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Abstract

Closeness is a widely-used centrality measure in social network analysis. For a node it indi-
cates the inverse average shortest-path distance to the other nodes of the network. While the
identification of the k nodes with highest closeness received significant attention, many appli-
cations are actually interested in finding a group of nodes that is central as a whole. For this
problem, only recently a greedy algorithm with approximation ratio (1 − 1/e) has been proposed
[Chen et al., ADC 2016]. Since this algorithm’s running time is still expensive for large networks,
a heuristic without approximation guarantee has also been proposed in the same paper.

In the present paper we develop new techniques to speed up the greedy algorithm without
losing its theoretical guarantee. Compared to a straightforward implementation, our approach
is orders of magnitude faster and, compared to the heuristic proposed by Chen et al., we always
find a solution with better quality in a comparable running time in our experiments.

Our method Greedy++ allows us to approximate the group with maximum closeness on
networks with up to hundreds of millions of edges in minutes or at most a few hours. To have the
same theoretical guarantee, the greedy approach by [Chen et al., ADC 2016] would take several
days already on networks with hundreds of thousands of edges.

In a comparison with the optimum, our experiments show that the solution found by Greedy++

is actually much better than the theoretical guarantee. Over all tested networks, the empirical
approximation ratio is never lower than 0.97.

Finally, we study for the first time the correlation between the top-k nodes with highest
closeness and an approximation of the most central group in large complex networks and show
that the overlap between the two is relatively small.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph algorithms, network analysis, closeness centrality, group centrality

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

One of the main tasks in social network analysis is the identification of important nodes. For
this reason, several centrality measures have been introduced over the years and much work
has been put into their efficient computation. Closeness centrality is a widely-used measure
that ranks the nodes according to their inverse average shortest-path distance to the other
nodes. Intuitively, a node with high closeness is a node that is close, on average, to the other
nodes of the network and can therefore reach them quickly. In their seminal work, Borgatti
and Everett [14] extended the concept of centrality to groups of nodes. For a node v and a
group S of other nodes, the distance between v and S is defined as the minimum distance
between v and the elements of S. Then, a group of nodes has high closeness when its average
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distance to the other nodes is small. Finding central groups of nodes is an important task for
many applications. For example, in social networks, retailers might want to select a group
of nodes as promoters of their product, in order to maximize the spread among users [17].
In this context, picking the k most central nodes might lead to a large overlap in the set
of influenced nodes, whereas there might be k nodes that are not among the most central
when considered individually, but that influence different areas of the graph. Closely related
to finding the group with highest closeness is p-median, a fundamental facility location
problem in operations research [15]. One can see Group Closeness Maximization (GCM) as
a special case of p-median: the standard GCM formulation applies only to graphs without
vertex weights, whereas p-median also applies to geometric inputs and weighted objects
(to name only few of the possible generalizations [12]). For p-median, several heuristics,
metaheuristics and approximation algorithms have been proposed over the years (see [24] for
an annotated bibliograohy). However, these methods are mostly applicable to relatively small
networks only. In [23], the authors compare state-of-the-art methods on a street network of
Sweden (≈ 190K nodes) and show that existing methods either fail because of their memory
requirements (>32 GB) or take more than 14 hours to find an approximation. Other recent
methods have been shown to scale to inputs with up to 90 000 points/nodes [2, 16].

Specifically for GCM, an (1−1/e)-approximation algorithm has been proposed recently by
Chen et al. [9]. Unfortunately, the algorithm is not scalable to graphs with more than about
104 vertices, since it requires to compute pairwise distances. Thus, Chen et al. proposed in
the same paper also a more scalable heuristic without guarantees on the solution quality.

1.1 Outline and contribution

We present techniques that can reduce considerably the memory and the number of operations
required by the greedy algorithm presented in [9], without losing its theoretical guarantee
on the quality of the approximation. First, instead of computing and storing all pairwise
distances, we use the algorithm presented in [3] to find the node with maximum closeness
(Section 3.2). Then, we reduce the subsequent computations using pruned single-source
shortest paths (Section 4.1) and exploiting the submodularity of the objective function
(Section 4.2). In our experiments in Section 6, we compare our algorithm (Greedy++) with
the greedy approach presented in [9] and show that Greedy++ is orders of magnitude faster.
Also, we compare Greedy++ with the heuristic proposed in [9] and show that Greedy++ is
often faster (or has a comparable running time) and that it always finds a better solution in
all our experiments. We also provide an Integer Linear Programming (ILP) formulation of
the GCM problem in Section 5 and compare the quality of our solution with the optimum.
Our results show that the solution found by Greedy++ is actually much better than the
theoretical guarantee and the empirical approximation ratio is never lower than 0.97. Finally,
we study the overlap between the group with maximum closeness and the k nodes with
highest closeness and highest degree in real-world networks, showing that in most cases this
is relatively small (between 30% and 60% of the group size). This confirms the intuition that
a central group of nodes is not necessarily composed of nodes that are individually central.

2 Preliminaries

We model a network as a graph G = (V, E) with |V | =: n nodes and |E| =: m edges. Unless
stated explicitly, we assume the graph to be connected (or, if directed, strongly connected)
and unweighted. Let d(u, v) represent the shortest-path distance between node u and node v.
We define the distance between u ∈ V and a set S ⊆ V of nodes as d(u, S) := mins∈S d(u, s) .
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Then, the closeness centrality of node u is defined as c(u) := n−1∑
v 6=u

d(u,v)
. Similarly, we can

define the closeness of a set S as c(S) := n−|S|∑
v /∈S

d(S,v)
. The Group Closeness Maximization

(GCM) problem is defined as finding a set S⋆ ⊆ V of a given size k, with maximum group
closeness: S⋆ = arg maxS⊆V {c(S) : |S| = k}. Note that an adaptation of our approximation
algorithms to the case of |S| ≤ k is rather straightforward. In the paper we use SSSP
to denote a single-source shortest path computation, i. e., breadth-first search (BFS) for
unweighted graphs. We use APSP to denote an all-pairs shortest path distance computation.

3 Related work

Computing closeness centrality requires the distances between all pairs of nodes. For this
problem one typically solves a SSSP from each node or uses fast matrix multiplication. In
both cases the time required is at least quadratic in the number of nodes. For this reason,
several approximation algorithms for closeness centrality have been proposed [13, 7, 10, 8].
The basic idea is to sample a set of nodes (pivots), compute the distance between the pivots
and the other nodes and then estimate the closeness scores of all nodes using the computed
distances. Although these algorithms can often approximate the scores well, they may fail at
preserving the ranking of nodes, in particular for those with similar closeness values. In [4], it
has been shown that the algorithm by Chechik et al. [8] would require n2 SSSP computations
to guarantee an exact ranking in complex networks, which is clearly impractical.

For this reason, recently exact algorithms for finding the k nodes with maximum closeness
have been proposed [3, 4, 6, 22]. The authors of [6] propose an algorithm whose worst-case
complexity is the same as that of running a SSSP from each node. Nevertheless, they
show that their approach is very scalable in practice and that it outperforms all existing
approximation and exact methods. Subsequently, the algorithm presented in [6] has been
further improved in [3] and extended in [4]. Since we use this algorithm to solve a subtask of
our greedy approach for group closeness maximization, we describe it in Section 3.1.

GCM has been very recently considered in [9], where the authors show that finding
the group with maximum closeness is an NP-hard problem. Also, they propose a greedy
algorithm and prove that the solution found by the algorithm is at most a factor (1 − 1/e)
away from the optimum. Since the greedy algorithm is still expensive (its complexity is
Θ(kn2) plus the cost of an APSP, for a group of size k), the authors propose an alternative
heuristic based on sampling. In particular, they first propose a baseline heuristic (BSA),
which basically samples a set of nodes and then selects iteratively the node that minimizes
the distance of the current solution to the samples. Then, they show that the running time
of BSA can be improved by dividing the set of samples in partitions (and they call this
second heuristic Order-based Sampling Algorithm, OSA). However, the two heuristics do not
have the theoretical guarantee of the greedy algorithm, so we cannot know how well they
approximates the optimum. Since the algorithm proposed in this paper builds on the greedy
algorithm of [9], we describe it in more detail in Section 3.2.

In [28], an algorithm for computing and maximizing group closeness on disk-resident
graphs has been proposed. The basic idea is to estimate the closeness of a group using the
nodes at distance at most H from the group (where H can be any integer value greater
than 0). Although they show that their approach can scale quite well for small values of H,
there is no guarantee on how close their estimation is to the real centrality of the group.
The problem of finding a central group of nodes has also been considered for betweenness
centrality, for which sampling-based approximation algorithms have been proposed [20, 27].
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3.1 Top-k closeness algorithm

The basic idea of the top-k closeness algorithm for complex networks proposed in [3] can be
summarized as follows: Let us assume we want to find the k nodes with highest closeness
centrality. Also, assume we have an upper bound c̃(v) on the closeness of a node v. Then, if
k nodes exist such that their exact closeness is higher than the upper bound c̃(v), we know
that v is not one of the k nodes with highest closeness and we do not need to compute its
exact closeness c(v). The algorithm is summarized in Algorithm 2 in the appendix. At each
iteration, xk contains the k-th highest closeness value found so far. Function BFScut(v, xk)
in Line 4 computes iteratively an upper bound on the closeness of v in the following way: A
BFS rooted in v is initiated. After all nodes up to a certain distance d from v have been
visited, we know that all remaining nodes are at least at distance d + 1. If we assume that all
the unvisited nodes are exactly at distance d + 1, this gives us an upper bound c̃d(v) on the
closeness of v for each possible distance value d. Therefore, at each step of the BFS rooted in
v, we can compare c̃d(v) with xk. If xk ≥ c̃d(v), then we can interrupt the BFS and return 0,
meaning that v is not one of the top-k nodes. Otherwise, a whole BFS is computed for v

(and BFScut returns the exact closeness of v). Function Kth(c) in Line 6 returns the k-th
largest element of c and TopK(c) in Line 9 returns the k largest elements of c.

Notice that the described algorithm refers to unweighted graphs (we use the same notation
as in [3]). However, it can be easily extended to weighted graphs by substituting the BFS
with Dijkstra and computing the upper bound based on the current node v we are visiting (we
know that the distance of all remaining nodes is at least as large as the distance of v). In [3],
some improvements on Algorithm 2 are proposed for unweighted graphs only. In particular,
the idea is to compute upper bounds on the closeness of each node in a pre-processing phase
and then process the nodes according to these bounds instead of based on their degree. For
more details, we refer the reader to [3].

3.2 Greedy approximation algorithm

Chen et al. [9] proposed a greedy approximation algorithm (Greedy) for group closeness. We
recall that the objective is to find a set S⋆ such that S⋆ = arg maxS⊆V {c(S) : |S| = k}.

Greedy runs k iterations, after which it returns a set S. For each iteration, Greedy

adds to the set S the node u with the largest marginal gain c(S ∪ {u}) − c(S). Since the
objective function c is monotone and submodular (as proven in [9]), Greedy provides a
(1 − 1/e)-approximation for the GCM problem, i. e. c(S) ≥ (1 − 1/e)c(S⋆). Algorithm 3 in
the appendix shows the pseudocode of Greedy. In Line 2 the pairwise distances are computed
and stored in the n × n matrices d and M . At each iteration, d always contains the pairwise
distances, whereas M contains, for each node pair (u, w), the distance d(S ∪ {u}, w). Initially
d = M , since S = ∅. Then, every time a node s is added to S, M is updated in Line 10.
Score contains c(S ∪ {u}) for each node u, which is computed in Line 13 by summing over
M(u, w), ∀w ∈ V .

Since it needs to store two n × n matrices, the memory requirement of Greedy is Θ(n2).
The running time is Θ(n(m + n log n)) for the initial APSP computation (when running a
SSSP from each node in a weighted graph) and then Θ(kn2) for the remaining part.

4 A scalable greedy algorithm

First of all, we notice that we can reduce the memory requirement of Greedy by not storing
the matrices d and S. In fact, to find the first element s0 of S (i. e. the node with maximum
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closeness) we can simply use the TopKCloseness algorithm described in Section 3.1. Then we
can use a vector dS containing, for each node v, the distance between S and v. Since initially
S is composed of only one element s0, dS simply contains the distances between s0 and the
other nodes, which can be computed with a SSSP rooted in s0. Then, Lines 8 - 10 can be
replaced with a SSSP rooted in u where we sum, over each node w visited in the SSSP, the
minimum between dS(w) and d(u, w). This sum is exactly the same as

∑
w∈V \S M [u, w] and

can therefore be used in Line 13 to update Score[u]. The memory-efficient version of Greedy

is described in Algorithm 1. In the pseudocode we report explicitly every time we need to
run a SSSP. In Line 3 and Line 13, the SSSP is needed to compute dS , whereas in Line 7 we
need it to compute Score[u].

Since we have to re-run a SSSP for each node u and for each element of S other than
s0, the running time complexity of the while loop of Algorithm 1 is O(kn(m + n log n)) (for
weighted graphs). The worst-case complexity of finding s0 with TopCloseness is the same
as that of an APSP (i. e. n(m + n log n)), although in practice it was shown to be basically
linear in the size of the graph [4]. For unweighted graphs, the complexity of Algorithm 1 is
O(knm), since we can use BFS instead of Dijkstra to compute the SSSPs.

Although the memory requirement is now only Θ(n) (in addition to the memory required
to store the graph), the time complexity is too high to target large networks. For this reason,
in the following we propose improvements that, as we will see in Section 6, increase the
scalability of Greedy considerably.

Algorithm 1: Memory-efficient greedy algorithm.
Input : A graph G = (V, E), a number k
Output : A set S of nodes of size k such that c(S) ≥ (1− 1/e)c(S⋆)

1 s0 ← TopKCloseness(1);
2 S ← {s0};
3 SSSP(s0);
4 dS [u]← d(s0, u) ∀u ∈ V ;
5 while |S| < k do

6 foreach u ∈ V \ S do

7 SSSP(u);
/* Score[u] is set to c(S ∪ {u}) */

8 t←
∑

w∈V \S
min{d(u, w), dS [w]};

9 Score[u]← (n− |S| − 1)/t;
10 end

11 s← arg maxw∈V \SScore[w];

12 S ← S ∪ {s};
13 SSSP(s);
14 foreach u ∈ V do

15 dS [u]← min{dS [u], d(s, u)};
16 end

17 end

18 return S;

4.1 Pruned SSSP

In Line 7 of Algorithm 1, we need to run a SSSP rooted in u to recompute Score[u]. However,
the only nodes w for which we need to compute d(u, w) are those for which d(u, w) < dS [w].
Indeed, for all the other nodes, the distance from u does not contribute to the sum in Line 8
and therefore to Score[u]. Thus, if we know that d(u, w) is larger than or equal to dS [w],
we do not need to visit w in the SSSP. It is not hard to see that, if d(u, w) ≥ dS [w], then
the same holds for all the nodes in the SSSP subtree rooted in w. In fact, let t be a node in
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the SSSP subtree of w, i. e. d(u, t) = d(u, w) + d(w, t). There is a path between a node in S

and t going through w of length dS [w] + d(w, t). Therefore dS [t] ≤ dS [w] + d(w, t) ≤ d(u, t).
Figure 1 illustrates this concept. This allows us to prune the SSSP when we find a node
whose distance from u is not smaller than its distance from S. When we visit a new node w,
we compare d(u, w) with dS [w]. If the first is not strictly smaller than the second, we do not
enqueue its neighbors into the SSSP (priority) queue. Notice that, since only nodes u for
which dS [U ] ≤ d(s, u) are pruned, the value of dS [u] in Line 15 is not affected, for any u ∈ V .
This means that the solution returned by the improved algorithm is exactly the same as the
solution returned by Algorithm 1 (which is also the same solution returned by Algorithm 3
in the appendix).

4.2 Submodularity improvement

A function f is submodular whenever f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T ), for S ⊆ T .
It is not hard to see that the closeness c of a set is a submodular function [9]. We can use
this property to reduce the number of evaluations of Score (and SSSP computations) in
Lines 7 - 9. Let us name Si the set S computed by Algorithm 1 in the i-th iteration of the
while loop (Si is the set composed of i elements). Since Si ⊆ Si+1, because of submodularity
c(Si ∪ {u}) − c(Si) ≥ c(Si+1 ∪ {u}) − c(Si+1). The difference c(Si ∪ {u}) − c(Si) is then the
marginal gain ∆i(u) of u with respect to Si.

In other words, we can say that at each iteration of the while loop in Algorithm 1, the
marginal gain of each node can only decrease. Now, let us assume that there is a node s

whose marginal gain ∆i(s) with respect to Si is larger than the marginal gain ∆i−1(u) of
a node u in the previous iteration. This means that the marginal gain of u at iteration i

cannot be larger than ∆i(s) (since ∆i(u) ≤ ∆i−1(u) ≤ ∆i(s)). This allows us to skip the
computation of the score of u in Lines 7 - 9. All we need to do is keep track of the marginal
gain of each node in the previous iteration and compare it with the maximum marginal gain
found in the current iteration (notice that the node with the maximum marginal gain is also
the one with the maximum score, since the marginal gain is simply the score of S ∪ {u}

minus the centrality of S, which does not depend on u).
Intuitively, it is important that a node with high marginal gain is found early in the for

loop in Line 6, since this allows us to skip the computation of the score of many other nodes.
To do this, we keep the nodes sorted by the last marginal gain that was computed for them
and then interrupt the for loop as soon as we find a node u whose previous marginal gain is
smaller than the best marginal gain of the current iteration (since the nodes are sorted, we
can skip all the nodes following u).

Notice that this improvement is compatible with the pruned SSSP improvement proposed
in the previous section. For the nodes that cannot be skipped because of what was described
in this section, we compute their score with a pruned SSSP.

u

w1

w2
w3

s0 s1

Figure 1 Pruned SSSP. If a node w is such that dS [w] ≤ d(u, w), the same holds for the whole

SSSP subtree rooted in w. In the figure, black nodes represent elements of S.
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We name our version of Algorithm 1 using pruned SSSPs and the submodularity improve-
ment Greedy++. As explained in Section 4.1, using pruned SSSPs does not affect the solution
found by the algorithm. The improvement described in this section might return a different
solution only in case there are nodes with the same marginal gain. Indeed, if there are two
nodes u and v with the same marginal gain ∆⋆ and such that ∆⋆ ≥ ∆(w) ∀w ∈ V , whether
we choose u or v depends on which comes first in the ordering of the nodes. Nevertheless,
this does not influence the guarantee on the quality of the approximation.

Then, the following theorem holds.

◮ Theorem 1. Let S ⊆ V , |S| = k, be the solution returned by Greedy++. Then, it holds

that c(S) ≥ (1 − 1/e)c(S⋆), where S⋆ = arg maxS⊆V {c(S) : |S| = k}.

5 ILP formulation of group closeness

To evaluate the quality of the solution found by Greedy++, we want to know how far it is
from the optimum. Computing the closeness centrality of all possible subsets of size k would
clearly be prohibitive even for tiny networks. Hence, we formulate MGC as an ILP problem.
This will be used in the experiments in Section 6.1.

For each node vj ∈ V , we define a binary variable yj , which is 1 if node vj is part of
the group with maximum closeness S⋆, and it is equal to 0 otherwise. We say a node vi is
assigned to a node vj ∈ S⋆ if d(vi, S⋆) = d(vi, vj). If there are multiple nodes vj ∈ S⋆ that
satisfy this property, vi can be arbitrarily assigned to one of them. Thus, we also define a
variable xij that, for each node pair (vi, vj) is equal to 1 if vj ∈ S⋆ and vi is assigned to vj ,
and 0 otherwise. We can rewrite our problem in the following form:

max
n − k∑n

i=1

∑n

j=1 d(vi, vj)xij

(1)

s.t.: (i)
∑n

j=1 xij = 1, ∀i ∈ {1, ..., n}; (ii)
∑n

j=1 yj = k; (iii) xij ≤ yj , ∀i, j ∈ {1, ..., n}.
with xij , yj ∈ {0, 1}. Condition (i) indicates that each node in vi ∈ V is assigned to

exactly one node in vj ∈ S⋆, (ii) indicates that |S⋆| = k and (iii) indicates that nodes vi are
only assigned to nodes vj that are in S⋆, i. e. nodes for which yj = 1. Since the numerator
in Eq. (1) is constant, we can rewrite Eq. (1) as:

min
n∑

i=1

n∑

j=1

d(vi, vj)xij , (2)

which gives us an ILP formulation.

6 Experiments

In the following, we present experimental results concerning several aspects of the algorithm
described in Section 4 (which we refer to as Greedy++). In Section 6.1 we study its accuracy
in comparison with the optimum. In Section 6.2, we show the speedup of Greedy++ on the
greedy algorithm proposed in [9] (which we call Greedy). Then, in Section 6.3, we compare
Greedy++ with OSA, the heuristic based on sampling proposed in [9] (we did not implement
the other heuristic BSA, since the authors of [9] show that OSA always finds a solution
with a similar accuracy as BSA in a smaller running time). In Section 6.4, we study the
running time of Greedy++ on additional larger networks, both for a sequential and a parallel
implementation (the other algorithms are either too slow or would require too much memory
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for these networks). Finally, in Section 6.5, we study the correlation between the group with
maximum closeness and the top-k nodes with highest closeness in real-world networks.

We implemented all algorithms in C++ building on NetworKit [26], an open-source tool
for fast exploratory analysis of large networks. All experiments were done on a machine
equipped with 256 GB RAM and a 2.7 GHz Intel Xeon CPU E5-2680 having 2 sockets with 8
cores each. The machine runs 64 bit SUSE Linux and we compiled our code with g++-4.8.1
and OpenMP 3.1. For comparability with previous work, unless stated explicitely running
times refer to a sequential implementation.

The graphs used in the experiments are taken from the SNAP [19], KONECT [18] and
LASAGNE1 data sets. The easyjet graph in Table 1 was taken from [11]. All graphs are
connected, undirected and unweighted.

6.1 Accuracy

We compare the quality of the solution found by Greedy++ with that of the optimum on
several small real-world networks, summarized in Table 1. We compute the optimum using
the ILP formulation described in Section 5. The ILP model was implemented using the Java
optimization modeling library and interface ILOG Concert Technology. The problems for the
given data sets were solved with ILOG CPLEX 12.62. The results for k = 10 are reported in
Table 1. Among all networks, the empirical approximation ratio (ratio between the objective
function of the optimum and that of the solution found by Greedy++) is always higher than
0.97. This is much higher than the theoretical guarantee of (1 − 1/e) ≈ 0.63. Similar results
can be observed for k = 2 and k = 20, reported in Table 3 and Table 4 in the appendix. For
k = 10, the geometric mean of the approximation ratios is 0.994, for k = 2 it is 0.998 and for
k = 20 it is 0.995. Notice that Greedy++ never takes more than one second on the tested
networks, whereas finding the optimum with CPLEX takes hours for the larger instances of
Table 1.

Table 1 Comparison with optimum on small real-world networks, for k = 10. The fourth and

fifth columns show the objective function of Eq. (2) for the optimum and Greedy++, respectively.

Graph Nodes Edges Category Optimum Greedy++ Approx. ratio

karate 35 78 friendship 25 25 1.0

contiguous-usa 49 107 transport. 40 41 0.976

easyjet 136 755 transport. 126 126 1.0

jazz 198 2742 collaboration 191 192 0.995

coli1-1Inter 328 456 metabolic 475 482 0.985

pro-pro 1458 1993 metabolic 4213 4217 0.999

hamster-friend 1788 12476 social 2871 2871 1.0

dnc-temporal 1833 4366 communicat. 2398 2407 0.996

caenorhab-eleg 4428 9659 metabolic 10003 10075 0.993

6.2 Speedup on Greedy

We recall that the solution found by the two algorithms Greedy++ and Greedy is the same,
so we only compare running times between the two. Due to the time and space complexity

1 piluc.dsi.unifi.it/lasagne
2 www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

piluc.dsi.unifi.it/lasagne
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Figure 2 Running times of Greedy and Greedy++ for different group sizes (log-log scale). Top:

running times for ca-HepTh; bottom: running times for oregon_1_010526.

of Greedy, we compare the two approaches on two relatively small networks (ca-HepTh: 8638
nodes and 24806 edges and oregon_1_010526: 11174 nodes and 23409 edges). Figure 2
shows the running times of the two algorithms for different values of group size k between 10
and 1000. For both graphs, Greedy++ outperforms Greedy by orders of magnitude. For all
tested group sizes, Greedy++ finds the solution in less than one second, whereas for k = 1000
Greedy requires 25 minutes on the ca-HepTh graph and 34 minutes on the oregon_1_010526

graph. The speedups of Greedy++ on Greedy ranges between 93 (k = 10) and 1765 (k = 1000)
for ca-HepTh and between 581 (k = 10) and 6125 (k = 1000) for oregon_1_010526.

6.3 Comparison with OSA

Since OSA is a sampling-based algorithm, the number h of samples influences its performance,
both in terms of accuracy and running time. In [9], the authors suggest h = 1000 samples as
a good tradeoff for group sizes up to 50. Since we are also testing the algorithms on groups
with up to 100 nodes, we run OSA both with h = 1000 and with a larger sample size of
h = 2000. We test OSA and Greedy++ on all the networks of Table 2 with m < 107 (11
networks). We did not run experiments on larger networks because of the high memory
requirements of OSA. Since OSA is a sampling-based approach, we repeat each experiment
10 times and report the average running time and accuracy.

Figure 3 shows the group closeness of the solutions found by OSA and Greedy++ on
four of the tested graphs (email-Enron, loc-brightkit, flickr, and gowalla), for group
sizes ranging between 5 and 100. As a baseline, we also report the closeness of the group
composed of the k nodes with maximum degree (Degree). In addition to having a theoretical
guarantee (whereas OSA has none), the results show that Greedy++ always finds the best
solution, for all graphs and group sizes. Interestingly, for all the four graphs but flickr, the
set of nodes with maximum degree has a higher closeness than the solution found by OSA

with h = 1000 samples. For the gowalla graph, Degree finds a better solution than OSA

even with h = 2000 samples.
Figure 4 shows the running times of Greedy++ and OSA on the four graphs, for group

size k = 20 (top) and k = 100 (bottom). On all graphs but flickr, Greedy++ is significantly
faster than OSA (both with h = 1000 and h = 2000 samples). On the flickr graph, for
group size k = 20, Greedy++ takes 85 seconds, whereas OSA with h = 2000 takes 77 seconds.
However, when the group size increases (k = 100), Greedy++ becomes faster (102 seconds
versus 182 seconds required by OSA with h = 2000).

Also, notice that the memory requirement of Greedy++ is significantly lower than that
of OSA. In fact, Greedy++ only needs Θ(n) memory for its data structures, whereas OSA

requires Θ(hn) to store the distances between the sampled nodes and the other nodes. This
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means that, using OSA with the number of samples suggested in [9], it needs about one
thousand times more memory than Greedy++, which might be problematic for large graphs.

On average (geometric mean) over the 11 tested networks, Greedy++ is faster than OSA

with h = 1000 by a factor 1.1 and than OSA with h = 2000 by a factor 1.7. Although our
average running times are not very different from those of OSA with h = 1000, our accuracy
is better on all tested networks (the same is true also for OSA with h = 2000). Also, on 7
out of the 11 tested networks, OSA with h = 1000 returns a result with a worse accuracy
than choosing the k nodes with maximum degree, suggesting that OSA should be run using
a larger number of samples. With h = 2000, the solution of OSA is worse than picking the k

nodes with maximum degree on 4 out of 11 networks (the solution returned by Greedy++ is
better on all tested networks).

Figure 3 Closeness centrality of the solution found by the methods for different group sizes and

different graphs. The plot shows the results of Greedy++, OSA with sample sizes of 1000 and 2000,

and the group consisting of the k nodes with highest degree.

email-E
nro

n

loc-
brig

htki
t

flick
r

gow
alla

0
20
40
60
80

100
120
140
160
180

Tim
e[s

]

Greedy++
OSA (h=1000)
OSA (h=2000)

email-E
nro

n

loc-
brig

htki
t

flick
r

gow
alla

0
50

100
150
200
250
300
350
400

Tim
e[s

]

Greedy++
OSA (h=1000)
OSA (h=2000)

Figure 4 Running times of Greedy++ and OSA with sample sizes of 1000 and 2000 for k = 20

(top) and k = 100 (bottom).



May 3, 2017, 16:47 XX:11

6.4 Running time evaluation

To test the scalability of Greedy++, we now run it on all networks from Table 2 (for
the comparison with OSA, only the first 11 networks could be used). The networks be-
long to different domains: In particular, loc-brightkite, gowalla, com-lj, com-youtube,
flickr, youtube-u-growth, soc-pokec-relationships, com-orkut are friendship net-
works, ca-HepPh, CA-AstroPh, com-dblp are co-authorship and collaboration networks,
com-amazon represents co-purchased articles, email-Enron is a communication network and
as-skitter is an internet topology graph.

To further speed up the running time of Greedy++, we also implement a parallel version
of it. The first element of |S| is computed using the parallel top-k closeness implementation
described in [4]. Then, in each iteration of Greedy++, Line 6 of Algorithm 1 is exectuted in
parallel, i.e. each thread runs a pruned SSSP from the nodes assigned to it.

Table 2 reports the running times of Greedy++ for k = 10, for both the sequential and
the parallel implementation (using 16 threads). On all networks with less than 105 nodes,
our parallel implementation takes less than 1 second. On all remaining graphs, it always
takes less than 1 hour, apart from the com-orkut graph (> 3M nodes and > 100M edges),
where it takes a bit more than one and a half hours. The parallel speedup varies significantly
among the tested networks, ranging from 5.4 (com-youtube) to 13.8 (flickr). These values
should be appreciated in the context of complex networks, for which it is often difficult to
obtain even higher speedups (see for example [21] and [25]). A low speedup is in our case
probably due to the fact that, in some networks, the work done by the pruned SSSPs is
extremely unbalanced (some nodes can be pruned early, whereas others need almost a full
SSSP). Further load balancing mechanisms seem to require very fine-grained and inexpensive
context switches between threads (and thus a different hardware architecture). Also, as
expected, the parallel speedup decreases as k increases. Indeed, whereas the geometric mean
of the speedups is 9.1 for k = 10, it is 8.7 for k = 20 and 5.6 for k = 100. This results from
the fact that, for higher k values, more and more pruned SSSPs can be skipped because of
submodularity. Since less work is done in each iteration, the overhead due to parallelism and
imbalance becomes more significant. The fact that less and less work is done in each iteration
as k increases is also confirmed by the fact that the running times do not increase linearly as
k increases. For k = 20, the running times are only about 10% higher (on average) that they
are for k = 10 and, for k = 100, they are about 50% higher than for k = 10 (running times
for k = 20 and k = 100 can be found in Table 5 in the appendix).

6.5 Group closeness versus top-k closeness

A natural question is how many elements of the group of nodes with highest closeness have
high closeness individually. We investigate this on the networks of Table 2. In particular,
for a given group size k, we compute the overlap (i. e. the size of the intersection) between
the group returned by Greedy++ and the set of the top-k nodes with highest closeness,
computed using the algorithm described in [3] (already implemented in NetworKit). The
percentage overlap is then the overlap divided by k and multiplied by 100. Figure 5 in the
appendix shows the results. In addition to the percentage overlap between Greedy++ and
the top k nodes with highest closeness, it also shows the one between Greedy++ and the
k nodes with highest degree. The plot on the bottom right corner shows the average over
all networks of Table 2, whereas the other three plots refer to the com-youtube graph, to
soc-pokec-relationships and to com-orkut, respectively. As it appears from the plots, the
overlap changes significantly among the graphs. For the com-youtube graph, the percentage
overlap decreases as the group size increases, and the overlap with Degree is always larger
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Table 2 Networks used in the experiments and performance of Greedy++ for k = 10. The forth

and fifth columns report the sequential and parallel running times with 16 threads, respectively.

The last column reports the speedup of the parallel implementation on the sequential one.

Graph Nodes Edges Time seq. [s] Time par. [s] Speedup

ca-HepPh 11204 117649 7.70 0.58 13.4

email-Enron 33696 180811 1.94 0.20 9.9

CA-AstroPh 17903 197031 3.78 0.32 12.0

loc-brightkite 56739 212945 5.74 0.55 10.5

com-lj 303526 427701 127.35 17.00 7.5

com-amazon 334863 925872 808.70 88.37 9.2

gowalla 196591 950327 60.14 8.74 6.9

com-dblp 317080 1049866 232.51 30.99 7.5

flickr 105722 2316668 314.11 22.76 13.8

com-youtube 1134890 2987624 1323.31 245.50 5.4

youtube-u-growth 3216075 9369874 22298.52 2196.42 10.2

as-skitter 1694616 11094209 12014.09 1611.09 7.5

soc-pokec-relationships 1632803 22301964 11912.29 1104.82 10.8

com-orkut 3072441 117185083 60252.10 5792.81 10.4

than the one with Top-k. Partially similar are the results for soc-pokec-relationships,
although there is more fluctuation in the overlap of Degree and the initial overlap of Top-k

is higher than it is for com-youtube (≈ 80% vs. ≈ 60%). On the other hand, the results for
com-orkut are quite different: The overlap with Degree increases with the group size, and is
lower than the one with Top-k.

On average, the overlap with both Degree and Top-k tends to decrease as the group size
increases (as expected), with Degree having a higher overlap than Top-k (except for k = 5).
Also, on average the overlap ranges between 30% and 60%. This clearly indicates that there
is a dependence between the group with maximum closeness and the degrees of nodes and
their centralities. However, the strength of this dependence varies significantly among the
tested networks and suggests that picking the k nodes with highest closeness or highest
degree is not always a good heuristic for finding the group with maximum closeness.

7 Conclusions

In this paper we have studied the problem of finding the group with maximum closeness
in large complex networks. Our algorithm is the first that scales to networks with tens or
hundreds of millions of edges and delivers a guaranteed approximation ratio of (1 − 1/e) at
the same time. Pruning the SSSP searches and exploiting the submodularity of the objective
function allows us to reduce the amount of work done by the greedy algorithm proposed
in [9] by orders of magnitude. In a comparison with the optimum on several small real-world
networks, the empirical approximation ratio is never lower than 0.97.

Also, using our approach, we have been able to study the relation between a group with
high closeness and nodes that have individually high closeness or degree in large complex
networks. Future work includes an extension of our approach to disk-resident graphs, for
which a comparison with the heuristic proposed in [28] would be interesting.

It would also be interesting to investigate whether our work could be extended to other
centrality measures, such as current-flow closeness [5]. Finally, we plan to study how an
extension of our greedy algorithm would perform on the p-median problem with node weights.
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A Additional pseudocodes

Algorithm 2: Top-k closeness centrality [4].
Input : A graph G = (V, E), a number k
Output : Top k nodes with highest closeness

1 c(v)← 0 ∀v ∈ V ;
2 xk ← 0;
3 for v ∈ V in decreasing order of degree do

4 c(v)← BFScut(v, xk);
5 if c(v) 6= 0 then

6 xk ← Kth(c);
7 end

8 end

9 return TopK(c);

Algorithm 3: Greedy algorithm for GCM [9].
Input : A graph G = (V, E), a number k
Output : A set S of nodes of size k such that c(S) ≥ (1− 1/e)c(S⋆)

1 d← APSP(G);
2 M ← APSP(G);
3 Score← {c(u)|u ∈ V };
4 s← arg maxu∈V \SScore[u];

5 S ← {s};
6 while |S| < k do

7 foreach u ∈ V \ S do

8 foreach w ∈ V do

9 if d[u, w] > d[s, w] then

10 M [u, w]← d[s, w];
11 end

12 end

/* Score[u] is set to c(S ∪ {u}) */

13 Score[u]← (n− |S| − 1)/
∑

w∈V \S
M [u, w];

14 s← arg maxw∈V \SScore[w];

15 S ← S ∪ {s};
16 end

17 end

18 return S;
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B Additional experimental results

Table 3 Comparison with optimum on small real-world networks, for k = 2. The fourth and fifth

columns show the objective function of Eq. (2) for the optimum and Greedy++, respectively.

Graph Nodes Edges Category Optimum Greedy++ Approx. ratio

karate 35 78 friendship 37 37 1.0

contiguous-usa 49 107 transport. 99 99 1.0

easyjet 136 755 transport. 143 143 1.0

jazz 198 2742 collaboration 259 261 0.992

coli1-1Inter 328 456 metabolic 780 780 1.0

pro-pro 1458 1993 metabolic 5573 5573 1.0

hamster-friend 1788 12476 social 3596 3596 1.0

dnc-temporal 1833 4366 communicat. 3236 3236 1.0

caenorhab-eleg 4428 9659 metabolic 12535 12631 0.992

Table 4 Comparison with optimum on small real-world networks, for k = 20. The fourth and fifth

columns show the objective function of Eq. (2) for the optimum and Greedy++, respectively. The

results for caenorhab-eleg are not included, because the CPLEX solver did not find the optimum

within 13 hours.

Graph Nodes Edges Category Optimum Greedy++ Approx. ratio

karate 35 78 friendship 15 15 1.0

contiguous-usa 49 107 transport. 29 29 1.0

easyjet 136 755 transport. 116 116 1.0

jazz 198 2742 collaboration 178 178 1.0

coli1-1Inter 328 456 metabolic 367 373 0.984

pro-pro 1458 1993 metabolic 3488 3518 0.991

hamster-friend 1788 12476 social 2556 2573 0.993

dnc-temporal 1833 4366 communicat. 2066 2082 0.992
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Table 5 Performance of Greedy++ for k = 20 and k = 100, using 16 threads.

Graph Nodes Edges Time k = 20 [s] Time k = 100 [s]

ca-HepPh 11204 117649 0.61 0.7

email-Enron 33696 180811 0.26 0.6

CA-AstroPh 17903 197031 0.34 0.5

loc-brightkite 56739 212945 0.67 1.2

com-lj 303526 427701 18.16 24.2

com-amazon 334863 925872 94.56 116.2

gowalla 196591 950327 9.09 11.2

com-dblp 317080 1049866 34.26 49.5

flickr 105722 2316668 23.04 24.6

com-youtube 1134890 2987624 263.17 473.9

youtube-u-growth 3216075 9369874 2412.60 2901.9

as-skitter 1694616 11094209 1620.43 2024.6

soc-pokec-relationships 1632803 22301964 1179.33 1288.1

com-orkut 3072441 117185083 6233.67 8387.0

Figure 5 Percentage overlap between the group found by Greedy++ and the k nodes with highest

closeness (Top-k) and between the group found by Greedy++ and the k nodes with highest degree

(Degree).
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