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Abstract

To develop complex software systems, source code and other artefacts, such as architectural
models and behaviour descriptions, are used. Keeping these software architecture-based
models consistent with the systems’ source code during software development and software
evolution helps software architects.

Having up-to-date architecture models eases the development and evolution tasks since
questions such as how and where to add new features in the software systems can be
answered more easily. Furthermore, it is possible to predict the performance of a software
system with architecture models that include behavioural speci�cations, such as the
Palladio approach.

Architecture drift and architecture erosion are, however, two well-known problems that
can arise during architecture-based software development and software evolution. These
problems arise when software architecture models are not kept consistent with the source
code, e.g. when code is evolved without updating the architecture accordingly. Eventually,
this leads to out-dated and thus useless architecture models.

Most existing solutions to avoid these problems either focus on keeping UML class
diagrams and source code consistent during software evolution, or embed architectural
information into the source code to avoid the need of consistency preservation.

In this thesis, we introduce a novel approach to keep high-level component-based
architecture models consistent with source code during software development and software
evolution. In particular, the approach can be used to keep instances of the Palladio
Component Model (PCM) consistent with Java source code. To do so, the architectural
elements are created, changed, or deleted as soon as their corresponding source code
elements have been changed and vice versa. We also present a change-driven consistency
preservation process that preserves consistency based on user-de�ned change-driven
consistency preservation rules between the architectural model and source code. We
introduce four di�erent sets of consistency preservation rules between architectural
models and source code, which are realised in our prototypical implementation. Within the
consistency preservation process, we introduce a user disambiguation concept, which can
be used if the consistency preservation cannot be achieved automatically. In this case, users
need to clarify how consistency can be achieved. As the presented approach is a change-
driven approach, we need to retrieve each change performed in the involved architectural
editors and the source code editors. To enable users to reuse existing editors, which with
they are familiar, we implemented monitors for the Eclipse Java source code editor and
PCM architectural model editors. The presented approach enables, furthermore, users
to keep source code consistent with behavioural architectural models as well. Therefore,
we have implemented an approach that incrementally reverse-engineers the PCM Service

E�ect Speci�cations based on changes performed to source code methods. The Service

E�ect Speci�cations are used to describe the behaviour of components.
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For reusing existing source code and existing architectural models within the presented
approach, we present di�erent integration strategies. For architectural models, we present
an approach that simulates the creation of architectural models. During the creation, we
monitor the emerging changes and use them as base for the creation of the corresponding
source code. For source code, we propose an approach that uses reverse engineering tools
to create an architectural model, which can be integrated to the consistency preservation
approach presented in this thesis. Arbitrary code, however, is seldom build according to the
de�ned consistency preservation rules. To deal with this fact, we present an approach that
is able to deal with integrated source code for which the actual consistency preservation
rules cannot be used. The approach is able to keep even those elements consistent using
speci�c consistency preservation rules for integrated source code elements.

We have evaluated the presented approach in di�erent case studies. We showed that it is
possible to integrate existing architectural models by simulating their creation. Within the
performed case study, we were able to integrate between 98% and 100% of the supported
elements for the di�erent consistency preservation rules. Next, we evaluated the integra-
tion of existing source code and showed that it is possible to keep changes to source code
consistent with the architecture and vice versa. Therefore, we integrated four open source
projects into the presented coevolution approach. We showed that changes performed to
source code are kept consistent with the architectural model, by integrating an old version
from the Version Control System (VCS) and replayed changes to a newer version using a
change replay tool. During this evaluation, we also showed that the presented approach is
able to keep changes performed to method bodies consistent with the behavioural model.
We also conducted a performance evaluation to measure the overhead of the presented
change-driven approach during the software evolution. We showed that the presented
approach is in most cases able to keep the architectural model consistent with changes
performed to the source code within one to �ve seconds. Finally, we evaluated that the
coevolved architectural models can be used for performance prediction. Therefore, we �rst
parameterised the models with resource demands. After the parameterisation step, we
execute the performance prediction using the performance prediction capabilities of the
PCM. To analyse the accuracy of the performance prediction, we compared the predicted
value with actual measured values. In our case study, we observed a prediction error for
the response time of approximately 10%, so that the coevolved models can be used to
estimate the performance of the real software system.
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Zusammenfassung

Zur Entwicklung komplexer Softwaresysteme, werden neben dem Quelltext zusätzliche
Artefakte, wie beispielsweise Architekturmodelle, verwendet. Wenn die verwendeten
Architekturmodelle während der Entwicklung und Evolution eines Softwaresystems kon-
sistent mit dem Quelltext sind, können Softwarearchitekten und Softwareentwickler bei
der Entwicklung der Systeme besser unterstützt werden.

Architekturmodelle, die auf dem aktuellem Stand sind, vereinfachen Entwicklungs- und
Evolutionssaufgaben, da einfacher beantwortet werden kann wie und wo neue Funktionen
implementiert werden sollen. Außerdem ist es möglich, modellbasierte Analysen mit Hilfe
der Softwarearchitekturmodelle vorzunehmen. Beispielsweise können mit dem Palladio
Komponentenmodell (PCM) Performanzvorhersagen durchgeführt werden, wenn ein Ar-
chitekturmodell des Softwaresystems vorhanden ist und dieses Verhaltensspezi�kationen
beinhaltet.

Wenn Architekturmodelle bei der Softwareentwicklung und Softwareevolution verwen-
det werden, können die beiden bekannten Probleme Architekturdrift und Architekturver-
letzung auftreten. Diese Probleme treten für gewöhnlich auf, wenn bei voranschreitender
Entwicklung des Quelltextes die Architektur nicht konsistent zu diesem gehalten wird.
Dies führt zu veralteten und schlussendlich nutzlosen Architekturmodellen.

Viele existierende Ansätze, zur Vermeidung dieser Probleme, zielen darauf ab, Quelltext
und UML-Klassendiagramme konsistent zu halten, oder sie zielen darauf ab, Architektu-
rinformationen in den Quelltext einzubetten. In letzterem Fall wird die Notwendigkeit,
die Architektur konsistent mit dem Quelltext zu halten, umgangen, da die Architektur
integraler Bestandteil des Quelltextes ist.

In der vorliegenden Dissertation beschreiben wir einen neuen Ansatz, um komponen-
tenbasierte Architekturmodelle, welche sich auf einer hohen Abstraktionsebene be�nden,
konsistent mit dem Quelltext zu halten. Wir beschreiben, wie Instanzen des PCMs konsis-
tent mit Java-Quelltext gehalten werden können. Um Konsistenz zu erreichen, werden
Architekturelemente erzeugt, gelöscht oder geändert, sobald ihre entsprechende Quelltext-
elemente geändert wurden, und umgekehrt. Für die Umsetzung der Konsistenzerhaltung
stellen wir einen änderungsgetriebenen Ansatz vor. Dieser verwendet benutzerde�nier-
te, änderungsgetriebene Abbildungsregeln, um die Konsistenz zwischen den beteiligten
Modellen sicherzustellen. In dieser Dissertation stellen wir vier konkrete Mengen von Ab-
bildungsregeln zwischen Architekturmodellen und Quelltext vor. Diese haben wir in einer
prototypischen Implementierung des Ansatzes umgesetzt. Wir stellen außerdem einen
Mechanismus vor, der mit den Benutzern des Konsistenzerhaltungsansatzes interagiert,
wenn die Konsistenz nicht automatisch erhalten werden kann, sondern die Benutzer zuerst
ihre Intention, die sie mit einer bestimmten Änderung verfolgen, dem Ansatz mitteilen
müssen. In diesem Fall müssen die Benutzer das genaue Vorgehen für die Konsistenzer-
haltung spezi�zieren. Da der vorgestellte Ansatz änderungsgetrieben funktioniert, ist es
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notwendig, dass wir alle Änderungen in den beteiligten Architektur- und Quelltexteditoren
aufzeichnen können. Um es Benutzern zu erlauben, vorhandene Editoren, mit denen sie
sich auskennen, wiederverwenden zu können, haben wir Beobachter für diese Editoren
implementiert. Diese Beobachter zeichnen alle Änderungen an einem Modell auf und
informieren unseren Ansatz über jede durchgeführte Änderung. Der in dieser Disserta-
tion vorgestellte Ansatz erlaubt es auch, verhaltensbeschreibende Architekturmodelle
konsistent mit dem Quelltext zu halten. Um dies zu erreichen, haben wir einen Ansatz
implementiert, der es ermöglicht, Service E�ect Speci�cations des PCMs inkrementell aus
Methoden zu erstellen, nachdem diese geändert wurden. Die Service E�ect Speci�cations

werden innerhalb des PCMs genutzt, um das Verhalten einer Komponente zu spezi�zieren.
Um bereits bestehende Architekturmodelle und bestehenden Quelltext innerhalb unseres

Ansatzes verwenden zu können, stellen wir je eine Integrationsstrategie für die Architektur
und den Quelltext vor. Um bestehende Architekturmodelle zu integrieren, simulieren wir
deren Erstellung. Während dieses Erstellvorgangs zeichnen wir die Änderungen auf, die
nötig sind, um das Architekturmodell zu erstellen. Diese Änderungen werden als Eingabe
für den Konsistenzerhaltungsprozess verwendet, um daraus den entsprechenden Quelltext
zu erzeugen. Um vorhandenen Quelltext einzubinden, stellen wir einen Ansatz vor, der
auf Architekturrekonstruktionsverfahren basiert, d.h., zuerst wird die Architektur eines
bestehenden Softwaresystems rekonstruiert. Die erstellte Architektur wird anschließend
zusammen mit dem bestehenden Quelltext in unseren Coevolutionsansatz integriert. Oft-
mals ist bestehender Quelltext jedoch nicht so aufgebaut, wie es die Abbildungsregeln
vorschreiben. Innerhalb der Integrationsstrategie für Quelltext stellen wir deshalb einen
Ansatz vor, der in der Lage ist, solche Quelltexte dennoch zu integrieren. Dieser Ansatz
ermöglicht es, nicht nur diese Art von Quelltext zu integrieren, sondern diesen auch mit
speziell de�nierten Abbildungsregeln automatisch konsistent zu halten.

Wir haben unseren Ansatz in verschiedenen Fallstudien evaluiert. Dabei haben wir
zunächst gezeigt, dass es möglich ist vorhandene Architekturmodelle zu integrieren,
indem ihr Aufbau simuliert wird. In der durchgeführten Fallstudie ist es mit unserem
Ansatz und den vorgestellten Abbildungsregeln möglich, zwischen 98% und 100% der
unterstützten Elemente zu integrieren. Als nächstes haben wir gezeigt, dass unser Ansatz
in der Lage ist, existierenden Quelltext zu integrieren und Änderungen am integrierten
Quelltext konsistent mit der Architektur zu halten. Für diese Fallstudie haben wir zunächst
den Quelltext von vier quello�enen Projekten in den Ansatz integriert. Als nächstes
haben wir gezeigt, dass es möglich ist, Änderungen am Quelltext konsistent mit der
Architektur zu halten. Dazu haben wir eine alte Version des Quelltextes integriert und
Änderungen die zwischen einer alten und neueren Version durchgeführt wurden, aus einem
Versionskontrollsystem extrahiert und erneut auf den Quelltext angewendet. Im Rahmen
dieser Evaluation haben wir auch gezeigt, dass es möglich ist Änderungen, die innerhalb
von Methoden durchgeführt werden, mit einem Verhaltensmodell konsistent zu halten. Wir
haben außerdem eine Evaluation der Leistungsfähigkeit unseres Ansatzes durchgeführt
und gezeigt, dass unser Ansatz in den meisten Fällen in der Lage ist, die Architektur in einer
Zeit zwischen einer und fünf Sekunden konsistent zu halten, nachdem eine Änderung
am Quelltext durchgeführt wurde. Als letztes haben wir gezeigt, dass es möglich ist,
coevolvierte Modelle für die Performanzvorhersage zu verwenden. Dazu haben wir zuerst
die Modelle in einem Parametrisierungsschritt mit den nötigen Ressourcenverbräuchen
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angereichert. Als nächstes konnten wir die Performanzvorhersage durchführen. In unserer
Fallstudie zeigte sich, dass der Vorhersagefehler für die Antwortzeit eines Systems bei ca.
10% liegt, und damit die coevolvierten Modelle für die Abschätzung der Performanz eines
realen Systems verwendet werden können.
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1. Introduction

This introduction �rst motivates the advantages of an approach for coevolving source
code and architectural models and highlights the advantages of having up-to-date archi-
tectural models (Section 1.1). In Section 1.2, we describe the goals and questions of this
thesis. Afterwards, we shortly describe the approach and the contributions of this thesis
(Section 1.3). Finally, the introduction chapter gives an overview of the structure of the
remainder of this thesis (Section 1.5).

1.1. Motivation

For the development and evolution of a software system, software architects and software
developers usually use multiple artefacts. An important artefact is, of course, the source
code of the software system itself. Another important artefact that is often used, is the
architectural representation of the source code [KOS06], which usually allows users to get
an high-level view on the source code.

Such architectural models can be useful in the planning phase of software development
and software evolution. Software architects can, for instance, specify which components in
the architectural models need to be adapted or created in order to realise a requirement in
the software system. Moreover, architectural models can be used to analyse Non-Functional
Properties (NFP) of a software system. The Palladio Component Model (PCM) [Reu+16],
for instance, can be used for model-based performance predictions. The prediction is
possible even before the implementation of the software system has been started. To do
so, software architects need to specify the expected behaviour of software components.
Architectural models can also be used for forward engineering, i.e. the architectural
models can be used in order to create source code. This source code can either be executed
directly without any changes or it can be source code stubs, which need to be completed
by software developers in order to obtain an executable software system. Architectural
models can also be used for the documentation of the software system.

If architectural models are used in the processes of software development and software
evolution, the well-known problems of architecture drift and architecture erosion can occur.
Perry and Wolf [PW92] described both problems initially. They de�ned architecture erosion
as violation of the architecture, while they de�ned architecture drift as insensitivity about
the architecture. These problems occur if changes to source code are not kept consistent
with the architectural model or if changes in the architectural model are implemented
incorrectly in the source code. Having these problems leads to architecture models that
are out-dated and thus become useless. Such outdated architectural models are neither
a good source for planning and conducting software evolution nor can they be used for
precise analysis of NFP.
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1. Introduction

Hence, having up-to-date architectural model is a necessary perquisite to pro�t from
the bene�ts architectural models provide. Creating up-to-date architectural models can
be done using reverse engineering approaches. Therefore, the research area of reverse
engineering provides tools that are able to reverse-engineer architectural models. Most re-
verse engineering approaches use the source code as input [DP09]. Changes performed to
an already existing model, however, are often lost if the architecture model is regenerated
from source code. Approaches combining forward and reverse engineering enable the
round-trip engineering between source code and architectural model. These approaches
can be used to keep architectural models and source code consistent during the develop-
ment and evolution of a software system. Most existing approaches focus, however, on
preserving consistency between object-oriented source code and UML class diagrams.

In this thesis, we present an approach that is able to keep component-based architectural
models consistent with the source code. The used architectural models can be used during
the actual evolution of a software system by supporting users to keep changes performed
to source code consistent with the architecture and vice versa. Moreover, the architectural
models can be used for analysis of NFP in a subsequent step.

The initial need of keeping the architecture models and source code consistent arises
because both models can be seen as views on the same software system and thus contain
redundant information. Even though architectural models are an abstraction from the
underlying source code, the information contained in the architecture model, such as
components and interfaces, often have a representation in the source code. The complexity
of de�ning the overlap between architectural model elements and source code elements
depends on the used architecture model. It is easy, for instance, to de�ne the overlap
and the mapping between UML class diagrams and object-oriented source code, as most
elements from UML class diagrams have a direct representation in object-oriented source
code. It is, however, not a trivial task to de�ne the mapping between component-based
software system and object-oriented source code, because the mapping between source
code and components can vary depending on the used project and the underlying source
code technology. The mapping can even be speci�c for a certain set of architectural
elements. The approach that we present in this thesis is able to support user-de�ned
consistency preservation rules between architectural models and source code.

1.2. Goals and Questions

As we shortly mentioned above, we introduce a coevolution approach for source code
and architectural models, which can be used to avoid architecture erosion and ease the
detection of architecture drift. Hence, we formulate the main goal of this thesis as follows:

Develop a coevolution approach that is able to keep changes performed to source code

consistent with architectural models and vice versa.

To achieve the main goal, we need to achieve the following subgoals:

1. De�ne a consistency preservation process for architectural models and source code.
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2. De�ne exemplary consistency preservation rules between architectural models and

source code, which can be extended and reused.

3. Show that the coevolved architectural models can be used for performance prediction

in a subsequent step.

After we have achieved the above-mentioned subgoals, the coevolution approach can
be used to develop new software systems. Potential users of the coevolution approach
usually have existing source code and existing architectural models already. In order to
allow users to reuse already existing artefacts, the approach needs to be able to integrate
existing architecture models and existing source code. Hence, we formulate the fourth
subgoal as follows:

4. Integrate existing source and existing architectural model into the coevolution ap-

proach.

From the four de�ned goals, we can derive the following high-level research questions:

1. Which steps are necessary to achieve change-driven consistency for architectural mod-

els and source code?

To enable the coevolution of source code and architectural models in a change-driven
way, we need to de�ne a change-driven consistency preservation process. The chal-
lenge arising from this question should be solved in a generic way, in order to solve
the challenge for both the presented coevolution approach and the view-centric
engineering Vitruvius approach.

2. How can component-based architecture models be mapped to source code?

An important challenge for the coevolution of component-based architecture models
and source code, is to de�ne bidirectional change-driven consistency preservation
rules. For the realisation of the approach, we use the component-based software
architecture model PCM and Java as object-oriented source code language. As
we mentioned above, the mapping between source code and the component-based
architectural model depends on the used project and the used source code technology.

3. What steps are necessary to enable performance prediction for coevolved models?

As we stated in the motivation, models can be used for the analysis of a software
system’s NFP. An important challenge when using the PCM is to show that the
coevolved models can be used for the performance prediction.

4. How can the approach within this thesis be tailored in order to support existing source

code and existing architectural models?

As we want to use the coevolution approach for existing source code and existing
architecture models, we need to de�ne how existing artefacts can be integrated into
the coevolution approach. Therefore, we need to de�ne a process how users can
reuse existing source code and existing architectural models.
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1.3. Approach and Contributions of this Thesis

In this section, we give a brief overview of the approach and the contribution of this thesis.
Both are aligned to the goals presented in the section before. Moreover, we show how we
have evaluated the contributions of this thesis.

In this thesis, we present our Coevolution approach, which is a novel approach for
coevolving architectural models and source code during the development and evolution
of a software system. In particular, the approach can be used to keep instances of the
PCM consistent with Java source code. Therefore, PCM elements are created, changed, or
deleted as soon as their corresponding source code elements have been changed and vice
versa. To store the correspondences between architectural model elements and source
code elements, we use a correspondence model. Consistency is preserved based on user-
de�ned change-driven consistency preservation rules between the architectural model and
source code. Within this thesis, we present four di�erent consistency preservation rules
between architectural models and source code, which are implemented in our prototypical
implementation. The presented consistency preservation rules are reusable and extendable.
We use the concept of user change disambiguation, which can be used if the consistency
preservation cannot be achieved automatically. In this case users need to clarify how the
consistency can be achieved. As our Coevolution approach is a change-driven approach,
we need to retrieve each change performed in the involved architectural editors and the
source code editors. To allow users to reuse existing editors, which they are familiar with,
we implemented monitors for the Eclipse Java source code editors and PCM architectural
model editors. We also present a UML class diagram editor [KLK16], which can be used
to edit the source code using a projective UML class diagram view. Our Coevolution
approach allows, furthermore, users to keep source code consistent with behavioural
architectural models as well. Therefore, we propose an approach that incrementally
reverse-engineers the PCM Service E�ect Speci�cations based on changes performed to
source code methods. The Service E�ect Speci�cations are used within PCM to describe
the behaviour of components.

To be able to deal with existing source code and existing architectural models, we
present di�erent integration strategies. For architectural models, we present an approach
that simulates the creation of architectural models. During the creation, we monitor the
emerging changes and use them as base for the creation of the corresponding source
code. For source code, we propose an approach that uses reverse engineering tools to
create an architectural model and a correspondence model, which we can use within our
Coevolution approach. Arbitrary code, however, is seldom build according to the de�ned
consistency preservation rules. To deal with this fact, we present an approach that is able
to deal with integrated source code for which the actual consistency preservation rules
cannot be used. The approach is able to keep even those elements consistent using speci�c
consistency preservation rules for integrated source code elements.

1.3.1. Contributions

In the following, we present a brief overview of the contributions of this thesis. The
contributions are aligned with the research questions.
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1.3.1.1. Consistency Preservation Process

In this thesis, we present a change-driven consistency preservation process. To be able to
use the change-driven process, we need to react to changes performed by users or tools.
To retrieve all performed changes, we decided to monitor the used editors. To realise the
consistency preservation between architectural models and source code, we contribute a
source code monitor as well as an architectural monitor. Both are able to monitor existing
editors, i.e. they allow the reuse of existing editors within the consistency preservation
process. The architectural monitor is implemented in a generic way and can be used
for arbitrary Eclipse Modeling Framework (EMF) models, i.e. it can be used to monitor
arbitrary EMF models.

We also contribute the process used to achieve consistency. This process is triggered
by the monitors. In particular, the monitors notify the process about a speci�c change,
which has been performed on a model element. After the noti�cations, the consistency
preservation process executes the following steps to achieve consistency: First, we initialize
the process by retrieving the consistency preservation rules that need to be executed.
Therefore, we check which models are a�ected by the performed change. Secondly,
executable commands are created based on the changed element and the actual performed
change operation, using the active consistency preservation rules. The commands that we
use in our implementation are generic commands of the EMF framework. In the third step,
these commands are executed, which leads to updated models. Even though we introduce
and instantiate the process speci�c for architectural models and source code in this thesis,
the presented process is generic for arbitrary models. In particular, it is embedded within
the Vitruvius framework and thus can be used to keep arbitrary pairs of EMF models
consistent.

The idea for the code monitor has been presented in the publication [LK14]. The initial
idea of how to keep models consistent is part of the publication [KBL13].

1.3.1.2. Coevolution Approach for So�ware Architecture Models and Source Code

We de�ne our Coevolution approach and explain how users can use it to keep architectural
models and source code consistent. As we reuse some concepts from the view-based
engineering approach Vitruvius, we classify our Coevolution approach with respect
to Vitruvius. Moreover, we de�ne the Virtual Single Underlying Model (VSUM) of our
Coevolution approach, which contains the architectural models and the source code
models.

For the consistency preservation rules, we present the following three di�erent di-
mensions: i) a technology-speci�c dimension, ii) a project-speci�c dimension, and iii) an
element-speci�c dimension. This thesis contributes the following four di�erent consis-
tency preservation rules between architectural models and source code: First, we present
the package mapping consistency preservation rules can be used to keep instances of
the architectural model PCM consistent with Java source code that is based on Plain Old
Java Objects (POJOs). Next, we present two technology-speci�c consistency preservation
rules. The �rst one can be used to keep instances of the PCM consistent with Java source
code based on Enterprise Java Beans (EJBs). The second technology-speci�c consistency
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preservation rules, can be used to keep instances of the PCM consistent with Java source
code that is created using a dependency injection framework. We also present consistency
preservation rules between instances of the PCM and artefacts used for the Eclipse plugin
development. The de�ned consistency preservation rules specify how architectural models
need to be changed if a change in the source code occurred and vice versa.

To allow users to detect architectural violation, this thesis contributes an approach
for the coevolution of behavioural models and source code during software evolution.
Therefore, we have developed a novel approach that creates behavioural models from
a source code method as soon as the method has been changed and warns users if the
change introduces an architectural violation.

The coevolution of software architecture models and source code is part of the following
publications: [Lan13], [LK15], [Kra+15a] and the associated tech report [Kra+15b]. Within
these publications, we introduced how we can keep architectural models consistent with
source code. We also introduced the package mapping consistency preservation rules.

1.3.1.3. Including Existing Architectural Models and Existing Source Code

As it is important to deal with existing architectural models and existing source code,
we contribute an approach that is able to integrate these existing artefacts. Therefore,
we present the two integration strategies Reconstructive Integration Strategy (RIS) and
Linking Integration Strategy (LIS).

A Reconstructive Integration Strategy simulates the creation of a model. During the
simulated creation, we monitor the performed changes using the implemented change
monitors. These changes can be used as input for the consistency preservation process,
which then creates respectively updates the corresponding model elements. The concept
of a RIS is generic for models and can thus be used within the Vitruvius framework as
well. We implemented RIS generic for arbitrary models and applied it to the PCM in order
to include existing architecture models.

A Linking Integration Strategy, in general, �rst uses an existing Model-to-Model (M2M)
transformation or Model-to-Text (M2T) generation from the existing model to the model
that needs to be integrated in order to create the corresponding instance. The M2M
transformation respectively M2T generation is required to create a kind of trace model,
which contains the mapping between the model elements from the existing to the created
model. As a LIS requires a generation step from the existing model to the model that needs
to be integrated, the �rst step towards implementing a LIS for existing source code, is to use
reverse engineering tools to create an architectural model from existing source code. To do
so, we present the two reverse engineering approaches Extract and EJBmoX . Extract is able
to reverse-engineer Java source code implemented with POJOs using di�erent extraction
algorithms of the underlying reverse engineering tool Architecture Recovery, Change, and
Decay Evaluator (ARCADE). Extract is able to reverse-engineer Java source code based
on EJB source code. Both approaches are necessary for the integration of an existing
source code base. The second step to implement a LIS is to use the output models of the
reverse engineering approach to create a correspondence model, which can be used within
our Coevolution approach. For the integration of existing source code, we de�ned four
di�erent integration levels. If the existing consistency preservation rules can be used for the
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coevolution of the integrated source code elements and their corresponding architectural
model elements, the elements are considered as elements integrated with Integration
Level 1. If the existing consistency preservation rules cannot be used, the elements
are considered as elements integrated with Integration Level 2 by default. If elements,
considered as elements integrated with Integration Level 2, are changed, users are noti�ed
that the consistency needs to be preserved manually. If integration speci�c consistency
preservation rules are de�ned for speci�c changes performed on elements in Integration
Level 2, the elements are considered as integrated with Integration Level 3. By using speci�c
consistency preservation rules for integrated elements, we are able to support automatic
consistency preservation for integrated elements. Elements considered as integrated using
Integration Level 4, are elements for which element-speci�c consistency preservation rules
need to be de�ned in order to support automatic consistency preservation. Within our
prototypical implementation, we support the �rst three integration levels.

The idea and implementation how we can include existing artefacts into our Coevolution
approach has been published in [Leo+15]. The reverse engineering approach Extract has
been published in [Lan+16].

1.3.2. Evaluation

This section provides a quick overview of the conducted evaluation. A detailed description
of the evaluation can be found in Chapter 6. We conducted evaluation aligned to the goals
presented in Section 1.2. In particular, we conducted the following evaluations:

1. Evaluation of the reverse engineering approaches

We evaluated the developed reverse engineering approaches Extract and EJBmoX .
We showed that both are able to reverse-engineer a component-based software
system from the underlying source code. For Extract, we reverse-engineered 14
di�erent open-source systems with a size of up to 644.000 Source Lines of Code
(SLoC). For EJBmoX , we reverse-engineered two relatively small open source case
study systems with a size of approximately 5000 SLoC. For EJBmoX , we furthermore
compared a manually created architecture model of a software system with the
reverse-engineered model.

2. Evaluation of the consistency preservation rules and the integration of existing archi-

tectural models

We evaluated the developed consistency preservation rules by integrating seven
existing architectural models for the developed consistency preservation rules. We
showed that it is possible to create the corresponding source code for a given archi-
tectural model. We are able to integrate 98% up to 100% of the supported elements
per consistency preservation rule set. Regarding all architectural elements, the
number di�ers between 30% for the Eclipse plugin consistency preservation rules,
and 100% for package mapping consistency preservation rules.

3. Evaluation of the existing source code and consistency preservation of changes

We successfully integrated four open source projects into our Coevolution approach

7
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with a size of up to 112.000 SLoC. For the four projects, we showed that our Coevo-
lution approach is able to keep changes performed to the source code consistent
with the architecture. As changes, we use changes extracted from a Version Control
System (VCS) and applied them to source code. We evaluated Integration Level 2 and
Integration Level 3 with this evaluation. We showed that the presented approach is
able to react to more than 70% of the overall recorded change respectively to more
than 90% of the changes if we take out the changes, to which we currently not react-
ing to on purpose. For the case study, over 99% of changes a�ected integrated code,
i.e. they need to be kept consistent manually (Integration Level 2) or by executing
consistency preservation rules speci�c for the integrated code (Integration Level 3).
Hence, using Integration Level 3 and the de�ned speci�c reactions, our Coevolution
approach is able to process more than 90% of the changes it reacted to using a speci�c
consistency preservation rules. We were also able to show that changes performed
on method bodies can be kept consistent with behavioural architecture model and
that changes performed on the architectural model can be kept consistent with the
source code.

4. Performance evaluation of the consistency preservation

We conducted a performance evaluation of our Coevolution approach by measuring
the time it consumes to keep changes performed on source code consistent with the
corresponding architectural elements. Even though we observed one exception, we
were able to show that it usually takes between one and �ve seconds to update the
architecture model. We were also able to show that the time needed to process a
change is dominated by the time the used Java parser needs to parse the changed
compilation unit. Even though we observed some exceptions, the duration of the
parsing step usually increases with the size of the compilation unit. We conclude
that the time is acceptable but by optimizing or replacing the used Java parser, we
could reduce the time needed to process a change.

5. Model-based performance prediction

We conducted a model-based performance prediction with a coevolved model, to
show that coevolved models can be used for NFP analysis. Therefore, we used
mRUBiS1 as case study system. We �rst used EJBmoX to reverse-engineer an archi-
tectural model. Secondly, we performed an evolution scenario for mRUBiS. During
the evolution, we kept the architectural model and the source code consistent using
our Coevolution approach. To use the extracted model and the coevolved model for
performance prediction, however, users need to enrich the model in an upfront step.
This step involves setting up the software system and instrumenting the software
system in order to measure its performance. Afterwards, we use a load driver to
create a speci�c workload for a provided service. During the execution of the load
driver, we gather measuring data for the performance behaviour of the software
system. This data can be used to parametrise the architectural models of the software
system. After enriching the models, we perform the performance simulation and
compare the predicted value with the actual measured values. The prediction error

1https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
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for the response time is approximately 10%, which is a usable result to estimate the
performance of the real software system.

1.4. Existing Approaches

There are multiple existing approaches developed in academia and industry related to at
least one of the contributions presented in this thesis. None of the existing approaches,
however, combines the coevolution of source code and high-level architectural models
and its behavioural models in a change-driven way.

We grouped existing approaches in the following three main groups:

• Approaches that keep architectural models and source code consistent during software

development and software evolution

Approaches supporting the consistency preservation between architectural models
and source code can be subdivided in four groups:

– Coevolution approaches for source code and high-level architectural models

IBM Rational Rhapsody2 is a popular tool that aims to keep architectural
models consistent with source code. It is able to keep UML package diagrams
(including classes) consistent with the source code. KobrA [Atk+01] keeps
UML diagrams consistent during the development of a software system using
a Single Underlying Model (SUM). None of the approaches, however, allows to
keep component-based architectural models and source code consistent.

– Approaches supporting change-driven extraction or coevolution of behavioural

models

Existing approaches to extract behavioural models, such as ArchLint [Maf+13]
and Just-in-Time Tool for Architectural Consistency (JITTAC) [Buc+13] can
be used to detect architectural violations in the source code based on extracted
behavioural models. Approaches such as mbeddr [Voe+13] and From UML to
Java and back again (Fujaba)[Nic+00] enable the coevolution between source
code and UML behavioural models, such as activity diagrams and statecharts.
They, however, do not focus on the coevolution between source code and
behavioural models based on a high-level architectural model.

– Approaches supporting round-trip engineering between UML class diagrams and

source code

Many existing approaches, such as UML Lab3 and Borland Together[Bor05],
focus on the consistency preservation respectively round-trip engineering
between source code and UML class diagrams. These approaches, however,
do not use high-level architecture models as we do within our Coevolution
approach.

– Approaches embedding architectural information into source code

2http://www-03.ibm.com/software/products/en/ratirhapfami
3http://www.uml-lab.com/
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Another popular �eld of research is to embed architectural constructs, such
as components, interfaces, and roles, into source code. This is usually done
by either extending the source code language with architectural constructs
[Voe+13][ACN02] or by using existing language features to describe architec-
tural constructs [MM03] [Kon+13]. These approaches, however, do not have
an explicit architectural model as the architectural information is embedded
into the source code directly.

• Architecture reverse engineering approaches

Reverse engineering approaches usually aim to create a high-level architectural
model from source code. A popular survey on reverse engineering approaches
has been carried out by Ducasse and Pollet [DP09]. They state that some archi-
tecture reverse engineering approaches are developed in order to use the reverse-
engineered architectural model for coevolution between source code and architec-
ture[TH99][HMY06][Wuy01]. The existing approaches, however, do not present
di�erent integration levels for the existing source code and most of them also do
not focus on change-driven consistency preservation.

• View-based software development approaches

Related view-based software development approaches, such as Orthographic Soft-
ware Modelling (OSM) [ASB10], using a single underlying model in order to describe
all artefacts used for the software development. Mens et al. [Men+06] introduce an
approach for keeping high-level architectural views consistent with the source code.
The existing approaches, however, do not address the consistency preservation be-
tween source code and component-based architectural model including behavioural
models.

1.5. Structure of the Thesis

The remainder of this thesis is structured as follows.
In Chapter 2, we introduce the necessary foundations for the thesis. In particular, we

present foundations of Model-Driven Software Development (MDSD) and view-based
software development. Furthermore, we present used approaches, tools, and standards.
We especially introduce Vitruvius, Palladio, and Source Code Model eXtractor (SoMoX).

In Chapter 3, we �rst explain the terminology used in this thesis. Afterwards, we
describe the change metamodel and the correspondence metamodel. Moreover, we explain
how existing editors can be monitored. Finally, we explain the consistency preservation
process used in Vitruvius and in our Coevolution approach.

In Chapter 4, we present the approach of this thesis. To do so, we introduce how
coevolution for source code and architectural models can be realised using our Coevolution
approach. We also introduce three dimensions for the consistency preservation rules and
four di�erent consistency preservation rules between architectural models and source
code. Furthermore, we present consistency automation levels and the user disambiguation
our Coevolution approach uses to involve users in the consistency preservation process.
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We introduce how our Coevolution approach can be used to keep behavioural models
consistent with source code during the evolution of a software system. In the last part of
this chapter, we present di�erent roles of users have if our Coevolution approach is used.

In Chapter 5, we introduce how we can integrate existing architectural models and ex-
isting source code into our Coevolution approach. We �rst present two generic integration
strategies for models. We secondly, instantiate the approaches to show how to i) integrate
architectural models using the �rst approach, and ii) integrate existing source code using
the second approach. We also introduce di�erent integration levels for the source code.

In Chapter 6, we present the evaluation of our Coevolution approach. We present
di�erent case studies to evaluate the contributions of this thesis. We present an evaluation
of the reverse engineering approaches, the consistency preservation rules, the integration
levels, and the coevolution of source code and architecture. We also show how the
coevolved models can be used for performance prediction.

In Chapter 7, we present related work to the approach, we presented in this thesis.
Therefore it explains related research approaches as well as existing industrial tools
enabling the coevolution of source code and architectural models.

Finally, Chapter 8 concludes the thesis by summarizing the thesis. Based on the open
questions, we give an outlook on future work.
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2. Foundations

In this section, we present the necessary foundations for this thesis. We �rst present
foundations for Model-Driven Development (MDD) (see Section 2.1). Next, we present
the foundations for view-based software development (see Section 2.2.2). In Section 2.3,
we give an overview of the Palladio Component Model (PCM). Section 2.4 introduces the
foundations of Source Code Model eXtractor (SoMoX). In Section 2.5, we present the tools
and standards, we used in this thesis. As last part of this chapter, we present the evaluation
concepts (see Section 2.6), we used in this thesis to evaluate the contributions of the thesis.

2.1. Model-Driven So�ware Development

Model-Driven Software Development puts models in the center of the software develop-
ment process. Hence, within Model-Driven Software Development (MDSD) models are
not used for documentation only, but play a central role [VS06]. They are treated as �rst
class elements in the development process, i.e. they are as important as the source code of
a software system. An important purpose of the models in MDSD is that they can be used
as input for code generators in order to create source code from the model. This code can
be either executed directly or re�ned by developers in order to retrieve a running software
system.

Within MDSD, one important concept is the creation and use of Domain Speci�c
Languages (DSLs). DSLs are generated in order to allow the modelling of a domain speci�c
concern. For instance, the PCM is a DSL for the creation of architectural models. To create
and use a DSL, users can create, for instance, a domain speci�c metamodel and further
tooling, such as graphical editors.

In MDSD, multiple models are often used to create a software system. These models can
be tailored speci�c for the users who use them. Therefore, the models can have di�erent
levels of abstraction. The used models are conform to a de�ned metamodel, which itself is
a model.

A well-known example for MDSD is the Uni�ed Modeling Language [Obj15], which
can be used to create models of a software systems. Therefore, UML allows the creation of
di�erent diagrams, such as class diagrams, to support software architects and software
developers during the development and evolution of a software system.

Models used within MDSD usually have the properties de�ned by Stachowiak [Sta73].
Stachowiak de�nes the following three properties for models: 1:

• representation, which means that models need to represent their originals,
1Stachowiak originally presented the properties in German as follows: Abbildungsregeln (representation),

Verkürzungsmerkmal (reduction), Pragmatisches Merkmal (pragmatism). To translate them into English,
we use translation provided by Burger [Bur14]

13
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• reduction, which means that a model needs to be reduced to the attributes of the
originals that contain the necessary information for the creator or user of the model,

• pragmatism, which means that models need to be created for a certain purpose.

2.1.1. Meta Object Facility

The Meta Object Facility (MOF) standard has been de�ned by the OMG [Obj16]. MOF
provides, amongst others, a metadata management framework to enable the development
of model driven systems. It introduces, furthermore, a four-layered architecture. The four
metalevels are the metalevels M3 to M0 and de�ned as follows:

• M3 is the metametamodel layer,

• M2 is the metamodel layer,

• M1 is the model layer, and

• M0 re�ects the reality.

The elements from a lower level need to be conform to elements of the higher level. MOF
metamodels are described in an UML class diagram like syntax. The MOF metametamodel
is self-describing, i.e. the metametamodel can be described using a MOF metamodel. To
exemplify the four levels, we consider a software system modeled with the UML class
diagram. In this case the MOF is metametamodel, UML is the metamodel, the UML class
diagram is the model, and the implemented software system is the realisation of the model.

Essential MOF (EMOF) [Obj16] is a subset of the MOF standard. It is a simple frame-
work allowing to map MOF models to implementations, for instance, the XML Metadata
Interchange (XMI) format. Ecore, which is used in the Eclipse Modeling Framework (EMF)
framework, is an implementation of EMOF. The metamodels and models, we use in the
remainder of this thesis are Ecore-based.

2.1.2. Eclipse Modeling Framework and Ecore

The Eclipse Modeling Framework2 [Ste+08] is a framework that allows model-driven
development within the Eclipse Integrated Development Environment (IDE). Therefore, it
o�ers the following notable features:

• creating metamodels,

• source code generation from metamodels,

• generation and creation of editors that allow creating and editing of instances of
metamodels.

2https://www.eclipse.org/modeling/emf/
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EModelElement ENamedElement

name:String
ETypedElement

lowerBound:int
upperBound:int
ordered:bool

EClassi�er eType

0..1

EEnumLiteral

EEnum

eLiterals 0..*

EDataType EClass
abstract:bool

eSuperTypes0..*

EStructuralFeature

abstract:bool

eStructuralFeatures 0..*
EReference

containment:bool

/eReferenceType 1

EAttribute
id:bool

/eAttributeType 1

Figure 2.1.: Classes of the Ecore metametamodel. The �gure has been published already in
Kramer [Kra17].

A variety of tools using th EMF framework have been created in order to ease the devel-
opment of software systems. Model transformation languages, for instance, can be used
to transform instances of models into instances of other models. Notable examples of
Model-to-Model (M2M) languages are Query View Transformation Operational (QVTO)
[Obj09] and Atlas Transformation language (ATL) [JK06] can be used. While QVTO can be
used for unidirectional transformations, ATL can be used for bidirectional transformations
as well. Tools, such as Xtext [EV06] and EMFtext [Hei+09a], allow the creation of textual
DSLs. Both provide the automatic creation of textual editors based on the de�ned DSL.

Within the Eclipse Modeling Framework, Ecore is the metametamodel that can be used
to create metamodels. As mentioned above, Ecore itself is an implementation of the EMOF
standard. Figure 2.1 shows the classes of the Ecore metametamodel. Metamodels created
with Ecore need to conform to this metametamodel. To create a metamodel using Ecore,
the main task of users is to model classes with attributes and references amongst each
other. The metamodels can be de�ned using a class diagram, which has very similar syntax
as class diagrams within UML class diagrams.

In the work carried out within this thesis, we present a change-driven approach for
model consistency. One step to implement such a change-driven approach is to retrieve
all changes from Ecore-based models. The �rst step towards retrieving the changes is
to identify possible changes. Therefore, Kramer [Kra17] has identi�ed possible changes
in Ecore-based models. Figure 2.2 depicts the feature model Kramer [Kra17] created
for possible changes in Ecore-based models. In particular, the feature model shows the
di�erent operations that can be performed by users. From the feature model, we were
able to create a change metamodel, which we integrated into the Vitruvius framework.
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Change

Atomic

Operation

Content

Additive Subtractive

Order

Permute

Target

Root Feature

Type

Attribute Reference

Cardinality

Single Multi

Existential

Create Delete

Compound

Unset Move Replace

constraints:

1. Permute ⇒ Multi

2. (Multi ∧ Content) ⇒ (Additive ⊕ Subtractive)

3. Single ⇒ (Additive ∧ Subtractive)

4. Existential ⇒ (Root ⊕ Reference)

5. Create ⇒ (Additive ⊕ Root)

6. Delete ⇒ (Subtractive ⊕ Root)

7. Root ⇒ (Additive ⊕ Subtractive)

Figure 2.2.: Feature model for all possible changes in Ecore models [Kra17]

The actual used classes of the change metamodel and the concepts used in the Vitruvius
framework are explained in Chapter 3.

2.2. View-based So�ware Development

View-based software development has the paradigm that multiple views are used to develop
and implement a software system. Hence, views play a central role in the development
process. The views itself are instances of view types, which are the metamodel of the
views. The used views can be tailored, for instance, to the user using them. The UML
[Obj15], for instance, uses di�erent viewpoints for the di�erent user roles involved in
the development of a software system. For instance, software architects use a special
view onto the software architecture while software deployers use a special view for the
deployment.

The ISO 42010 [ISO11] standard de�nes architectural view types and architectural views.
As Burger [Bur14] pointed out, the de�nition used in the ISO does not precisely de�ne
viewpoints. As Burger [Bur14] mentioned, Goldschmidt et al. [GBU10; GBB12] provide
the following more precise de�nition for view types:

De�nition 1. A view type de�nes the set of metaclasses whose instances a view can display.

It comprises a de�nition of a concrete syntax plus a mapping to the abstract metamodel

syntax. The actual view is an instance of a view type showing an actual set of objects and

their relations using a certain representation. A viewpoint de�nes a concern.
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Figure 2.3.: Hub-and-Spoke approach vs. Peer-to-Peer approach [Bur14]

Within the ISO 42010 [ISO11] standard synthetic and projective view-based are di�er-
entiated. In synthetic approaches users can construct views using model correspondence
approaches. In projective approaches an underlying repository is used to create all views.
The views are generated dynamically using a creation mechanism view.

One major challenge in view-based software engineering is to keep the used views
consistent in order to avoid inconsistency. In synthetic approaches the views need to
be kept consistent among once another and the correspondences need to be maintained
during the development. In projective approaches a major challenge is to de�ne the
underlying repository and the generation mechanism for the views. In Figure 2.3, peer-to-
peer approaches, which can be used by synthetic approaches, are compared to hub-and-
spoke approaches, which can be used by projective approaches. The necessary number
of transformations to keep views consistent increases in a linear matter in projectional
approaches, while it increases in a quadratic matter in peer-to-peer approaches.

2.2.1. Orthographic So�ware Modelling

The Orthographic Software Modelling (OSM) approach, introduced by Atkinson et al.
[ASB10], is a view-based engineering approach. The main concept of OSM is the use
of a Single Underlying Model (SUM), which is used to store all information about the
system under development in one single model. The SUM needs to be redundancy-free,
i.e. no duplicated information is allowed within the SUM. Using such a SUM avoids the
need of consistency preservation between the models involved in the development. It
is, however, hard to de�ne such a redundancy free metamodel. Furthermore, using such
a SUM hinders the reuse of existing tools if they are not tailored speci�c for the SUM.
Accessing the SUM is possible via views solely. The views are instances of view types and
can be generated dynamically from the SUM using transformations. As soon as the views
have been edited by users, the information is stored in the SUM. Hence, keeping the views
consistent between one another is not necessary, because they are kept consistent using
the SUM.
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2.2.2. VITRUVIUS

The Vitruvius approach is a view-based engineering approach, which Burger [Bur14]
and we [KBL13] introduced. Vitruvius can be used to keep instances of di�erent meta-
models consistent during the development of a system. Therefore, it uses a Virtual Single
Underlying Model (VSUM), which contains all information that is necessary to describe
the system. The access to the models contained in the VSUM is solely possible via views.
The idea of storing all information in one underlying model is inspired by the SUM used
in OSM. However, within the VSUM of Vitruvius existing metamodels can be reused.
Hence, existing tools working with instances of the metamodels can also be reused using
Vitruvius. The overlap between the model instances of the used metamodels is kept
consistent using consistency preservation rules between the models. Hence, Vitruvius
can be considered as a hybrid approach combining projective and synthetic elements.
Within the VSUM, a synthetic approach is used that keeps the overlap between the models
consistent. From an external view the VSUM, however, can be seen as projective because
the views itself need to be kept consistent with the VSUM only.

The used views for manipulating the models are instances of view types. The views-
types are either projectional view types or combining view types [Bur14]. Projectional
view types are view types, which show information from one metamodel only. Hence,
they can be used to show and manipulate instances of one metamodel within the VSUM.
Using projectional view types also allows us to integrate and reuse already existing view
types for a metamodel within Vitruvius. Combining view types are able to combine
information from more than one metamodel and present them to users. They can be
created using ModelJoin (see [Bur+14] and [Bur13]). ModelJoin allows the creation of
a metamodel for a view type using a DSL that can be used to query information from
di�erent metamodels and combine them in one metamodel. The syntax of the ModelJoin
query language is inspired by the well-known Structured Query Language (SQL), which
can be used to query information from databases. Burger and Schneider [BS16] showed
how it is possible to create combining view types for Vitruvius that can be edited. Using
this approach, changes conducted to the combining view types are kept consistent with
the models in the VSUM. Combining view types can even be �exible view types, which
are created during the development process on demand. An overview of Vitruvius is
shown in Figure 2.4.

Within this thesis, we use the Vitruvius framework as base for our implementation. In
Chapter 3, we present the contributions of this thesis to the Vitruvius framework. In the
initial Vitruvius vision, Burger [Bur14] and we [KBL13] envisioned the application of
Vitruvius to the Component-based Software Engineering (CBSE) domain. The approach
presented in this thesis can be seen as �rst step towards the realisation of this vision. The
di�erences of the approach presented in this thesis and the Vitruvius vision is presented
in Section 4.2. Therefore, we �rst present the vision how Vitruvius can be applied to the
CBSE domain and secondly, classify the approach developed within this thesis into the
Vitruvius vision.
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Figure 2.4.: Overview of the Vitruvius VSUM and the views that allow The overlap need
to be de�ned within the consistency preservation rules (arrows with CPR),
which are de�ned either in a GPL or in DSLs tailored to specify the overlap
between model instances. The views can be used to manipulate instances
within the VSUM. The �gure has been published already in [Bur13]. We,
however, changed it slightly in order to match the terms used in this thesis.
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2.3. Palladio Component Model

The PCM (see Becker et al. [BKR09], Reussner et al. [Reu+16]) can be used to create a
component-based software architecture model. Hence, it can be seen as an Architecture
Description Language (ADL).

Based on the created architecture models the PCM allows users to perform model based
analyses. These analyses include, for instance, performance prediction and reliability
analysis [Bro+12]. To allow this analysis, Palladio proposes the use of �ve di�erent models,
which created by di�erent users (see Becker [Bec08]). Figure 2.5 shows the models and
the transformations respectively interpretations provided by the Palladio bench. The
Palladio bench is the implementation of the Palladio approach. In Reussner et al. [Reu+16]
a component for Palladio is de�ned as follows:

De�nition 2. Software Component A software component is a contractually speci�ed

building block for software, which can be composed, deployed, and adapted without un-

derstanding its internals.

Hence, within Palladio a similar component de�nition is used as the one introduced by
Szyperski et al. [SGM02], who de�ne a component as a unit of composition block with
speci�ed interfaces, which can be deployed independently.

Component developers are responsible for creating the software architecture in terms
of components, interfaces, signatures, data types, provided roles, and required roles. Roles
in the Repository describe the relation between components and interfaces. Component
developers are, furthermore, responsible for creating the behaviour of components by spec-
ifying one Service E�ect Speci�cations (SEFF ) for each provided signature of a component.
Software architects are responsible for assembling the software system in the System model.
The assembling is done based on the components in the Repository. Software architects
need to connect the instantiated components using connectors and specify provided roles
and required roles of the software system. System deployers are responsible for creating
the ResourceEnvironment model and the Allocation model. Within the ResourceEnviron-

ment model, they need to specify the servers, their CPUs, HDDs, and network connection
between them. In the Allocation model, they need to specify which assembly from the
System is deployed on which resource. Domain experts are responsible for modelling the
behaviour of users in the UsageModel. Therefore, they specify the interaction of users with
the system, for instance, they specify which provided services of a System are called in
which order. They also specify the characteristic of the relevant input parameters, and
the arrival rate of new users at the system. The QoS analyst uses the Palladio bench and
analyses the properties of the software system.

In this thesis, we focus mainly on the PCM Repository including the SEFFs and the PCM
System. Based on Becker [Bec08] and Reussner et al. [Reu+11], we explain the structure of
both below.

2.3.1. PCM Repository with SEFFs

As we mentioned above, component developers are supposed to implement the architec-
ture of a software system using the Repository model. Figure 2.6 shows the metaclasses
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and example instances of them. In the following, we explain the elements from the PCM
Repository that are relevant for this thesis. The Repository itself is the root object of the
Repository, which contains all other elements. A BasicComponent is a single component,
which is implemented by developers. It is not intended to be split up in more components.
Using object-oriented languages a BasicComponent is usually implemented using classes. A
BasicComponent contains the SEFF, which are describing the behaviour of the provided sig-
natures. A CompositeComponent is a component, which is composed of other components.
Therefore, it connects the internal components using connectors. It does not de�ne own
behavioural elements in terms of SEFFs. The internal structure of a CompositeComponent

is similar to the structure of a System, which we explain in the following section.
OperationInterfaces are �rst level entities in the PCM, i.e. they are not bound to a com-

ponent. Instead they can be provided or required by components. OperationInterfaces

have OperationSignatures, which are de�ning the service that need to be implemented
by a component that provides the OperationInterfaces. Hence, a component using im-
plementations of the interface can be assured that the services are ful�lled as expected.
OperationSignatures contain Parameters and ReturnTypes. Even though Parameters can be
speci�ed as in, out, or inOut parameters in the PCM, we only use in Parameters in this theis.
The PCM introduces data types, which are used for the Parameters and the ReturnTypes of
a OperationSignature. Within the PCM the following three di�erent kinds of data types
can be used:

• PrimitiveDataTypes, which are prede�ned primitive types, such as integer, double,
and string

• CollectionDataTypes, which represent a collection of another data type. The inner
type of the collection is stored in the reference InnerType.

• CompositeDataTypes, which represent a combination of other data types. The data
types, which are composed by the CompositeDataType, are stored in a list of In-
nerDeclaration.

CompositeDataType and CollectionDataType are user-de�ned types.
To connect components and interfaces the PCM introduces so called Roles. This roles are

separated in to required and provided roles. The roles are contained in a BasicComponent.
A OperationRequiredRole indicates that the BasicComponent requires the speci�ed Opera-

tionInterface, while a OperationProvidedRole indicates that the BasicComponent provides
the speci�ed OperationInterface. Relevant for this thesis are the OperationProvidedRole

and the OperationRequiredRole, which are able to connect BasicComponents with Oper-

ationInterfaces. As we only use OperationProvidedRole and the OperationRequiredRole in
this thesis, we refer to them as PrvovidedRoles respectively RequiredRole to ease the reading
of the thesis. Even though we also use OperationInterfaces only in this thesis, we refer
to them as OperationInterfaces. This makes it easier to distinguish between architectural
interfaces and code interfaces. Code interfaces are simply addressed as interfaces or Java
interfaces.
Service E�ect Speci�cations (SEFFs), which are introduced by Koziolek [Koz08], are used

to describe the behaviour of a software system. They specify, similar to a UML activity
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diagram, the control �ow performed by a BasicComponent in order to ful�ll one of its pro-
vides services. The PCM metamodel foresees the usage of di�erent SEFF classes. Up until
now, however, only the class Resource Demanding SEFF (RDSEFF) is speci�ed as subclass of
SEFF. In the remainder of the thesis, we refer to RDSEFFs as SEFFs in order to increase the
readability. The main elements of SEFFs, we are using in this thesis, are explained in the
following. The main elements of a SEFF are the ExternalCallActions. They indicate the call
of a component-external service within the SEFF. A LoopAction indicates that the control
�ow within the LoopAction is executed multiple times. A BranchAction speci�es branches
within the control �ow. From the speci�ed branches only one is executed based on either
a probability or a input parameter. InternalActions abstract from internal behaviour of
a component. An InternalAction, for instance, can abstract away from a complex inter-
nal algorithm. The component developers specify the resource demanding behaviour of
the SEFF actions. Therefore, they indicate, for instance, the loop count of a LoopAction,
the probability for a BranchAction, and the CPU and HDD demand of an InternalAction.
ResourceDemandingInternalBehaviour de�ne behaviour, which can only be used within a
speci�c component. The behaviour, which can be described within a ResourceDemanding-

InternalBehaviour, is the same as in a SEFF. ResourceDemandingInternalBehaviours can be
compared to private methods in classes of object-oriented languages. InternalCallActions
can be used to call ResourceDemandingInternalBehaviours from within a SEFF or another
ResourceDemandingInternalBehaviour.

2.3.2. PCM System

The second important model for this thesis is the System. Figure 2.7 gives an overview of
the elements within a System. Within a System components from on or more Repositories

are composed to one System. The important elements of a System are explained in the
following. An AssemblyContext assembles a component from a Repository, i.e. it creates
an instance of a component in a System. The SystemProvidedRoles indicates the provided
interfaces of a System, while the SystemRequiredRoles indicates the required interfaces
of a System. Technically, a SystemProvidedRoles is a ProvidedRole, while a SystemRequire-

24



2.4. Source Code Model eXtractor

dRoles is a RequiredRole. The provided and required interfaces of the AssemblyContexts

are connected using DelegationConnectors. To connect SystemProvidedRoles with Assem-

blyContexts ProvidedDelegationConnectors are used. To connect AssemblyContexts with
SystemRequiredRoles RequiredDelegationConnectors are used. The internal structure of a
SubSystem and a CompositeComponents is the same as the internal structure of System.

2.4. Source Code Model eXtractor

SoMoX, which has been introduced by Krogmann [Kro12], is a reverse engineering ap-
proach, which is able to reverse-engineer Java code into PCM instances. In particular,
SoMoX is able to create a PCM Repository from source code and a PCM System derived from
the Repository. It also creates a default ResourceEnviroment model and a default Alloca-
tion. The created Repository contains components, interfaces, roles, and SEFFs. Krogmann
[Kro12] points out that SoMoX performs best if the analysed project follows a component-
based architecture. Together with Beagle [KKR10], SoMoX is able to reverse-engineer a
component-based architecture, which can be used for performance prediction.

In this section, we present only the necessary details about SoMoX, which readers
need to know in order to understand the parts of the thesis, where we refer to SoMoX.
Therefore, we �rst give an overview of the SoMoX approach. Next, we explain the SoMoX
SEFF reconstruction in detail. The detailed explanation is necessary, because within this
thesis, we explain an incremental version of the SEFF reconstruction.

2.4.1. Overview

To reverse-engineer the statical architecture of a software system, SoMoX uses the follow-
ing four steps:

1. parsing the source code into a model representation,

2. reverse engineering components and interface using metrics,

3. extracting data types and signature using metrics, and

4. reverse engineering of the SEFFs.

For the �rst step, SoMoX currently uses either Model Discovery (MoDisco) [Bru+10] or
Java Model Parser and Printer (JaMoPP) [Hei+09a]. Both tools allow us to parse the source
code into an EMF model representation. Within this thesis, we use JaMoPP for the parsing.
Based on this model, the other steps within the SoMoX reverse engineering phase are
executed.

As second step, SoMoX reverse-engineers the statical architecture of the source code.
Therefore, it uses di�erent metrics. Details about the used basic metrics can be found in
Krogmann [Kro12]. The weighting of the di�erent metrics need to be de�ned by users
of SoMoX. If the users are familiar with the software system, the they are usually able
to de�ne the metrics. The metrics need to be weighted between 0 (low impact factor)
and 100 (high impact factor), to determine the impact factor of the metric during the
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anlayses. An example for the metric is the package metric, which speci�es the impact of
the package hierarchy on the architecture. If it has a high impact factor classes within
the same package are more likely to be in the same component. Another example, for a
metric, is the interface violation metric, which investigates whether classes communicate
to each other via interfaces or directly. The value of the interface violation metric speci�es,
whether classes with direct communication between each other are more likely to be part of
the same component or not. After applying the metrics to the source code SoMoX tries to
iteratively combine classes to components and BasicComponents to CompositeComponents.
After the reverse engineering of components and interfaces SoMoX reverse-engineers the
necessary OperationSignatures and DataTypes for the interfaces.

The last step towards the reconstruction of a software architecture is to reverse-engineer
the statical behaviour, in terms of SEFFs, of the source code by analysing the source code
methods. As we extend the SEFF reconstruction in this thesis, we explain the SoMoXSEFF
reconstruction in detail within the next section.

2.4.2. SoMoX SEFF Reconstruction

The main goal of the SoMoX SEFF reconstruction is to reverse-engineer the behaviour
of the source code into SEFFs. To do so, the SEFF reconstruction approach analyses the
source code methods, which have been identi�ed by SoMoX as provided methods of a
detected BasicComponent. The SEFF reconstruction also abstracts from the source code,
i,e., non-architectural-relevant control �ow elements are not represented in the resulting
SEFF.

Prerequisites for the analyses are that it needs the parsed source code model of the
software system, the reverse-engineered statical architecture, and an instance of the Source
Code Decorator Model. The source code model is available, because it is created during
the �rst step of the SoMoX reverse engineering process. The statical architecture model is
the result of the second SoMoX reverse engineering process. The Source Code Decorator
Model (SCDM) contains the information, which source code element is reverse-engineered
into which architectural element. It is created during the reverse engineering of the statical
architecture models, i.e. it is created in the steps two and three of the above-mentioned
reverse engineering steps. It contains the information which classes are composed to one
component. For OperationInterfaces, it contains the information which class respectively
code interface are the corresponding elements. For each OperationSignature it contains
the corresponding Java method, i.e. the Java method that lead to the creation of the
OperationSignature. For complex DataTypes it contains the class that corresponds to the
DataType. The SCDM is created during the second step of the SoMoX reconstruction
process. Hence, for each reconstructed architectural element an entry in the SCDM is
either created or the existing entry is updated.

The actual SEFF reconstruction step for a given method is separated in two phases: In
the �rst phase all method calls within a method are visited and classi�ed as either

• component-external method calls (respectively external method calls), which are calls
to classes or interfaces that are contained in another component,
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• library calls, which are calls to third party library used by the software, for instance,
calls to classes in java.lang are considered as library calls, or

• component-internal method calls (respectively internal method calls), which are calls
to methods within the same component. Theses calls are visited recursively by the
SEFF reconstruction in order to get a classi�cation of all method calls called directly
or indirectly by the parent method.

To classify the method calls the SEFF reconstruction �rst retrieves the classi�er of the
called method. Next, it checks whether the SCDM has an entry for the classi�er of the
called method. If this is not the case, the call is considered as a library call. If the SCDM
has a corresponding entry it checks whether the classi�er of the method performing the
call (the source method) is contained within the same component as the called method
(target method). If this is the case the call is an internal call. If the classi�er of the source
method is contained within a di�erent component as the classi�er of the target method,
the investigated method call is a component-external call. The parent statements, such as
branches and loops, of component-external method call statements and the component-
internal method call statements are marked, i.e. it is possible to decide for parent statements
whether they contain an architectural relevant method call.

After recursively classifying all method calls, the SEFF reconstruction performs its
second step, which is the creation of the actual SEFF. The main supported elements
from the SEFF metamodel, are i) ExternalCallActions, which are created for component-

external method calls, ii) BranchActions, which are created for if and switch statements, iii)
LoopActions, which are created for loops in the source code, and iv) InternalActions, which
are created for source code sections, which are not relevant for external behaviour of the
component. To create the SEFF, a control �ow analyses is conducted and all statements are
visited again. The SEFF is created based on the component-external method calls, i.e. loop
statements, if statements, and switch statements are made explicit in the architectural
model only if they contain an external method call. If they do not contain a component-

external method call, they are combined within an InternalAction. By combining the calls,
which are not relevant for the component-external behaviour, the SEFF reaches a higher
abstraction level from the source code. The SEFF reconstruction is also able to abstract from
component-internal method calls by inlining them in the SEFF by default. If a component-
internal method contains a component-external method call and is called at least twice from
within its component, however, the SEFF reconstruction is able to make the call explicit in
both SEFFs. This avoids the reconstruction of the same source code methods for multiple
SEFFs. Instead the SEFF reconstruction creates a ResourceDemandingInternalBehaviour

for the component-internal method. In the SEFF itself an InternalCallActions calling the
created ResourceDemandingInternalBehaviour is created. After executing all steps, the
SEFF for a provided service has been created. As Krogmann [Kro12] points out the
SEFF reconstruction does not use any heuristics but follows a strict order to create a
SEFF. An example for the reconstruction of a SEFF from a given method is given in
Section 4.5. Within this thesis, we propose an approach to incremental reconstruct a
SEFF as soon as a method body of a source code method corresponding to a SEFF or a
ResourceDemandingInternalBehaviour has been changed by developers.
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2.5. Used Tools and Standards

In this section, we explain tools and standards we used within the thesis.

2.5.1. Java Model Parser and Printer

JaMoPP [Hei+09b] [Hei+10] provides a parser and printer for the Java language. The
parser parses Java into an EMF model representation, while the printer prints Java code
from the JaMoPP EMF model. The EMF metamodel of JaMoPP is a metamodel of the Java
language. In particular, it is a metamodel of Java 1.5. Hence JaMoPP supports source
code created with syntax features, such as generics, which were introduced in version
1.5 and older versions. Source code, which uses syntax features of newer Java versions,
however, can neither be parsed nor printed using JaMoPP. JaMoPP allows us to use treat
Java source code as any other EMF model and use model driven technologies, such as
model transformations, for Java source code. JaMoPP is created with EMFtext [Hei+09a].
EMFtext is an approach, which allows the creation of textual syntax for a given metamodel.
It automatically creates text editors for the speci�ed metamodels.

2.5.2. Eclipse Plugin Development

Eclipse plugin development using the Eclipse Rich Client Platform (RCP)[Vog13], is a
foundation for this thesis in two di�erent ways. First, the implemented approach as well
as the Vitruvius framework, are implemented as Eclipse plugins, i.e. they can be used
within the Eclipse IDE. Secondly, we use artefacts of Eclipse plugins for the consistency
preservation between Eclipse plugins and the PCM Repository (see Section 4.6.3). In this
section, we mainly focus on the artefacts and their EMF model representation, which are
used for the consistency preservation rules. As we explain the artefacts, we partly also
explain how they can be used for the Eclipse plugin development.

2.5.2.1. Overview of Eclipse Plugin Development Artefacts

One Eclipse plugin is represented as one Eclipse project in the IDE. The main artefacts for
the plugin development are the Manifest.mf �le, the plugin.xml �le, and the feature.xml

�le.
The manifest �le refers to plugin project as a bundle. It contains necessary information

about the plugin respectively the bundle. It contains, for instance, the name, the exported
packages, the imported bundles, and the imported packages. Listing 1 shows an example
of a manifest �le.

The relevant information in a plugin.xml �le for this thesis, are the information about
the extension point a plugin provides and the extension points a plugin implements. An
example of a plugin.xml is given in Listing 2.
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Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Example BundleName

Bundle-SymbolicName: my.organisation.example.bundle

Bundle-Version: 1.0.0

Export-Package: example.package

Require-Bundle: org.eclipse.emf.ecore,

com.google.guava,

org.apache.log4j

Listing 1: An example for an Eclipse Manifest �le

<?xml version="1.0" encoding="UTF-8"?>

<plugin>

<extension-point id="example.id" name="ExampleExtensionPoint" schema="schema/examle.id.

exsd"/>

<extension

point="example.id.provides">

<provides

provider="example.id.provides.ProviderClass">

</provides>

</extension>

</plugin>

Listing 2: An example for an Eclipse plugin XML �le

To combine di�erent Eclipse plugins, Eclipse allows users to combine existing plugins
to features. One feature is de�ned in one project. The main artefact within a feature is a
feautre.xml, which contains the information about the included plugins. As features can
contain each other, the feautre.xml can also include other features. Listing 3 shows an
example of an Eclipse feature XML �le.

<?xml version="1.0" encoding="UTF-8"?>

<feature

id="example.feature"

label="Example Feature"

version="1.0.0"

provider-name="My Organisation">

<plugin id="example.plugin1"/>

<plugin id="example.plugin2"/>

<includes id="example.my.other.feature"/>

</feature>

Listing 3: An example for an Eclipse feature XML �le
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public final class WebGUIImpl implements IWebGUI {

private final IMediaStore iMediaStore;

@Inject

public WebGUIImpl(IMediaStore iMediaStore){

this.iMediaStore = iMediaStore;

}

}

Listing 4: An example for dependency injection using the @Inject annotation

2.5.2.2. Model Representation of Eclipse Plugin Development Artefacts

As we use Eclipse plugins in one of the consistency preservation rules and the EMF for the
realisation, we need to be able to access the artefacts using techniques of MDSD. Hence,
we need to have EMF metamodels of the Manifest �le, the Plugin.xml, and the Feature.xml.
Metamodels for the Manifest �le and for XML �les are part of the EMFtext concrete syntax
zoo3. From EMFtext, we get a parser and a printer for the textual syntax as well as textual
editors for them. Hence, we can use them to treat the content of the �les as models, which
means that the models contain the same information as the �les.

The EMFtext XML model is generic for all XML �les, while the EMFtext Manifest syntax
and metamodel are already tailored speci�c for Eclipse manifest �les. Hence, we need to
implement helper classes to ease the use of the EMFtext XML implementation with Eclipse
plugins XML and Eclipse feature XML �les.

2.5.3. Dependency Injection Frameworks for Java

In this section, we present dependency injection frameworks for Java. Similar to EJBs and
the Eclipse plugin mechanism, we present consistency preservation rules between architec-
tural model and a dependency injection framework within this thesis (see Section 4.6.1.2).
Dependency injection frameworks for Java are standardized in JSR3304. They are based on
the dependency injection pattern proposed by Fowler5. The dependency injection pattern
itself allows to inject a dependency of a class either via the constructor, via a setter, or
via interface injection. The dependency injection pattern allows an inversion of control,
because the dependencies are injected into classes and the classes do not need to care about
the creation of the actual instances. We focus on constructor injection using dependency
injection frameworks for Java. Using constructor injection means that dependencies from
classes to interfaces are injected via the constructor. An example of the constructor injec-
tion can be seen in Listing 4. Within this listing, an instance of IMediaStore is injected
to the instance of IWebGUI using constructor injection. To compose the classes, users

3http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
4https://jcp.org/en/jsr/detail?id=330
5http://martinfowler.com/articles/injection.html
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public class MediaStoreModule extends AbstractModule {

@Override

protected void configure() {

bind(IMediaStore.class).to(MediaStoreImpl.class);

}

}

Listing 5: An example of a Google Guice module

need to specify which class is actually used for which interface. This can be done speci�c
for the used dependency injection framework. Within this thesis, we use Google Guice6

[Van08] as dependency injection framework. We use it to show that it is possible to keep
architectural models and source code, which is based on Google Guice, consistent during
the development and evolution of a software system. Google Guice o�ers the possibility to
compose the classes within the source code. An example is shown in Listing 5. It shows the
class MediaStoreModule, which extends the Google Guice class AbstractModule. Within
Google Guice each module class needs to con�gure respectively compose the classes in its
configure method. Therefore, a Google Guice module class either needs to extend class
AbstractModule or implement the interface Module. Within the example listing, the class
MediaStoreModule extends the class AbstractModule and uses its configure method to
bind the IMediaStore interface to the MeidaStoreImpl class.

2.5.4. Enterprise Java Beans

In this section, we explain the necessary foundations for Enterprise Java Bean (EJB) based
on the EJB standard [Sak09]. In this thesis, we only use EJB version 3.1 and above. EJB
introduces component-based classes and interfaces into Java. To mark a class as EJB
component-class Java annotations are used within EJB version 3.1. Component-classes
are either annotated with @Stateless, @Stateful, or @MessageDriven. A component-
class annotated with @Stateless is not allowed to hold a state, while a component-class
annotated with @Stateful is allowed to store information and reuse them during another
call. A component-class annotated with @MessageDriven is used for message driven
communication. Usually the Java Message Service (JMS)7 is used for the message driven
communication.

Similar to EJB classes, EJB relevant interfaces, which are called EJB business interfaces,
are also marked with annotations. For interfaces it can be distinguished between local
and remote interfaces. Remote interfaces are annotated with @Remote. Remote interfaces
support the access through remote servers. Local interfaces are annotated with @Local

and support local access only.
An EJB component-class realizes an EJB business interface, if it implements the interface

through a standard Java implements relation. If a class only implements one interface, it is

6https://github.com/google/guice
7https://java.net/projects/jms-spec/pages/Home/

31

https://github.com/google/guice
https://java.net/projects/jms-spec/pages/Home/


2. Foundations

automatically exposed as EJB business interfaces, even if the interface is not annotated
with @Remote or @Local. To use an implementation of an EJB business interface within a
component, a �eld with the type of the interface needs to be created and annotated with
either @EJB or @Inject. The EJB runtime environment than uses dependency injection to
inject an instance of the component-class implementing the interface. Another possibility
to use an implementation of an EJB business interface, is to create a �eld with the type of
an EJB business interface and lookup the EJB implementation of the business interface
within the code manually. In this case the �eld does not need to be annotated with @EJB.

Within EJB 3.1, it is also possible for an EJB component-class not to implement any
EJB interfaces but to be exposed as EJB component anyhow. This can be useful if a class
should be used local only, but be managed through EJB.

For the deployment of EJB components a deployment descriptor can be used, which
usually is an XML �le.

2.5.5. Replaying Changes from a Version Control System

During the evaluation of the approach, we need to replay changes from a Version Control
System (VCS) in order to evaluate the main contributions of this thesis. Therefore, all
changes from an old version in the VCS to a newer version in the VCS are replayed within
the IDE to simulate the development process. The changes need to be replayed on a �ne-
grained level for each �le, which have been a�ected between two versions of a software
system. Such �ne-grained changes are, for instance, changing the signature of a method,
adding or removing an import, or changing a statement. The di�erences between two
versions within a VCS, however, typically span a set of such �ne-grained changes. For the
realisation of these requirements, Petersen [Pet16] implemented a tool, which is able to
replay changes from a VCS.

The change replay tool performs the following three steps to enable the replay of
�ne-grained changes between two versions of a VCS:

1. extracting VCS changes from a VCS,

2. apply Abstract Syntax Tree (AST) di�erencing calculation, and

3. replay the extracted changes in the IDE.

The �rst step is to extract all changes between two versions, as they are stored in the
VCS. After this extraction, we have coarse-grained changes based on the commits. Such
changes, however, usually span many of �ne-grained changes, and can not be used for the
change replaying directly.

To get �ne-grained changes, the change replay tools compares the coarse-grained
changes based on the AST representation of both. This is the second step of the change
replay tool. Petersen [Pet16] compared di�erent AST based di�ng tools and decided to
reuse GumTree [Fal+14] within the change replay tool. GumTree is by default only able
to compare changes based on AST. The results are highlighted and presented to users in
an editor. Hence, users are able to easily see di�erences between two versions. Petersen,
however, extended GumTree so that it is also possible to store the necessary additional
information for the change replay.
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As last step, the extracted �ne-grained changes are applied subsequently in the IDE.
Therefore, the change replay tool resets the entire content of a �le based on the Eclipse
Java Development Tools (JDT) AST.

The change replay tool is currently not able to preserve the layout information during
the change replay. This, however, turned out not to be an issue for our evaluation, because
we are only interested in the non-layout information, i.e. we are interested in actual code
changes.

2.6. Evaluation foundations

This section presents the foundations, which we used to structure the evaluation of our
contributions. We �rst explain the Goal Question Metric (GQM) concept introduced by
Basili et al. [BCR94]. As second foundation for the evaluation, we present the three
validation levels introduced by Böhme and Reussner [BR05].

2.6.1. Goal Question Metric

The concept of having a GQM plan for the evaluation has been introduced by Basili et al.
[BCR94]. To apply the GQM approach for evaluation in software engineering, �rst it is
necessary to de�ne evaluation goals. According to Basili et al. [BCR94], goals are de�ned
on a conceptual level and should be de�ned for an object of measurement. Measurement
objects are categorized in i) products, which are artefacts produced during the life cycle
of a system, e.g. the design of a product and its implementation, ii) processes, which are
activities associated with time, e.g. designing and testing, and iii) resources, which are
items used in the process, for instance, hardware or software. Next, questions need to be
de�ned that can be used to de�ne whether the goals have been reached. These questions
are de�ned on the operational level and should characterize the object of measurement.
Finally, metrics, which can be used to answer the questions, need to be de�ned. To answer
the question using the de�ned metrics, the metrics should be quanti�able, i.e. metrics are
de�ned on the quantitative level. They are either objective, if they depend on the measured
object only, or subjective if they depend on the measured object and the viewpoint from
where the measurements are taken [BCR94]. Figure 2.8 gives an overview about the
hierarchical structure of a GQM plan.

2.6.2. Validation Levels of Böhme and Reussner

Böhme and Reussner [BR05] introduced three di�erent levels for the evaluation of pre-
diction models. As Klatt [Kla14] points out the levels can be applied for the validation of
software analysis approaches in general.

Hence, we can apply the levels to structure the evaluation of our Coevolution approach
as well. Böhme and Reussner [BR05] did not explicit introduce a Level 0 validation level.
Even though they state that a Level 0 validation would be the level for implementation
validity, i.e, a functional implementation is necessary to evaluate an approach. As Klatt
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Goal 1 Goal 2

Metric Metric Metric Metric Metric Metric

Question Question Question Question Question

Figure 2.8.: Hierarchical structure of a GQM plan [BCR94]

[Kla14] points out, the validation Level 0 is validated implicitly by performing validations
for the other validation levels if a prototype is required for all other validation levels.

The �rst level (Level I ) is called metric validation by Böhme and Reussner [BR05]. For
performance prediction approaches, this level can be used to show that the predicted
performance of a software system equals the measured performance. Klatt [Kla14] calls
this level the result validation and points out that this level can be used to compare the
result of an approach with the reality.

The second level (Level II ) is a called applicability validation. For approaches that
use performance prediction this means that it needs to be validated whether the input
data of an approach can be acquired reliable and whether the results can be interpreted
meaningfully. As for the SPLevo approach, which has been introduced by Klatt [Kla14],
this means for our Coevolution approach, that we need to show that our Coevolution
approach can be applied to real world project. To perform a Level II validation, Böhme
and Reussner [BR05] recommend to perform a case study.

The third level (Level III ) is called bene�t validation. A bene�t validation evaluates the
bene�t of an approach compared to competing approaches using an empirical validation.
A possible example of a Level III validation using our Coevolution approach would be to
develop a software system with our Coevolution approach and a competing approach,
such as IBM Rational Rhapsody Developer. As Böhme and Reussner [BR05] state, setting
up such a validation study requires high e�ort, because di�erent developer teams need to
develop the same software system using di�erent approaches. Since the proposed study
involves developers, a possible threat to validity is that the results can depend on the
performance of the developers. Hence, the study needs to be repeated in order to rule out
this threat to validity. This fact requires additional e�ort to perform a Level III validation.
Within the scope of this thesis no Level III validation has been performed.
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To achieve architecture and code consistency, our Coevolution approach uses the change-
driven framework of Vitruvius. The Vitruvius framework itself is based on the Vit-
ruvius vision, which Burger [Bur14] and we [KBL13] have introduced. The Vitruvius
framework is implemented using Eclipse plugins, i.e, it can be used within the Eclipse IDE.
Within this chapter, we present the contributions of this thesis to the change-driven frame-
work Vitruvius. We will present our Coevolution approach in Chapter 4. In particular,
this chapter presents the following contributions to the Vitruvius framework:

• change monitoring for the existing source code editor and Eclipse Modeling Frame-
work (EMF) editors,

• the de�nition of consistency preservation rules using a General Purpose Language
(GPL), and

• the process how change-driven consistency can be achieved.

The Vitruvius framework can be used to keep arbitrary models consistent during the
evolution of the models. Even though the focus of this thesis is to keep architectural
models and source code consistent, the contributions in this section can be generalized
for other models as well. Especially, the monitoring for EMF models and the consistency
preservation process are generalizable for arbitrary models. The focus of this section and
the thesis and the current Vitruvius framework is to support the consistency preserva-
tion between two metamodels. Easing the consistency preservation for more than two
metamodels and solving arising conceptual challenges, such as propagating the changes
caused by another change propagation, is part of future work.

The remainder of this section is structured as follows. First, we introduce the scienti�c
challenges for this chapter in Section 3.1. In Section 3.2, we present the terminology,
which we use throughout this thesis. Next, we present the change metamodel and the
correspondence metamodel from the Vitruvius framework. In Section 3.5, we present how
we can monitor existing source code editors and existing architectural editors. Next, we
explain how consistency preservation rules can be created using either a GPL or a Domain
Speci�c Language (DSL) (see Section 3.6). We explain the used consistency preservation
process of the Vitruvius framework in Section 3.7.

3.1. Scientific Challenges

In this chapter, we address the following scienti�c challenges:
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• What steps are necessary tomonitor the existing editors, such as the architectural editor

and the code editor, which we use in our Coevolution approach?

For the change-driven approach Vitruvius, we need to monitor the views that are
used within the Vitruvius approach. For our Coevolution approach between source
code and architectural models, this means that we need to monitor the existing
architectural views and the existing code view. Both monitors need to create an
output model that can be used by the Vitruvius framework.

• Which steps are necessary within a change-driven approach to achieve consistency

between di�erent models?

Since Vitruvius is a change-driven approach, it needs to be noti�ed as soon as
users or tools change a model. After this change, Vitruvius needs to keep the
corresponding models respectively the corresponding model elements consistent
with this change. Therefore, we need to de�ne a process specifying the consistency
preservation process after a change.

3.2. Terminology

In this section, we introduce the central terminology, which is used throughout this thesis.
We �rst explain the concept of change-driven in the model-driven environment. The con-

sistency preservation process we describe in this section and that we use in the remainder
of the thesis to keep architectural models and source code consistent, is a change-driven
process. Hence, we de�ne the term change-driven as follows:

De�nition 3 (Change-driven consistency). Change-driven consistency means that changes

play a central role in the consistency preservation process. The consistency preservation pro-

cess itself is triggered based on changes performed to models, which are involved in the pro-

cess [Kra17]. A change contains the information about the performed change type and the

changed element.

Bergmann et al. [Ber+12] and Ráth et al. [RVV09] investigated change-driven model
transformations and de�ned them as transformations using changes as input, i.e. consume
changes, or produce changes as output. They point out that an important fact for change-
driven model transformations is to incrementally update models instead of regenerating
them every time. The changes that we use, are generated by speci�c monitors, which
monitors editors, i.e. we monitor existing editors to noti�y about changes performed by
users. These changes are used as input for our consistency preservation process. The output
of our consistency preservation process, however, are not changes but models, which have
been updated incrementally based on the changes. The consistency preservation process
is change-driven but not edit-based, because the changes do not necessarily need to result
from editing operations. The process itself could also be used in an environment where the
changes are created by an approach that computes the di�erence between two versions of
a model. Approaches, such as EMFCompare [BP08] or the model di�erencing approach
proposed by Burger and Toshovski [BT14], can be used to compare models and create the
necessary changes for the change-driven process.
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Next, we de�ne the term correspondence:

De�nition 4 (Correspondence). A correspondence speci�es as a set of elements that cor-

respond to each other. The corresponding sets of elements describe the overlap of di�erent

models.

To identify corresponding elements, we use the Vitruvius correspondence model, which
we explain in Section 3.3. The correspondence between elements are created and updated
during consistency preservation operations. 1

Next, we de�ne the term of a consistency preservation operation. Therefore, we use a
similar de�nition as Kramer [Kra17] uses for consistency preservation.

De�nition 5 (Consistency preservation operation). A consistency preservation operation

de�nes the actual operation, which is executed to preserve consistency between models.

As we are in a change-driven environment, this consistency preservation operations are
executed based on changes performed to the models. Based on the consistency preservation
operation, we can de�ne consistency preservation rules.

De�nition 6 (Consistency preservation rules). Consistency preservation rules are rules

de�ning how a pair of metamodels can be kept consistent. They consist of a set of consistency

preservation operations.

In general, the consistency preservation rules can be implemented in a GPL or a trans-
formation language, such as Query View Transformation Operational (QVTO)[Obj09],
or in speci�c DSLs tailored to change-driven consistency preservation process. Within
this thesis, we de�ne consistency preservation rules between architectural models and
source code. They can be de�ned in either in the GPL Xtend or in the a DSL tailored to
our consistency preservation process.

3.3. Change Metamodel

Within this section, we describe the change metamodel from Vitruvius. The change
metamodel is based on the feature diagram for possible changes in EMF models, which
has been introduced by [Kra17] and which we explained shortly in Figure 2.1.2. From this,
Kramer [Kra17] has derived a change metamodel. The complete metamodel is available
within the Vitruvius framework2.

The supported non-abstract classes, i.e. the classes, which can actually be instantiated,
are shown in Figure 3.1. The change metamodel and especially its non-abstract classes are
central artefacts within our change consistency preservation process. The monitors for
the di�erent models create instances of the change metamodel respectively instances of
the non-abstract classes. The change consistency process itself reacts to these changes
and creates commands based on the changes in order to achieve consistency between

1Even though the elements corresponding to each other are usually instances of di�erent metamodels, it is
possible that the corresponding elements are instances of the same metamodel.

2http://vitruv.tools
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di�erent model instances. The changes are separated into atomic changes and compound
changes. Compound changes representing changes composed of other changes, while
atomic changes representing a single change. New compound changes can be added
by composing existing atomic or compound changes. For the monitoring of Java code,
for instance, we added the change MethodBodyChange, which is a compound change de-
scribing the change of a method body. In Figure 3.1 the changes ExplicitUnsetEFeature,
MoveEObject, and ReplaceInEList are examples of compound changes.

3.4. Correspondence Metamodel

In this section, we present the Vitruvius correspondence metamodel. The Vitruvius
correspondence metamodel is used to describe the corresponding elements for two meta-
models. In Vitruvius, we use one instance of the Vitruvius correspondence metamodel
for each pair of metamodels within the Virtual Single Underlying Model (VSUM). Consider
Figure 2.4, which we presented in the foundations (see Section 2.2.2): The Vitruvius corre-
spondences model instances between the elements are part of the consistency preservation
(CP). For the approach of keeping source code consistent with an architecture model, we
use one Vitruvius correspondence model containing the information how the source
code elements correspond to architectural elements.

The Vitruvius correspondence metamodel itself is generic and can be used for arbi-
trary metamodels. The metamodel, which is depicted in Figure 3.2, consists of only two
classes: The Correspondences class is the root element of the metamodel contains a list of
Correspondence. The Correspondence contains two lists of identi�er references. One list
contains identi�ers to reference models in one metamodel, while the other list contains
identi�ers to reference models in another metamodel. Hence, one Correspondence repre-
sents the actual correspondence between a set of objects from one metamodel to a set of
objects from another metamodel. One reference in the reference list can be used to identify
one element in one model instance. To reliable identify an element the reference in the
Correspondence needs to be unique, i.e. only one concrete element needs to be identi�ed
for a given ID. Therefore, we currently use our Temporarily Unique Identi�er (TUID)
mechanism, which basically is a string that uniquely identi�es an element. Therefore,
it contains the path to the �le containing the element and an identi�er, which is able to
identify an element within this �le. The ID is only temporarily as it can change for a
speci�c element as soon as, for instance, the �le name changes or the element is moved to
another �le. We need to be able to calculate a TUID for each element, which potentially
can be used in a Correspondence list. A TUID of an element can also be used to retrieve
the actual element.

Consider the following examples on how to calculate a TUID for metaclasses of the
Palladio Component Model (PCM) metamodel and for metaclasses of Java Model Parser and
Printer (JaMoPP) metamodel. To identify an element in the PCM, we can use the path to
the �le and Universally Unique Identi�er (UUID) of the element. This approach only works
for metamodel classes containing an id �eld, i.e. it only works for metaclasses extending
directly or indirectly from Identifier. For metaclasses not extending Identifier, such
as the metaclass Parameter, however, need to be identi�able as well. For instances of
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InsertEAttributeValue
a�ectedEObject:A
a�ectedEFeature:F
newValue:T
index:int

RemoveEAttributeValue
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
index:int

ReplaceEAttributeValue
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
newValue:T
fromNonDefault:bool
toNonDefault:boolInsertEReference

a�ectedEObject:A
a�ectedEFeature:F
newValue:T
index:int
isCreate:bool
isContainment():bool

RemoveEReference
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
index:int
isDelete:bool
isContainment():bool

ReplaceEReference
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
newValue:T
fromNonDefault:bool
toNonDefault:bool
isCreate:bool
isDelete:bool
isContainment():bool

InsertRootEObject
newValue:T
isCreate:bool
uri:String

RemoveRootEObject
oldValue:T
isDelete:bool
uri:String

ExplicitUnsetEFeature
subtractiveChanges:

EChange[]

getAtomicChanges():
EChange[]

MoveEObject
subtractWhatChange:S
subtractWhereChange:T
addWhatChange:A
addWhereChange:B

getAtomicChanges():
EChange[]

ReplaceInEList
removeChange:R
insertChange:I

getAtomicChanges():
EChange[]

Figure 3.1.: Non-abstract, i.e, �nal classes of the change metamodel for Vitruvius ([Kra17]).
Kramer [Kra17] presents a feature diagram for changes in EMOF and Ecore
based metamodels and derived the change metamodel for Vitruvius from it.
In the �gure, we omitted the permute changes, because they are not supported
yet. We have also simpli�ed the name of the classes and omitted the type
parameters.

Correspondences
Correspondence

aIDs:TUID[0. . . *]
bIDs:TUID[0. . . *]0. . . *

Figure 3.2.: The correspondence metamodel we used in the consistency preservation pro-
cess. All actual Correspondence instances are contained in the root class
Correspondences.
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these metaclasses, we use the enityName attribute of the instance and the TUID of the
parent element. Hence, the TUID is build hierarchically. All classes directly or indirectly
extending class NamedElement contain the enityName attribute. Using this mechanism, we
are able to calculate a TUID and resolve objects for a given TUID for all metaclasses in
the PCM.

For the elements in JaMoPP, it is more complex to calculate a TUID, because the JaMoPP
metaclasses do not contain an id element. It is also not possible to extend the JaMoPP
metamodel with an Identifier class, because JaMoPP stores the elements as Java source
code. Within the Java language itself no id is foreseen for the elements. Hence, we need to
identify the elements using their Java Fully Quali�ed Name (FQN). To identify a method,
for instance, we use the name of the method, the return type of the method, the parameter
types of the method, the class name of the class containing the method and the name of
the package and its parent packages recursively, i.e. as the PCM TUIDs the JaMoPP TUIDs
are build hierarchically as well. Using this mechanism allows us to uniquely identify a
method, because Java methods in one class need to be unique in terms of their parameter
types. Even though the TUID calculation mechanism for the PCM can be generalized
for metamodels having a similar Identifier class as the PCM, the TUID mechanism, in
general, is speci�c for each metamodel.

One part of future work is to check, whether the TUID mechanism can be replaced
or eased by the standard Ecore mechanism for identifying objects in an instance of a
metamodel.

3.5. Change Monitoring

As we mentioned above, we use a change-driven approach to keep models consistent. To
do so, we react to changes performed in involved editors, i.e. we use a change-driven
approach that uses edit-based changes to ensure consistency. To realise such an approach,
we need to get noti�cations about each change users performed in one of the editors
involved in the consistency preservation process. As one goal of the presented work is to
allow users to use familiar editors, we need to develop mechanisms to get noti�ed about
changes in each editor. It is furthermore unfeasible to create new editors for every model
involved in the consistency preservation process. These statements are true for the work
presented in this thesis and the Vitruvius approach as well.

For the work presented in this thesis, we need to get noti�ed about changes in source
code and in the architectural model. Therefore, we developed an approach to monitor
existing architectural model editors as well as monitoring in an existing Java source code
editor. Both approaches are explained in the following sections. Hence, the following
sections address the �rst scienti�c challenge de�ned for this chapter.

3.5.1. Monitoring Changes in Architectural Models

In order to keep changes that users apply to architectural models consistent with the
source code, we need to monitor the changes in architectural models. The architectural
models used within the presented work are either edited or manipulated by users using
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the standard EMF Ecore editors or graphical editors. The graphical editors are currently
either created with Graphical Modelling Framework (GMF) or Eclipse Sirius. Allowing
the reuse of all existing editors is one goal of our consistency preservation process. This
is especially important for the graphical editors, as they allow convenient editing and
manipulating of architectural elements.

All graphical editors as well as the standard EMF Ecore editors manipulate the underlying
EMF models. To avoid the e�ort of monitoring each existing editor separately, we have
decided to monitor changes on the underlying EMF models. As the architectural models
that we use are standard EMF models, the monitor presented in this section can be
generalized for arbitrary EMF models, i.e. the presented monitor can be used for arbitrary
EMF models.

For the realisation of the monitoring, we use the built-in EMF mechanism of listening to
changes in models. The built-in mechanism noti�es registered listeners about each change
in an EMF model. To ensure that we get noti�ed about all changes performed to any EMF
model, we start listening to changes as soon as users opening an editor that is capable
of manipulating the architectural models. The information about the performed changes
that we retrieve from the EMF change noti�cation mechanism, are represented as a set of
ChangeDescriptions. The EMF ChangeDescriptions contain the information about the
changes that has been occurred in EMF-based models. This model, however, can not used
directly, because we need the changes in speci�c form for our consistency preservation
mechanism. Therefore, we transform the EMF ChangeDescription to instances of the
above-presented change metamodel. After we have created instances of our change meta-
model, we submit the changes to our consistency preservation mechanism. The change
consistency mechanism uses the information within the change to preserve consistency
between model elements. The implementation of the EMF monitor is available as part of
the Vitruvius framework.

Using the approach of monitoring the underlying EMF model has the advantage that
changes are monitored regardless of the used editor. If it is important, however, to keep
information consistent, which are solely available in the graphical editors, such as the
layout information, the graphical editors have to be monitored separately. This is the
case, for instance, if the position of two elements from di�erent metamodels need to be
kept consistent in the graphical editors. To this date however, the requirement of keeping
layout information consistent among instances of di�erent metamodels, did neither occur
in the work presented in this thesis nor in any other case study of Vitruvius.

3.5.2. Monitoring Source Code Changes

This section explains, how we monitor changes performed to Java source code during the
software development and evolution. To perform source code changes software developers
usually use the source code editor of an IDE. Further possibilities to edit the source code,
such as reafactorings or quick �xes, however, exist as well and need to be considered for
the change monitoring. In this section, we explain the monitoring for the source code
editor and additional artefacts, as well as our implementation of the change monitoring.
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Messinger [Mes14] developed the Java code monitor within his master’s thesis. We
presented the Java code monitor in [Kra+15a] and the associated technical report [Kra+15b].
This section is based on the mentioned publications.

3.5.2.1. Monitoring the Source Code Editor

For the source code editor itself, it would be possible to reuse the EMF editor implemented
for the monitoring of architectural elements. To reuse this monitor, however, would require
users to use model-based editors for Java code, such as the standard EMF editor or the
JaMoPP editor for Java, to manipulate the source code. One goal of our work, however,
is to allow users to use familiar tools. This is especially important for existing source
code editors provided by modern IDEs, because this editors provide powerful editing
support, and they are widely used and accepted. To allow the reuse of this editors, we
need to monitor the source code editor of the used IDE. As we use the Eclipse IDE, the
description of the source code monitoring process is closely aligned to the behaviour
of the Eclipse IDE. The concepts, however, can be applied to other IDEs, with similar
behaviour as the Eclipse IDE as well. To monitor the changes, the IDE needs to provide
a mechanism, which is able to notify interested listeners about a change performed by
developers. After the actual noti�cation from the IDE, we need to classify the changes.
This is necessary, as the change reporting of the IDE is based on basic operations, such as
adding and removing characters in the editor. For the classi�cation Messinger [Mes14],
created a change catalogue for changes on object-oriented source code. Messinger [Mes14]
evaluated, whether existing change metamodels can be used within the Java code monitor.
Therefore, he focused on the existing change catalogues, proposed by Herrmannsdoerfer
et al. [HVW11], Fowler et al. [Fow+99], and Dig and Johnson [DJ06]. The change catalogue
of Herrmannsdoerfer et al. [HVW11], is mainly designed for coevolution of models and
metamodels, i.e. adapting model instances to changes of the metamodel. The change
catalogue of Fowler et al. [Fow+99], and Dig and Johnson [DJ06] list changes on object-
oriented source code. Fowler et al. [Fow+99] presents refactorings to object-oriented
source code and present necessary changes in object-oriented source code representing
such a refactoring. As refactorings usually preserve the semantic of source code, the
changes in the change catalog presented by Fowler et al. [Fow+99] are only a subset
of all possible source code changes. Dig and Johnson [DJ06] discuss API evolution in
object-oriented source code and list changes, which can be performed to object-oriented
source code. None of the existing change catalogues, however, �ts our needs. Hence,
Messinger [Mes14] created a special change catalogue for the change monitor. The change
catalogue classi�es changes into the following three categories and sub-categories.

• Primitive changes, which are primitive changes performed by developers. They are
subdivided in three categories:

– create and delete changes of root elements, such as classes or packages.
– structural changes, such as adding or removing methods, �elds, parameters

etc., and
– modi�cation changes, such as renaming method, changing modi�ers.
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• Composite changes, which are composed changes leading to semantically changes.
They are subdivided in two categories:

– 1st order composite changes, which consist of composed primitive changes,
such as moving classes or moving interfaces, and

– 2nd order composite changes, which consist of composed composite changes,
such as extracting methods or inlining methods.

• Type hierarchy speci�c changes, which are speci�c for changes a�ecting the type
hierarchy in object-oriented languages. They are subdivided in three categories:

– type changes, for instance, specializing or generalize the return type of a
method,

– move changes, for instance, pull-up or push-down a method, and
– composite move changes, for instance, extracting a super-class or inlining a

super-class

The complete change catalogue can be seen in the Appendix (see Section A.1).
One technical limitation of Eclipse Java Development Tools (JDT) Abstract Syntax

Tree (AST) change noti�cation is that no exact changes are reported for statement changes
within method bodies. The Eclipse IDE only reports the information about a �ne-grained
change. Seifermann [Sei14] provides an extension for the Java source code monitor. The
extension allows us to classify, amongst others, such �ne-grained changes in order to
�gure out whether the change a�ected a method body. Even though we do not get noti�ed
about the actual statement, which has been changed, the information about the changed
method turned out to be su�cient for our use cases.

3.5.2.2. Monitoring additional Code Manipulation Editors

As mentioned above, it is not su�cient to only monitor changes performed in the source
code editor, as developers usually have other possibilities to manipulate and edit the source
code. For instance, modern IDEs usually have a built in refactoring support. For many
changes, such as renaming, developers often use refactorings in order to speed up the
development process and avoid manual renaming. Even though these changes a�ect the
source code and could be monitored implicitly using the monitor for the code editor, we
decided to monitor this kind of changes by observing the IDE. Even though we can try
to �gure out whether a speci�c list of changes represents a refactoring or not, we argue
that it is simpler to monitor the IDE, because we can be sure that we observed the correct
change. To give an example for a refactoring, we consider the refactoring pull-up, which
pushes a method from a subclass to one of its super classes. If the changes necessary
to perform a pull-up refactoring are only monitored via the source code, we would get
the noti�cation that a method has been removed from one class and a method has been
inserted into another class. To monitor this refactoring through the source code monitor
solely, we would need to match the removed method in one class with the added method
in another class.
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Another possibility for developers to edit source code is to use quick �xes o�ered by
the IDE. A quick �x can, for instance, used to correct a statement, which is syntactically
incorrect. Similar to the refactorings, these changes can be monitored using the monitor
for the IDE itself. It can be bene�cial, however, to know if developers used a quick �x to
perform a change.

During the monitoring of refactorings and quick �xes, we need to ensure that the
monitor for the source code editor does not report the changes as well, i.e. the source code
editor itself needs to be deactivated during the execution of refactorings and quick �xes or
we need to develop a mechanism to detect and remove duplicated changes.

Besides the advantage of getting changes performed through refactorings or quick �xes
directly, the monitoring of these additional mechanisms helps us to clarify the intent of
the developers automatically. Knowing the intent of developers upfront can be bene�cial
during consistency preservation process itself. If a method has been renamed by developers,
for instance, they might be asked by the consistency preservation process whether the
corresponding architectural model elements should be renamed accordingly or whether the
change in the source code should be rolled back in order to avoid renaming of architectural
elements. If a method has been renamed using a quick �x to avoid a compiler error, for
instance, it is clear that developers needed to perform the change in order to �x that error.
In such a case the example intent clari�cation described above, can be avoided.

3.5.2.3. Implementation of the Change Monitoring in Source Code

Messinger [Mes14] implemented the change monitoring as Eclipse plugin for the Eclipse
IDE. Hence, as the other artefacts we implemented in this thesis, the monitor can be used
within Eclipse IDE. To monitor the source code editor of the Eclipse IDE, we use the
Eclipse JDT, which provides the possibility to notify listeners during the reconciling of
changes. Hence, listeners are noti�ed as soon as the Eclipse JDT AST parser incrementally
parses the performed change. The monitor also monitors performed refactoring within
the Eclipse IDE. For instance, it is able to monitor rename refactorings performed using
the refactoring capabilities of Eclipse. The implementation is in principle also able to
monitor quick �xes performed by developers. It turned out, however, that for the kind of
changes we are interested in, we do not need to monitor quick �xes, because the Java code
monitor is su�cient to get all changes. The consistency preservation rules, we present in
this thesis, do not have bene�ts from an intent clari�cation through quick �xes. In future
work, however, the quick �x monitoring functionality can be used if the monitoring of
quick �xes turns out to be helpful. One current technical limitation for the monitoring
of refactorings and quick �xes is that the Eclipse IDE does notify listeners only about
performed refactorings and quick �xes for a certain class of refactorings and quick �xes.
Hence, we are not able to get noti�ed about all performed refactorings and quick �xes at
the moment.

3.5.2.4. Transforming the Monitored Changes into Instance of the Change Metamodel

After we have monitored the source code changes as described above and classi�ed them
according to the change catalogue, we need to transform them into a representation of the
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above-mentioned change metamodel. This task is considered as the second main task of
the source code monitor. The changes that we get from the IDE and the classi�cation is
done based on the AST representation of the used IDE. In case of Eclipse, this is performed
using the Eclipse JDT AST. Even though the Eclipse JDT AST itself is a model, it cannot
be used within the change metamodel and by our consistency preservation mechanism
directly, as it is not an Ecore based model. For the change metamodel and the consistency
preservation process itself, however, we need to have an EMF model representation of the
performed change. To bridge the gap between the models and the change representation,
we transform the observed changes into an Ecore based model representation. We decided
to use JaMoPP to parse Java source code into an Ecore based model representation. We
use JaMoPP instead of other existing approaches, such as Model Discovery (MoDisco)
[Bru+10], because JaMoPP also allows printing the parsed model into as Java source code.
The latter is necessary, as the main goal of the work presented in this thesis, is to create
and use bidirectional consistency preservation rules between architectural model and
source code. After parsing the changed compilation unit using JaMoPP, we match the
changed elements with the elements within the JaMoPP elements. As next step, we are
able to create the change instances of the above-described change metamodel. As last step
of the monitoring, the Java code monitor triggers our consistency preservation process
with the change. This consistency preservation process itself is explained in the next
section. By using this approach, we do not need to parse the whole source code of the
project but we need to parse the actual changed compilation unit using JaMoPP.

More technical details how we create the instances of the change metamodel can be
found in the master’s thesis of Messinger [Mes14]. In future work, however, propose the
use of the Eclipse JDT AST instead of JaMoPP if it is extended in a way that it makes it
possible to use the Eclipse Java AST model as an Ecore based model.

3.6. Defining Consistency Preservation Rules

To keep changes in models consistent using Vitruvius and our Coevolution approach,
consistency preservation rules between pairs of metamodels need to be de�ned. The
consistency preservation rules need to de�ne consistency preservation operations for each
change. Therefore, they specify which elements of one metamodel in the metamodel pair
needs to be changed after a speci�c change in the other metamodel of the metamodel pair
has been performed.

If more than two metamodels need to be kept consistent, consistency preservation rules
for each pair of metamodels are necessary. In this thesis, however, we mainly focus on the
consistency between one pair of metamodels. Arising challenges during the consistency
preservation of more than one metamodel pair is part of our future work.

The consistency preservation rules, can be de�ned either in a GPL or in a Domain
Speci�c Language. For the Vitruvius framework, [Kra17] provides a language family to
specify the consistency preservation rules in speci�c DSLs.

In the following, we outline our implementation to keep a pair of metamodels consistent
using a GPL. We also give a small overview of the Mapping Invariant Response (MIR)
languages, which are a family of DSLs and tailored to keep arbitrary models consistent
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using the Vitruvius framework. In this section, we focus on the realisation of how to
keep pairs of metamodels consistent. The actual used consistency preservation rules for
architectural models and source code and the di�erent kinds of consistency preservation
rules we identi�ed, are explained in Section 4.3.

3.6.1. Defining Consistency Preservation Rules using a GPL

By using a GPL to de�ne the consistency preservation rules, the occurred change needs to
be analysed in order to preserve consistency between model instances. As we described
above, the Vitruvius framework is noti�ed about changes as soon as a change has been
performed. The information in the change can be used by the GPL implementation to
preserve consistency. As the change information is an instance of the change metamodel,
it contains the information about the performed change and the changed element. The
GPL implementation can use the information to decide, which corresponding elements
need to be updated accordingly.

During the execution of consistency preservation operations the instances of the Cor-

respondence between elements need to be created and updated. An update, for instance,
is necessary if an TUID a�ecting attribute of an a�ected element has been changed. For
JaMoPP, for instance, the name attribute of a method a�ects the TUID of the method as
well as the TUID for the methods parameters. Hence, if a method name has been changed
the TUID needs to be updated for the method and its parameters.

Within our initial implementation, we used the GPL Xtend3 to implement consistency
preservation rules. The implemented mechanism can be seen as internal DSL embedded
into Xtend. To execute the correct updating method, we �rst need to call the correct
consistency preservation operation based on the instance of the change and the changed
element. Therefore, we �rst use the dispatch functionality o�ered by Xtend to determine
the type of the change by dispatching the incoming change over all possible non-abstract
changes. To determine the a�ected object and call the correct consistency preservation
operations, we use a map that stores the consistency preservation operations for all possible
elements between two metamodels. All transformations need to implement the generic
class EObjectMappingTransformation. This allows us to store them in a map and execute
the correct transformation based on the class of the actual changed element. Listing 6
shows an excerpt of the dispatching for the change types and the use of the map to call
the actual implemented transformation.

The method executeTransformationForChange can be called from outside the class with
the occurred change. It �rst dispatches the change in order to determine the performed
change. As second step, it updates the TUID of the a�ected object if necessary. The
�rst dispatch method is called if the change is unknown to the TransformationExecuter.
It logs an error and returns null, i.e. the corresponding models are not updated. The
other two example dispatch methods, we show in the listing, are called if a new root
object has been inserted respectively if a root object has been removed. In these cases
the create method respectively delete method for the object are called. Within this
transformation the corresponding model can be updated accordingly. After this, we

3http://www.eclipse.org/xtend
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call the transformation createdAsRoot respectively deleteRootEObject to indicate that
the performed change a�ected a root object, which allows the transformation to react
accordingly, for instance, by deleting all corresponding child objects of the deleted root
object. The map mappingTransformations needs to be initialized during the creation of
the TransformationExecuter.

Listing 7 shows the transformation that is executed after an OperationSignature in the
PCM model has been renamed and needs to be kept consistent with the source code.
Therefore, we �rst need to retrieve the corresponding interface method. As second step,
we calculate the old TUID. As next step, we can update the name and then update the
TUID of the method. Hence, to keep the source code consistent, we update the name of
the corresponding source code interface method. As last step, we also update the name of
the methods implementing the code interface.

Using the described approach allows us to keep consistency for all non-compound
changes. For compound changes, such as method body changes or replace in list changes,
we need to either �atten the contained non-compound changes and react to the atomic
changes contained in the compound changes or we need to implement a special treatment
for these changes.

3.6.2. Defining Consistency Preservation Rules using the MIR Languages

Instead of using a GPL to de�ne the consistency preservation rules, they can also be
de�ned by using a DSL or a family of DSLs. One instance of a possible DSL are the MIR
languages, which are tailored especially for the Vitruvius framework. Kramer [Kra17],
presents the MIR languages and introduces a formal background. Klare [Kla16] introduces
the reaction language, Werle [Wer16] introduces the mapping language, and [FKL16] the
invariant language. All languages are created using Xtext4.

The reaction language allows the de�nition of solution-oriented imperative reactions
to achieve consistency. Similar to the de�ned solution in the GPL it is possible to react
to speci�c changes performed to speci�c model elements. Hence, by using the reaction
language, all non-composite changes can be handled. The invariant language is a problem-
oriented language, which allows consistency checking using parameterised invariants.
The mapping language o�ers the possibility to declarative de�ne bidirectional consistency
preservation operations. A common example, where the mapping language can be used is
the name attribute of di�erent metaclasses, which should kept consistent.

The MIR languages hide the complexity of updating the used ID manually, i.e. in the
current implementation they update the TUID of changed elements automatically. One
current disadvantage of the MIR languages is the lack of handling composite changes
within the languages. For instance, changes on method body changes cannot be handled
directly. The language framework, however, supports the identi�cation of such changes
and provides speci�c handling routine adhering to a common interface. The reaction to

4http://www.eclipse.org/Xtext/
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def public TransformationResult executeTransformationForChange(EChange change) {

//dispatch the incoming change

val TransformationResult transformationResult = executeTransformation(change)

updateTUIDOfAffectedEObjectInEChange(change)

return transformationResult

}

def private dispatch TransformationResult executeTransformation(EChange change) {

//log an error if the concrete change is unknown

logger.error("No executeTransformation method found for change " + change)

return null

}

def private dispatch executeTransformation(InsertRootEObject<?> insertRoot) {

val clazz = insertRoot.newValue.class

// for insert root changes: call the create transformation for the created object

val EObject[] created = mappingTransformations.get(clazz).createEObject(insertRoot.

newValue)

// call the created as root object for the created object

mappingTransformations.get(clazz).createRootEObject(insertRoot.newValue, createdObjects)

}

def private dispatch executeTransformation(RemoveRootEObject<?> removeRoot) {

// for remove root changes: call the remove transformation for the removed object

val clazz = removeRoot.oldValue.class

val EObject[] removed = mappingTransformations.get(clazz).removeEObject(removeRoot.

oldValue)

// call the delete root method for the removed object

mappingTransformations.get(clazz).deleteRootEObject(removeRoot.oldValue, removedEObjects)

}

Listing 6: Excerpt of the dispatch functionality in Xtend used for the dispatching of
incoming changes to distinguish the type of change.

override updateSingleValuedEAttribute(EObject affectedEObject, EAttribute affectedAttribute,

Object oldValue, Object newValue) {

val transformationResult = new TransformationResult

// retrieve the single interface method corresponding to the OperationSignature

val interfaceMethod = correspondenceModel.getCorrespondingEObjectsByType(affectedEObject,

InterfaceMethod).claimOne

val oldTUID = correspondenceModel.calculateTUIDFromEObject(interfaceMethod)

interfaceMethod.name = newValue.toString

//update the changed TUID of the method manually

correspondenceModel.updateTUID(oldTUID, interfaceMethod)

updateImplementingMethods(affectedEObject, newValue)

return transformationResult

}

Listing 7: Executed Xtend transformation after an OperationSignature has been renamed
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reaction RenameOperationSignature {

after value replaced for pcm::OperationSignature[entityName]

call renameMethodForOperationSignature(change.affectedEObject)

}

routine renameMethodForOperationSignature(pcm::OperationSignature operationSignature) {

match {

val interfaceMethod = retrieve java::InterfaceMethod corresponding to

operationSignature

}

action {

update interfaceMethod {

interfaceMethod.name = operationSignature.entityName;

}

call {

updateImplementingMethods(change.affectedEObject, change.newValue)

}

}

}

Listing 8: Executed reaction after an OperationSignature has been renamed

this kind of changes need to be de�ned within an GPL, such as Java or Xtend. An example
for this kind of changes is a change performed to method bodies in the Java source code.

Listing 8 shows an example transformation that is executed after an OperationSignature

in the PCM model has been renamed and needs to be kept consistent with the source
code. The reaction is the same as in the GPL implementation: the corresponding Java
interface method and the implementing class methods are also renamed. As we can see the
executed reaction is executed after the name of an OperationSignature has been replaced.
The retrieving of objects from the correspondence model is executed within the match

block. The update of the interface method is done in the update block. Within the call

block arbitrary Xtend code can be executed. In our case, we execute the same method as
in the GPL implementation in order to keep the implementing class methods consistent
with the architectural change.

3.7. Consistency Preservation Process

Within this section, we describe consistency preservation process used in the Vitruvius
framework and therefore in our Coevolution approach as well. Hence, we address the
second scienti�c challenge de�ned for this chapter. The consistency preservation process
consists of three main steps:

• the trigger of the change consistency preservation process and the initializing of the
process,

49



3. A Change-driven Consistency Process for Models

• the creation of executable commands, which uses the information from the change in
combination with prede�ned consistency preservation rules to de�ne the necessary
action to keep models consistent, and

• the execution of this commands and the saving of the changed models.

A visualisation of the three steps is shown in Algorithm 1. For the commands, we use
the transactional command framework of EMF. Within our consistency preservation
process the creating of commands and the executing of commands is separated. Using
this approach, allows us to create a generic mechanism for executing the changes and
saving the changed models. Hence, developers of the consistency preservation rules do
not need to take care of the actual creation and executing of commands. Furthermore, the
used approach should eases the evolution and maintenance of the used framework. For
instance, a part of future work is to allow the rollback of user changes and the resulting
changes executed by the consistency preservation process. This rollback functionality can
be realised generic for Vitruvius considering the separated command execution part only.
The three steps, which are currently used, are explained in the next sections.

Algorithm 1 An overview of the Change Consistency Preservation Process, which can
be used to keep models consistent.
Require: Chanдes ← Set<Change>,

source2Metamodel ← Map<FileEnding, Metamodel>)
consistencyRulesMap ← Map<Metamodel, Set<consistencyOperation>
commandExecuter ← CommandExecuter
. Initializing the consistency preservation process

1: validateChanдes (chanдes )
2: metamodel ← source2Metamodel .дet (chanдe .source . f ileEndinд)
3: consistencyRuleSet ← consistencyRulesMap.дet (metamodel )
4: for all chanдe ∈ Chanдes do
5: for all consistencyRules ∈ consistencyRuleSet do
. Creating the commands using the active consistency preservation rules

6: commands ← consistencyRules .createCommands
. Execute the commands using a generic command executer

7: commandExecuter .execute (commands )

3.7.1. Change Triggering and Initializing Change Consistency Preservation
Process

The �rst steps within the change consistency preservation process are the change triggering
and the initializing of the consistency preservation process.

The triggering process itself equals the last step of the monitors, we already described
in this chapter, because the monitors trigger notify the consistency preservation process
after a change respectively a set of has been performed and the consistency needs to be
preserved. Form the perspective of the change consistency preservation process, however,
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this is the �rst step. In Algorithm 1 an existing set of changes is a requirement for the
consistency preservation process.

For the set of retrieved changes, we �rst check whether the changes are valid. We
currently only check whether the changed elements have the same metamodel. Hence, it
is currently not possible to change elements from di�erent metamodels simultaneously.
This limitation can be overcome in future work. The limitation is not a�ecting the work
presented in this thesis, as we currently only use changes performed to one metamodel.
For the work presented in this thesis, however, it has no a�ect, because we only change
elements adhering to the same metamodel at a time. As next step in initializing phase, we
�rst collect the necessary information to execute the consistency preservation process. We
�rst collect the information which consistency preservation rules need to be executed, i.e.
we need to identify the To do so, we �rst retrieve the metamodel of the changed element.
The Vitruvius framework allows us to retrieve a set of target metamodels, for which
consistency preservation rules are de�ned, from a given source metamodel. Hence, we
have the information about the consistency preservation rules between the metamodels.

After we retrieved this information, we can start the consistency preservation process
by executing the consistency preservation rules individually for each change (see line 4 in
Algorithm 1).

3.7.2. Command Creation

The command creation, step is executed for each change individually. Within the command
creation process, we retrieve the commands needed to be executed in order to preserve
the consistency between the changed models and a�ected models. As we mentioned in
Section 3.6 above, the consistency preservation rules itself can be de�ned either using a
GPL or the MIR languages. As we separate the command creation process from the actual
consistency preservation de�nition, users de�ning the consistency preservation rules do
need to deal with the actual creation of commands. The output of this step is a set of
commands, which can be executed in the next step.

3.7.3. Command Executing

Within the command-executing step, the actual consistency preservation step is performed.
As the command creation step, this step is executed for each step individually (see line
7 of Algorithm 1). Within this step, we iterate over all created commands and execute
them. During the execution of the commands the de�ned consistency preservation rules
are executed and the a�ected models are actually changed. The saving of models involved
in the current consistency preservation process is the last part of the command-executing
step.
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In this chapter, we introduce our Coevolution approach and present how it can be used to
keep component-based architectural models consistent with source code during software
evolution.

As we have mentioned in Chapter 1, the well-known problems architecture drift and
architecture erosion [PW92] can occur if the architectural model and the source code
are evolved independently from one another, e.g. if the source code is evolved without
updating the architecture model accordingly. Up-to-date models, however, can ease
software evolution because, for instance, software architects can decide more easily how to
integrate a new requirement into the software system. Depending on the used architectural
model language, model-based analyses, such as predicting the performance, are possible.
If architecture models are not kept up-to-date, they become out-dated and eventually
useless. If the architectural models and source code can be kept consistent automatically
or semi-automatically, the manual e�ort is omitted or reduced.

To achieve the goal of having up-to-date architectural models and reduce the e�ort
of keeping them consistent with source code manually, we introduce our Coevolution
approach. Since our Coevolution approach uses bidirectional consistency preservation, it
is furthermore possible to keep the source code consistent with changes to the architecture
model. The creation of a new component in the architectural model, for instance, leads to
the creation of a new package and a new class in the source code model.

To avoid architecture drift, our Coevolution approach uses change-driven consistency
preservation, which means that we keep the models consistent as soon as one of the models
has been changed by users. Our Coevolution approach is able to keep static architecture
models in terms of components, interfaces, and signatures as well as behavioural models
consistent with the source code. Code elements that are kept consistent with static
architecture model elements only are considered as static code elements within this thesis.
Static code elements are usually packages, class declarations, interfaces declarations,
interface methods, method declarations, and �elds in classes. Code elements that are kept
consistent with behavioural models are considered as behavioural code elements. These
code elements are usually statements within method bodies of a class method.

To keep the changes performed on behavioural source code elements consistent with the
behavioural models, we analyse the behaviour of the changed method in the source code
and incrementally recreate the corresponding architectural behaviour models. Since our
Coevolution approach works in a change-driven way and keeps the behaviour of source
code also consistent with behavioural architecture models, it is able to detect method calls
that introduce architecture erosion. These method calls are method calls that introduce,
for instance, a call from a class in component A to a non-public service from component
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B. Such calls are possible from within the source code, but not allowed, as they would
introduce architecture erosion. Using our Coevolution approach, users are supported by
avoiding this kind of architecture erosion during the software evolution.

To map architectural models to code and code to architectural models, our Coevolution
approach requires the availability of bidirectional consistency preservation rules between
the architecture model and source code. Since the mappings between architectural models
and source code are not the identical for all projects and used technologies, we provide a
mechanism to create and re�ne existing consistency preservation rules and embed them
into our consistency preservation process.

Within this section, we explain our Coevolution approach applied to Palladio Component
Model (PCM) as architectural model and Java as source code. The concepts, we propose
can, however, be applied to other component-based architecture models, such as UML
component-diagrams, and other object oriented languages as well.

We introduced the basic idea of our Coevolution approach in [Lan13]. We presented
the �rst realisation for source code and architectural elements in [Kra+15a; Kra+15b]. We
(Kramer, Burger and Langhammer [KBL13]) as well as Burger [Bur14] performed prelimi-
nary work and presented Vitruvius, which is an approach to keep the overlap between
models consistent (see Section 2.2.2). From a Vitruvius perspective our Coevolution
approach can be seen as an application of Vitruvius to the Component-based Software
Engineering (CBSE) domain.

The remainder of this Chapter is structured as follows: In Section 4.1, we explain the
scienti�c challenges for this chapter. In Section 4.2, we give an overview of our Coevolution
approach and explain the main concepts. After the explanation our Coevolution approach,
we we classify our Coevolution approach into the Vitruvius vision (see Section 4.2.5). As
next step, we introduce bidirectional consistency preservation rules between source code
and architecture and give an example for the consistency preservation rules. In Section 4.4,
we present the di�erent kinds of automation levels and user change disambiguation within
our Coevolution approach. Section 4.5 introduces, how consistency between behavioural
models and their implementing source code can be achieved. In Section 4.6, we introduce
technology-speci�c bidirectional consistency preservation rules between source code and
architecture as well as mappings to code related artefacts. Section 4.7 introduces di�erent
roles if, our Coevolution approach is used in the software development process.

4.1. Scientific Challenges

In this chapter, we address the following scienti�c challenges:
• How can the architectural models and the source code of a software system kept con-

sistent during the evolution of a software system?

To enable change-driven coevolution of source code and architectural models in
a change-driven way, our Coevolution approach needs to ful�ll the following re-
quirements: First, we need to de�ne bidirectional consistency preservation rules
between architectural models and source code. Secondly, we need to �nd a way to
reuse existing editors within in our change-driven approach, because we want users
to be able to use existing editors.
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• How can the abstraction gap between architectural models and source code be closed

using consistency preservation rules?

Architectural models often abstract from implementation details. One architectural
component, for instance, can be realised by several classes in the source code. To
bridge the abstraction gap between architectural models and source code, we need
to de�ne consistency preservation rules, which can be used to keep architectural
models and source code consistent. The consistency preservation rules need to be
de�ne a mapping between source code elements and architectural model elements.
The consistency preservation rules heavily depend on the project environment and
the used code frameworks and techniques. For instance, the consistency preservation
rules need to take into account if the project is developed using Enterprise Java
Beans (EJBs), because EJB already de�nes components and interfaces on source code
level.

• Which steps are necessary to also enable coevolution of source code and a behaviour

model?

Architectural models often contain high-level information about the behaviour of the
software system. These models cannot be translated into source code directly because
they do not contain the necessary implementation details. They can, however,
be reverse-engineered from source code. To include behaviour models into our
Coevolution approach, we have to solve two challenges: The �rst challenge is that
the behavioural models of the architectural models needs to be updated incrementally
when developers change code. The second challenge is that it is necessary to �gure
out which code needs to be adapted, if architects change the behavioural model.

• What are the di�erent roles in a software development process when our Coevolution

approach is used?

A challenge is to de�ne how the di�erent users that have di�erent roles, such as
developer and architects, are involved in the software development processed when
using our Coevolution approach. Since the consistency preservation rules between
architectural models and code can be technology-speci�c or even project-speci�c a
role needs to be de�ned that is responsible for creating the consistency preservation
rules between architecture and code.

4.2. Coevolution of Architectural Models and Code

Within this section, we introduce the concepts of our Coevolution approach and outline
how it can be used to keep architectural models and source code consistent. Furthermore,
we explain models and the editors for architectural models and source code that we use
in our Coevolution approach. Even though we explain our Coevolution approach on
the example of the PCM as architectural modelling language respectively Architecture
Description Language (ADL) and Java as object-oriented language, the concepts can be
applied to other architectural modelling languages, such as UML component diagrams,
and to other programming languages, such as C# or C++, as well. As mentioned above,

55



4. A Method for keeping Architecture Consistent with Source Code

we presented the idea for our Coevolution approach in [Lan13] and instantiated it for
[Kra+15a].

To preserve consistency between di�erent models our Coevolution approach uses the
two main concepts: model-driven engineering, and change-driven engineering. Further-
more, our Coevolution approach reuses concepts from Vitruvius, which we presented in
[KBL13] and which was re�ned by Burger [Bur14]. In this section, we only explain these
concepts from the Vitruvius approach that we reuse and how we reuse them, while we
classify our Coevolution approach into the Vitruvius vision in the next section.

The �rst concept we use is the concept of model-driven engineering, which means
that the development process is model centric, and models are the main artefacts within
our Coevolution approach. In fact, we consider all involved artefacts as models. Hence,
the architecture and especially the source code are also considered as models within our
Coevolution approach. Even though from a technical perspective, Java source code is not
an Eclipse Modeling Framework (EMF) model, approaches such as Java Model Parser and
Printer (JaMoPP) [Hei+10], allow us to parse models in such a way that they can be treated
as EMF models. Treating the source code as a model allows us to apply model-driven
techniques, e.g. model to model transformations, to the source code and use the source
code together with model-based artefacts.

Change-driven means, that our Coevolution approach reacts on changes that users
perform in either the architectural model or the source code. Hence, the consistency
preservation steps that are necessary are executed after changes in either of the involved
models. This also means that the editors that we use in our Coevolution approach need
to report changes users perform. As we mentioned in Chapter 3, it is necessary to de�ne
bidirectional consistency preservation rules in order to react to these changes. To keep
architectural models and source code consistent, we need to de�ne consistency preser-
vation rules between the architectural metamodel and the source code metamodel. In
particular, we need to de�ne bidirectional consistency preservation rules between the PCM
metamodel and the Java metamodel. This bidirectional consistency preservation rules
can be de�ned and implemented either in the general purpose language XTend, which
we explained in 3 or in the Mapping Invariant Response (MIR) languages introduced by
Kramer [Kra14; Kra15; Kra17], Klare [Kla16], Werle [Wer16], and Fiss [FKL16]. Regard-
less of whether the internal language or the MIR is used to implement the bidirectional
consistency preservation rules, the consistency preservation rules need to specify speci�c
change preservation operations for each change respectively for a speci�c set of changes
performed by users.

We use the following concepts, which were originally introduced for the Vitruvius
approach: the Virtual Single Underlying Model (VSUM) (see Section 2.2.2), the corre-
spondence metamodel (see 3.4), the change metamodel (see 3.3), and the user change
disambiguation. We use the VSUM to store the model instances of the architectural mod-
els, the source code represented as models, and the correspondence model. We are using
instances of the correspondence metamodel to keep track of the corresponding elements.
Since we use the same correspondence metamodel as the Vitruvius approach we refer to
our correspondence metamodel as Vitruvius correspondence metamodel and to instances
of the model as Vitruvius correspondence models. The change metamodel allows us to
de�ne changes from di�erent editors in the common model instance, which can be used
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as input parameter for the consistency preservation process. This has the advantage that
we can use the same consistency preservation mechanism for changes that are performed
in di�erent editors respectively views. We furthermore use the concept of user change
disambiguation, which is used if changes users perform cannot be kept consistent auto-
matically without additional information. In this case, our Coevolution approach needs to
ask the users in order to clarify their intent, which can take place either before or from
within the consistency preservation operations. We proposed a mechanism how user
change disambiguation can be realised for changes in code in [LK14] by asking the users
to clarify the intent of a change. More details about the di�erent kinds of user change
disambiguation are explained in Section 4.4. Like the Vitruvius approach, we currently
make the assumption that only one model is changed at a given time. As a part of future
work, it should be investigated how concurrent editing on di�erent models by multiple
users can be enabled.

Figure 4.1 gives an overview of our Coevolution approach. In particular, it explains
the di�erent steps that are necessary to keep the models consistent. As the step zero (0),
users edit either the PCM Repository, the PCM System, or the Java source code, which
automatically changes the underlying models (either the architectural model or the source
code). This step is neither changed by nor in�uenced by our Coevolution approach. The
�rst step, in which our Coevolution approach is involved, is step (1). In step (1), the
monitors observe changes on the models and trigger the Vitruvius framework in step (2).
Within the trigger step, the monitors also pass the performed changes to the Vitruvius
framework. Based on these changes, the Vitruvius framework executes the consistency
preservation transformations (3). These transformations can use the information from the
changes as well as the information stored in the correspondence model (4) to update the
models (5). If a change is performed to behavioural code, the change is kept consistent
using a similar mechanism as depicted in Figure 4.1. However, in step (5), we execute a
incremental SEFF reconstruction step instead of a transformation. We will explain more
details about the incremental SEFF reconstruction in Section 4.5. To simplify Figure 4.1, the
concept of user change disambiguation is not shown. A user interacting step, for instance,
is possible from within the consistency preservation operations (step (5)).

4.2.1. The VSUM of our Coevolution Approach and the Definition of
Consistency Preservation Rules

As mentioned above, the metamodel level of our VSUM our Coevolution approach consists
of the architectural metamodel, the source code metamodel, and the correspondence
metamodel. In particular, we use the PCM as a metamodel for the architecture, JaMoPP
as metamodel of Java, and the Vitruvius correspondence metamodel. The consistency
preservation rules are also part of the VSUM and need to be de�ned upfront, i.e. during
the design time of the VSUM. On the instance level, our VSUM contains instances of these
metamodels, which are JaMoPP instances for the Java source code, PCM instances for the
PCM metamodel, and instances of the Vitruvius correspondence metamodel. Figure 4.1
shows that the consistency preservation rules can access both models within the VSUM
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Architecture
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Vitruvius
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Code
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updates (5)

updates (5)
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public class WebGUIImpl implements WebGUI {

@Override

public File httpDownload(Request request){

logger.info("Handle request " + request ");

}

}
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change (0)
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Figure 4.1.: The steps our Coevolution approach executes to keep architectural models
consistent with the source code. Step zero (0) is performed by users of the
architectural model editors or the source code editor. This step is not in�uenced
or changed by our Coevolution approach. In reaction to step zero, however,
our Coevolution approach performs the steps (1) through (5) in order to keep
architectural models and the source code consistent.
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as well as the Vitruvius correspondence model instances to keep the models consistent
after a change.

4.2.2. Monitored Source Code Editor

As editor for the JaMoPP metamodel, we use the standard Eclipse Java code editor. Even
though JaMoPP o�ers a textual editor for the Java model as well, we have decided to use
the standard Eclipse Java editor for the following reasons: First, the standard Eclipse code
editor is more powerful than the JaMoPP editor. For instance, it o�ers state of the art
code completion and powerful refactoring operations. Secondly, users of our Coevolution
approach can stick with the editor they are used to and can still use the tools the IDE
o�ers (e.g. refactoring, quick �xes etc.).

Since our goal is to use the standard Eclipse Java editor, we need to obtain all changes
that a developer performed within editor. As we explained in 3.5.2, we created an approach
to monitor the code editor in order to retrieve changes and convert them into compatible
changes, i.e. changes are converted to changes in the Vitruvius change metamodel. For
changes performed to classes, interfaces, methods, �elds, or annotations, we get exact
information about the change, e.g. we get the information that the class WebGUIImpl

has been renamed to NewWebGUIImpl. For changes in method bodies, however, we get
the information that the method body of a method has been changed, e.g. we get the
information that the method body of the method donwnload in the class WebGUIImpl has
been changed. Even though we implemented the monitor for the Eclipse Java editor, the
concept can be adapted to other IDEs under the condition that the IDE o�ers a method
to add a listener to the code editor that reports changes based on the Abstract Syntax
Tree (AST) changes and enabling plug-ins during runtime of the IDE.

Figure 4.2 shows how our Coevolution approach keeps models consistent from the
perspective of the code editor with our plugged in extension. The �rst task is that the
change (1) a developer performed to the source code is detected (2). After that the change
is classi�ed (3) either as unambiguous (3), ambiguous (3’), or as method body change (3”).
If it is an unambiguous change the consistency preservatican can be triggered directly
and the architecture can updated (5). If the change is classi�ed as an ambiguous change,
this means that our Coevolution approach is not able to keep the change consistent
without additional information from the developer. Hence, they need to clarify their intent
(4), in order to allow consistency preservation to keep the change consistent with the
architecture (5). If the change is classi�ed as method body change, we can run our change-
driven incremental SEFF creation that keeps the behavioural model corresponding to the
method body consistent (4’). Detailed information how the change-driven incremental
SEFF creation works can be found in Section 4.5.

4.2.3. Monitored Architectural Editor

As architectural editors, we use the standard PCM editors. Since our Coevolution approach
focuses on the PCM repository, the PCM system and the behavioural model SEFF, we use
these three editors onto the PCM metamodel as editors, which we already explained in
2.3. To include this editors within our Coevolution approach, we need them to report

59



4. A Method for keeping Architecture Consistent with Source Code

public class ATMImpl implements IATM {

private IAccountManager iAccountManager

public void withdraw(int cents, Account src){

iAccountManager.withdraw(cents, src));

//...

}}

source codedeveloper

consistency preservation

classify change

run incremental SEFF creator

method body changed (3”)

iAccountManager.withdraw

VariableUsage

generate SEFF for method (4’)

updated SEFF

changes (1)

component model

notify (2)
unambiguous (3)

ambiguous (3’)intent(4)
update (5)

ATM

Figure 4.2.: The process how our Coevolution approach keeps source code changes con-
sistent with the architectural model (see [LK14])
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the atomic changes. To do so, we can use the generic EMF model monitor, which we
implemented for the Vitruvius approach and explained in 3.5.1. The generic EMF model
monitor is able to monitor changes on the PCM models and reports the performed changes
as instances of the Vitruvius change model. The process of the consistency preservation
from the editors point of view is similar to the process, we explained for the code monitor
(see Figure 4.2). The main di�erence is that an architectural model is changed instead of
the source code and the source code is update instead of the architectural model.

4.2.4. UML Class Diagram Editor for Java Code

In [KLK16], we presented Projective UML class diagram editor for Java. Hence, this
section is based on the mentioned publication. Even though many editors exist that keep
source code and UML class diagrams consistent, we decided to create a model-based
UML class diagram editor as a projective view on the source code. In Chapter 7, we
introduce aproaches for keeping source code consistent with UML class diagrams, which
are related to our Coevolution approach as well as to Projective UML class diagram editor
for Java (ProjUMLed4J). Most related tools, such as UML Lab1, use an explicit UML model
and use an explicit consistency preservation consistency mechanism to keep source code
and UML models consistent. A popular tool, which also only uses the source code as source
for information is Together from Borland [Bor05]. The so called LiveSource mechanism
allows to keep source code consistent with the UML class diagram during the evolution of
a software system. Information, such as the multiplicity of annotations, which is part of
the UML diagram editor only, is stored in source code comments. The layout information
is stored in a separate folder within the project.

ProjUMLed4J dynamically generates a UML class diagram view from the underlying Java
source code when opened. It is created with Eclipse Sirius [VMP14]. As underlying model,
we use JaMoPP [Hei+10]. It allows users to use an UML class diagram view of the source
code and furthermore, it allows them to create, update, and delete operations for classes,
interfaces, methods, �elds, parameters and return types. Associations based between
classes are shown in the editor and can be speci�ed using the editor. An association
between two classes is created if one class has a �eld with the type of the other class and if
both classes are shown in the view. If the latter is not the case, the �eld in the source code
is displayed as �eld in the UML class diagram editor. The associations between the classes
are added to the source code using annotations added to the �eld. We decided to use
annotations instead of, for instance, comments, because annotations are checked by the
Java compiler. The association annotations specify the multiplicity of the association and
whether the association is an aggregation association or a composition association. The
annotations can be added manually during the evolution of the software system. To omit
the manual e�ort, they are also automatically created by ProjUMLed4J in a preprocessing
step during the creation of the UML class diagram editor view. The automatic creation of
annotations is able to detect the multiplicity of the annotations as follows: We assume an
in�nite upper bound if the type of the �eld is a collection type, for instance, ArrayList, or
if the �eld is an array. If this is not the case, we assume an upper bound of 1. If the upper

1http://www.uml-lab.com/
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bound is 1, i.e. the �eld is neither an array nor is the type of the �eld a collection type,
we are also able to �gure out the lower bound. This can be done by checking whether
the �eld is �nal or not. If the �eld is �nal, we assume a lower bound of 1, otherwise we
assume a lower bound of 0. Automatically detect precise multiplicities, such as limited
ranges, is both hard to assure in source code and hard to extract from source code. Listing
9 shows an example of an Association annotation.
public MyClass {

@Association(targetLowerMultiplicity=0,targetUpperMultiplicity=-1)

private MyString[] myStringList; }

Listing 9: Example for an Association annotation
During the generation of the UML diagram, ProjUMLed4J generates @Association for the
attribute myStringList if MyString is in the same package as MyClass. The multiplicity
values are represented by annotation attributes and are set to 1 by default. As myStringList
references an arbitrary number of MyString objects, however, we are able to set the target
multiplicity to -1. This value represents 0..* in the UML class diagram editor, i.e. an
arbitrary objects of MyStrings can be contained in the �eld myStringList number.

To use the editor within our Coevolution approach, it is necessary to monitor the
performed changes. As the editor changes the underlying source code automatically, we
can use Java source code monitor to monitor the changes. Hence, we currently do not
monitor the editor itself, but the underlying model. If information solely available in the
class diagram editor shall be kept consistent with another mode, we need to add explicit
monitoring for ProjUMLed4J. Currently, the only information not available in the source
code is the layout information. The layout information is stored by Eclipse Sirius in a
separate �le.

Currently, the UML class diagram editor is tailored in order to support the package
mapping consistency rules, i.e. it is able to present the classes contained in a package.
Hence, when using the package mapping consistency preservation rules, the class diagram
editor can be used to show the classes within one component. The UML class diagram
editor, however, can be extended easily in order to support an arbitrary set of classes.

Figure 4.3 shows an example of our running example and its corresponding UML class
diagram. The lower left part shows an evolution scenario: A new interface method (1)
is added through in the source code. After this new method has been added the a�ected
element in the UML class diagram editor is updated automatically (2).

4.2.5. Classification of our Coevolution Approach into the View-based
Engineering Approach VITRUVIUS

As we explained in 2.2.2 the Vitruvius approach is a change-driven view-based engi-
neering approach, which can be used to keep model instances of di�erent metamodels
consistent during the development process. To this end, Vitruvius uses a VSUM to store
all involved models. The access to the models within the VSUM is solely possible via views,
which monitors all changes. In this section, we classify our Coevolution approach into the
Vitruvius approach and point out the contributions of this thesis to the application of
Vitruvius to the CBSE domain.
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interface IWebGUI{

int webUpload(File file);

File webDownload(String fileName);}

public class WebGUI implements IWebGUI{

private IMediaStore iMediaStore;

@Override

public File webDownload(String fileName){

System.out.println("Begin download");

// ...

}

@Override

public int webUpload(File file){

System.out.println("Begin upload");

// ...

}}

interface IMediaStore{

public int upload(File file);}

public class MediaStore implements IMediaStore{

private int uploadCounter = 0;

@Override

public int upload(File file){

System.out.println("Begin MediaStore upload");

uploadCounter++;

}}

IWebGUI

webUpload(file:File):int
webDownload(fileName:String):File

IMediaStore

upload(file:File):int

WebGUI

MediaStore

uploadCounter:int

iMediaStore1

interface IMediaStore{

int upload(File file);

File download(String fileName);

}

IMediaStore

upload(file:File):int
download(fileName:String):File

add download
method(1)

update a�ected
UML artifact

automatically(2)

Figure 4.3.: The UML Class Diagram Editor applied to our running example [KLK16]. The
left upper part shows the source code of the MediaStore. The right upper part
shows the corresponding UML class diagram.
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In the initial idea of Vitruvius, Burger [Bur14] and we [KBL13] introduced the Vit-
ruvius vision. Within this vision, we focus on the consistency preservation of arbitrary
models and use as example the CBSE domain, which can be seen in Figure 4.4. As initial
models to explain the vision, we used PCM, UML, Java source code and the Sensor Model,
which stores the simulation results, from the PCM. As views, we use the existing standard
views for the models included as view types, and �exible view types and �exible views
(see Section 2.2.2) to combine information from more than one underlying models and
the correspondence model if necessary. For the de�nition of the consistency preservation
rules, we proposed the use of the MIR languages and a correspondence model. The corre-
spondence model allows us to store the information about corresponding model elements.
In order to ease the understandability of Figure 4.4, the correspondence model is not made
explicit, but comprised in the arrows between the models. To conclude the vision: We
[KBL13] as well as Burger [Bur14] focused on the introduction of the Vitruvius idea
and its general application to heterogeneous metamodels. Burger [Bur14], furthermore,
focuses on the creation of �exible views. In both publications, however, the main focus
are neither the concrete consistency preservation rules nor the coevolution of behaviour
models and code. Hence, the novel contributions for the application of Vitruvius to the
CBSE domain within this chapter are the de�nition of:

• reusable and extendable consistency preservation rules from PCM to Java source
code,

• a projective UML class diagram editor/view for source code,

• a Coevolution approach behavioural source code elements and a behaviour model,
and

• the speci�cation of di�erent user change disambiguation levels.

Furthermore, we extend the existing Vitruvius development roles by de�ning roles for
software architects, component developers and architectural consistency methodologists.

In the following, we list the concepts that our Coevolution approach and the Vitruvius
approach have in common. This concepts are the

• change-driven change propagation, which means that changes users perform are
monitored, converted into a Vitruvius change model representation, and propagated
immediately,

• use of a VSUM to store all involved models, and

• use of a correspondence model in order to keep track of corresponding model
elements.

Hence, our Coevolution approach can be seen as the �rst step towards the realisation of
the Vitruvius vision for the CBSE domain. As metamodels, we use the Java metamodel
provided by JaMoPP and PCM. As view types, we use the existing Java source code editors
as views to the source code view type, the view type and existing views for the PCM, and a
UML class diagram view on to the source code. Parts of future work are to include �exible
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public class WebGUIImpl implements WebGUI {

@Override

public File httpDownload(Request request){
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Figure 4.4.: The Vitruvius vision applied to the CBSE domain, as we [KBL13] and Burger
[Bur14] proposed. As models we use the PCM, UML, the PCM Sensor Frame-
work model, and a model of Java source code. The consistency preservation
rules between the model instances are depicted as the arrows annotated with
CPR. The view types are either combining view types (if they contain infor-
mation from more than one metamodel) or projectional view types (if they
contain information from one metamodel only).
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view types within our Coevolution approach in order to allow users to use views such as
the component-class implementation view as well as the annotated source code view, and
include more metamodels, such as the UML metamodel and the Sensor metamodel into
the VSUM.

4.3. Consistency Preservation Rules between
Component-based Architecture and Source Code

In order to keep architectural models and source code consistent during software develop-
ment and software evolution, we need to de�ne bidirectional consistency preservation
rules between architecture and code. These consistency preservation rules have to de�ne
how architectural elements are represented in code and vice versa. Hence, we address the
second scienti�c challenge that we de�ned for this Chapter (see Section 4.1). To do so, the
mappings specify the consistency preservation operation that has to be executed if users
of our Coevolution approach add, change, or delete either code elements or architectural
elements. A typical example for a consistency preservation operation is that an archi-
tectural element should be renamed automatically after its corresponding source code
element has been renamed by developers. However, not all information in the source code
relevant for the architectural model. Helper methods, for instance, which are used within
a component to help the component to ful�ll its provided services are not architectural
relevant.

Hence, the consistency preservation rules describe the overlap between the source code
and the architectural model. We de�ne the overlap as information that is contained in
both models, the architectural model and the source code model. Identifying the overlap
and de�ning according consistency preservation rules to keep architectural models and
source code consistent is the main task of the architectural consistency methodologists
(see 4.7.1).

4.3.1. Dimensions of Consistency Preservation Rules

We identi�ed the following three dimensions for the consistency preservation rules: i) a
technology-speci�c dimension, ii) a project-speci�c dimension, and iii) an element-speci�c
dimension. Technology-speci�c in this case means that the mapping between architecture
and code depends on the used existing technology and how it describes architectural
artefacts, such as components and interfaces, in source code. De�ning technology-speci�c
consistency preservation rules allows us a) to reuse the consistency preservation rules for
projects that use the same technology, and b) to use our Coevolution approach together
with already existing tools and frameworks. An example for an existing technology is EJB,
which has a concept of component-like classes build in the framework already. If EJB is
used in the current project to realise the architectural model in source code the consistency
preservation rules should be created with respect to EJB concepts and should use the built-
in concepts of the EJB framework. Another example of technology-speci�c mapping is the
mapping between the architectural model and Plain Old Java Objects (POJOs). The standard
Java source code does not have a built-in language feature to represent components or
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other architectural elements. Hence, architectural consistency methodologists needs to
de�ne how architectural elements and code elements correspond to one another based on
the existing elements in the source code, such as classes, interfaces and packages.

The project-speci�c dimension means that even if the underlying technology is the
same for di�erent projects, the consistency preservation rules can vary depending on the
project their are used in. For instance, in one project every source code interface should
be represented as architectural interface, while in another project only those interfaces,
which are contained in a speci�c package/folder, are considered as architectural relevant
interfaces. Project-speci�c consistency preservation rules can be reused within all projects
that have the same mapping between code and architecture as well as the same technology.

As last dimension, we have identi�ed the element-speci�c dimension, which allows
us to de�ne consistency preservation rules for speci�c elements. The element-speci�c
dimension itself is divided into two dimensions: a) an element-speci�c dimension for
speci�c set of elements, and b) an element-speci�c dimension for a speci�c element.

The �rst element-speci�c consistency preservation rules are element-speci�c consis-
tency preservation rules that are valid for a set of elements. They can be de�ned for
elements that do not follow the general consistency preservation rules, which are de-
�ned for the current project and technology. Hence, the element-speci�c consistency
preservation rules overrides the existing consistency preservation rules for a speci�c
set of elements. During the evolution of a software system our Coevolution approach
checks whether such an element-speci�c mapping rule exists for the element that has
been changed before the application of the consistency preservation rules. If this is the
case only the element-speci�c consistency preservation rules are executed. Within our
Coevolution approach, we use element-speci�c consistency preservation rules for the
integration of existing source code, which are not compliant to the current consistency
preservation rules (see Section 5.4.4).

The second dimension are element-speci�c rules for a speci�c element. The di�erence
to the �rst kind of element-speci�c consistency preservation rules is that these rules are
valid only for a speci�c element, not for a set of elements. The consistency preservation
rules speci�c for one element override the set of element-speci�c consistency preservation
rules, i.e. if an element has consistency preservation rules speci�c for that element
these consistency preservation rules are executed. Within our Coevolution approach, we
currently do not use this kind of element-speci�c consistency preservation rules. We
outline, however, how they can be used for integrated elements.

Within this thesis, we present project and technology-speci�c consistency preservation
rules between PCM and source code using the technology EJB and consistency preservation
rules between PCM and POJOs. Furthermore, we present a project and technology-speci�c
mapping between the PCM and a dependency injection framework, where the dependency
injection framework is used to compose components. We also present technology-speci�c
consistency preservation rules between the PCM and artefacts from the Eclipse Plugin
Development, which are Open Services Gateway initiative (OSGi) based, to show that
it is possible to support technology-speci�c consistency preservation rules, where the
components and interfaces are partly de�ned in other artefacts than the source code itself.
All consistency preservation rules, we present in this thesis, can be reused in other projects
or can be used as base rules for project-speci�c extensions.
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PCMmetamodel element Source code language element

Repository Three packages: main, contracts, data types
BasicComponent Package within the main package and a public com-

ponent realisation class within the package
OperationInterface Interface in the contracts package
Signature&Parameters Methods&parameters

CompositeDatatype Class with getter and setter for inner types
CollectionDatatypes Class that inherits from a Java collection type (e.g.

ArrayList)
RequiredRole Field typed with required interface in the component-

class and constructor parameter for the �eld in the
component-class

ProvidedRole Main class of providing component implements the
provided interface

SEFF Method in the component realisation class that over-
rides the corresponding interface method

Table 4.1.: Example mapping between PCM repository metamodel elements and source
code language elements

4.3.2. Package Mapping Consistency Preservation Rules as Example

This section presents an example for bidirectional consistency preservation rules between
architectural models and source code. We use these consistency preservation rules in the
remainder of this section to explain our Coevolution approach.

As architectural model for the consistency preservation rules, we use a PCM Rrepository

and a PCM System. As source code, we use Java source code build with POJOs. POJO, in
this case, means that no speci�c mechanism, such as EJB, is used to de�ne components or
interfaces. An overview for the mapping of a PCM repository can be found in Table 4.1,
while an overview of the mapping to the PCM system can be found in Table 4.2. As the
consistency preservation rules are based on the package hierarchy in Java, we call them
package mapping consistency preservation rules.

4.3.2.1. Mapping the Repository Elements to Source Code

Using the package mapping consistency preservation rules, we map a Repository to three
packages in the source code. This means if a new Repository has been created we create
one package that corresponds to the repository. This package will contain all components.
Furthermore, the package contains one contracts package for the interfaces and one
datatype package for all data types. If users start with the source code and create a package
�rst, we create the Repository as well as the both necessary packages inside the new
package. Hence, we assume that the newly created package corresponds to the Repository.
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Each OperationInterface is mapped to one Java interface within the contracts package
with the same name. Signatures and Parameters are mapped accordingly to the matching
Java interface. In the case of interfaces the opposite mapping is straight forward: if a Java
interface has been created in the contracts package a new OperationInterface is created
automatically. The same is true for Java methods and their parameters. Java interfaces
that are not created in the contracts package, are not considered as architectural relevant
interfaces by default. Users of our Coevolution approach and the consistency preservation
rules, however, can specify those Java interfaces as architecture relevant if they want to
override the consistency preservation rules.

For each CompositeDatatype created in the architectural model, we create one class in
the datatypes package. For the innertypes of a CompositeDatatype, we create a �eld for the
innertype and one getter and one setter for the �eld. For each CollectionDatatype, we also
create a class in the datatypes packages. This class inherits from a Java Collection type (e.g.
ArrayList). Users of our Coevolution approach need to specify which Java Collection type
shall be used for the speci�c DataType. To do so, the consistency preservation operation,
which is executed after a CollectionDatatype has been created, asks users after they added
a CollectionDatatype in the architectural model which Java Collection type should be used.
The reason why users need to disambiguate this change is that the PCM abstracts from
the concrete used collection type and only speci�es that a collection of elements shall
be used. The type parameter for the created collection class equals the corresponding
Java class for the innertype of the CollectionDataType. If no innertype has been added
upon the creation of the CollectionDataType, we use Object as type parameter. As soon as
users add the innertype to the CollectionDataType, we replace Object with the Java class
that corresponds to the DataType of the innertype. To map DataTypes from source code
to the architecture two possibilities exist: The �rst one is straight forward: If a class in
the datatypes package has been created, we automatically create a corresponding PCM
DataType. To determine whether a CompositeDatatype or a CollectionDataType should be
used, we again, ask the users of our Coevolution approach. The second possibility to
create an architectural DataType based on a change in the source code is more complex:
We create a PCM CompositeDatatype, for classes that are used as parameter or return
type in architecture relevant methods. Even though this does not match our mapping
exactly, we create the data type in order to enable the coevolution. This, however, could
cause the e�ect that a class can correspond to a component as well as to a data type.
This approach is also realised within Source Code Model eXtractor (SoMoX), where a
component class can be used as data type as well. Using our approach, we could avoid
allowing the use of a component class as parameter or return type by forbidding the use
of a component-realisation class or any class that is not in the datatype package as return
type or parameter. If a developer would try to do so, a warning or error could be displayed
and the action could be undone automatically. Implementing this approach allows us to
detect this kind of architectural violation.

Each BasicComponent is mapped to a package inside the Repository package that has
the same name as the BasicComponent and one component-realising class inside the
component package that has the same name as the BasicComponent with the su�x Impl.
This class serves as Facade or Proxy class for the component. Furthermore, this class
is marked as �nal to forbid inheritance from this class. If we map from code to the
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architecture we create by default a BasicComponent automatically if the above-mentioned
mapping becomes true. This means, if a developer creates a package within the repository
package and a class within this package that has the same name as the package, we create
a BasicComponent in the architectural model. Since this mapping is hard to match for
developers we soften this mapping. For instance, a new BasicComponent can be created in
the following cases:

• no class has been created within the package yet, and

• the class name does not match the package name.

To allow such a softening of the mapping, we use user change disambiguation (see Sec-
tion 4.4), which allows us to let developers and architects decide whether they want to
create a BasicComponent and which class should be the component-realising class for the
BasicComponent.

A RequiredRole is mapped to a �eld in the realisation class of the BasicComponent and
a constructor parameter within this class as well as an assignment statement in the
constructor that assigns the value of the constructor parameter to the �eld. This means
that we use the dependency injection pattern2 with injection through the constructor.
Hence, a component realisation class cannot be instantiated without an instance of each
of its required interfaces. The mapping from the source code to the architectural model
can be softened as follows: as soon as a �eld is added to the component-realisation class
that has the type of an architectural relevant interface, a RequiredRole and the constructor
parameter as well as the assignment in the constructor can be created.

A ProvidedRole means that an architectural component provides an architectural in-
terface. To map this to the source code, we let the component-realising class implement
the Java interface that corresponds to the provided interface. The mapping from code to
architecture is straight forward: if developers add an implements relation between the
component-realisation class and an interface that corresponds to an architectural interface,
we create a provided role in the architecture model.

A SEFF is mapped to a class method, which overrides a Java interface method that cor-
responds to the SEFF ’s OperationSignature. The mapping from source code to architecture
is straight forward: As soon as a method in the source code is created that overrides an
interface method, which corresponds to an OperationSignature, a new SEFF is created in
the BasicComponent, which corresponds to the method’s class.

4.3.2.2. Mapping between Composed Entities from PCM and Source Code

To enable the use of PCM composed entities in our consistency preservation rules, we
need to de�ne bidirectional consistency preservation rules for them as well. The super
class of composed entity in the PCM is the class ComposedProvidingRequiringEntity. Con-
crete CPREs are the PCM Systems, CompositeComponents and SubSystems. The di�erence
between them is that the System is a �rst class entity in the PCM, while the Composite-

Components and the SubSystems are contained in the Repository. Hence, the di�erence in
the mapping is as follows: CompositeComponents and SubSystems map to a own package

2http://martinfowler.com/articles/injection.html
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PCMmetamodel element Source code language element

System package and public class within the package
CompositeComponent & Subsystem Package within the main Repository package

and public class within the package
AssemblyContext �eld in the class and instantiation of the map-

ping class
RequiredRole Member typed with required interface and con-

structor parameter for member
ProvidedRole class of the System implements the provided in-

terface
ProvidedDelegationConnector delegation call to the corresponding �eld within

the overwritten method of the provided inter-
face

RequiredDelegationConnector constructor parameter, typed with the inter-
face of the required delegation connector that
is given to the constructor of the requiring
components-realisation class

AssemblyConnector assignment of the constructor parameter from
the �eld that corresponds to the requiring As-
semblyContext with the corresponding �eld
that corresponds to the providing Aassembly-
Context

Table 4.2.: Example mapping between PCM system metamodel elements and source code
language elements
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within the Repository’s package. A System, however, maps to its own package that is not
inside the Repository package. Similar to the mapping of a BasicComponent the package
that is created for the CPRE has the same name as the CPRE and the realisation class within
the package also has the same name with an appended Impl. To map these elements from
source code to architecture we use the following approach: If a new package or class is
created, which is not covered by the correspondences yet, we request users to disambiguate
the change in order to �gure out whether the created package respectively the created
class should be mapped to a CompositeComponent a Subsystem or a BasicComponent. If
users create a new package on the same hierarchical level as the package that corresponds
to the Repository, we also request users to disambiguate the change in order to �gure out
whether a System should be created.

Even though the �rst mapping rule is di�erent depending on the kind of the Composed-

ProvidingRequiringEntity (CPRE) the remainder of the bidirectional consistency preserva-
tion rules for CPREs is identical for the package mapping consistency preservation rules.
Hence, for all CPREs an AssemblyContext is mapped to a �eld in the CPRE-realisation
class. The �eld has the type of the component’s realisation class from the encapsulated
component of the AssemblyContext and the name of the AssemblyContext. Furthermore,
we create an instance of the component’s realisation class in the constructor and connect
the AssemblyConnectors as well as the DelegationConnectors accordingly. To map an As-

semblyContext from source code to the architecture, we use, again, a soften mapping rule:
A new AssemblyContext is created each time developers create a �eld in the class that
corresponds to a CPRE.
ProvidedRoles and RequiredRoles of CPREs are mapped the same way as they are mapped

for BasicComponents.
A ProvidedDelegationConnector is a connector that connects one public accessible inter-

face from the CPRE to the inner AssemblyContexts. To map this to source code we create a
delegate call within the overwritten corresponding method of the CPRE’s realisation class.
The code created by the consistency preservation rules, delegates the call to the �eld that
corresponds to the encapsulated component of the AssemblyContext.

A RequiredDelegationConnector is mapped to a constructor parameter. This parameter
is typed with the Java interface type that corresponds to the required interface within the
RequiredDelegationConnector. The mapping from code to architecture is straight forward
in this case: If a constructor parameter, which corresponds to an architectural interface
or to an architectural component, is added by developers, we create a new RequiredDele-

gationConnector. If the constructor parameter maps to a component-realisation class, we
create RequiredDelegationConnectors for all RequiredRoles of the component.

An AssemblyConnector is a connection between two AssemblyContexts and connects the
required interfaces with the provided interfaces. This means that we assign the constructor
parameter of the �eld that corresponds to the requiring AssemblyContext with the �eld
that corresponds to the providing AssemblyContext.

72



4.3. Consistency Preservation Rules between Component-based Architecture and Source Code

4.3.2.3. Discussion and Limitations of Architecture to POJOs Consistency Preservation
Rules

The presented bidirectional consistency preservation rules are only one example, how
instances of the architectural model PCM can be mapped to Java source code and vice
versa. When using the presented consistency preservation rules it is not possible to
map all valid PCM instances to source code. Hence, the consistency preservation rules
introduce some constraints to the PCM instances. For instance, within the PCM it is
possible for one BasicComponents to provide the same OperationSignature twice. This is
not possible using the package mapping consistency preservation rules, we explained in
the section above. In general, two approaches are possible to overcome the limitation
of introducing new constraints. The �rst solution is to check the constraints that are
introduced by the consistency preservation rules and resolve occurring con�icts before
executing the consistency preservation operation. If a constraint violation is detected,
an error can be generated and reported to the users. Hence, users need to resolve this
manually, for instance, by removing one con�icting element. The resolution of some
con�icts, however, can be done automatically as well. The second solution is to change
the consistency preservation operations in order to remove the introduced constraints.
Therefore, the consistency preservation operations can be extended, for instance, to use
the same mapping from architectural model to source code as proposed by Becker [Bec08].
He proposes the use of explicit classes for ProvidedRoles, i.e. the roles are made explicit.
This approach is implemented, for instance, for SimuCom and ProtoCom. The approach
has the advantage that it is possible to map all valid PCM instances to source code. It,
however, has the disadvantage that more source code needs to be generated. The additional
generated code introduces some indirections to source code, which makes the source code
harder to understand for developers. This is not an issue for SimuCom and ProtoCom, as
they are used to generate code that a) is used for performance prediction, or b) is used to
generate code stubs. This becomes an issue, however, when the source code should be
used by developers to create actual software systems.

In the current shape of the consistency preservation rules, we use one package for the
Repository, which contains all packages for all Components directly. If a project uses many
Components, many sub-packages are created within the Repository package. Having many
of sub-packages in the Repository package, could decrease the understandability of the
source code. To overcome this issue, it is possible to create more container packages for the
elements within the Repository package as follows: The Repository package could contain
own sub-packages for BasicComponents and CompositeComponents.

Using the consistency preservation rules, it is not possible to deploy the created com-
ponents and systems on di�erent machines. To overcome this issue, one possibility is to
use Remote Procedure Calls (RPC)3 for calls from one component to another component.
This means that all interfaces are realised as RPC interfaces. Thus, it would be possible to
deploy the components on di�erent machines.

Furthermore, using the package mapping consistency preservation rules, it is com-
plicated to create CPREs from the source code, because developers need to comply to
explained consistency preservation rules for CPRE within the source code. Hence, we

3https://docs.oracle.com/javase/8/docs/platform/rmi/spec/rmiTOC.html
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I IWebGUI
File httpDownload(Request request)

void httpUpload(File �le)

I IMediaStore
File[] download(string[] ids)

void upload(File �le)

WebGUI
SEFF < httpUpload >
SEFF < httpDownload >

MediaStore
SEFF < download >
SEFF < upload >

«Requires»«Provides» «Provides»

Figure 4.5.: The Repository of the MediaStore example that contains the components Me-

diaStore and WebGUI

recommended to create CPRE via the architectural model instead of creating them from
within the source code directly.

4.3.2.4. Example using the Package Mapping Consistency Preservation Rules

In this section, we introduce a small example project that consists of an architectural
model and source code, which are created using the above-mentioned package mapping
consistency preservation rules. We introduced the simple example in our previous work
[Lan13]. The example is a simpli�ed version of the MediaStore example introduced by
Koziolek et al. [KBH07] and recently described by Strittmatter and Kechaou [SK16], which
enables users to download audio �les from a server and upload audio �les to a server.

In our simpli�ed version, the Repository of the MediaStore consists of the two com-
ponents MediaStore and WebGUI and the two interfaces IMediaStore and IWebGUI (see
Figure 4.5). The component MediaStore provides the interface IMediaStore, while the We-

bGUI component provides IWebGUI and required IMediaStore. The WebGUI interface
contains the two methods httpUpload and httpDownload. The IMediaStore interface con-
tains the two methods upload and download. Hence, the WebGUI component has the SEFFs
httpUpload and httpDownload, while the MediaStore component has the SEFFs upload and
download.

Figure 4.6 shows the System of our simple example: each component is instantiated
once within an AssemblyContext. Furthermore, the System provides the IWebGUI interface
and delegates calls to the AssemblyContext WebGUI. Hence, users can communicate with
the WebGUI component to access the media �les that are stored within the MediaStore

component.
Figure 4.7 shows the UML class diagram of the MediaStore example, which contains

the classes as well as the packages our Coevolution approach creates using the package
mapping consistency preservation rules. Figure 4.7 focuses on the packages created
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MediaStoreWebGUI

Figure 4.6.: The System of the MediaStore example. The System provides the interface
IWebGUI through a ProvidedDelegationRole.

for components. Hence, we omit the default-packages for the OperationInterfaces, the
DataTypes, and for the Repository itself.

To show how a BasicComponent with one provided OperationInterface and one required
OperationInterface is realised in source code, consider Figure 4.8. The OperationInter-

face named IWebGUI and its OperationSignatures correspond to the IWebGUI interface
and its methods. The OperationInterface named IMediaStore is mapped accordingly. The
component-realising class is named WebGUIImpl and is contained in the package webgui.
According to the package mapping consistency preservation rules it implements the IWe-

bGUI interface and implements the methods httpUpload and httpDownload. Furthermore,
it needs an instance of the IMediaStore as constructor parameter that is assigned to the
�eld mediaStoreImpl.

Listing 10 shows how the System of our simple example is mapped to source code.
According to the consistency preservation rules it has one private �eld for each of the Sys-
tem’s AssemblyContexts, which are instantiated and connected in the System’s constructor.
Since the System provides the IWebGUI interface and delegates calls to the AssemblyCon-

text that contains the WebGUI component, the System’s realising class implements the
IWebGUI interface, overrides the methods from the IWebGUI interface, and delegates the
calls to these methods to its �eld of the WebGUIImpl class.

4.3.3. Outline on How to Verify and Validate our Consistency Preservation
Rules

Even though we do not present a formal veri�cation of the used consistency preservation
rules in this thesis, we outline how the consistency preservation rules can be veri�ed.
Our consistency preservation rules could be veri�ed using mechanisms, which can ap-
plied to the General Purpose Language (GPL) Java. Besides of the evaluation, we will
show in Chapter 6, the consistency preservation rules can be validated using N-Version
Programming (NVP). We explain these two techniques in the following.

We do not focus on the veri�cation techniques for model transformations, because
the consistency preservation rules are written in languages, which translate to Java code
and directly manipulate the models. Calegari and Szasz [CS13] provide a state-of-the-
art overview of model veri�cation techniques. They point out that many tools, used
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�interface�
IWebGUI

+httpDownload(request:Request):File
+httpUpload(�le:File):void

WebGUIImpl

+WebGUIImpl(iStore:IMediaStore)

�interface�
IMediaStore

+download(ids:String[]):File[]
+upload(�le:File):void

MediaStoreImpl

1

mediastore

webgui

Figure 4.7.: The UML class diagram of the MediaStore example. To ease the diagram, we
omitted the contracts, the repository, and the datatypes package.

package mediastoresystem;

public class MediaStoreSystemImpl implements IWebGUI{

private final MediaStoreImpl mediaStoreImpl;

private final WebGUIImpl webGUIImpl;

public MediaStoreSystemImpl(){

mediaStoreImpl = new MediaStoreImpl();

webGUIImpl = new WebGUIImpl(mediaStoreImpl);

}

@Override

public void httpUpload(File file){

webGUIImpl.httpUpload(file);

}

@Override

public File[] httpDownload(String[] ids){

return webGUIImpl.httpDownload(ids);

}

}

Listing 10: Mapping from the example PCM System to source code using the package
mapping consistency preservation rules
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public interface IWebGUI{

File httpDownload(Request request);

void httpUpload(File file);

}

public final class WebGUIImpl implements IWebGUI {

public File httpDownload(Request request){

//...

}

public void httpUpload(File file){

//...

}

private final IMediaStore iMediaStore;

public WebGUIImpl(IMeidaStore iMediaStore){

this.iMediaStore = iMediaStore;

}

}

public interface IMediaStore{

File[] download(String[] ids);

void upload(File file);

}

I IWebGUI
File httpDownload(Request request)

void httpUpload(File �le)

WebGUI
SEFF < httpDownload >
SEFF < httpUpload >

I IMediaStore
File[] download(string[] ids)

void upload(File �le)

«Requires»

«Provides»

Figure 4.8.: The mapping between a BasicComponent and its provided and required Oper-

ationInterfaces to the corresponding source code elements using the package
mapping consistency preservation rules
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for the veri�cation of model transformation are based on relational and graph-based
transformations, because both can be translated into formal domains. Furthermore, they
state that transformation languages, which are closely related to standard programming
languages, introduce similar veri�cation problems as standard programming languages
(see Calegari and Szasz [CS13]). As a result, traditional code veri�cation approaches can
be applied to verify such transformation languages.

4.3.3.1. Using Standard Javamechanisms for the Verification

As we explained in Section 3.6, we use Xtend and Domain Speci�c Languages (DSLs) for
the creation of the consistency preservation rules. As both of this languages are translated
into Java source code, we can use standard mechanisms for Java to verify the correctness
of the consistency preservation rules. Using the behavioural speci�cation Java Modelling
Language (JML) (see Leavens et al. [LBR99]), for instance, allows users to specify contracts
for each method. The contracts can be used to verify the code against the contracts. This
can be done, for instance, by using the veri�cation framework KeY introduced by Beckert
et al. [Bec+07]. It combines automatic and interactive proving.

To use such an approach for the veri�cation of our consistency preservation rules,
we would need to specify contracts for each consistency preservation method. For the
consistency preservation rules implemented in the GPL Xtend, this can be done by adding
the contracts to each Xtend method and by instructing the Xtend code generator to add
this JML contracts to the generated Java method. For the MIR transformations this can
be done either by adding the JML speci�cation to the generated Java source code or by
adding the JML speci�cations to the part of the source code, which is translated to Java
methods. To ease this approach for the MIR languages, they could be extended in order to
support users by adding the JML speci�cations. Therefore, a new language feature can
be implemented, which allows users to add JML speci�cations within the MIR languages
directly.

4.3.3.2. Using NVP for the Validation

One possibility to validate the correctness of the consistency preservation rules is to use
NVP (see Chen and Avizienis [CA78]). NVP, in general, proposes the idea of implementing
multiple versions of a software system using di�erent teams and di�erent languages. For
the implementation, the teams get the same speci�cation for the software system. The goal
is to get fault-tolerant software systems by having redundant implementations performed
by di�erent teams in order to rule out programming errors. NVP is used, for instance,
for aircraft control systems. During the runtime of the software systems, a voter collects
the output of the di�erent implementations. If the output of the systems is not identical
the voter assumes that the majority of systems computes the correct output and uses this
output. Knight and Leveson [KL86] performed an experiment using 27 implementations
of the same speci�cation to investigate, whether the programs fail for di�erent tests. They
found out, however, that many implementations fail for the same tests. Hence, it turned
out that di�erent programming teams perform similar mistakes and that NVP should be
used with care.
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To validate the correctness of our consistency preservation rules using NVP, we would
require di�erent developers to implement the same consistency preservation rules. This
could be done, for instance, with students in a practical course. For the package mapping
consistency preservation rules, we already have two implementations for consistency
preservation rules from PCM to Java. We performed the initial implementation using the
GPL Xtend (see Section 3.6.1), while the other implementation has been performed by Klare
[Kla16] in the reactions language. Both implementations can be used for change-driven
consistency preservation for the direction from PCM to Java code. They both pass the
tests we implemented for the package mapping consistency preservation rules from PCM
to Java (see Klare [Kla16]). We do not consider our solution as NVP because Klare did
know the Xtend implementation and was even able to partly reuse parts of the Xtend
implementation. The implementations show, however, that we get the same result using
the GPL and the reactions language for the implemented test cases.

4.4. Consistency Automation Levels and User Change
Disambiguation within our Coevolution Approach

As we mentioned in the sections above, our Coevolution approach communicates with
the users, if the consistency between architecture and code cannot be preserved fully
automatically. The communication is usually triggered by the consistency preservation
operations to either notify the user, e.g. about the creation of a new element in the
architecture as reaction of a source code change, or to ask the users intention. To give an
example for the user change disambiguation mechanism, consider our running example in
Section 4.3.2. We introduced the mapping for CollectionDatatypes to source code, where
we map each CollectionDatatype to its own class that inherits from a Java Collection class.
On architectural level, however, only generic CollectionDatatypes are known. Hence, it
is unclear which Java collection should be used as base class for the new Java class. One
possibility is to determine the Java collection class, e.g. ArrayList, in the consistency
preservation rules operation already. This has the disadvantage, that for all collections
the same base class is used by default even though the class is not suitable for all speci�c
requirements. To overcome this disadvantage, we proposed to ask the users in order to
disambiguate a performed change and let them decide which Java collection class should
be used after a new CollectionDatatype has been added. Hence, the approach in this case
is semi-automatic, because we request users to disambiguate the change.

In this small example we illustrated that a fully automatic consistency preservation not
intended for every change using our Coevolution approach. To ensure semi-automatic
consistency within our Coevolution approach, we identi�ed two kinds of possible user
change disambiguation. The �rst one is an interactive user change disambiguation using
dialogs, and the second one is a postponed user change disambiguation using a task list.

In this section, we �rst explain and classify the di�erent levels of automation for con-
sistency preservation, we used in our Coevolution approach. Afterwards, we explain the
possible time and kind of user change disambiguation. In the last step of this section, we
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no automated consistency

general warnings

change impact analysis

suggestions of consistency
preservation steps

semi-automated consistency
with user change disambiguation

fully automated
consistency preservation

more automation less
user change disambiguation

Figure 4.9.: Di�erent levels of automation in Vitruvius for consistency preservation based
on [Wer16] and [Kra17]. For our Coevolution approach only the top three
levels are relevant.

explain the di�erent kinds of user change disambiguation our Coevolution approach uses
to clarify the intent of a user change if necessary.

4.4.1. Levels of Automation used in our Coevolution Approach

The problem of not being able to keep changes in models consistent automatically with
the other models in the VSUM is not speci�c to our Coevolution approach, but also
applies to the Vitruvius approach in general. For Vitruvius in general Werle [Wer16]
and Kramer [Kra17] identify six levels of automation for the consistency preservation,
which are depicted in Figure 4.9. We adapted the terminology slightly in order to match
the terms used in this thesis. Using our Coevolution approach only the following three
automation approaches are relevant: fully automated consistency preservation, semi-
automated consistency preservation with user change disambiguation, and automated
suggestions for consistency preservation steps.

Fully automated consistency preservation means that after either a source code element
or an architectural element has been changed the corresponding model elements are
changed and kept consistent automatically. Using our package mapping consistency
preservation rules the most changes fall into this category. Especially for the mappings
from the statical architectural elements, e.g. components and interfaces to source code
almost all changes can be kept consistent automatically.
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Semi-automated consistency preservation means, that additional information is neces-
sary to preserve the consistency after users performed a change to a model. Based on this
additional information from users, the changes on the corresponding model elements can
be executed automatically by our Coevolution approach. Hence, the additional informa-
tion is usually required by the consistency preservation operation itself to get additional
information from users in order to keep the models consistent. Using the package mapping
consistency preservation rules, this approach is used mainly for the source code to archi-
tecture mapping. For instance, the approach is used if a new package is added. In this case,
users need to clarify whether the new package should be mapped to a new component or a
new system or if they want to decide later, whether the new package should be mapped at
all. The approach is also used if users add a class into a package without a corresponding
component or system yet. For the package mapping consistency preservation rules from
architectural model to source code, the users only need to disambiguate a change if they
created a new CollectionDatatypes.

Automated suggestions for consistency preservation means that the corresponding
elements cannot be created automatically. In this case only suggestions can be provided
automatically. These suggestions specify which elements need to be changed respectively
adapted by the users to achieve consistency between the models. Using our Coevolution
approach and the package mapping consistency preservation rules changes to the internal
behaviour of a SEFF fall in this category. These changes fall in this category, because,
it is in general not possible to determine automatically the code for the actions within
a SEFF. For instance, an InternalAction in a SEFF could span multiple methods and call
arbitrary third party libraries. Hence, if an action is added to a SEFF, we cannot change the
code accordingly, but we can point to the method that needs to be adapted by developers.
Further details to the mapping between the behaviour in terms of SEFFs and code are
explained in Section 4.5.

If our Coevolution approach is used it depends on the implemented consistency preser-
vation rules, whether models can be kept consistent automatically or whether users are
request to disambiguate a change. Especially, the �rst two levels are depending on the
used consistency preservation rules, because the implemented consistency preservation
operations can decide hard coded which actions should be executed, instead of asking
the user to disambiguate the change. Avoiding the kind of user change disambiguation,
where the users need to provide additional information, has the advantage that users are
not interrupted often during the development. It has, however, the disadvantage that
the options for the end users are limited. These limitations can be acceptable for certain
domains or projects where such decisions are clear and can be made during the design
time of the VSUM. To give an example for a user change disambiguation that could be
avoided, consider the example for CollectionDatatypes. In this case, we currently request
users to disambiguate the change in order to get the information which Java collection
type should be used for the corresponding class. In order to avoid users to disadvantage
a change, we could change the mapping, for instance, in a way that the Java collection
ArrayList is used for all CollectionDatatypes. To avoid user change disambiguation for
changes in source code, we could specify, for instance, that for each new package in the
source code, a new BasicComponent is created automatically. Hence, in both cases a user
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change disambiguation could be avoided, but the options for end users of our Coevolution
approach would be limited.

4.4.2. Point in Time and Kind of User Change Disambiguation

In the section above, we introduced the automation levels used in our Coevolution approach.
Three other challenges for the user change disambiguation in our Coevolution approach are
to determine i) the point in time when a user change disambiguation should be executed, ii)
the amount of information that is necessary, and iii) the kind of user change disambiguation,
which determines how users are requested to disambiguate the change. These challenges
are not independent from each other in our Coevolution approach, because the time and
the amount of information necessary for a user change disambiguation usually determines
also the kind of the user change disambiguation.

For our Coevolution approach, we identi�ed two points in time when a user change
disambiguation can take place: They either can take place directly after a user performed a
change, or they can take place in a future point in time. Hence, the �rst one is an interactive
user change disambiguation, for which we propose the use of dialogs. The second ones are
future interactions that do not interrupt the users during the development, but the users
need to take care of the consistency preservation in a later step. The requested information
from a speci�c user change disambiguation can vary between a single information that
needs to be provided by users, up to the request of changing many elements in the source
code or architecture after one corresponding element has been changed.

As we mentioned above the kind of user change disambiguation depends on the point in
time as well as on the requested information. For our Coevolution approach, we currently
use dialogs and task lists as kinds of user change disambiguation. Dialogs are suitable if
only one or few information from the same user that performed the change, which caused
the immediate execution of the current consistency preservation operation. Task lists
are suitable if at least one of the following conditions is true: i) many information are
necessary to ensure consistency, ii) the user that performed the change is not responsible
or able to ensure consistency, or iii) the user that performed the change should not be
interrupted.

Similar to the automation level challenge the above-mentioned challenges for user
change disambiguation are also challenges for the whole Vitruvius approach. Kramer
[Kra17] also identi�es that it is necessary to determine the time (when) and the kind (how)
of user change disambiguation. For the time challenge he proposes three possibles points
the time: before the transformation, during the transformation (when needed), and after
the transformation. For the kind of user change disambiguation he proposes interactive
as well as postponed user change disambiguation. While the interactive kind is suitable
for immediate user change disambiguation, the postponed user change disambiguation is
suitable if di�erent users respectively di�erent user roles are involved in the consistency
preservation process. While our point in time and kind of user change disambiguation are
speci�c for our Coevolution approach, the challenges and solutions Kramer proposed are
more general and tackle bidirectional transformation challenges using di�erent automation
levels in general.
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4.4.3. Interactive Interactions using Dialogs

As mentioned above, this interactive dialogs are used by our Coevolution approach if
information are needed from the same user that performed the change in an interactive
way to �nish the execution of the current consistency preservation operation. On the
automation levels, we presented above, the user dialogs can be classi�ed on the second
level (semi-automated consistency preservation).

For the dialogs itself, we propose two dimensions. The �rst dimension determines
whether a modal or a non-modal respectively modless dialog should be used. Modal
dialogs are used by our Coevolution approach if immediate user reaction is necessary to
execute the current consistency preservation operation. Since modal dialogs are blocking
dialogs, the advantage of modal dialogs for our Coevolution approach is that no other
changes can occur until the dialog is answered and closed. The disadvantage of modal
dialogs, however, is that they need immediate response from the users and block them
until they disambiguated the change. Modless dialogs on the other hand are non-blocking
dialogs. For our Coevolution approach this means that users can continue to work on the
models even if the dialog is not answered and closed yet. Hence, modless dialogs should be
used when possible in general. Within our Coevolution approach modless dialogs are used
if an interactive interaction with the users is necessary, but the answer to the dialog is not
necessary immediately. The challenge of modless dialogs for our Coevolution approach are
that changes in one of the models can occur even if the dialog remains unanswered. Hence,
they can be used for those information that are not critical for other model elements.

The second dimension is the kind of dialog that is used to display the user change
disambiguation to the users. The kind of the used dialog depends on the information
that is requested by the current consistency preservation operation. We currently use the
following three dialog kinds: If the transformation can provide a choice between di�erent
options, we use a radio button dialog. It the transformation needs to have an information
that needs to be user-de�ned, we use a free text input box. As last kind, we use yes/no
dialogs if the consistency preservation operation needs the information, whether for a
performed change a corresponding element should be created or changed as well.

In the following, we give some examples for dialogs using our Coevolution approach
and the package mapping consistency preservation rules. Let us �rst consider the example
of PCM CollectionDatatypes again. If a CollectionDatatype has been created in the PCM it
is unclear for the consistency preservation operation which Java collection class should be
used. Hence, additional information from the user is required. Since only one information
is required and the possible selection can be de�ned upfront, we use a modal dialog box
that uses radio buttons where users can choose from di�erent Java collections types.

If a new package has been added, we use a modless dialog box with radio buttons to
get the information from the user whether a new architectural element should be created
as corresponding element for the new package. This new corresponding element can
either be a BasicComponent, a CompositeComponent, or a System. Another option is to
not create a corresponding architectural element respectively decide later whether a new
architectural element should be created. If a new class has been added in a package that
already has a corresponding component or a corresponding system, but no realisation
class for the component or system yet, we use a yes/no dialog to ask the user whether the
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new class should be the realisation class for the corresponding architectural element or
not.

4.4.4. Task list to enable late resolving of inconsistency

Another way to interact with the users, which we use within our Coevolution approach,
is a task list, which contains future tasks for software developers and software architects.
Using our Coevolution approach, the following additional domain speci�c information are
stored in the task list to ease the task of the users: i) information which element has been
changed respectively which element has been added or removed, and ii) a pointer to the
corresponding element(s) that should be changed to keep the models consistent. The task
list can be used for semi-automated consistency preservation as well as for the suggestion
of consistency preservation steps. One advantage of the task list is that it can be used for
consistency preservation tasks that require users to add many information to either one
of the models, e.g. implementing a whole method or class. Another advantage is that it
can be used if the current user is not the right user to keep the current change consistent
with the other models.

Using the package mapping consistency preservation rules within our Coevolution
approach, we use the task list for changes within a PCM SEFF as follows: After an action
has been added to a SEFF, we add a task to the task list that points to the method, which
corresponds to the SEFF. The created task contains the information which element in the
architecture has been changed and provides information about the change that should
be performed in the source code method. This is easy for control �ow elements, such
as ExternalCallActions, Loops, and Branches. For InternalActions, however, we only can
point to the corresponding method and can add information between which control �ow
elements the new change has been introduced.

4.5. Coevolution of Source Code Behaviour and Architectural
Elements

In this section, we present an approach that keeps behaviour models consistent with the
source code during the software development and software evolution. Hence, this section
addresses the third research challenge, which we de�ned in Section 4.1 for this chapter.
Having an up-to-date behaviour model enables users of our Coevolution approach to get
an abstract view about the behaviour of the software system. Furthermore, the behavioural
model can be used to perform model-based analyses. Since we use the PCM as architecture
model, we use the SEFF as behavioural model that should be kept consistent with the
source code. Even though we focus on the SEFF, the concepts we propose can be applied
to other behavioural models, such as the UML activity diagram, as well. Since we use the
PCM and propose a possibility to keep the PCM SEFFs consistent with the source code,
the models we use can be used in a later step to predict the performance of a software
system using the performance prediction capabilities of the PCM (see 2.3).

In the sections above, we explained how we can keep the static architecture in terms
of packages, classes, interfaces, �elds and parts of constructors of a software system
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consistent with the source code. Hence, we consider that code as static source code. Code
that needs to be kept consistent with behavioural models is the code within method bodies.
Hence, we consider that code as behavioural source code.

To keep a behavioural model and behavioural source code consistent, we could use
bidirectional consistency preservation rules between source code and models. This would
be a similar approach to the consistency preservation between static architecture and static
source code. It turned out, however, that this approach can only be used as unidirectional
mapping from behavioural architecture models to source code. To keep code changes
consistent with the architecture, we extended the SEFF reverse engineering approach from
SoMoX [Kro12]. This approach is able to reconstruct a SEFF incrementally after users
changed the source code using the code editor. The SEFF reconstruction depends on the
used consistency preservation rules between architectural model and source code, i.e. the
SEFF reconstruction needs to be de�ned speci�cally for the used consistency preservation
rules.

In the remainder of this section, we �rst explain how changes on architectural behaviour
models can be kept consistent with the source code (see Section 4.5.1). In the second
part of the section (see Section 4.5.2), we explain how we can keep the behavioural
architecture models consistent after the source code has been changed and explain how
this approach can be used to detect architecture violation (see Section 4.5.2.4). To ease the
understandability of this approach, we give an example for the incremental-change-driven
reconstruction in Section 4.5.2.6. In Section 4.5.3, we explain how this two approaches can
be combined to support coevolution.

4.5.1. Mapping from SEFF to Source Code

Keeping changes in a SEFF consistent with source code is challenging, because the SEFF is
an abstraction from the source code and does not specify how the underlying source code
is implemented. An InternalAction, for instance, can abstract a complicated algorithm that
spans over several component-internal classes and is used by the component to ful�ll
its provided service. Hence, generating meaningful code if a SEFF element is added or
changed is in general not possible for all SEFF elements. As mentioned above, however,
we can de�ne consistency preservation rules from behavioural models to source code.
To this end, however, we are not generating code if a user changes the SEFF because the
SEFF is an abstraction from the source code. We are, however, able to generate tasks for
developers who are responsible for implementing the software system. This tasks are
generated in the task list for developers and point to the method that corresponds to the
SEFF in which the Action has been changed. After implementing the tasks developers
need to mark them as done and remove them from the task list. The approach of using
a task list to restore the consistency later, is similar to the approach described by Balzer
[Bal91]. He describes an approach for resolving inconsistency. In his approach, tolerated
inconsistencies are marked and its values leading to them are stored. The inconsistencies
need to be resolved in a later step.

Even though we currently only generate tasks in the task list, it is possible to generate
code stubs in the code for certain domains or SEFF elements. It is possible to create
code for the control �ow elements within the SEFF, such as Loops and Branches as well
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as for ExternalCallActions. This can be done using the information from the Vitruvius
correspondence model. For instance, it is possible to generate stubs for a switch-case
statement within the code after a Branch action has been added in a SEFF. Doing so can be
useful in certain domains, such as the embedded systems domain. However, since the goal
of our Coevolution approach is not to enable visual programming and we do not focus on
the embedded systems domain, we have not further investigated the possibilities on how
to generate stubs for the control �ow elements within a SEFF.

4.5.2. Incremental SEFF Creation to Create up-to Date Behavioural Models

As mentioned above, to incrementally create the SEFF from the source code, we extend the
SEFF reverse engineering approach from SoMoX [Kro12]. We explained the SoMoX SEFF

reconstruction approach as proposed by Krogmann [Kro12] in detail in 2.4. For this section,
it is relevant to know that the SEFF reconstruction performs a control �ow analyses for
each method that corresponds to a SEFF in order to create the actions within a SEFF from
source code. To do so, the SEFF reconstruction approach uses a two-state process. Within
the �rst step of the process all method calls within a method are classi�ed. Herby, the
calls are divided in component-internal calls, component-external calls, and library calls.
Component-external calls are calls to a method of another component or to an interface
method that corresponds to an OperationSignature. A library call is a call to a third party
library or a language API a or a data type. Internal calls are those calls that are neither of
the above, i.e they are calls to a method that is in a class within the same component. In the
second step of the process, the actual control �ow analyses is executed in order to build the
SEFF. Based on the component-external calls the SEFF reconstruction approach creates the
corresponding SEFF elements for loops, switch and if statements. The SEFF reconstruction
process of SoMoX, however, only works if the whole source code of the software system
has been parsed upfront. Furthermore, a Source Code Decorator Model (SCDM), which
can be used to classify the method calls within a method, needs to be available. The �rst
point is not an issue for the SoMoX SEFF analysis, because the whole source code of the
software system under investigation is parsed before the SoMoX reconstruction process
starts. The second point is also not an issue for the SoMoX SEFF analysis, because SoMoX
creates a SCDM within the reconstruction steps that are executed before the actual SEFF
reconstruction.

4.5.2.1. Goal and Challenges for the Change-Driven Incremental SEFF Creation

The main goal of the incremental SEFF reconstruction is to built a SEFF for only the part
of the source code that has been changed. Hence, only the a�ected SEFF (s) should be
recreated during an incremental SEFF reconstruction. This reconstruction needs to be
done without the need of parsing the complete source code of a project. For instance, a
possible unit that can be reconstructed incrementally is a SEFF for the method after the
method body has been changed by a developer. As SoMoX creates the SCDM during the
�rst phase of the reconstruction of a software system, we do not have a SCDM within
our Coevolution approach. Hence, another goal is to enable the SEFF reconstruction
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without having a SCDM available. The SoMoX SEFF reconstruction uses the SCDM for
the following tasks:

1. check which component belongs to which class, i.e. the SCDM is used to classify
the method calls, and

2. �nd the called interface and the called port for a found component-external call.

From these tasks the SCDM is used for, we can identify the �rst three challenges that
appear if we want to use the SoMoX SEFF reconstruction approach within our Coevolution
approach: i) we need to circumvent the fact that we need to have the parsed source code
of the whole project, ii) the classi�cation of method calls need to work either without
the SCDM or with an incrementally updated SCDM, and iii) the called interface and the
ports also need to be identi�ed either without the SCDM or with an incrementally updated
SCDM. These challenges are not independent from each other, because the second and
third steps not only need an up-to-date SCDM, but they also need the parsed source code
of the whole project. Hence, if an approach solves the second and third challenge without
parsing the source code of the whole project it would automatically solve the �rst challenge
as well.

Another challenge, challenge iv), comes with the incremental reconstruction of component-
internal methods after their code has been changed. Using the SoMoX SEFF reconstruction
as introduced by Krogmann [Kro12] component-internal methods are either inlined in the
SEFF or made explicit in ResourceDemandingInternalBehaviours. They are made explicit
if the following two conditions are true: i) the method is called more than once within a
component, and ii) the method contains at least one component-external method call. In
the following, we refer to SEFF and ResourceDemandingInternalBehaviours as ResourceDe-
mandingBehaviour if the statement we make is true for both of them. From the standard
reconstruction of component-internal methods, we can derive the following two sub-
challenges for the change-driven reconstruction of ResourceDemandingBehaviour: iv).1:
adding or removing a method call, which destination is a component-internal method,
to a method that corresponds to a ResourceDemandingBehaviour, and iv).2: changing a
component-internal method in a way that a�ects the component external-behaviour of
the component. Since in the standard SoMoX SEFF reconstruction approach component-
internal methods are inlined within their parent ResourceDemandingBehaviour if their
called only once respectively made explicit if they are called at least twice, we need to
make this behaviour incremental. This sub-challenge, however, only occurs if a component-
internal method contains at least one component-external call. Otherwise it would be
inlined to an InternalAction in the a�ected ResourceDemandingBehaviour. The second sub-
challenge, iv).2, occurs, for instance, if a component-internal method does not contain
a component-external call yet, but the latest change has introduced a new component-
external call. The exempli�ed change of introducing the �rst component-external call to
a method, also a�ects ResourceDemandingBehaviours that correspond to other methods,
because the component-internal method would have been abstracted to an InternalAction

using the SoMoX SEFF reconstruction in those SEFFs. One consequence that follows from
both of the two sub-challenges is that changes on one method in the code can potentially
a�ect more than one ResourceDemandingBehaviour of one component. Like the other
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challenges, the fourth challenge does not occur in the standard SoMoX SEFF reconstruc-
tion, because the code is not analysed incrementally within SoMoX, i.e. the code under
investigation does not change during the reconstruction.

Example for the Challenges Consider the following listing that represents an imple-
mention of the download method of the WebGUIImpl class, which we introduced in Sec-
tion 4.3.2.4:
public final class WebGUIImpl implements IWebGUI {

private final IMediaStore iMediaStore;

public File httpDownload(Request request){

if(RequestHelper.isValid(request)){

File file = this.doDownload(request);

return file;

}else{

logger.warn("Request " + request + "is not valid");

return null;}

}

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

if(id == null || id.length == 0)

return null;

}

}

Listing 11: An implementation of the download method

Let us assume, that SoMoX reconstructed the same static architecture as depicted in the
running example (see Figure 4.5). Hence, the SCDM would contain the information that
the components WebGUI contains the class WebGUIImpl and the component MediaStore

contains the class MediaStoreImpl. Furthermore, the SCDM contains the information, that
the OperationInterface IWebGUI as well as its signatures corresponds to the IWebGUI Java
interface and its methods, and that the OperationInterface IMediaStore as well as its sig-
natures corresponds to the IMediaStore Java interface and its methods. As mentioned
above, the SoMoX SEFF reconstruction mechanism uses the SCDM to identify whether a
component-external method is used. Using the provided SCDM, the SoMoX SEFF recon-
struction considers the method calls doDownload as component-internal call. We assume
that the method calls isValid, getId and log are calls to third party libraries. Hence, these
calls are considered as library calls. Since no component-external methods are used in the
method httpDownload and in the methods that are called directly or indirectly the created
SEFF contains only one InternalAction.

Evolution scenario Let us assume the following evolution scenario, in which developers
change the doDownload method and add a component-external method call as follows:

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);
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if(id == null || id.length == 0)

return null;

return this.iMediaStore.download(id)[0];

}

}

Listing 12: The doDownload method after a developer added a component-external method
call

The new call to the download method of the IMediaStore interface is a component-external
call. As the SoMoX SEFF reconstruction does not work incrementally, all above-mentioned
challenges occur after after such a change: i) if no information is available in which
part of the source code the change occurred and if the model of all source code �les
from the project is necessary, the source code of the whole project needs to be parsed,
ii) since our Coevolution approach does not have a SCDM available, we do not know
whether a given method call is a component-external method call or a component-internal
method call. iii) if the call is a component-external method call our Coevolution approach
does not know how to represent the method call on the architecture model, because it is
unclear which architectural interfaces and which architectural ports are used to realise
the call, and iv) to update the SEFF accordingly the SEFF needs to be analysed for both:
the method doDownload and all methods that call the doDownload method as well as the
methods that call these methods. In our example, this means that we need to analyze the
httpDownload method as well. Within the httpDownload the if-else statement needs to be
made explicit into a BranchAction, because the if branch contains an external method call.
Figure 4.10 shows the resulting SEFF before the change (left side) and after the change
(right side). The �gure illustrates that multiple SEFF changes can be necessary after one
component-external method call has been added to a method.

4.5.2.2. Change-driven Incremental SEFF Reconstruction based on the SoMoX SEFF
Reconstruction

In this section, we propose an approach that solves the above-mentioned challenges and is
able to reconstruct a SEFF incrementally in an change-driven way. The approach neither
needs a SCDM nor the parsed source code of the whole project. Hence, the �rst challenge
is implicitly solved by solving the second and third challenge.

To solve the second challenge, we propose the following approach: Even though no
SCDM is available, we can use the current consistency preservation rules as well as the
information from the Vitruvius correspondence model to classify each method call. Since,
the classi�cation of method calls depends on the current consistency preservation rules
our classi�cation mechanism is speci�c for the used mapping. The speci�c part, however,
only applies to the external calls and library calls since internal calls can be found generic,
because component-internal calls are those calls which are neither a component-external
call nor a library call. This means that we need to have a mapping-speci�c external call
�nder as well as a mapping-speci�c library call �nder.

To solve the third challenge, we need to �nd an approach that is able to �nd the matching
OperationSignature and the matching ProvidedRole for a component external method call.
As for the second challenge, this can be done using the information from the current
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Figure 4.10.: Comparison between the SEFF before a new method call has been added (left
side) and the reconstructed SEFF after the new method call has been added
(right side).
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consistency preservation rules and the Vitruvius correspondence model. Hence, this
information is mapping-speci�c as well, because the information how a ProvideRole and
a source code method is mapped to a OperationSignature can vary between di�erent
consistency preservation rules.

Hence, we can state that to use an incremental version of the SoMoX SEFF creation ap-
proach within our Coevolution approach, one needs to implement the following functions
speci�c for the used consistency preservation rules:

• a method call classi�cation that classi�es component-external calls and library calls,
and

• a matcher that �nds the corresponding OperationSignature and RequiredRole for a
component-external call.

To solve the fourth challenge, we propose two di�erent approaches: The �rst one,
recreates the SEFF the same way as proposed by Krogmann [Kro12]. The second one,
slightly changes the existing SEFF reconstruction approach: it makes all method calls that
are considered as component-internal calls explicit within the SEFF. Both are presented in
the following.

Change-drivenSEFF Reconstructionby InliningComponent-internalCalls The �rst approach
to solve the fourth challenge including its sub-challenges, creates the same output as the
SoMoX SEFF reconstruction process. Hence, methods that are considered as component-
internal methods are treated the same way as in SoMoX. This means they are inlined within
the SEFF by default. As mentioned above, Krogmann [Kro12] proposed an optimization
of this approach by creating ResourceDemandingInternalBehaviours for all methods that
are i) considered as component-internal method calls, and ii) called at least twice within
the component. In the SEFF an InternalCallAction is created for the method calls to those
component-internal methods. For the internal-method itself a ResourceDemandingInter-

nalBehaviour is created. This approach has the advantage that it omits the redundancy of
having the same source code method represented in more than one SEFFs. If this approach
would not be used, a method that is called multiple times would be analysed multiple
times and would be represented in multiple SEFFs.

To reconstruct SEFFs in an incremental, change-driven way and solve the fourth chal-
lenge using the approach presented by Krogmann, our Coevolution approach needs to be
able to change not only the ResourceDemandingBehaviours elements corresponding to the
changed method, but it also needs to be able to reconstruct the actions within ResourceDe-

mandingBehaviours for a�ected methods. Hence, the approach needs to able to change
more than one ResourceDemandingBehaviours for one change. We �rst need to decide
whether we need to change more than the SEFF elements that correspond to the current
method. For sub-challenge iv).1 this is the case if either of the following cases is true: i) if
a call is added that calls a component-internal method so that this component-internal
method is called twice, or ii) if a call has been removed that calls a component-internal
method so that the component-internal method is called only once. For sub-challenge iv).2
this is the case if either of the following cases is true: iii) the �rst component-external
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method call has been added to a component-internal method, or iv) the last component-
external call has been removed from a component-internal method. If either of these four
cases is true, we secondly need to calculate the a�ected ResourceDemandingBehaviours.
Since the Vitruvius correspondence model contains the correspondence information from
a method to its SEFF respectively ResourceDemandingInternalBehaviour, we can �gure out
the a�ected ResourceDemandingBehaviours directly by using the Vitruvius correspon-
dence model. Since we know all actions that are a�ected by the change, we also have the
information which parts of the corresponding ResourceDemandingBehaviours are a�ected.

Algorithm 2 Change-driven SEFF reconstruction that inlines component-internal calls
Require: changedMethod← source code method,

vcm← Vitruvius correspondence model
1: behaviour← reconstructBehaviourForMethod(changedMethod)
2: internalMethodChanged← ¬vcm.hasSe�For(changedMethod)
3: if 2nd overall call to any internal method introduced then
4: internalMethod← getInternalMethodCalledTwice(changedMethod)
5: rdib← createResourceDemandingInternalBehaviourForMethod(internalMethod)
6: a�ectedRBs← vcm.getCorrespondingResourceBehaviours(internalMethod)
7: for all a�ectedRB ∈ a�ectedRBs do
8: internalCallAction← newInternalCallActionCalling(rdib)
9: a�ectedRB.replace(rdib.actions, internalCallAction)

10: else if removed second to last call from any internal method then
11: internalMethod← getInternalMethodCalledOnlyOnce(changedMethod)
12: rdibForMethod← vcm.getCorrespondingBehaviour(internalMethod)
13: internalCallAction← �ndInternalCallActionThatCalls(rdibForMethod)
14: callingBehaviour← internalCallAction.parentBehaviour
15: callingBehaviour.replace(internalCallAction, rdibForMethod.actions)
16: delete(rdibForMethod)
17: else if internalMethodChanged∧ (�rst external call added∨ last external call removed)

then
18: a�ectedMethods← newEmptySet
19: invokingMethod← �ndInvokingMethod(changedMethod)
20: corresponding← vcm.correspondingBehaviour(calleeMethod)
21: while corresponding = ∅ do
22: a�ectedMethods.add(invokingMethod)
23: invokingMethod← �ndInvokingMethod(changedMethod)
24: corresponding← vcm.correspondingBehaviour(invokingMethod)
25: for all a�ectedMethod ∈ a�ectedMethods do
26: reconstructSEFFforMethod(a�ectedMethod)

As last step, we need to update all a�ected ResourceDemandingBehaviours as shown in
Algorithm 2 and described in the following: If the �rst case (i) is true, our approach creates
a ResourceDemandingInternalBehaviour for the method that has been called and creates
an InternalCallAction within the ResourceDemandingBehaviour that corresponds to the
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method that has been changed. Furthermore, it replaces the actions, which correspond to
the called method with an InternalCallAction to the newly created ResourceDemandingIn-

ternalBehaviour in their current ResourceDemandingInternalBehaviour. Hence, actions that
correspond to the method are made explicit in an ResourceDemandingInternalBehaviour

and this ResourceDemandingInternalBehaviour is called in the existing ResourceDemand-

ingBehaviour, where the actions were inlined. If the second case (ii) is true, our approach
rolls back the steps done for case i). This means, that the corresponding ResourceDe-

mandingInternalBehaviour for the method is removed and the actions of it are inlined
in the ResourceDemandingBehaviour, that calls the ResourceDemandingInternalBehaviour

using an InternalCallAction.
If the third case (iii) is true, we need to create an ExternalCallAction in the ResourceDe-

mandingBehaviour, which corresponds to the changed method. Furthermore, we need
to recreate the ResourceDemandingBehaviour of the method that calls the component-
internal method and the methods calling this method until we reach a method that directly
corresponds to a SEFF or a ResourceDemandingInternalBehaviour. The reason for that is
that the call to the component-internal method can be executed, for instance, within a
for-loop or an if statement, which has been abstracted to an InternalAction until the new
component-external method call has been introduced. However, with the new component-
external call action in the component-internal method, this control-�ow elements become
relevant for the behavioural model as well and need to be made explicit in the ResourceDe-
mandingBehaviour. If the fourth case (iv) is true, we need to abstract the method call
into an InternalAction. As in the third case, we need to recreate the ResourceDemanding-

Behaviour for the current method as well as the ResourceDemandingBehaviour that calls
the internal method. Again, this has to be done until a method is reached that either
corresponds to a SEFF or a ResourceDemandingInternalBehaviour directly. To �gure out,
whether a method directly corresponds to either of both or not, we can again use the
Vitruvius correspondence model. For methods with a direct correspondence the matching
ResourceDemandingBehaviour is stored, while for other methods only their actions are
stored in the correspondence model.

This approach has the advantage that the abstraction level remains the same as in
the original SoMoX SEFF reconstruction. However, it has the disadvantage that multiple
ResourceDemandingInternalBehaviours need to be updated for speci�c changes, e.g. if the
�rst component-external call has been added to a component-internal method.

Change-driven SEFF Reconstruction by making all Component-internal Calls explicit The
second approach to solve challenge iv) and its sub-challenges is to change the existing
SEFF reconstruction approach. Instead of inlining component-internal method calls within
the current ResourceDemandingBehaviour, we propose to make every component-internal
method explicit within its own ResourceDemandingInternalBehaviour. Hence, we create a
ResourceDemandingInternalBehaviour for each component-internal method if it is called
the �rst time from a method that corresponds either to a SEFF or another ResourceDe-
mandingInternalBehaviour. In the ResourceDemandingBehaviour that corresponds to the
actual changed method, we create an InternalCallAction, which calls the ResourceDe-

mandingInternalBehaviour. During the creation of the InternalCallAction, we do not
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know whether the called ResourceDemandingInternalBehaviour will contain a component-
external method call in the future. Hence, the surrounding control �ow elements of the
component-internal method calls are need to made explicit as well, even if the called method
does not contain a component-external method call yet. If, for instance, a component-
internal method is called within a for-loop, we need to make this for loop explicit in the
corresponding ResourceDemandingBehaviour as well. Sub-challenge iv).1 is solved since
no inlining is done using this approach. Instead every component-internal method is
made explicit in a ResourceDemandingInternalBehaviour, regardless whether it is called
only once or whether it contains a component-external method call. Sub-challenge iv).2 is
omitted, as ResourceDemandingBehaviours behaviours are made explicit as soon as they
are called the �rst time, i.e. during the development time it cannot occur that more than
one ResourceDemandingBehaviour is a�ected by one change. Hence, the challenge that
multiple ResourceDemandingBehaviours are a�ected by one change is omitted, since only
the ResourceDemandingBehaviour is a�ected that corresponds directly to the changed
method.

This approach has the advantage that it usually does not need to deal with the recon-
struction of multiple ResourceDemandingBehaviours after a single change in one method
has been performed by a developer. The reconstruction of multiple ResourceDemand-

ingBehaviours after a change needs to be executed only if a change has been performed
that introduces the �rst method call to a method that has not been reconstructed to a Re-

sourceDemandingBehaviour yet. In this case, the newly called method is reconstructed �rst
and a ResourceDemandingInternalBehaviour for it is created. Furthermore, for component-
internal methods and their corresponding actions in the behavioural model neither the
inlining strategy into the parent ResourceDemandingBehaviour nor the strategy of making
them explicit into an own ResourceDemandingInternalBehaviour has been done dynami-
cally.

The approach, however, has the disadvantage that abstraction is lost, because every
component-internal method that is used is made explicit regardless whether it contains
a relevant component-external behaviour or whether it is called at least twice within
the component. Hence, the created behavioural model potentially contains unnecessary
information, which can make it hard for users of the architectural view to get a quick
overview to the insights of a component’s behaviour. To overcome this disadvantage, we
propose a view that hides unnecessary ResourceDemandingInternalBehaviours dynamically
by inlining them as follows: In the �rst step, all ResourceDemandingInternalBehaviours

that are either only called once within all ResourceDemandingInternalBehaviour or only
contain InternalActions can be inlined into the ResourceDemandingBehaviour where they
are called. In the next step, control �ow elements, such as loops and branches, that
internally consists only of InternalActions can be composed to one InternalAction. In the
last step, consecutive InternalActions can be merged to one InternalAction. This view can
be created dynamically from the underlying model and can be shown to users of the
behavioural model. This view has the disadvantage, that if users perform a change on the
architectural behaviour model we cannot �gure out the correct position in the source code
where to add the new element respectively to which method a task in the task list should
be added. However, we can add the task for the developers to the parent SEFF.
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4.5.2.3. Mapping-Specific Call Classification and RequiredRole Finder for the Package
Mapping Consistency Preservation Rules

In this section, we present a mapping-speci�c call classi�cation and a mapping-speci�c
matcher that �nds the matching RequiredRole for a component-external call for the package
mapping consistency preservation rules we introduced in Section 4.3.2. This, consistency
preservation rules map each component to its own package and a class within this package
that is the component realisation class.

CallClassification for thePackageMappingConsistencyPreservationRules Within the pack-
age mapping consistency preservation rules, we can de�ne component-external calls with
each one of the following de�nitions:

1. calls, where the called method corresponds to an OperationSignature,

2. calls, where the called method corresponds to either an OperationSignature or a
SEFF, or

3. calls, where the destination of the call is an interface method that corresponds to an
OperationSignature or if the destination of the call is a class whose package or parent
package corresponds to another component as the class of the current method.

The �rst approach has the advantage, that it follows exactly the mapping we de�ned
in Section 4.3.2. Hence, the check whether a call is a component-external call can be
done directly using the Vitruvius correspondence model, because the only check that is
necessary is whether the destination method corresponds directly to anOperationSignature.
The disadvantage of this approach, however, is that calls, whose destination is outside
of the package but does not ful�ll the mapping directly are not covered. Hence, this
approach assumes that developers are aware of the consistency preservation rules and only
introduce component-external calls by calling the required interfaces directly. Similar to
the �rst approach the second approach assumes that the users are aware of the consistency
preservation rules. It adds the possibility to call methods, which are not interface methods
but correspond directly to a SEFF of another component.

This disadvantage can be overcome when the third approach is used. For the third
approach, we de�ne a component-external call as a call that calls a method that is contained
within a package that corresponds to a another component as the package of the calling
method. This approach, has the advantage that we can �gure out if a call has been
introduced that is not covered by the current architectural mapping yet. For instance, we
can �gure out if a developer adds a component-external call that is a call to a class method
of another component, that does not correspond to a OperationSignature or a SEFF and
can react accordingly. We will discuss possible reactions to this architecture violations
in Section 4.5.2.4. To �gure out whether a call is a component-external call, we need to
implement a mechanism that returns the corresponding architectural component for a
given method. To do so, we use the following approach: First we check, whether the class
of the current method is the component realisation class for the current component. If
this is not the case and the class does not have any correspondences, we check whether
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the package of the class corresponds to a component. Again, if this is not the case, we
recursively check the parent packages until we �nd a correspondence to a component.
After getting the component of the current method and the component of the called
method, we can check whether the call is a component-external call by checking whether
the components of the methods are identical or not.

Using the example package mapping consistency preservation rules, a library call is a
call to a third party library or a call to the method within the Java language API or a call
to method, whose class corresponds to a PCM data type, but not to a component. Hence,
to �gure out, whether a call is library call or not, we can check whether the class of the
called method corresponds to a component. If this is the case the call is not a library call.
As mentioned above, calls that are neither component-external calls nor library calls are
component-internal calls. Hence, only calls to the methods that are contained in the same
component are considered as component-internal calls.

RequiredRole Finder for thePackageMappingConsistencyPreservationRules Based on the
above-speci�ed external call �nder, we also need to de�ne a mapping-speci�c Require-

dRole �nder. In the following, we explain one possibility to do so. The used approach
is depicted in Figure 4.11. We propose is an architecture-centric approach, i.e. we use
architectural models and the existing correspondence model elements, in order to �nd the
RequiredRole. The source code elements are only used as helper elements in order to �nd
the corresponding architectural elements.

The �rst step, is to �gure out whichOperationSignature corresponds to the called method
respectively which architectural OperationInterface has been used for the call. To do so, the
approach checks whether the called method directly corresponds to an OperationSignature.
If this is not the case, the approach checks whether the called method corresponds to a
SEFF. If this is the case, we can get the OperationSignature that is called from the SEFF. If a
called method neither corresponds to an OperationSignature nor to a SEFF, we consider
the change as an architecture violation. How we can react to this kind of architecture
violation is explained in the next section. If we detected an architecture violation, we
end the lookup for a RequiredRole. If we found an OperationSignature, we can get its
OperationInterface, i.e. we can retrieve the OperationInterface that has been used for the
call. As next step, we need to �gure out which concrete RequiredRole of the component
has been used to perform the call. This can be done by iterating over all RequiredRoles of
the source component and use the �rst RequiredRole that requires the interface. We can
use this RequiredRole as the RequiredRole, which is used for the component-external call.
This approach, however, has two disadvantages: To make sure that the used ProvidedRole

can be determined automatically, it adds the limitation that each component is allowed to
require each interface only once. To overcome this disadvantage, we could slightly change
the iteration over all RequiredRoles of a component. Instead of taking the �rst matching
RequiredRole, we can continue the iteration and collect all matching RequiredRoles. If more
than one RequiredRole matches, we can ask the users to disambiguate which RequiredRole

is actually used for the call. The concept of user change disambiguation and their di�erent
levels are described in Section 4.4. The second disadvantage is that this approach does
not check, whether the performed method call actually uses the �eld that corresponds to
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Find corresponding
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Figure 4.11.: Activity diagram that shows, how the RequiredRole �nder for the package
mapping consistency preservation rules is realised. The input for RequiredRole
�nder are the changed source code method, the Vitruvius correspondence
model, and the current PCM BasicComponent. The output is the corresponding
RequiredRole, which is used by the method call. We left out the object �ow
inside the activity diagram to simplify the diagram and improve its clarity.
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the RequiredRole to execute the external call. A simpli�ed approach that checks whether
the �eld is used for the call can be implemented within the component-realisation class,
because we can check whether the call uses the �eld directly.

4.5.2.4. Detecting Architecture Violation using the Change-driven Incremental SEFF
Reconstruction

As outlined above, our change-driven incremental SEFF reconstruction, is able to react
and hinder architecture violations that can occur from wrong component-external method
calls. If a developers adds a method call to a di�erent method our SEFF reconstruction
approach classi�es this method call. If it is a component-external method call our Coevo-
lution approach �nds the corresponding OperaitonSignature and the used RequiredRole on
architectural level.

The �rst possible violation is that a corresponding OperationSignature is found for the
called method, but no ReuqiredRole can be found. The violation in this case is that the
current component does not require the called method respectively its interface yet. A
simple solution is to just add a RequiredRole from the OperationInterface to the component
performing the method call. However, this would probably violate the current consistency
preservation rules since be a speci�c mapping could exist that speci�es how RequiredRoles

are mapped to the source code. Consider our package mapping consistency preservation
rules: using these rules a RequiredRole is represented by a �eld in the component-realisation
class. For these consistency preservation rules the violation can be solved by creating a
new �eld in the component-realisation class and ensure that the performed call uses this
�eld to execute the method call.

The second possible violation is that no OperationSignature can be found for the called
method. Hence, the called method is not part of the o�ered services of the called component.
This means, that the method, which has been called, should probably not be used from
external components. To preserve consistency and avoid the architecture violation in this
case, the following strategies are possible: One possibility is that we roll back the change of
the developers and inform them that the method they just called should not be called from
outside of the destination component itself. Another possibility is to add the called method
to the provided interface of the called component automatically and inform users that their
change let to the creation of a new OperationSignature. Another option is to ask the users
whether the OperationSignature should be added for the new call or whether the change
in the source code should be rolled back. Hence, a corresponding OperaitonSignature can
be found after doing this and our approach can execute the same steps that are executed
that are executed for the �rst architecture violation. Within the second step the users need
to disambiguate the change,i.e. software developers and software architects need to clarify
whether the method call should be allowed.

In our prototypical implementation, we inform the users which kind of architecture
violation has been detected. We currently do not support an automatic solving of the
architecture violations.
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4.5.2.5. Implementation of the Change-driven Incremental SEFF Reconstruction

We implemented the change-driven incremental SEFF reconstruction for the package
mapping consistency preservation rules within our Coevolution approach. For the imple-
mentation, we implemented respectively reused the following mechanisms: To react on
changes that have been performed to a method body within the source code, we reused the
implementation of Seifermann [Sei14] and Messinger [Mes14]. As next step, we re�ned the
call classi�cation strategy interface, which is used by the SEFF reconstruction of SoMoX, to
detect component-external calls, library calls and internal calls. In particular, we extended
the existing basic classi�cation strategy in a way that it is possible to add mapping-speci�c
classi�cation strategies easily.

For the behavioural reconstruction itself, we implemented the approach that makes all
component-internal method calls explicit. This has the advantage that we do not need
to parse more than one source code �le for each method body change. Furthermore, we
only need to reconstruct the ResourceDemandingBehaviour for the changed method. The
reason for this decision is that we want to avoid the need of parsing more than one source
code �les after each change. Hence, the output models we generate are di�erent from the
output models SoMoX generates. As mentioned above, this disadvantage can be overcome
by creating a new view onto the reconstructed SEFF.

4.5.2.6. Example of Change-driven Incremental SEFF Reconstruction using the Package
Mapping Consistency Preservation Rules

In this section, we present an example of the change-driven incremental SEFF reconstruc-
tion using the package mapping consistency preservation rules. For the SEFF reconstruc-
tion, we use the approach of making the calls to component-internal methods explicit
within the SEFFs respectively the ResourceDemandingInternalBehaviours.

As example code, we use the code introduced in Section 4.5.2.6. For the explanation of
the change-driven incremental SEFF reconstruction, we focus on the following steps: At
�rst, we consider changes in the httpDownload method. Here we focus on the change that
introduces the component-internal method call to doDownload method. As second step, we
consider the same change, we used in Section 4.5.2.6. Hence, a new component-external
call is added to the doDownload method.

Let us assume that neither the method httpDownload nor the method doDownload contain
any code. As �rst implementation steps let us assume that a developer adds the if-else
block and the logging statement to the httpDownload method. The resulting httpDownload

method is depicted in the following listing:
public File httpDownload(Request request){

if(RequestHelper.isValid(request)){

}else{

logger.warn("Request " + request + "is not valid");

return null;}

}

Listing 13: The download method after the �rst change
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Figure 4.12.: The resulting SEFF of the incremental SEFF creation from the download

method. On the left side the result after the �rst two changes is depicted.
These changes introduce library calls or method internal statements only.
The right side shows the result after the third change. This change introduces
the component-internal method call to the doDownload.

After our Coevolution approach detects the changes it creates respectively updates the
corresponding SEFF. Therefore, it classi�es the newly introduced method calls using the
Vitruvius correspondence model and the mapping-speci�c classi�cation for the package
mapping consistency preservation rules. Using this classi�cation mechanism gives us the
information that the calls isValid and log are considered as library calls, because the
classes, of the method are neither corresponding to a di�erent component directly nor
they are contained in another component. Hence, our incremental SEFF reconstruction
approach creates one InternalAction for the method calls within the corresponding SEFF.
The left side of Figure 4.12 shows the corresponding SEFF after the �rst steps.

As next implementation step, we consider the addition of the call to the doDownload

method within the httpDownload method. After this change the resulting httpDownload

method contains the following code:
public File httpDownload(Request request){

if(RequestHelper.isValid(request)){

File file = this.doDownload(request);

return file;

}else{

logger.warn("Request " + request + "is not valid");

return null;}

}

Listing 14: The download method after the call to the doDownload method has been inserted
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Again, after this change is detected the SEFF for the httpDownload method is analysed
by our incremental SEFF reconstruction. Using the Vitruvius correspondence model
gives us the information that doDownload is considered as component-internal method
call because the class of the target method doDownload is neither a component-external
call nor a library call.

Since this is the �rst call to doDownload method, we create a corresponding ResourceDe-

mandingInternalBehaviour for the doDownload method. The reconstructed ResourceDe-

mandingInternalBehaviour for the doDownload method is empty because the method does
not contain any statements yet. Since component-internal method calls are made explicit
the corresponding SEFF contains an InternalCallAction, that calls the newly created Re-

sourceDemandingInternalBehaviour. Since the method call is contained in an if-else branch,
the SEFF reconstruction also makes this if-else branch explicit within a BranchAction in
the corresponding SEFF. The resulting corresponding SEFF is depicted in Figure 4.12.

As next step, we consider the changes in the currently empty method doDownload. As
�rst change in the method we assume that a developer adds the getId call to the method,
which results in the following method:

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

}

Listing 15: The doDownload method after the �rst change

After our Coevolution approach has detected the change in the method it recreates the new
behaviour for the ResourceDemandingInternalBehaviour. Therefore, it �rst uses the Vitru-
vius correspondence model to classify the method call, which is classi�ed as library call
since the class of the called method is neither contained in any component nor corresponds
to an architectural interface. This means, that we can create a corresponding InternalAction
for the method call. Hence, the resulting ResourceDemandingInternalBehaviour contains
only an InternalAction (see left side of Figure 4.13).

As next change we assume, that the check whether the length of the array id is null or
not, which changes the method to:

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

if(id == null || id.length == 0)

return null;

}

Listing 16: The doDownload method after the second change

Again, our Coevolution approach detects this change and updated corresponding Re-

sourceDemandingInternalBehaviour. Since the change does neither introduce a new component-
external method call nor a component-internal method call, our Coevolution approach
merges the resulting InternalAction with the created InternalAction for the �rst change.
Hence, the resulting ResourceDemandingInternalBehaviour is not changed and still looks
as depicted on the left side of Figure 4.13.

As next change we assume, that the return statement that executes the call to the
download method of the �eld iMediaStore is added by a developer. This change gives us
the following method:
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Figure 4.13.: The resulting ResourceDemandingInternalBehaviour of the incremental SEFF
creation from the doDownload method. On the left side the result after the �rst
two changes is depicted. On the right side the result after the third change,
which inserts the call to the download method of the IMediaStore interface,
is depicted.

private File doDownload(Request request){

String[] id = RequestHelper.getId(request);

if(id == null || id.length == 0)

return null;

return this.iMediaStore.download(id)[0];

}

Listing 17: The doDownload method after the third change

After our Coevolution approach has detected this change, it runs the SEFF reconstruc-
tion for the doDownload method again and classi�es, amongst the other method calls, the
newly introduced method call. Therefore, it uses the Vitruvius correspondence model,
which contains the information that the download method corresponds to the Opera-

tionSignature download in the OperationInterface IMediaStore. Hence, our Coevolution
approach identi�es the call to the download method as component-external method call
and creates an ExternalCallAction in the ResourceDemandingInternalBehaviour that corre-
sponds to the doDownload method. The resulting ResourceDemandingInternalBehaviour,
which is depicted at the right side of Figure 4.13, now contains one InternalAction and one
ExternalCallAction.

The di�erence between the resulting incrementally created SEFF and its called Re-

sourceDemandingInternalBehaviour and the introduced SEFF in the example of the Fig-
ure 4.10 is that the change-driven incremental SEFF reconstruction creates a ResourceDe-

mandingInternalBehaviour for the doDownload method and an InternalCallAction for the
method call to the doDownload method instead of inlinig it in the SEFF.
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4.5.3. Coevolution of Behavioural Architectural Models and Source Code

In the sections above, we described independently from each other how we can i) keep
behaviour models consistent with the code by describing the mapping from the behaviour
model to the source code, and ii) reconstruct behaviour models from code using a change-
driven incremental SEFF reconstruction approach. To integrate the two approaches into a
coevolution process, we propose two di�erent approaches. The �rst one works as follows:
After a change occurred in the architectural behaviour model, our Coevolution approach
creates a task in the task list for developers and point to the method that needs to be
changed. If developers changing this method in a later step, our Coevolution approach
recreates the architectural behaviour of the method. Since, we recreate the correspond-
ing ResourceDemandingBehaviour, we override changes that have been performed in the
architecture and that are not implemented in the corresponding code yet. This has the
advantage that the behavioural model represents the implemented code as soon as the
source code has been changed. However, it has the disadvantages that developers can
include component-external method calls without getting informed that these calls are
not intended by the architecture. This approach is an code-centric approach, because the
incremental SEFF creation overrides architectural changes to the SEFF with the actual
reconstructed SEFF elements.

The second approach, we propose, is an improved approach that overcomes the disad-
vantage of the �rst approach for component-external method calls within a ResourceDe-

mandingBehaviour. The reason that we focus on component-external method calls is
that usually the implementation of component-internal behaviour falls into the scope of
the component-developer. To check whether the component-external behaviour of a Re-

sourceDemandingBehaviour has been changed we propose the following approach: Instead
of recreating the corresponding ResourceDemandingBehaviour, a comparison between
the existing ResourceDemandingBehaviour and the newly created ResourceDemandingBe-

haviour can be performed. If the result of the comparison is that the existing ResourceDe-

mandingBehaviour is di�erent than the recreated one regarding the component-external
behaviour, we �rst check whether a task in the task lists for this method exists that requires
to add or remove a component-external method call. If this is true and if the change meets
that requirement, we can remove the task from the task list automatically and use the
new ResourceDemandingBehaviour in the architectural model. If this is not the case, our
Coevolution approach can warn developers and architects that an inconsistency has been
found and they need to decide whether the code should be changed or the behavioural
model should be replaced with the new ResourceDemandingBehaviour.

4.6. Consistency Preservation Rules between Architectural
Models and Code

To use our Coevolution approach, bidirectional consistency preservation rules between
the architectural elements and source code elements are necessary to enable coevolution
of source code and architectural models. As example consistency preservation rules, we
already introduced the package mapping consistency preservation rules in Section 4.3.2.
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In this section, we introduce source code technology-speci�c bidirectional consistency
preservation rules between architectural models and source code. As example of source
code speci�c technologies, we use EJB as well as a dependency injection framework. We,
furthermore, introduce consistency preservation rules between two di�erent architectural
models and source code. In particular, we introduce bidirectional consistency preservation
rules between architectural models and Eclipse plugin artefacts in terms of the manifest
�les and Eclipse plugin.xml �les, which are related to OSGi bundles.

All consistency preservation rules, we introduced, are reusable and extendable. The
latter means that they can be extended for other project-speci�c or technology-speci�c
bidirectional consistency preservation rules. The de�ned consistency preservation rules
address the second scienti�c challenges of this chapter, as they can be used to close the
abstraction gap between architectural models and source code.

4.6.1. Source Code Technology Specific Consistecncy Preservation Rules

To develop a software system, speci�c technologies or frameworks are often used to
simplify the development of the software system. For Java projects, EJB and dependency
injection frameworks are two examples of such technologies. As we explained in Section 2.5,
both of the technologies are standardized and widely used. Within this section, we
introduce consistency preservation rules between the architectural model PCM and source
code using EJBs respectively a dependency injection framework. For both sets of the
consistency preservation rules, we are able to partly reuse the package mapping consistency
preservation rules.

4.6.1.1. Mapping between PCM as Architectural Model and EJB-based Source Code

For the EJB consistency preservation rules, we can partly reuse the package mapping
consistency preservation rules, especially for the mapping from architecture to source
code. For the mapping from source code to architecture, we can reuse them as well, but
due to the use of EJB, we introduce an extension for the consistency preservation rules
as follows. As EJB already de�nes components on code level, we can distinguish easily,
which class should be used as a component-realising class, i.e. it is possible to have more
EJB component-realising classes within one package. In the standard package-consistency
preservation rules, however, it is only possible to have one component-realising class per
package. Furthermore, we focus on the Repository, because we can derive the PCM System.
To do so, we assume that each component within a Repository is instantiated exactly once.

Becker [Bec08] already presented a mapping between the PCM and EJB-based Java code.
As we discussed for the package mapping consistency preservation rules (see Section 4.3.2)
the mappings proposed by Becker make the RequireRoles explicit. Hence, it is possible to
map all valid PCM models to Java source code. Furthermore, the mapping proposed by
Becker introduces a component framework into Java source code. The understandability
of the code, however, may be lowered as the mapping introduces additional classes into the
source code. The additional generated classes are not an issue if the code is only generated
in order to perform performance predictions or to generate code stubs. However, it
becomes an issue if developers should be allowed to change existing architectural elements
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respectively create new architecture elements through the code. This is the reason, why we
implemented a di�erent mapping between PCM and EJB-based Java code. The mappings,
however, are similar because both mappings using EJB-based Java code. For instance, a
component is mapped to a class annotated with an EJB annotation.

Bidirectional Consistency Preservation Rules for Static Architecture and Source Code An
overview of the bidirectional consistency preservation rules between the PCM Repository

and EJB based source code is given in Table 4.3. From the package mapping consistency
preservation rules, we reuse the mappings for Repository, OperationSignatures & Parame-

ters, ProvidedRoles, SEFFs, and the DataTypes.
Hence, from an architectural perspective the interesting bidirectional consistency preser-

vation rules are the rules for BasicComponents, OperationInterfaces, and RequiredRoles. For
BasicComponents, which are added to the Repository, we create a new package and an EJB
component class within this package. The created component class is marked as a EJB
component class by adding the Stateless annotation. For OperationInterfaces that are
added to the Repository, we create a new code interface in the contracts package and
mark it as EJB interface by adding the Remote annotation. Changes to the features of
BasicComponents and OperationInterfaces in the architecture or source code, can be kept
consistent as in the package mapping consistency preservation rules, i.e. by updating the
values of the corresponding changed features (e.g. the name feature) or by executing the
matching consistency preservation operation for the changed reference (e.g. adding a
new ProvideRole). If users only use the source code editor to evolve the software system,
we create the architectural components and architectural interfaces as soon as the code
structure matches the described mapping.

To ease the creation of architectural elements using the source code only, however,
we propose softened consistency preservation rules for the transformation from code to
architecture for BasicComponents and OperationInterfaces. This means that every class
with one of the EJB component annotations (@Stateless, @Stateful, or @MessageDriven)
is considered as a BasicComponent. Hence, as soon as one of the annotations is added to
respectively removed from a class a new BasicComponent will be created respectively the
existing BasicComponent will be deleted. This has the consequence, that one package can
contain more than one BasicComponent, because users can create a class in the source
code and add one of the component annotations to mark it as an EJB component. This
leads to the challenge that it is unclear, which is the main component of this package and
it is unclear for new classes that are added to a package, which contains more than one
component classes, to which component they belong. It can be necessary to know to which
component a class belongs for a) the execution of the incremental SEFF creation, and b)
possible new views such as the component-class-implementation view from the Vitruvius
vision (see Figure 4.4). To circumvent this, we propose the following possible solution: we
decide that the main EJB component class of the package is the class that corresponds to
the package itself, i.e. to the BasicComponent that ful�lls the non-softened consistency
preservation rules. If no BasicComponent corresponds to the package directly, we as ask
the users to clarify which BasicComponent is the main EJB class of this package. A similar
approach can be used for the new classes: they belong to the same BasicComponent as the
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main EJB class of the package. If no main EJB class exists, we can ask users to clarify to
which BasicComponent the new class should belong. The fact that architectural relevant
interfaces and architectural relevant components can be created at any time respectively
that any class or interface can become architectural relevant has the disadvantage that all
locations in the code, where the newly architectural relevant element is referenced, needs to
be investigated. The reason is that after such a change other elements can be architectural
relevant as well. For instance, if an interface is marked with the @Remote annotation it
becomes architectural relevant immediately. All classes implementing this interface and
corresponding to a BasicComponent need to make the implementation relation explicit in
the architecture, i.e. a new OperationProvideRole needs to be created. In our prototypical
implementation, however, we did not implement this behaviour, i.e. we assume that all
architectural relevant elements are made explicit upon their creation respectively before
they are used elsewhere.

A further softening is done for interfaces. As soon as either the @Local or @Remote

annotation is added to a code interface, we consider it as an architectural relevant interface
and create a corresponding OperationInterface. This is done even if the interface is not
contained within the contracts package.

A possibility to realise the proposed mappings without softening of the mapping is the
following: Instead of creating a BasicComponent for each class as soon as one component
annotations has been added respectively creating an interface as soon as either the Remote
or Local annotation is added the mapping could be forced. To do so, the EJB classes
could be moved automatically to a new package and the EJB interfaces could be moved
automatically to the contracts package.

For RequiredRoles in the architecture model, we create a private �eld in the class which
corresponds to the requiring BasicComponent. The �eld has the type of the interface that
corresponds to required OperationInterface and the name of the RequiredRole. For the
mapping form code to architecture the mapping is straight forward: as soon as the @EJB

or @Inject annotation has been added to a �eld that has a type which corresponds to an
interface, we create a RequiredRole. A softening of this mapping is to consider a �eld that
has a type corresponding to an OperationInterface as RequiredRole and make it explicit
in the architecture. This approach allows developers to use of other EJB mechanisms
to ful�ll the required interfaces of a class. In EJB-based source code it is, for instance,
possible to use the lookup method from the context class of the EJB container to decide
which EJB class is used as implementation class for a �eld. This can be done during the
runtime of a system, i.e. in this case, it is not possible to determine statically, which actual
component-class is used for the �eld.

Figure 4.14 shows the realisation of a BasicComponent and its provided and required
OperationInterfaces in source code (see Figure 4.8). The mapping is similar as the mapping
shown for the package mapping consistency preservation rules. For EJB, however, we add
the EJB relevant annotations.

Behavioural Coevolution As we explained in Section 4.5, we need to de�ne a mapping-
speci�c call classi�cation and a mapping-speci�c required role �nder to enable the in-
cremental creation of the behaviour models in terms of the PCM SEFF. Since component-
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PCMmetamodel element EJB language element

Repository three packages: main, contracts, data types
Basic Component Package in main package and public class that is an

EJB component class annotated with @Stateless

Interface Interface with the EJB Annotation @Remote in the con-
tracts package

Signature&Parameters Methods&parameters

CompositeDatatype Class with getter and setter for inner types
CollectionDatatypes Class that inherits from a Java collection type (e.g.

ArrayList)
ProvidedRole the EJB component class of the providing component

implements the EJB interface
RequiredRole a private �eld within the EJB component class with

a) the type of the corresponding code interface, and
b) the annotation @EJB

SEFF Method in the EJB component class that implements
the corresponding interface

Table 4.3.: Mapping between PCM Repository metamodel elements and EJB language ele-
ments. We are able to reuse the mapping for the Repository, CompositeDatatypes,
CollectionDatatypes, ProvidedRoles, SEFFs. and Signatures&Parameters from the
package mapping consistency preservation rules.
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@Remote

public interface IWebGUI{

File httpDownload(Request request);

void httpUpload(File file);

}

@Stateless

public final class WebGUIImpl implements IWebGUI {

public File httpDownload(Request request){

//...

}

public void httpUpload(File file){

//...

}

@EJB

private final IMediaStore iMediaStore;

}

@Remote

public interface IMediaStore{

File[] download(String[] ids);

void upload(File file);

}

I IWebGUI
File httpDownload(Request request)

void httpUpload(File �le)

WebGUI
SEFF < httpDownload >
SEFF < httpUpload >

I IMediaStore
File[] download(string[] ids)

void upload(File �le)

«Requires»

«Provides»

Figure 4.14.: The mapping between a BasicComponent and its provided and required Op-

erationInterfaces to the corresponding source code elements using the EJB
mapping consistency preservation rules.
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external method calls in EJB components can only be performed via the �elds that are
annotated with @EJB respectively @Inject and the destination needs to be a source code
interface, we propose the following approach to de�ne an EJB speci�c external call �nder:
All method calls that are executed using a �eld that is annotated with either @EJB or @In-
ject or a �eld, with the type of an EJB remote interface, are component-external method
calls. Hence, it is easy to �nd component-external method calls if the �eld is used directly
to execute the method call. Using this approach, the de�nition of a mapping-speci�c
required role �nder is also rather easy, because we have a corresponding RequiredRole for
the used �eld.

If no �eld is used directly for the component-external method call, our Coevolution
approach needs to decide whether this component-external method call is an architectural
violation or not. The component-external call is no architectural violation if the component-
external method call is executed directly or indirectly using a �eld of the EJB component-
class. This is the case, for instance, if the �eld is passed as a parameter to another
method and the parameter is than used to execute the component-external method call.
Due to the halting problem it is not possible to decide, whether the call is executed
using a �eld indirectly, using static code analysis only. Hence, using our incremental
SEFF reconstruction approach, we could implement an over-approximation approach that
considers only those calls as non-architectural violation for which the approach can decide
for sure that these calls are executed using an EJB relevant �eld directly or indirectly.

Another approach is to detect constructor calls to EJB component-classes and consider
these as architectural violation, i.e. constructor calls to classes contained in di�erent EJB
component would be forbidden using this approach. Hence, calls to other components
cannot be performed using an instance that has been created using a constructor call. For
the component-external method call detection this means, that we can be sure that the
external-method calls, which are not executed using an EJB relevant �eld directly using an
instance that is not created using a constructor call of another component. Hence, these
calls than can be considered as regular component-external method calls. A limitation
of this approach is that it does not guarantee that the detected calls are executed using
the �eld indirectly because other approaches, such as re�ection, could have been used to
create an instance of an EJB class.

One limitation of the proposed approaches, is that if an EJB class requires the same EJB
interface more than once, i.e. the class has more than one �eld with the same interface
type, we cannot decide in all cases, which �eld has been used to execute the call (if the
�eld is not used directly for the call). For the incremental SEFF reconstruction this means,
that we cannot decide which RequiredRole should be used for the ExternalCallAction in
the SEFF. In this case, we need to ask the users of our Coevolution approach to clarify,
which RequiredRole shall be used.

For our prototypical implementation of the EJB incremental SEFF reconstruction, we
implemented the second approach, because it introduces little overhead during the in-
cremental SEFF reconstruction. During the analyses of a method, we only need to check
whether a call is a constructor call to another EJB component. If a call to a constructor of
a class within a di�erent component is detected, we inform users about the introduced
architectural violation.
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To keep changes on behavioural architectural elements consistent with the source
code, we reuse the approach from the package mapping consistency preservation rules.
Hence, for changes performed to PCM SEFFs, we create tasks for the developers, who are
responsible for implementing the behavioural models.

Assumptions and Limitations The proposed bidirectional consistency preservation rules
to EJB code come with a number of assumptions and limitations.

Using the non-softened consistency preservation rules, the �rst assumption is that only
the annotations @EJB and @Inject are used to inject dependencies into EJB components.
Hence, using the non-softened consistency preservation rules, we are able not able to �nd
the use of external interfaces that use lookups in the context class of the EJB container.

We also assume that only source code is used to describe the EJB dependencies. This
means we are not considering XML descriptors yet.

A limitation for the EJB code is that we only support the de�nition of EJB business
interfaces and EJB components. Annotations, such as @Entity, @Table, or @Persistence-
Context, which are foreseen by EJB and provide support for the communication with a
database, are not supported by the presented consistency preservation rules.

A further limitation is that the consistency preservation rules currently not support
event-based communication. Event-based communication, however, is supported by EJB.
PCM o�ers an extension that supports event-based communication as well (see [Rat13]).
Hence, in future work, the consistency preservation rules can be extended using the PCM
event and the EJB event mechanism in order to support event-based communication within
the consistency preservation rules.

A limitation on the architectural level is that we do not support CompositeComponents,
which are components that contain other components. In future work this limitation could
be overcome by, for instance, combining EJB classes respectively components that are in
the same package to a CompositeComponent. Another limitation on architectural level is,
that we not support the PCM System explicit. Instead, we assume that each component in
the Repository is instantiated once. Hence, we can can generate the System implicitly. This
adds the following limitation to the Repository: each OperationInterface is only allowed to
be provided once in the Repository to be able to decide which component-class shall be
used for the dependency injection for the �elds annotated with @EJB

An assumption for the incremental SEFF reconstruction and its architecture violation
capability is that it works only correct if users do not use other features of the language, to
create an instance of a class that is contained within another component. If, for instance,
users use re�ection in order to create an instance of a class, our current approach would not
detect this kind of architectural violation. It would also create a wrong SEFF, if re�ection
is used to invoke component-external method call.

4.6.1.2. Mapping between Architectural Models and Source Code using a Dependency
Injection Framework

In this section, we present source code technology-speci�c consistency preservation rules
between the PCM and source code that is built using a dependency injection framework.
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This section is based on the bachelor’s thesis of Monev [Mon15], where the proposed
consistency preservation rules were implemented.

As dependency injection framework, we use Google Guice. The main reason for that
decision is, that Google Guice allows us to assemble the dependency injection classes
within the Java code itself instead of composing them within other artefacts, such as XML
�les. Hence, the presented consistency preservation rules are partly speci�c for Google
Guice. Since dependency injection frameworks, however, are standardized in JSR330,
parts of the proposed consistency preservation rules can be reused for all dependency
injection frameworks that conform to the standard. The parts that are reusable as well as
the di�erence between Google Juice and the JSR330 standard are explained below.

Bidirectional Consistency Preservation Rules between Static Architecture and Static Code
For most elements, we are able to reuse the consistency preservation rules, we de�ned for
the package mapping consistency preservation rules (see Section 4.3.2). To map a PCM
Repository to code, we only need to change the consistency preservation operation for
BasicComponents. For the source code to PCM mapping, we need to extend the consistency
preservation rules for classes and for constructors. For the mapping of a BasicCompo-

nent, we extend the existing consistency preservation operation and create an @Inject

annotation to the constructor of the component-realising class. Hence, we use construc-

tor injection to inject the dependencies of a component-realising class. The reason for
constructor injection instead of, for instance, injecting the dependencies via setters, is
that we decided to compose the component-realising classes at the initialisation of the
system. For the mapping from source code to architecture, we adapt the class mapping
in a way that it automatically creates a constructor with the @Inject annotation as soon
as the users decide that the class should be a component-realising class. We furthermore
adapted the consistency preservation operation for constructor, in order to ensure that
only one constructor with an @Inject annotation exists. This is a requirement from the
dependency injection framework we use. Hence, the bidirectional consistency preservation
rules between the PCM Repository and its corresponding source code only need slight
changes to support a dependency injection framework.

To compose the component-realising classes respectively to assemble the classes, we
can partly reuse the mapping between a PCM System and the composition class. Hence,
as in the package mapping consistency preservation rules, a PCM System maps to one
package and one System-realising class. The System-realising class for the mapping to
the Google Guice dependency injection framework, can be implemented in two ways: It
either needs to extend the class AbstractModule or it needs to implement the interface
Module. The class AbstractModule, as well as the interface Module, are provided by the
Google Guice framework and allow the binding respectively assembling of classes that
are used within a software system and have constructors or setters marked with @Inject.
Hence, they allow us to assemble the component-realising classes. If the System-realising
class extends the class AbstractModule, it needs to override the method configure. If
the System-realising class implements the interface Module, it needs to implement the
method configure. In the latter case the configure method gets an instance of the Binder

class as parameter, while in the �rst case the instance of the Binder class is part of the
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superclass AbstractModule. In both cases, the configure method is automatically called
by the Google Guice framework and needs to do the actual binding of classes. For our
mapping between the PCM System and source code this means that within this method
both artefacts are mapped: the AssemblyContexts and the Connectors.

The AssemblyContexts are mapped to the binding of an interface to a class, i.e. an inter-
face is bound to a component-realising class. The consistency preservation operation, cre-
ates an AssemblyContext for the component that corresponds to the component-realising
class. The Connectors between ProvidedRoles and RequiredRoles in the System are mapped
implicitly by connecting the provided interfaces of the AssemblyContexts to the matching
required interfaces within the System. Hence, each interface can only be provided once and
required once within one System. Implementing the presented consistency preservation
rules between a PCM System and the code statements is not straight forward, as we are
currently not able to use source code statements within a method body as corresponding
elements. Hence, Monev [Mon15] implemented the consistency preservation as follows:
The actual corresponding elements between the architectural elements AssemblyContexts

and Connectors, is the configure method itself. If the configure method has been changed,
we compare the old method with the new method in order to �gure out which change
has been performed. If elements in the PCM System are changed, we analyse the config-

ure method in order to �gure out how it needs to be updated in order to preserve the
consistency.
OperationInterfaces that are provided by the System are mapped as follows: the System-

realising class implements the Java interfaces that corresponds to the OperationInterface.
Furthermore, the System-realising class gets a �eld with the type of the interface and a
constructor with the @Inject annotation. Hence, the actual used implementation is injected.
The connection of the provided roles of a System-realising class with the component-
realising class is also done in the con�gure method of the System-realising class. To use the
System, from e.g. a main method, the System class can be instantiated using the standard
Guice mechanism.

Listing 18 shows the System-realisation class for the MediaStore example, we use
throughout this thesis. In the listing, we implement the class Module directly instead
of extending the class AbstractModule.

CoevolutionofBehaviouralModelswithSourceCode For the coevolution of the behavioural
model, we can use a similar approach as for the EJB rules. Since we know which �elds are
injected using the dependency injection, we can identify external calls, which are executed
via this �elds, rather easily. If these �elds are not directly used, we can use the same
approach as for EJB consistency preservation rules. Hence, we forbid constructor calls
to classes that have a corresponding BasicComponent and consider component-external
calls as architecture relevant component-external calls. We further assume, that this
calls are executed using a injected �eld directly or indirectly. This allows us create an
ExternalCallAction, using the RequiredRole corresponding to the �eld, in the incrementally
created SEFF.
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public class MediaStoreSystemImpl implements IWebGUI, Module {

private IWebGUI iWebGUI;

public MediaStoreSystemImpl() {}

@Inject

public MediaStoreSystemImpl(final IWebGUI iWebGUI) {

this.iWebGUI = iWebGUI;

}

@Override

public void configure(final Binder binder) {

binder.bind(IWebGUI.class).to(WebGUIImpl.class);

binder.bind(IMediaStore.class).to(MediaStoreImpl.class);

}

@Override

public File httpDownload(final Request request) {

return this.iWebGUI.httpDownload(request);

}

@Override

public void httpUplopad(final File file) {

this.iWebGUI.httpUplopad(file);

}

}

Listing 18: System-realisation class of the MediaStore example
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To keep changes on behavioural architectural elements consistent, we use the same
approach as for the EJB and package mapping consistency preservation rules: tasks for
the developers, who are responsible for implementing the behavioural models are created
as soon as a behavioural model element has been changed.

Compatibility with the JSR 330 standard As we explained in Section 2.5.3 the JSR 330
standard is a standard for dependency injection frameworks.

Since the above-mentioned consistency preservation rules focus on Google Guice, they
are as compatible to the JSR 330 standard as Google Guice is. According to the Google Guice
online documentation 4 the Guice implementation is one of the references implementations
of the JSR 330 standard and most annotations are interchangeable. Important for the above-
mentioned consistency preservation rules is that the @Inject annotation is interchangeable.
Hence, the consistency preservation rules for the Repository part are compatible to the
JSR 330 standard.

The consistency preservation rules for the PCM System, however, are speci�c for Google
Guice. Hence, to support other dependency injection frameworks that are compatible with
the JSR 330 standard, the consistency preservation rules for the PCM System need to be
rede�ned speci�c for the used dependency injection framework.

Assumptions and Limitations For the above explained mapping between architectural
models and code that is realised using Google Juice as dependency injection framework,
we introduce the following assumptions respectively limitations for the PCM System:

1. each BasicComponent can only be instantiated once per System, i.e. it can only be
represented in one AssemblyContext, and

2. each interface can only be provided once per System.

The reason for these limitations are that the Google Guice features, we use for the mapping,
allows us to bind only one code interface to one code class. Hence, it is not possible to get
more than one instantiation of the same component per system.

Furthermore, we are not supporting RequiredDelegaionRoles. Hence, the System that is
created is not allowed to require functions from an additional 3rd party library via required
interfaces.

4.6.2. Mappings between Architectural Models, Source Code, and Additional
Artefacts

The consistency preservation rules we presented above, are consistency preservation rules
between source code models and architectural models only. During the development of a
software system, however, additional artefacts are often used to realise and describe the
architecture of a software system. Within the Vitruvius vision (see Figure 4.4), we propose
the use of the PCM metamodel, a source code metamodel, the UML metamodel, and the
PCM Sensor framework metamodel to describe the software system. These metamodels

4https://github.com/google/guice/wiki/Guice40

114

https://github.com/google/guice/wiki/Guice40


4.6. Consistency Preservation Rules between Architectural Models and Code

are contained in the VSUM. Using more than two metamodels within the VSUM, has the
advantage that software systems using model instances of more than two metamodels can
be used during the software development and software evolution. Even though supporting
more than two metamodels is not the main focus of this thesis and comes with conceptual
challenges and technical challenges, we give an example how to keep more than two
models consistent within this section.

4.6.3. Mapping between Architectural Models, Source Code, and Eclipse
Plugin Development Artefacts

Within this section, we propose a mapping between architectural models, source code,
and Eclipse plugin development artefacts. We focus especially on the mapping between
architectural model and the Eclipse plugin artefacts. As we explained in Section 2.5.2
Eclipse plugins are organized as Eclipse projects. For this section, it is relevant to know
that in addition to plain Java projects Eclipse Plugin projects have i) a Manifest �le, which
contains the required bundles respectively required projects, and ii) a plugin.xml �le, which
contains the provided and implemented extension points of the plugin. Furthermore, so
called feature plugins allow to combine plugin projects and other feature projects within
one feature project. To do so, users need to specify the Plugins and Features that should
be combined within the Eclipse Feature XML �le.

We outlined the foundations of this section as proposal for a case study for multi-
view modelling approaches in [KL14]. We proposed a mapping between UML composite
diagrams, Eclipse plugin development artefacts, and source code. Within this section,
however, we use the PCM instead of UML as architectural model. Heiss [Hei15] provides
a prototypical implementation of the proposed consistency preservation rules between
the PCM and the Eclipse plugin development artefacts in terms of the Manifest �le and
the Plugin XML �le. The metamodels used for the manifest �les and for the XML �les,
are explained in the foundations (see Section 2.5.2.2). We are able to use the Manifest
metamodel and its parser and printer from the EMFtext syntax zoo5 for the manifest �les.
For the XML �les, we are able to use the generic XML metamodel and its parser and printer
from the EMFtext syntax zoo. To ease the use of the generic XML metamodel, however,
we created a set of helper methods, which are speci�c for the used XML �les in an Eclipse
plugin.

4.6.3.1. The VSUM for architectural models, source code, and Eclipse plugin development
artefacts

As we use additional artefacts within these consistency preservation rules, we need to
extend the VSUM, which we have presented in Figure 4.1. Additionally to Java models and
the PCM as architectural models, the VSUM contains the artefacts, which are necessary for
the development of Eclipse plugins. This artefacts are models of the Manifest �le, models
of the Eclipse plugin XML �le, and models of the Eclipse Feature XML �le. Even though
they are de�ning an Eclipse plugin together, we treat these models as separate models,

5http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
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because there is no existing mechanism to treat Eclipse plugin projects and their artefacts
as one model. Hence, we use the Manifest �le, the Plugin XML �le, and the feature XML
�le separately in the VSUM. The used VSUM as well as the views, we proposed in [KL14],
are shown in Figure 4.15. As in the above de�ned consistency preservation rules the
overlap can be described using the MIR languages or Xtend. The used models, monitors,
and consistency preservation rules are explained in the following sections.

4.6.3.2. Usedmodels and editors for the VSUM

As we mentioned above, we use di�erent models for the Manifest �le, the Plugin XML,
and the feature XML as there is no existing single model for Eclipse Plugin projects. For
the Manifest �le, we can use the EMFtext grammar for Manifest �les 6. For the Plugin
XML and for the feature XML �le, we can use the EMFtext grammar for XML �les7. Both
grammars are available in the EMFtext syntax zoo and provide a parser and a printer as
well as an editor for the �le types. While the grammar and the metamodel for Manifest
�les is tailored speci�c for Manifest �les and can be used easily, the grammar and the
metamodel for XML �les is general for XML �les and not speci�c for the XML �les used
within Eclipse plugins. During the development of the consistency preservation rules, we
need to ensure that we only create XML �les that are compatible with the Eclipse plugin
XML standard respectively the Eclipse feature XML standard.

To this end, we use the standard monitor for EMF �les as monitor for the Manifest �le as
well as for the XML �le. This means that we are only able to monitor changes performed
using the editors for the EMF �les. While this has no e�ect regarding to the consistency
preservation rules, it has the disadvantage that the Eclipse GUI for Manifest �les, Plugin
XMLs, and Feature XMLs can currently not be used. In future work, however, a monitor
can be implemented that monitors changes in the Eclipse GUI.

4.6.3.3. Consistency Preservation Rules between PCM, Java Source Code, Manifest Files,
and Eclipse Plugin XML Files

In this section, we explain the concrete consistency preservation rules. As base for our the
explanation we use the PCM. The consistency preservation rules, however, are bidirectional
for all involved models unless stated otherwise.

Mapping Repository to Eclipse plugins For the mapping between a PCM Repository and
Java source code, we can partly reuse the mappings we introduced for package mapping
respectively the mapping to the dependency injection framework.

To be able to use our Coevolution approach for the development of Eclipse plugins, the
�rst step is to either create a new Eclipse plugin project or create a PCM Repository in an
existing non-Eclipse plugin project.

If a Repository is created in an non-Eclipse plugin project, we create a corresponding
Eclipse plugin project for the Repository. This corresponding Repository is considered as

6http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Manifest
7http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_XML
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VSUM
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public class WebGUIImpl implements WebGUI {

@Override

public File httpDownload(Request request){

logger.info("Handle request " + request ");

}

}

Java Source editor

VT1

Component Diagram editorVT4

WebGUI

SEFF < httpDownload >

PCM Repository editor
<plugin>

<extension point="vitruv.framework.change">

<provides

provider="vitru.change.ChangePreparingImpl">

</provides>

</extension>

</plugin>

Plugin XML editor

VT3

<feature id="vitruvius.casestudies.emf.feature"

provider-name="SDQ">

<requires>

<import feature="vitruvius.framework.feature" />

</requires>

</feature>

Feature XML editor

VT5

Bundle-Name: Vitruvius Contracts

Bundle-Version: 1.0.0

Bundle-Vendor: SDQ

Export-Package: vitruvius.framework.contracts

Require-Bundle: org.eclipse.emf.ecore

vitruvius.framework.util

Manifest editor

VT2

comp1comp2

Figure 4.15.: The VSUM for the mapping between source code, architectural models, and
Eclipse plugin artefacts. We use the �ve artefacts JaMoPP, PCM, Eclipse
Plugin XML, the Eclipse Plugin Manifest �le, and the Eclipse Feature XML
�le. As views, we [KL14] proposed the use of the standard views to each of
the models as well as component-realisation view and an overall navigation
view. The additional views for code and PCM, we proposed in the Vitruvius
vision are intended to be used as well. To improve the clarity of this �gure,
we left the additional views out.

117



4. A Method for keeping Architecture Consistent with Source Code

the main project. As corresponding elements for the Repository, we use the BundleSym-

bolicName element in the Manifest �le and the root Object of the Plugin XML. Within this
Eclipse two corresponding packages are created: one interface and one datatype package.
Both packages have the same function as the contracts and datatypes packages in the
above-mentioned consistency preservation rules: they contain the corresponding Java
interfaces for the OperationInterfaces respectively the corresponding classes for the PCM
DataTypes. Hence, the mapping is similar to the main package in the package mappings.
If users create an Eclipse plugin project �rst instead of a Repository, we create a PCM
repository as well as the interface and datatype packages, and assume that the �rst plugin
is the main Eclipse plugin project.

In the following, we describe the mapping between OperationInterfaces and Eclipse
plugin artefacts. For each OperationInterfaces, an extension point with the same name as
the OperationInterface in the Plugin XML of the main Eclipse project is created. For the
mapping between architecture and code, we can use the same mapping as for the other
consistency preservation rules, i.e. a new code interface is created in the contracts package
of the main Eclipse plugin by our Coevolution approach.

PCM DataTypes are mapped as in the other consistency preservation rules. They are
mapped to a class in the datatypes package within the main plugin project for the reposi-
tory.

Each BasicComponent maps to a plugin project. Hence, if a BasicComponent is created
in the Repository, we create a new Eclipse plugin project with the name of the Basic-

Component. Similar to the Repository mapping the corresponding elements are the root
object of the Plugin XML and the BundleSymbolicName in the Manifest �le. If the name of
the BasicComponent is changed, we also change the name of the corresponding project
as well as the name of the corresponding BundleSymbolicName in the Manifest �le. We
furthermore, create a dependency to the main plugin for the newly created plugin project.
Hence, the data types and interfaces are available in all plugins. Within the component-
realising plugin poject a new component-realising class, which has the same function as
the component-realisation class in the package mapping consistency preservation rules, is
created. Hence, the mapping of the class is also similar as it is in the package mapping
consistency preservation rules. If users create a new Eclipse plugin project, our Coevo-
lution approach automatically creates a corresponding BasicComponent as well as the
component-realisation class.

A ProvidedRole maps to a new extension in the Eclipse plugin that corresponds to the
providing BasicComponent. This extension indicates that the Eclipse plugin provides the
extension point of the Java interface. It, furthermore, speci�es the class that implements the
interface. In our case this class is the component-realisation class. To map a ProvidedRole

to the code, we again use the same mapping as in the other consistency preservation rules:
the component-realisation class implements the Java interface that corresponds to the
provided OperationInterface.

For mapping of RequiredRoles to Eclipse plugin artefacts and Java code, we propose
di�erent strategies. Users of our Coevolution approach need to clarify which of these
strategies should be used before they starting the implementation.

The �rst strategy is the following: For each RequiredRole, a new dependency from the
corresponding requiring Eclipse plugin to an Eclipse plugin, which provides the required
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interface, is added. If more than one component provides the interface, the user needs
to decide which Eclipse plugin should be used. To map a RequiredRoles to code, we can
reuse either the mapping from the package mapping consistency preservation rules: In
the component-realising class a new �eld with the type of the required interface is created.
In the constructor this �eld is assigned with a new instances of the providing component-
realising class. Using this strategy new instances of the required class can be created
anywhere in the requiring plugin. This strategy has the disadvantage that the requiring
component directly knows the providing components. Hence, the mappings mixes the
PCM Repository mappings and the PCM Systemmappings, because the connection between
the components is already distinguished during the creation of the Repository.

The second strategy is the following: To overcome the issue that the components
know each other directly, we do not map a RequiredRole to a dependency between the
components. Instead, we only create a mapping to the code as follows: We also create
a �eld of the required interface in the component-implementing class. The assignment
with an instance is also done in the constructor. To create this instance, we use the Eclipse
mechanism to determine at runtime which plugin provides the extension point. Hence,
the actual used required interfaces implementation is created during the runtime of the
Eclipse plugin.

MappingPCMCPRE to Eclipse plugins The mapping of the PCM CPREs, e.g. a PCM System,
is done using feature plugins, i.e. one feature plugin is created for each CPRE. A feature
plugins allows the composition of standard Eclipse plugins and other feature plugins.
Within a feature plugin a user can combine standard Eclipse plugins to a feature. For each
AssemblyContext in the CPRE, we create a new plugin dependency in the feature plugin
of the corresponding Feature Plugin project.

Using the �rst strategy of mapping RequiredRoles to code, we can derive the connectors
automatically from the dependencies in the Manifest �les. Using the second strategy of
mapping required roles to code, the connectors in a CPRE can also be created automatically,
because we can connect the required roles with their matching provided roles. The reason
for that is that in the constructor of a component-realisation class the interfaces are as-
signed via the extension point ID and that each extension point is unique using the current
consistency preservation rules. Hence, the second strategy of mapping RequiredRoles has
the limitation that (without additional e�ort), each interface can only be provided by one
component in the CPRE.

4.6.3.4. Coevolution of Behavioural Models With Source Code

For the coevolution of behavioural models and source code, we need to de�ne a mapping-
speci�c component-external method call �nder The component-external method call
�nder can be de�ned rather easily as follows: We consider all calls to interface methods,
which have a corresponding OperationSignature as component-external method calls. As
in the other mappings as well, we also consider all calls to a method within another
component as a component-external method call. Hence, all calls to a method within
another Eclipse plugin project that has a corresponding BasicComponent, is considered as
component-external method call.

119



4. A Method for keeping Architecture Consistent with Source Code

The �nding of the used RequiredRole for the external call can be done similar to the
package mapping consistency preservation rules, i.e. if an OperationInterface is required
only once by one component, we use the matching RequiredRole. If an interface is required
at least twice, we can ask the users which RequiredRole shall be used.

4.6.3.5. Prototypical implementation

As mentioned above, we implemented the mapping between the PCM and the Eclipse
plugin development artefacts in terms of the Manifest �le and the Plugin XML �le (see
[Hei15]). We are able to show that the PCM Repository can be kept consistent with the
models of Eclipse plugin development artefacts. Furthermore, we can show that the
Vitruvius framework, is in principle able to deal with more than two metamodels within
the VSUM.

The implementation currently does neither support the feature XML in feature plugins
nor the source code itself. Hence, within the prototypical implementation the Java model
and the System are not kept consistent using our Coevolution approach. Furthermore, we
have not implemented special monitors for the Manifest �le and for the Eclipse Plugin
XML �les, yet. Our standard Vitruvius monitor for EMF �les, however, can be used to
monitor changes that are performed to the model elements with the standard EMF editors.
This has the disadvantage that we currently are not able to monitor changes that were
performed using other editors respectively the special Eclipse GUI for plugin projects.

4.6.3.6. Assumptions and Limitations

Similar to the other presented consistency preservation rules, the name of BasicCompo-

nents as well as the name of OperationInterfaces need to be unique within all used PCM
Repositories. This is the reason, because we create Eclipse Plugins respectively Java code
interfaces with the same name as the architectural elements. Even though this limita-
tion could be avoided by creating special names for duplicated names, we decided to not
allow the use of duplicate names in the PCM. As we see in the evaluation of the consis-
tency preservation rules in Section 6.4 it turned out that this limitation is not relevant
for existing PCM projects as they are not using duplicated names for BasicComponents or
OperationInterfaces.

The following limitations are introduced due to the presented mapping between PCM
and Eclipse Plugin artefacts:

• each BasicComponent can occur only once per System,

• using the second proposed strategy to map RequiredRoles from the PCM to Eclipse
plugin artefacts, each OperationInterface is only allowed to provided by one Assem-

blyContext in the PCM System.
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4.7. User Roles in our Coevolution Approach

In this section, we present di�erent roles users can have if they use our Coevolution
approach, i.e. the section addresses the fourth scienti�c challenge of this chapter (see
Section 4.1).

For our Coevolution approach, we de�ned the following three roles: The �rst role is
the role of architectural consistency methodologists, who are responsible for de�ning
the architecture code consistency preservation rules and the used techniques. This role
is based on the methodologist role, which has been introduced for the OSM [ASB10]
approach, and which we reuse in the Vitruvius [Bur14; KBL13] approach. The second
role is the role of software architects, who are responsible for the architecture of the
software system. The third role are the software developers, who are responsible for
implementing the de�ned software system. The role of software architects as well as
software developers is based on the same role in the PCM [BKR09]. The role of the
architectural consistency methodologists is the only role, we de�ne, that is active during
the design time of our Coevolution approach. The other roles we de�ne, using the de�ned
VSUM to create the actual software systems. Software architects and software developers
are using our Coevolution approach during the implementation time of the software
system. While the role of the architectural consistency methodologists is independent of
the used component model, the roles of the software architects and the software developers
are tailored speci�c for using our Coevolution approach with the PCM. However, the roles
of software developers and software architects are similar for other ADLs as well. We
explain these three roles in the following sections.

4.7.1. Architectural Consistency Methodologists

The �rst role we present, is the role of the architectural consistency methodologists. The
architectural consistency methodologists have similar tasks as the methodologist in the
OSM approach and the Vitruvius approach, where they are domain experts and decide
which metamodels, view types, and views are used. Within our Coevolution approach,
architectural consistency methodologists are domain experts for the architecture and code
domain as well as for the used techniques, e.g. EJB. In particular, architectural consistency
methodologists are responsible for the following tasks:

• deciding which architectural metamodels and source code metamodel should be
used,

• de�ning the consistency preservation rules between architecture and source code,
and

• implementing the consistency preservation rules using either our internal DSL (see
Section 3.6.1) or the MIR [Kra17] languages.

Hence, the architectural consistency methodologists are responsible for creating the VSUM.
Di�erently from the OSM approach and the Vitruvius approach, they do not need to
decide which view types and views are used, because we currently use only existing
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view types and editors. However, if we include ModelJoin [Bur+14] in the future the
architectural consistency methodologists are also responsible for creating the views.

4.7.2. So�ware Architects

One task of software architects within our Coevolution approach is to create the archi-
tecture of the software system. Using a component-based software architecture, as we
proposed in this thesis, this means that they are responsible for creating new components
in the repository or reusing existing components from other repositories and assemble
them in the system. Using the PCM, they, furthermore, can specify the abstract behaviour
of the services of a software component. Hence, the architect role within our Coevolution
approach is a generalization of the roles of the component developers and software ar-
chitects in the PCM [BKR09]. In the PCM approach, component developers specify the
components and their behaviour, while software architects specify how the components
are assembled. Even though we generalize both roles to the role of software architects
within our Coevolution approach, they can still be separated if the PCM is used as ADL
within our Coevolution approach.

The reason for the generalization is that within our Coevolution approach software
architects have additional tasks. If architects change the architecture they can be requested
to disambiguate the change as proposed in Section 4.4, if the change is not unique mappable
to source code. Hence, interacting with our Coevolution approach and reacting to the
user change disambiguation noti�cations is an important task of software architects
within our Coevolution approach. Architects, however, also need to disambiguate changes
performed in source code if they a�ect architectural elements and not mappable in an
unique way. This is the case, for instance, if developers perform a change that need to be
disambiguated to be keep it consistent with the architecture, but developers are not able
to deal with the noti�cation themselves. In this case, the architects need to �gure out the
intent of developers and either change the architecture accordingly or revert the change
of developers in order to keep the models consistent. To interact in the right way with our
Coevolution approach and to �gure out how to react to the user change disambiguation
noti�cation the architects need to be aware of the consistency preservation rules.

4.7.3. So�ware Developers

The software developers in our Coevolution approach are responsible for implementing
the software system. Using our Coevolution approach each architectural relevant change
software developers perform, is kept consistent with the architectural models. Hence,
if developers change the source code, the change can a�ect both: statical architectural
elements and behavioural elements. The change of statical architectural elements, such as
interfaces and components is probably not indented by developers if they only want to
implement the component-internal behaviour. To support that we distinguish between
component developers, who are allowed to change code that leads to a changes in the static
architectural models and component-internal developers, who are only allowed to changed
code that is not relevant for the static architecture. Both developer roles, we de�ne, are
allowed to perform changes that a�ect the behavioural elements of the architecture.
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4.7.3.1. Component-internal Developers

As �rst role for software developers, we propose the role of component-internal developers.
Component-internal developers are responsible for implementing the services of one or
more components. To avoid changes of static architectural models during the implemen-
tation of components, component-developers are not allowed to change code elements
that have corresponding static architectural elements. Component-internal developers are,
furthermore, not allowed to add or delete packages, classes or interfaces that a�ect the
architecture. They are, however, allowed to add new classes and technical interfaces within
existing components. The advantage of the role is that developers cannot change the
static architecture of the software system by accident, e.g. renaming an API method that is
intended to be called from users. Another advantage is that component-internal developers
not need to disambiguate their changes, because changes they perform cannot a�ect static
architectural elements. Hence, they can focus on implementing the internal behaviour
of a component. If component-internal developers want to introduce, for instance, new
components, they need to assume the role of component developers, which is explained
in the next section. Another possibility for component-internal developers to change
the static architectural elements, is to create change requests for software architects or
component-developers, for instance, by using a ticketing system. Software architects and
component developers review the change requests and can implement them.

To �gure out which changes can lead to changes of the static architecture, we can use the
Vitruvius correspondence model. We consider changes to source code elements that have
a corresponding static architectural element, e.g. a BasicComponent, as change of the static
architecture. Having this information, however, does not help to prevent that component-
internal developers change those code elements. One simple solution to prevent changes
on those code elements is to role back the changes of component-internal developers if
they change these elements. This approach, however, has two main disadvantages. The
�rst one is that rolling back changes, can be confusing for component-internal developers,
if they are not aware why the changes have been rolled back. The second one is that we
do not know whether the current software developer is a component-internal developer
or not. To overcome this disadvantages at least for code within class �les or interface �les
and to support component-internals developers by identifying code that is relevant for the
statical architecture before they actually change it, we propose a adapted code editor for
component-internal developers. Within this editor, we grey out and disable the editability
for the code elements that should not changed by developers. This editor can be generated
dynamically based on the current Vitruvius correspondence model, when a component-
internal developer opens a Java �le using the editor for component-internal developers.
Hence, we consider developers that use this editor as component-internal developers.
Developers who use the standard editor are considered as component-developers.

Telpl [Tel13] showed that it is possible to grey out and prevent changes on code by
implementing a plugin for the standard Eclipse Java code editor [Tel13]. Other than greying
out and prevent changes for speci�c code elements the editor shows the same behaviour as
the standard Eclipse Java code editor. In future work, we plan to integrate this approach in
our Coevolution approach so that the Vitruvius correspondence model is used to �gure
out which code areas respectively code elements should be greyed out and not be editable.
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We currently have no tool support to prevent developers to add or delete packages, class
�les, or interface �les that are relevant for the static architecture. It could be implemented,
however, by using the �rst approach: we role back the changes and inform the component-
internal developers that they are not allowed to perform this change. In this case, we
furthermore need a method to decide whether a user is a component-internal developer
or not. To do so a special Eclipse perspective, which is tailored for component-internal
developers can be used.

As an example, consider the package mapping consistency preservation rules, we de�ned
in Section 4.3.2. Using these consistency preservation rules component-internal developers
are, for instance, not allowed to change interfaces in the contracts package, because the
code interfaces have corresponding OperationInterfaces, while the code method have
corresponding OperationSignatures. They are neither allowed to change a component-
realisation class nor to create packages in the package that corresponds to the Repository.
Furthermore, they are not allowed to change the method declaration of methods that
correspond to a SEFF.

4.7.3.2. Component Developers

As second role for software developers, we propose the role of component developers.
Component developers have similar tasks as component-internal developers. Hence, they
are implementing the architecture, which has been outlined by the software architects.
In contrast to component-internal developers, component-developers can change code
that a�ects statical architectural elements as well. For instance, they are allowed to add
packages, class �les, and interface �les that are relevant for the static architecture. Hence,
changes a component-developer performs cannot only a�ect statical architectural elements,
but also lead to interactions with user change disambiguation framework, if additional
information is needed to keep the change consistent with the architecture. Component
developers can disambiguate they changes either directly, or after consulting the architects,
or by leaving a task for the architects in the task list. We assume that developers, who use
the standard code editor are component developers.
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Within the previous chapter, we explained how our Coevolution approach can be used to
keep architectural models and source code consistent during the software development
and software evolution. The approach as it is presented in the chapters before can only be
used if it is used from the beginning of the development process. Existing artefacts cannot
be used or integrated within our Coevolution approach as it is presented up until now.
This limitation is also true for the Vitruvius approach as it is presented in previous work
[Bur14; KBL13; Kra+15a]. To answer the question How can existing models be used within

Vitruvius and within our Coevolution approach?, we propose two di�erent strategies to
include existing artefacts. We presented the strategies and parts of their application to our
Coevolution approach in [Leo+15].

This section is divided into two main parts. In the �rst part, we present the two strategies
to integrate existing artefacts in Vitruvius. To realise the integration, we present the
concept of a reconstructive strategy and a linking strategy. We, furthermore, introduce
the role of the integrators who are responsible for implementing a reconstructive strategy
or a linking strategy in order to integrate existing artefacts.

In the second part of this section, we explain the application of the strategies to the
case of architectural models and source code. Within this part, we �rstly explain how we
can include an existing architecture model using a reconstructive strategy, and secondly
how we can include existing source code using a linking strategy. For the application
to our Coevolution approach, the �rst part of the linking strategy is to reconstruct an
architecture model from source code. Therefore, existing reverse engineering approaches,
such as the Source Code Model eXtractor (SoMoX) (see Section 2.4), can be used. As we
developed the reverse engineering approaches EJBmoX and Extract [Lan+16] within the
scope of this thesis, we explain them in Section 5.4.1.

We presented the integration of source code that is complaint to the used bidirectional
consistency preservation rules in [Leo+15]. Petersen [Pet16] extended this approach in
his master’s thesis to allow the integration of arbitrary source code.

5.1. Scientific Challenges

The following scienti�c challenges on how to include existing models into Vitruvius and
our Coevolution approach are addressed in this chapter:

• Which integration strategies are necessary to enable the use of existing models within

Vitruvius?

As mentioned above, Vitruvius is not able to deal with existing artefacts. Dealing
with existing models, however, is important in order to apply Vitruvius to existing
and historically grown projects.
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• How can the proposed integration strategies instantiated for the integration of existing

architectural models and existing source code into our Coevolution approach?

As the Vitruvius approach our Coevolution approach needs to be able to work with
existing projects in order to enable the use of our Coevolution approach with existing
software projects. For our Coevolution approach this means that the integration of
existing source code and existing architecture models is necessary. To do so, we need
to instantiate the Vitruvius integration strategies for our Coevolution approach.

• Which extensions are necessary to include arbitrary component-based code into our

Coevolution approach?

A further question arises, when we deal with existing source code bases that are not
compliant to the current used consistency preservation rules. The challenge is to
include such non-compliant source code into our Coevolution approach so that our
Coevolution approach can be used for the evolution of the software system.

5.2. Include Existing Artefacts in VITRUVIUS

The bene�t of enabling the use of existing artefacts within Vitruvius is that it can be
used within already existing projects. As a motivation why dealing with existing artifacts
is necessary, consider our Coevolution approach for architectural models and source code.
If we do not provide a mechanism to enable the use of already existing source code, it
would be necessary to redevelop the whole project from scratch using our Coevolution
approach. Especially for large projects it is unrealistic to assume that the e�ort will
be done by development teams. To avoid the e�ort, we introduce a mechanism that
automatically respectively semi-automatically enables the integration of existing artefacts
into our Coevolution approach. Within other case studies of Vitruvius, for instance,
the automotive software engineering domain, it is also necessary to deal with existing
artefacts for the same reason.

To include existing artefacts in Vitruvius we propose two di�erent strategies. The
�rst one is the so called Reconstructive Integration Strategy (RIS), which simulates the
recreation of an existing model. The second one is a Linking Integration Strategy (LIS),
which connects existing models using the output of model generating tools or model
creating tools, e.g. model to model transformations to link the models. We furthermore,
introduce the role of the integrators, who are responsible for performing the integration
of existing models or source code.

The RIS and the LIS are both based on the idea that one model instance of the models in
the Virtual Single Underlying Model (VSUM) has been created already, while the other
models are not created yet. For the remainder of this section, we consider the existing
model as source model and the models that should be created as target models. The
description of the integration strategies, which are provided in the following, address the
�rst scienti�c challenge, we de�ned for this chapter (see Section 5.1).

Consider the small example depicted in Figure 5.1, which we use to explain the strategies
in the following. On the left side of the �gure, we have a metamodel A that has the classes
RootA, NestedA and Required. The RootA class represents the root object for metamodel
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RootA

NestedA
name:String

Required
description:String

nestedA 0..* required 0..*

required 1..1

RootB

NestedB
name:String
description:String

nestedB 0..*

Figure 5.1.: Class diagram for metamodel A (left) and metamodel B (right)

A. The RootA class has two containment lists. One to the Required class and another one
to the NestedA class. The class NestedA has the String attribute name. The class Required
has the String attribute description. Furthermore, each instance of a NestedA class needs
exactly one instance of the Required class. On the right side we have metamodel B that has
the root class RootB. This class has a containment list to the class NestedB, which has the
attributes name and description. In addition, metamodel B has the invariant that the name

Attribute in class NestedB must be unique and is not allowed to contain spaces. We also
assume that we already have de�ned the following bidirectional consistency preservation
rules using Vitruvius:

• RootA maps to RootB, and

• NestedA and Required map to NestedB. Also the name attributes of NestedA and
NestedB are mapping to each other. Furthermore, the description attribute of the
class Required maps to the description attribute from NestedB.

5.2.1. Reconstructive Integration Strategy

The idea behind the RIS is to create the other models automatically by simulating the
initial creation of the already existing model. During the simulated creation, we create the
changes that are the necessary input for the consistency preservation process, which we
explained in Chapter 3. These changes serve as input for the Vitruvius framework and
are processed like standard changes that are performed by users. Hence, the consistency
preservation rules are executed and the corresponding model elements in all other models
are created.

Before creating the changes, however, we �rst resolve (potential) con�icts between the
source model and the target models. During this phase, we apply the invariants of the
a�ected objects from the target models to the source model. The goal of this phase is to
create models from which we are able to create valid changes and therefore valid target
models. We distinguish between two di�erent types of con�icts. The �rst type of con�ict
deals with so called syntactic con�icts, which would cause an invalid target model if we
apply the transformations from the source model to get the target model. As an example
for a syntactic con�ict consider our small example depicted in Figure 5.1: If we want to
integrate an instance of metamodel A, we need to consider the consistency preservation
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rules between metamodel A and metamodel B as well as the invariants of metamodel B.
The invariants of metamodel B need to be applied to the attributes of metamodel A that
could possibly violate the invariants during the execution of the consistency preservation
rules. In our example, we need to consider the invariants for the name attribute of the
class NestedB from metamodel B and apply them to the name attribute of class NestedA
from metamodel A. This means that we have to check all instances of the class NestedA
and need to make sure that their names do not contain any spaces. For instance, the name

attribute with the value My Name violates the constraint that no spaces are allowed in the
name attribute of the class NestedB. An obvious solution is to remove the spaces in the
name. Furthermore, we need to make sure that the name attribute in the class NestedA
is unique over all instances of the class NestedA. A simple solution here is to iterate over
all instances and identify the duplicate names and append a unique number at the end of
the name string. For instance, if we have two name attributes with the name MyName we
would rename the �rst to MyName1 and the second one to MyName2. The second type of
possible con�icts are semantic con�icts. This con�icts occur if the source model instance
cannot be mapped to the target model instance using the consistency preservation rules.
Hence, these con�icts depend on the used consistency preservation rules. To give an
example, we change the transformation from the name Attribute from the class NestedA
to the name attribute of class NestedB in a way that only the �rst three letters from name

are considered. This could lead to a violation of the invariant within metamodel B that the
values of the attribute name must be unique. To resolve the con�ict, one needs to ensure
that the �rst three letters are unique in the attribute name for all instances of the class
NestedA.

Even though the invariant resolving can be done during the transformation itself we
decided to do it before the integration transformation. The reason for this decision is
twofold. Firstly, we can resolve con�icts before the consistency preservation rules are
executed. This allows us, for instance, to resolve con�icts that cannot be resolved easily
within the consistency preservation rules itself. Secondly, it is possible to solve con�icts that
need the users to disambiguate the change before the actual execution of the consistency
preservation rules.

After the invariant resolving phase, we perform the traversal phase to simulate the
creation of the source model. This means that we need to visit every element in the model
and create the creation-change for the model element as well as for its attributes. The
algorithm we use relies on the fact that every model element needs to be contained in
exactly one other element. This is at least true for all models in any Eclipse Modeling
Framework (EMF) based model To traverse a model we �rst visit all elements that do not
have any incoming references. Hence, the �rst element we visit is the root object of the
model, which we consider as level 0 element. After that we visit all direct children of the
root object that are contained in the root object and that do neither require other model
elements to exist nor have required references to other model elements that are not created
yet. We call these elements level 1 elements. We repeat the above-mentioned step for all
level 1 elements and create the level 2 elements. We repeat this step until we visited all
elements within model A. During each visit we create the create-changes for the visited
model elements. After the application of the algorithm we have all changes that lead to
the creation of the initial model.
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To give an example consider metamodel A we mentioned above (see Figure 5.1). To
traverse the metamodel we �rst would visit the Root class, which is the level 0 element.
Both subclasses are contained within the Root class. The Nested class, however, needs
to have an instance of the Required class to exists. Hence, the Required class is the level
1 element, which instances can be visited after visiting the level 0 element(s). After the
creation of all Required classes, we can create all instances of the Nested class, because all
elements that are needed for any Nested class element are already created. In our small
example, the Nested class is a level 2 element.

This approach does not guarantee that we create the source model in the same order as
users would have created it. However, the output of the simulated model creation is the
same as the input source model. The above introduced approach comes with assumptions
for the source model as well as for the consistency preservation rules that are executed
during the creation of the elements within the source model. The assumption for the
source model is that the creation order of the model elements does not haven an e�ect on
the model itself. The assumption for the consistency preservation rules is that the creation
order of the model elements must not have any e�ect to the consistency preservation rules.
Another assumption for the transformations is that they need to be able to transform all
features from a class during the creation of the class already. The reason for that assumption
is that it is possible that not all changes made on a model are reported. Consider our
example metamodel A from Figure 5.1: The consistency preservation transformation needs
to be able to transform the name attribute of the class Nested as well as the description

attribute from the class Required during the creation of each class. This is necessary,
because the change for the attributes are not reported by the integration strategy. It is,
however, possible to change the RIS, in order to support the creation of the changes for
attributes as well.

5.2.2. Linking Integration Strategy

A LIS creates the correspondences between a source model and target models. Hence, in
contrast to the RIS it does not simulate the creation of the source model. A LIS requires
that the target models can be created or generated from the source model using an external
tool, e.g. a Model-to-Model (M2M) transformation. It also requires that during this
transformation a trace model has been created that provides the information how an
element from the source model maps to the elements from the target model. Using the
information from the source model, the created target models, and the trace model, a LIS
creates the Vitruvius correspondence model. The Vitruvius framework can use the
created Vitruvius correspondence model as normal correspondence model during the
execution of the consistency preservation rules between the source model and the target
models. This approach, however, has the assumption that the used model generation tools
create the same target model as it would be created using the consistency preservation rules.
If this is not the case, we need to create special correspondences that mark correspondence
which have been created by a LIS. The elements within the correspondences marked as
created by a LIS, cannot be kept consistent using the standard consistency preservation
rules. Instead we need a special treatment for those elements if they are changed. A
simple solution is to warn users that this change cannot be kept consistent automatically
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and require users to ensure the consistency manually. More advanced solutions, such
as keeping at least parts of the elements consistent automatically, e.g. the name, can be
implemented as well. Also, special consistency preservation rules can be created for the
elements that are integrated in the approach with a LIS.

Again, consider our example for this section (see Figure 5.1). Let us assume that we
already have an instance of metamodel B. Furthermore, we have de�ned an uni-directional
model to model transformation from metamodel B to metamodel A, that creates the
following elements from metamodel A:

• one RootA instance for every RootB instance;

• One NestedA instance and one Required instance for every NestedB instance. The
Required instance, however, is only created if no other Required instance with the
same description attribute exists already.

The M2M transformation also creates a trace model, which contains the information which
model element in the instance of metamodel A was created from which element in the
instance of metamodel B. The three models (the input model, the output model and the
trace model) are the basis for our LIS. The LIS uses these models as input for a M2M
transformation, which output is a correspondence model between the model instance
A and the model instance B. The transformation creates a Vitruvius correspondence
model element between the elements from metamodel B and its created model elements
from metamodel A. To �gure out which element from model A was created from which
element in model B the transformation uses the provided trace information. This approach
only works if the bidirectional consistency preservation rules match the uni-directional
transformation or generation mapping, i.e. the bidirectional consistency preservation
rules would have created the same output element as the uni-directional transformation if
Vitruvius would have been used from the beginning of the development process. In this
case the bidirectional transformations can be used directly and Vitruvius as it is can be
used for the development and evolution of the models. If this is not the case a special type
of Vitruvius correspondence model instances need to be created and considered during
the execution of the bidirectional transformations. The latter case is explained in a more
complex example for a LIS, which we present in the next section, where we apply a LIS to
source code and architectural models.

To conclude, a LIS heavily depends on the source model, the creation or generation
tools for the target models as well as the trace information this tools are creating. This
means that a LIS often requires technology-speci�c or even model-speci�c solutions.

5.2.3. The Role of the Integrators

For the integration of existing artefacts, we de�ne the role of integrators, who are re-
sponsible to perform the integration. If a speci�c model shall be integrated into a speci�c
VSUM, the �rst step they have to do is to decide whether a RIS or a LIS should be used for
integrating a speci�c model into a speci�c VSUM.

For a RIS they have the following two responsibilities: The �rst responsibility is to
solve the invariants of the models if they cannot be solved automatically. Secondly, they
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are responsible for creating the traversal strategy for the metamodels of the models that
should be integrated.

Since a LIS does not follow such a straight forward process like the RIS they have
more responsibilities depending on the used LIS. Hence, responsibilities within a LIS are
depending on the models that should be integrated and need to be de�ned speci�c for
the used approach. In general, however, they have the following responsibilities: If no
model transformation or model generation from the source model to the target model
exists yet, integrators are responsible for creating such a transformation or generation.
They also need to ensure that a trace model between the source model and the target
model exists. They can use this trace model together with the source model and the target
model to create a M2M transformation from these three input models to the Vitruvius
correspondence model.

5.3. Include existing Architecture Models using
Reconstructive Integration Strategy

This section introduces how we use a RIS to include an existing architecture model into
our Coevolution approach, i.e. it addresses the �rst part of the second scienti�c challenge
for this chapter.

Using Java Model Parser and Printer (JaMoPP) respectively Java as target model and
the consistency preservation rules introduced in Chapter 4, con�icts between Palladio
Component Model (PCM) and Java can occur. Table 5.1 shows the possible con�icts that
can occur between PCM and Java and whether these con�icts are syntactic or semantic
con�icts and how we resolve them before we traverse the model. For the semantic con�icts,
which are mapping-speci�c, we assume that the package mapping consistency preservation
rules, which we introduced in Section 4.3.2, are used. The semantic con�icts, we identi�ed
are, for instance, caused by the fact that one OperationSignature is provided multiple times
by the same BasicComponent. To overcome this con�ict, we could adapt the consistency
preservation rules in a way that the ProvidedRoles are made explicit in the source code. Such
an approach of mapping a PCM architectural model to source code has been introduced
by Becker [Bec08] and is implemented, e.g. for ProtoCom. As we see in Section 6.4 these
semantic con�icts, however, do not occur in any of the PCM instances we used as case
studies.

As next step, we have to traverse the PCM elements. Therefore, two traversal algorithms
are described in the following. The �rst one, (see Algorithm 3) shows one possible algorithm
how one PCM Repository can be traversed, while the second one (see Algorithm 4) shows
one possibility to traverse a PCM System respectively a ComposedProvidingRequiringEntity.
The goal of the traversal strategy is to visit each element within the given PCM elements
and create the according changes for each element in order to simulate a newly creation
of the model. Hence, the �rst element we visit is the Repository element itself. Afterwards,
we visit all DataTypes within the repository. The order in which we visit the data types
is as follows: Since the PrimitiveDataTypes do not have any dependencies to other model
elements, we visit them �rst. Using the consistency preservation rules we presented
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in this thesis, however, the creation of PrimitiveDataTypes does a�ect the source code,
because we use counterparts in the Java language to represent the PrimitiveDataTypes

from the PCM. After visiting the PrimitiveDataTypes, we visit all CompositeDataTypes and
CollectionDataTypes to create the skeleton for the complex data types. As of now we have
visited all data types and they can be used within OperationSignatures and as inner types
in other data types. Since each CollectionDataTypes, however, needs to have an inner type
to be a valid CollectionDataType the model is not valid by now. Hence, one assumption
we make here is that the transformations are able to deal with the fact that the model
is not in a valid state at every point in time. To complete the creation of the DataType

we visit all CompositeDataTypes and CollectionDataTypes again and create the changes for
the InnerDataTypes within the CompositeDataTypes respectively the InnerElements within
the CollectionDataTypes. After the last step we have a valid model that contains all data
types as well as their inner elements.

Afterwards, we can visit the remaining �rst level entities in the Repository. These are
all OperationInterfaces, CompositeComponents, and BasicComponents in the repository and
create the create-change for them. For each OperationInterface we also visit all Opera-
tionSignatures. During the visit of each OperationSignature we implicit visit the reference
to the return type. Furthermore, we explicitly visit all Parameters of each OperationSigna-

ture. After that step, we have created a Repository that consists of the DataTypes and the
OperationInterfaces. As next elements we visit the BasicComponents and the Composite-

Components. For the latter, we create the skeletons, but not the inner components. During
the visit of the components we visit the OperationProvidedRoles and OperationRequire-

dRoles to establish the connection between components and interfaces. If the current
component is a BasicComponent, we also visit the SEFFs of the BasicComponents.

As last step, for the repository we visit all CompositeComponents again to build their
inner structure. After performing this step, we are �nished with the creation of the Repos-
itory and can traverse the System. Since the CompositeComponents and the System are
both from type ComposedProvidingRequiringEntity we traverse the inner structure of both
in the same way. First, we visit the AssemblyContext and its encapsulated component.
Since, we already visited all components, we can be sure that the encapsulated compo-
nents for all AssemblyContexts exist. As next step, we visit the OperationProvidedRoles and
OperationRequiredRoles of the ComposedProvidingRequiringEntity. After that we visit all
ProvidedDelegationConnector and RequiredDelegationConnector, which are the delegation
connectors to connect the provided respectively required interfaces with the AssemblyCon-

texts. As last step we visit the AssemblyConnectors of a ComposedProvidingRequiringEntity.
The proposed Algorithm has the limitation that only one Repository can be traversed.

If more than one Repository is used the limitation can be overcome by creating a virtual
Repository that contains all elements from both Repositories. This virtual Repository can
than be traversed as mentioned in the Algorithm above.

The proposed algorithm is only one possible example how an existing PCM Repository

and an existing PCM System can be traversed. The important fact for any other possible
traversal algorithm, is that during the creation of an element, all elements necessary to
create the element have to be created already. The reason for that is that we create the
create-change for the currently visited element during the visit of each element.
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Algorithm 3 Traversal strategy for a PCM Repository

Require: PCM ← (Set<Repository>, System)
1: function traversePCM(Repository,System)
2: createRepository(repository)
3: for all primitiveDatatype ∈ repository do
4: createPrimitiveDatatype(primitiveDatatype)
5: for all compositeDatatype ∈ repository do
6: createCompositeDatatype(compositeDatatype)
7: for all collectionDatatype ∈ repository do
8: createCollectionDatatype(collectionDatatype)
9: for all compositeDatatype ∈ repository do

10: for all innerType ∈ compositeDatatype do
11: addInnerType(compositeDatatype, innerType )
12: for all collectionDatatype ∈ repository do
13: setInnerType(collectionDatatype, collectionDatatype .innerType)
14: for all operationInterface ∈ repository do
15: createInterface(operationInterface)
16: for all operationSiдnature ∈ operationInterface do
17: createSignatureAndReturnType(operationSiдnature)
18: for all parameter ∈ operationSiдnature do
19: addParameter(parameter )
20: for all compositeComponent ∈ repository do
21: createCompositeComponent(basicComponent )
22: for all opProvidedRole ∈ compositeComponent do
23: createOperationProvidedRole(opProvidedRole)
24: for all opRequiredRole ∈ compositeComponent do
25: createOperationReqiredRole(opProvidedRole)
26: for all basicComponent ∈ repository do
27: for all opProvidedRole ∈ compositeComponent do
28: createOperationProvidedRole(opProvidedRole)
29: for all opRequiredRole ∈ compositeComponent do
30: createOperationReqiredRole(opProvidedRole)
31: createBasicComponent(basicComponent )
32: for all se� ∈ basicComponent do
33: createSeff(basicComponent , se�)
34: for all compositeComponent ∈ repository do
35: traverseComposedEntity(compositeComponent )
36: traverseComposedEntity(system) . Finally, traverse the PCM system
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Algorithm 4 Traversal strategy for a PCM ComposedProvidingRequiringEntity, e.g. a PCM
System

1: function traverseComposedEntity(composedEntity:ComposedEntity) . a
composedEntity is either a System or a CompositeComponent or a Subsystem

2: for all assemblyContext ∈ composedEntity do
3: createAssemblyContext(assemblyContext)
4: for all opProvidedRole ∈ composedEntity do
5: createOperationProvidedRole(opProvidedRole)
6: for all opRequiredRole ∈ composedEntity do
7: createOperationReqiredRole(opProvidedRole)
8: for all providedDeleдationConnector ∈ composedEntity do
9: createProvidedDelegationConnector(providedDeleдationConnector )

10: for all requiredDeleдationConnector ∈ composedEntity do
11: createReqiredDelegationConnector(requiredDeleдationConnector )
12: for all assemblyConnector ∈ composedEntity do
13: createAssemblyConnector(assemblyConnector )

5.4. Include existing Source Code using a Linking Integration
Strategy

To include an existing source code base into our Coevolution approach, we use a LIS. For
this LIS, we present four di�erent integration levels. These levels de�ne the requirements
on the source code that shall be integrated. The levels reach from the requirement that the
source code already needs to be compliant to the consistency preservation rules that are
used (Integration Level 1) over the integration of arbitrary source code (Integration Level
2 and Integration Level 3) to the generation of element-speci�c bidirectional consistency
preservation rules (Integration Level 4). Furthermore, the four levels de�ne to which degree
the integrated source code can be kept consistent automatically with the architecture
after the integration. In this dimension the degree reaches from no automatic consistency,
over some de�ned changes can be kept consistent to all changes can be kept consistent
automatically using the de�ned consistency preservation rules. Within this thesis, we
focus on the �rst three levels, while the fourth level is left to future work. The de�nition
of Integration Level 1 addresses the second part of the second scienti�c challenge of this
chapter. The de�nition of Integration Level 2, Integration Level 3, and Integration Level 4
addresses the third scienti�c challenge of this chapter (see Section 5.1).

Since we use a LIS to integrate existing source code, we need to have model transfor-
mation or generation from the source in to the target models. Therefore, we use reverse
engineering approaches that are able to generate an architectural model from source code.
This step needs to be done for all de�ned integration levels. Within the work presented in
this, we used the reverse engineering approaches i) SoMoX, ii) Extract, and iii) EJBmoX . We
brie�y explained SoMoX [Kro12] in the foundations chapter already (see Section 2.4). Since
the reverse engineering approaches Extract and EJBmoX are contributions of this thesis,
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they are explained in the following subsections. While Extract is able to reverse-engineer
a PCM model from arbitrary Java source code using di�erent extraction algorithms, EJB-
moX is able to reverse-engineer a PCM model from Java source code that is created with
Enterprise Java Bean. We use the result of this extraction mechanisms to create a M2M
transformation from the result of the extraction, which is a PCM as well as a link model,
to the correspondence model. For the integration of existing source code we distinguish
between the use cases i) integrate code that matches the consistency preservation rules,
and ii) integrate code that does not match the used consistency preservation rules. Even
though the integration process for the two cases is similar, the evolution of the software
system using our Coevolution approach is di�erent for the cases. For the �rst case, the
de�ned consistency preservation rules can be used out of the box and the our Coevolution
approach does not to distinguish, whether a correspondence has been created by the inte-
gration M2M transformation or by the consistency preservation rules itself. The reason
for that is that the correspondences are the same regardless which transformation created
them. The consistency preservation rules, however, cannot be applied for if code should
be integrated that does not match the consistency preservation rules. Hence, an extension
for the proposed consistency preservation mechanism, which we have introduced in the
Chapter 3 and Chapter 4 is necessary.

In the remainder of this section, we �rst explain the used reverse engineering approaches.
Afterwards, we four di�erent integration levels, which can be used to integrate source
code. After that, we explain how we realised the �rst three integration levels within our
Coevolution approach. Finally, we explain the additional tasks of integrators within the
di�erent code integration levels.

Besides the fact that we can (partly) reuse existing reverse engineering approaches to
integrate existing code a RIS would be impractical for the integration of source code into
our Coevolution approach due to the following reasons:

1. Source code that shall be integrated, does often not match the current use consistency
preservation rules. If we would simulate a creation of the model using a RIS for
source code, we would force an architectural model that would have been created
by the consistency preservation rules. Enforcing the architecture of the consistency
preservation rules to a source code base that does not conform the consistency
preservation rules would work, but would may result in a misleading architectural
representation.

2. To simulate the creation of a JaMoPP model, the traversal algorithm needs to visit
every element of the source code model including the statements. Implementing a
traversal strategy for that is possible but impractical.

3. The consistency preservation rules (at least the once we implemented for this thesis)
from source code to architecture require users more often to disambiguate the change
than the transformations from the architectural model to the source code model.
Hence, users would be asked very often how to deal with the new elements that are
created. Answering these questions can be challenging, especially if the users are not
familiar with the consistency preservation rules or the implemented architecture.
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5.4.1. Extracting Architecture Models from exiting Source Code

Extracting an architecture model from existing source code is the �rst step towards the
integration of existing source code into our Coevolution approach. Since we use the
PCM as architecture model, we need to extract a rich architecture model from source
code in terms of Components, OperationInterfaces, OperationSignatures, ProvidedRoles, and
RequiredRoles. Since we also want to integrate the behaviour of the source code we also
need to extract the behaviour in terms of SEFFs. To integrate the source code into our
Coevolution approach in the next step we also need to have the information which class
belongs to which architectural artifact.

We identi�ed three approaches that allow us to reverse-engineer source code to a PCM
instance that ful�lls these requirements: The �rst one is to use SoMoX [Kro12], which
extracts an architecture based on metrics. The second one is Extract (see Langhammer et al.
[Lan+16]), which extracts an architecture using an extraction mechanism and transforms
the results to PCM. The third one is EJBmoX , which reverse-engineers source code that is
created using Enterprise Java Bean (EJB)s.

We already explained SoMoX in Section 2.4. Since Extract and EJBmoX are contributions
of this thesis, we explain them in the following two sections.

5.4.1.1. Extract

This section is based on Langhammer et al. [Lan+16], where we introduced Extract. Extract
is able to create a PCM architecture model from source code, which is based on Plain Old
Java Objects (POJOs), i.e. which does not use any speci�c source code technology, such
as EJBs. It is, furthermore, able to create PCM UsageModels from test code. The latter is,
however, not part of this thesis and therefore not explained here, i.e. we focus on the
creation of a PCM Repository.

To create a PCM Repository using Extract, the work �ow depicted in Figure 5.2 is
executed. In the following, we �rst explain the reused tools. Next, we explain the four
steps executed by Extract in order to retrieve a PCM Repository and a System.

Tools reused within the Extract tool chain As we can see in Figure 5.2, Extract uses Archi-
tecture Recovery, Change, and Decay Evaluator (ARCADE) [GIM13] to reverse-engineer
the architecture of source code. ARCADE is an architecture reverse engineering tool
that currently comprises ten di�erent extraction algorithms. It can apply these di�erent
algorithms to create di�erent views to the implemented architecture of a software system.
Within this thesis, we used the Algorithm for Comprehension-Driven Clustering (ACDC),
and Architecture Recovery using Concerns (ARC) as reverse engineering algorithms. As
we mentioned in [Lan+16], ACDC uses the module dependencies within a system to
recover its primarily structure. ARC uses information retrieval methods to recovers an
semantic architectural view of the software system. Garcia et al. [GIM13] showed that
the two algorithms outperformed the other available algorithms for ARCADE in terms
of accuracy and scalability. As output from ARCADE, we get the output clustering of
the source code, and the dependencies between classes. Consider the following example:
After applying ARCADE to the running MediaStore example of this thesis, we get the
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Figure 5.2.: Overview of architecture reconstruction approach Extract. We need to execute
steps 1 through 4 to get a PCM instance from source code. The grey boxes, are
approaches, we could reuse, while the black boxes are contributions of Extract
(step 1 through 3). We were able to reuse SoMoX’s SEFF generator for Extract,
but we need to adapt it in order to work in the environment of Extract.
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Figure 5.3.: Clusters of the MediaStore example extracted with ARCADE. We assume that
two clusters are reverse-engineered by ARCADE. One cluster contains the
MediaStore classes, while the other cluster contains the WebGUI classes.

two clusters shown in Figure 5.3. The clusters not only contain the actual architectural
relevant classes but also used classes from third party libraries and from the Java language
API. These classes, however, are ignored by Extract in the subsequent steps.

From Java Call Graph1, we get the method dependencies, i.e. we get the information
which method calls with other methods. From JaMoPP [Hei+10], we get an EMF model
representation of the source code.

Creating the PCM Repository and the PCM System In the following, we explain the four
steps, which are used by Extract, to create a Repository:

1. create a PCM Repository that contains interfaces and components with their Provid-
edRoles, and RequiredRoles,

2. extract the methods signatures of architectural relevant methods from source code,

1https://github.com/gousiosg/java-callgraph
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3. assign signatures and data types to provided interfaces, and

4. create SEFFs for the provided methods of each component.

For the creation of a PCM Repository, we �rst transform each cluster in the ARCADE
cluster output �le into one BasicComponent. As ARCADE does not reverse-engineer
interfaces, we create one OperationInterface for each cluster. This interface is provided
by the BasicComponent through a ProvidedRole. As next step, we need to create the
RequiredRoles. Therefore, we can use ARCADE’s dependency output �le. Using this
�le gives us the information which cluster depends on which other clusters, i.e, we can
�nd out the required BasicComponents for a given BasicComponent. As components are
not allowed to depend on each other in the PCM, we create a RequiredRole between the
BasicComponent and the provided interface of its required BasicComponents.

In step two and three, we need to create the OperationSignatures in the provided in-
terfaces of each component. Within the OperationSignatures, we also need to create the
parameters and the return types. Even though we are able to retrieve the class dependen-
cies from ARCADE, we are not able to retrieve the method dependencies from ARCADE.
To get the method dependencies between classes, we use the output of Java call-graph
as input for signature matcher. The signature matcher is using the method dependencies
from the Java call-graph and the class dependencies from ARCADE as input and creates
signature dependencies. Therefore, the signature matcher traverses the call-graph and
analyzes, for each method whether the method calls a method from a di�erent BasicCom-

ponent respectively a di�erent cluster. If this is the case, we create an OperationSignature

for the called method in the provided OperationInterface of the called BasicComponent,
because the method is called from outside its own BasicComponent and is therefore con-
sidered architectural relevant. After creating an OperationSignature, we need to create
the parameters and return types. Therefore, we can reuse the data type reconstruction
approach from SoMoX. Within this approach primitive data types in source code, e.g. int
or long, are mapped to their corresponding PCM PrimitiveDataTypes. More complex data
types in the source code, for instance classes, which are used as return type, are mapped to
either CompositeDataTypes or CollectionDataTypes. The latter is used if a data type either
implements the Collection interface of the Java language or if the type is an array type.

As a fourth and last step, we create a SEFF for each provided method of each component.
Therefore, we can reuse the SoMoX SEFF generator. In order to be able to use SoMoX
SEFF, we need to create a Source Code Decorator Model (SCDM) in the steps before. The
SCDM contains the information how source code elements are mapped to architectural
elements. Hence, we initially create an empty SCDM and update it during the creation
of the components, interfaces, signatures, and data types. After this step, we are able to
execute the SoMoX SEFF generation with this SCDM. As we mentioned in Section 2.4, the
SoMoX SEFF generation conducts a control �ow analyses on the source code. Therefore, it
�rst classi�es method calls performed within the method into either component-external
method calls or component-internal method calls or library calls. Based on classi�ed
method calls it conducts the actual control �ow analyses. During the control �ow analyses
the control �ow elements, such as loops, if-else, and switch statements are made explicit
in the SEFF if they contain a component-external method call.
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After executing these steps, we have a complete PCM Repository, which consists of
BasicComponents, OperationInterfaces with OperationSignatures and their ReturnTypes as
well as Parameters. We, furthermore, retrieve the RequiredRoles and ProvidedRoles of
each component. In the last step, we create SEFFs, which represent the behaviour of
the source code. These SEFFs can, however, not be used for predicting the performance
directly, because they do not contain performance information, such as resource demand
of internal actions, for the elements within the SEFF. This information can be added by
using approaches like Beagle Krogmann et al. [KKR10]. After applying Extract to our
running example and the clusters, we detected according to Figure 5.3, we get a similar
Repository as depicted in Figure 4.5. One di�erence is the naming of the components and
clusters, as they name depends on the used reconstruction algorithm. Another di�erence is
that the OperationSignatures within an OperationInterface are only created if the methods
corresponding to the OperationSignatures are called from a class that is contained within
another component respectively cluster.

As in SoMoX, we create an implicit PCM System by instantiating each of the components
once in the PCM System and by connecting the RequiredRoles of the components with the
matching ProvidedRoles.

Hence, after executing Extract, we have an up-to-date architectural representation of a
given source code base and a SCDM, which contains the information which source code
elements are mapped to which architectural elements. As we mentioned above, these
artefacts are used by the following integration approach to integrate existing source code
into our Coevolution approach.

5.4.1.2. EJBmodel eXtractor

EJBmoX , which stands for EJB model eXtractor, allows us to extract an architectural model
from code created with EJB. As foundations for EJBs, we use the EJB version 3.1, which
is de�ned in the JSR 318 [Sak09]. We explained the necessary foundations for EJB in
Section 2.5.4. To realise the reverse engineering of EJB-based software systems, we reused
the code base of SoMoX. We, however, replaced the SoMoX component and interface
detection mechanism with an EJB component and interface �nding mechanism. Within
EJBmoX , we were able to reuse the following steps from SoMoX:

1. the creation mechanism for Systems, ResourceEnviroment, and Allocation,

2. the extraction of data types from the source code, and

3. the extraction of behaviour in terms of a SEFF from the source code.

The �rst step can be reused to create a PCM System, a ResourceEnviroment, and an Alloca-

tion model from a given PCM Repository. To create a System it creates an AssemblyContext

for each component in the Repository and connects the provided and required roles. Com-
posing the components is, however, only possible as long as each interface is only provided
by one component. If more components provide the same interface the system architects
need to specify the composition of the system. This limitation can be overcome in future
work by also taking the deployment information of an EJB system into account during the
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reverse engineering. The �rst step also creates a default ResourceEnviroment, by creating
one server. The Allocation model is created by deploying all created components on the
one server in the ResourceEnviroment.

Creating a Repository from EJB-based source code To create a PCM Repository from EJB
source code EJBmoX performs the following steps.

1. reverse engineering of BasicComponents, OperationInterfaces, and ProvidedRoles,

2. reverse engineering of OperationSignatures and DataTypes,

3. creation of RequiredRoles,

4. creation of SEFFs for the provided services of each BasicComponent.

Within the �rst step the EJB source code is analysed and a PCM Repository including
BasicComponents, OperationInterfaces, and ProvidedRoles is created. The algorithm used
by EJBmoX to do so, is depicted in Algorithm 5 and explained in the following. The �rst
sub-step within the �rst step is the reconstruction of components. Therefore, we investigate
all classes subsequently and check for each class whether it is an EJB component-class. If
this is the case, we create a BasicComponent for the currently investigated class. Classes
annotated with either @Stateless, @Stateful or @MessageDriven are EJB component-
classes.

In the second sub-step, we create OperationInterfaces for all EJB business interfaces
implemented by the currently investigated EJB class. The identi�cation of EJB business
interfaces is done as speci�ed in the EJB speci�cation [Sak09]: If an EJB component-
class implements only one interface, the interface is an EJB relevant interface. If an EJB
component-class implements more than one interface, only those interfaces are rele-
vant that are annotated with either @Remote or @Local. These identi�cation rules, how-
ever, do not apply to all interfaces. For instance, the interfaces java.lang.Serializable,
java.io.Externalizable, and all interfaces in the package javax.ejb, are never con-
sidered as EJB business interfaces. Hence, if a class implements one of the irrelevant
interfaces, EJBmoX also needs to ignore the interfaces during the reconstruction phase.
For all other interfaces, EJBmoX needs to follow the above-mentioned speci�cation, in
order to create OperationInterfaces for all EJB business interfaces. If interfaces extend
each other in the source code, for instance if class ClassA implements InterfaceA, which
extends interface InterfaceB and InterfaceA is annotated with @Remote, we also consider
InterfaceB as an architectural relevant interface. Hence, we create an OperationInterface

for InterfaceB and use InterfaceA as parent interface. An OperationInterface for a Java
interface, however, is only created if no OperationInterface has been created already for
the Java interface.

After we created the OperationInterfaces for a component, we need to create the Pro-

videdRoles between the components and interfaces in the PCM. We create a ProvidedRole

between a reconstructed BasicComponent and a reconstructed OperationInterface, if the
EJB component-class, which corresponds to the BasicComponent, implements the EJB
business interface, which corresponds to the OperationInterface.
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Algorithm 5 Algorithm used by EJBmoX to create BasicComponents, OperationInterfaces,
and ProvidedRoles

Require: sourceCodeModel←JaMoPP model,
1: repository← createEmptyRepository
2: classes← sourceCodeModel.classes
3: ejbClasses← newEmptySet
4: for all class ∈ classes do
5: annotations← class.annotations
6: if (“Stateful” ∨ “Stateless” ∨ “MessageDrive”) ∈ annotations then
7: . EJB component class found
8: ejbClasses.add(class)
9: basicComponent← createBasicComponentWithName(class.name)

10: repository.components.add(basicComponent)
11: implementedInterfaces = class.interfaces
12: implementedInterfaces.remove(“Serializable”)
13: implementedInterfaces.remove(“Externalizable”)
14: implementedInterfaces.remove(“javax.ejb.*”)
15: ejbInterfaces = newEmptySet
16: if implementedInterfaces.size = 1 then
17: ejbInterfaces.add(implementedInterfaces.�rst)
18: else if implementedInterfaces.size > 1 then
19: for all interface ∈ implementedInterfaces do
20: if (“Remote” ∨ “Local” ∈ interface.annotations then
21: ejbInterfaces.add(interface)
22: for all ejbInterface ∈ ejbInterfaces do
23: opInterface← repository.interfaces.getInterfaceWithName(ejbInterface.name)
24: if opInterface = ∅ then . create interface if not existing
25: opInterface← createOperationInterfaceWithName(ejbInterface.name)
26: repository.interfaces.add(opInterface)
27: providedRole← createProvidedRole . create providedRole
28: providedRole.component← basicComponent
29: providedRole.interface← opInterface
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As second step, we need to create PCM OperationSignatures with parameters and return
types as well as PCM DataTypes for the types of parameters and return types. For each
method in the EJB business interface we create one OperationSignature in the correspond-
ing PCM OperationInterface. For the creation of PCM data types, we are able to reuse the
data type reconstruction approach from SoMoX. This approach creates PCM data types for
each Java object used as parameter or return type and adds it to the OperationSignature.

After the creation of the OperationSignature, we need to create the RequiredRoles be-
tween components and interfaces. A required relation between a BasicComponent and an
OperationInterface in the PCM means that the component needs the functionality of the
interface to ful�ll its own contracts. In EJB dependencies from an EJB component class to
an Java interface can be injected into the component class �elds by annotating the �elds
with either @EJB or @Inject. The runtime environment of EJB respectively the used EJB
container, ensures that the correct EJB component class that implements the interface is
injected. This mechanism is similar to the PCM de�nition of a required role. Hence, to
create the RequiredRoles, we need to investigate every �eld of every EJB component-class
and check, whether the �eld is annotated with @EJB or @Inject and if the type of the
�eld is an Java interface for which we created an OperationInterface. If this is the case,
we can create a RequiredRole between the BasicComponent, which corresponds to the EJB
component-class, and the OperationInterface, which corresponds to the type of �eld.

As the last step to complete the PCM repository, we need to create SEFFs for the
components. This is done by creating one SEFF for each provided OperationSignature of a
BasicComponent. Therefore, we can also partly reuse the SoMoX implementation. To run
the SoMoX SEFF reconstruction, we need to have an up-to-date SCDM, which contains
the information how architectural elements are mapped to the source code. In the case of
EJBmoX , we create the SCDM with the following information:

• a component-to-class relation between each EJB component-class and its corre-
sponding BasicComponent,

• an interface-to-interface relation between for each EJB business interface and its
corresponding OperationInterface,

• a signature-to-method relation between each interface method in EJB business
interface and its corresponding OperationSignature, and

• a data-type-to-class relation between each EJB data type class, which are usually
represented by POJOs, and the PCM data types.

These information are added to the SCDM during the above-mentioned reconstruction
steps, i.e. during the creation ofBasicComponents, for instance, we also create the component-
to-class entries in the SCDM.

Having the SCDM allows us to run the SEFF reconstruction approach from SoMoX,
which executes a control �ow analysis. The starting points for the control �ow analyses
are all class methods that implements an architectural relevant interface method, i.e. each
method that implements an interface method from an EJB interface we found in the �rst
step. As we mentioned in Section 2.4, the �rst step of the control �ow analysis is to

143



5. Include Existing Artefacts

recursively visit all method calls within a method and classify them as either internal

calls, external calls or library calls. We adapted the classifying mechanism of SoMoX in
order to support EJBmoX . The classifying mechanism used in SoMoX classi�es all calls to
another component as component external calls, all calls to a used third party library or
another used API, such as java.lang., as library call, and all calls to component-internal
methods as internal call. We can reuse the SoMoX classi�cation for library calls and
internal calls. The classi�cation of external calls, however, needs to be implemented for
EJB components as follows: EJBmoX needs to check whether a method call is a call to
a method of a required interface. If this is true we found an external call. As in the
SoMoX implementation, EJBmoX identi�es all calls to a used API or third party library as
library call. Furthermore, calls to data types are considered as library calls. This means
that EJBmoX assumes that within data types no external calls are performed. As in the
SoMoX implementation, internal calls are calling a method within the same component.
After the classi�cation is done we execute the SEFF generating mechanism from SoMoX,
which uses the classi�ed method calls to reverse-engineer the SEFF of a given method. To
use the reverse-engineered SEFF for the coevolution within our Coevolution approach,
EJBmoX is able to generate ResourceDemandingInternalBehaviour and InternalCallAction

for component-internal method calls instead of inlining them directly into the SEFF.

Extensions for EJBmoX We developed two extensions for EJBmoX , which allows EJB-

moX to also reverse-engineer software systems that do not completely follow the above-
mentioned mapping. The �rst extension, reverse-engineers �elds within an EJB component-
class that have the type of an EJB interface to RequiredRoles in the architecture. Hence,
RequiredRoles are created even if the �elds are not annotated with @EJB or @Inject. Using
this extension those �elds are treated the same way as �elds annotated with @EJB or
@Inject. Hence, they are reverse-engineered to RequiredRoles within the BasicComponent,
which corresponds to the class containing the �eld. This extension allows us to reverse-
engineer software system, where developers composed EJB components manually, e.g.
through the lookup method of the Context class used by the EJB container. Using the �rst
extension, however, has the disadvantage that EJBmoX is not able to reverse-engineer the
correct PCM System in a fully-automated fashion.

The second extension creates an OperationInterface in the reconstructed PCM Repository

for classes, which are annotated with an EJB component-annotation, but not providing an
EJB interface. To do so, we create one OperationSignature for each public method in the
class.

Example reconstruction using EJBmoX Listing 19 shows an EJB implementation of the
running MediaStore example. The simpli�ed version of the MediaStore consists of two
EJB component-classes and two remote EJB business interfaces. The EJB class WebGUIImpl
implements the interface IWebGUI and requires an instance of the interface IMediaStore

(Listing 19).

For this simple example, EJBmoX creates two BasicComponents: one for the class WebGUI-
Impl and one for the class MediaStoreImpl, because both are annotated with @Stateless.
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@Remote

public interface IWebGUI{

File httpDownload(Request request);

void httpUpload(File file);

}

@Remote

public interface IMediaStore{

File[] download(String[] ids);

void upload(File file);

}

@Stateless

public final class WebGUIImpl implements IWebGUI {

@EJB

private final IMediaStore iMediaStore

@Override

public File httpDownload(Request request){

Integer id = request.getFirstId();

String idStr = id.toString();

String[] ids = new String[]{idStr};

File[] file = this.iMediaStore.download(ids);

logger.info("File " + file + " retrieved.");

return file[0];

}

@Override

public void httpUpload(File file){

//...

}

}

@Stateless

public final class MediaStoreImpl implements IMediaStore{

@Override

public File[] download(String[] ids){

//...

}

@Override

public void upload(File file){

//...

}

}

Listing 19: Simple example for EJB code
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EJBmoX , furthermore, creates two OperationInterface for the two Java interfaces IWebGUI
and IMediaStore, because both interfaces are annotated with @Remote. In the second step,
EJBmoX creates one OperationProvidedRole between the BasicComponent WebGUIImpl

and the OperationInterface WebGUI and one between the BasicComponent MediaStoreImpl

and the OperationInterface MediaStore. The ProvidedRoles are created, because the classes
corresponding to the BasicComponents implementing the EJB interfaces correspond to the
OperationInterfaces.

During the interface reconstruction, we also create the signatures in terms of Oper-
ationSignatures for the methods within the Java interface. Hence, EJBmoX creates the
OperationSignatures download and upload in IMediaStore and httpDownload as well as
httpUpload in IWebGUI. During the creation of the OperationSignatures, EJBmoX also cre-
ates the PCM CompositeDatatypes Request and File for the types used as parameters in the
OperationSignatures. Furthermore, EJBmoX creates a CollectionDatatype named FileList

for the array of �les File[].
In the next step, EJBmoX creates an OperationRequiredRole between the BasicCompo-

nent WebGUIImpl and the OperationInterface IMediaStore, because the IMediaStore �eld
in the class IWebGUI has the @EJB Annotation. During the above-mentioned steps, EJBmoX

creates a SCDM, which contains the links between the architectural elements and their
matching source code elements. As last step to complete the PCM repository we reconstruct
the SEFFs for the class methods. As example, we consider the method httpDownload in the
WebGUIImpl. As mentioned above, we can reuse the SEFF creation mechanism from SoMoX.
Therefore, the following steps are executed: First, all method calls within the method http-

Download are visited and classi�ed as either component-external call, component-internal

call or library call. The result of this visiting is that only the call download is a component-
external call. All other calls are library calls. Now we can execute the control �ow analysis
for the method. The �rst element in the resulting SEFF is an InternalAction for all calls
before the component-external call. For the download call, the SEFF reconstruction creates
an ExternalCallAction. For the last library call in the method, the SEFF reconstruction
creates another InternalAction.

As we are now �nished creating the PCM Repository, we can create the PCM System

for the simple example. Therefore, we create one AssemblyContext for each BasicCom-

ponents in the Repository, i.e. we create one for the BasicComponent MediaStoreImpl and
one for the BasicComponent WebGUIImpl. The AssemblyContexts are connected using an
AssemblyConnector between the provided interfaces and required interface. The simple
example, is an EJB implementation of the running example for this thesis. Hence, EJBmoX

reverse-engineers the PCM repository depicted in Figure 4.5 from the EJB example source
code. EJBmoX , furthermore, extracts the PCM System depicted in Figure 4.6.

Assumptions and Limitations We make similar assumptions for the structure of the EJB
code as we make for the bidirectional consistency preservation rules between PCM and
EJB code (see Section 4.6.1.1). One assumption, we currently have, is that only source code
artefacts are used to describe the EJB components, EJB interfaces, and EJB dependencies.
This means other approaches, for instance XML descriptors, to describe EJB component-
classes, EJB interfaces, and dependencies between EJBs are not considered yet. In future
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work, however EJBmoX can be extended in order to take such XML descriptors into count
during the reverse engineering of a software system. Furthermore, we assume that EJB
relevant business interfaces are contained in the source code. This means, we are currently
not dealing with business interfaces contained in external libraries or JAR �les. We also
assume that data types do not have any component relevant behaviour. Hence, we require
that data types do not contain external calls. If the mentioned assumptions do not hold
for source code, which should be analysed, EJBmoX creates a wrong architecture and/or
wrong SEFFs.

A limitation on the architectural level is that we do not support CompositeComponents,
which are components that contains other components. In future work this limitation
could be overcome by, for instance, combining EJB component-classes contained in the
same package or in the same project to a CompositeComponent.

5.4.2. The Four Code Integration Levels

In the following, we explain the concepts for the four code integration levels, we de�ned
for the integration of existing source code. In the next section the integration of source
code for our Coevolution approach is explained based on this levels.

5.4.2.1. Integration Level 1

The �rst level of integration can be used if the following requirements are ful�lled:

• The source code base that shall be integrated needs to be compliant to the consistency
preservation rules that are used for the consistency preservation.

• The reverse-engineered architecture, which has been created by the used reverse
engineering tool, needs to be equal to the architecture that would have been created if
our Coevolution approach has been used from the beginning of the development, i.e.
it the reverse-engineered architecture needs to be compliant to the used consistency
preservation rules as well.

The level has two advantages: The �rst one is that the integrated code can be treated like
the code that would have been created if our Coevolution approach has been used from
the beginning of the development process. Hence, changes performed to any architectural
element or source code element can be kept consistent using the current used bidirectional
consistency preservation rules. The second advantage of Integration Level 1 is that the
process of the integration and the development process after the integration are simple,
because no special treatment for the integrated parts of the source is needed. Hence,
neither software architects nor software developers need to deal with the fact that some of
the elements have been integrated. However, Integration Level 1 has the disadvantage that
existing source code usually not ful�lls the bidirectional consistency preservation rules,
because source code can be build up in an arbitrary way. Even if the code follows a certain
consistency preservation rule, it is not guaranteed that no architecture violation occurs
within the code or that certain parts of the code do not follow the intended consistency
preservation rules. If the latter is the case, an approach such as Archimetrix [DPB13]
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can be used to align the code base to an intended architecture. Integrating Archimetrix,
however, is left to future work. Hence, Integration Level 1 is suited for existing source
code that already ful�ll the used consistency preservation rules.

In contrary to Integration Level 1 the other integration levels can be used for an arbitrary
code base. Hence, there are no special requirements to the source code and the reverse-
engineered architecture model.

5.4.2.2. Integration Level 2

The second integration level is the �rst level that supports source code that is not com-
pliant to the used bidirectional consistency preservation rules. To realise this a special
treatment is necessary for the integrated source code elements and their corresponding
reverse-engineered architectural elements. During the integration these elements are
marked as integrated elements. The special treatment and the marking is only necessary
if the elements are not compliant to the used bidirectional consistency preservation rules.
Hence, during the integration a matcher is executed that checks which source code ele-
ments and their corresponding architectural elements do not ful�ll the used consistency
preservation rules. If during the evolution of a software system one of these elements has
been changed by users, the elements cannot be kept consistent automatically. Instead users
get a noti�cation though the user change disambiguation framework of our Coevolution
approach that contains the information that the performed change cannot be kept consis-
tent automatically. Furthermore, it contains the information, which element corresponds
to the changed element and should be changed manually to preserve consistency.

Hence, the advantage of this approach is that arbitrary code can be integrated, while
the disadvantage is that the integrated elements cannot be kept consistent automatically.
Instead the users are noti�ed that the integrated elements need to be kept consistent
manually.

New elements that are added to the architecture, are kept consistent using the de�ned
consistency preservation rules. For new elements that are added to the source code, we
need to decide whether they are part of an integrated component or not. If they are part
of an integrated component, they are treated as integrated elements. Otherwise they
are treated as new elements and can be kept consistent using the de�ned bidirectional
consistency preservation rules. This level has the advantage that an arbitrary code base can
be integrated. It has, however, the disadvantage that included code that does not ful�ll the
consistency preservation rules cannot be kept consistent automatically. Integration Level
2 is suited if a) the existing source code of a project does not ful�ll the used consistency
preservation rules, and b) the existing source code is not changed frequently. Hence, it is
suited for projects that like to include their code base into our Coevolution approach and
use our Coevolution approach and the provided bidirectional consistency preservation
rules for the implementation of new components and features.

5.4.2.3. Integration Level 3

The third level is similar to the second level, but it overcomes the disadvantage that no
elements can be kept consistent automatically. Therefore, it allows to keep de�ned changes
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consistent automatically during the software evolution. As in Integration Level 2, the
integrated architectural elements and source code elements are marked as integrated
during the integration. Furthermore, the integrators needs to identify changes that can be
kept consistent. For these changes the integrators needs to de�ne integration-speci�c con-
sistency preservation rules that are executed if an element, which is marked as integrated,
has been changed. The more integration-speci�c consistency preservation operations can
be de�ned by the integrators the more e�ort is omitted for keeping the models consistent
manually.

To �gure out, whether a change that occurs during the evolution of the software system
can be kept consistent automatically, we check after each change a) if an integrated element
has been changed, and if yes, b) whether an action has been de�ned by the integrators for
the integrated element. If both conditions are true, the consistency between the elements
can be preserved automatically. If only the �rst condition (a) is true, we fall back to the
approach that is used in Integration Level 2, i.e. the users get the noti�cation that the
change needs to be kept consistent manually. If neither of conditions are true, either a
new element has been introduced or the changes does not a�ect integrated elements. In
this case, we can use the standard consistency preservation rules to preserve consistency.
The advantage of Integration Level 3 is that integrated elements, which do not follow
the standard consistency preservation rules, can be kept consistent automatically with
their corresponding elements during the software evolution. The disadvantage is that
the integration process needs more e�ort, because the integrators needs to de�ne which
changes to integrated elements can be kept consistent automatically and need to implement
the consistency preservation rules for these changes. Integration Level 3 is suited for
projects, where the integrated elements are changed during the evolution of the software
system, and de�ned changes should be kept consistent automatically.

5.4.2.4. Integration Level 4

For the forth integration level, we propose the creation of element-speci�c consistency
preservation rules during the integration process. This element-speci�c consistency
preservation rules can be used for consistency preservation during the evolution of the
software system. In this thesis, we focus on the �rst three integration levels. Hence, we
consider the fourth level is as future work. However, we can give some initial ideas about
the realisation of Integration Level 4. As a �rst step, the integration needs to be extended in
a way that element-speci�c mappings are created for each architectural element, which has
been created during the reverse engineering procees, and its corresponding source code
element. Since currently, mapping-speci�c rules are neither supported by our Coevolution
approach nor supported by the Vitruvius framework, the next step is to enable the support
of element-speci�c consistency preservation rules. Therefore, the reaction language
developed by Klare [Kla16] and Kramer [Kra17] or our internal DSL to create consistency
preservation rules, can be extended. During the software evolution, a similar process
as in Integration Level 3 can be used to check whether a change a�ects an element
for which an element-speci�c consistency preservation operation exist. If an element-
speci�c consistency preservation operation exists for the changed element, this consistency
preservation operation needs to be executed in order to preserve the consistency. If this
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is not the case, the standard consistency preservation rules can be used. The advantage
of Integration Level 4 compared to Integration Level 3 is that all elements can be kept
consistent automatically based on the element-speci�c consistency preservation rules.
The approach is suited if the source code that should be integrated is changed frequently
and if the source code does not ful�ll any consistency preservation rules.

5.4.3. Integration Level 1: Include Architecture-Code-Mapping Compliant
Source Code

This section explains, how the integration of existing source code using Integration Level
1 for source code is realised within our Coevolution approach. Integration Level 1 means,
that the code we integrate needs to be compliant with the current used bidirectional
consistency preservation rules between architecture and code. This can be, for example,
code that uses EJB and matches our EJB consistency preservation rules or it could be code
that either is compliant or was re�ned to be compliant to the package mapping consistency
preservation rules we explained in Section 4.3.

5.4.3.1. Overview of the integration process

Figure 5.4 gives an overview how the integration process works. For all code integration
levels the �rst step is to reverse-engineer the source code base that shall be integrated.
Therefore, we can use one of the above-mentioned reverse engineering approaches to
get an architecture model of a given source code. The result of the reverse engineering
process are two artefacts: i) an architectural model, which represents an architectural
view onto the source code base, and ii) the linking information between the source code
and the architectural model. If we use one of the above-mentioned reverse engineering
approaches, we get a SCDM that contains the linking information. These two artefacts and
the source code can be used as input models for the LIS. The reason why we need these
three models as input models for the LIS is explained below. The main part of the presented
LIS, is to create an instance of the Vitruvius correspondence model that contains the
correspondences between the architectural element and its corresponding source code
element(s). This Vitruvius correspondence model can be used for the evolution of the
software system using our Coevolution approach.

5.4.3.2. Using a LIS to Create a VITRUVIUS Correspondence Model

A �rst idea is to create the Vitruvius correspondence model instance from the available
information in the SCDM. It turned out, however, that the information in the SCDM is
not su�cient to create a Vitruvius correspondence model. To give an example, where
the information in the SCDM is not su�cient, consider the parameters of a method in the
source code model. For our Coevolution approach, we need to have the correspondence
from each method parameter from the source code model to a corresponding parameter
of an OperationSignature in the architecture model. This information is not represented
directly in the SCDM. To get the missing information, one approach is to extend the SCDM
with the necessary information as well as the reverse engineering approaches in a way
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Figure 5.4.: Diagram that shows the steps executed by the proposed LIS to include source
code that is compliant with the used architecture to code consistency preser-
vation rules. We published the diagram already in [Leo+15].

that they are able to create the necessary information. Another approach is to use the
information from the SCDM together and combine them with information from the source
code model and the architectural model to get the necessary information. In order to
avoid the e�ort of extending the reverse engineering approaches, we decided for the latter
approach, which is also depicted in Figure 5.4. To give an example how this approach works
consider, again, the parameters of a method. Even though the correspondence between
the parameters of a method and its corresponding Parameters of an OperationSignature

are not made explicit in the SCDM, we can create the correspondence by using the infor-
mation from the correspondence between the methods and OperationSignatures to create
the correspondence between the parameters of a method and the Parameters of an Opera-

tionSignature. Hence, for Integration Level 1, the linking integration strategy performs a
simple M2M transformation from the SCDM, the architecture model and the source code
model to the Vitruvius correspondence model. This M2M transformation creates one
entry in the Vitruvius correspondence model for each linking information in the SCDM.
If the information from the SCDM is not su�cient, the transformation uses additional
information from the Java model and the architectural model.

It might be necessary to adapt this M2M transformation according to the used bidirec-
tional consistency preservation rules. For the package mapping consistency preservation
rules, for instance, we need to perform the following two modi�cations for the consistency
preservation rules: Firstly, it is necessary to ensure that only for one class per package an
entry in the Vitruvius correspondence model is created, and secondly it is necessary to
create a correspondence for each package of its corresponding component.

Using this approach to integrate the source code creates the same correspondence
model that would have been created if our Coevolution approach has been used from the
beginning of the development process. Hence, the integrated source code can be kept
consistent using the already existing bidirectional consistency preservation rules. This
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means, furthermore, that after the integration our Coevolution approach can be used as if
it has been used from the beginning of the development process. Within the next section,
we explain how it is possible to include arbitrary component-based source code.

5.4.4. Integration Level 2: Include Non-Compliant Source Code

Including source code that is non-compliant with the used bidirectional transformations is
possible in Integration Level 2. In this section, we describe how we realise Integration Level
2 for our Coevolution approach, by changing respectively extending the above-mentioned
integration of source code. The Integration Level 2 has the requirements that i) integrated
elements are marked as integrated elements, and ii) after each change during the software
evolution a check is performed whether an integrated element has been changed. To
realise these requirements, we performed the following three extensions compared to the
integration of mapping compliant code:

1. extending the Vitruvius correspondence metamodel,

2. extending the integration transformation, and

3. extending the coevolution process in order to check whether a change has been
performed on an integrated model element or not.

For the �rst necessary extension, we introduce the new class IntegrationCorrespondence
to the correspondence metamodel, which has the standard Correspondence as base class.
Hence, it can be treated as a standard correspondence model element, but it marks its
instances as integrated elements. The second change, we made to the above-mentioned
integration process occurs during the integration itself. Instead of creating a standard
Vitruvius correspondence model containing instances of Correspondences, we create
IntegrationCorrespondences, for elements that are integrated by default. Instead of cre-
ating IntegrationCorrespondences only, it is, however, also possible to create standard
Correspondences for elements that ful�ll the used consistency preservation rules. To do
so, we integrated a check, which is executed before the creation of an IntegrationCor-

respondence. This check needs to be implemented mapping-speci�c and needs to decide
whether a given architecture model element and a given source code element ful�ll the
bidirectional consistency preservation rules. To do so, this check can access the Vitruvius
correspondence model, the SCDM as well as all architectural model elements and source
code elements. If the result of the check is that the given elements ful�ll the consistency
preservation rules a standard Correspondences can be created for that elements. Hence,
the elements can be kept consistent during the evolution of a software system using the
standard consistency preservation rules.

As last step, we need to extend our coevolution process. Therefore, we developed
a mechanism that checks for each change that is performed on either an architectural
element or a source code element, whether the changed element a�ects an integrated
element respectively an integrated area or not. An existing element that has been changed,
is considered as integrated element respectively as element contained in an integrated
area if either of the following two statements is true: i) the Vitruvius correspondence
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act Integration Level 2 consistency preservation

Changemonitored

inform user with
corresponding elements

inform user standard
behaviour

change a�ects
integrated element

new root object
in integrated area

else

Figure 5.5.: Change processing in Integration Level 2. After we monitored a change,
we check whether the change has been performed to an element within an
integrated or not. In the �rst case, we need to inform users about the change
(either with the corresponding element or without the corresponding element).
In the latter case, we can use the standard consistency preservation rules can
be used (standard behaviour)[Pet16].

model contains an IntegrationCorrespondence for that element, or ii) one parent element
of the changed element is an integrated element. If the element is considered as integrated
element, the standard consistency preservation rules are not executed. Instead the users
get a noti�cation via the user change disambiguation that speci�es which element needs
to be updated manually to achieve consistence between the models. Figure 5.5 shows, how
a change is processed within our Coevolution approach using the extended development
process.

Newly added elements cannot kept consistent using the standard consistency preserva-
tion rules if they are contained within an integrated element or an integrated area. Hence,
we need to �gure out whether a newly added element has been added into an integrated
area and should be treated as integrated element, or whether it should be treated as stan-
dard element. We decided that newly added elements within a compilation unit should be
treated by default the same way as their compilation unit respectively the class or interface
within this compilation unit. Hence, it is simple to �gure out whether a new element
that has been added within a compilation unit should be treated as integrated element
or not by checking the parents of the newly added elements until a class or interface is
reached. A challenge arises, however, for compilation units respectively classes, interfaces,
and packages that are newly added. For these elements, it is unclear whether they have

153



5. Include Existing Artefacts

been added into an integrated area or not. However, it can be decided depending on the
consistency preservation rules, whether these elements are contained in an integrated
area or not. For the package mapping consistency preservation rules, for instance, newly
added packages, classes or interfaces are considered as being part of an integrated area if
they are added within a package or sub-package that a) contains at least one integrated
class or interface already, or b) is contained in an integrated area itself.

5.4.5. Integration Level 3: The Definition and Execution of Special
Bidirectional Consistency Preservation Rules for Non-Compliant
Source Code

To realise Integration Level 3 for our Coevolution approach, we extend the realisation for
Integration Level 2 in the following way: A new task is added for the integration phase:
During this phase the integrators need to specify speci�c consistency preservation rules for
changes that a�ect integrated elements. These speci�c consistency preservation rules have
the same structure as the standard consistency preservation rules and can be either written
in the Mapping Invariant Response (MIR) languages [Kra17] or in our internal DSL (see
Section 3.6.1). The di�erence to the standard consistency preservation rules and the speci�c
consistency preservation rules is the execution time within the consistency preservation
process. During the software evolution phase, the speci�c consistency preservation rules
are executed if the following two conditions are true: i) the change occurred in an integrated
area, and ii) an integration speci�c consistency preservation operation that is de�ned in
the speci�c consistency preservation rules matches the occurred change (e.g. rename of
an interface method). A typical change, which can be kept consistent automatically for
integrated elements, is if they are renamed by users, e.g. the rename of an interface method
can be kept consistent with the name of the corresponding OperationInterface. Figure 5.6
shows, how a change is processed within our Coevolution approach if Integration Level
3 is used. The processing is similar as the one, we presented for Integration Level 2
(see Section 5.4.4). It only adds the possibility to keep the change consistent using the
integration speci�c consistency preservation rules.

5.4.6. Tasks for the Integrators during the Code Integration

In this section, we explain the task of the integrators that are speci�c for the code inte-
gration. The general tasks of the integrators are explained in Section 5.2.3. For the code
integration in Integration Level 1 the integrators have the additional task of re�ning the
speci�ed M2M transformation from the SCDM to the Vitruvius correspondence model if
needed. This re�nement might be necessary in order to allow the automatic coevolution of
the reverse-engineered architectural model and the source code. To be able to execute the
re�nement, integrators need to be aware of the used standard consistency preservation
rules.

For Integration Level 2 the integrators have the additional task of implementing the
mapping-speci�c integration-area-�nder for newly added classes, interfaces, and packages.
The �nder is used to �gure out, whether newly added elements are contained in an
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act Integration Level 3 consistency preservation

Change in integrated
area monitored

Check integration-specific
consistency preservation rules

execute specific consistency
preservation operation

inform user with
corresponding elements

inform user

no speci�c
consistency preservation

operation found

speci�c
consistency preservation

operation found

change a�ects
integrated element

new root object
in integrated area

Figure 5.6.: Change processing in Integration Level 3. The �gure shows the necessary
steos if a change in an integrated area has been monitored. To simplify the
�gure, we did not include the standard Vitruvius case[Pet16].
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integration area or not. To realise this task, integrators need to be aware of the standard
consistency preservation rules.

As mentioned above, within Integration Level 3, the integrators need to de�ne the
integration speci�c consistency preservation rules and implement them. For the imple-
mentation of the consistency preservation rules integrators can, e.g. use the Reaction
language [Kla16] or our internal DSL. As in Integration Level 2, they also need to de�ne a
mapping-speci�c integration-area-�nder. To do so, they also need to be aware of the used
standard consistency preservation rules.

Hence, the integrators need to be aware of the used standard consistency preservation
rules in all realised integration levels.
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In this section, we present the evaluation of our Coevolution approach. The main goal
of our Coevolution approach is to keep architectural models and source code consistent
during software evolution. Hence, the evaluation is aligned to the goals and research
questions, which we introduced in the Section 1.2. We evaluated our Coevolution approach,
the developed reverse engineering tools, and the integration of existing projects on existing
Palladio Component Model (PCM) instances and open source case studies. We showed that
our Coevolution approach can be used to keep changes performed to real world projects
consistent by extracting changes from a Version Control System (VCS) and replaying
them. Furthermore, we evaluated that the coevolved models can be used for model-based
analyses by predicting the performance of a software system using coevolved models.

The remainder of this section is structured as follows. In Section 6.1, we give an overview
of the performed evaluation and classify them according to the validation levels presented
by Böhme and Reussner [BR05]. Next, we present the Goal Question Metric (GQM) plan
for the evaluation (see Section 6.2). Based on the GQM plan, we describe the performed
evaluation. We �rst evaluate the contributions of including existing artefacts (see Chapter 5)
before we evaluate the contributions of the architectural code consistency (see Chapter 4).
The reason that we �rst evaluate the contributions of Chapter 5 is that we need to have an
up-to date architecture model for an existing source code base before we can evaluate the
contributions of Chapter 4, i.e. before we can evaluate that our Coevolution approach is
able to keep architectural models and source code consistent during the software evolution.

6.1. Evaluation Overview

In this section, we present an overview of the performed evaluation and classify them into
the di�erent validation levels presented by Böhme and Reussner [BR05]. We also give a
brief overview of the evaluation results.

6.1.1. Overview of the Performed Evaluation

First, we evaluate the developed reverse engineering approaches Extract and EJBmoX

by analysing existing open source projects using the reverse engineering approaches to
show how architecture models can be reverse-engineered from source code. To evaluate
the contributions of the thesis, we perform di�erent evaluation case studies. Next, we
evaluate the consistency preservation rules between component-based architecture models
and source code, which we presented in Chapter 4, as follows: We use a Reconstructive
Integration Strategy (RIS) as explained in Section 5.3 to simulate the creation of existing
PCM Repositories. During this reconstruction, the de�ned consistency preservation rules
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are executed to create the corresponding source code respectively Eclipse Plugin artefacts.
Next, we evaluate the levels of code integration to show how existing source code can
be integrated into our Coevolution approach. Therefore, we use the reverse-engineered
software systems from the �rst evaluation. Based on the integrated projects, we use
the ChangeReplayTool (see Section 2.5.5) to replay changes, which were performed on
the open source systems, we integrated before. During the replay of the changes, our
Coevolution approach keeps changes to architectural relevant source code consistent
respectively informs users that changes are performed on an integrated element. Hence,
we are able to evaluate that our Coevolution approach is able to keep architectural models
consistent with source code changes. We, furthermore, used the replay of changes to
evaluate the

• functionality of the incrementalSEFF reconstruction,

• the scalability of our Coevolution approach, and

• the performance of our Coevolution approach.

As last evaluation, we show that it is possible to perform model-based analyses using
PCM’s performance predicting capabilities. As case study system, we use the open source
system “modular Rice University Bidding System” (mRUBiS) and predict the performance
of

• a model reversed engineered with EJBmoX , and

• a coevolved architectural model.

6.1.2. Validation Levels of the performed Evaluations

Table 6.1 classi�es the performed evaluations into the validation levels introduced by
Böhme and Reussner [BR05]. As we presented in Section 2.6.2 we interpret the levels
as follows for our Coevolution approach: The �rst level (Level I ) is the metric validation
respectively result validation, which can be used to compare the result of an approach
with the reality. The second level (Level II ) represents the applicability validation, which
shows the applicability of an approach to real world project. The third level (Level III )
is the bene�t validation, which shows the bene�t of one approach compared to other
approaches. As mentioned in 2.6.2 Böhme and Reussner [BR05] do not de�ne an explicit
Level 0, which would be considered as implementation validity level.

We are not performing a Level III validation, as it would require too much e�ort. Instead,
we focus on Level I and Level II validations. All performed evaluations are also Level 0

validations, because all evaluations require a working prototypical implementation of our
Coevolution approach.

6.1.3. Evaluation Results

In this section, we give a brief overview of the evaluation results.
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performed evaluation Level I Level II

RIS for existing PCM models using di�erent consistency preser-
vation rules

X

Evaluation of reverse engineering approach using case study
system and open source systems

X

Evaluation of Linking Integration Strategy (LIS) based on a re-
versed engineered case study system

X

Evaluation of LIS based on reverse-engineered open source sys-
tems

X

Evaluation of Integration Level 1 using a case study system X
Evaluation of Integration Level 2 and Integration Level 3 by
replaying changes on reverse engineered and integrated open
source systems

X

Incremental SEFF reconstruction on open source systems during
change replay

X

Performance evaluation of Java monitor X
Performance measurement and scalability analysis during change
replay

X

Model-based performance prediction with coevolved architec-
tural model

X

Table 6.1.: A classi�cation of the performed evaluation into the validation levels of Böhme
and Reussner [BR05]. An “X” means that the performed evaluation is an evalu-
ation of the validation level.
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We were able to integrate most existing PCM instances using the consistency preser-
vation rules presented in this thesis. We successfully evaluated the developed reverse
engineering tools Extract and EJBmoX on 14 respectively 2 open source projects. We
integrated the mRUBiS case study system, and evaluated Integration Level 1 successfully.
We also integrated and replayed changes to four open source projects and were able to
identify changes on integrated elements and keep them consistent with the architecture
respectively inform the users about the changes. During this evaluation, we were also able
to keep the SEFF consistent incrementally. Hence, we were able to evaluate Integration
Level 2 and Integration Level 3 using open source systems. Even though the performance
of our Coevolution approach can be improved, the performance measurement showed that
our Coevolution approach can be used for typical sized classes. As performance bottleneck,
we identi�ed the parsing of source code into a Java Model Parser and Printer (JaMoPP)
representation.

Finally, we were able to predict the performance of a software system using a coevolved
architectural model. For this case study, we used mRUBiS as software system.

6.2. GQM Plan for the Evaluation

The evaluation is aligned to the GQM approach presented by Basili et al. [BCR94]. We
shortly gave a brief overview of the GQM approach in Section 2.6.1. To use the GQM
concept for the evaluation, we �rst need to de�ne the goals for the evaluation. Next, we
need to de�ne questions, which allow us to check whether the goals are reached. Finally,
we need to de�ne metrics, which can be used to answer the questions.

The goals, which we present for the evaluation, are closely aligned to the goals and
questions, which we proposed in Section 1.2. Note: to follow the structure of the evaluation
section, the goals are �rst de�ned for the evaluation of Chapter 5 and secondly de�ned for
Chapter 4.

6.2.1. Include existing Artefacts

G1 To enable the use of existing source code artefacts, we �rst need to reverse-engineer
the architecture of an existing source code base. Hence, one goal of this thesis is to
revere engineer the architecture of a software system from an existing source code.
Q1.1 Are the presented reverse engineering approaches applicable for real open

source software systems of reasonable size and produce valid architecture
models, which abstract from the source code?

M1.1.1 Source Lines of Code (SLoC) of the reverse-engineered software systems.
M1.1.2 Number of violated OCL constraints in the reverse-engineered architec-

tural models.
M1.1.3 Ratio between number of compilation units (classes and interfaces) in

source code vs. number of components and interfaces in the architectural
model.
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Q1.2 How accurate are the architectural models, which are reverse-engineered using
EJBmoX w.r.t. the extraction strategies?

M1.2.1 Number of extracted BasicComponents compared to the number of anno-
tated Enterprise Java Bean (EJB) component classes.

M1.2.2 Number of extracted OperationInterfaces compared to the number of an-
notated EJB Java interfaces.

M1.2.3 Number of the RequiredRoles in each BasicComponent compared to the
number of �elds in the corresponding EJB component class.

M1.2.4 Number of ProvidedRoles in each BasicComponent compared to the number
of implements relations in the corresponding EJB component class.

Q1.3 What are the di�erences between a reverse-engineered architectural model,
which was created using EJBmoX , compared to a manual created architectural
model of the same software system?

M1.3.1 Di�erences, in terms of number of elements and level of abstraction, be-
tween a manually created architectural model and a reverse-engineered
model for the same software system.

G2 To enable the use of existing artefacts, one goal of our Coevolution approach is
to enable the integration of existing architectural models and existing source code
bases.
Q2.1 How many PCM elements in existing case study systems can be mapped to code

using the di�erent consistency preservation rules we presented in Chapter 4?
M2.1.1 Percentage of existing PCM elements that can be mapped to code using

the RIS, which we presented in Section 5.3.
Q2.2 How often are users informed about changes on integrated elements when

using Integration Level 2?
M2.2.1 Ratio of changes that led to user noti�cation vs. changes that can be kept

consistent using the standard consistency preservation rules.
Q2.3 How many changes on integrated elements can be kept consistent using Inte-

gration Level 3?
M2.3.1 Ratio between elements that can be kept consistent automatically vs. ele-

ments that only inform users about a change.

6.2.2. Coevolution of Architectural Models and Source Code

G3 The main goal of our Coevolution approach is to enable the coevolution of architec-
tural models and source code during the evolution of a software system.
Q3.1 Which changes to architectural relevant source code can be kept consistent w.r.t.

to the current consistency preservation rules during the software evolution?

161



6. Evaluation

M3.1.1 Number of changes performed on source code that can be kept consistent
during the performed case studies vs. number of changes that could not
be kept consistent during the performed case studies.

Q3.2 To which extend can our Coevolution approach deal with open source systems
of reasonable size, i.e. can our Coevolution approach be applied for real world
projects?

M3.2.1 The overhead our Coevolution approach creates for open source projects
of reasonable size compared to the overhead our Coevolution approach
creates for relatively small projects.

Q3.3 How much time is consumed by our Coevolution approach to keep architectural
models and source code consistent after a change has been performed?

M3.3.1 Average time our Coevolution approach needs to update an architectural
model after an architectural relevant change in the source code occurred.

M3.3.2 The time our Coevolution approach needs to update a behavioural model
after a method body has been changed in the source code.

6.2.3. Model-based Analyses using coevolved Architecture Models

G4 One goal of our Coevolution approach is that the coevolved models can be used for
model-based analyses.
Q4.1 Which steps are necessary to use a coevolved model for performance predic-

tion?
M4.1.1 The number of steps that can be omitted if our Coevolution approach and

the coevolved model are used for performance prediction compared to
steps that are necessary to prepare the model for performance prediction
manually.

Q4.2 How accurate are the performance predictions that are performed with a
coevolved model?

M4.2.1 Prediction error of the response time between the predicted performance
and the measured performance of the case study system.

6.3. Evaluation of reverse engineering approaches

Within this section, we explain the evaluation of the developed reverse engineering
approaches Extract and EJBmoX . The evaluation of Extract is done by analyzing 14 di�erent
open source systems. To evaluate EJBmoX , we analysed two open source software systems.

6.3.1. Evaluation of Extract

The evaluation presented in this section is based on the evaluation we showed in Lang-
hammer et al. [Lan+16]. Extract itself is not only able to reconstruct the architecture of
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a software system, but it is also able to reconstruct UsageModels from test cases. In this
thesis, however, the reconstruction of UsageModels is not in the focus. Hence, we present
the evaluation results of Extract only with respect to the architectural model in terms of
a PCM Repository. Details about the reconstruction of UsageModels and their evaluation
can be found in [Lan+16].

The evaluation of Extract is performed as a case study, where we investigated di�erent
open source projects. Executing Extract for a software system gives us the architectural
model as described in Section 5.4.1.1, i.e. we get a PCM model in terms of BasicComponents,
OperationInterfaces with OperationSignatures, and RequiredRoles as well as ProvidedRoles.
For provided services of a component, we also retrieve the SEFFs. As additional artifact,
we get a Source Code Decorator Model (SCDM), which contains the information how the
source code elements are mapped to architectural elements. These models can be used
as input for the LIS, that is used to integrate existing source code into our Coevolution
approach.

The investigated open source projects, their versions and the created BasicComponents

for the used architecture recovery algorithms can be seen in Table 6.2. As recovery
algorithms we used Architecture Recovery using Concerns (ARC) and Algorithm for
Comprehension-Driven Clustering (ACDC). We choose these two algorithms as they
outperformed the other available algorithms for Extract in terms of accuracy and scalabil-
ity[GIM13]. The investigated projects are all Apache projects written in Java. The projects
were used by Le et al. [Le+15] to validate reverse engineering algorithms including ARC
and ACDC. Even though the projects are all Apache projects, the software systems have
di�erent sizes and di�erent domains (cf. [Le+15]). Hence, by using these projects, we can
show that Extract can be applied to various Java projects. We investigated 14 open source
projects with sizes from 46 KSLoC to 644 KSLoC and an overall size of more than 2.4
million SLoC. The resulting models as well as the corresponding versions of the software
systems, and a description how to set up Extract are available online 1. In this analysis, we
showed the principle applicability of Extract to open source software systems and showed
its scalability. The extraction itself needs approximately 5 minutes for the smaller systems,
such as Log4j. For the larger systems, however, the extraction needs up to �ve hours on
standard hardware (Mac OSX with 2.2 GHz Intel core i7, and 8GB RAM). In future work the
extraction performance can be improved by either optimising the JaMoPP parser or replac-
ing JaMoPP with a faster Java parser, such as the Model Discovery (MoDisco) [Bru+10]
parser or the Eclipse Java Development Tools (JDT) Abstract Syntax Tree (AST) parser.

From this evaluation, we can answer the question 1.1 as follows: As we can see from
the evaluation we performed for Extract, the developed reverse engineering approach
is applicable to real world projects. As we expected, none of the reverse-engineered
architectural models violated an OCL constraint of the PCM metamodel. This result
is expected, because we tailored Extract in order to create valid PCM instances. For
instance, during the implementation of Extract, we �gured out that the generic reverse-
engineered CollectionDataTypes violates a PCM constrains, because it does not contain an
inner element. To overcome this issue, we created and used the generic CompositeDataType

Object as default value for an inner element in a CollectionDataType. The ratio between the

1https://sdqweb.ipd.kit.edu/wiki/Extract
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System Domain Version KSLoC ARC ACDC

ActiveMQ Message Broker 3.0 95 116 88
Cassandra Distributed DBMS 2.0.0 184 285 52
Chukwa Data Monitor 0.6.0 39 74 43
Hadoop Data Process 0.19.0 224 388 101
Ivy Dependency Manager 2.3.0 68 128 40
JackRabbit Content Repository 2.0.0 246 294 72
Jena Semantic Web 2.12.0 384 766 36
JSPWiki Wiki Engine 2.10 56 77 31
Log4j Logging 2.02 62 187 61
Lucene Solr Search Engines 4.6.1 644 115 41
Mina Network Framework 2.0.0 46 93 44
PDFBox PDF Library 1.8.6 113 127 41
Struts2 Web Apps Framework 2.3.16 153 75 26
Xerces XML Library 2.10.0 112 143 28

Total 2426 2876 696

Table 6.2.: Overview of the analysed open source systems using Extract, we performed for
[Lan+16]. ARC, and ACDC columns display the number of recovered compo-
nents for each system. Note: The lines of code do not include test code.

compilation units and the created interfaces and components can be found in Table 6.3.1.
The abstraction ratio for all investigated compilation units to all created components and
interface is 0.31 for ARC and 0.08 for ACDC. Hence, we create far less components and
interfaces than compilation units exist in the source code, i.e. the models abstract from
the source code by composing classes to components. Furthermore, Extract abstracts from
statements and component-internal calls during the SEFF reconstruction.

6.3.2. Evaluation of EJBmoX

As mentioned above, we investigated two di�erent EJB software systems to evaluate
EJBmoX . These systems are the MediaStore[Koz+08; SK16], and mRUBiS2. Both systems
are designed as evaluation systems and span approximately 5.000 SLoC. Both projects are
EJB based.

The MediaStore system was introduced by Koziolek et al. [Koz+08] to evaluate the PCM
approach. A more recent version of the MediaStore and an up-to-date implementation as
well as a PCM model are provided by Strittmatter and Kechaou [SK16]. The MediaStore

2https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
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Project #Comp.Units #Components + Interfaces Ratio

ARC ACDC ARC ACDC

ActiveMQ 1036 232 176 0.22 0.17
Cassandra 886 570 104 0.64 0.12
Chukwa 338 148 86 0.44 0.25
Hadoop 1647 776 202 0.47 0.12

Ivy 474 256 80 0.54 0.17
JackRabbit 1948 588 144 0.30 0.07

Jena 3822 1532 72 0.40 0.02
JSPWiki 351 154 62 0.44 0.18

Log4j 585 174 122 0.30 0.21
Lucene Solr 2996 230 82 0.08 0.03

Mina 1852 186 88 0.10 0.05
PDFBox 852 254 82 0.30 0.10
Struts2 479 150 52 0.31 0.11
Xerces 762 286 56 0.38 0.07

Total 18028 5536 1408 0.31 0.08

Table 6.3.: Ratio between compilation units and components and interfaces in the reverse-
engineered models. Note: We counted the compilation units in production
code only, i.e. only the compilation units represented in the reverse-engineered
architecture are taken into account. Test code and example code are not counted.
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allows users to download audio �les, upload audio �les, and purchase audio �les. Our
running example, which we introduced in Section 4.3.2.4, is a simpli�ed version of this
MediaStore.

The mRUBiS system is provided by the System Analysis and Modelling Group of the
Hasso Platner Institut. It is a case study system created to simulate an auction site prototype
similar to eBay. To realise this functionality, users can authenticate themselves, add items,
bid for items, and �nally purchase items if they win the auction.

The mRUBiS system can be analysed using the EJBmoX standard con�guration, i.e.
mRUBiS only uses the @EJB annotation to indicate the required interfaces within the
component-classes. Furthermore, all component-classes implement at least one EJB Re-

mote interface or one EJB Local interface. Each Java interface is only implemented by
one component, i.e. EJBmoX is able to derive the PCM System implicitly during the
reconstruction of mRUBiS.

For the MediaStore system, however, we need to use the extension con�guration of
EJBmoX . Hence, �elds of an EJB component-class with the type of an EJB Java interface,
which are not annotated with @EJB or @Inject, are considered as RequiredRoles in the archi-
tecture as well. We, furthermore, create an implicit OperationInterface in the reconstructed
PCM Repository for classes, which are annotated with an EJB component-annotation, but
not providing an EJB interface. The results of the analysed projects can be seen in Table 6.4.
The resulting models are available online 3.

The table also allows us to answer the question 1.2 from the GQM plan as follows:
EJBmoX is able to reverse-engineer all EJB component-classes to BasicComponents and all
architectural relevant Java interfaces to OperationInterfaces. It can also reverse-engineer
ProvidedRoles, which are represented by an implements realisation between an EJB com-
ponent class and an architectural relevant Java interface EJBmoX is also able to reverse-
engineer RequiredRoles, which are represented by a private �eld, with the type of an
architectural relevant Java interface, in an EJB component class. It is also able to cre-
ate implicit interfaces for classes not providing an EJB interface, but considered as EJB
component-classes. Even though we only applied Extract to larger projects, we can indi-
cate that EJBmoX can be applied to larger projects as well, because both approaches share
the same infrastructure. The architecture models created with EJBmoX do not violate
any OCL constraint from the PCM metamodel. The reason is the same as for Extract:
We tailored EJBmoX speci�cally in order to not violate any OCL constraints in the PCM
metamodel. To calculate the ratio between compilation units and created components
and interfaces, we can use the information about the reverse-engineered components and
reverse-engineered interfaces from Table 6.4. We, furthermore, need the information that
mRUBiS consists of 69 compilation units, while the MediaStore consists of 59 compilation
units. Hence, we have a ratio of 0.41 for mRUBiS, while we have a ratio of 0.47 for the
MediaStore. Even though the ratio is higher as for Extract, we can state that EJBmoX gives
an high-level overview of the analysed software systems and abstracts from the source
code.

3https://sdqweb.ipd.kit.edu/wiki/EJBmox
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System KSLoC BCs EJBs OpIf EJB If RR EJB Fields PR Impl

MediaStore 2.9 12 12 16 16 16 16 12 12
mRUBiS 4.8 14 14 14 14 14 14 27 27

Abbreviations: BC = BasicComponent, EJBs = EJB component-classes, OpIf = OperationInterface,
EJB If = EJB interfaces, RR = RequiredRole, EJB �elds = EJB �elds in component-classes with type
of EJB interface, PR = ProvidedRole, Impl = implements relations between a EJB component-class

and an architectural relevant EJB interface

Table 6.4.: Result for the analysing software systems using EJBmoX . As we can see the
reverse-engineered number of BasicComponents, OperationInterfaces, Require-
dRoles, and ProvidedRoles matches the number of actual implemented counter-
parts in the source code.

6.3.3. Comparison of a Revere Engineered Model with a Manually created
Model

As Strittmatter and Kechaou [SK16] created an up-to date PCM model from the imple-
mentation of the MediaStore manually, we can use the MediaStore system to compare
the reversed engineered Repository with a manually crafted one. By performing this com-
parison, we answer the research question 1.3 from our GQM plan. The manually created
Repository is depicted in Figure 6.1, while the reverse-engineered Repository is depicted in
Figure 6.2.

As we can see from the �gures, the numbers of the components and interfaces are
similar. The names of the components are slightly di�erent in the automatically created
Repository. The names di�er, because EJBmoX creates the name of a component using
the name of its corresponding EJB component-class. The names for EJB component-
classes are usually ending with Impl in the implementation of the MediaStore. Hence, the
names of the BasicComponents also ending with Impl. To overcome this issue, it would
be possible to remove Impl from the end of a components name automatically during
the reverse engineering process. The following main di�erences between the automatic
reverse-engineered model and the manual created one can be observed:

• No matching component can for the three components FileStorage, DownloadLoad-
Balancer, and ParallelWatermarking are present in the reverse-engineered model.
For the components DownloadLoadBalancer and ParallelWatermarking this is the
case, because no implementation is currently available for these components. Similar
to the other two components, EJBmoX is not able to reverse-engineer a component
for the FileStorage component in the manual model, because the FileStorage

component is not present in the code directly. It is used in the manual model to
represent communication with the HDD or external storage.

• Two BasicComponents and two OperationInterfaces called DBManager are present in
the reverse-engineered model. They are responsible for the interaction with the
database. In the manually created model, however, only one BasicComponent, called
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UserDBAdapter

AudioWatermarking

Reencoding

MediaManagement

Facade

MediaAccess

Packaging

DB

FileStorage

TagWatermarking

Cache

UserManagement

DownloadLoadBalancer

ParallelWatermarking

I IUserDB

I IDownload

I IMediaAccess

I IPackaging

I IMediaManagement

I IFacade

I IDB

I IFileStorage

I IUserManagement

D FileContent

D AudioCollectionRequest

Figure 6.1.: The manually created PCM Repository model of the MediaStore

DB, is present, which handles the database interaction. The di�erence occurs, because
two EJB component-classes called DBManager exist in the code. The DBManager classes
in the code both interact with the database. One class is responsible for the database
access in order to retrieve and store audio �les, while the other class is responsible
for the database access for user information. The manually created architecture
abstracts from these two classes and combines them in one component.

• The used data types are di�erent, because EJBmoX creates one architectural data
type for each Java data type used in the implementation. For instance, EJBmoX

creates a PCM CollectionDatatype, with the name BYTEList, which uses the Primi-

tiveDataType BYTE as inner type, for the code data type byte[] (a byte array). The
manually created model can abstract from these details and uses only FileContent

and AudioCollectionRequest as custom PCM DataTypes. The reverse-engineered
model, however, also contains data types for AudioFile and AudioFileInfo as well
as CollectionDataTypes for both of the types.

• The code interfaces, which are marker interfaces for the IDownload interface, have
an explicit representation in the reverse-engineered architecture, while the manually
created architecture can abstract from the marker interfaces. These interfaces are
necessary in the code to mark classes that implement IDownload more speci�c. They,
however, do not add functionality.
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Figure 6.2.: The reverse-engineered PCM Repository model of the MediaStore
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• Some OperationSignatures, e.g. the OperationSignatures within IDownload, are dif-
ferent in terms of parameters. The reason is, again, that the manually created
architecture abstracts from parameters, which are unnecessary for the performance
prediction. The manually created architecture model, furthermore, combines the
requests in an own PCM data type, which is not directly represented in the code.
Hence, this data type is not reverse-engineered by EJBmoX .

The main reason for the observed di�erences is that manual created architectural models
can abstract from more implementation details, while the reverse-engineered models
cannot easily abstract from all this details. Hence, the automatically created architecture
model elements are more detailed as the manually created one, because the automatic
create architecture models are closely aligned with the underlying source code. They
also provide a consistent abstraction level for the extracted source code. The advantage
of the manually created model is that users can get a higher-level overview that omits
unnecessary details. EJBmoX , however, is not able to abstract from those details. Hence,
we can observe the same result for reverse-engineered architectural models as Krogmann
[Kro12]: the automatically reverse-engineered architectural models are precise and have
a consistent abstraction level. They, however, also contain non-performance relevant
information, from which manually created architecture models can abstract away.

6.4. Evaluation of the Consistency Preservation Rules and the
PCM RIS

In this section, we present the evaluation of the RIS for the PCM (see Section 5.3) as well
as the evaluation of the consistency preservation rules we proposed in Chapter 4. To do
so, we use existing PCM models and include them using the RIS for the PCM. During
the integration, we simulate the atomic creation of the existing PCM model. During the
integration, our Coevolution approach to reacts to these changes with the current active
consistency preservation rules and creates the corresponding source code elements for
the existing PCM models.

To create the evaluation data, we use the prototypical implementation of our Coevolution
approach with the prototypical implementation for the consistency preservation rules. For
the evaluation of the consistency preservation rules between PCM and artefacts of Eclipse
plugins, we reuse the data Heiss [Hei15] carried out in his bachelor’s thesis.

6.4.1. Existing PCMModels

Table 6.5 gives an overview of the existing PCM models, we used for the evaluation of
the PCM RIS and the consistency preservation rules. We use seven existing PCM case
studies, which have been used in di�erent case studies over the last years to evaluate the
PCM itself and its extensions. Hence, these models can be seen as representative PCM
models. Table 6.6 lists the number of elements each of the case studies contains. We later
compare how many of these elements can be integrated using the proposed consistency
preservation rules.
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Project Short description

MediaStore The MediaStore case study was created by Koziolek et al. [KBH07]
to show the applicability of the Palladio approach. Since the initial
presentation of the MediaStore, the system has been used to show
the applicability of extensions developed for the PCM. An up-to-
date model and EJB based implementation has been introduced
by Strittmatter and Kechaou [SK16]. As our running example of
this thesis, the system itself allows users to upload and download
media �les from a server.

CoCoME The Common Component Modelling Example (CoCoME) Herold
et al. [Her+08] is a case study system that has been developed to
compare di�erent modelling approaches for component-based
software systems. It is an example software system that describes
processes and work�ows in supermarkets and retail stores. It
supports use cases, such as buying products and paying them
as well as, and administrative processes, such as ordering new
products and inventory management. Krogmann and Reussner
[KR08] introduce the �rst PCM version of the CoCoME system,
which has been re�ned and extended by Heinrich et al. [HRR16].

Open Refer-
ence Case

The Open Reference Case system is service-oriented variant of
the CoCoME system developed in the SLA@SOI project. As stated
in [HRR16] an additional web service layer has been introduced
to the original CoCoME architectural model.

Desktop
Search

As the name indicates the PCM model of the Desktop Search
models a program that allows the search on a desktop system.

DPS The Dynamic Positioning System (DPS) system, is a model of a
Dynamic Positioning System, which can be used to navigate and
�nding the position of a deepwater oil platform (see Duarte et al.
[Dua+10], Gouvêa et al. [Gou+11], and Gouvêa et al. [Gou+12]).
Within [Gou+11] and [Gou+12] a PCM instance of a DPS has
been introduced.

Industrial
Control
System

The Industrial Control System (ICS) is an industrial case study
for the PCM and has been introduced by Koziolek et al. [KSB10]
and re�ned by Brosch et al. [Bro+12]. The system is an industrial
size process control system from ABB.

BRS The Business Reporting System (BRS) has been introduced by
Koziolek [Koz11] to show the applicability of PerOpteryx and is,
according to [Koz11], loosely based on a real system introduced
by Wu and Woodside [WW04]. According to Koziolek [Koz11],
the BRS system allows users to retrieve data, such as reports and
statistical data, about business processes from a database.
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Project Short description

Table 6.5.: Overview of used PCM case study systems

6.4.2. Execution of the Case Study

To automatically execute the above-described case study and allow the repetition and
ease the reproducibility of our results, we implemented a small evaluation tool, which is
available as part of the Vitruvius framework and as part of the implementation of our
Coevolution approach. This tool executes a set of consistency preservation rules for a
given set of PCM models. At �rst it counts the elements in each of the PCM models. During
the execution of each consistency preservation rule for each PCM model it furthermore
logs the number of changes, which can be kept consistent using the active consistency
preservation rules. The process of the evaluation tool is described in the activity diagram in
Figure 6.3. As last step, we manually aggregated the numbers and calculated the percentage
of changes that can be kept consistent for each consistency preservation rules in relation
to the overall model elements. We, furthermore, checked the output models manually to
ensure that the generated output is correct w.r.t. the consistency preservation rules.

6.4.3. Results of the Integration Case Study

In this section, we describe the results and �ndings of the case study using the RIS for PCM
and existing models and answer evaluation question 2.1. An overview of the elements that
can be integrated is given in Table 6.7. Within this table the results of all implemented
consistency preservation rules are shown. In Section A.2, the integrated elements for each
used case study project is shown.

The #el. column of Table 6.7 shows the number of elements created by the RIS for the
PCM instances.The #cf. column of Table 6.7 shows the number of con�icting elements, i.e.
elements that can be integrated into our Coevolution approach, but lead to a validation error.
The pct. column shows the percentage included elements using the active consistency
preservation rules. Columns containing “–” indicate that the consistency preservation
rule is not able to transform these models.

Note: the overall number of elements for Eclipse plugins is lower, because we did not
perform the case study for all of the above-mentioned projects, because we reused the
results from the bachelor’s thesis of Heiss [Hei15]. Hence, for the integration of existing
PCM elements to Eclipse plugins, we only present results for the MediaStore, CoCoME,
the Open References Case, and the BRS system.

As the #el. column in Table 6.7 equals the number of elements contained in all projects,
which were used for the evaluation of the consistency preservation rule, we can state
that the RIS for PCM is able to simulate the creation of a PCM instance. However, due to
additional limitations, which are introduced by the consistency preservation rules, some
elements cannot be integrated. As we mentioned above, the con�icting elements are such
elements that con not be mapped to source code respectively to Eclipse plugin artefacts.
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act CPR evaluation activity

«Loop»

for each PCM model ∈ PCM models

Count PCM
model elements

PCM
#PCMmodel
elements

«Loop»

for each CPR ∈ CPR set

PCM CPR

Execute CPR rules
for PCMmodel

Code

PCMmodels

set of CPR

Figure 6.3.: Activity diagram of the evaluation helper tool. The tool applies a given set of
consistency preservation rules to a given set of PCM models.

174



6.4. Evaluation of the Consistency Preservation Rules and the PCM RIS

Pa
ck

.m
ap

.
EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in

PC
M

el
em

en
t

#e
l.

#c
f.

pc
t.

#e
l.

#c
f.

pc
t.

#e
l.

#c
f.

pc
t.

#e
l

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

73
0

10
0

73
0

10
0

73
0

10
0

51
0

10
0

C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

2
0

10
0

–
0

0
2

0
10

0
–

0
0

O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

58
0

10
0

58
0

10
0

43
0

10
0

42
0

10
0

C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

43
0

10
0

43
0

10
0

43
0

10
0

–
0

0
C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

19
0

10
0

19
0

10
0

19
0

10
0

–
0

0
O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

14
8

0
10

0
14

8
0

10
0

14
8

0
10

0
–

0
0

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

73
0

10
0

73
17

77
73

0
10

0
51

0
10

0
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

10
0

0
10

0
10

0
0

10
0

10
0

0
10

0
66

0
10

0
S
E
F
F
s

17
6

0
10

0
17

6
0

10
0

17
6

0
10

0
–

0
0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

71
0

10
0

–
0

0
71

21
70

–
0

0
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

89
0

10
0

–
0

0
89

0
10

0
–

0
0

S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

3
0

10
0

–
0

0
3

0
0

–
0

0
R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

4
0

10
0

–
0

0
4

0
0

–
0

0
S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

20
0

10
0

–
0

0
20

0
10

0
–

0
0

P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

20
0

10
0

–
0

0
20

0
10

0
–

0
0

Ta
bl

e
6.

7.
:I

nt
eg

ra
te

d
an

d
co

n�
ic

tin
g

ov
er

al
le

le
m

en
ts

pe
rc

on
si

st
en

cy
pr

es
er

va
tio

n
ru

le

175



6. Evaluation

Mapping #int. elem. #total elem. #int .elem.
#total elem. #sup. elem. #int .elem.

##sup.elem

Pack. map. 899 899 1 899 1
EJB 673 899 0.75 690 0.98

Dep. Inject 871 899 0.97 892 0.98
Eclipse plugin 210 697 0.30 210 100

Total 2653 3394 0.78 2691 0.99

Table 6.8.: Ratio between integrated elements and total elements respectively supported
elements per consistency preservation rule. The ratio represents metric 2.1.1
and allows us to answer the research question 2.1.
Legend: #int. elem. represents the number of integrated elements using the
consistency preservation rule over all case study projects, #total elem. is the
sum of all elements in all case study projects, #sup. elem. is the number of
supported elements in all case study projects for the consistency preservation
rule

For the package mapping consistency preservation rules and Eclipse plugins, all elements
of the case study projects could be integrated.

Using the EJB consistency preservation rules, we introduce the constraint that each
interface only is allowed to be provided once in the Repository, because we implicitly
derive the PCM System from the repository. Hence, the provided interfaces need to be
unique over all OperationProvidedRoles. This constraint does not hold for 17 out of 73
OperationProvidedRoles. For the dependency injection consistency preservation rules be-
tween architectural models and code, we introduce the following two constraints: a) it is
not allowed to provide one interface more than once per System, and b) the components in
all AssemblyContexts need to be unique, i.e. one component is only allowed to be present
once per System. For both constraints the con�icting elements are AssemblyContexts. Both
constraints occur a in a total of 21 times, which means that only 50 out of 71 Assem-

blyContexts can be integrated using the Dependency Injection consistency preservation
rules.

Con�icts, which can be resolved automatically, are not listed in this table. Automatically
resolvable con�icts are, for instance, white spaces in names of PCM elements or duplicate
names for PCM elements. The latter did not occur within the investigated case study
projects. The reason for that might be that the understandability of models decreases
and the e�ort for the evolution of those models of increases. For instance, if two or more
OperationInterfaces have the same name and an architect wants to use the interface within
a ProvidedRole or an external-call the actual used interface needs to be identi�ed by its
unique identi�er, which is a random string, if the name is equal. If users assign a unique
name, it is easier to �nd the desired interface.

Table 6.8 shows the sum of all elements our Coevolution approach was able to integrate
for the di�erent consistency preservation rules. In the table, we distinguish between the
ratio of integrated element to total elements and the ratio between integrated elements
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to supported elements. Supported elements are elements, which can conceptually be
integrated using the mentioned consistency preservation rules. Not supported element are
elements, which cannot be integrated using the mentioned consistency preservation rules,
for instance, elements contained in a System are not supported by the EJB consistency
preservation rules.

After performing the RIS for PCM, we can answer the research question 2.1 with the
metric 2.1.1 as follows:. Using the RIS for PCM, we are able to integrate 99% of the elements,
which are supported by the consistency preservation rules, and 78% elements in total.
Hence, we are able to map most existing PCM models to source code respectively to Eclipse
plugin artefacts using the presented consistency preservation rules.

6.5. Integrating Existing Source Code and Replaying Changes

In this section, we explain the evaluation of integrating existing open source code projects
into our Coevolution approach. We show that changes performed to the integrated source
code can be kept consistent with the architectural model. Therefore, we replay changes
from a VCS. Hence, within this section we answer the remaining research questions for
research goal 2 (in particular 2.2, and 2.2), and research questions 3.1 for research goal 3.

6.5.1. Used Open Source Projects

In this section, we explain how we decided which open source projects are used for the
evaluation. Therefore, we �rst give an overview of the requirements, we have for open
source projects. As next step, we explain the process how we actually chose the open
source projects and give a short description about the chosen projects. The requirements
and the process itself are similar to the requirements and the process Petersen [Pet16]
described in his master’s thesis.

6.5.1.1. Requirements to Open Source Projects

For the evaluation, we have the following two mandatory requirements for open source
projects:

1. As we evaluate our Coevolution approach using the package mapping consistency
preservation rules, the projects we use for the evaluation need to use plain java
objects to realise the architecture.

2. As we replay changes from a VCS the projects also need to have a complete history
within a VCS repository. Since the change replay tool we use, currently only supports
GIT, projects need to have either a GIT repository or a repository, which we can
transform to a GIT repository. SVN projects, for instance, are also possible, as tools
exist that allow the transformation of an SVN repository to a GIT repository.

Optional requirements the projects should ful�ll are:
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• Projects should be standalone projects and have a low number of external depen-
dencies, because we do not consider external dependencies in the architectural
model.

• Projects should include package-info.java �les for each package, because we use
the package mapping consistency preservation rules for our evaluation. Within
these rules, we use the package-info.java �le respectively the Package element in
the �les as corresponding element between source code and architectural model,
yet. This requirement is a technical requirement, because JaMoPP is not able to
deal with the hierarchical folder structure within a Java project, but is able to deal
with package-info.java �les. The requirement, however, is not a strong requirement,
because we can overcome the technical issue by creating package-info.java �les in
each package of a given project.

One goal of our evaluation is to check, whether the consistency preservation process of
our Coevolution approach kept the right model elements consistent. As we perform this
evaluation manually, the projects need to be reasonable small in terms of SLoC4. Another
goal is, however, to show that our Coevolution approach is also able to deal with projects
of reasonable size. Therefore, we also need projects of bigger size. As there is no exact
distinction when a project is to be considered as small or big project, we can only give a
vague estimation of when we consider a project as a small project or big project. During
the selection process, which is explained in the following, it turned out that for the projects
we used, it is possible to manually check the results for projects with less than 20 KSLoC
(excluding test code). Hence, such projects are considered small projects in the evaluation.
Projects with more SLoC are considered as bigger projects and used for the scalability
analyses. This estimation is only valid for the performed evaluation and for the considered
projects.

6.5.1.2. Selection Process and chosen Evaluation Projects

To choose potential evaluation projects, we focus on Apache projects, because of the
following reasons:

• Apache projects usually have a complete VCS history,

• all versions of Apache projects can be accessed easily, and

• Apache projects can be considered as state of the art open source software systems,
because they are wildly used and accepted.

To �nd potential Apache projects, we used the same approach as Petersen [Pet16]. Petersen
[Pet16] implemented a script 5 to count the lines of Java source code for all Apache projects,
which are available at the Apache homepage 6. To count the lines of code in a project,

4SLoC representing the lines of code without empty lines and without comment lines.
5https://github.com/FrederikP/projectfinder
6https://projects.apache.org/
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we used the tool cloc, which is available on Github 7. Please note: The SLoC we get for
each project are not the actual SLoC that we used in the actual evaluation, because the
evaluation has been performed for a speci�c version of the project and without test code.
Even though the script counts SLoC for the current version and including the test code,
we can use it to �lter all projects and �nd those of adequate size for the actual evaluation.

As result from the script run, we have a data set that contains the name, the SLoC, and the
number of Java �les for 173 Apache projects. The SLoC in the projects, we analysed, range
from 174 SLoC in the Apache Lucy project to 2.6 million SLoC in the Apache Harmony
project.

To �nd possible evaluation projects, we automatically �ltered out projects with less than
10.000 SLoC and less than 100 Java �les. To �nd projects, for which we are able to perform
a manual check whether our Coevolution approach changed the correct model elements,
we also �ltered out projects with more than 30 KSLoC and more than 500 Java �les. Again,
please note that the �ltering has been performed for the projects including the KSLoC
for the test code, while the actual evaluation has been performed for a speci�c version
of each project and without the test code, i.e. production code only. This is the reason
why we applied the �lter using 30 KSLoC instead of 20 KSLoC, which we considered as
small projects in the section above. After we applied the automatic �lter, we have 31
projects left. To apply both �lters, we used the KSLoC including test code. For the actual
evaluation, we use non-test code only. As Petersen [Pet16] pointed out, from the remaining
31 projects only nine projects are standalone projects and Java only projects. From these
nine projects Petersen identi�ed Apache Any238 as best �t for our requirements, because
it has a native GIT repository and maintained package-info.java �les for each Java package.
Apache Any23 is separated in di�erent projects, which can be investigated as standalone
sub-projects of Apache Any23. We decided to use the Apache Any23 core project for our
evaluation. Petersen also pointed out, that Apache Gora9 is a good �t as it is not to big
in size and has a GIT mirror on Github. Similar to Any23, Apache Gora is separated in
di�erent Eclipse projects. As for Any23, we decided to use the core project of Apache
Gora for our evaluation. Hence, as small projects, we used Any2310 and the core project of
Apache Gora in our evaluation. We also use these two projects to evaluate the incremental
SEFF reconstruction during the change replay.

For the evaluation of projects with more than 20 KSLoC, we choose Apache Velocity,
and Apache Xerces. Apache Velocity11 has been chosen because it is standalone Java
project (see Petersen [Pet16]) and because it is only slightly above the 20 KSLoC limit.
We choose Apache Xerces12, because we already were able to successfully extract the
architecture using Extract.

Table 6.9 gives an overview of the four used evaluation projects.

7https://github.com/AlDanial/cloc
8https://any23.apache.org/
9https://gora.apache.org

10https://any23.apache.org
11http://velocity.apache.org
12http://xerces.apache.org/xerces2-j/
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Project Short description

Gora (gora-core) Apache Gora is an open source framework providing an in memory
data persistence for big data. Users can, amongst others, persist data
to a column store. Furthermore, it allows users to analyze the stored
data.

Any23 Apache Any23 (Anything to triples) is a library that allows the ex-
traction of structured data in RDF format. It supports multiple for-
mats, such as Resource Description Framework (RDF)a and Comma-
Separated Values (CSV). It can be used, for instance, as a library in
own program code, from command line, or as web service.

Velocity Apache Velocity is a template engine for Java. It allows users to
reference objects de�ned in Java via a simple template language.

Xerces2 Apache Xerces is a XML library. Hence, it allows users to parse XML
�les and create XML �les.

Table 6.9.: overview of the used open source systems for the evaluation of the LIS for
source code and PCM and the change replay study.

6.5.2. Reverse Engineering of the Case Study Systems

We used Extract to reverse-engineer the architectural model from the source code. Within
Extract, we used ACDC as clustering algorithm for classes.

For Xerces, we can reuse the results from the evaluation of Extract itself, while we need
to run Extract for Gora, Any23, and Velocity speci�c for this evaluation. Table 6.10 gives
an overview of the integrated versions of the evaluation projects and the result of the
reverse engineering process. As mentioned above, the KSLoC for the actually integrated
versions are di�erent from the KSLoC we counted for the project using the script from
Petersen [Pet16]. This di�erence results from the fact that we counted the KSLoC for the
actually integrated versions and without test, i.e. we counted the actual production code
only.

6.5.3. Integrating the Case Study Systems

As next step, within the integration process, the actual integration needs to be performed.
As a prior step to the actual integration, we need to ensure that each package folder

of all projects contains a package-info.java �le. As we explained above, this step is
necessary, because we use the package mapping consistency preservation rules for the
evaluation. These rules need to have package-info.java �les in each package to determine
the package of a compilation unit respectively Java �le correctly. From the four integration
projects only Any23 has already included package-info.java �les in all but one package.
We added the package-info.java �le manually for this package. For the remaining three
projects, we added package-info.java �les to all packages.
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Project Integrated version KSLoC Java �les BC OpIf

Gora (gora-core) 0.6 5.7 76 16 16
Any23 (core) 0.90 12.6 190 16 16

Velocity 1.60 26 229 18 18
Xerces 02.10 112 705 20 20

Table 6.10.: overview of the integrated versions of the evaluation projects and the result
of the reverse engineering process. The KSLoC represents the KSLoC for
the version number, we used for our evaluation. As we only investigated
production code, we counted the KSLoC without test code. The BC column
shows the number of extracted BasicComponents for each system. The OpIf
column shows the number of extracted OperationInterface for each system.

As next step, we perform the actual integration for the four projects by executing the
integration transformation, we described in Section 5.4.3.2. During the integration, the
transformation uses the source code, the SCDM, and the existing architectural model to
create an instance of the Vitruvius correspondence model. This model can be used by our
Coevolution approach to preserve the consistency between architecture and code during
the software evolution. During the execution, the transformation checks for each element
that shall be integrated, whether it ful�lls the consistency preservation rules already.
As we expected, none of the reverse-engineered components, interfaces, and data type
elements can be kept consistent with its corresponding source code elements using the
package mapping consistency preservation rules. As the elements corresponding to a class
or an interface, already did not adhere to the package mapping consistency preservation
rules, none of their child elements are able to adhere to the consistency preservation
rules. Hence, none of the integrated elements can be kept consistent using the package
mapping consistency preservation rules. Hence, during the execution of the transformation
we created IntegrationCorrespondences only. This allows us to evaluate Integration
Level 2 and Integration Level 3 for the evaluation projects. To evaluate Integration Level
3, however, we have to de�ne speci�c consistency preservation rules for changes on
integrated elements. The de�ned actions are described in the next section.

The �rst two columns of Table 6.11 show the number of created IntegrationCorre-

spondences for each project. As we can see from these two columns, the number of
created IntegrationCorrespondences increases with the size of the projects and the size
of the projects and also increases if the IntegrationCorrespondences are created between
methods in code and SEFFs in the architectural model.

6.5.4. Replaying Changes Extracted from a VCS

After the integration of an existing project, we can replay changes from a VCS. To replay
the changes, we use the change replay tool (see Section 2.5.5), which was introduced by
Petersen [Pet16]. To use the change replay tool, we need to specify a reachable target
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Project IC IC withSEFF Target version Changes

Gora (gora-core) 336 525 0.6.1 419
Any23 (core) 555 733 1.0 164

Velocity 1130 – 1.64 737
Xerces 3598 – 2.11 684

Abbreviations: IC = created IntegratedCorrespondences, IC with SEFF = created
IntegratedCorrespondences if SEFF elements are integrated as well

Table 6.11.: Detailed information created integration artefacts and the changes between
the versions

version based on the source version, i.e. within the history of the VCS a path valid
path between the two versions must exist. The third column of Table 6.11 shows the
target versions, we choose, for the replaying of changes. One requirement for the target
versions is the need of a direct path within the VCS from the source to the target version.
For the target versions, we choose the next minor or major version depending on how
much changes occurred between the versions. The fourth column of the table shows
the number of changes respectively edit operations the change replay tool extracted
between the integrated version and the target version. We performed di�erent replaying
scenarios during the evaluation. In the �rst run, we evaluated Integration Level 1 for
each of the projects. After this run, we included the speci�c consistency preservation
rules for integrated elements we de�ned in the reactions language [Kla16; Kra17]. For
each of the evaluation projects, we counted whether the change could be kept consistent
using either the standard package mapping consistency preservation rules, the speci�c
consistency preservation rules, or whether the users need to preserve the consistency
manually. To evaluate the coevolution and the UML editor, we performed a third run
where we performed architectural relevant changes via the UML class diagram editor
respectively the PCM architectural editor. The results of theses case studies are shown in
the next sections.

6.5.4.1. Technical Remarks

Due to technical reasons the number of occurrence of the di�erent changes can vary
between di�erent executions of the change replay tool. This is the reason why we have
di�erent numbers for changes replayed for Integration Level 2 and Integration Level
3. This behaviour is caused by the interaction between the change replay tool and the
Java monitor. For each change, the change replay tool resets the content of the whole
compilation unit. Even though the whole content is set, the Java monitor only reacts
to the actually changed elements as it reacts to Eclipse AST noti�cations. If the change
replay is executed more than once for the same project, the change kind can vary for the
same change as the noti�cations from the Eclipse AST can report di�erent changes. For
instance, if a method has been renamed, it is possible that the Eclipse AST �rst reports
the deletion of a method with the old name and secondly reports the insertion of a new
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method with the new name. However, even if the number of changes di�ers, the result
after the change replay remains the same.

We furthermore observed that the Java monitor reports more changes than the consis-
tency preservation reacts to. On the one hand this is caused, because the Java monitor is
able to detect more change types than it actually reports to the consistency preservation
process. This is the case for changes that introduce a super class to or remove one from an
existing class. On the other hand this is caused by another issue in the interaction between
the Java monitor and the change replay tool. If a Java �le is moved by the change replay
tool, the Java monitor is currently not able to detect this kind of change reliably Hence,
our Coevolution approach does not react to this change and updates the correspondence
information. If further changes are performed to this Java �le, the Java monitor reports
these changes, but they are neither considered as changes to an integrated element nor as
changes to a non-integrated element. Hence, we consider changes performed to this �les
as non-architectural relevant changes, which they are probably not. We observed this case
mainly in the case study for Xerces.

From this technical limitations, we can draw the following two conclusions for future
work:

• if consistency preservation rules need to react to additive changes respectively
removing changes for super classes, we need to extend the Java monitor and enable
reporting of these changes, and

• the interoperability between the change replay tool and Java monitor can be im-
proved respectively the Java monitor can be improved to ensure monitoring of all
changes.

Even though we currently have these technical issues, our Coevolution approach is still
able to react to most changes that were recorded by the Java monitor.

6.5.4.2. Results for Integration Level 2

During the evaluation of Integration Level 2, users get noti�ed if they changed an element
that is contained in an integrated area. They need to preserve the consistency between
the changed element and its corresponding elements manually.

The diagram in Figure 6.4 shows the aggregated changes replayed for all evaluation
projects. In Section A.3, we provide the information speci�c for each project. The results,
however, are the same for all projects and can be discussed together. The diagram in
Figure 6.4 also shows, whether the changes handled by the integration extension or by the
standard consistency preservation rules.

As the results show, most changes a�ect integrated elements or integrated areas. Only
a fraction of the changes is performed within non-integrated areas and therefore handled
by the standard consistency preservation rules. Even though our Coevolution approach
points to the elements that need to be kept consistent, users are required to keep most
of the changes consistent manually. Keeping changes consistent manually can be time
consuming and error prone. In the next section, we explain to which extend Integration
Level 3 is able to overcome this limitation.
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After performing the change replay evaluation for Integration Level 2, we can answer
research question 2.2 as follows: Out of the 335 changes our Coevolution approach reacted
to, only 2 (0.6%) can be handled by the standard consistency preservation rules. For the
remaining 333 (99.4%) changes the users get the noti�cation that they need to keep the
architectural model consistent manually.

We can also answer research question 3.1 as follows: For the case study performed
for Integration Level 2, our Coevolution approach is able to react to 73.5 % of the overall
recorded changes. Even though the Java monitor records the add super class changes and
remove super class changes, we are not reacting to these changes. If we take out these
changes from the calculation, our Coevolution approach is able to react to 91.3% of the
overall changes. For the case study performed for Integration Level 3 the numbers are
almost identical and are not explained separately.

6.5.4.3. Results for Integration Level 3

As we can see from the evaluation of Integration Level 2 most of the changes a�ect inte-
grated elements, while only a fraction of the changes is performed within not-integrated
areas. The goal of this Integration Level 3 is to allow a similar level of automatic consis-
tency preservation for integrated code areas, which our Coevolution approach reaches for
standard code using the active consistency preservation rules. To reach this goal, special
consistency preservation rules need to be de�ned for code contained in integrated areas
(see Section 5.4).

DefinedReactions for AutomaticConsistencyPreservationof integratedCodeAreas For the
evaluation of Integration Level 3, we added the following reaction de�nitions: As neither
the package mapping consistency preservation rules nor the consistency preservation rules
for the integrated code uses import statements to preserve consistency, we can implement
empty reactions for adding and removing import statements. For the renaming of architec-
tural relevant methods, we assume that the architectural elements should automatically be
renamed accordingly. Hence, we can implement a speci�c consistency preservation rule for
the renaming of methods. A similar approach is used for removing architectural relevant
methods. If an architectural relevant method is removed, we remove the corresponding
architectural elements (OperationSignatures or SEFFs) and notify the users. If a new public
method is added, we cannot automatically decide, whether this is an architectural relevant
method or not. However, we implemented a speci�c consistency preservation rule, which
asks users in order to clarify whether the new method is architecture relevant or not. If
a change a�ects a Parameter that is contained in an architectural relevant method, we
automatically keep the Parameter consistent using the same consistency preservation
rules as for the package mapping consistency preservation rules. During the reverse
engineering, �elds of classes are extracted to InnerDeclarations if the class of the �eld is
reverse-engineered to a CompositeDataType. To keep changes to �elds consistent with
their corresponding InnerDeclarations, we de�ned a speci�c consistency preservation rule,
which checks whether a corresponding InnerDeclaration exists. If this is the case the
consistency preservation rule keeps the InnerDeclaration consistent with the changed �eld.
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Figure 6.4.: Result of the change replay case study for Integration Level 2
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Therefore, the name of the InnerDeclaration is changed if the �eld has been renamed and
the type of the InnerDeclaration is changed if the type of the �eld has been changed.

All de�ned consistency preservation can also be de�ned from the architectural model to
source code. Hence, if users change architectural elements that have corresponding source
code elements in the integrated code area, the consistency preservation can be achieved
using these rules.

Results for Static Architectural Elements and Static Code Elements We performed the re-
play case study again, and used the above-mentioned consistency preservation rules for
integrated code elements. The diagram in Figure 6.5 shows the result for consistency
preservation between static code elements and static architectural elements, i.e. without
using incremental SEFF reconstruction during the change replay. As one can see, most
changes that needed manual interactions in Integration Level 2 can be kept consistent
using the de�ned consistency preservation rules for integrated code elements. For instance,
no messages or question is displayed if an import has been changed.

After performing the change replay evaluation for Integration Level 3, we can answer
research question 2.3 as follows: As for the evaluation of Integration Level 2 only 2 (0.6%)
changes can be handled by the standard consistency preservation rules. The above de�ned
integration reactions are able to handle 303 (92.1%) changes. For the remaining 24 (7.3%)
changes the users need to keep the architectural model consistent manually. This number
can be reduced further in future work, by de�ning more speci�c consistency preservation
rules. We did not count the user noti�cations or how often users are requested to dis-
ambiguate the change within the integration reactions, because this kind of user change
disambiguation can be avoided by implementing the speci�c consistency preservation as
a fully automatic rule.

During the change replay and the consistency preservation, we observed a speciality
in the Velocity project: It contains one component with parser functionality for parsing
a Velocity template. The classes implementing the parser functionality are generated
using the Java Compiler Compiler (JavaCC)13 and its preprocessor JJTree. Both tools are
part of the JavaCC and can be used as a parser generator, which can be used by Java
applications. The parser classes in Velocity, e.g. Parser, ParserConstants, and Token, are
generated into the parser package. Within our Coevolution approach, the parser classes
are architectural relevant and some of them contain public methods with a corresponding
OperationSignature. Between version 1.60 and 1.64 the parser has been changed and the
parser classes have been regenerated, which led to new methods in the Parser class. As the
Parser class is architectural relevant users evolving the software system get asked by our
Coevolution approach, whether they want to create corresponding OperationSignatures

within the interface provided by the Parser.ss component as soon as a method in the class
Parser has been added. To avoid these questions, we can decide upfront that each method
should be re�ected within the architecture. To do so, we de�ned speci�c consistency
preservation rules, which are used if one of the parser classes has been changed. Hence,
we use element-speci�c consistency preservation rules for the parser classes.

13http://javacc.org
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The diagram in Figure 6.5 the changes handled using the speci�c rules are not made
explicit but represented within the last column. In the appendix (see Section A.3), these
changes are made explicit for the Velocity project. Two other approaches to deal with the
parser classes, which we not realised, are:

• Exclude the parser classes from by either excluding them from the coevolution or
even exclude them from the reverse engineering, because they are not meant to be
changed by users anyway.

• Include the parser classes as infrastructure in the architecture, as these classes can
be seen as existing infrastructure, which can be used by other components in the
architecture.

Results with incremental SEFF reconstruction We evaluated the incremental SEFF recon-
struction using Any23 and Gora. For Any23 50 changes were classi�ed as changes on
method bodies by the Java monitor, while 285 changes for Gora were classi�ed as changes
on method bodies. For the architectural relevant method changes, our Coevolution ap-
proach was able to reconstruct the corresponding SEFF respectively the corresponding
ResourceDemandingInternalBehaviour. As we only investigated the core projects of Any23
and Gora, not all methods, however, were considered as architectural relevant methods
as they are called from outside of the core projects only. If we would have included all
projects of Any23 respectively Gora, more methods in the core projects would have been
considered as architectural relevant by the reverse engineering approach, because the
methods are called from outside of the core project. Hence, these methods would have
been considered as architectural relevant methods also by our Coevolution approach. From
the performed evaluation, however, we can state that our Coevolution approach is able to
incrementally reconstruct the behaviour of a method.

6.5.4.4. Using an Architectural Editor to perform Changes

Within this section, we show how we can use the architectural editor during the change
replay evaluation, to perform architectural relevant changes and keep the changes consis-
tent with the source code. To prepare this study, we �rst need to perform the standard
change replay using the change replay tool. During the replay, we monitor architectural
relevant changes. After this initial step, we know which changes a�ect which architectural
elements. Now we are able to replay the changes again and perform the architectural rele-
vant changes in the architectural model. After performing the changes to the architectural
model, we check whether the source code has been updated accordingly. If yes, we can
continue the change replay in the source code until another architectural relevant change
will occur. To conduct this case study, we need to extend the change replay tool for code
in order to allow skipping of changes.

We performed the case study only for renaming and deletion of OperationSignatures.
This has technical reasons, as the change replay tool replaces the whole content of the
compilation unit for each change. The source code monitor, however, is able to determine
the actual performed change based on the Eclipse AST. If we would, for instance, add a
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Figure 6.5.: Result of the change replay case study for Integration Level 3
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new method through the architecture, we would be able to determine the correct class but
we would not be able to determine the correct position for the method. This would lead
to errors in later steps of the change replay, as the change replay tool would remove this
method with the next replay it performs.

We performed this evaluation for Any23 and Gora. In the �rst run we �gured out
which changes are architectural relevant. For Any23, one change renamed an architectural
relevant method between version 0.9 and 1.0. None of the delete method changes were
relevant for the architecture. For Gora, one change renamed an architectural relevant
method and one change deleted an architectural relevant method.

In the second run, we performed these changes on the architectural model, while
skipping the speci�c changes in the replay tool. As soon as we changed the architectural
elements our Coevolution approach renamed respectively removed the code methods, i.e.
we showed that it is possible to perform architectural relevant changes on architectural
models during the coevolution.

6.6. Performance Evaluation of our Coevolution Approach

In this section, we present a performance evaluation of our Coevolution approach. As
the execution of the consistency preservation rules are occurs in background jobs of the
IDE they are not blocking users of our Coevolution approach directly. Hence, achieving a
high performance is not the main focus of the work, we present in thesis. It is, however,
necessary to achieve a feasible performance for our Coevolution approach, because:

• users are involved in the process for consistency preservation, and

• to allow a usable coevolution approach between architecture and code the consis-
tency preservation rules should be executed within an acceptable timeframe.

Hence, the goals of the performed performance evaluation are:

• getting an estimate how our Coevolution approach performs on common hardware,

• showing that the performance for a single change the does not depend on the overall
size of the project,

• getting an evidence about the magnitude how long our Coevolution approach needs
for the consistency preservation, and

• pointing to possible performance issues during the coevolution.

The performance evaluation is divided in two parts. First, we evaluate the performance
of the Java code monitor. It is evaluated separately, because JaMoPP, which is also used
within the Java code monitor, turned out to be the bottleneck for revere engineering.
Secondly, we evaluate the performance of our Coevolution approach during the change
replay evaluation.

189



6. Evaluation

6.6.1. Performance Evaluation for the Java Monitor

As �rst part of the evaluation, we evaluate the performance of the Java code monitor to
�nd out, whether our Coevolution approach is in principle able to deal with Java classes
of reasonable size. This part of the evaluation has been performed by Messinger for his
master’s thesis [Mes14]. It is also part of our paper [Kra+15a] and its associated technical
report [Kra+15b]. The time the Java monitor consumes is composed of two main parts.
The �rst part starts as soon as the Java monitor is noti�ed about a change in a Java source
�le by the Eclipse framework. The task of the �rst part is to classify the changes. The
second part is composed of following three sub parts: parsing the JaMoPP instance of
the changed compilation unit, creating a Vitruvius change based on the monitored AST
change and the JaMoPP compilation unit, and. and submitting the created change to
the consistency preservation components within the Vitruvius framework. The two
main parts are measured separately and added up to get the overall time the Java monitor
needed.

6.6.1.1. Evaluation setup

For the evaluation we and Messinger used the Apache Hadoop14 HDFS (Hadoop Distributed
File System) as system under study. Hadoop HDFS is a distributed �le system developed
to enable high-throughput access to large data sets stored on clusters15. Hadoop HDFS
consists of more than 200 KSLoC and is embedded in the Hadoop framework. It includes
manual written compilation units various sizes as well as large generated compilation
units. Hence, it is a good �t for our performance evaluation.

To perform the evaluation, we executed three di�erent changes:

• Renaming of a method. Therefore, we toggled the name of a speci�c method by
appending “0” or “1” to the method name. The toggling has been done depending
on whether “0” or “1” is already present, which depends on the current iteration.

• Changing the modi�er of a method. Therefore, we replace public with private

respectively private with public within each iteration.

• Adding and removing a �led. We added the �eld String lorem=“lorem ipsum dolor

sit amet”; if it is not present and removed it if it is present already. Hence, we
consecutively added or added or removed the �eld in the iterations.

To measure the performance for compilation units (Java �les) of di�erent size, we choose
to measure the performance for �ve compilation units, which are presented in Table 6.12.
For the �rst four compilation units in the table, we repeated each of the above-mentioned
changed 100 times. Because of the size and the required amount of time, we repeated each
change 25 times for DataTransferProtos. Hence, for the �rst four compilation units, we
repeated the renaming 100 times. The toggling from public to private and from private to
public as well as the adding and removing of a �led has been repeated 50 times each.

14http://hadoop.apache.org/
15http://wiki.apache.org/hadoop/HDFS
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Compilation unit LLoC modi�ed method

ByteArray 28 getBytes

INode 350 getParent

FSEditLog 1045 initJournals

DFSClient 2050 connectToDN

DataTransferProtos 15812 registerAllEvents

Table 6.12.: Overview of compilation units used for the Java code monitor performance
evaluation. Note: As we reuse the data from Messinger [Mes14], the LoC are
presented in LLoC, which represents the total number of statements within a
compilation unit. The di�erence between the two LoC measurements is not
crucial for the presented evaluation.

As hardware we used a 4 core Intel Xeon CPU with 3.40 Ghz with 8 GB of RAM and a
64-bit Windows 7 Professional installation as operating system. As environment for the
Java monitor, we used a 64-bit Eclipse 3.5 (Kepler) instance with a workspace containing
the Hadoop HDFS project. As Java runtime environment, we used the Java Runtime
Environment (JRE) 1.7 64-bit.

6.6.1.2. Results

The aggregated results of the performance measurement for the di�erent changes for each
compilation units as well as the standard deviation is shown in Table 6.13. The Diagram 6.6
visualizes the results from the table. The results from the table and the diagram indicate
two �ndings: i) the time needed to process a change increases with the size of the changed
compilation unit, and ii) the performed change itself has no performance in�uence. Hence,
regardless whether we added/remove a �led, renamed a method, or changed the modi�er
of a �led the time the Java monitor needs compute a change remains the same given the
same compilation unit. The �rst change, however, consumed more time as the remainder
of the changes as JaMoPP needs to initialize itself. Hence, we consider the �rst change as
an outlier and remove it from the result.

Table 6.14 shows the relation between the time needed by the Java monitor for the
�rst part (classifying the AST changes) and the second main part (creating Vitruvius
changes using JaMoPP). As we can see from this table, the second part consumes at least
90% of the overall time. For the larger compilation units the JaMoPP parsing consumes
99% of the overall time. Within the second part itself the bottleneck is the parsing of a
compilation unit using JaMoPP. We discuss the �ndings and draw conclusions for this
width=observations in Section 6.6.3.
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Compilation Unit LLOC Rename Method
Replace Method

Modi�er
Add or Remove

Field

ByteArray 28 57 (0.94) 50 (0.34) 57 (0.33)
INode 350 292 (0.22) 278 (0.32) 324 (0.33)

FSEditLog 1045 832 (0.09) 856 (0.16) 865 (0.10)
DFSClient 2050 1,776 (0.17) 1,676 (0.16) 1,954 (0.16)

DataTransferProtos 15812 14,683 (0.09) 14,334 (0.09) 14,880 (0.10)

Table 6.13.: Results of the performance evaluation for the Java code monitor. The table
shows the measured total monitoring time for the Java code monitor for the
above-mentioned edit operations. Each cells contain the average total time
consumption in ms and the standard deviation/average in parentheses. The
table has been published already in [Mes14] and [Kra+15a; Kra+15b].

Figure 6.6.: Average time consumed by the Java monitor in ms. The axes are logarithmic
to base 10.
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Compilation Unit LLOC Rename Method
Replace Method

Modi�er
Add or Remove

Field

AST JaMoPP AST JaMoPP AST JaMoPP
ByteArray 28 0.06 0.94 0.06 0.94 0.04 0.96

INode 350 0.02 0.98 0.02 0.98 0.01 0.99
FSEditLog 1045 0.01 0.99 0.01 0.99 0.01 0.99
DFSClient 2050 0.01 0.99 0.01 0.99 0.01 0.99

DataTransferProtos 15812 0.01 0.99 0.01 0.99 0.01 0.99

Table 6.14.: Relation between the time needed for AST change classifying and JaMoPP-
based creation of a Vitruvius change to the total time consumed by the Java
monitor. The table contain average AST or JaMoPP time consumption divided
by the total average time consumption. From the results, we can conclude that
the Vitruvius change generation based on JaMoPP consumes more than 90%
of the overall time. The table has been created by Messinger [Mes14] and is
published in his master’s thesis already.

6.6.2. Performance during Change Replay

In this section, we evaluate the performance of our Coevolution approach during the
change replay. Hence, we evaluate the time our Coevolution approach consumes to keep
changes in code consistent with the architecture. Therefore, we combine the measurement
implemented for the Java monitor with a newly introduced time measurements for the
consistency preservation. As result, we get the time consumed by the Java monitor and
the time consumed by the consistency preservation mechanism. Adding up the results
gives us the information how long our Coevolution approach needs to process one change.

As we showed in the section above, parsing the change compilation unit using JaMoPP
consumes more than 90% of the overall time. Hence, the hypotheses for this performance
evaluation is that the JaMoPP performance still consumes the biggest amount of time.

6.6.2.1. Experiment Setup

We measured the performance of our Coevolution approach during the change replay of the
projects Any23 and Xerces. For both projects, we measured the performance without the
incremental SEFF reconstruction. For Any 23 we also performed a measurement with the
incremental SEFF reconstruction. In all cases, we measured the performance with activated
consistency preservation rules for integrated elements. For both projects, we investigated
the �rst 51 atomic changes, to which our Coevolution approach reacted, during the change
replay. The performance of the �rst change is considered as an outlier, because JaMoPP
needs to initialize itself during the parsing of the �rst change. We also ignore composite
changes, because composite changes combine more than one change and would falsify the
performance measurements, because we would compare composite changes with atomic
changes. In order to avoid user noti�cations and user clari�cation during the performance
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measurement, we use a modi�ed user change disambiguation mechanism, which randomly
answers questions immediately. In order to rule out possible false measurements due to
other tasks, such as garbage collection, we repeated the experiment three times for each
project. Even though the number of repetitions is not very high it is su�cient for the
evaluation for the following reasons, because we only want to show the magnitude of the
consistency preservation duration.

As hardware, we used a standard laptop with a 2.2 GHz Intel i7 processor and 8 GB
RAM with Mac OSX 10.11 as operation system. As IDE, we used 64-bit Eclipse 4.5 (Mars)
and the JRE 1.8 64 bit as Java environment.

6.6.2.2. Results

The results without the incremental SEFF reconstruction show two similarities with the
results for the standalone Java monitor performance measurement:

• the parsing of compilation units using JaMoPP consumes most of the time, and

• the time consumed to process a change does not depend on change itself.

Knowing these two facts allows us, to present the results aggregated for the changed
compilation units independently from the actual performed change. The diagram 6.7
shows the result for the change replay performance for Any23, while the diagram in
Figure 6.8 shows the result for the change replay performance for Xerces. As we can see
from those diagrams, the consistency preservation usually consumes less than 20% of
the time. We have, however, observed one exception for Xerces, where the consistency
preservation step consumes almost 50% of the time. Another �nding is that we cannot
con�rm the �nding from the Java monitor performance evaluation, that larger �les always
require more time to be parsed by JaMoPP. Even though larger �les tend to need more
time to be parsed by JaMoPP some smaller �les also need quite a long time to get parsed.

For Any23, we also measured the time need by our Coevolution approach to reconstruct
the SEFF incrementally during the change replay evaluation, i.e. we measured the time to
keep a change performed to a method body consistent with the architectural model. We
again, present the results aggregated for the changed compilation units. The results are
visualized in diagram 6.9. The results indicate that our Coevolution approach needs more
time to process for method body changes as for non-method body changes. However, the
parsing of compilation units into a JaMoPP still consumes the most time. The consistency
preservation required between 4% and 82% of the overall time. The time required varies as
the necessary actions to create a SEFF incrementally vary depending on the size and the
method calls within the method, which has been changed.

6.6.3. Discussion

In this section, we discuss the results of the performed performance evaluations. Both
evaluations show that the most time is consumed by the parsing of compilation units into
JaMoPP representation. The time needed to process a change increases almost linearly
with increasing compilation unit size.
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Figure 6.7.: Performance evaluation for the �rst 50 changes for Any23 during the change
replay evaluation. The changes only a�ected �ve compilation units with sizes
from 24 SLoC up to 137 SLoC. Note: This diagram excludes changes a�ecting
method body changes, i.e. it excludes the performance measurement for the
incremental SEFF reconstruction.
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Figure 6.8.: Performance evaluation for the �rst 50 changes for Xerces during the change
replay evaluation. As we can see the changes a�ected compilation units from
size from 125 SLoC up to 2501 SLoC.
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Figure 6.9.: Performance evaluation for the �rst 25 method body changes for Any23 dur-
ing the change replay evaluation. This diagram only shows changes a�ecting
method body changes, i.e. it only shows the performance measurement for the
incremental SEFF reconstruction. We can see the actual consistency preser-
vation step requires more time for changes a�ecting method bodies as for
changes a�ecting static code only. Hence, the incremental SEFF reconstruction
requires more time than executing the “normal” consistency preservation rules.

We can argue, that the performance of our Coevolution approach is su�cient for compila-
tion units with reasonably small size. For the experiments, we performed, our Coevolution
approach is able to keep preserve consistency between code and architecture for �le sizes
with less than 300 SLoC within a couple of seconds. As Messinger [Mes14] pointed out,
Hatton [Hat97] analysed software projects of di�erent programming languages. Hatton
[Hat97] concludes that classes realising components should be in the range between 200
and 400 LoC to minimize fault-density. As we seen in the evaluation, however, many
classes consist of more than the denoted size. As we also seen in the evaluations for
Xerces and especially Any23 the JaMoPP parser requires more time for some �les even
for �les with smaller size. Hence, in future work one task is to increase the performance
of the parsing component of the Java monitor. Improving the performance would also
provide a bene�t for the incremental SEFF reconstruction, because the incremental SEFF
reconstruction needs to operate on the extracted JaMoPP model and needs to resolve Java
elements within other compilation units as the changed one.

After performing the performance evaluation, we can answer research question 3.3. The
time, our Coevolution approach requires to process a performed change on the source
code, depends on the size of the changed compilation unit. The time to process a change
varies between under one second to more than 10 seconds. If dynamic code is changed, i.e.
a method body has been changed, our Coevolution approach requires more time, because
the incremental SEFF creation needs to be performed. Detailed information about the time
consumed is shown in the diagrams 6.7 6.8, and 6.9.

Hence, we can the research question 3.2 as follows using 3.2.1: our Coevolution approach
requires approximately the same amount of time for open source software of reasonably
size (in our case 112 KSLoC for Xerces) as for smaller open source systems case studies.
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Hence, the overhead it adds is reasonable small and we can argue that our Coevolution
approach is able to deal with open source projects of reasonable size.

To increase performance in future work, one of the following solution can be considered:

• optimizing the JaMoPP parser,

• parsing only the changed fractions of compilation units, or

• replacing the JaMoPP parser by a faster parser.

In 8.2, we show a �rst idea how the standard Eclipse JDT AST parser can be used to replace
JaMoPP. Therefore, we propose to convert the classes within the Eclipse JDT AST into
Eclipse Modeling Framework (EMF)-based classes.

Although our Coevolution approach respectively the Java code monitor requires more
time to process larger code �les, it is possible to process this large compilation units.

6.7. Model-based Performance Prediction using Coevolved
Architecture Models

In this section, we explain how a model extracted with EJBmoX and a model coevolved
based on the extracted model can be used to predict the performance of a software
system. As case study system, we use the mRUBiS system, which we already explained in
Section 6.3.2.

Even though developing approaches to enrich existing models with performance in-
formation and developing simulators for the Palladio approach is out of the scope of this
thesis, we performed this evaluation to show an end-to-end validation of our Coevolution
approach. In particular, we show how a) performance prediction for an extracted model
can be realised, and b) how we can use a coevolved model for performance prediction
after a new requirement has been implemented into an existing software system. After
showing a) and b), we can show that the accuracy of the performance prediction using
the coevolved model is as good as the performance prediction for the reverse-engineered
model

In the remainder of this section, we �rst explain the used evolution scenario for mRUBiS
and the necessary steps to implement the evolution scenario. As second step, we explain
how we performed the coevolution of the architectural model and the source code during
the implementation. After these two steps, we have the models, which we can use for the
performance prediction. As next step, we explain how we enrich an existing architectural
model, which is based on EJB component-code, with performance information. Therefore,
we explain the experiment setup to get the performance data from the software system we
used. As last step, we show the results of the performance prediction using the enriched
models and compare the predicted performance with the measured performance.

6.7.1. Evolution Scenario for mRUBiS

This section introduces the performed evolution for the mRUBiS system. We introduce
the following two requirements for the evolution:
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1. allow users to upload one initial image of an item during the registration of the item.

2. creating a thumbnail of the uploaded image, in order to present the thumbnail in
a later step, e.g. within an overview site of the item or an overview site of similar
items.

To implement these requirements, we need to extend the registerItem signature in
the ItemRegistrationService interface in order to allow users to upload an image. The
component ItemRegistrationServiceBean needs to be extended in order to realise the
functionality. To create the thumbnail, we introduce a new ImageMgmtServiceBean, which
provides the new interface ImageMgmtService. Hence, the new component provides the
mechanism to scale an image. The ItemRegistrationServiceBean requires the new in-
terface ImageMgmtService and uses it to create the thumbnail within registerItem. In
order to store the image as well as the thumbnail in the database, we need to extend
the database interface BusinessObjectsPersistenceService and the realising component
BusinessObjectsPersistenceServiceBean as well. Furthermore, we need to extend the
classes Item and EItem in order to support the image as well as the thumbnail. The Item

class represents the business object of an item, while the class EItem represents the per-
sistent entity of the Java Persistence API (JPA), which is stored in the database. As a last
step, we need to extend the database itself. Except for the extension of the database itself,
all steps can be performed using the editors supported by our Coevolution approach.

6.7.2. Coevolution during the Implementation of the Evolution Scenario

As next step of the performance evaluation process, we implemented the described changes
into the existing mRUBiS implementation and evolved the existing PCM model using our
Coevolution approach. Figure 6.10 shows the activity diagram of registerItem before the
evolution and after we conducted the evolution scenario. As PCM model for the existing
implementation, we can use the PCM model for mRUBiS, which we created during the
evaluation of EJBmoX (see Section 6.3.2). Before we can perform the coevolution, however,
we need to integrate the model into our Coevolution approach. Therefore, we can use
the integration mechanism described in Section 5.4.6. As our goal is to use the coevolved
model for a performance prediction, we integrate the SEFFs and their corresponding
methods as well into our Coevolution approach. Hence, we keep the SEFFs consistent with
method body changes during the evolution of mRUBiS. The mRUBiS system maps the EJB
components and interfaces conform with the consistency preservation rules, we de�ned
for EJB (see Section 4.6.1.1). As a consequence, we can use these consistency preservation
rules, to keep changes consistent between source code and the architectural model, i.e. for
the integration and coevolution of the mRUBiS system, we can use Integration Level 1.
This is a di�erence to the integrated systems in Section 6.5, where none of the integrated
elements already ful�lled the used consistency preservation rules. Hence, by performing
this evaluation, we also evaluate Integration Level 1, which has not been evaluated yet.

After this integration step, we can coevolve the architectural model and the source code.
Therefore, we perform the changes described above and used our Coevolution approach
for the mRUBiS project. Hence, after performing the changes, we have both the evolved
source and the evolved architectural model. Users using our Coevolution approach in
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Figure 6.10.: Activity diagram of the registerItem service before the evolution scenario
(left) and after we performed the evolution scenario (right). We added the
creation of the thumbnail, which needs to be done during the registration of
a new item.
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this scenario have the following advantages compared to users not using our Coevolution
approach:

• they do not need to update the architectural model manually,

• during the evolution architectural relevant changes can be performed using the
architectural model,

• they can reuse the existing System and Allocation diagram, as the elements within
the Repository remain the same, and

• changes performed to parts of the architectural model not a�ected from the evolution
scenario because the model is not fully regenerated but updated incrementally based
on the source code changes.

To allow the repetition and ease the reproducibility of this case study, we performed
the changes in source code and committed them into a GIT repository. Hence, we can use
the change replay tool to coevolve the architectural model with the source code changes.

6.7.3. Enriching the Architectural Model with Resource Demands

Before we can use the Palladio approach for the actual performance prediction, we need
to enrich respectively parametrise the architectural model with resource demands. This
needs to be done for the model extracted with EJBmoX as well as for the coevolved model.

For the model enriching, we reuse the approach of Merkle [Mer17], which we explain
in short in the following. We extended this approach in order to allow the enriching
of a coevolved model. In the following, we �rst introduce the parametrisation process
itself, which is used for the parametrisation of the models solely. We secondly explain the
measurement process, which uses realistic workload in order to get realistic measurement
data. The realistic measurement results are later compared with simulated results for the
same realistic workload.

6.7.3.1. Model Parametrisation Process

To be able to parametrise an architectural model with performance information, the �rst
step is to execute the software system and measure the execution time to get performance
data from the software system. Therefore, it is necessary to set up the software system on a
server and enabling monitoring of the application. For the monitoring, we use InspectIT16,
which is able to instrument a running Java application and measure the performance of
each method. InspectIT, therefore, installs an agent in the software system under test and
sends the results to an InspectIT server running either on the same server or on a di�erent
server.

After the initial setup and instrumentation steps, the software system needs to be
executed using a load driver. The load driver executes one scenario at a time, i.e. it calls
one provided interface method of the software system repeatedly. During the execution a

16http://www.inspectit.rocks
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warm-up phase is executed to avoid side e�ects, such as just in time compiling, during
the actual measuring, which would falsify the measurement. At the end of this run, the
collected invocation traces are stored in the Central Management Repository (CMR) of the
InspectIT database. Each invocation trace contains all calls to an EJB business interfaces
in the context of the current system call. From the invocation trace, we get the order of
EJB calls as well as they execution duration.

In our scenario, we register an item in the mRUBiS system by calling the service
registerItem. Therefore, we execute 2000 warm-up requests and 1000 requests to get the
actual parameterisation information for the non-evolved system. For the evolved system
we execute 500 warm-up requests and 1000 requests to get the actual parameterisation
information. In the evolved system less warm-up runs are required, because the generation
of the thumbnail and storing the information in the database dominate the overall response
time. We, furthermore, did not observe any side e�ects caused which indicate that the
system is still in the warm-up phase, during the actual parameterisation phase. After the
execution, we have stored 3000 respectively 1500 trances in the InspectIT database. As
workload, we use a closed workload with one user, i.e, we have 3000 respectively 1500
sequential traces without contention of di�erent users accessing the software system
simultaneously. As think time for the one user, we choose 10 ms for both case studies, i.e.
after completing the measurement, we wait 10 ms until a new request is created.

As next step, a the parameterisation extension, developed by Merkle [Mer17] for EJB-
moX , is executed. The parameterisation extension needs a running InspectIT server, that
contains the traces in its CMR database. The �rst step of the parameterisation extension
is to skip the the warm-up runs, i.e, for the actual parameterisation only the remaining
runs are used. As second step, the parameterisation extension needs to match the recon-
structed methods and external calls within these methods with the methods monitored
by InspectIT. Therefore, the parameterisation extension scans an invocation sequence
sequentially and creates events for observed EJB component-external method calls and
component-internal method calls. A matcher component traverses the SEFF actions and
listens to these events and matches the events from the scanner with the SEFF elements,
e.g. an ExternalCallAction or the beginning respectively the ending of an InternalAction.
If the matcher retrieves the expected event a match has been found and the SEFF can be
annotated with the necessary information, e.g. the resource demand of an InternalAction.
After the scanning and matching phase, we have the necessary performance information
for the SEFF elements. This information is added as a Stochastic Expression (StoEx) in the
SEFF actions, i.e. we use a probability distribution to determine the execution time of a
speci�c SEFF action. More details about this approach can be found in Merkle [Mer17].

As an optional third step, SQL statements can be retrieved and annotated as well. This
is helpful for the Palladio extension introduced by Merkle and Knoche [MK15], Merkle
[Mer17]. For our evaluation, however, we did not use this optional extension.

After this step, we have the automatically enriched performance model. The per-
formance model contain the resource demands in milliseconds, i.e. a processor with a
processing rate of 1 can be used to simulated the same CPU speed used for the measure-
ment. If a faster CPU should be simulated the simulated processing rate of the CPU can be
increased accordingly.
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An optional step, after the automatic enrichment is a manual re�nement of the re-
sulting PCM model. In the example of registerItem, we needed to adjust the model on
one position: Within the service persistItem of the component BusinessObjectsPersis-
tenceServiceBean the data of the thumbnail is stored on the hard drive. For this scenario
the time the hard drive needs dominates the time the CPU needs to process this scenario.
The automatic extraction, however, currently cannot di�erentiate between I/O and CPU
demands and attributes observed execution times completely to the CPU. For the evolved
mRUBiS system this scenario consumes most of the overall time needed to process the
whole registerItem request. Without manual adaption, however, the simulation would
assign the demand to the CPU. This results in an increased contention for the CPU, i.e. the
CPU is not able to compute other requests during this time. We found out that this leads
to a prediction error. Hence, we changed the demand from the CPU to the HDD for the
operation persistItem, in order to re�ect re�ect the reality better in the used PCM model.

6.7.3.2. Performance Measurement Process

The actual performance measurement of the software system is done in a separate phase
as the measurement for the parameterisation phase for the following reasons:

• the performance measurement should be performed with a realistic workload, and

• the instrumentation introduces overhead during the execution of the parameterisa-
tion run, which should not be considered during the measurement phase.

Note: Even though the instrumentation introduces overhead this overhead is not measured
by InspectIT itself but in the load driver, because the load driver measures the response
time of the called service. Hence, the response time measured by the load driver during
the parameterisation phase are re�ecting the response time including the overhead. As we
disable InspectIT during the actual measurement run the response time measured by the
load driver during the measurement run re�ects the response time without the overhead.

As for the measurement run, we also call the service registerItem using a load driver.
Again, we execute 2000 runs of warm-up and 1000 to measure the performance for the
non-evolved workload, while we execute 500 runs of warm-up and 1000 performance
measurements for the coevolved model. For both cases, we use an open workload with
exponentially distributed mean interarrival times, i.e. new users arrive constantly at the
system, executing a request, and leaving the system. For the non-evolved model, we use a
mean interarrival time of 150 ms, while we use a mean interarrival time of 1000 ms for the
coevolved model. The reason for the di�erence in the mean interarrival is the duration
the system needs to process the request. In the evolved model, this time is signi�cantly
higher, because the system needs to calculate the thumbnail and store the new image in
the database. As the mean interarrival time is signi�cantly higher as the time needed
to process a request, the contention within our scenario is relatively low. Lowering the
interarrival time would increase the contention, but it would probably also overload the
system, which would lead to measurement and prediction errors. We argue that this is
acceptable for the evaluation performed in this thesis, because we only want to show that
it is possible to use our coevolved models for performance prediction. Optimizing the
performance prediction in cases where the contention is high is not part of this thesis.
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As result of this runs, we have the information about the actual measured performance
of the software system. In a later step, we compare this measured performance with the
predicted performance. Technically this data is stored in an R17 database.

6.7.3.3. Used Setup for Enriching Architectural Models and for Measuring the Performance

We need to measure the software system to enrich the architecture models and to measure
the actual performance for a realistic work load. To do so, we need to deploy the software
system and the necessary additional components. The deployment, we use, is depicted
in Figure 6.11. As environment, we used two di�erent virtual machines (VM1 and VM2).
Both are running on the same physical hardware environment, which is a SunFire x4440
equipeed with 4 Six-Core AMD Opteron Processors à 2400 MHz, 128 GB RAM and 8*300GB
HDD.

On the �rst virtual machine (VM1), we deployed the mRUBiS system, the load driver,
and the R server. The R server on VM1 is used by the load driver to store the measured
data. The stored measured data can be used for the comparison between the performance
prediction and the actual measured data. As database for the mRUBiS system, we use a
MySQL18 data set. The database for the mRUBiS system is initialized with 2000 users, 100
items, and 20 categories for the items before each run. For each call of registerItem, a
new item is created within one of the existing categories and a new randomly generated
image from a size between 300x700 pixels and 400x800 pixels is uploaded. The �rst virtual
machine is equipped with 4GB RAM and one AMD Opteron CPU core with 2.4 GHz. As
operation system we used 64bit Windows 2012 Server. We only assigned one CPU core
to this server to avoid incorrect measurements due to the use of multiple cores. In the
case of more than one CPU core, we currently cannot determine how the execution time
is distributed over the di�erent CPUs. We argue that the evaluation using one CPU core
only, is su�cient for the evaluation performed in this thesis, because our goal is not to
optimize the performance prediction for multicore processors. Instead we want to show
that the coevolved models can be used to predict the performance of a software system.

On the second virtual machine (VM2), we deployed an InspectIT server. After the
instrumentation of the mRUBiS system, the InspectIT agent uses this server to store its
results. The second virtual machine running the InspectIT server is not critical for the
performance, because it runs the InspectIT server only and stores the information in a
database. It turned out, however, that this functionality needs to be on a second virtual
machine as the performance drain on the main machine would be to high otherwise. This
virtual machine is also equipped with an AMD Opteron CPU with 2.6 GHz and 4GB RAM.
As operating system it uses a 64 bit Centos Linux.

The local machine in Figure 6.11 is a PC running the Parametrization Job after the
parameterisation run has been completed. It communicates with the InspectIT application
in order to retrieve the data, which is necessary for the parameterisation, from the InspectIT
DB.

17https://www.r-project.org
18https://www.mysql.com
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Figure 6.11.: Deployment diagram for the evaluation setup
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6.7.3.4. Enriching a Coevolved Architectural Model with Performance Information

The process described above requires source code, a consistent architecture model, and a
SCDM. The architecture model needs to contain interfaces, components, and SEFFs. Within
the SEFFs the behaviour needs to be speci�ed, i.e. Branches, Loops, and InternalActions

need to be present. It is, however, not necessary for the SEFFs to contain performance
information already. These three artefacts are the output of the architecture reconstruction
performed with EJBmoX . The parameterisation extension of EJBmoX is embedded in to
the EJBmoX run and is able to enrich the extracted PCM.

Within the work presented in this thesis, our goal is to enrich a coevolved model with
performance information. Therefore, we implemented a small tool, which realizes the
enriching of an architectural model without the need of running the architecture extraction
step of EJBmoX upfront. The tool creates the SCDM from the Vitruvius correspondence
model using a model to model transformation. Using the SCDM, the source code, and the
coevolved architecture model, we can execute the EJBmoX extension, which enriches the
architecture model with performance information. Hence, we can retrieve an architectural
model enriched with performance information from a coevolved architecture model.
The implemented tool is available as Eclipse plugin and available within the Vitruvius
framework. After enriching the model, we are able to answer research question 4.1 from
the GQM plan as follows: Using our Coevolution approach omits the e�ort to update the
statical architectural elements and the behavioural architectural elements manually. The
measuring of the software system and enriching the model with performance information
remains the same. Using the proposed setup, however, most steps for the enriching process
can be done automatically.

6.7.4. Experiment Results

After we enriched the models, we can execute the performance prediction using one of the
available simulators for the Palladio approach. For the simulation, we use EventSim, which
has been introduced by Merkle [Mer11] and Merkle and Henss [MH11]. As allocation and
resource environment for the simulation, we use the environment generated by EJBmoX ,
i.e. we used one server with one CPU and all assemblies are deployed on this server. As
the CPU has a processing rate of 1, we simulate the same CPU as the CPU used for the
measurements. For the results, we compare the measured values with the predicted values
of the simulation. To illustrate the model’s generalization capability, we used di�erent
workloads for the measurement and the prediction as we used in the parameterisation run
in the enriching phase. We compare the mean response time, the empirical cumulative
density of the response time, and the mean CPU utilization between the simulated results
and the measured results.

The diagram in Figure 6.12 shows the empirical cumulative density of the response
time for the model extracted with EJBmoX , i.e. the non-evolved model. The diagram in
Figure 6.13 shows the empirical cumulative density for the coevolved model. As we can
see the simulated curve and the measured curve have the same shape in both diagrams. As
expected, the time needed to process the request for registerItem, increases dramatically
for the coevolved model, because the thumbnail needs to be created and the image needs to
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Figure 6.12.: Cumulative response time distribution of measurements compared to simula-
tion results for the extracted model. The x-axis shows the response time in
milliseconds. In the simulated run as well as in the measured run nearly all
requests are processed within the �rst 25 ms. The mean interarrival time of
new users is 150 ms.
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Figure 6.13.: Cumulative response time distribution of measurements compared to simu-
lation results for the coevolved model. The x-axis shows the response time
in milliseconds. The evolved system requires more time to process requests,
i.e. most requests are processed within a range of 200 and 500 ms. The mean
interarrival time of new users is 1000 ms.
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6.7. Model-based Performance Prediction using Coevolved Architecture Models

Experiment Meas. time (ms) Sim. time (ms) Error abs. (ms) Error rel. (%)

extracted model 14.92 16.45 1.53 10.25
evolved-model 256.67 277.25 20.58 8.01

Table 6.15.: Comparison of the mean response time in the measured run and the simulated
run for both experiments. As we can see, the relative error for both cases is
approximately 10%, i.e, the prediction of the response time can be used to
make reliable statements about the behaviour of the software system.

Experiment Utili. measured Utili. simulated Error abs. Error rel.

extracted model 0.14 0.05 -0.08 61.89
evolved model 0.27 0.12 -0.14 53.62

Table 6.16.: Comparison of the mean CPU utilization in the measured run and the simulated
run. All numbers are in percentage. As we can see, the error is greater than 50
percent for both experiments, i.e. the prediction of the utilization cannot be
used to make reliable statements about the behaviour of the software system.

be stored in the database. In both diagrams the simulated performance is slightly slower as
the actual measured performance. The reason for this behaviour of the simulation seems
to be twofold: �rst, might be the lack HDD monitoring during the parameterisation phase.
Instead of split the load to HDD and CPU as the load occurs the load is only assigned to
the CPU. This leads to the fact that contention scenarios are predicted slightly wrong in
the simulation, because some requests need to wait longer in the simulation until they are
processed than in the real time. We observed this behaviour especially for the persistItem
service using the evolved system. As mentioned above, this service is used to store the
data in the database and is HDD intensive, i.e. we changed the demand from the CPU to
the HDD. As part of future work, the monitoring could be improved in order to consider
HDD demand of the system under test as well.

Table 6.15 the mean response time per user is shown for both experiments. As we
can see, the accuracy of the performance prediction using the coevolved model is not
degenerate for the coevolved model.

Table 6.16 shows the mean measured utilization of the CPU compared with the mean
simulated utilization of the CPU. The error is for both experiments greater than 50 %.
This di�erence is partly caused by the additional load introduced by the load driver and
R server. Both processes have an impact on the measured CPU utilization, but not on
the simulated utilization. The additional load, however, does not explain the large gap
between the simulated and measured mean CPU utilization. System processes executed
by the used SQL database to store the uploaded images on the HDD might be another
explanation for the observed behaviour. To improve the prediction of the CPU utilization,
the measurement can be improved in order to only consider the actual CPU utilization of
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the process under test. Furthermore, the load driver and the R server can be moved to a
separate VM.

After performing the experiments, we can answer research question 4.2 as follows: The
relative prediction error for the mean response time using the evolved model is 8.01%.
Brosig et al. [Bro+15] pointed out that, according to Menascé et al. [MAD94] [MA00], in
capacity planning, prediction errors of the response time are acceptable up to a relative
error of 30% percent. Hence, the results we get for the response time can be used for the
capacity planning. The prediction error for the mean CPU utilization, however, is greater
than 50%, i.e. the results are currently not usable for a prediction of the CPU utilization.

6.8. Threats to validity

In this section, we present the threats to validity for the performed evaluation.
For the evaluation of Extract and EJBmoX , we identi�ed the following threats to validity:

To evaluate Extract, we only used Apache projects. The projects, however, are of di�erent
size, from di�erent domains, and widely used. Hence, we argue that the projects represent
typical open source software systems. We also did not compare an architectural model
reverse-engineered with Extract with a manual created one, yet. Hence, we are not able
to make statements about their accuracy. For the evaluation of EJBmoX , we used only
two relatively small open source software systems, which were designed as case study
systems. Hence, we cannot make a statement whether realistic open source EJB systems or
industrial sized EJB systems can be investigated using EJBmoX as it is or whether further
extensions for EJBmoX are needed to cope with those projects.

For the evaluation of the consistency preservation rules using the PCM RIS, we identi�ed
the following threat to validity: We used only a limited amount of existing PCM models.
Some of them, such as CoCoME, however, are widely used to evaluate the PCM itself.
Hence, we can argue that the used models are representative PCM model instances.

For the replay of changes from a VCS and the coevolution evaluation, we identi�ed
the following threats to validity: The changes are not performed by developers in our
scenario but by the change replay tool. Even though the changes we replay, are performed
to the actual source code, it is unclear, whether developers would have performed the
changes in the same order. Hence, we cannot make a statement, whether developers and
architects would use our Coevolution approach as we did in this scenario. Another threat
to validity is that the change replay tool in combination with the source code monitor
showed slightly di�erent behaviour during repetitions of the change replay for the same
project. However, we can argue that this behaviour only occurred in a minor cases of
changes and that the result after the change replay remains the same. A threat to validity
for the coevolution is that we only used four open source projects and replayed possible
changes. As for Extract, all of them are Apache projects. However, as in Extract, we used
projects of di�erent sizes and di�erent domains.

For the performance evaluation of our Coevolution approach, we identi�ed the following
threats to validity: The performance evaluation of the Java monitor has been conducted
with only a few test methods and only a subset from the possible changes. We can argue,
however, that the JaMoPP parser required the biggest amount of time in each test, i.e.
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changing the actual change would not lead to a much di�erent result. For the performance
evaluation of the coevolution approach, we also used only limited amount of changes
performed to a limited set of classes. We furthermore, only executed three repetitions.
We can, however, similar as above and state that the JaMoPP parser required the biggest
amount of time, i.e. the time is dominated by the JaMoPP parser, which we cannot in�uence.
Furthermore, the goal was to give the order of magnitude of the time required to coevolve
a model.

For the performance prediction using a coevolved model, we identi�ed the following
threats to validity:

• the evaluation has been performed using one case study project only,

• within the project, we considered only one scenario,

• we only used one server for the prediction and for the measurement, and

• the contention during the performance prediction was low.

We can argue, however, that we only wanted to show that the coevolved models can be
used in principle for the performance prediction.
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7. RelatedWork

In this chapter, we present related work to the approach presented in this thesis. We have
presented an approach capable of coevolving architectural models and source code (see
Section 4.2) within this thesis. As architectural model, we use the Palladio Component
Model (PCM). As source code, we use the Java language, which is an object-oriented
programming language. Our Coevolution approach is also able to coevolve UML class
diagrams using the de�ned UML class diagram editor, which we presented in Section 4.2.4.
It is also capable of coevolving source code and its behavioural models. Our Coevolution
approach is, furthermore, able to integrate existing architectural models and existing
source code. The approach we use, is based on the Vitruvius, framework, which is a
view-based engineering framework using Model-Driven Software Development (MDSD)
techniques.

The related work is structured according to the contributions of our Coevolution ap-
proach. Therefore, we �rst present approaches, which are able to coevolve architectural
models and source code. Next, we explain architecture reverse engineering approaches
that have the goal to reverse-engineer an architectural model from source code, which is
afterwards used for the coevolution with the source code. Finally, we focus on view-based
approaches that use MDSD techniques in order to keep models consistent.

7.1. Approaches that keep Architectural Models and Source
Code Consistent

The �rst major area of related work are approaches that keep architectural models and
source code consistent during software development and software evolution. We �rst
explain approaches capable of coevolving source code and high-level architectural models.
Next, we explain approaches that are able to keep behavioural models consistent with
source code. Next, we present approaches that keep UML class diagrams and source
code consistent during software evolution. Finally, we present approaches that integrate
high-level architectural information into source code.

7.1.1. Coevolution Approaches for Source Code and High-Level Architectural
Models

One goal of approaches coevolving source code and high-level architectural models, is
to avoid architecture drift and architecture erosion. Silva and Balasubramaniam [SB12]
have presented a survey on approaches that can be used to control software architecture
erosion. The classi�cation of approaches is depicted in Figure 7.1. Our Coevolution
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Fig. 1. Classification framework of existing methods for controlling architecture erosion.

♦ Self-adaptation technologies enable systems to reconfigure
themselves to align with their architectures after a change has
been made to either the implementation or the runtime state.

• Repair
♦ Architecture recovery involves extracting the implemented

architecture from source code and other artefacts.
♦ Architecture discovery techniques are useful for eliciting the

intended architecture from emergent system properties and
other means in the absence of architectural documentation.

♦ Architecture reconciliation methods help reduce the gap
between the implementation and the intended architecture of
a software system.

As these repair strategies are effective when they are applied
together, we discuss them under a common theme called “archi-
tecture restoration” in Section 9.

The next six sections present the survey results for each of the above
strategies. We conclude each section by discussing the adoption,
efficacy and cost–benefit analysis of its class of strategies.

4. Process-oriented architecture conformance

Architecture conformance, which is vital for minimising archi-
tecture erosion, is generally achieved through process-centric
activities during software development. Literature identifies a
number of reasons for architecture erosion that relate directly to
human and organisational factors. Parnas (1992) highlights inade-
quate design documentation, misunderstood design principles and
poor developer training as key triggers of erosion. Similarly, Eick
et al. (2001) argue that vague requirements specifications, poor
architectural designs and programmer variability, among other fac-
tors, lead to architecture erosion.

The ability to ensure architecture conformance during devel-
opment and maintenance is built into most formal software
development processes such as the Rationale Unified Process
(Kruchten, 2003; IBM, 2011) and the Open Unified Process (part
of the Eclipse Process Framework) (The Eclipse Foundation, 2011).
These processes incorporate architecture reviews to ensure that the
architecture meets user requirements, design reviews to confirm
that designs adhere to architecture guidelines and code reviews to
check that architectural principles are not violated in program code.
Similarly, change requests are reviewed and approved by architects
to ensure maintenance updates are agreeable with the intended
architecture.

To address the issue of programmer variability, software pro-
cesses often include some form of skill-gap analysis to identify the
training needs of new members inducted to a project team. Junior
team members are also paired with senior developers as a scalable
mentoring and review mechanism in large teams. Some of these
process activities are usually supplemented by process automation
tools in order to increase productivity and reduce human-induced
errors.

Software engineering processes incorporate the following
strategies to enhance the effectiveness of controlling architecture
erosion:

• Architecture design documentation,
• Architecture analysis,
• Architecture compliance monitoring, and
• Dependency analysis

We discuss the survey results under the above categories in
Sections 4.1–4.4.

Figure 7.1.: The classi�cation of software architecture erosion presented by Silva and
Balasubramaniam [SB12].

approach can be seen as an approach that prevents software architecture erosion using
architecture to implementation linkage. Most approaches that fall into this category, such
as ArchJava [ACN02], embed architectural information into the source code. We explain
the relation between those approaches and our Coevolution approach in Section 7.1.4. Our
Coevolution approach, however, does not embed the architectural models directly but
uses a correspondence model to trace between architectural models and its corresponding
source code elements. ArchWare [Oqu+04], which also falls into this category, presents
an explicit Architecture Description Language (ADL) and a textual syntax to create the
architecture and its implementation. Hence, the created models are detailed enough to
generate the complete source code of a system. To create these detailed models, users
�rst need to model high-level architectural models and re�ne them in next steps. As the
high-level architectural models are part of the executable software system, they are kept
consistent with their re�ned models automatically. Within our Coevolution approach,
however, we use a stricter separation between the source code and the architectural model.
We do not consider the architectural model as part of the running application.

KobrA [Atk+01] (Komponentenbasierte Anwendungsentwicklung) is a component-
based application development environment that allows to create the architecture of a
software system. Therefore, it supports di�erent UML diagrams, for instance, the UML
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composite diagram, UML class diagrams, and UML behaviour models such as the activity
diagram. The di�erent diagrams are di�erent views on a Single Underlying Model (SUM).
Hence, KobrA is an implementation of the view-based engineering approach Orthographic
Software Modelling (OSM) [ASB10]. In recent work KobrA has been applied to the open
source project Common Component Modelling Example (CoCoME) [Dac16]. Dacic [Dac16]
provides an up-to-date KobrA model for CoCoME as well as a prototypical implementation.
Using KobrA has the advantages that the used models are kept consistent as they use the
same SUM. Dacic [Dac16], however, did not propose a coevolution for the implemented
source code and the KobrA models as we do in our Coevolution approach.

IBM Rational Rhapsody1 supports model-driven software developments in multiple
ways. It allows the creation of UML models such as package diagrams, class diagrams
and di�erent behaviour models such as activity diagrams and sequence diagrams. From
these models, source code can be generated. IBM Rational Rhapsody also has reverse
engineering features in order to include existing code. Users need to trigger the reverse
engineering step manually. During the reverse engineering, however, not all architectural
models are created automatically. IBM Rational Rhapsody also supports bidirectional
consistency preservation between architectural models and code. This is supported for
the UML package diagrams and UML class diagrams. Using the bidirectional consistency
preservation of IBM Rational Rhapsody updates the diagrams as soon as the source code
has been changed and vice versa. A di�erence to our Coevolution approach is that IBM
Rational Rhapsody does support language elements, such as packages and classes, only,
i.e. no high-level architecture description in terms of components is used.

7.1.2. Approaches Supporting Change-driven Extraction or Coevolution of
Behavioural Models

The extraction respectively coevolution of behavioural models is usually either done to
achieve one or more of the following goals: i) allow users to get a high-level overview of
the behaviour of the source code in order to ease the understanding of the code and to
enable the detection of architecture violation, ii) allow users to edit up-to-date behavioural
models in order to update the source code. From the tools and approaches explained in
the following, Architexa, ArchLint, and JITTAC achieve the �rst goal, while mbeddr and
Fujaba achieve the second goal.

ArchLint2 [Maf+13] can be used to detect architectural violations. Therefore, ArchLint
uses static code analysis and the history of the source code. As input it needs the source
code history data as well as a high-level architecture representation. Based on the input
data ArchLint uses heuristics in order to detect possible architecture violations. ArchLint
is able to detect the so called absence violation[Maf+13], which is de�ned as a dependency
that exists in the architecture but is not present in the source code. It is, furthermore, able
to detect divergence violation, which is a dependency that exists in the source code, but
that is not allowed according to the architectural model. A di�erence to our Coevolution

1http://www-03.ibm.com/software/products/en/ratirhapfami
2http://aserg.labsoft.dcc.ufmg.br/archlint
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approach is that the architecture violation is not detected during the actual development
time but in a separate analysis step.

The Just-in-Time Tool for Architectural Consistency (JITTAC)3 presented by Buckley
et al. [Buc+13], can be used to detect architectural violation respectively architecture
erosion during the development time of a software system. To do so, architects �rst need
to create a software architecture in terms of componetns from existing code. Therefore,
they need to map source code elements in terms of packages, interfaces, and classes to
components. During this process dependencies between the components are created
dynamically. Furthermore, architects are allowed to de�ne new dependencies between
components. If developers add dependencies in the code that are not present in the
architecture yet, the architectural model gets updated accordingly and a warning is shown
to architects. Architects then need to decide whether the new dependency is considered
as architecture violation or whether they accept the new dependency in the architectural
model. A notable feature of JITTAC is that it warns developers if they are about to violate
respectively already violated the architecture. This feature is included within the Eclipse
IDE. Di�erent as our Coevolution approach, however, JITTAC does not allow coevolution
of source code and architecture and it uses a di�erent component de�nition as we do.

Architexa4 allows the creation of UML sequence diagrams dynamically from source
code. The diagrams are dynamically created and read only views. Architexa focuses on the
creation of UML sequence diagrams for classes. In our Coevolution approach, we focus,
however, on the incremental creation of activity like diagrams (the SEFFs) for components.
The components in our Coevolution approach, can comprise a set of classes.

Voelter et al. [Voe+13] introduce mbeddr, which is a language based on C, that allows
the creation of source code using either an editor that integrates a source code editor
with editors for UML behaviour models, such as activity diagrams. It is based on the
JetBrains MPS (Meta Programming System) [PSV13], which is a integrated environment
for language engineering. Users of mbeddr can view and edit parts of the source code
directly as models or as source code. As the code as well as the model are projective views
that show the same single underlying model the consistency is preserved automatically.
In Section 7.1.4, we explain how mbeddr can be used to coevolve architectural elements,
such as components, with the source code, by embedding them into the source code and
de�ning speci�c keywords for the architectural elements.

From UML to Java and back again (Fujaba) allows round-trip engineering between
behavioural models and source code. Nickel et al. [NNZ00] describe how Fujaba can be
used for the coevolution between source code and UML activity diagrams as well as source
code and UML statecharts. The coevolution of both is based on method bodies within
classes. Hence, users can change, for instance, activity diagrams to update the code and
vise versa. Fujaba focuses on the coevolution of method bodies within classes. Within our
Coevolution approach, we focus on the reconstruction of component-behaviour, i.e. the
reconstruction approach we propose is not based on a single method body but can span
multiple method bodies.

3http://actool.sourceforge.net
4http://www.architexa.com
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7.1.3. Approaches supporting Round-trip Engineering between UML Class
Diagrams and Source Code

Many famous related coevolution and round-trip engineering approaches focus on the
coevolution of source code and UML class diagrams. The approaches often refer to their
consistency preservation process as synchronization mechanism between models. These
approaches are related to our Coevolution approach, yet they are di�erent because the
mapping between UML class diagrams and object-oriented source code is quite clear. Hence,
usually the approaches do not need to allow for di�erent consistent preservation rules
between architectural models and source code. The approaches, however, closely related to
our UML class diagram editor Projective UML class diagram editor for Java (ProjUMLed4J),
which we have presented in Section 4.2.4. In [KLK16], we already identi�ed approaches
able to keep UML class diagrams and source code consistent. We divided these tools in
three di�erent classes depending on how they enable coevolution respectively round-trip
engineering between source code and UML class diagrams. Approaches within the �rst
category use an explicit model, which contains the UML information. Approaches that fall
into second category, use a central model to store all information about all used artefacts.
Approaches in the third category do not use any additional artefacts, i.e. they use the
source code only.

Tools within the �rst category are, for instance, IBM Rational Software Architect [Cla10],
MagicDraw [No 12], UML Lab5, and Fujaba [NNZ00]. MagicDraw allows users to integrate
changes in one artefact into the other artefact. Therefore, it uses an explicit synchronization
mechanism for the source code and the UML class diagram model. The synchronization
is explicit because it needs to be triggered by users. As UML Lab arose from Fujaba they
share the same consistency preservation process and can be explained together. The used
consistency process combines implicit and explicit consistency preservation. Implicit
means that changes to either the source code or the architectural model are kept consistent
directly without an explicit triggering of the consistency preservation process. UML Lab
and Fujaba using such implicit changes if both the architectural editor and the source
code editors are open. If one of them is closed the consistency preservation process needs
to be triggered manually, i.e. explicitly. Information, which are only contained in the
UML class diagram, such as multiplicities, are stored within structured comments in the
source code. Hence, to share this information it is su�cient to share the source code itself.
The diagrams do not need to be shared. A similar approach is used by Rational Software
Architect for UML class diagrams and source code. It provides an implicit synchronization
mechanism, which transfers information, i.e. changes in the UML class diagram are kept
consistent with the source code and vice versa.

Enterprise Architect [Spa14], which is a popular tool for allowing coevolution between
UML class diagrams and code, falls into the second category. If users modify the UML class
diagram, Enterprise Architect persists the changes in a central model. The synchronization
of the source code has to be called explicitly. Hence, concurrent modi�cations in the UML
class diagram and the source code are not possible, as one change would overwrite the
other change.

5http://www.uml-lab.com/
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Tools falling in the third category are, for instance, UML Aid Explorer6, Architexa, a
GMF-based editor [Hei+09b] based on JaMoPP, and Together [Bor05] from Borland. UML
Aid and Architexa use the source code of a project to show an UML class diagram for a
speci�c set of classes and interfaces. The created UML diagram, however, are read-only
class diagrams, i.e. it is not possible to change UML class diagrams. Even though UML Aid
and Architexa not support round-trip engineering, we mention them here as they both use
the source code as underlying model and create a projectional view onto the source code.
The GMF-based editor presented by Heidenreich et al. [Hei+09b] uses JaMoPP as model
for the source code and provides an editable UML class diagram editor. It is, however,
not UML compliant and is also not compatible with the latest Eclipse versions. The most
popular tool falling into the third category is Together from Borland. The tool supports a
so called LiveSource mechanism, which allows for editing the source code using UML class
diagrams. The used UML class diagrams are generated dynamically from the underlying
source code as projective view. Information that is represented by the UML class diagram
only, e.g. multiplicities of associations, are stored in structured code comments.

The above mentioned list of tools and approaches, which we already presented in
[KLK16], does not claim to be complete, as they are many tools allowing for the coevolution
between source code and UML class diagrams. The important fact is that these approaches
are optimized for UML class diagrams. De�ning the consistency preservation rules between
UML class diagrams and object-oriented source code is rather easy, as most UML class
diagram elements have a direct representation in source code. As mentioned above, the
approaches are, however, related to ProjUMLed4J. The di�erences between ProjUMLed4J
and approaches from the �rst category is that ProjUMLed4J does not have an explicit
model for storing the UML class diagram. Instead, it generates the UML class diagram as
projective view from the underlying source code. The main di�erences to the tools from
the second category is that we do not use an additational central model. The tools from
the third category that allow editing of UML class diagrams, i.e. Borland Together and
the GMF editor for JaMoPP, are similar to ProjUMLed4J. However, they do not support
annotations in order to store information that do not have a direct representation in source
code, e.g. multiplicities between classes. Also ProjUMLed4J is tailored in order to work
with the techniques used in our Coevolution approach and it is thous used as UML class
diagram editor in our Coevolution approach.

7.1.4. Approaches Embedding Architectural Information in to Source Code

Another approach of keeping architectural information and source code consistent is
to embed architectural information into the source code. To do so, four approaches are
common:

1. de�ning architecture in the source code using features of the used programming
language,

2. de�ning architecture in additional features of the used programming language, e.g.
annotations within Java,

6http://www.objectaid.com
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3. extending the programming language with architectural artefacts, or

4. using built-in mechanisms of the programming language to de�ne an architecture.

The �rst approach, is to implement the architecture in the source code directly. An
example for this idea is the Programming-in-the-small-and-many (PRISM) approach pre-
sented by Mikic-Rakic and Medvidovic [MM03]. PRISM allows developers to specify a
component-based architecture in source code using features of the used source code lan-
guage, e.g. Java. PRISM is considered by the authors as middleware platform, which is able
to develop software architectures. Therefore, it enables users to de�ne architectural level
elements, for instance, components, connectors, events, and con�gurations, within the
source code. Hence, software developers can implement architectural decisions directly
in the source code. Therefore, software developers need to specify the architecture and
de�ne how the components are connected and how events are send among the compo-
nents. The advantage of such an approach is that no explicit consistency preservation
mechanism is necessary, because the architecture is implemented directly into the source
code. No explicit architectural model, however, exists to represent architectural elements.
Also no behavioural model exists, as the behaviour is described by the realising source
code itself. Hence, the approach cannot contain information which is not contained in
the source code directly. In future work, we can de�ne consistency preservation rules
between architectural models and source code, which is based on PRISM. Hence, PRISM
architectural models can be combined with our Coevolution approach.

An example for the second approach is provided by Konersmann et al. [Kon+13]. They
present the idea of using Java annotations to embed architectural information in source
code. An architectural view is dynamically created, from the underlying source code, on
demand. Even though the technique used by Konersmann et al. [Kon+13] is di�erent as the
technique we use in our Coevolution approach, from a users perspective the approaches
are similar because Konersmann et al. [Kon+13] also use the PCM as architectural model.
Konersmann and Holschbach [KH16] recently extended the approach in order to keep
the PCM Allocation consistent with a software system running with Java Enterprise
Edition. A di�erence between our Coevolution approach and the the approach presented
by Konersmann et al. [Kon+13] is that Konersmann et al. [Kon+13] do not store the
architectural model explicitly, but store it within the source code. They also currently do
not provide a concept of coevolving behavioural models in terms of the SEFF. Furthermore,
they are also not providing an approach for integrating existing source code using reverse
engineering approaches and di�erent integration levels.

A famous approach that extends the source code with architectural artefacts is ArchJava
[ACN02]. ArchJava introduces new languages elements as keywords for Java. The newly
introduced language elements are, for instance, components, ports, requires, provides and
connect. They extending the Java language and can be used to de�ne components and their
connection amongst each other in the source code. Classes, for instance, can be speci�ed
as component classes. To compile ArchJava code, however, a special Java compiler is
necessary that is able to compile the source code with the additional keywords. Similar to
PRISM, we can combine our Coevolution approach with ArchJava by de�ning consistency
preservation rules between architectural models and ArchJava based source code.
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A similar approach as ArchJava is used by mbeddr [Voe+13], which we already men-
tioned above. It supports the integration of components, interfaces, ports, and connectors
into the C programming language respectively a programming language that is almost C.
As the PRISM approach, ArchJava and mbeddr omit the need of a consistency preservation
mechanism, because the architectural elements are embedded in the source code. Both,
however, do not have an explicit architectural model available.

The last method for embedding is to use built-in mechanisms of the used programming
language. With the upcoming Java version 9 7, Java introduces so called modules. The
module concept allows to de�ne modules and their relations in the source code. A module
combines a set of classes and packages. It also speci�es the exported classes and interfaces
and the required modules. Java 9 modules have the advantage that they are a built-in
feature of the upcoming Java language. Java super packages, which are similar to Java
9 modules, have been proposed in 2006 [Sun06]. They can be used to collect other Java
packages and Java classes in a super package to ease the handling of large projects. They
are, however, not integrated in the Java language speci�cation. Instead Java modules are
favored. The di�erentiation between our Coevolution approach and the proposed Java built-
in mechanisms, however, is the same and explained in the following for Java 9 modules.
Similar to the other approaches falling into the category of embedding architectural
information in source code Java modules do not provide an explicit architecture model.
Similar to PRISM and ArchJava, we can de�ne consistency preservation rules between
architectural models and Java 9 modules. In the future work section of this thesis (see
Section 8.2), we outline how this can be done.

7.2. Architecture Reverse Engineering Approaches

In this section, we focus on architecture reverse engineering approaches that have the
goal to use the reverse-engineered model for coevolution with the source code. Those
approaches are related to the source code integration strategies, we presented in Section 5.4.

Ducasse and Pollet [DP09] present a taxonomy of software architecture reconstruction
approaches. Within this taxonomy they classi�ed di�erent approaches according to their
goals, processes, input, techniques and outputs on the top level. The detailed classi�cation
is depicted in Figure 7.2.

As the integration of existing source code into our Coevolution approach is done by using
either Source Code Model eXtractor (SoMoX), Extract, or EJBmoX as reverse engineering
approaches, our Coevolution approach falls into the following categories of the taxonomy:
The main goal of our Coevolution approach is coevolution. As process, we use a bottom-up

process, because we use the source code as information for the reverse engineering. As
inputs, we use non-architectural information. In particular, we use source code only as input
model. The used techniques during the reconstruction is quasi-automatic. The output of
the reverse engineering approaches are i) an architecture of the software system, and ii)
a visualisation of the software architecture. Using the reverse-engineered architecture
also allows the analysis of Non-Functional Properties (NFP) if the performance models
are parametrised in a subsequent step.

7http://openjdk.java.net/projects/jigsaw/spec/sotms/
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Fig. 2. A process-oriented taxonomy for SAR

A. Rearchitecting Goals

Several authors have categorized architecture roles in soft-
ware development [48]; the roles involved in an architecture
define the motivations for rearchitecting. In particular, Kazman
and Bass have a pragmatic categorization of business goals [73]
that motivate having an architecture in the first place. Similarly,
in the context of maintenance, architecture reconstruction
should answer the business objectives of stakeholders; it is a
proactive process realized for future forward engineering tasks.

Knodel et al. identified ten distinct purposes or needs [83];
however, the purposes they present simultaneously are too
narrow and do not cover all goals. This is why we do not
use them for the present article. To classify SAR approaches
in Table I, we grouped these purposes into six main goal
categories refining the goals mentioned by Garlan [48].

Redocumentation and understanding: The primary goal
of SAR is to re-establish software abstractions. Recovered
architectural views document software applications and help
reverse engineers understand them [165]. For instance, the
software bookshelf introduced by Finningan et al. illustrates
this goal [12, 42, 67, 144]. Svetinotic and Godfrey state that
not only the recovered architecture is important, but also its
rationale, i.e., why it is as it is [155]. They focus on the
architecture rationale forces to recover the decisions made,
their alternatives, and why each one was or was not chosen.

Reuse investigation and product line migration: Software
product lines allow one to share commonalities among products
while getting customized products. Architectural views are
useful to identify commonalities and variabilities among
products in a line [36, 129, 149]. SAR has also been used
in the context of service-oriented architectures, to identify
components from existing systems that can be converted into

services [120].
Conformance: To evolve a software application, it seems

hazardous to use the conceptual architecture because it is often
inaccurate with respect to the concrete one. In this case, SAR
is a means to check conformance between the conceptual
and the concrete architectures. Murphy et al. introduced the
reflexion model and RMTool to bridge the gap between high-
level architectural models and the system’s source code [114,
115]. Using SAR, reverse engineers can check conformance of
the reconstructed architecture against rules or styles like in the
SARTool [41, 86], Nimeta [134], Symphony [165], DiscoTect
[180], Focus [24, 104] and DAMRAM [105].

Co-evolution: Architecture and implementation are two
levels of abstraction that evolve at different speeds. Ideally these
abstractions should be synchronized to avoid architectural drift.
Tran and Holt propose a method to repair evolution anomalies
between the conceptual and the concrete architectures, possibly
altering either the conceptual architecture or the source code
[162]. To dynamically maintain this synchronization, Wuyts
uses logic meta-programming [179], and Mens et al. use
intensional source-code views and relations through Intensive
[108, 109, 179]; Favre [38] uses metaware (i.e., meta- and meta-
meta-models); Huang et al. [69] use a reflection mechanism
based on dynamic information.

Analysis: An analysis framework may steer a SAR frame-
work so that it provides required architectural views to compute
architectural quality analyses. Such analysis frameworks assist
stakeholders in their decision-making processes. In ArchView
[126], SAR and evolution analysis activities are interleaved.
QADSAR is a tool that offers several analyses linked to
threads, waiting points and performance properties [150, 151].
Moreover, flexible SAR environments such as Dali [74, 78],
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Figure 7.2.: Process-oriented taxonomy for reverse Engineering approaches (taken from
Ducasse and Pollet [DP09])
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In the following, we present approaches related to our Coevolution approach, which
use a reversed engineered architecture in order to coevolve architectural model and source
code. The approaches were identi�ed by Ducasse and Pollet [DP09] and have the goal of
coevolution.

First, we present the approach presented by Tran and Holt [TH99]. They introduce
an approach to repair the architecture of a software system. As input models they use
existing architecture models and evolved source code. They di�erentiate between the
following two di�erent repair approaches: i) forward architecture repair, which means
that the source code (concrete architecture) is repaired in order to match the architecture
(conceptual architecture), and ii) reverse architecture repair, which means that the archi-
tecture (conceptual architecture) is repaired in order to match the source code (concrete
architecture). The di�erence to our Coevolution approach is that they do not coevolve the
architecture with source code during the development but restore the consistency at one
time.

Another approach that reconstructing architecture with the goal of coevolution is
presented by Huang et al. [HMY06]. They propose an online recovery and manipulation
approach for software architecture. Therefore, they use the runtime information and
recover the architecture of a software system based on the re�ection mechanism of the
used component-framework. The recovered architecture can be transformed into an
ADL. The ADL contains information about the architecture, its runtime behaviour, and
deployment information of the software system. Changes performed to the ADL model
are kept consistent, for instance, with the deployment environment, i.e. the deployement
can be changed during the runtime via the architectural view. Hence, they focus on
coevolution between the runtime architecture and the runtime environment. The focus
of our Coevolution approach, however, is to keep architectural models and source code
consistent during the development time.

The last approach, we present, that allows coevolving an reconstructed system is the
tool suite IntensiVE (Intensional View Environment) introduced by Mens et al. [Men+06].
We mentioned them again in the section for related view-based approaches, because
IntensiVE is a tool, which can be seen as view-based. Wuyts [Wuy01] present an approach
for reverse engineering IntensiVE views from source code and use them for coevolution.
The proposed high-level views are, however, not a component-based architectural model,
which we use in our Coevolution approach. We, furthermore, introduce the di�erent
integration levels in order to decide whether the reconstructed and integrated elements
can be used for coevolution with the standard consistency preservation rules, or whether
integration speci�c consistency preservation rules need to be de�ned.

7.3. View-based So�ware Development Approaches

In this section, we focus on related approaches from the view-based software development
domain.

Atkinson et al. [ATM15] present di�erent strategies for the realisation of multi-view
environments. Our Coevolution approach can be seen as a multi-view approach that uses
a source code view, a UML class diagram view, and a component-based architectural view.
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In the following, we classify our Coevolution approach in the �ve dichotomies presented
by Atkinson et al. [ATM15].

The �rst dichotomy presented is rigorous versus relaxed. Approaches that use multiple
views, which explain how the views need to be kept consistent, and de�ne what should be
contained within the views, are considered rigorous. Approaches that use multiple views
but do neither explain how they need to be kept consistent nor what the precise form in
these views takes, are considered relaxed. Our Coevolution approach is rigorous, because
we de�ne how the used views respectively models need to be kept consistent.

The second dichotomy is synthetic versus projective views. As we also mentioned in the
foundations (see Section 2.2.2), view-based software development di�erentiates synthetic
views form projective views. Projective views are views generated from an underlying
model, which also ensures the consistency. Synthetic views need to be kept consistent
amongst each other. Our consistency preservation process between source code and
the architectural model as described in this thesis is synthetic. The UML class diagram
editor we presented, is a projective view onto the source code. The Vitruvius approach in
general, which is the base for our Coevolution approach, however, can be seen as projective
as well, because it allows for the generation of views from a Virtual Single Underlying
Model (VSUM).

The third dichotomy is Explicit versus Implicit Correspondences. It describes whether
the correspondences between elements in the views are made explicitly by using so called
inter-view correspondences or whether the correspondences are represented implicitly
using intra-view pointers. Our Coevolution approach uses explicit correspondences, as we
build the correspondences between the model elements using a correspondence model.

The fourth dichotomy is Extensional versus Intensional Correspondence De�nition. It
distinguishes approaches, whether they de�ne the correspondences extensionally or
intensionally. Extensional approaches describe the correspondence information at the
instance level, i.e. directly between views. Intensional approaches, however, de�ne the
correspondence rules also at type level. As we describe the correspondence rules on
the type level respectively on the metamodel level, our Coevolution approach can be
considered as an intensional approach.

The �fth and last dichotomy is Essential SUM versus Pragmatic SUM. An essential SUM
is minimalistic, i.e. it is free of internal redundancy. A pragmatic SUM is allowed to be
constructed using sum-models, which are not free from redundancy. The VSUM within
our Coevolution approach is a pragmatic SUM, because it contains the source code and
the architectural models, which are not redundancy free.

Even though we mentioned the OSM ([ASB10]) approach in the foundations already
(see Section 2.2.1), it is a related view-based development approach as well. The idea in
OSM is to store all information used in the development process in a SUM and creating
projective views onto this SUM. We reused the idea of having a SUM for Vitruvius
and our Coevolution approach. However, we use a VSUM, which allows the reuse of
existing metamodels. In our Coevolution approach, we use the Java metamodel and the
PCM metamodel within the VSUM. We already mentioned KobrA, which can be seen as
implementation of OSM, in Section 7.1.1 and identi�ed it as related work to our Coevolution
approach.
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Dichotomy Our Coevolution approach

Rigorous versus Relaxed rigorous
Synthetic versus Projective Views mixed
Explicit versus Implicit Correspondences explicit
Extensional versus Intentional Correspon-
dence De�nition

intensional

Essential SUM versus Pragmatic SUM pragmatic

Table 7.1.: A Classi�caiton of our Coevolution approach into the realisation strategies for
multi-view approaches presented by Atkinson et al. [ATM15] for multi-view
approaches

Meier and Winter [MW16] present a view-based approach using reference metamodels
(RMMs) to keep instances of di�erent metamodel consistent. Therefore, they propose
to create reference metamodels of all involved metamodels respectively viewpoints. For
object-oriented languages, for instance, such a reference metamodel would contain all
elements that are common for object-oriented langues (e.g. classes, methods, and �elds).
From this reference metamodels one reference single underlying metamodel (RSUMM)
is derived. This RSUMM de�nes the common concepts of the references metamodels.
The consistency preservation is achieved using the following process: First, changes in a
viewpoint are propagated to the reference models. Secondly the changes are propagated
to the RSUMM. From the RSUMM they are propagated to the other involved references
models. From there the changes are propagated to the other involved viewpoints to achieve
consistency. Even though Meier and Winter [MW16] do not provide an implementation of
their approach yet, they plan to apply their approach to architectural models and source
code as well. Furthermore, they plan to integrate requirements and test cases.

Intensional View Environment, introduced by Mens et al. [Men+06], is an approach
that keeps high-level architectural views consistent with the source code. As high-level
views they use, for instance, structural views and component-like views. This views can
be generated dynamically from the underlying source code. The main di�erence to our
Coevolution approach is that they do not use component-based architectural models as we
use. Furthermore, the consistency preservation only works from code to the architectural
views.
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Within this chapter, we �rst summarize the approach, the contributions and the evaluation
of this thesis. Afterwards, we present open questions and provide an overview of possible
future work based on the open questions.

8.1. Summary

In this thesis, we have presented a novel approach for coevolving source code and archi-
tectural models during the development and evolution of a software system. The approach
supports software architects and software developers by avoiding the well-known prob-
lems architecture drift and architecture erosion. These problems can occur, for instance, if
architectural models are used for the evolution of a software system but not kept up-to-
date with source code changes. The presented approach is a change-driven approach that
uses consistency preservation rules to achieve the consistency between the models. The
approach enables the coevolution of source code and behavioural models. It also allows for
integrating existing architectural models and existing source code. The evaluation showed
that i) the consistency preservation rules can be applied to existing architectural models,
ii) it is possible to integrate existing source code, and iii) our Coevolution approach is able
to keep changes performed to the source code consistent with the architectural model and
vice versa. We implemented our Coevolution approach to support the Palladio Component
Model (PCM) as architectural model and Java as source code language.

To realise the approach, we �rst presented the used consistency preservation process,
which is able to keep arbitrary models consistent during the development and evolution of
a software system. This process can be used in our Coevolution approach as well as in the
view-based engineering approach Vitruvius. As the proposed consistency preservation
process is change-driven, we need changes as input for the process. To retrieve the changes,
we decided to monitor the used editors. As one goal is to enable the reuse of existing
editors to allow users to use familiar editors, we implemented monitors for the PCM
architectural models and the Eclipse Java source code editor.

Next, we presented how our Coevolution approach can be used to keep architectural
models and source code consistent. From the Vitruvius approach, we reuse the idea of
using a Virtual Single Underlying Model (VSUM), which contains all necessary models
for the development of a system. Hence, in our case the VSUM contains architectural
models and source code. We showed how consistency preservation rules can be used for the
coevolution. Therefore, we de�ned three dimensions for consistency preservation rules: i) a
technology-speci�c dimension, ii) a project-speci�c dimension, and iii) an element-speci�c
dimension. Within this thesis, we introduced the following four concrete consistency
preservation rules from the architectural models to source code: We �rst introduced
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the package mapping consistency preservation rules, which can be used to keep PCM
architectural models consistent with Java source code using Plain Old Java Objects (POJOs).
Secondly, we introduced two technology-speci�c consistency preservation rules. The
�rst one can be used to keep instances of the architectural model PCM consistent with
Java source code built with Enterprise Java Beans (EJBs). The second technology-speci�c
consistency preservation rules can be used to keep instances of PCM architectural models
consistent with Java source code build with a dependency injection framework. Finally,
we introduced consistency preservation rules between architectural models and artefacts
of Eclipse plugin development. To do so, we focused on the development of consistency
preservation rules between instances of PCM and the Eclipse Manifest �les and plugin
XML �les.

We, furthermore, introduced the concept of user change disambiguation, which is used
if the consistency preservation rules are not able to automatically decide how a model
shall be kept consistent with a change performed to another model. In this case the users
of our Coevolution approach need to clarify they intention and decide how the consistency
between the models can be preserved.

We also presented an approach to keep behavioural models consistent with source code
during the software evolution. Therefore, we introduced an approach, which is able to
incrementally reverse-engineer the Service E�ect Speci�cations (SEFF) from a method body
as soon as the method body has been changed. During the incremental SEFF creation our
Coevolution approach is able to detect architecture violations.

We introduced di�erent roles users can assume if they use our Coevolution approach
for the software development. During the design time phase, architectural consistency
methodologists de�nes the consistency preservation rules. During the actual development
of a software system, software architects and software developers use our Coevolution
approach and the de�ned consistency preservation rules to implement the software system.

As one goal of this thesis is to allow the reuse of already existing models, we present
two integration strategies that are able to integrate existing models. The �rst integration
strategy, which we called Reconstructive Integration Strategy (RIS), simulates the creation
of a model. It is used within our Coevolution approach to integrate existing architectural
models. During the simulated creation of the architectural models, we use the monitors to
record the changes. These changes can be used by our Coevolution approach to create
the corresponding source code elements. The second proposed integration strategy, is
called Linking Integration Strategy (LIS). The LIS uses existing Model-to-Model (M2M)
transformation or Model-to-Text (M2T) generation steps in order to create an instance
of the model that shall be integrated. Based on this generation respectively transfor-
mation step, it creates the Vitruvius correspondence model. We implemented a LIS
in order to integrate existing source code. Therefore, we �rst need to reverse-engineer
an architectural model from existing source code. Therefore, we used the reverse engi-
neering approaches Extract, Source Code Model eXtractor (SoMoX), and EJBmoX . We
contribute the two reverse engineering approaches Extract and EJBmoX . Extract can be
used to reverse-engineer an architectural model from Java source code, while EJBmoX

is tailored in order to reverse-engineer Java source code build with EJBs. We use the
extracted architectural model, the source code, and the information how the source code
elements are mapped to the architectural elements to create a Vitruvius correspondence
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model. This correspondence model can be used within our Coevolution approach, in order
to allow coevolution of the source code and reverse-engineered architectural model. The
elements integrated with the LIS for source code are grouped into four di�erent groups
depending on the integration level used for they integration. Integration Level 1 is used
for integrated elements, which can be kept consistent using the consistency preservation
rules, while elements of the remaining integration levels cannot be kept consistent using
the standard consistency preservation rules. Hence, they either need to be kept consistent
manually (Integration Level 2) or by using consistency preservation rules speci�c for a set
of integrated elements (Integration Level 3), or even by element consistency preservation
rules (Integration Level 4).

We have evaluated our Coevolution approach in di�erent case studies. We showed that
the developed reverse engineering approaches Extract and EJBmoX are able to reverse-
engineer an architectural model from source code. Therefore, we reverse-engineered 14
open source projects with Extract and two open source case study with EJBmoX . Next,
we showed that the four consistency preservation rules can be applied to existing PCM
architectural models. Therefore, we used the developed RIS to simulate the creation of
seven existing PCM models for each of the developed consistency preservation rules.
Within this evaluation, we were able to integrate between 98% and 100% of the supported
elements per consistency preservation rule set. Next, we evaluated the integration of
existing source code. Therefore, we integrated four open source projects from sizes up to
112.000 Source Lines of Code (SLoC) into our Coevolution approach. To show that our
Coevolution approach is able to keep changes performed to source code consistent with the
architectural model, we integrated an old version from the Version Control System (VCS)
and replayed changes to a newer version using a change replay tool. During the change
replay, our Coevolution approach was able to keep the architectural model consistent with
architectural relevant source code changes. During this evaluation, we also showed that
our Coevolution approach is able to i) keep method body changes consistent with the
behavioural model, and ii) that changes performed to the architectural model can be kept
consistent with the source code.

We conducted a performance evaluation of our Coevolution approach to measure the
overhead our Coevolution approach introduces during the software evolution. Within this
evaluation, we showed that our Coevolution approach is in most cases able to keep the
architectural model consistent after changes performed to the source code within one to
�ve seconds. Hence, the overhead introduced by our Coevolution approach is acceptable for
the coevolution. We showed, furthermore, that the overhead does not increase with the size
of the project. The overhead introduced by our Coevolution approach, however, depends
on the time needed to parse the changed compilation unit into the Eclipse Modeling
Framework (EMF) model representation. Even though we observed some exceptions, the
duration of parsing a compilation unit into an EMF model usually increases with the size
of the compilation unit. Hence, the performance can be improved by either optimizing the
used Java parser or replacing it with a faster parser.

Finally, we evaluated that the coevolved architectural models can be used for perfor-
mance prediction. To conduct a performance prediction, we �rst need to parametrise the
models with resource demands. To do so, we need to set up the software system and
measure the execution time of the provided services and its internal methods for a given
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workload. Using this information allows us to parametrise the architectural model. After
the parameterisation step, we execute the performance prediction using the performance
prediction capabilities of the PCM. To analyse the accuracy of the performance prediction,
we compare the predicted value with actual measured values. The prediction error for
the response time is approximately 10%. Hence, the performance prediction based on the
coevolved models can be used to estimate the performance of the real software system.

8.2. Limitations and Outlook on Future Work

In the approach presented in the thesis, we focus on the coevolution and consistency
preservation between architectural models and source code during software development.
The approach itself, however, currently has some limitations, which can be part of future
research. In the following, we provide an overview of possible future work:

• Changing the used technology of a project

Within the presented thesis, we presented di�erent consistency preservation rules,
e.g. the package mapping consistency preservation rules. Currently, users need
to specify the consistency preservation rules, which should be used, at the begin-
ning of the development process. Changing them during the software evolution
is currently not supported. Changing the consistency preservation rules, however,
would allow software architects and developers to adapt the software system to new
requirements or technologies. For instance, our Coevolution approach could support
changing the used technology from POJOs to EJBs by changing the used consistency
preservation rules from the package mapping consistency preservation rules to the
EJB consistency preservation rules. In this case our Coevolution approach could be
used to generate the necessary EJB annotations for classes and for the refactoring of
a�ected parts in the source code, such as the �elds in classes.

• Replacing Java Model Parser and Printer (JaMoPP) with the Eclipse Java Development

Tools (JDT) Abstract Syntax Tree (AST) parser

Within this thesis, we used the JaMoPP parser to parse Java into an EMF model
representation. EMF models are necessary within the implemented consistency
preservation process and within the used change metamodel. The results of the
performance evaluation, however, show that parsing Java source code into EMF
models consumes the most time during the consistency preservation process between
architectural models and source code. Furthermore, JaMoPP currently supports Java
only up to version 5. Hence a part of future work could be to replace JaMoPP by
using a faster parser and printer that also supports newer versions of Java. Therefore,
we can use, for instance, the parser and printer is provided by the Eclipse JDT AST.
Even though the Eclipse parser is a fast parser and creates a model representation
of the source code, it does not create an EMF model. Instead, it creates a model,
which is based on plain Java classes. To enable the use of the Eclipse JDT AST
parser and keep the advantages of having EMF model, we plan to transform the
classes of the Eclipse JDT AST parser into EMF model classes. To avoid the manual
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transformation e�ort, we plan to develop and implement a novel approach, which is
able to transform a set of Java classes into EMF-based model classes.

• Integrating our Coevolution approach within the continuous integration of a project

Modern software development projects often use continuous integration in order
to build the software system and run tests after each commit automatically. As
we showed in the evaluation of our Coevolution approach, we are able to reverse-
engineer an architectural model of a software system and replayed changes, which
we extracted from a VCS. The change replay step and a headless version of our
Coevolution approach can be integrated within the continuous integration of a
software system to keep the architectural model up-to date as follows: Therefore,
the initial step is to reverse-engineer the architectural model from the current version
and integrate it into the headless version of our Coevolution approach. After each
new commit the continuous integration can execute the change replay tool in order
to extract the changes performed in the current commit. These changes can be
passed to the headless version of our Coevolution approach, which can use the
changes to keep the architectural model consistent with these changes. Using this
approach would allow us to maintain an up-to-date architectural model and warn
users if the change introduces, for instance, architectural violations. Combining this
with an automatic approach for parameterisation the coevolved model can be used
to simulate the performance after each commit and point out, for instance, possible
scalability performance problems, which were introduced with this commit.

• Integrating software systems with existing source code and existing corresponding ar-

chitectural models

In this thesis, we propose an approach for the integration of an existing architectural
model and existing source code. We are, however, currently not able to integrate a
software system with an already existing architectural model that corresponds to
existing source code. This limitation can be overcome in future work. Therefore,
for instance, a special RIS for PCM can be created. Instead of using the simulated
changes to create the source code elements as in the standard RIS for PCM, it is
possible to de�ne speci�c RIS consistency preservation rules. This speci�c con-
sistency preservation rules can be used to check whether a corresponding source
code element already exists for the architectural element contained in the simulated
change. If this is the case the existing element can be used as corresponding model.
If this is not the case the standard consistency preservation rules can be used to
create the corresponding source code elements. Mazkatli [Maz16] already proposed
a similar approach for integrating existing artefacts. Mazkatli [Maz16], however,
applied this approach for the automotive standards AMALTHEA and ASCET.

• Creating consistency preservation rules between PCM and Java 9 modules

In this thesis, we presented consistency preservation rules between PCM as archi-
tectural model and Java source code adhering to current Java versions, i.e. we use
packages, classes, and interfaces for the mapping of architectural elements. With
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the upcoming Java version 91, however, Java introduces a new module concept.
Using the module concept allows developers to de�ne modules and their relations
in the source code. Java 9 modules combine a set of classes and packages. They also
allow the speci�cation of exported classes and interfaces as well as the de�nition of
required modules, classes, and interfaces. In future work, a concept can be developed
that speci�es how to map architectural models from the PCM to Java 9 modules.
Combining this concept with the support of the Eclipse JDT AST would allow us
to implement consistency preservation rules between PCM and Java 9 modules.
The consistency preservation rules could map, for instance, PCM components to
modules and PCM OperationInterfaces to the methods within exported interfaces of
a module. RequiredRoles and ProvidedRoles could be mapped to required relations
and export relations of Java 9 modules.

• Extending the consistency preservation process to support more than two metamodels

The work in this thesis focuses on the consistency preservation of source code and
architectural models. Hence, we use two metamodels in the VSUM and during the
consistency preservation process. Extending the consistency preservation process to
allow more than two metamodels in the VSUM, would allow us to keep other artefacts
used in the software development, such as UML class diagrams and UML component
diagrams, consistent with the PCM and Java source code. For the consistency
preservation rules between PCM and Eclipse plugin artefacts, we showed that it is
in principle possible to keep instances of three metamodels consistent. However, the
consistency preservation process currently provides only limited support for keeping
more than two metamodels consistent. Moreover, the task of keeping instances of
more metamodels consistent is becoming more complex the more metamodels are
used within the VSUM. Hence, a part of future work can be to de�ne strategies how
the consistency preservation process can support the consistency preservation or
multiple metamodels within the VSUM.

• Performing an experiment with users

To show the bene�t of our Coevolution approach during the software evolution, an
experiment that involves di�erent users performing the same evolution task, can be
conducted. For this experiment, the users can be separated into two groups. The task
within the experiment can be, to evolve a given software system and its architectural
model in order to ful�ll a new requirement. For the execution of the evolution task,
one user group performs the evolution with our Coevolution approach, while the
control group performs the evolution without our Coevolution approach. After the
experiment, we can compare the time needed by the participants within the di�erent
groups and evaluate whether the architectural models are still up-to date with the
source code. The experiment can be extended with a third user group. The third
group is allowed to use another approach for coevolving architectural models and
source code, such as IBM Rational Rhapsody, to perform the evolution scenario. This
would allow us to compare our Coevolution approach with other approaches.

1http://openjdk.java.net/projects/jigsaw/spec/sotms/
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8.2. Limitations and Outlook on Future Work

• Extending the consistency preservation process in order to support multiple users

The approach we presented in this thesis, is focused on the consistency preserva-
tion in one IDE involving one user at a given time. In real software development
processes, however, multiple users are usually involved simultaneously. To support
multiple users developing a software system simultaneously, the introduced con-
sistency preservation process can be extended in order to support versioning and
simultaneously editing of artefacts used for the software development and software
evolution.
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A. Appendix

A.1. Change Catalog for the Source Code Monitor

In this section, we present the complete change catalogue for the source code monitor.
The catalogue has been developed by Messinger [Mes14] for his master’s thesis. It was
necessary to de�ne a own catalogue as existing catalogues did not ful�ll our needs. The
tables are taken from Messinger [Mes14].

A.2. Results of the Integration Case Study per Project

In this section, we present the results of the integration case study for Reconstructive
Integration Strategy (RIS) per project. In Section 6.4.3, we presented the results combined
for all projects. The results for the MediaStore are shown in Table A.4. The results for
CoCoME are shown in Table A.5. The results for the Open Reference Case are shown in
Table A.6. The results for DSP can are shown in Table A.7. The results for DPS can are
shown in Table A.8. The results for ICS system are shown in Table A.9. The results for the
BRS project are shown in Table A.10.

A.3. Results of the Change Replay Case Study per Project

Within this section, we present the results of the change replay case study from Section 6.5.4
for each project.

A.3.1. Results for the core project of Apache Any23

Table A.11 shows the results for the change replay evaluation for the core project of
Apache Any23. We replayed changes from version 0.9 to version 1.0 for Any23. Please
note: Renaming changes for parameters and type changes of parameters are combined in
the row “changes method parameter”.

A.3.2. Results for the core project of Apache Gora

The results for the change replay for the core project of Apache Gora is shown in Table A.12.
We replayed changes from version 0.6 to version 0.6.1 for Gora. During the evaluation of
Gora, we can observe di�erent number of occurenc for rename method, remove method and
add method. As we mentioned above, this can occur due to the indirect interaction between
the change replay tool and the Java monitor. The resulting code after the change replay
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A. Appendix

remains the same for both cases. The di�erence is that the change replay for Integration
Level 2 was either faster as the change replay for Integration Level 3 or the Java monitor
was not noti�ed in a di�erent way by the Eclipse Java Development Tools (JDT) Abstract
Syntax Tree (AST) noti�caiton mechanism. From this behaviour, we get the di�erence
between renaming of a method respectively “removing” the method and “adding” it again.

A.3.3. Results for Apache Velocity

All changes performed to Apache Velocity are performed to integrated areas, i.e. no
changes are handled by the standard consistency preservation rules. We replayed changes
from version 1.6 to version 1.6.4 for Velocity. Hence, all changes (except for remove super
class and add super class), are handled by integration dialogs when Integration Level 2 is
used. If Integration Level 3 together with element-speci�c reactions for the Parser classes is
used all changes are handled by integration reactions respectively by the element-speci�c
reactions. Table A.13 shows the detailed results of the evaluation for Apache Velocity.

A.3.4. Results for Apache Xerces

Table A.14 shows the result for the change replay evaluation for Xerces. For Xerces, we
replayed the changes from version 2.10.0 to 2.11.0. Due to technical reasons, we observed
di�erent occurrences for some changes during the di�erent evaluation runs. Please note:
As in the table for Any23, renaming changes for parameters and type changes of parameters
are combined in the row “changes method parameter”.
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A.3. Results of the Change Replay Case Study per Project

Primitive Changes
Create/Delete Structural Modi�cation

Create Class Add Supertype Rename Class
Delete Class Remove Supertype Add Class Modi�er
Create Interface Add Import Remove Class Modi�er
Delete Interface Remove Import Rename Interface
Create Enum Add Method Add Interface Modi�er
Delete Enum Remove Method Remove Interface Modi�er
Create Package Add Field Rename Enum
Delete Package Remove Field Add Enum Modi�er

Add Parameter Remove Enum Modi�er
Remove Parameter Rename Package
Add Variable Rename Method
Remove Variable Add Method Modi�er
Add Statement Remove Method Modi�er
Remove Statement Change Return Type
Add Comment Rename Field
Remove Comment Add Field Modi�er
Add Enum Literal Remove Field Modi�er
Remove Enum Literal Change Field Type

Rename Parameter
Add Parameter Modi�er
Remove Parameter Modi�er
Change Parameter Type
Rename Variable
Add Variable Modi�er
Remove Variable Modi�er
Change Variable Type
Change Comment

Table A.1.: Primitive changes in the change catalogue. They are grouped into the three
subcategories create/delete, structural and modi�cation [Mes14].
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Composite Changes
1st Order 2nd Order

Move Class Extract Variable
Move Interface Inline Variable
Move Enum Extract Field
Move Method Inline Field
Move Field Extract Method
Move Enum Literal Inline Method
Convert Variable to Field Extract Class
Convert Field to Variable Inline Class
Toggle Comment Split Interface

Merge Interface
Split Enum
Merge Enum
Split Package
Merge Package

Table A.2.: Composite changes in the change catalogue, which are subdivded into two
groups: �rst order, which consists of composed primitive changes, and second
order, which consists of composed composite changes [Mes14].

Type Hierarchy Speci�c
Change Type Move Composite Move

Specialize Return Type Pull Up Method Extract Superclass
Generalize Return Type Push Down Method Inline Superclass
Specialize Parameter Type Pull Up Field Extract Subclass
Generalize Parameter Type Push Down Field Inline Subclass
Specialize Variable Type Extract Superinterface
Generalize Variable Type Inline Superinterface

Extract Subinterface
Inline Subinterface

Table A.3.: Type hierarchy speci�c changes in the change catalogue, which consider the
type hierarchy of object-oriented languages[Mes14].

234



A.3. Results of the Change Replay Case Study per Project

#e
le
m

PO
JO

EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in

PC
M

el
em

en
t

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

14
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

9
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

2
0

10
0

0
10

0
0

10
0

–
0

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

0
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

20
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

15
0

10
0

6
60

0
10

0
0

10
0

O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

16
0

10
0

0
10

0
0

10
0

0
10

0
S
E
F
F
s

26
0

10
0

0
10

0
0

10
0

–
0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

10
0

10
0

–
0

2
80

–
0

A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

11
0

10
0

–
0

0
10

0
–

0
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

10
0

–
0

–
0

–
0

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

10
0

–
0

–
0

–
0

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

1
0

10
0

–
0

0
10

0
–

0
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

1
0

10
0

–
0

0
10

0
–

0

Ta
bl

e
A

.4
.:

In
te

gr
at

ed
an

d
co

n�
ic

tin
g

el
em

en
ts

fo
rt

he
M

ed
ia

St
or

e
pr

oj
ec

t

235



A. Appendix

#elem
PO

JO
EJB

D
ep.Inject.

Eclipse
plugin

PC
M

elem
ent

#cf.
pct.

#cf.
pct.

#cf.
pct.

#cf.
pct.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

8
0

100
0

100
0

100
0

100
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

100
-

0
0

100
–

0
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

8
0

100
0

100
0

100
0

100
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

19
0

100
0

100
0

100
–

0
C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

9
0

100
0

100
0

100
–

0
O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

29
0

100
0

100
0

100
–

0
O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

7
0

100
0

100
0

100
0

100
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

13
0

100
0

100
0

100
0

100
S
E
F
F
s

31
0

100
0

100
0

100
–

0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

20
0

100
–

0
12

40
–

0
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

24
0

100
–

0
0

100
–

0
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

2
0

100
–

0
–

0
–

0
R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

2
0

100
–

0
–

0
–

0
S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

1
0

100
–

0
0

100
–

0
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

1
0

100
–

0
0

100
–

0

Table
A

.5.:Integrated
and

con�icting
elem

entsforthe
CoCoM

E
project

236



A.3. Results of the Change Replay Case Study per Project

#e
le
m

PO
JO

EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in

PC
M

el
em

en
t

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

15
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

10
0

-
0

0
10

0
–

0
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

15
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

20
0

10
0

0
10

0
0

10
0

–
0

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

8
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

54
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

14
0

10
0

0
10

0
0

10
0

0
10

0
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

23
0

10
0

0
10

0
0

10
0

0
10

0
S
E
F
F
s

52
0

10
0

0
10

0
0

10
0

–
0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

13
0

10
0

–
0

0
10

0
–

0
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

19
0

10
0

–
0

0
10

0
–

0
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

1
0

10
0

–
0

–
0

–
0

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

2
0

10
0

–
0

–
0

–
0

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

4
0

10
0

–
0

0
10

0
–

0
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

4
0

10
0

–
0

0
10

0
–

0

Ta
bl

e
A

.6
.:

In
te

gr
at

ed
an

d
co

n�
ic

tin
g

el
em

en
ts

fo
rt

he
O

pe
n

Re
fe

re
nc

e
Ca

se
pr

oj
ec

t

237



A. Appendix

#elem
PO

JO
EJB

D
ep.Inject.

Eclipse
plugin

PC
M

elem
ent

#cf.
pct.

#cf.
pct.

#cf.
pct.

#cf.
pct.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

3
0

100
0

100
0

100
N

A
N

A
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

100
-

0
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

3
0

100
0

100
0

100
N

A
N

A
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

0
0

100
0

100
0

100
N

A
N

A
C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

1
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

3
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

3
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

2
0

100
0

100
0

100
N

A
N

A
S
E
F
F
s

3
0

100
0

100
0

100
N

A
N

A

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

3
0

100
–

0
0

100
N

A
N

A
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

2
0

100
–

0
0

100
N

A
N

A
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

100
–

0
–

0
N

A
N

A
R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

100
–

0
–

0
N

A
N

A
S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

1
0

100
–

0
0

100
N

A
N

A
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

1
0

100
–

0
0

100
N

A
N

A

Table
A

.7.:Integrated
and

con�icting
elem

entsforthe
D

esktop
Search

project

238



A.3. Results of the Change Replay Case Study per Project

#e
le
m

PO
JO

EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in

PC
M

el
em

en
t

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

5
0

10
0

0
10

0
0

10
0

N
A

N
A

C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

10
0

-
0

0
10

0
N

A
N

A
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

3
0

10
0

0
10

0
0

10
0

N
A

N
A

C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

0
0

10
0

0
10

0
0

10
0

N
A

N
A

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

0
0

10
0

0
10

0
0

10
0

N
A

N
A

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

4
0

10
0

0
10

0
0

10
0

N
A

N
A

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

5
0

10
0

2
60

0
10

0
N

A
N

A
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

4
0

10
0

0
10

0
0

10
0

N
A

N
A

S
E
F
F
s

6
0

10
0

0
10

0
0

10
0

N
A

N
A

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

5
0

10
0

–
0

2
60

N
A

N
A

A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

4
0

10
0

–
0

0
0

N
A

N
A

S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

10
0

–
0

–
0

N
A

N
A

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

10
0

–
0

–
0

N
A

N
A

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

5
0

10
0

–
0

0
10

0
N

A
N

A
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

5
0

10
0

–
0

0
10

0
N

A
N

A

Ta
bl

e
A

.8
.:

In
te

gr
at

ed
an

d
co

n�
ic

tin
g

el
em

en
ts

fo
rt

he
D

PS
pr

oj
ec

t

239



A. Appendix

#elem
PO

JO
EJB

D
ep.Inject.

Eclipse
plugin

PC
M

elem
ent

#cf.
pct.

#cf.
pct.

#cf.
pct.

#cf.
pct.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

14
0

100
0

100
0

100
N

A
N

A
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

0
0

100
-

0
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

10
0

100
0

100
0

100
N

A
N

A
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

0
0

100
0

100
0

100
N

A
N

A
C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

0
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

10
0

100
0

100
0

100
N

A
N

A
O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

14
0

100
4

0
100

N
A

N
A

O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

28
0

100
0

100
0

100
N

A
N

A
S
E
F
F
s

14
0

100
0

100
0

100
N

A
N

A

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

11
0

100
–

0
4

63
N

A
N

A
A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

18
0

100
–

0
0

100
N

A
N

A
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

100
–

0
–

0
N

A
N

A
R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

100
–

0
–

0
N

A
N

A
S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

6
0

100
–

0
0

100
N

A
N

A
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

6
0

100
–

0
0

100
N

A
N

A

Table
A

.9.:Integrated
and

con�icting
elem

entsforthe
IndustrialControlSystem

project

240



A.3. Results of the Change Replay Case Study per Project

#e
le
m

PO
JO

EJ
B

D
ep

.I
nj
ec
t.

Ec
li
ps

e
pl
ug

in

PC
M

el
em

en
t

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

#c
f.

pc
t.

B
a
s
i
c
C
o
m
p
o
n
e
n
t
s

14
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
C
o
m
p
o
n
e
n
t
s

2
0

10
0

-
0

0
10

0
–

0
O
p
e
r
a
t
i
o
n
I
n
t
e
r
f
a
c
e
s

10
0

10
0

0
10

0
0

10
0

0
10

0
C
o
m
p
o
s
i
t
e
D
a
t
a
T
y
p
e
s

2
0

10
0

0
10

0
0

10
0

–
0

C
o
l
l
e
c
t
i
o
n
D
a
t
a
T
y
p
e
s

1
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
S
i
g
n
a
t
u
r
e
s

28
0

10
0

0
10

0
0

10
0

–
0

O
p
e
r
a
t
i
o
n
P
r
o
v
i
d
e
R
o
l
e
s

15
0

10
0

5
66

0
10

0
0

0
O
p
e
r
a
t
i
o
n
R
e
q
u
i
r
e
d
R
o
l
e
s

14
0

10
0

0
10

0
0

10
0

0
10

0
S
E
F
F
s

44
0

10
0

0
10

0
0

10
0

–
10

0

A
s
s
e
m
b
l
y
C
o
n
t
e
x
t
s

9
0

10
0

–
0

1
88

–
0

A
s
s
e
m
b
l
y
C
o
n
n
e
c
t
o
r
s

11
0

10
0

–
0

0
10

0
–

0
S
y
s
t
e
m
R
e
q
u
i
r
e
d
R
o
l
e
s

0
0

10
0

–
0

–
0

–
0

R
e
q
u
i
r
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

0
0

10
0

–
0

–
0

–
0

S
y
s
t
e
m
P
r
o
v
i
d
e
R
o
l
e
s

2
0

10
0

–
0

0
10

0
–

0
P
r
o
v
i
d
e
d
D
e
l
e
g
a
t
i
o
n
C
o
n
n
e
c
t
o
r
s

2
0

10
0

–
0

0
10

0
–

0

Ta
bl

e
A

.1
0.

:I
nt

eg
ra

te
d

an
d

co
n�

ic
tin

g
el

em
en

ts
fo

rt
he

BR
S

pr
oj

ec
t

241



A. Appendix

handled by
standard

handled by
dialog

handled by
integra-
tion

reaction

Change #occurrence IL2 IL3 IL2 IL 3 IL 3

remove import 18 0 0 18 0 18

remove method 14 0 0 14 0 14

add import 7 0 0 7 0 7

remove �eld 7 0 0 7 0 7

add method 4 0 0 4 0 4

change method parameter 4 0 0 4 4 0

add super class 3 0 0 0 0 0

remove super interface 3 0 0 3 0 3

change method modi�er 2 0 0 2 2 0

add annotation 1 0 0 1 0 1

remove super class 1 0 0 0 0 0

create package 1 1 1 0 0 0

Table A.11.: Change replay evaluation results for the core project of Apache Any23
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A.3. Results of the Change Replay Case Study per Project

handled by
standard

handled by
dialog

hhandled
by integra-

tion
reaction

Change #occurrence IL2 IL3 IL2 IL 3 IL 3

add super class 29 0 0 0 0 0

add import 17 0 0 17 0 17

remove import 16 0 0 16 0 16

change �eld modi�er 6 0 0 6 0 6

change �eld type 6 0 0 6 0 6

add annotation 5 0 0 5 0 5

add �eld 4 0 0 4 0 4

rename method 2(IL2)/1(IL3) 0 0 2 0 1

create package 1 1 1 0 0 0

remove annotation 1 0 0 1 0 1

remove method 0(IL2/2(IL3)) 0 0 0 0 2

add method 1 0 0 0 0 1

Table A.12.: Change replay evaluation results for the core project of Apache Gora
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Change #occurrence
IL2:

handled by
dialog

IL3:
handled by
integra-
tion

reaction

IL3:
handled by
element-
speci�c
reaction

add method 25 25 7 18

rename method 19 19 19 0

remove method 17 17 17 0

add import 16 16 16 0

add �eld 6 6 6 0

remove import 5 5 5 0

change �eld modi�er 4 4 1 3

remove �eld 3 3 3 0

remove super class 2 0 0 0

add super class 2 0 0 0

change �eld type 1 1 1 0

Table A.13.: Change replay evaluation results for Apache Velocity
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A.3. Results of the Change Replay Case Study per Project

#occurrence handled by
standard

handled by
dialog

handled by
integra-
tion

reaction

Change IL2 IL3 IL2 IL3 IL2 IL 3 IL 3

add method 43 45 0 0 38 0 40

add import 29 29 0 0 26 0 22

remove super class 25 25 0 0 0 0 0

add super class 25 25 0 0 0 0 0

remove �eld 19 18 0 0 19 0 18

change method modi�er 14 12 0 0 0 0 0

change �eld type 9 8 0 0 6 0 5

change method parameter 9 6 0 0 6 5 0

rename �eld 6 7 0 0 6 7 0

add �eld 6 5 0 0 3 0 2

remove import 6 6 0 0 6 0 6

change class modi�er 4 3 0 0 4 3 0

change �eld modi�er 3 2 0 0 3 0 2

add interface 2 2 0 0 2 2 0

create class 1 1 0 0 1 1 0

Table A.14.: Change replay evaluation results for core Apache Xerces
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