𝑣 that has 

27 edges, three buckets will be created. 10 random edges are 

chosen from the 27 edges and are assigned to the first buckets, 10 

random edges are chosen from the remaining ones for the second 

bucket, and the 7 remaining edges go to the third bucket.  

Example 5.5: For the sake of an easy example, image a setting 

where emails can be revoked without difficulty. For this example, 

we consider the buckets in Figure 5.5. Assume that the 

bucketization algorithm does not assign edges randomly. If an 

adversary knows that user 𝐴 has sent 4 emails, learns that the 

system has revoked one of the emails and sees that Bucket b2 is 

deleted, although the edges are encrypted, she will learn that the 

revoked email was the last one, i.e., the email sent to user 𝐸. A 

random assignment of edges reduces the probability of the 

adversary learning extra information.  

 

Algorithm 1: Initialization() 

INPUT: Graph: 𝐺(𝑉, 𝐸), int: maxEdges  

OUTPUT: initial bucketization:  𝐵0 

1:  //Step 0: pad the length of all nodes 

2: pad.labelOfNodes();  

3:  //Step 1: create a sufficient number of buckets for each node  

4:  for each 𝑣 in 𝑉 {  

5:      create (ceil(1, v.numberOfEdges()/maxEdges)) buckets;  

6: //Step 2: assign edges of each node to a corresponding bucket 

7:      assign randomly up to maxEdges edges of 𝑣 to each bucket; 

8: generate the corresponding index information; 

9: } 

 

 

Definition 5.9: Given a graph 𝐺, the initial bucketization 𝐵0 is 

the result of the initialization phase of the bucketization algorithm 

applied to 𝐺.  

After the initialization phase of the bucketization process, all 

edges have been placed into their buckets. At this point, some 

buckets may not have reached their maximal capacity. Even if we 

encrypt the buckets at this stage, the initial bucketization is not 

secure. Recall that edges are encrypted individually. Then an 

adversary can learn the frequency of buckets. Furthermore, if the 

degree of a node is less than or equal to 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠, its edges 

have been placed in one bucket exclusively. An adversary could 

now gain extra knowledge by analyzing the initial bucketization, 

see Example 5.2.  

5.5.2 The Merging Phase  
Definition 5.10: Bucket merge is a process that puts the content 

of two buckets in a new one and then deletes the two emptied ones. 

In this phase, the algorithm merges buckets in order to fulfill 

Constraint c4. 

Definition 5.11: Given a graph 𝐺, a final bucketization 𝐵 is a 

bucketization resulting from the initialization and merging phases 

applied to 𝑮.  

Algorithm 2 identifies pairs of buckets that can be merged in 

order to obtain buckets with the same frequency, to address the 

secrecy issues from Section 5.5.1. Different heuristics are 

conceivable at this stage. We choose a First Fit Decreasing 

approach (FFD) [8]. We will justify this decision after having 

explained the algorithm. When the algorithm starts, Lines 1-3, it 

creates three sets: (1) 𝐵′, which contains buckets that do not yet 

have 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠; 𝐵′ is sorted based on the frequency of each 

bucket in descending order, (2) 𝐵𝑓, which contains full buckets, 

and (3) 𝐵𝑚, an auxiliary set that contains the buckets resulting 

from a merge. For each Bucket 𝑏𝑖 ∈ 𝐵′, the algorithm searches for 

the first Bucket 𝑏𝑗  in 𝐵𝑚 that can be merged with 𝑏𝑖, Lines 4-6. If 

it finds one, the function 𝑚𝑒𝑟𝑔𝑒(𝑏𝑖 , 𝑏𝑗), Line 7, creates a new 

Bucket 𝑏 to store the edges of 𝑏𝑖 and 𝑏𝑗 . The Buckets 𝑏𝑖 and 𝑏𝑗  are 

Figure 5.5 Illustration of Example 5.5 



removed from 𝐵’ and 𝐵𝑚, and the index information is updated. If 

the new bucket 𝑏 reaches its maximal capacity, 𝑏 is placed in 𝐵𝑓, 

Lines 8-9. Otherwise it is placed in 𝐵𝑚 so that it can be 

considered again for a merge, Line 11. If there is not a Bucket 

𝑏𝑗  available for a merge, 𝑏𝑖 is placed in 𝐵𝑚, Lines 15-16. Once the 

merging process has finished, dummy edges are added to the 

buckets that have not reached 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠, Lines 18-20. The edges 

inside each bucket are encrypted with 𝑒𝑛𝑐𝑑
𝐾 individually. In the 

index information the labels of the nodes are encrypted with 

𝑒𝑛𝑐𝑑
𝐾, and the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 is encrypted with 𝑒𝑛𝑐𝑝

𝐾. 

 

Algorithm 2: Merge buckets() 

INPUT: initial bucketization  𝐵0, int: maxEdges 

OUTPUT: final bucketization:  𝐵𝑓 

1: Initialize: 𝐵′:={ 𝑏 ∈ 𝐵𝑖| b.numberOfEdges() < maxEdges}  

2: Initialize: 𝐵𝑓: =  𝐵𝑖\𝐵′; 𝐵𝑚: = {0} 

3: Order 𝐵′ by number of edges in decreasing order; 

4:  for each 𝑏𝑖 ∈  𝐵′{ 

5:      for each 𝑏𝑗 ∈ 𝐵𝑚 { 

6:          if 𝑏𝑖 fits in 𝑏𝑗  

7:              𝑏 ← merge(𝑏𝑖 , 𝑏𝑗); 

8:              if b.numberOfEdges() = maxEdges 

9:                  add b to 𝐵𝑓; 

10:             else 

11:                 add b to 𝐵𝑚; 

12:             delete 𝑏𝑖, 𝑏𝑗; 

13:             break the loop and continue with the next 𝑏𝑖; 

14:     } 

15:         if 𝑏𝑖 does not fit in any available 𝑏𝑗 ∈ 𝐵𝑚  

16:             move 𝑏𝑖 to 𝐵𝑚; 

17: } 

18: for each b in 𝐵𝑚{ 

19:     addDummyEdges(); 

20:     add b to 𝐵𝑓; 

21: } 

22:  enc(𝐵𝑓); 

 

Analysis of the Merging Phase: Because finding an optimal 

bucketization solution is computationally intractable (NP-hard), 

we introduce a heuristic to solve the problem. However, different 

heuristics are conceivable for the merging. We for our part use a 

First Fit Decreasing (FFD) approach. Garey et al. have 

demonstrated in [8] that the worst case solution for the bin 

packing problem with the FFD approach is far of the optimal by a 

factor of  
11

9
. Other approaches, such as Best Fit (BF) and Next Fit 

(NF), have a worse approximation ratio, 
17

10
 and 2 respectively [8]. 

5.6 Query Transformation  
Unlike other approaches such as [18], our bucketization approach 

does not lose any information regarding the original graph. 

Consequently, there is no limitation regarding the kind of query 

we can process in principle. However, with respect to the client 

workload, our approach is more efficient answering neighbor and 

adjacency queries than answering other queries such as finding a 

path between two given nodes. In the following, we discuss the 

processing of neighbor and adjacency queries. These queries are 

essential information needs regarding graphs [17].  

 

Algorithm 3: Neighbor Query Processing given a  

bucketization structure 𝑩 

INPUT:  𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), key 

OUTPUT: Edges:= {} 

1: Initialize: EncBucketIDs:={}, BucketIDs:={}, EncEdges:={},   

EdgesTem :={}, Edges:={}; 

2:  encNode ←client.𝑒𝑛𝑐𝑑
𝑘𝑒𝑦(𝑢); 

3:  if server.indexInformation.node=encNode 

4:      EncBucketIDs ← indexInformation.BucketIDs(encNode); 

5:   for each 𝑏𝑖in EncBucketIDs 

6:     𝑏 ←client. 𝑑𝑒𝑐𝑝
𝑘𝑒𝑦(𝑏𝑖); 

7:     add 𝑏 to BucketIDs; 

8:  for each 𝑏 in BucketIDs  

9:     for each bucket in server.SetOfBuckets  

10:   if bucket.bucketID = 𝑏 
11:     eEdge ← SetOfBuckets.Edge(bucket);  

12:       add eEdge to EncEdges; 

13:   for each eEdge in EncEdges  

14:      edge ←client. 𝑑𝑒𝑐𝑑
𝑘𝑒𝑦

(eEdge); 

15:         add edge to EdgesTemp; 

16:  for each edge in EdgesTemp 

17:     if (edge.isFalsePositive!=true) 

18:    add edge to Edges; 

19: return Edges; 

 

Algorithm 4: Adjacency Query Processing given a  

bucketization structure B 

INPUT: 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣), 𝑘𝑒𝑦 

OUTPUT: Boolean isEdge ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

1: Initialize: Boolean isEdge = 𝑓𝑎𝑙𝑠𝑒; 

2: encEdge ←client.𝑒𝑛𝑐𝑑
𝑘𝑒𝑦(𝑢, 𝑣) 

3: if server.SetOfBuckets.Edge contains encEdge 

4:   isEdge= 𝑡𝑟𝑢𝑒; 

5: return isEdge; 

 

Client-side queries are transformed to server-side queries. Algo-

rithm 3 shows the transformation process for neighbor queries, 

𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐺, 𝑢). The client starts by encrypting Node 𝑢 and 

generating the server-side query, Lines 2-3. This query retrieves 

the set of b𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 of the encrypted node 𝑒𝑛𝑐𝑑
𝑘𝑒𝑦(𝑢) from the 

index information and returns it to the client, Line 4. The client 

unencrypts it and generates a new server-side query Lines 5-7. 

This new query retrieves the edges stored in buckets whose 

𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷 corresponds to one of the unencrypted b𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠, 

Lines 8-12. Finally the client unencrypts the edges and filters false 

positives, Lines 13-19. Algorithm 4 shows the procedure for 

adjacency queries, 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣). The client starts by 

encrypting the two nodes in the query with encryption 

𝑒𝑛𝑐𝑑
𝑘𝑒𝑦(𝑢, 𝑣), Line 2. The server-side query searches in the set of 

buckets for this encrypted edge, Lines 3-4. Iff there exists such an 

edge, the nodes are adjacent. 

5.7 Our Bucketization Approach is Ind-INP 
Recall that the output of the bucketization algorithm consists of 

two parts, the index information and the set of buckets. See Figure 

5.6 where |𝐶(𝑛𝑜𝑑𝑒)| is the length of the ciphertext representing an 

encrypted node, |𝐶(𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠)| is the length of the ciphertext 

representing the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠, |𝐶(𝑒𝑑𝑔𝑒)| is the length of the 

ciphertext representing an encrypted edge, |𝑁(𝑒𝑛𝑐)| is the number 



of encrypted nodes and |𝐸𝐵| is the number of buckets. In this 

section we will prove that our Bucketization Approach fulfills the 

secrecy notion Ind-INP defined in Section 4.2. To facilitate the 

proof, we first prove that our bucketization algorithm is Ind-INP 

with respect to the set of buckets output, Lemma 5.3, and with 

respect to the index information output, Lemma 5.4. 

 

 

Lemma 5.3. Given the set of buckets the Bucketization algorithm 

has generated, an adversary 𝒜 cannot distinguish whether the 

graph 𝐺 or the permuted graph 𝔭(𝐺) has been the input of the 

bucketization algorithm. 

PROOF: All buckets Index information have the same frequency, 

namely 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. So buckets are undistinguishable. The only 

characteristic that can change in the set of buckets when the input 

of the bucketization algorithm changes is the number of buckets 
|𝐸𝐵|. |𝐸𝐵| depends on the number of nodes |𝑁| and the multiset 

of degrees of the nodes 𝑁𝐸. With knowledge K1, K2 and K3, (K2 

and K3, to be exact) an adversary has access to |𝑁| and 𝑁𝐸. 

However, since 𝔭(𝐺) is just a permutation of 𝐺, |𝑁| and 𝑁𝐸 of 

both graphs are identical. Consequently, an adversary cannot 

distinguish whether 𝐺 or 𝔭(𝐺) has been the input of the 

bucketization algorithm, given knowledge K1, K2 and K3. ∎ 

Lemma 5.4. Given the index information the Bucketization 

algorithm has generated, an adversary 𝒜 cannot distinguish 

whether the graph 𝐺 or the permuted graph 𝔭(𝐺) has been the 

input of the bucketization algorithm. 

PROOF: The only characteristic that can change in the index 

information when the input of the algorithm changes are the 

number of encrypted nodes |𝑁(𝑒𝑛𝑐)| and the length of the 

ciphertext of the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠, |𝐶(𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠)|. |𝑁(𝑒𝑛𝑐)| and 

|𝐶(𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠)| depend on the number of nodes |𝑁| and the multiset 

of degrees 𝑁𝐸. With knowledge K2 and K3, an adversary has 

access to |𝑁| and 𝑁𝐸. However, the permutation does not modify 

the nodes in the graph. Also, since 𝔭(𝐺) is just the permutation of 

𝐺, 𝑁𝐸 of both graphs are identical. Consequently, an adversary 

cannot distinguish whether 𝐺 or 𝔭(𝐺) has been the input of the 

algorithm given knowledge K1, K2 and K3. ∎ 

Theorem 5.2. Our bucketization algorithm fulfills the secrecy 

notion Ind-INP (Definition 4.3).  

PROOF: The bucketization algorithm produces two outputs, the 

index information and the set of buckets. The only characteristics 

that change when the input of the algorithm changes are |𝐸𝐵|, 

|𝑁(𝑒𝑛𝑐)| and |𝐶(𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠)|. We have proven in Lemmas 5.3 and 

5.4 that the three characteristics are identical for graphs 𝐺 or 

𝔭(𝐺). Then any combination of these characteristics does not 

violate Definition 4.3. Thus, our algorithm is Ind-INP. ∎ 

6. PERFORMANCE MODEL 
We start this section by describing scale-free networks. Then we 

present our performance model which consists of (1) the Number-

of-Buckets Model and (2) the Query-Cost Model. 

A performance model is important because it allows predicting 

the behavior of an algorithm and facilitates meaningful 

comparisons or evaluations of algorithms. In our approach, the 

number of buckets obtained after applying our bucketization 

algorithm to a graph 𝐺 is a crucial parameter for query performance. 

Estimating the number of buckets is cumbersome, and we 

estimate a range. But even to estimate this range, it is necessary to 

have a model that describes relevant properties of a given graph. 

In the next section, due to the importance of scale-free networks, 

we review some of their characteristics. Based on these properties, 

we derive the so-called number-of-buckets model and the query-

cost model. 

6.1 Scale-free Networks 
Real-world networks have two important features: growth and 

preferential attachment. These features are responsible for the 

power-law distribution of scale-free networks. Many real-world 

networks, such as genetic networks or the actor network, follow a 

scale-free power-law distribution [3]. 

Growth. Real-world networks often are the result of a continuous 

growth process. At each time step, a new node is added to the 

network and connected with existing nodes. 

Preferential attachment. Nodes with higher degree will have 

higher probability to be connected to a new node. This property 

has the effect that most nodes in the network will have only few 

edges, and a few nodes gradually turn into hubs, i.e., their degree 

greatly exceeds the average. 

Barabasi et al. have introduced a model capturing the properties of 

scale-free networks, the Barabasi-Albert Model (BA) [3]. In the 

following, we review some important BA parameters. 

Degree Exponent, 𝛾. The degree exponent is the exponent of the 

power-law distribution of scale-free networks. It plays an im-

portant role in predicting many properties of these networks, e.g., 

the highest node degree. Barabasi et al. have observed that the 

degree exponent of many real networks is between 2 and 3. 

Growing parameter, 𝑚. At each time step a new node is added to 

the network with 𝑚 edges that connect it to 𝑚 existing nodes. 

Probability of a node with degree k, 𝜌𝑘. Given the degree 

exponent and the growing parameter, it is possible to calculate the 

probability that a randomly chosen node has degree of 𝑘 [3]. The 

probability is  

𝜌𝑘 =
2𝑚(𝑚+1)

𝑘(𝑘+1)(𝑘+2)
  (6.1) 

Edges. The number of edges |𝐸| in the BA is |𝐸|  = 𝑚 ∙ 𝑁, where 

𝑁 is the number of nodes. 

Largest node degree, 𝑘𝑚𝑎𝑥. The expected value of the largest 

node degree in the BA is 𝑘𝑚𝑎𝑥  ~ 𝑁
1

𝛾−1. 

Figure 5.6. Abstract output of the bucketization algorithm 



Lowest node degree, 𝑘𝑚𝑖𝑛. It is the minimum degree in the 

network. For 𝑘𝑚𝑖𝑛 there is no characterization, each graph can 

have different values of 𝑘𝑚𝑖𝑛. 

Based on these BA characteristic, we derive a model of the 

expected number of buckets with our bucketization algorithm.  

6.2 The Number-Of-Buckets Model NBM 
Recall that after the initialization phase of the algorithm, some 

buckets are full and some are not. Lemma 6.1 captures the number 

of buckets that have reached their maximal capacity after the 

initialization phase of the algorithm. 

Lemma 6.1. The number of full buckets after the initialization 

phase of the algorithm is  

𝐵𝑢𝑐𝑘𝑒𝑡Full-ini = ∑ (𝑁 ∙ 𝜌𝑘 ∙ ⌊
𝑘

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌋)

𝑘𝑚𝑎𝑥
𝑘=𝑘𝑚𝑖𝑛

  (6.2) 

PROOF: Given a node 𝑢𝜖𝑉 in a graph 𝐺 with degree 𝑘𝑢, the 

number of full buckets generated for 𝑢 after the initialization 

phase is 𝐸𝐵𝐹𝑢𝑙𝑙𝑢
= ⌊

𝑘𝑢

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌋. 𝐸𝐵𝐹𝑢𝑙𝑙𝑢

 is calculated regardless of 

the other nodes in 𝐺. Next, it is required to calculate 𝐸𝐵𝐹𝑢𝑙𝑙𝑢
 for 

all nodes 𝑢 ∈ 𝑉. According to the BA properties, the probability 

that a randomly chosen node has degree of 𝑘 is given by 𝜌𝑘. Then 

the total number of nodes with degree 𝑘 is 𝑁 · 𝜌𝑘. For all the 

nodes with degree 𝑘, the total number of buckets is 𝑁 ∙ 𝜌𝑘 ∙

⌊
𝑘𝑢

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌋. Finally, to estimate the total number of buckets after 

the initialization phase, we have to consider all node degrees, 

which are between 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥. ∎ 

If we know the number of full buckets, we know the number of 

edges that have been already stored in these full buckets. Then we 

can calculate the number of edges stored in non-full buckets, see 

Lemma 6.2. 

Lemma 6.2. The number of edges that have been assigned to 

buckets that are not full is 

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵 = |𝐸|  − 𝐵𝑢𝑐𝑘𝑒𝑡Full-ini ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠  (6.3) 

PROOF: The number of edges already stored in full buckets after 

the initialization phase is 𝐵𝑢𝑐𝑘𝑒𝑡Full-ini ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠.  We subtract 

this number from the total number of edges |𝐸| to obtain 

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵.∎ 

Using these two lemmas, we introduce the range of the Bucket 

Estimation Model, see Theorem 6.1. 

Theorem 6.1. Given a graph 𝐺 = (𝑉, 𝐸) that follows the BA 

Model, the expected number of buckets, 𝐸𝐵, is in the range:  

𝐵𝑢𝑐𝑘𝑒𝑡Full-ini + ⌈
𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ≤ 𝐸𝐵 ≤   

𝐵𝑢𝑐𝑘𝑒𝑡Full-ini +
11

9
∙ ⌈

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉  (6.4) 

The lowest value of the range represents an optimal solution, and 

the highest value represents the worst case scenario of our 

bucketization algorithm. 

PROOF: The lowest value of the range is the number of buckets 

obtained with the optimal bucketization. With this optimal 

bucketization, the non-full buckets are merged so that their edges, 

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵, fill exactly ⌈
𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ buckets. For the upper bound 

of the model, the worst performance ratio of the FFD approach 

used in our algorithm is 
11

9
 of the optimal solution. Consequently, 

the upper bound is the sum of the number of full buckets after the 

initialization phase, 𝐵𝑢𝑐𝑘𝑒𝑡Full-ini, and the number of buckets after 

the merging in the worst case, i.e.,  
11

9
∙ ⌈

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉. ∎ 

Corollary 6.1 gives a range of the expected number of dummy 

edges. 

Corollary 6.1. Given a graph 𝐺 = (𝑉, 𝐸) that follows the BA 

Model, the expected number of dummy edges, 𝐷𝐸, is in the range 

(𝐵𝑢𝑐𝑘𝑒𝑡Full-ini + ⌈
𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉) ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 − |𝐸|  ≤ 𝐷𝐸 ≤  

 (𝐵𝑢𝑐𝑘𝑒𝑡Full-ini +
11

9
∙ ⌈

𝐸𝑑𝑔𝑒𝑠𝑁𝐹𝐵

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉) ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 − |𝐸|  (6.5) 

PROOF: The lower bound of the expected number of buckets from 

Theorem 6.1 multiplied with 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 yields the total number 

of edges stored in the buckets. Subtracting from this number the 

real number of edges yields the lower bound of expected dummy 

edges. The analogous argument applies for the upper bound. ∎ 

The number-of-buckets model helps us to predict the query 

performance. Depending on the type of queries, the query 

workload is divided between the client and the server, e.g., with 

neighbor queries the client has to filter false positives. Lemma 6.1 

gives the number of buckets that do not generate false positives, 

because they are full and store edges belonging to the same node. 

We obtain the percentage of buckets that produce false positives 

by comparing 𝐵𝑢𝑐𝑘𝑒𝑡Full-ini to the expected number of buckets 

from Theorem 6.1. Buckets that contain false positives result in 

more work at the client. A low percentage of full buckets 

increases the average query processing effort at the client. Note 

that the number of full buckets does not only depend on the 

characteristics of the given graph, e.g., distribution of number of 

edges per node, but also on parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠. As mentioned, 

adjacency queries do not require work at the client. However, 

dummy edges affect the query performance at the server. 

Preliminary experiments of ours show that more dummy edges 

increase the query execution time at the server proportionally.  

6.3 Query-Cost Model 
Given a query 𝑄, let 𝑆𝑅𝑄-𝐺 and 𝐶𝑅𝑄-𝐺  be the runtime complexity 

of 𝑄 with the original graph 𝐺, without index, at the server and 

the client respectively and 𝑆𝑃𝑄-𝐵  and 𝐶𝑃𝑄-𝐵 the run time 

complexity of 𝑄 with the bucketization structure 𝐵, without index, 

at the server and the client respectively. 

Definition 6.1: The query performance ratio of a given query 𝑄, 

an original graph 𝐺 and its corresponding bucketization structure 

𝐵 at the server side is 𝑆𝑃𝑄 = 𝑆𝑅𝑄-𝐵 𝑆𝑅𝑄-𝐺 ⁄  and the query 

performance ratio at the client side is 𝐶𝑃𝑄 = 𝐶𝑅𝑄-𝐵 𝐶𝑅𝑄-𝐺 ⁄ . 

We start by analyzing the processing of neighbor queries, 

followed by adjacency queries. We focus on the case without any 

index structure either on the original graph G or on the 

bucketization structure 𝐵. Then a single lookup in the original 

graph 𝐺 has a complexity of 𝛰(|𝐸|). In the bucketization 

structure, a single lookup in the index information has complexity 

of 𝛰(|𝑉|) and a single lookup in the set of buckets has a 

complexity of 𝛰(|𝐸| + |𝐷𝐸|), where |𝐷𝐸| is the number of 

dummy edges. 

Lemma 6.3. Let a Graph 𝐺 = (𝑉, 𝐸), its bucketization structure 𝐵 

and a neighbor query 𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺, 𝑢) be given. The server-side 

and the client-side performance ratio are as follows, with 𝑑𝑒𝑔(𝑢) 

being the degree of u: 



 𝑆𝑃𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢) =
Ο(⌈

𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉∙(|𝐸|+|𝐷𝐸|))

Ο(|𝐸|)
  (6.6) 

𝐶𝑃𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺,𝑢) = Ο (⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠)  (6.7) 

PROOF: In the original graph, we need to access the edges 𝐸, 

which are stored at the server, and retrieve all edges that belong to 

𝑢. Then the effort of executing a neighbor query on the server side 

is 𝑆𝑅𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢)
= Ο(|𝐸|). At the client, no work is necessary. 

With our bucketization in turn, the following steps are required: 

1. Encrypt node 𝑢 for querying. The effort is Ο(1). 

2. Retrieve the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠 of node 𝑢 from the index 

information. This step has a complexity of Ο(|𝑉|). Using the 

BA model, we can write |𝑉| as 
|𝐸|

𝑚
. 

3. Decrypt the set of 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷𝑠. The decryption operation has a 

complexity of Ο (⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉). 

4. For each 𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝐷, one lookup in the set of buckets is 

required. The number of buckets of 𝑢 is |𝐸𝐵𝑢| = ⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉. 

The complexity of this step is Ο (⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ (|𝐸| + |𝐷𝐸|)).  

5. Decrypt and filter the ⌈
𝑘𝑢

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 edges. The 

decryption and filtering is in Ο (⌈
𝑘𝑢

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠). 

The server performs Steps 2 and 4, the client Steps 1, 3 and 5. The 

step with the highest complexity at the client is Step 5 and at the 

server it is Step 4. Consequently, the effort for executing a 

neighbor query at the server and at the client is:  

𝑆𝑅𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢)-𝐵
= Ο (⌈

𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ (|𝐸| + |𝐷𝐸|))  

𝐶𝑅𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢)-𝐵
=  Ο (⌈

𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠). 

Finally,  

𝑆𝑃𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺,𝑢) =
Ο(⌈

𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉∙(|𝐸|+|𝐷𝐸|))

Ο(|𝐸|)
, 

𝐶𝑃𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺,𝑢) = Ο (⌈
𝑑𝑒𝑔(𝑢)

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠
⌉ ∙ 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠)  ∎ 

Lemma 6.4. Let a Graph 𝐺 = (𝑉, 𝐸), its bucketization structure 𝐵 

and an adjacency query 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) be given. The server-

side and client-side performance ratio are 𝑆𝑃𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺,𝑢,𝑣) =

Ο((|𝐸|+|𝐷𝐸|))

Ο(|𝐸|)
 and 𝐶𝑃𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺,𝑢) = Ο(1). 

PROOF: In the original graph, in order to check if Edge (𝑢, 𝑣) ∈ 𝐸, 
it is necessary to execute one lookup on the edges 𝐸. Then the 

effort of executing an adjacency query at the server is 

𝑆𝑅𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺,𝑢,𝑣)
= Ο(|𝐸|). At the client, no work is necessary. 

In the transformed graph the following steps are required: 

1. Encrypt Edge (𝑢, 𝑣) for querying. The effort is Ο(1). 

2. Execute one lookup in the encrypted edges, which are stored in 

the set of buckets. The complexity of this step is Ο(|𝐸| + |𝐷𝐸|).  

Step 1 takes place at the client, it is an encryption operation in 

Ο(1). So the ratio at the client is 𝐶𝑃𝑄𝑁𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝐺,𝑢) = Ο(1). At the 

server, the effort is 𝑆𝑅𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺,𝑢,𝑣)-𝐵
=  Ο(|𝐸| + |𝐷𝐸|). 

Then 𝑆𝑃𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺,𝑢,𝑣) =
Ο((|𝐸|+|𝐷𝐸|))

Ο(|𝐸|)
  ∎ 

From the Query-Cost Model we can learn that for adjacency and 

neighbor queries the parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 plays an important 

role in the query performance effort at client and server. If 

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 increases, the number of dummy edges increases and 

the server requires more effort in order to answer queries. At the 

client-side, for answering neighbor queries if 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 

increases, the workload at the client increases too, because the 

client has to filter more false positives. 

7. EXPERIMENTS 
In this section we present experiments to evaluate (1) the accuracy 

of our number-of-buckets model and (2) the performance of our 

bucketization approach. 

7.1 Experiment Setup 

7.1.1 Input datasets 
In our experiments we use synthetic and real datasets. 

Synthetic datasets: We have used Networkx [11] to generate 8 

different undirected graphs that follow the BA Model. Table 7.1 

shows the characteristics of the data, where 𝑁 is the number of 

nodes, 𝑚 the growing parameter and 𝐸 the number of edges. 

 

Table 7.1. Characteristics of the synthetic data 

Synthetic Data N m E 

G1 5000 6 29964 

G2 5000 8 39936 

G3 10000 6 59964 

G4 10000 8 79936 

G5 40000 8 319936 

G6 40000 10 399900 

G7 150000 8 1199936 

G8 150000 10 1499900 
    

 

Real datasets: We have used as real datasets the actor network 

[14] and the Web network [16]. Barabasi et al. have proven that 

both networks are scale-free. The actor network contains 1048575 

edges and 1137725 nodes, 89150 nodes represent actors and 

1048575 nodes represent movies. An edge connects a movie with 

an actor who has played in it. The actor network exhibits the 

preferential attachment feature. This is because, if an actor has 

played in more movies, a casting director is more familiar with his 

or her skills. Then an actor with higher degree has higher chances 

to be considered for a new role. The Web network contains 

2381903 nodes and 2312497 edges, and its growing parameter 𝑚 

is 5. The nodes in the Web network are web pages, and the edges 

represent hyperlinks between them. 

7.1.2 Queries 
Based on initial experiments, we observe that node degree plays 

an important role in the query performance evaluation. Therefore, 

the nodes that will be part of the experiments sample should be 

carefully selected in order to have a representative sample of 

queries. In the context of neighbor queries, there are two kinds of 

nodes, hubs and non-hubs, with very different query performance. 

So, to have equally represented hubs and non-hubs in our query 

sample, we divide neighbor queries in two groups 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) and 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢). For 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), we select the input node 𝑢 randomly 



from the set of nodes 𝑉 without considering the hubs in the graph. 

For 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), we identify the hubs in the graph and 

use them as input. 

For adjacency queries, 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣), the nodes 𝑢, 𝑣 were 

selected randomly from the set of nodes 𝑉. The execution time of 

adjacency queries depends on the total number of edges including 

dummy edges (Section 6.3). So a distinct consideration of hubs is 

not necessary in this case.  

7.1.3 Evaluation Measures  
We use six metrics which let us evaluate the accuracy of the NBM 

and the performance of the bucketization approach. 

The NBM metrics are: 

𝑬𝑻𝒐𝒕𝒂𝒍𝑬𝑩: This metric quantifies the number of buckets obtained 

when applying our bucketization algorithm to Graph 𝐺. 

𝑬𝒅𝒖𝒎𝒎𝒚: This is the percentage of dummy edges when applying 

our bucketization algorithm to Graph 𝐺.  

𝑬𝑩𝒖𝒄𝒌𝒆𝒕𝒔𝑭𝒖𝒍𝒍−𝒊𝒏𝒊
: This is the percentage of buckets that are full after 

the initialization of the bucketization algorithm on Graph 𝐺.  

The bucketization performance metrics are: 

𝑷𝑻𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: This metric quantifies the total query processing 

time using our bucketization structure 𝐵, i.e., it adds up the 

processing time at the client and at the server.  

𝑷𝑪𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: This metric quantifies the client query processing 

time when using a bucketization structure, i.e., the time required 

by the client to decrypt the results returned from the server and 

filter false positives. 

𝑷𝑹𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: This is the ratio of the total query processing time 

using a bucketization structure 𝐵 and its original graph 𝐺. 

7.2 Results 
We now present the results of the experiments. First, the evalua-

tion of the NBM is discussed, then performance. We study the 

effect of each parameter from Section 7.1.3 one by one. 

7.2.1 NBM Evaluation 
𝑬𝑻𝒐𝒕𝒂𝒍𝑬𝑩: Figure 7.1 shows the numbers of buckets obtained with 

the synthetic data. Figure 7.2 shows the numbers of buckets 

obtained with the real datasets. For both types of datasets we have 

considered different values for Parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒. The markers 

on each bar of both figures are the lower and upper bounds 

calculated with our NBM. For all experiments, the number of 

buckets obtained is always inside the range calculated with 

Theorem 6.1.  

If 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 ≤ 𝑚, the number of buckets obtained is between 

the lower bound and the middle of the range given by the NBM. If 

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 > 𝑚, the number of buckets gets closer to the upper 

bound of the NBM. We explain this effect as follows: In scale-

free networks, most of the nodes in the graph have degree equal to 

𝑚. If the parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒 is set to 𝑚, most buckets will have 

reached their maximal capacity after the initialization phase and 

fewer buckets will be considered for merging. Then the total 

number of buckets gets closer to the optimal solution.  

 

 

 

𝑬𝒅𝒖𝒎𝒎𝒚: We calculate the percentage of dummy edges in 

comparison with the size of the original graph for the synthetic 

data and real datasets. For space constraints, Table 7.2 shows the 

average percentage of dummy edges for the synthetic data, i.e., 

eight datasets.  

Table 7.3 shows the exact percentage of dummy edges for the real 

datasets. The number of dummy edges needed increases, as 

parameter 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 takes greater values than 𝑚. More dummy 

edges means a larger database. This is likely to affect the 

efficiency of the querying process on the server as well, this will 

be examined in Section 7.2.2. 

 

Table 7.2. 𝑬𝒅𝒖𝒎𝒎𝒚 for the synthetic datasets 

Synthetic 

Data 
1<maxEdges<m maxEdges=m maxEdges>m 

1.217% 0.889% 26.513% 
    

 

Table 7.3. 𝑬𝒅𝒖𝒎𝒎𝒚 for the real datasets 

Actor 

network 

maxEdges=2 maxEdges=4 maxEdges=16 

0.028% 0.748% 7.629% 

Web 

network 

maxEdges=3 maxEdges=5 maxEdges=10 

0.223% 1.112% 6.349% 

 

Figure 7.1. 𝑬𝑻𝒐𝒕𝒂𝒍𝑬𝑩 obtained for the synthetic data 

Figure 7.2. 𝑬𝑻𝒐𝒕𝒂𝒍𝑬𝑩 obtained for the real datasets 



𝑬𝑩𝒖𝒄𝒌𝒆𝒕𝒔Full-ini
: Table 7.4 shows the average percentage of full 

buckets after the initialization phase for the synthetic data. For the 

real datasets the exact percentage is given, see  

Table 7.5. The number of full buckets decreases, as parameter 

𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 takes greater values than 𝑚. If there are edges that 

belong to different nodes inside a bucket, then the client will have 

to do more work. Full buckets after the initialization phase contain 

edges that belong to a single node. More full buckets right after 

initialization implies fewer buckets for the merging process, fewer 

dummy edges and fewer false positives when querying. 

 

Table 7.4. 𝑬𝑩𝒖𝒄𝒌𝒆𝒕𝒔Full-ini
 for the synthetic datasets 

Synthetic 

Data 
1<maxEdges<m  maxEdges=m maxEdges>m 

88.79% 86.81% 46.65% 
    

 

Table 7.5. 𝑬𝑩𝒖𝒄𝒌𝒆𝒕𝒔Full-ini
 for the real datasets 

Actor 

network 

maxEdges=2 maxEdges=4 maxEdges=16 

59.15% 55.78% 14.49% 

Web 

network 

maxEdges=3 maxEdges=5 maxEdges=10 

81.38% 80.18% 47.96% 

 

7.2.2 Performance Evaluation 
As in the previous section, we have conducted experiments with 

synthetic and real datasets. The result analysis is the same for both 

cases. For space constraints, we only present the results on the 

real data. 

𝑷𝑻𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: Figure 7.3(a) and (b) shows the total average query 

processing time for the three groups of queries defined in Section 

7.1.2 in the actor and Web networks. For 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) and 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) the total 

execution time increases as 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 decreases. This is 

because, if 𝑚𝑎𝑥𝐸𝑑𝑔𝑒 decreases, the edges of a node will be 

distributed in more buckets, and when executing a query, more 

buckets have to be retrieved from the server. 

𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) requires greater processing time than 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), because hubs are nodes with many 

edges. In contrast, 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) increases as 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 

takes higher values. The increase is due to the dummy edges 

inserted. Our experiments show that the number of dummy edges 

needed grows as 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 increases.  

𝑷𝑪𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: For this part of the evaluation we only consider 

two groups of queries, 𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) and 

𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢). We omit adjacency queries because they do 

not require any post-processing. See Figure 7.3(c) and (d). The 

time at the client increases as 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 takes larger values.  

From the experiments and analysis of 𝑃𝑇𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 and 

𝑃𝐶𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, we can see that the best value to set 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 is 

the growing parameter 𝑚. In scale-free networks, most nodes 

have a degree equal to 𝑚, so most buckets will be full after 

initialization. For the last experimental results, 𝑃𝑅𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, we 

set 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 to the best option, i.e., 𝑚𝑎𝑥𝐸𝑑𝑔𝑒𝑠 = 𝑚.  

𝑷𝑹𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈: In Figure 7.4, each two boxes of each plot show 

for each type of query executed, the total query processing time 

with our bucketization and the original graphs. The plots are for 

three kinds of queries, i.e., 𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), 

𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) and 𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣). We deem the total 

execution time on the original graph the optimum. So we evaluate 

our approach depending on how much query processing time 

increases in comparison with the original graph. Regarding the 

actor network, 𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) with our bucketization 

approach is on average 3.44 times slower than with the original 

graph, 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) is 5.12 times slower and 

𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) is 2.88 times slower. Regarding the Web 

graph, 𝑅𝑎𝑛𝑑𝑜𝑚 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) with our bucketization approach 

is 2.90 times slower than with the original graph on average, 

𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢) is 10.15 times slower and 

𝑄𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦(𝐺, 𝑢, 𝑣) 4.76 times. Except for 𝐻𝑢𝑏 𝑄𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝐺, 𝑢), 

with our approach the query execution time is 3.5 times slower 

than with the original graph. In our opinion, this is a reasonable 

price for secrecy guarantees. So our bucketization approach is 

effective and feasible for graph-structured data secrecy. 

 

 

8. CONCLUSIONS 
A core challenge when outsourcing a database is to ensure the 

secrecy of the data. In this paper, we have studied this problem for 

graph-structured data. We have proposed a secrecy model for this 

kind of data based on the concept of indistinguishability. Existing 

proposals, such as [7] [23] [22], deal with different types of 

adversaries. In graph-structured data not only the node labels but 

Figure 7.4. Total query processing time real datasets 

Figure 7.3.  𝑷𝑻𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 and 𝑷𝑪𝑸𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 in the Actor and Web Networks  



also the edges of a node can reveal sensitive information. 

Therefore, our approach offers secrecy so that an adversary will 

not find out the edges and the degree of a node. While a 

bucketization of the edges gives way to the secrecy envisioned 

here, as we have shown, finding an optimal bucketization is NP-

hard. We have proposed a heuristic that guarantees that the worst 

bucketization solution will be 
11

9
 off the optimal solution. Next, to 

facilitate query planning, we propose a performance model that 

allows estimating (1) the number of buckets and (2) the query 

processing complexity. Our experiments with both real and 

synthetic datasets confirm the accuracy of our model and the 

effectiveness of our approach.  
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