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Simulation of charge transport in amorphous organic
semiconductors

Abstract

Amorphous organic semiconductors are used in many applications such as or-
ganic light emitting diodes (OLEDs) and organic photovoltaics (OPV). The al-
most unlimited variety of chemical compounds and material combinations makes
experimental material and device improvement difficult. Theories describing the
mechanism of charge transport in amorphous materials exist. Most of them rely on
empiric material parameters, therefore rendering the prediction of charge mobility
of unknown materials impossible. Thus, new models are required to understand
relations between molecular structure and macroscopic thin film properties. The
insight gained in such methods can then be used to systematically design materials
with desired properties.

The challenge in modeling charge transport in amorphous materials is twofold.
Models must incorporate effects on vastly different length scales ranging from
the electronic structure of single molecules in the sub-nanometer scale to per-
colation effects on distances up to the micrometer scale. Charge mobility and
energy dissipation during transport depend exponentially on the energy disorder
in amorphous systems. This quantity arises from single molecule conformation
and intermolecular interaction.

Simulation of charge transport in disordered materials requires the analysis of
the electronic structure of atomistic molecular systems. In this work, a multiscale
modeling approach is developed and used to describe charge transport in amor-
phous organic semiconductors. The model incorporates different established and
newly developed simulation techniques on various levels of coarse graining. Com-
parison of the simulated charge mobility of nine widely used organic materials
with experimental data shows the predictive capabilities of the model. Factor-
ization of the charge carrier mobility allows the identification of single-molecule
properties, which mainly determine charge mobility. Using design rules derived
from this analysis, the widely used electron conducting molecule Alq3 is system-
atically modified to maximize its electron mobility while preserving the energy
levels to keep its optical properties stable. The most promising candidate of these
simulations has been synthesized and characterized. The new compound aligns
with the theoretical prediction and exhibits an electron mobility which is three
orders of magnitude higher than the mobility of the initial material. This example
is a proof of principle of rational in-silico material design.
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Simulation von Ladungstransport in amorphen
organischen Halbleitern

Zusammenfassung

Viele Anwendungen der organischen Elektronik wie beispielsweise organische
Leuchtdioden (OLEDs) oder organische Photovoltaik (OPV) basieren auf amor-
phen halbleitenden Molekülen. Die fast unendlichen Variationsmöglichkeiten or-
ganischer Materialien erschweren gezielte experimentelle Materialentwicklung.
Bestehende Theorien für den Ladungstransport in amorphen Materialien basieren
weitgehend auf empirischen Materialparametern und können so nicht zur prädik-
tiven Vorhersage von Eigenschaften neuer Materialien benutzt werden. In dieser
Arbeit werden Modelle entwickelt, die dem Zweck dienen, den Zusammenhang
zwischen mikroskopischen Moleküleigenschaften und deren makroskopischer Leit-
fähigkeit zu verstehen und somit die Ladungsträgermobilität neuer Materialien
vorauszusagen.

Zwei Aspekte stellen bei der Entwicklung von Modellen für den Ladungstrans-
port in amorphen Materialien besondere Herausforderungen dar. Zum einen
müssen Effekte auf vielen Größenskalen berücksichtigt werden, die von der elek-
tronischen Struktur einzelner Moleküle in Subnanometerbereich bis hin zu Perko-
lationseffekten im Mikrometermaßstab reichen. Zum anderen hängt die Ladungs-
trägermobilität exponentiell von der Energieunordnung im amorphen Material
ab. Diese wird von der Konformation einzelner Moleküle sowie von deren Wech-
selwirkung mit ihrer ungeordneten Umgebung bestimmt.

Um die Effekte auf allen Größenskalen zu berücksichtigen, wird in dieser Arbeit
ein Multiskalenmodell zur Simulation von Ladungstransport in organischen Hal-
bleitern vorgestellt. Die Energieunordnung atomar aufgelöster Morphologien wird
mithilfe der Quantum Patch Methode bestimmt, die die elektronische Struktur
amorpher Moleküle selbstkonsistent bestimmt. Die mit diesem Modell berechnete
Ladungsträgermobilität zeigt gute Übereinstimmung mit experimentellen Daten.
Darüber hinaus erlaubt das Modell eine Zerlegung der Ladungsträgermobilität
in Faktoren, die von einzelnen Moleküleigenschaften abhängen. Dies ermöglicht
die Ableitung von Designkriterien für neue organische Moleküle. Mithilfe dieser
Kriterien wurde die Elektronenmobilität eines bekannten Materials durch Än-
derung der chemischen Struktur gezielt erhöht. Bei dieser Modifikation wurden
die Energielevels bewusst konstant gehalten, um optische Eigenschaften nicht zu
verändern. Das somit gewonnene Material wurde synthetisiert und elektronisch
charakterisiert. In Übereinstimmung mit den theoretischen Vorhersagen zeigt das
Material eine um drei Größenordnungen erhöhte Elektronenmobilität. Dieses Bei-
spiel demonstriert die Durchführbarkeit von in-silico Materialentwicklung.
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1
Introduction

Organic semiconductors are a class of materials with a wide range of applications
such as organic photovoltaics (OPV) [1–4], organic light emitting diodes (OLEDs)
[5, 6] and organic field effect transistors (OFETs) [7, 8]. Each of these applica-
tions has its own advantages and disadvantages in comparison to their inorganic
counterparts. Commercially available OLED displays (Fig. 1.1) are an energy ef-
ficient alternative to conventional LED displays. They can be manufactured to
be semi-transparent and flexible, making new types of display design and inte-
gration possible. A major drawback is their limited lifetime and color stability
currently preventing the application in lighting technologies. Organic solar cells
on the other hand are less efficient than silicon based photovoltaics or thin-film
technologies such as CIGS solar cells [9, 10]. Their advantages are potentially eas-
ier and cheaper production techniques such as roll-to-roll printing as well as the
application in lightweight mobile devices. Organic field effect transistors can be
integrated in cheap electronic devices, where the transistor size and speed does
not play a crucial role. Examples are printable RFID tags, which are used as
identifiers in hundreds of different areas related to logistics [11]. Another possible
application is the combination of OFETs with (transparent) OLED displays which
require logic circuits in the background.

Although OLED displays have been commercially available for several years,
there are many physical aspects of organic electronics in general which are to
date not well understood. Many theories and models exist to describe coherent
charge transport in crystalline, inorganic materials. The fundamental mechanism
of charge transport in disordered materials is also understood. Nonetheless, quan-
titative methods for the calculation and prediction of charge transport properties
of new materials are lacking. Macroscopic properties of amorphous material de-
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Figure 1.1: Organic light emitting diode (OLED) (source: computerworld.ch).

pend on mesoscale ordering effects as well as on electronic properties of single
molecules. This interdependence of different length scales makes it challenging for
analytic models as well for numerical methods to describe all relevant processes of
charge transport. New concepts and models are required to close the gap between
molecular properties on the nanometer scale and macroscopic thin film character-
istics. Multiscale modeling is one way to describe the physics of charge transport
on different time and length scales and therefore understand fundamental proper-
ties of organic materials.

One of the advantages of organic materials is the nearly infinite variety of dif-
ferent molecules which can be used for various applications. Macroscopic material
properties can be controlled and fine-tuned by chemical functionalization and de-
sign, by adjustment of the nano- and micromorphology of amorphous thin films
and by employing mixtures of materials. Prominent examples are guest-host sys-
tems and chemically doped layers as used in almost all available OLEDs or phase
separated bulk heterojunctions in organic solar cells. To systematically explore and
exploit this diversity of materials and their combinations, fundamental questions
have to be solved concerning microscopic processes and mechanisms. Systematic
improvement of the charge carrier mobility of organic materials requires detailed
understanding of molecular properties as well as reliable theoretical methods to
predict these properties. Due to the complexity of the systems, purely analytical
approaches tend to fail in fully covering all relevant effects. Therefore, different
analytical and numerical approaches have to be combined to describe all relevant
processes on many different length and time scales.

In this work, I will address several of the aforementioned challenges. The incor-
poration of different length scales was tackled by development and implementation
of a multiscale approach for the simulation of charge transport in disordered or-
ganic materials. The methodology of this approach is presented in Chapter 3 and
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specifically in Chapter 3.1. It consists of several successive steps building upon
one another. For the generation of atomistic morphologies, molecule specific force
field parameters are required. These are determined using a quantum mechan-
ical analysis of single molecules. The parameters obtained in this first step are
then used in classical molecular dynamics or Monte Carlo methods for the gen-
eration of amorphous thin film morphologies. These systems are analyzed using
quantum mechanical methods in order to extract electronic properties relevant for
charge transport. In the last step, the master equation of charge transport in the
amorphous system is solved using an analytical effective medium approach. These
simulation and modeling approaches have been developed by many researchers
over the course of several years. Of special relevance is the work on atomistic
morphology generation [12, 13] as well as the development of the generalized ef-
fective medium model [14]. Subject of this work is the development of a method
for quantum mechanical analysis of large disordered molecular systems. For this
purpose, I developed the Quantum Patch method, which evaluates the electronic
structure of polaronic states in amorphous molecular systems incorporating po-
larization and other environment effects. This enables the calculation of energy
disorder on a fully quantum mechanical basis. I will discuss existing methods and
basic principles in Chapter 2, while the methods developed and improved in this
work are introduced in Chapter 3.

I will present results of the application of the multiscale simulation approach
on scientifically and technologically relevant systems in Chapter 4. I verify the
validity of this approach by comparison with experimental data in Chapter 4.3
and Chapter 4.4. In Chapter 4.5, I use the multiscale method to gain insight into
the molecular origin of charge transport properties of different materials. Further-
more, I use the simulation methods to elucidate the origin and influence of various
correlations on charge transport properties. Examples are spatial correlations of
energy levels due to long-range electrostatic interaction and local correlations be-
tween electron and hole energies influencing exciton transport. These correlations
are discussed in more detail in Chapter 4.5.

So far, the method was only applied and validated using known materials. One
of the main goals of material modeling is the systematic modification and im-
provement of material properties which directly influence device efficiency. Thus,
I demonstrate the predictive power of the multiscale approach by applying it to
novel materials (Chapter 4.6). For that, I combined the insight gained in under-
standing the relations between molecular properties and charge carrier mobility to
systematically improve the electron mobility of a specific material, namely Alq3.
Several promising derivatives of this material were identified and are presented in
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Chapter 4.6. The most promising of them shows an increase in electron mobility
of more than two orders of magnitude. This theoretical prediction was experi-
mentally verified and confirmed by synthesis and electronic characterization of
the material. The experimental measurements and a comparison to theory are
presented in Chapter 4.6.3.

I applied the multiscale workflow to several other material systems and applica-
tions. For the sake of brevity, not all of them are presented in detail in this work.
Examples are the analysis of doped systems [15], spatially correlated systems with
a net orientation of molecules leading to the giant surface potential (GSP) effect
[16]. Furthermore, I analyzed periodic systems with low energy disorder. In self-
assembled molecular wires [17], charge mobility is determined by the electronic
coupling between molecular units. Both on- and off-wire hopping processes con-
tribute to charge transport. In self-assembled metal-organic frameworks (MOFs)
[18] loaded with guest molecules, the superexchange effect presented in Chap-
ter 3.3 [19] can play an important role. Furthermore, my analysis of correlations
in disordered organic systems contributed to the development of analytical meth-
ods which require molecule specific input such as energy disorder and correlation
strength [20, 21]. As a last example, I discuss the influence of morphology on
charge transport properties of binary bulk heterojunctions. Here, the formation
of material domains on the mesoscale and disorder effects at grain-boundaries on
the nanoscale play an important role in the performance of a solar cell. I show
that annealing of the bulk heterojunction can increase the domain purity. This
increases the exciton diffusion length as well as charge carrier mobility which fi-
nally leads to an improved efficiency of the solar cell.

One key result of this work is the introduction and analysis of a multiscale
modeling approach which quantitatively predicts charge transport properties of a
wide range of ordered and disordered molecular materials. The approach further-
more provides insight into relations between molecular properties and macroscopic
charge transport characteristics which go well beyond the possibilities of existing
methods. This insight on the one hand helps to understand details of the charge
transport process even beyond the limit of experimental accessibility. On the other
hand, the approach enables targeted improvement of material properties in form
of rational in-silico material design, as shown by the three orders of magnitude
increase in electron mobility of Alq3.
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2
Theory of organic electronics -

fundamental principles and theoretical
methods

The aim of this chapter is to give a brief overview over the fundamental princi-
ples of organic electronics and its applications, e.g. organic light emitting diodes
(OLED) and organic solar cells (OSC). In addition to that, existing theories and
methods required for description of charge transport in organic materials will be
introduced. For the sake of brevity, this introduction will solely cover the concepts
required for the methods development and application presented in Chapter 3 and
4. References to more exhaustive discussions in literature will be given in the text.

The first part of this Chapter (Section 2.1) briefly introduces the basic princi-
ples of organic semiconductors and organic electronics. The working principle of
organic light emitting diodes and organic photovoltaics (OPV) will be outlined in
Sections 2.1.3 and 2.1.2. Theoretical models of the charge transport mechanism
in amorphous organic systems help to understand and systematically improve the
materials used for organic electronics devices. Examples of these models for charge
transport in disordered systems will be presented in Section 2.1.4. Here, transport
of localized charge carriers in disordered systems will be discussed. Main empha-
sis is the Marcus theory and the concept of energy disorder in amorphous organic
systems which is the main determinant of charge mobility in disordered systems.
Furthermore, the connection between microscopic hopping rates and macroscopic
properties like the charge carrier mobility is introduced in Section 2.2.3. Within
this context, the generalized effective-medium model (GEMM) is presented. The
basic principles of Hartree-Fock theory (HF) and density functional theory (DFT)
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are derived in Section 2.3. These theories were applied for the quantum mechani-
cal calculation of the electronic structure of molecules in this work. Both methods
require atomistically resolved structures of molecules and large molecular systems
as input. These can be generated using the classical molecular dynamics (MD)
and Monte Carlo (MC) methods presented in Section 2.4.

2.1 Fundamentals and applications of organic
electronics

The field of organic electronics has undergone a long development process starting
with the discovery of semiconducting organic polymers. Today, applications of
organic electronics range from cheap printable organic transistors for smart flexible
labels over lightweight polymer solar cells to energy efficient OLED displays with
high contrast ratios and fast reaction times. The basis and common feature of all
applications are semiconducting organic materials. They are usually divided into
two classes, namely polymers and small molecules. Their physical and electronic
properties will be described in Section 2.1.1 followed by an introduction of the
basic principles of OLEDs (Section 2.1.3) and OPV (Section 2.1.2).

2.1.1 Organic semiconductors

Inorganic semiconductors can be described as materials with a Fermi level EF

located in an energy gap of density of states D(E). The density of states depends
on the band structure of the material which is closely related to the periodicity of
the materials’ crystal structure. Amorphous organic semiconductors on the other
hand are different from their inorganic counterpart. The lack of long range pe-
riodicity leads to fundamentally different charge transport properties compared
to periodic systems with delocalized states. This will be discussed in Section 2.1.4.

The origin of the semiconducting properties and the energy gap of organic
molecules arises from the sp2-hybridization of carbon atoms in aromatic systems.
Three of the valence electrons of carbon contribute to three sp2-hybridized σ-bonds
while the fourth 2pz-orbital perpendicular to the plane of the σ-bonds hybridizes
with the 2pz-orbitals of neighboring atoms to delocalized π-orbitals. Similar to
inorganic crystals, the hybridization leads to the opening of a energy gap between
occupied π- and unoccupied π∗-orbitals (see Fig. 2.1). These orbitals usually con-
tribute to the highest occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO). The π-π∗ gap (HOMO-LUMO gap) depends
on the size of the delocalized aromatic system. A single isolated benzene ring (6
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aromatic carbon atoms) or even an ethylene molecule (only 2 carbon atoms, see
Fig. 2.1) show HOMO-LUMO gaps of 6.8 eV∗ and 7.8 eV∗, making these materials
insulators. The larger the π-conjugated system, the smaller becomes the energy
gap (down to 2-3 eV and further). In the extreme case of infinite sp2-hybridized
carbon atoms in a graphene sheet, the energy gap completely closes to zero.

E
ne

rg
y

sp2

2pz

σ

σ∗

π

π∗

a) b) c)

Figure 2.1: a) Atomic sp2 and 2pz orbitals of the two carbon atoms of ethylene hybridize
and form binding σ and π orbitals and anti-binding σ∗ and π∗ orbitals. b) HOMO orbital of
ethylene. This occupied orbital is a symmetric linear combination of two atomic 2pz orbitals
while the LUMO orbital shown in c) is an antisymmetric linear combination leading to an
anti-bonding orbital

Typical molecules used in organic electronics applications usually consist of π-
conjugated units connected to each other via single bonds. The size of the total
conjugated system depends on the dihedral angle between planes of different con-
jugated units. In a simplified model, the conjugation over such a dihedral bond
continues in case of parallel planes while in case of perpendicular planes, the states
on both sides are decoupled. HOMO and LUMO orbitals do not necessarily be-
long to the same conjugated unit of a molecule. Furthermore, the electronic struc-
ture of the molecule can be modified using electron attracting or repelling func-
tional groups and/or substitutions of carbon atoms with e.g. nitrogen. Aliphatic
side groups such as linear or branched alkyl chains can increase the solubility of
molecules in different solvents. Metal-organic complexes incorporating heavy tran-
sition metals and conjugated ligands are used in OLEDs to increase the spin-orbit
coupling.

These and more possible modifications of conjugated molecules lead to a nearly
infinite number of different molecules exhibiting different optical and electronic
properties. This wide range and flexibility of potential materials is one of the ma-
jor advantages of organic electronics compared to its inorganic counterpart. At the
same time, it is one of its main drawbacks, as it makes systematic improvement
of materials and devices difficult.

∗The vales were obtained in DFT calculations using a B3LYP functional [22] and a def2-SV(P)
basis set [23] as implemented in Turbomole [24].
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Two possible applications of organic semiconductors will be given in the next
two sections. In organic light emitting diodes, organic semiconductors are used for
flexible, lightweight displays with high efficiencies, low energy consumption and
at the same time high contrast ratios and fast reaction times. Two of the major
drawbacks which remain to be solved are the stability and lifetime of OLEDs,
especially of blue emitters, as well as the closely related applicability in large area
devices such as television screens or lighting applications. Here, limits in stability
and processability of the materials lead to spatial inhomogeneities of the OLED
device. Flexible and lightweight organic solar cells on the other hand are currently
a niche product in the photovoltaics sector. Large area solution processed OPV
has shown to be possible but suffers from a low power conversion efficiency and
low long-term stability. Efficiencies of over 10% were reached under laboratory
conditions while printed large area devices show efficiencies of only 3%.

In both applications, improved materials with higher stability and better op-
toelectronic properties might lead to a better device performance and solve the
issues mentioned above. Aim of this work is the systematic investigation of the re-
lations between molecular structure and macroscopic properties. Comprehension
of these relations makes systematic and targeted molecule design possible. One
examples of this will be given in Chapter 4.6.

2.1.2 Organic solar cells

The light to energy conversion process of an organic solar cell (OSC) [25, 26]
consists of several steps. Initially, photons are absorbed in a layer of organic semi-
conducting material. The excitons created in this process migrate in a diffusive
process to a material interface where they are separated into pairs of electrons
and holes (see Figure 2.2). These are then extracted via the electrodes on both
sides of the active layer.

Unlike in inorganic semiconductors, the excitons are strongly bound with a
binding energy larger than room temperature (RT). The exciton can only be sep-
arated at a material interface where either an electron or a hole is transferred from
the absorbing donor material to the acceptor material. To maximize the donor-
acceptor material interface, the active layer of a solar cell consists of a blend of
two materials with different energy levels and absorption properties. These two
materials are phase separated into a metastable, closely interconnected domain
structure, called bulk heterojunction. One of the two material domains, in many
cases a polymer, absorbs light in the visible spectrum while the other material,
mainly fullerene derivatives, accepts electrons.
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Figure 2.2: a) Schematic illustration of an organic solar cell. The active layer consists of a
bulk heterojunction sandwiched between hole or electron transport layers and the electrodes.
Photons are absorbed in the bulk heterojunction and separated at material interfaces. Elec-
trons and holes leave the device via the electrodes and generate electric current. Panel b)
shows the band diagram of the active layer and the electrodes of an organic solar cell. Pan-
els c) and d) are the corresponding illustrations of an organic light emitting diode. The OLED
consists of a multilayer architecture of different materials for charge injecting, recombination
and light emission.
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The diffusion process of the exciton is not directed and cannot be influenced by
internal or external fields. To obtain high quantum efficiencies, all excitons have
to reach a material interface within their material dependent diffusion length. The
exciton diffusion length is limited by the exciton lifetime which again depends on
molecular properties. Typical values of diffusion lengths of organic semiconductors
are between 5 nm and 30 nm, making relatively small material domains necessary.
After exciton dissociation, the separated charges have to be extracted from the
bulk heterojunction. This process requires closed paths of all material domains to
the respective electrodes. The dependence of charge mobility on disorder makes
larger domains desirable. A method for the simulation of material demixing and
domain formation in organic solar cells will be introduced in Chapter 3.4. Results
of this method are presented in Chapter 4.7.5.

The active layer of the solar cell is usually sandwiched between an electron
transport and hole blocking layer (ETL) on the cathode side and a hole transport
and electron blocking layer (HTL) on the anode side. The two blocking layers
avoid shunts and make sure that each type of charge carrier can only reach its
respective electrode. As mentioned above, most organic solar cells use polymers
as absorber materials. The acceptor material is often a fullerene [27] derivate like
PC60BM. As thin films of organic polymers cannot be fabricated in a vapor depo-
sition process, solution processing of at least the active layer becomes necessary.
Solution processing methods in principle offer a potentially cheap and well scal-
ing production technique known from established roll-to-roll printing processes.
At the same time, processing conditions, material (im)purity and the influence of
solvent materials in multilayer systems pose a challenge for the large-scale pro-
duction of highly efficient devices. Vapor deposited organic solar cells on the other
hand show higher efficiencies and better controllability of multilayer structures at
a higher production cost. Vapor deposited solar cells are based on small molecule
absorbers and fullerenes or other organic electron conductors as acceptor mate-
rials. Maximum power conversion efficiencies reached with organic solar cells are
between 10% and 12% [28, 29].

There are multiple unsolved scientific questions in which theoretical approaches
and modeling techniques can aid experiment and lead to a better understanding of
materials and device characteristics. Examples are the search for ideal optical pro-
perties of the active material [30, 31], exciton separation at materials interfaces,
charge transport and conductivity of amorphous materials, especially of polymers
and demixing and domain formation in bulk heterojunctions. These open scien-
tific questions and challenges leave room for material and device improvement
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and make organic photovoltaics an ideal system for theoretical and modeling ap-
proaches.

2.1.3 Organic light emitting diodes

In organic light emitting diodes (OLEDs), similar processes as in organic solar
cells occur in a reversed order. In an idealized picture, electrons are injected from
the cathode through an electron transport layer into the active material. Holes are
injected at the same time from the anode through a hole transport layer (see Fig-
ure 2.2c and 2.2d). In the active layer, electrons and holes meet and form bound
exciton states which recombine after a certain time. Each radiative decay of an
exciton produces a photon which is emitted by the OLED.

The active layer typically consists of a host material with a certain concen-
tration of guest molecules with a smaller HOMO-LUMO gap compared to the
host. Electrons, holes and excitons are trapped on molecules of the guest mate-
rial reducing the chance of non-radiative decay processes due to exciton-polaron
quenching and triplet-triplet annihilation. The concentration of guest molecules
is decisive for charge transport properties and the efficiency of the OLED [19].

Due to spin-statistics, 75% of the generated excitons are in a triplet state and
only 25% are singlets. Due to low spin-orbit coupling in light elements such as
carbon, oxygen, nitrogen and hydrogen, the triplet excitons have comparably long
lifetimes. This increases chance of interaction with polarons which leads to non-
radiative decay or even detrimental excitations which might destroy molecules and
therefore induces aging effects. Two approaches to efficiently harvest triplet exci-
tons and reduce the lifetime of triplet excitons are discussed in literature. In the
first approach, emitter molecules are used which include heavy (transition) metals,
e.g. Iridium complexes like Tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3).
These molecules exhibit low triplet lifetimes and efficient singlet-to-triplet conver-
sion rates (intersystem crossing) [32–34]. A second approach for triple harvesting
is based on molecules in which the energy difference between the triplet state
and the single state is smaller than the thermal energy at room temperature. In
most molecules, the singlet state is several hundred meV higher in energy than
the triplet state. By targeted molecule design, it is possible to decrease this gap
and enable a thermally activated conversion of triplet states into singlet states
with rather high conversion rates. In the singlet state, the excitons radiatively
de-excite in a fluorescent process. This process is called thermally activated de-
layed fluorescence (TADF) [35–38]. As an alternative to the TADF process, triplet
excitons can be harvested using excimer [39, 40] or exciplex [41–44] states using
bound electron-hole states delocalized over two equal or different molecules. Here,
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an internal quantum efficiency of 100% can be reached. At the same time, the
emission spectrum is broader compared to exciton-decay on single molecules.

Open scientific questions in OLEDs range from charge mobility and conduc-
tivity over optoelectronic properties and long-term stability of host and emitter
molecules to anisotropy effects which can be used to improve photon outcoupling
and device efficiency [45, 46]. Most of them are strongly related to the improve-
ment of material properties. Investigation of structure-property relations between
molecules and desired macroscopic device characteristics help to find design rules
for targeted improvement of materials. This challenge can be tackled using appro-
priate multiscale methods which cover the entire length scale from single molecules
to device characteristics. These methods allow for detailed in silico analysis of
amorphous organic systems and therefore guide experiments on their way to more
efficient OLED devices.

2.1.4 Transport of localized charge carriers in disor-
dered systems

A common characteristic of almost all organic materials used in OLEDs and
OSCs is their amorphous structure. This structure leads to fundamentally differ-
ent charge transport properties compared to crystalline materials. In materials
with a periodic structure, the electronic wave function follows the periodicity of
the crystal structure and charge transport can in a simplest approximation be
described as the propagation of delocalized waves or quasi particles.

In disordered organic semiconductors consisting of e.g. small molecules, energy
disorder, weak intermolecular couplings and reorganization of the molecular struc-
ture upon charging prevents hybridization between the electronic states of different
molecules. This leads to the localization of the wave functions of charge carriers
(positive and negative polarons) on single molecules (see Figure 2.3c). Charge
transport mainly occurs in form of tunneling or hopping processes of charge car-
riers between different π-conjugated fragments (molecules) of the system. This
mechanism is called hopping transport. Methods to theoretically describe and
quantify hopping transport will be introduced in the next sections.
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Figure 2.3: a) Single molecules in vacuum have clearly defined energy levels. b) Interaction
of molecules in periodic crystals leads to delocalization of states and to the formation of bands
in reciprocal space. c) In disordered systems, each molecule retains its individual energy lev-
els. Intermolecular, mainly electrostatic interaction and deformation of the molecules in the
amorphous structure shifts the energy levels of each single molecule. This leads to a (almost
Gaussian) density of states of each molecular energy level, in particular of HOMO and LUMO
energies.

2.2 Modeling of hopping transport in disor-
dered systems

Hopping transport can be quantitatively described in various ways. Two modeling
approaches, namely master equation approaches (ME) and kinetic Monte Carlo
simulations (KMC), describe the amorphous system in a coarse grained way. The
molecular system is mapped on a graph consisting of sites representing molecules
and connections representing hopping possibilities. In the simplest case, the site
distribution can be approximated as a cubic lattice. In more advanced approaches
[47], a distribution of points is used, which follows the same neighbor distance
characteristics as the center of mass positions of the disordered molecules in the
condensed phase.

The master equation describes the time derivative of the occupation probability
pi(t) of a certain site i as the sum of all fluxes in and out of this site.

dpi(t)

dt
=
∑
j

(pj(t)kji − pi(t)kij) (2.1)

The terms on the right side of the equation describe the probability flux∑
j pj(t)kji from neighboring sites j to site i and the probability flux

∑
j pi(t)kij
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away from site i to its neighboring sites j. kij denotes the hopping rate from site
i to site j. In a steady state, the time derivative of pi becomes zero and quanti-
ties such as charge carrier mobility can be obtained. The master equation can be
solved either analytically or numerically.

In kinetic Monte Carlo approaches [48–50], all hopping processes occurring
during charge transport are explicitly modeled. A certain number of electrons is
distributed in the system. In each Monte Carlo step, the rates k of all possible
hopping processes are calculated and one rate is chosen with a probability corre-
sponding to its contribution to the sum of all rates K =

∑
k. The chosen step

is carried out and the time is updated with a time step δt = K−1ln(1/x′), with
x′ being a random number between 0 and 1. In this way, a random but repre-
sentative trajectory of the system is obtained, which obeys thermodynamic laws.
From this trajectory, the equilibrium charge density and charge mobility as well as
percolation paths can be extracted. A extension of this method will be presented
in Symalla et al. [19].

Both master equation approaches and KMC simulations require hopping rates.
In many examples in literature [51–53], the Miller-Abrahams rate [54] was used,
which depends on the energy difference ∆Eif between the initial and the final
state, the hopping distance rif and a parameter α which can be interpreted as the
inverse wave function decay length.

kif = k0 exp(−2αrif)

{
exp(−∆Eif/(kBT )) if ∆Eif > 0
1 else (2.2)

This equation can be derived from a stationary solution of the master equa-
tion [54]. Due to the phenomenological distance dependence and the neglect of
molecular reorganization, the Miller-Abrahams equation does not fully capture
all relevant quantum mechanical effects of hopping transport. A more detailed
description of the hopping rate is provided by Marcus theory [55, 56], which was
primarily developed for donor-acceptor complexes to quantify the rates of charge
transfer processes. Its details will be explained in the next section.

2.2.1 Marcus theory

Rudolph A. Marcus developed a theory for the quantitative description of redox
reaction rates involving electron transfer processes between reactants in solution.
This theory can also be applied to describe charge transfer processes of localized
states in organic semiconductors.
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Figure 2.4: Marcus parabolas representing the total system in the states where the donor is
charged (left, D−/+A0) and the acceptor is charged (right, D0A−/+) The activation energy
EA can be calculated using the energy difference ∆E and the reorganization energy λ (see
Eq. 2.3).

The calculation of the Marcus hopping rate for a charge transfer between two
molecules requires three microscopic parameters. The prefactor of the Marcus
rate depends on the square of the electronic coupling |Jif|2 between the localized
molecular states before (initial) and after (final) the charge transfer process. The
exponential function depends on the energy barrier or activation energy EA be-
tween the two states. Marcus theory uses a parabolic approximation of the Gibbs
free energy G(q⃗) of the system as a function of the multidimensional reaction coor-
dinate q⃗. The frozen molecular orientation in condensed amorphous system makes
entropic effects negligible [57]. Thus, the Gibbs free energy can be approximated
as the total energy of the system.

The parabolic dependence of the total energy E(q⃗) on q⃗ leads to an activation
energy EA which depends on the difference in total energy ∆E between the initial
and final state and the reorganization energy λ of the charge transfer process.

EA =
1

4λ
(λ+ ∆E)2 . (2.3)

This activation energy can be calculated as the intersection of the two Marcus
parabola shown in Fig. 2.4. Combining the full prefactor with an exponential
function of the activation energy according to the Arrhenius equation [58, 59]
leads to the full Marcus hopping rate [55, 56].

k =
2π

ℏ
|J |2 1√

4πλkBT
exp

(
−(λ+ ∆E)2

4λkBT

)
(2.4)

There are two assumptions which have to be fulfilled in order to make Marcus
theory applicable [60]. The first assumption is the localization of charge carri-
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ers to clearly defined hopping sites, which is called the localized polaron model.
It is fulfilled if the hopping sites have only weak electronic coupling elements
compared to their reorganization energy. In disordered small molecule systems,
this assumption is fulfilled as typical reorganization energies are in the order of
100− 500meV and the largest electronic couplings usually do not exceed 10meV
(see also Chapter 4.4). The second condition for Marcus theory is related to the
phonon mediated and therefore temperature activated nature of the hopping pro-
cess. Marcus theory is applicable in a high temperature regime where the thermal
energy kBT is large compared to the energies of the vibronic states ℏω responsible
for the reorganization of molecules upon charging. These vibrational states can
therefore be treated as a continuum of states including all states required for the
charge transfer reaction.

In the following sections, details about the calculation of the molecule and
system dependent parameters J , λ and ∆E required for the Marcus rate will be
given.

Electronic coupling

The electronic coupling between two states can be calculated using the Löwdin
orthogonalization method [61, 62]. Here, the highest occupied molecular orbital
(HOMO) is assumed to represent the wave function of an additional hole (missing
electron) whereas the lowest unoccupied molecular orbital (LUMO) represents the
electron wave function.

Jif =
Fif − 1

2
(Fii + Fff)Sif

1− S2
if

(2.5)

The matrix elements Fif = ⟨i|Fdimer |f⟩ and Sif = ⟨i|Sdimer |f⟩ are calculated using
the Fock and overlap matrices of a molecular dimer system. The states |i⟩ and |f⟩
are the highest occupied molecular orbital (for Jif,HOMO) or the lowest unoccupied
molecular orbital (for Jif,LUMO) of the single molecule i (f), expanded to the dimer-
basis. Extensions of this method were developed in the work of Paul Kleine [63].
These explicitly consider additional charges and polarization effects. In addition,
the electronic coupling between more complicated states like excitations can be
calculated with this method.

Energy differences

As mentioned above, one of the decisive quantities for the Marcus hopping rate
is the total energy difference between the initial and the final state. This energy
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difference mainly depends on the individual conformations and environments of
the two molecules involved in the hopping process. Disorder effects will be dis-
cussed in detail in Chapter 2.2.2 and 4.5. If the hopping takes place in an external
electric field F⃗ , the energy difference ∆E has an intrinsic contribution ∆Eint and
a contribution due to the external electric field F⃗ext. This external contribution
can be written as

∆Eext =

∫
V

Φ(r⃗)ext (nf(r⃗)− ni(r⃗)) dr⃗
3 , (2.6)

where the external potential Φ is defined by the field as

−∇Φ(r⃗)ext = F⃗ext . (2.7)

ni/f(r⃗) are the total charge densities before and after the hopping process. In a
coarse grained site-based models, the external contribution ∆Eext can be approx-
imated as ∆Eext = e(F⃗ext · r⃗if), where r⃗if = r⃗f − r⃗i is the vector connecting the two
hopping sites. These sites can be approximated as the center of charge of polarons
localized on the initial and the final molecule. In many cases, the center of mass
or center of geometry of the molecules are used.

The intrinsic contribution ∆Eint arises from the disordered geometry of the
amorphous system. The two main sources of disorder are electrostatic interactions
between the molecules and distortions of the molecular geometry due to intra-
and inter-molecular forces acting on the molecules. More details will be given in
Chapter 2.2.2.

Reorganization energy

When in the semi-classical Marcus picture an electron is transferred from one
molecule to another, thermal fluctuations and vibrations lead to states of the
molecular system, in which transitions of electrons between molecules become
possible. The energy barrier of this transition state is given in Eq. 2.3. It involves
the energy difference ∆Eif between initial and final states as well as the reorganiza-
tion energy λif of the system. This reorganization energy is strongly related to the
different time scales on which electronic and ionic processes are occurring, a prin-
ciple which is also used in the Born-Oppenheimer approximation (see Section 2.3).

For the calculation of the reorganization energy, the charge transfer is parti-
tioned into a sequence of processes which decouple the fast electronic processes
from the much slower ionic responses of the system. This procedure is called
Nelsen’s four-point-procedure [64] and can be described using the following steps
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(see Fig. 2.5). Prior to the hopping process, the system is in its electronic and
ionic ground state where the charged donor molecule is relaxed in its charged
ionic state and the acceptor is in its neutral ionic state (Ei in Fig. 2.5a). A charge
transfer between the two molecules including the electronic response but with-
out changing the geometry of the system is represented by a vertical excitation
of the system from the first to the second parabola (E∗

i ). This vertical charge
transfer is followed by the ionic relaxation of the system after which the charged
acceptor molecule reaches its charged-state geometry and the donor relaxes into
its neutral-state geometry (Ef). The energy difference between E∗

i and Ef is the
reorganization energy λ.

The reorganization energy is usually separated into an inner part λinner inclu-
ding relaxation of the donor and the acceptor molecule and an outer part λouter

including the relaxation of the environment. In condensed molecular systems, the
outer part is assumed to be much smaller than the inner part because the ad-
ditional charge will cause much stronger conformational changes to the charged
molecule than to molecules in its environment. Thus, the outer part of the re-
organization energy was neglected in this work. If the charge transfer is taking
place in dilute systems, e.g. in liquid or gas-phase, the reaction of the surrounding
molecules cannot be neglected. To account for this effect, methods were developed
to estimate the outer part of the reorganization energy using electrostatic calcu-
lations [65], polarizable force fields [66] and hybrid methods combining quantum
mechanical calculations with molecular dynamics calculations [67].

The calculation of the inner part of the reorganization energy is illustrated in
Fig. 2.5b. Acceptor and donor molecules are treated separately. The electronic and
ionic ground state of the neutral acceptor molecule is calculated (E1). A charge
is added to the molecule and an ionic relaxation is performed (E2 → E3). This
yields the acceptor part of the inner reorganization energy (λi,acceptor = E2 −E3).
The opposite process happens on the donor molecule. Here, the electronically and
ionically relaxed ground state of the charged donor molecule is calculated (E ′

1).
The charge is removed from the donor molecule and it relaxes (E ′

2 → E ′
3). The

energy difference E ′
2 − E ′

3 is the donor part λi,donor of the reorganization energy
associated with the charge transfer process. Summation of acceptor and donor
part yields the inner part of the reorganization energy:

λinner = (E2 − E3) + (E ′
2 − E ′

3) . (2.8)

In general, the acceptor and donor can be different types of molecules and each
of them is embedded into its individual and unique environment in the amorphous
morphology. Therefore, the reorganization energy λ will be different for each pair of
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Figure 2.5: a) Marcus parabolas representing the total system in the states where the donor
is charged (left, D−/+A0) and the acceptor is charged (right, D0A−/+) b) Illustration of the
two Nelsen four-point-procedure (see text) to calculate the inner part λi of the reorganization
energy. This inner part is split into two contributions coming from relaxation of the acceptor
and donor molecule, respectively.

hopping sites in the system. Simulations of hopping transport as found in literature
take only the inner part of the vacuum reorganization energy of each molecule
into account. In this work, extensions of this will be discussed and tested. Here,
a confinement of the molecules in their local environment is used to limit their
degrees of freedom for ionic relaxation (methods are explained in Chapter 3.1.3
and results are shown in Chapter 4.4). This method can in general be extended
to also explicitly calculate the order of magnitude of λouter.

2.2.2 Energy disorder

This section will give an introduction into methods for the definition and cal-
culation of energy disorder which is in many disordered materials the main and
limiting contribution of Marcus rates and charge carrier mobility. In this work,
the Quantum Patch method will be used to quantitatively calculate the energy
disorder of amorphous systems. It is based on a self-consistent evaluation of site
energies using quantum mechanical DFT calculations [68]. The Quantum Patch
method was developed in my master’s thesis [69] and extended in this work. It
will be presented in detail in Chapter 3.2.

Definition of energy disorder

The density of states (DOS) in disordered organic systems is assumed to approxi-
mately follow a Gaussian distribution [14, 52, 53, 70–72]. Spatial correlations aris-
ing from electrostatic interaction of molecules exist to a certain extend in many
systems and lead to deviations from Gaussian disorder [73–75]. In some materials,
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experiments show deviations from a Gaussian shape in the tails of the density
of states arising from different effects such as traps and interface states [76–78].
Despite these effects, the main determinant of charge mobility is the width of
the (Gaussian) density of states, called energy disorder σ. Several different formal
definitions exists for this quantity. If site energies in a molecular system are uncor-
related with respect to their position and distance, the resulting density of states
can be characterized as the standard deviation σ of the site energy distribution. A
Gaussian distribution of Nsites energies Ei with mean energy ⟨Ei⟩ has a standard
deviation of

σ(E) =

√
1

Nsites − 1

∑
i

(Ei − ⟨Ei⟩)2 . (2.9)

In case there exist (long-range) correlations between the site energies which arise
from e.g. dipole induced disorder, there is a difference in local and global energy
disorder σ. This effect can be quantified by calculating the distribution width
of site energy differences σ(∆Eij) for molecular pairs below a certain distance
threshold dij ≤ dmax:

σ(∆E) =

√
1

2Npairs − 2

∑
i,j ̸=i

∆E2
ij . (2.10)

Double counting of all pairs i, j makes ⟨∆Eij⟩ = 0 and leads to the factor 2 in
the denominator. If the site energies Ei are Gaussian distributed and there are
no (spatial) correlations between them, it can be shown that the relation between
σ(E) and σ(∆E) is

σ(∆E) =
√
2 σ(E) . (2.11)

Spatial correlations usually lead to a decrease in local disorder: σ(∆E) ≤√
2 σ(E) (see Appendix F) The reason for this is that sites which are close to

each other feel a similar long-range electrostatic field of the surrounding bulk
material. Thus, energy differences between sites with low distances dij in a cor-
related system are on average smaller than energy differences between arbitrary
pairs of molecules in the system. As electronic coupling elements decay exponen-
tially with increasing intermolecular distance, hopping transport is a rather local
process. Therefore, the local energy disorder σloc = σ(∆E)

√
2 is decisive for the

calculation and prediction of charge carrier mobility.

Structural disorder and electrostatic disorder

In a crystalline system with a given number of molecules per unit-cell N0, there
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exists a finite number (N0) of site energies. Disorder only arises due to thermal
broadening of the energy levels which is caused by molecular vibrations. Apart
from that, all molecules which are equivalent with respect to their position within
the unit cell have the same molecular conformation and feel the same electrostatic
potential. Depending on the ratio of electronic couplings and reorganization en-
ergy, charge transport occurs in form of hopping of localized polarons or by a
dispersive transport due to intermolecular hybridization leading to delocalized
states and band formation.

Energy disorder in amorphous materials arises from two different effects. On
source are intermolecular forces in amorphous structures that bend and deform
molecules. Weak intramolecular degrees of freedom like the rotation of dihedral
angles can be influenced by this effect. As shown in Chapter 4.5, this does not
necessarily influence charge transport in the system. Energy disorder for electrons
and holes only arises from changes in the on-site energy which can be calculated
in terms of ionization potential (IP) and electron affinity (EA) of the molecules.
IP and EA can be approximated with more easily accessible HOMO and LUMO
energies. The conformational disorder can then be estimated using the range of
HOMO and LUMO energies as a function of the intramolecular degrees of freedom
or vibrational modes around their minima in the equilibrium conformation of the
molecule. This procedure is presented in Chapter 4.5.

The second source of energy disorder are intermolecular interactions. Each
molecule is embedded into its individual environment created by all other molecules.
The interaction energy consists of contributions from Pauli repulsion, van der
Waals’ interaction and electrostatic interaction. The strongest contribution of this
energy is the long range of Coulomb interaction between charges and the dipole
moments of surrounding molecules. The additional charges furthermore polarize
their environment which feeds back on the site energies of the respective polarons
and the energy disorder. This polarization effect due to additional charges is im-
plicitly taken into account in the self-consistent Quantum Patch method presented
in Chapter 3.2.1.

Calculation of energy disorder

To calculate the conformational and electrostatic contributions of energy disor-
der, atomistically resolved morphologies are required. This section will introduce
various established ways to estimate or explicitly calculate the energy disorder of
an amorphous molecular system. In this work, the Quantum Patch method (see
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Table 2.1: Values of the energy disorder of Alq3 based on Eq. 2.12. Different assumptions
from literature about the dipole moment, the dielectric constant and molecular density of
Alq3 were used for the two values.

Dipole Lattice Relative Energy
moment constant permittivity disorder Source

|d⃗| [Debye] a [Å] ε σ(E) [eV]

5.5 9.9 3.0 0.15 [79]
4.9 8.3 3.5 0.13 [80]

Chapter 3.2) will be used for the calculation of energy disorder.

One very basic approach for the calculation of energy disorder caused by elec-
trostatic effects is described in Young et al. [72]. Here, an analytic expression for
the energy disorder in a system of arbitrary directed dipoles on a cubic lattice
with lattice constant a is derived:

σ(E) =
2.35|d⃗|e
4πε0εa2

(2.12)

In this equation, d⃗ is the dipole moment of the molecules, −e is the charge of
an electron, ε is the relative permittivity of the amorphous material and ε0 is the
vacuum permittivity. The energy disorder of Alq3 (see Fig. 4.1) derived with this
formula is shown in Tab. 2.1.

The dipole model can only serve as a rough estimate of energy disorder and
strongly depends on the reliability of the input parameters i.e. the dipole moment
and the dielectric constant. Its applicability for a detailed analysis of different
systems is limited. For a more accurate calculation of the energy disorder, the
influence of conformational disorder as well as of a more realistic representation
of the electrostatic interaction have to be taken into account. These two require-
ments lead to practical problems: Calculation of conformation and polarization
effects on a quantum mechanical level can in principle be achieved in a single
evaluation of the electronic structure of the entire system. Due to cubic scaling of
the computational cost of e.g. DFT calculations with the number of electrons in
the system, the evaluation of systems with more than a few molecules becomes
unfeasible. Furthermore, these calculations will only predict the ground state of
the total system. An additional charge will not be confined to the molecule of in-
terest but rather be localized on the energetically lowest hopping site. This makes
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it impossible to straightforwardly evaluate the full density of states of a system.

In literature, two general approaches to this problem are proposed. The first
one takes all molecules of the environment explicitly into account and at the same
time confines the additional charge to the required hopping site via an additional
external potential. This method is called constrained density functional theory
(cDFT) [81–84]. It describes polarization effects on a fully quantum mechanical
level. Major disadvantage of this method is the computational effort which scales
at least with O(N3

electrons), making the method unfeasible for realistic system sizes.

Another class of approaches treats only the charged molecule on a quantum
mechanical level while including interaction effects with the environment in a
classical way via static or polarizable point charges. Examples are polarizable
continuum models (PCM) [85], polarizable force field methods [57, 86] like the
AMOEBA method [87–89] as well as QM/MM [90–92] approaches. In QM/MM
approaches, the molecular system is divided into a quantum mechanical region
(QM) and one or more surrounding shells which are treated in a classical (mole-
cular mechanics, MM) way. In these shells, force field based methods are used in
a way similar to molecular dynamics simulations (see Chapter 2.4.1). Disadvan-
tages of these methods are the loss of accuracy in the outer shells as well as the
need for parameterization of e.g. the molecular polarizability tensor and its map-
ping on polarizable point charges. Force field parametrization can be obtained
using theoretical methods or obtained phenomenologically by tuning the force
field parameters in order to reproduce experimental results for known materials.
The mapping of not necessarily linear quantum mechanical polarization effects
of different molecular orbitals to mostly linear polarizable force fields does not
necessarily cover all relevant effects.

Therefore, a more reliable and predictive model based on ab initio methods
is required for the calculation and prediction of energy disorder in yet unknown
systems. Such a method was developed in my Master’s thesis [69] and extended
in this work. It will be presented in Chapter 3.2.

2.2.3 Charge carrier mobility and conductivity

One connection between microscopic quantities like electronic couplings or mole-
cular reorganization energies and the macroscopic measurable conductivity σ is
the mobility µ. The conductivity is defined using the Ohm’s law

j⃗ = σ F⃗ext (2.13)
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with current density j⃗ and external electric field F⃗ext. Taking into account that
the current is proportional to the charge carrier density n, one obtains

j⃗ = n e µ F⃗ (2.14)

with σ = n e µ. In general, the mobility µ itself is a function of the charge carrier
density n, the temperature T and the electric field F = |F⃗ext|:

µ = µ(n, T, F ) . (2.15)

In disordered semiconductors, Poole-Frenkel behavior [93] is observed. Here,
the current density is proportional to F exp

(√
βPFF

)
, leading to a charge carrier

mobility of the form:

µ(n, T, F ) = µ0(n, T ) exp
(√

βPFF
)

. (2.16)

The zero-field mobility µ0 is obtained from extrapolation of the experimen-
tal field-dependent charge carrier mobility µ(F⃗ ) to F = 0. βPF is a factor de-
pending on material properties. According to Hall et al. [94], this constant is
βPF = e3/(4πεε0kBT ) with permittivity εε0, electron charge −e and temperature
T . In theoretical approaches, the charge carrier mobility can be obtained from
numerical or approximative analytical solutions of the master equation.

Analytic models

Several analytic models to determine charge carrier mobility were developed over
the past decades, starting with the work of Bässler et al. [52, 53]. These models
were tested and refined by many other groups [51, 95, 96]. Nonetheless, most of the
models depend on parameters which cannot be directly connected to molecular
properties. Examples are the wave function decay length similar to the parameter
α in the Miller-Abrahams rate (Eq. 2.2) or a correlation strength determining the
extend of spatial correlations in the site energies. Main reason for the introduction
of these parameters is that microscopic properties were simply neither measurable
nor computationally accessible. Growing computer power throughout the recent
years made quantum mechanical calculations of large systems possible. This en-
ables to close the gap between microscopic molecular properties and macroscopic
thin film properties such as charge mobility.

One parameter-free model effective medium model to estimate an upper bound
for the charge carrier mobility of disordered systems is presented in the next
section. It is used in this work to estimate and analyze charge carrier mobility of
different organic materials.
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Generalized effective-medium model (GEMM)

The generalized mean effective-medium model (GEMM) [14] to estimate charge
carrier mobility was developed in a cooperation between AG Wenzel at KIT and
the Materials Science Laboratory (MSL) of Sony, Stuttgart. This approach esti-
mates the charge carrier mobility by approximately solving the master equation.
It assumes a Gaussian density of states and averages over all possible Marcus
hopping rates in the system. As an effective medium approach, it neglects perco-
lation effects [97, 98]. Thus, it yields an upper bound for the charge mobility in
disordered systems.

The mobility in this generalized mean effective medium (GEMM) model is
a function of averaged microscopic parameters e.g. electronic couplings and the
width of the density of states.

µ =
e
√
πβ2

6ℏ
1√

β
(

λ
4
+ βσ2

4

)M ⟨
J2r2

⟩
exp

[
−β

(
λ

4
+

βσ2

4

)]
(2.17)

The parameters in this formula are the inverse temperature β = (kBT )
−1, the

local energy disorder σ =
√

1/(2Npairs − 2)
∑

i,j ̸=i ∆E
2
ij, the mean number of hop-

ping possibilities M = 2Npairs/Nsites for each charge carrier and the averaged
electronic couplings ⟨J2r2⟩ = 1/(2Npairs)

∑
i,j ̸=i(J

2
ijr

2
ij). Eq. 2.17 is used in Chap-

ter 4 to estimate the charge carrier mobility or organic materials.

The dependence of the Marcus rate (Eq. 2.4) on the energy difference leads to an
exponential dependence of the mobility on the energy disorder σ of the material,
i.e. µ ∝ exp(−Cβ2σ2). The C-factor which in many other models describes the
strength of percolation effects is 1/4 in the effective medium limit. Models which
incorporate percolation effects [52, 70, 95–97, 99, 100] use C-factors derived from
experimental observations of the temperature and field dependence of the charge
mobility or from fits to appropriate numerical methods such as kinetic Monte
Carlo approaches. The C-dependence of the charge carrier mobility for different
materials is discussed in Chapter 4.4.

Numerical methods

Apart from approximative analytic models, charge transport can also be explicitly
simulated in kinetic Monte Carlo simulations. Analytic models for the calculation
of charge mobility are in many cases restricted to relatively simple systems such as

25



single-layer devices consisting of only one material. Kinetic Monte Carlo models on
the other hand can have a much higher complexity. This ranges from single carrier
type and single layer simulations as described by the analytic models to device
simulations of organic solar cells or OLEDs including positive and negative po-
larons, excitons and all interactions and processes related to these quasi-particles.
Simulations of that kind will be described in the Master’s thesis of Jana Holland-
Cunz [101] and the PhD thesis of Franz Symalla [102].
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2.3 Electronic structure calculations

All calculations of charge carrier mobility in this work require information about
quantum mechanical properties, e.g. molecular orbitals, energy levels, partial
charges and molecular dipole moments. These quantities can be calculated us-
ing methods such as density functional theory (DFT). The basic principles of this
method are outlined in this chapter.

Density functional theory solves the stationary electronic Schrödinger equation
for a system of interacting electrons and nuclei in an approximative way. One of the
fundamental underlying approximations is the Born-Oppenheimer approximation.
Furthermore, the real interacting electrons are replaced by a set of artificial non-
interacting quasi particles in an effective potential caused by the other electrons
and the nuclei. This mean field approximation and other assumptions lead to
systematic errors which can in some cases be corrected but still have to be kept
in mind when interpreting the results of DFT calculations.

2.3.1 Born-Oppenheimer approximation

The Hamiltonian of a system of n electrons and N nuclei consists of the kinetic en-
ergy operator of the electrons i, the kinetic energy of the cores I and the Coulomb
interaction between electrons e and cores N with charge ZI .

Ĥ = T̂e + T̂N + V̂ee + V̂eN + V̂NN (2.18)

Using atomics units, the Hamiltonian can be written as

Ĥ = −
n∑
i

1

2
∇2

i −
N∑
I

1

2mI/me
∇2

I︸ ︷︷ ︸
Kinetic energy

+
n∑

i<j

1

|r⃗i − r⃗j|
−

n,N∑
i,I

ZI

|r⃗i − R⃗I |
+

N∑
I<J

ZIZJ

|R⃗I − R⃗J |︸ ︷︷ ︸
Coulomb interaction

.

(2.19)
The kinetic energy of the nuclei is proportional to the ratio of electron mass

me and the proton mass mp, which is me/mp is ≈ 1/1 836.15. Thus, the motion
of electrons happens on a time scale which is several orders of magnitude smaller
than the movement of nuclei. The approximation of immediate equilibration of
the electronic part of the wave function after changes of ionic degrees of freedom
is called Born-Oppenheimer approximation. The electrons are considered as par-
ticles in an static electrostatic background potential created by the cores. Using
this approximation, the electronic part of the full Schrödinger equation can be de-
coupled from ionic degrees of freedom. The total wave function factorizes into an
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ionic part and an electronic part. The electronic part Ĥe of the full Hamiltonian
depends on the coordinates R⃗I of the nuclei in a parametric way:

Ĥe = T̂e + V̂ee + V̂eN + (V̂NN)

= −
n∑
i

1

2
∇2

i +
n∑

i<j

1

|r⃗i − r⃗j|
−

n,N∑
i,I

ZI

|r⃗i − R⃗I |
+

(
N∑

I<J

ZIZJ

|R⃗I − R⃗J |

)
.

(2.20)

The Coulomb potential V̂NN between nuclei leads to an additive constant ENN in
the eigenenergies and will be omitted in the following paragraphs. The remaining
part of the Hamiltonian describes interacting electrons in the potential of fixed
nuclei. The solution of the electronic Schrödinger equation using density functional
theory will be presented in the next section.

2.3.2 Density functional theory

Density functional theory (DFT) was developed in the 1960s’ and 70s’ initiated by
work of Pierre Hohenberg, Walter Kohn and Lu Jeu Sham based on the Thomas
Fermi model [103]. Similar to the Hartree-Fock method derived in the previous
Chapter, DFT provides a solution for the electronic wave function in the static
potential of nuclei. Therefore, one starts with the electronic part of the Schrödinger
equation in Born-Oppenheimer approximation:

(
T̂e + V̂ee + V̂eN

)
Ψ({r⃗i}) = EΨ({r⃗i}) (2.21)

Hohenberg and Kohn showed [104] that each non-degenerate ground-state
Ψ({r⃗i}) of the electronic part of the Schrödinger equation is connected in a bijec-
tive way to a unique charge density n(r⃗). Similar to the Hartree-Fock method, the
system of interacting electrons in an external potential can be expressed as a sys-
tem of non-interacting particles in an effective potential. This effective potential is
not a result of a mean-field approach equal to the Hartree potential but it includes
and corrects all errors coming from the missing explicit correlation between the
non-interacting particles. This leads to a Schrödinger equation in the form

(
−1

2
∇2 + veff[n(r⃗)]− ϵi

)
φi(r⃗) = 0 . (2.22)
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where the functions φi(r⃗) are called Kohn-Sham orbitals. This set of coupled
equations is called Kohn-Sham equations [105]. The effective potential veff[n(r⃗)] is
a functional of the electron density

n(r⃗) =
n∑
i

|φi(r⃗)|2 . (2.23)

It is possible to split the effective potential into different parts.

veff[n(r⃗)] = vext({R⃗I}) +
∫
V

n(r⃗)

|r⃗ − r⃗ ′|
dr⃗ ′ 3 + vxc[n(r⃗)] (2.24)

The first part describes the potential caused by the nuclei and external electric
fields. The second part describes the interaction of the respective electron with the
Coulomb potential caused by the charge density of all electrons. This is similar to
the Hartree-potential but includes an unphysical self-interaction of the particles
with their own effective charge density. The third part formally contains all ex-
change and correlation effects. The exact knowledge of the exchange-correlation
functional vxc[n(r⃗)] would lead to exact solutions of the electronic Schrödinger
equation. As the explicit form of this functional is unknown, it is necessary to
find approximate exchange-correlation functionals. There exists a large variety
of different functionals which were developed throughout the last decades for
different systems and purposes. Two approaches for the development of exchange-
correlation functionals and two important functionals for organic molecules will
be described in the next section.

The Kohn-Sham equations (Eq. 2.22) can be solved numerically in a self-
consistent way, namely with the self-consistent field method (SCF). In this
method, the wave-functions (molecular orbitals, MOs) φi(r⃗) can be expressed as
a linear combination of Gaussian- or Slater-type basis-functions (atomic orbitals)
or as plane waves.

φi =
∑
j

Cijϕj (2.25)

Possible basis-functions ϕj will be presented in more detail in section 2.3.2. In
the SCF procedure, an initial set of coefficients Cij is chosen and the Hamilto-
nian based on this choice is calculated. A numerical solution of the Kohn-Sham
equations yields a new set of coefficients Cij and therefore a new set of molecular
orbitals φi. Iteration of this procedure leads to self consistent molecular orbitals
φi and therefore a self-consistent solution of the Kohn-Sham equations.
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Exchange-correlation functionals

There exists a large variety of different exchange-correlation functionals for DFT
calculations. Two commonly used approximations for the construction of func-
tionals are the local-density approximation (LDA) and the generalized gradient
approximation (GGA). In LDA, the exchange-correlation functional only depends
on the local charge density n(r⃗0) and therefore can be treated as a exchange-
correlation potential:

vxc[n(r⃗)] → vxc(n(r⃗0)) . (2.26)

GGA functionals are constructed in a way that the exchange-correlation func-
tional depends on the local charge density and its first spatial derivative:

vxc[n(r⃗)] → vxc(n(r⃗0), n
′(r⃗0)) . (2.27)

As known from literature [106], DFT calculations tend to underestimate the
HOMO-LUMO gap of semiconductors. Especially for charged molecules which
intrinsically may have a small band gap, this can lead to numerical convergence
problems. Therefore, hybrid functionals were developed which contain parts of the
explicit exchange energy from Hartree-Fock theory. This procedure leads to more
realistic HOMO-LUMO gaps especially for organic molecules. Two functionals
which are mainly used throughout this work are the BP86 functional and the
hybrid B3LYP functional. BP86 is a combination of Becke’s exchange functional
from 1988 [107] and the Perdew 86 correlation functional [108]. B3LYP is a hybrid
functional of the following form:

Exc = 0.2 · Ex(HF) + 0.72 · Ex(GGA) + 0.08 · Ex(LDA)

+ 0.81 · Ec(GGA) + 0.19 · Ec(LDA)
(2.28)

Ex(HF) is explicit Hartree-Fock exchange, Ex(GGA) is the a exchange func-
tional derived by Becke et al. in 1988 [107], Ec(GGA) is a correlation functional
derived by Lee, Yang and Parr [109] and Ec(LDA) is a LDA functional by Vosko
et al. [110].

Basis sets

In Hartree-Fock and DFT calculations, the wave functions of quasiparticles are
constructed as linear combinations of basis functions. One possible choice of basis
functions are Slater functions [111]. These are the envelope functions of the hydro-
gen wave functions and thus a natural choice of atomic orbitals. As it is computa-
tionally expensive to numerically or analytically integrate Slater-type functions,
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Table 2.2: Different basis-sets used in this work.

SV(P) Split-valence basis set with polarization functions for all
atoms expect hydrogen [23].
Default basis set in TURBOMOLE.

SVP Split-valence basis set with polarization functions [23].

TZVP Split-valence triple-ζ basis set with polarization func-
tions [117].

they are commonly approximate by a certain number of Gaussian functions [112]
which are easier to integrate [113].

In fast semi-empirical calculation, a minimal basis set such as the STO-nG basis
[114] is used. The n represents the number of Gaussian functions which are used
to approximate one Slater-type orbital. Each core and valence orbital is described
by one Slater-type orbital.

More sophisticated basis sets are split-valence basis sets such as X-YZg [115]
or X-YZWg. X is the number of Gaussian functions which are used to approxi-
mate the Slater-type orbital which is used for core orbitals. Valence orbitals are
constructed of 2 (X-YZg), 3 (X-YZWg) or even more Slater-type orbitals. These
are called double-ζ, triple-ζ, etc. basis sets, respectively. The number of Gaussian
functions used to approximate the Slater-functions in these basis sets is denoted
by Y, Z, W, . . . . Furthermore, additional basis functions are used to model po-
larization effects [116]. This is denoted with X-YZg* or X-YZWg*. The basis sets
used in this work are shown in Tab. 2.2.
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2.4 Force field based morphology generation

For the calculation of charge carrier mobility in disordered amorphous systems,
atomistically resolved morphologies of sufficient size are required. Several diffe-
rent methods and approaches are used for this task. Most of them are based on
parametrized classical force fields which describe intra- and intermolecular inter-
actions. Molecules are represented by N point-like atoms, Nb bonds between these
atoms, Na angles between these bonds and Nd dihedral angles between planes de-
fined by the angles. Deformation of the molecular geometry as well as interaction
energies are modeled using these force fields. They consist of different terms de-
scribing several possible interactions between atoms. These are often divided into
bonded and non-bonded terms.

Vbonded =

Nb∑
i

kb,i(ri − ri,0)
2

+
Na∑
i

ka,i(θi − θi,0)
2

+

Nd∑
i

Vd,i(ϕi)

(2.29)

Vnon-bonded =
N∑
i

N∑
j>i

qiqj
4πεε0rij

+
N∑
i

N∑
j>i

VLJ(rij)

(2.30)

Equation 2.29 describes the bonded interaction and has three terms. The first
term is the energy of bond stretching in quadratic approximation. ri is the bond
length of bond i and ri,0 is the equilibrium bond length of this bond. kb,i describes
the force constant of the bond and depends on the atoms forming the bond and
their chemical environment. The second term, also in quadratic approximation,
describes the bending of angles between bonds. θi, θi,0 and ka,i are defined anal-
ogously to the bond stretching term. The third and last bonded term describes
the energy contributions Vd,i(ϕi) from dihedral angles ϕi. In many standardized
force fields [118, 119], this term is approximated as a periodic cosine-like function
with a certain periodicity and amplitude. As described in Chapter 3.1.1 and by
MacKerell et al. [120] and Lukyanov et al. [121], molecule specific force fields are
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required for a realistic description of dihedral potentials.

The non-bonded interaction is described in Eq. 2.30. The first term represents
the Coulomb interaction between partial charges which are assigned to each atom.
εε0 is the permittivity of the material and rij is the distance |r⃗i−r⃗j| between atoms
i and j. The partial charges qi and qj represent the net charge density of each atom.
These point charges are evaluated for each molecule individually using different
methods, such as the projection of the charge density on the position of atoms
(Mullikan charges [122]) or as a fit to reproduce the electrostatic potential of a
molecule (ESP charges [123, 124]). The second non-bonded term is the classical
Lennard-Jones (LJ) interaction between all pairs of atoms. It includes a repulsive
term modeling the Pauli repulsion between the orbitals of different molecules and
a term describing the van der Waals’ interaction (attraction) due to correlated
fluctuations of the charge density. The leading term in van der Waals’ attraction
is interaction between the fluctuating dipole moments which scales with the power
of r−6

ij . For numerical reasons, the Pauli repulsion is modeled using a r−12
ij term.

One possible definition of the Lennard-Jones interaction is given in Eq. 2.31.

VLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
(2.31)

The energy ϵ is the depth of the LJ-potential while the length σ is defined via
VLJ(r = σ) = 0. Other definitions of the Lennard-Jones potential use an exponen-
tial function or other distance dependencies to describe the Pauli repulsion.

2.4.1 Molecular dynamics (MD)

Molecular dynamics (MD) is a method which can be used for the simulation of
the movements of molecules in an amorphous condensed state. In this method,
Newtons equations of motion are solved for a system of atoms and molecules in
an iterative way using the force fields derived in the last section. Changes of atom
positions within one molecule lead to changes of bond lengths as well as angles
between these bonds and dihedral angles. Non-bonded interaction is described
via Coulomb interaction between the partial charges of atoms and Lennard-Jones
interaction. Starting from an initial state of the system ({r⃗i(t0), ˙⃗ri(t0)}), the total
energy as a function of the atom coordinates is calculated. Forces acting on the
atoms are computed using the derivative of the total energy V ({r⃗i(t0)}) with
respect to the atom coordinates.

mi
¨⃗ri = ∇r⃗iV ({r⃗i(t0)}) (2.32)
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New atom positions and velocities are then evaluated using a numerical inte-
gration with a time step ∆t. Using the new coordinates and velocities {r⃗i(t0 +
∆t), ˙⃗ri(t0+∆t)}, the energy V ({r⃗i(t0+∆t)}) can be re-evaluated. Kinetic energies
are rescaled according to a given distribution in order to adjust the temperature
of the system (thermostat). The pressure of the system and therefore the volume
can be controlled via scaling of the atom positions (barostat). Iteration of this
procedure leads to a time evolution (trajectory) of the system. Snapshots of this
simulation after a certain equilibration time can be used as input for quantum
mechanical analysis.

2.4.2 Monte Carlo based methods (MC)

Monte Carlo based methods for morphology generation like the Deposit protocol
developed by Tobias Neumann [12] also start with a set of initial coordinates
{r⃗i}0 and make use of random moves of single atoms to obtain new coordinates
{r⃗i}1. The total energy E1 of the new system is evaluated in a similar way as
in MD methods and compared to the initial total energy E0. The proposed step
is accepted with a probability according to the Metropolis criterion shown in
Eq. 2.33.

ω(0 → 1) =

{
1 if E1 ≤ E0

exp
(
−E1−E0

kBT

)
if E1 > E0

(2.33)

p(i)ω(i → j) = p(j)ω(j → i) (2.34)

The acceptance criterion in in Eq. 2.33 fulfills the detailed balance given in
Eq. 2.34. The detailed balance can be derived using the condition of a stationary
microscopic state without net flux. p(i) is the probability of the system to be in
state i and ω(i → j) it the transition probability for the transition from state i to
state j.

p(i)
∑
j ̸=i

ω(i → j)︸ ︷︷ ︸
flux out of state i

=
∑
j ̸=i

p(j)ω(j → i)︸ ︷︷ ︸
flux into state i

(2.35)

For a steady state, each single transition has to be in equilibrium, leading to

p(i)ω(i → j) = p(j)ω(j → i) . (2.36)
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Boltzmann statistics yield an occupation probability p(i) ∝ exp (−Ei/(kBT )) of
a state i with energy Ei. Thus, the ratio of ω(j → i) and ω(i → j) can be written
as

ω(i → j)

ω(j → i)
= exp

(
−Ej − Ei

kBT

)
. (2.37)

One way to fulfill this condition is the Metropolis criterion presented in Eq. 2.33.

In the Deposit algorithm, molecules are added to the simulation box sequen-
tially. The energy of the system is evaluated using the force fields defined in
Eq. 2.29 and 2.30. For each molecule, a certain number of Monte Carlo steps is
performed in order to explore the potential energy surface and to find a position
according to a Boltzmann distribution of energies at a temperature T . Several
simulated annealing (SA) cycles are performed and accepted according to the
Metropolis criterion. In each simulated annealing cycle, the temperature of the
system is reduced from an initial temperature above room temperature to the de-
sired end temperature of the system. The grid-based energy evaluation used in the
Deposit method is independent of the number of molecules in the system. There-
fore, the method scales linearly with the system size. This allows the generation of
atomistic morphologies of sizes up to 10 000 molecules and more. Periodic bound-
ary conditions perpendicular to the growth direction allow for further expansion
of the morphologies.
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3
Development of multiscale methods

Research on amorphous organic semiconductors throughout the past decades
solved many fundamental aspects of charge transport. The charge transport mech-
anism and various properties determining the charge mobility and conductivity of
organic semiconductors are now well understood (see Chapter 2.1.4). Examples
for such properties are molecular dipole moments and distortions in the condensed
state [90, 125–128]).

Despite the aforementioned research, methods which quantify charge carrier
mobility and details of its molecular origin are presently lacking [90, 126]. Grow-
ing computational resources enable to close the gap between atomistic quantum
mechanical calculations on the molecular level and continuum theories on the
length scale of amorphous layers and devices. Such an approach requires many
ingredients, such as an accurate description of the morphology and the electronic
structure of the system as well as reliable models for the description of charge
transport. This work presents the development and application of a simulation
method which is capable of reliable and quantitative prediction of the charge mo-
bility of organic semiconductors.

The simulation methods which were developed and used in this work will be
introduced in this chapter. It is based on the theoretical background introduced
in Chapter 2 and will be applied to problems concerning properties of amorphous
organic materials in Chapter 4. The first part of this chapter introduces the con-
cept of multiscale modeling for charge transport simulations in organic electronics.
Due to the various different length scales determining charge transport properties
of disordered materials, this modeling technique is an essential tool to capture all
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relevant effects contributing to charge transport.

In Chapter 3.2, the central part of this multiscale workflow, namely the Quan-
tum Patch method, is introduced. Using the Quantum Patch method, site energies,
transfer integrals and other microscopic properties of amorphous systems can be
calculated. It requires atomistically resolved morphologies and takes electrostatic
interaction between molecules into account in a self-consistent way. This method
was developed in my Master’s thesis [69] and extended in this work. Chapter 3.4
introduces a mesoscopic demixing algorithm, which is used for the generation of
3D coarse grained morphologies of bulk heterojunctions used in organic solar cells.
Parts of this chapter are based on Friederich et al. [68, 129–131], Rodin et al. [14]
and Mönch et al. [132, 133].

3.1 Multiscale modeling of charge transport

As described in Chapter 2.1.4, charge transport in disordered organic materials
can be described as a sequence of hopping processes between states which are
localized on single molecules. The Marcus hopping rate (Eq. 2.4) can be used to
quantify the dynamics of the hopping processes. It depends on several material
specific parameters such as intermolecular electronic couplings, energy differences
between initial and final states of the hopping processes and molecular reorgani-
zation energies. All of these microscopic quantities depend on the molecules and
their electronic structure as well as their relative alignment and packing in amor-
phous molecular films. In strongly disordered materials, percolation effects on the
10−100 nm range start to play a role and determine charge mobility [51, 97, 134].
Therefore, charge transport properties such as charge mobility and conductivity
can only be reliably calculated and predicted when all relevant length scales are
taken into account. This can be achieved in a multiscale modeling approach, in
which different length scales are modeled using different simulation techniques.
Each of the tightly coupled models describes the relevant effects of the respective
length scale. This procedure spans all length scales from single molecules (Å) to
amorphous thin films and devices (nm−µm).

The entire multiscale workflow for the calculation of charge carrier mobility
is depicted in Fig. 3.1. It starts with the parameterization of a single molecule.
The ground state geometry, atomic partial charges representing the electrostatic
potential created by the charge density of the molecule and soft internal degrees
of freedom, in particular dihedral angles, are parameterized using DFT and semi-
empirical methods (see Chapter 3.1.1). These parameters are used in the following
morphology generation step. Atomistically resolved systems with a size of up to
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Figure 3.1: Schematic description of the multiscale workflow including molecule specific force
field parameterization, followed by morphology generation and extraction of quantum mechan-
ical parameters. The workflow ends with either approximative estimate of the charge carrier
mobility or a numerical charge transport simulations using e.g. kinetic Monte Carlo (KMC)
methods.

several thousand molecules are generated using classical force field based mole-
cular mechanics (MD) or Monte Carlo (MC) methods (see Chapter 3.1.2). These
classical methods model the interaction between the tightly coupled molecules
using electrostatic point charges and standardized atom-specific Lenard-Jones po-
tentials. In MD methods, hard internal degrees of freedom like bond lengths and
angles are also treated on a standardized force field level [135, 136]. In the Monte
Carlo based simulated annealing protocol Deposit [12] used in this work, bond
lengths and angles are kept frozen. The atomistic morphologies obtained in this
step are used in the next step to identify and characterize the electronic struc-
ture (see Chapter 3.1.3). This is done using the Quantum Patch approach [68]
presented in Chapter 3.2 or with similar methods. In this method, site energies
for localized polarons (electrons and holes including their polarization cloud), the
energy disorder, electronic couplings between the states as well as reorganization
energies including embedding effects are calculated. These are transfered to the
next step, where macroscopic properties, such as charge mobility, are obtained
using either approximative analytic approaches, e.g. the GEMM approach [14], or
numerical methods such as kinetic Monte Carlo simulations. The latter are capa-
ble of simulating mixed materials, multilayer structures and full devices. Details
on the single steps of the multiscale approach will be given in the next sections.
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3.1.1 Molecule parameterization

The multiscale approach for calculation of the charge mobility of amorphous or-
ganic semiconductors starts with the analysis and parameterization of isolated
molecules in vacuum. In this step, the gas phase geometry as well as electrostatic
properties of the molecule are obtained in DFT calculations. The electrostatic
potential created by the molecular charge density is analyzed and atom centered
partial charges are fitted in order to reproduce a similar electrostatic potential.
This procedure is called Merz-Singh-Kollman fit and the partial charges obtained
are called ESP charges [123, 124]. For the generation of atomistic morphologies,
the ground state geometry as well as molecular partial charges are used as input
parameters for the classical force fields. Intermolecular interaction is described us-
ing molecule specific partial charges and general, element-specific Lennard-Jones
parameters (see Chapter 2.4).

Intra-molecular degrees of freedom can be separated in two groups. Vibrational
degrees of freedom such as the stretching of covalent bonds and bending of angles
between them usually have excitation energies above room temperature and there-
fore do not play a relevant role. Additionally, local bond and angle deformations
have only minor impact on the global geometry of the molecule in comparison to
most dihedral angles. In molecular dynamics simulations, these degrees of free-
dom are modeled using a harmonic approximation using atom- and bond-specific
parameters. In the Metropolis Monte Carlo based Deposit simulations used in this
work, molecular bond lengths and angles are extracted from DFT optimizations
and kept frozen during morphology generation.

The second group of internal degrees of freedom include the rotation of groups
around single bonds. The angle between two planes defined by two molecular
fragments is called dihedral angle. The dihedral potential and more specifically its
energy minima and the energy barriers between these minima are molecule spe-
cific and can in most cases not be generalized as universal force fields. Therefore,
the dihedral force field requires a molecule specific parameterization.

During this work, two methods for the parameterization of dihedral angles were
developed and used. Both methods start from the optimized molecular structure
and independently rotate the two molecular fragments connected by a dihedral
angle with respect to each other. In the first method, the SIMONA package [137]
is used for a stepwise rotation of a specific dihedral angle. The rotation is ac-
complished using a strong bias potential. In each rotation step, all other dihedral
angles are relaxed to avoid steric clashes between other groups of the molecule.
The final states of the stepwise rotation is then analyzed in DFT single-point cal-

40



culations. The total energies obtained in these calculations are used to generate
the dihedral potential for the respective dihedral angle. This method has several
drawbacks: Firstly, the dihedral potentials obtained with this method can be very
noisy due to the MC-based relaxation of the molecule in each rotation step. This
specifically applies for large molecules with many internal degrees of freedom.
Secondly, the force field based relaxation itself requires dihedral potentials. This
makes the use of generic dihedral potentials necessary. These, as mentioned above,
are often inaccurate and might lead to systematic errors.

Therefore, a second method for the parameterization of dihedral potentials was
developed, which only depends on quantum mechanical methods. Similar to the
first method, each dihedral angle is rotated stepwise, followed by a relaxation of the
rest of the molecule. In contrast to the first method, the rotation is forced in this
case which might lead to clashes between molecular groups. This can be avoided by
using a small step size. The relaxation of the rest of the molecule is performed using
quantum mechanical methods, which do not require pre-parameterized dihedral
potentials. To conserve and limit he required computation time, semi-empirical
methods are used in this work. In general, more accurate DFT calculations are
also possible. The full rotation of each dihedral angle is sampled in both rotation
directions. At each angle, the minimum of the two energies from both rotation
directions is chosen. This procedure avoids artificial, asymmetric potentials caused
by steric tension between groups of the molecule, which may abruptly relax at
some point during the rotation.

One remaining source of error in both methods lies in the initial structure of the
molecule. In some molecules, the single bond connecting two groups via a dihedral
angle is not symmetric but slightly bent in one direction. A rotation around this
dihedral angle leads to an artificially asymmetric dihedral potential. The energy
minimum of the DFT-optimized initial structure (dihedral angle of θ0) should, for
symmetric molecules, be equal to the energy minimum at −θ0. The bending of
the angle in the initial structure lifts the symmetry, which reflects itself in dif-
ferent potential minima at θ0 and −θ0. For many molecules, the influence of this
asymmetry in the dihedral potential on the morphology is rather weak, which can
have different reasons. In one scenario, the energy barriers of the dihedral poten-
tial between different minima are much smaller than the thermal energy at room
temperature. This is the case for the rotation of single methyl side groups. In
such examples, all dihedral angles are thermally accessible during the morphology
generation and slight asymmetries do not play a role. In other cases, the energy
barrier between θ0 and −θ0 is so large that it is very unlikely for the molecule to
overcome the barrier at room temperature. Thus, the conformation will stay in
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the initial minimum and only sample the energy landscape around this dihedral
minimum. The depth of the second minimum around −θ0 again does not play a
role. Nonetheless, a solution to the problem of asymmetric dihedral potentials is
part of ongoing work.

Another method for the parameterization of internal degrees of freedom uses the
vibrational spectrum of a molecule, which can be obtained from diagonalization
of the Hessian matrix. This method solves the issue of asymmetry. At the same
time, it is independent of the arbitrary choice of hard and soft degrees of freedom.
The vibrational eigenmodes are linear combinations of all possible changes of
bond lengths, angles and dihedral rotations. The corresponding eigenfrequencies
permit a quantitative classification of vibrations allowed at room temperature and
vibrations which are very unlikely to be excited at room temperature. The analysis
of the vibrational spectrum of molecules with respect to HOMO/LUMO levels and
electrostatic properties was implemented in this work as a fast pre-screening tool
for the internal degrees of freedom of single molecules. The potential energies
obtained with this eigenmode analysis can, for technical reasons, not be used
in most MD or MC packages for morphology generation as complex collective
movements of multiple degrees of freedom would have to be taken into account.

3.1.2 Morphology generation

The second part of the multiscale modeling approach is the generation of atom-
istically resolved morphologies using classical methods. The force fields used in
these molecular dynamics (MD) or Monte Carlo (MC) methods (see Chapter 2.4)
are parameterized using the quantum mechanical molecular properties obtained
in the first step of the workflow.

In this work, Monte Carlo based simulations using the Deposit package [12] as
well as molecular dynamics [138, 139] based GROMACS simulations [140] were
performed. Depending on the application, these two methods have advantageous
or limiting inherent differences. The Deposit package mimics a vacuum deposition
process in which a spatial anisotropy in growth direction can be observed. Molecu-
lar dynamics simulations on the other hand yield isotropic molecular orientations.
At the same time, the intramolecular degrees of freedom in Deposit are restricted
to dihedral movements, while in MD all molecular distortions are allowed. The
restriction to dihedral movements in the Deposit method is artificial but in many
cases necessary due to the lack of realistic force fields which often lead to artifi-
cially distorted molecules. Moreover, vibrations including the stretching of bonds
and the bending of bond angles have high excitation energies which are unlikely
to occur at room temperature.
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Molecular dynamics

In the GROMACS-based [140] MD simulations presented in Chapter 4.4 and in
Friederich et al. [131], the following algorithm was used: The molecules were pa-
rameterized according to the general AMBER force field (GAFF) [136]. Partial
charges were obtained using semi-empirical AM1-BCC calculations [141, 142]. The
performance in the prediction of thermodynamic properties of the general AMBER
force field was shown in two benchmark studies on a wide range of small organic
molecules [143, 144]. In the molecular dynamics simulation, periodic boundary
conditions (PBC) were used in all spatial directions.

The simulation itself incorporates three steps: sample preparation, simulation
of the liquid phase and annealing to the solid phase. Initially, a cubic box is filled
with disordered molecules with a density of 0.9 g/cm3, where unphysical close
contacts are removed. Velocities of the atoms are distributed according to a tem-
perature of 800K. The simulation starts with a 10 ps run in the NVT ensemble,
which means that the number of molecules, volume and temperature are kept
constant are kept constant. This relaxation equilibrates the initial velocity dis-
tribution. After this sample preparation step, a longer equilibration is performed
for 1 ns at a temperature of 800K using a NPT ensemble at constant number of
molecules, pressure and temperature. During this second step, the mean squared
displacements of the centers of mass of all molecules have to be larger than the
characteristic size of one molecule. This ensures that the system is in a liquid
state. At the same time, the density of the system is equilibrated at a pressure
of 1 bar. In the third and last step, the system is annealed from a temperature
of 800K to a temperature of 300K with a cooling rate 100K/ns during a NPT
simulation. Afterwards, a final 2 ns NPT equilibration is performed at 300K to
generate a trajectory of the solid amorphous system at room temperature. The
solid state is characterized by a mean squared displacement of molecules which
is smaller than the typical molecule size. In this state, the molecular motion is
constrained by the neighboring molecules and only thermal vibrations occur.

Deposit

In Deposit simulations [12] (see Chapter 2.4.2), morphologies are generated in a
sequential way by depositing one molecule after another. The deposition process of
each molecule consists of NSA simulated annealing cycles (SA). In each cycle, NMC

Metropolis Monte Carlo steps are performed while the temperature is decreased
from Thigh to Tlow using a geometrical cooling schedule. After each SA cycle, the
final state of the cycle is accepted using the Metropolis Monte Carlo acceptance
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criterion at a temperature of Tacc. Details of the Metropolis criterion can be found
in Chapter 2.4.2. Typical Deposit simulations performed in this work use 10 to 20
SA-cycles with 104-105 Monte Carlo steps each. The number of Monte Carlo steps
required for a converged molecular density depends on the number of internal
degrees of freedom of the molecules. Large molecules with many dihedral angles
require up to O(105) MC steps, while for rigid molecules, O(104) MC steps are
sufficient. Due to technical improvements, the maximum system size in Deposit
simulations grew to more than 10 000 molecules. Typical Deposit morphologies
used in Chapter 4.6 include 1000 molecules which were periodically extended in
x- and y-direction (perpendicular to growth direction).

Beyond force field based morphology generation

In MD as well as MC based methods for morphology generation, two funda-
mental approximations exist which can lead to inaccuracies and systematic er-
rors. The first approximation lies in the parametrization of the aforementioned
force field. Especially for complex molecules such as large conjugated systems, the
parametrization may be inaccurate due to the generic nature of the force field.
Various quantum mechanical effects are neglected, as they cannot be mapped to
the functional form of the force field. This makes molecule specific force fields
necessary

A second issue arises from the calculation of electrostatic interactions between
molecules. In force field based methods, the charge density is mapped on atom-
centered partial charges and the electrostatic interaction between these point
charges is evaluated. In most force field based MD and MC methods, these partial
charges are calculated in advance. During the simulation, the molecular geometry
changes upon internal distortions of the molecules, while the partial charge associ-
ated with each atom is kept constant. This static model is a rough approximation
to real changes of the charge density within a molecule. A more realistic model
requires re-evaluation of the partial charges after each molecular distortion on a
quantum mechanical level. Even on semi-empirical level, this is very expensive in
terms of computational cost.

To get more physical morphologies, these two issues have to be solved. As one
possible solution, a hybrid QM/MM method using an algorithm similar to the
Deposit method is possible. Here, the explicit relaxation of each new molecule
is done in a quantum mechanical or semi-empirical structure optimization. All
molecules within a certain cut-off distance to the new molecule are explicitly
taken into account. Long range electrostatic interaction with molecules further
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apart can still be described using partial charges. The atom positions of already
deposited and relaxed molecules at the interface between the explicit neighbors
and the point charge embedding have to be fixed. In this way, it is possible to
treat the internal degrees of freedom of each molecule in a quantum mechanical
way. At the same time, more accurate point charges are used, which reproduce
the electrostatic potential of the individual charge density of each molecule in the
classical force field step.

3.1.3 Electronic characterization

In the third step of the multiscale workflow shown in Fig. 3.1, the atomistic mor-
phologies generated in the second step are analyzed in a quantum mechanical
model. All parameters necessary for the calculation of Marcus hopping rates are
computed in this step (see chapter 2.2.1). These parameters include the on-site en-
ergies for electrons and holes in the system, reorganization energies and electronic
couplings.

Site energies

In this work, the site energies are calculated using the Quantum Patch method,
which will be described in detail in Chapter 3.2. In this method, additional charges
(electrons and holes) are assigned to certain molecules in the system and the ion-
ization potential (IP) and electron affinity (EA) as well as other molecular pro-
perties are calculated. Effects of intermolecular interactions such as polarization
are intrinsically included in a self-consistent way.

Reorganization energies

The calculation of reorganization energies is based on Nelsen’s four-point-pro ce dure
[64] (see Chapter 2.2.1). In this work, three different techniques are applied, from
which two are newly developed. In many publication, the reorganization energy
is assumed to be a molecular property, which does not depend on the specific
individual environment in which a molecule in an amorphous structure is embed-
ded. All steps of the four-point-procedure (neutral relaxation, charging, charged
relaxation, discharging, neutral relaxation) are evaluated in vacuum in this ap-
proximation.

An extension to this procedure is the incorporation of embedding effects. These
restrict the full relaxation of the molecule during the geometry optimizations of
the four-point-procedure. In the frozen-dihedral approximation, the intramolecu-
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lar degrees of freedom leading to the largest changes in molecular conformation,
namely the dihedral rotations, are kept frozen in the state of the molecule in the
amorphous morphology. All relaxations of bond lengths and angles are allowed,
making conformational changes along breathing modes possible. The relaxation of
these breathing modes often occurs during the charging and discharging process
of a molecule.

In a third method for the computation of reorganization energies, embedding
effects are taken into account in an intrinsic way. Instead of an explicit restric-
tion of the molecular reorganization, the Pauli repulsion of neighboring molecules
acts as a limitation for the molecular reorganization. This is done using a density
embedding approach where the atoms and the electron density of the neighboring
molecules are modeled as effective potentials which interact with the charge den-
sity of the central molecule. For practical reasons, effective core potentials (ECPs)
are used in this work. These are fitted to reproduce the repulsive potential of the
closed electronic shells of each atom.

Electronic couplings

The third group of parameters necessary for the calculation of Marcus rates are
the intermolecular electronic couplings. In this work, they are calculated using mo-
lecular frontier orbitals obtained in a self-consistent equilibration of the electronic
structure of amorphous systems. The formalism for the calculation of electronic
couplings is described in Chapter 2.2.1. Fock and overlap matrices (F and S) for
molecular pairs are obtained from DFT single-point calculations of dimer systems.
Electrostatic embedding effects are taken into account in the Quantum Patch for-
malism (see Chapter 3.2). The Fock and overlap matrices can be calculated using
the coefficient matrix c and the diagonal matrix of orbital energies E.

S = c-1 · (c-1)† (3.1)

F = c-1 · E · (c-1)† (3.2)

Electronic coupling elements between the frontier orbitals of molecules i and
j extended on the dimer basis are then calculated using Eq. 3.3 (see also chap-
ter 2.2.1).

Jij =
⟨i|F |j⟩ − 1

2
(⟨i|F |i⟩+ ⟨j|F |j⟩) ⟨i|S |j⟩
1− ⟨i|S |j⟩ 2

(3.3)
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3.1.4 Charge carrier mobility

Charge transport based on the microscopic parameters and systems obtained in
the previous steps of the multiscale workflow can be simulated in various differ-
ent ways (see Chapter 2.2.3). In this work, an effective medium model is used to
estimate an upper bound of the charge carrier mobility. This model is based on
an approximative solution of the master equation using Marcus hopping rates.
The so-called generalized effective medium model (GEMM) and is described in
Chapter 2.2.3. Its functional form of the charge mobility is shown in Eq. 2.17.
The advantage of this effective medium model compared to numerical simulations
is the possibility to analyze its different microscopic contributions. This helps to
determine and understand molecular properties which influence the charge carrier
mobility or organic materials. This analysis will be shown in Chapter 4.5.
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3.2 Quantum Patch method

This chapter will revisit the Quantum Patch approach, a method originally deve-
loped during my master’s thesis in 2013 [69]. The Quantum Patch approach was
extended and extensively used throughout this work [68, 129, 130, 145]. The aim
of the Quantum Patch method is the calculation of the electronic structure of large
amorphous systems consisting of weakly coupled molecules. The method is based
on the self-consistent evaluation of the electronic state of each molecule while tak-
ing intermolecular electrostatic interaction into account in a self-consistent way.
In this way, large system sizes of up to several thousand molecules can be ana-
lyzed. Such system sizes are impossible to calculate using e.g. standard DFT. At
the same time, the Quantum Patch method can confine charges, excitations or
charge transfer states to certain parts of the system. This opens the possibility
for detailed analysis of non-equilibrium states of the system.

The first part of this chapter will give a brief introduction into the methodo-
logy of the Quantum Patch method. The other parts explain the application of
the Quantum Patch method on neutral systems as well as on the treatment of
additional charges, excitations and charge transfer processes.

3.2.1 Methodology

In this section, an approach for the self-consistent evaluation of the electronic
states of an amorphous system of weakly coupled molecules will be derived. Start-
ing point of the derivation is the electronic part of the interacting many-body
Hamiltonian of a molecular system (see Chapter 2.3). Using the principles of
frozen density embedding in DFT [146, 147], the system is partitioned into a
number of sub-systems. Formally, this cannot be done exactly due to missing
contributions to the kinetic energy functional in the Kohn-Sham formalism. A de-
tailed discussion can be found in my Master’s thesis [69]. In the regime of weakly
coupled molecules, the error due to this approximation becomes negligible.

The second part of the derivation goes beyond frozen density embedding. Here,
only Coulomb interaction between electrons of different parts of the system is
taken into account while correlation and exchange effects are neglected. The mo-
tivation of this is again the weakly coupled nature of small molecule systems.
This additional approximation leads to a formal description of the system of elec-
trostatically interacting single molecules as a block diagonal Hamiltonian. The
electronic state of this system can be obtained using a self-consistent solution of
the system of coupled single-molecule Schrödinger equations. Partial charges of
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each molecule in the system are re-evaluated in each step of the self-consistency
loop. These point charges are used to model the electrostatic interaction of the
molecules, which couples the single Schrödinger equations.

Wesolowski et al. [146, 147] describe another approach, in which the weak ex-
change and correlation effects between electrons of different molecules are taken
into account in an effective way. Such density embedding approaches lead to exact
results in systems of weakly coupled molecules in the sense of Marcus-theory but
require development of effective exchange-correlation functionals.

The derivation of the Quantum Patch method starts with the total energy
functional of DFT which can be derived from the electronic Hamiltonian in Born-
Oppenheimer approximation (see Chapter 2.3).

E[n(r⃗)] =V̂NN +

∫
n(r⃗)vnuc(r⃗)dr⃗

+
1

2

∫
n(r⃗)n(r⃗ ′)

|r⃗ − r⃗ ′|
dr⃗ 3dr⃗ ′ 3

+ T̂e[n(r⃗)] + Êxc[n(r⃗)] .

(3.4)

In this equation, V̂NN describes the constant Coulomb interaction between the
nuclei at positions {R⃗I}. It is constant and will be set to zero from now on. The
second term is the potential energy of the electron density in the electrostatic po-
tential vnuc(r⃗) =

∑N
I ZI/(|r⃗− R⃗I |) caused by the nuclei. The third term is a mean

field Coulomb interaction similar to the Hartree term describing the interaction of
the electron density with itself. The kinetic energy functional T̂ evaluates the ki-
netic energy of the non-interacting quasiparticles. ÊXC is the exchange-correlation
functional, which corrects errors of the mean-field approximation in the Hartree
term and errors due to the non-interacting particles in the kinetic energy func-
tional. Formally, the energy functional in Eq. 3.4 leads to a correct evaluation
of the total energy of a system. Nonetheless, the exact form of the exchange-
correlation functional is not known which leads to systematic errors in DFT.

The M molecules in amorphous systems investigated in this work are only
weakly coupled. This enables the partitioning of the system into M fragments.
The total density n therefore splits up into different parts ni.

n(r⃗) =
M∑
i

ni(r⃗) (3.5)
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The Hamilton operator for a system of M weakly coupled molecules with elec-
tron densities ni(r⃗) that only interact with each other via electrostatic interaction
is expressed in Eq. (3.6).

Ĥ =


Ĥ1

[∑M
i=1 ni(r⃗)

]
0 · · ·

0 Ĥ2

[∑M
i=1 ni(r⃗)

]
· · ·

...
... . . .


≡ Ĥ1 ⊕ Ĥ2 ⊕ ...⊕ ĤM

(3.6)

As indicated by the sum notation, the Hamilton operators of different molecules
act on different subspaces of the Hilbert-space. They only influence each other via
the electrostatic potential caused by their electron density and their cores. There-
fore, each single molecule Hamiltonian is a functional of the total charge density.
As explained above, one can neglect exchange and correlation effects between the
different weakly coupled molecules. A consequence of this is that the Hamiltonian
in Eq. 3.6 has no eigenstate (orbital), which is delocalized over more than one
molecule. Thus, no hybridization between molecules takes place. This approxima-
tion is in agreement with the charge transport model describing localized states,
which move through the system in a sequence of hopping processes.

The Schrödinger equation of the system can now be written as a system of
coupled differential equations.

Ĥi

[
ni(r⃗) +

M∑
j=1,j ̸=i

nj(r⃗)

]
|φi⟩ = Ei |φi⟩ (3.7)

The full charge density is intentionally split into the charge density ni(r⃗) of
molecule i and the charge densities nj(r⃗) of the environment molecules. This
splitting will be used further below. The dependency of the charge densities
nj(r⃗) = |⟨φj(r⃗)|φj(r⃗)⟩|2 on the wave functions |φj⟩ of all other molecules leads
to a coupling of the single equations. Assuming that partial charges q, which are
fitted in the scheme of Merz, Singh and Kollman [123, 124], can approximately
reproduce the electrostatic potential created by the charge density of a molecule,
one can substitute the electron density of a molecule j in the environment by the
sum of its partial charges qj,k.

nj(r⃗) → ñj(r⃗) =
∑
k

qj,k · δ(r⃗ − R⃗j,k) (3.8)
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The system of coupled Schrödinger equations (3.7) decouples for the case that
the partial charges for all surrounding molecules are known. This leads to a system
of M uncoupled equations (3.9) that explicitly include the electrons and cores of
only one molecule.

H̃i

[
ni(r⃗) +

∑
j ̸=i,k

qj,k [ñj(r⃗)] · δ(r⃗ − R⃗j,k)

]
|φ̃i⟩ = Ẽi |φ̃i⟩ (3.9)

Here, the partial charges qj,k implicitly depend on the charge density ñj(r⃗)
of molecule j. By guessing initial partial charges of all molecules, one can self-
consistently solve this set of equations. In each iteration of the self-consistency
loop, the system of decoupled Schrödinger equations (3.9) is solved using numeri-
cal methods similar to those applied for the solution of the Kohn-Sham equations
of density functional theory (DFT) (see Chapter 2.3). New wave-functions for the
molecules are obtained, which yield new electron densities ñi(r⃗) = |⟨φ̃i(r⃗)|φ̃i(r⃗)⟩|2
and new partial charges. These charges enter the single molecule Hamiltonians of
the next step. Iteration of this procedure will lead to a convergence of the charge
densities ñi(r⃗), the Hamiltonians H̃i[ni(r⃗)] and finally the energies Ẽi.

To calculate the Marcus hopping rates of electrons and holes (Eq. 2.4), the site
energy differences ∆E between charged hopping sites is needed as an input. The
site energy of each molecule can be approximated as electron affinity and ioniza-
tion potential of the molecule. These energies depend on the chemical structure of
the molecule, its individual conformation and its unique (electrostatic) environ-
ment. These site energies can be calculated for each molecule in the system using
the Quantum Patch method presented above.

3.2.2 Neutral systems

Within the Quantum Patch method, it is possible to equilibrate neutral molecular
systems. This procedure is described in my Master’s thesis [69] and in Friederich et
al. [68, 129, 130]. The scheme of the neutral Quantum Patch method is illustrated
in Fig. 3.2. After an initial step in which the partial charges of each molecule are
obtained in vacuum calculations, the self-consistent iterations begin. The partial
charges of all molecules are used as electrostatic embedding for the calculation of
new partial charges of each molecule. These calculations can be performed inde-
pendently from one another in parallel. The embedding charges are updated after
each iteration step until convergence is reached. After that, molecular properties
such as HOMO and LUMO levels of each molecule in the system can be extracted.
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1.

2.

3.

4.

5.

Neutral system including disorder and
polarization effects

Figure 3.2: Pictorial description of the algorithm used for the calculation of energy disorder
in a system of 4 neutral Alq3 molecules. In the first step (first row), vacuum partial charges of
each molecule are calculated. Afterwards, the partial charges of the molecules are re-evaluated
within a cloud of explicit point charges until convergence of the total energies of all molecules
is reached (rows 2-5). Energy disorder can be estimated from the distribution of orbital en-
ergies of the molecules. The width of the distributions of HOMO and LUMO orbitals can be
interpreted as the energy disorder for hole and electron transport, respectively.
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Vacuum DFT calculation (each molecule)

Loop over all molecules

Charge on molecule i

Converged? noyes
next molecule

Partial charges

Partial charges

∆Eif/σ

DFT calculation with partial charge environment of
each molecule within cutoff around molecule i

Figure 3.3: Schematic description of the algorithm used for the calculation of energy disorder
within the charged Quantum Patch method. In a first step, vacuum partial charges of each
molecule are calculated. Afterwards, an additional charge is assigned to a certain molecule.
Partial charges of this molecule and of each of its neighbors within a certain cut-off distance
are re-evaluated. The self-consistent iterations are repeated until convergence of the total en-
ergy of the charged molecule is reached. This procedure is repeated for positive and negative
additional charges on each molecule in the system.

3.2.3 Modeling of additional charges, excitations and
charge transfers

In addition to the analysis of neutral systems, additional charges can be assigned
to certain molecules in the system. The algorithm for this extension of the neutral
Quantum Patch method is shown in Fig. 3.3. In this algorithm, an additional
charge is assigned to molecule i and its vacuum partial charges are calculated.
These and the vacuum partial charges of the surrounding (neutral) molecules j

enter as initial parameters into the self consistent calculation of new states |φ−/+
i ⟩

of the charged molecule and |φj ̸=i⟩ of the uncharged molecules. In the next step,
the partial charges q−/+

i,k of the charged molecule i and the partial charges q0j ̸=i,k of
the now polarized molecules j are calculated. Iterations are performed until the
energies E

−/+
tot,i of charged molecule i within the polarized environment converge.

This scheme is depicted in Fig. 3.3 and Fig. 3.4 and has to be repeated with
positive and negative charges on each molecule in the system.

To study polarization effects due to explicit additional charges and in order
to calculate ionization potentials (IP) and electron affinities (EA), a reference
calculation without additional charges is required. This reference calculation can
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1.

2.

3.

4.

5.

Charged state
including disorder and
polarization effects

Figure 3.4: Pictorial description of the algorithm used for the calculation of energy disorder
in a system of 4 Alq3 molecules with one additional electron on the upper left molecule. In
the first step (first row), vacuum partial charges of each molecule are calculated. During the
following self-consistent iteration, partial charges of the charged molecules and of each of its
neighbors are re-evaluated until convergence of the total energy of the charged molecule is
reached (rows 2-5). This procedure is repeated for positive and negative additional charges on
each molecule in the system (not shown in the figure).
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be done using the neutral Quantum Patch method described in Section 3.2.2.
Using this data, one can calculate the ionization potential of molecule i as

IPi = E env,+
tot,i − E env,0

tot,i . (3.10)

The index “tot” denotes that total molecular energies are used and “env” means
that the electrostatic environment of the positively charged (“+”) or neutral (“0”)
state is taken into account. The electron affinity can be estimated using

EAi = E env,−
tot,i − E env,0

tot,i . (3.11)

This procedure can be used to calculate the energy difference ∆Eij between two
molecules i and j for the Marcus hopping rate of electrons (“−”) and holes (“+”).

∆Eij =
(
E

env,−/+
tot,j − E env,0

tot,j

)
−
(
E

env,−/+
tot,i − E env,0

tot,i

)
(3.12)

Rearrangement of these terms leads to

∆Eij =
(
E

env,−/+
tot,j + E env,0

tot,i

)
−
(
E

env,−/+
tot,i + E env,0

tot,j

)
(3.13)

The first of the two terms can be interpreted as total energy of the dimer sys-
tem after the hopping process, while the second term describes the total energy
of the system before the hopping process. This is in agreement with the Marcus
formalism shown in Fig. 2.5a. It is necessary to keep in mind that each of the
total energy terms Etot includes the full electrostatic interaction with the environ-
ment. Therefore, E env,−/+

tot,j includes the Coulomb interaction with molecule j in
the uncharged state. This Coulomb contribution is also included in E env,0

tot,i , which
leads to a double counting of this interaction energy. The same double counting
of Coulomb interaction is included in the second state where molecule j is neu-
tral and molecule i is charged. Thus, the double counting partially cancels out.
To correct this double counting error, it is possible to reduce the environment
of the uncharged molecules by contributions coming from the charged molecules
(denoted with “env*”).

∆Eij =
(
E

env,−/+
tot,j + E env*,0

tot,i

)
−
(
E

env,−/+
tot,i + E env*,0

tot,j

)
(3.14)

As indicated in the name of this section, the Quantum Patch method is not only
restricted to the analysis of additional charges in a molecular system. Excitations,
charge transfer states and combinations of all can also be modeled within the
framework of the method. If, as an example, charge transfer complexes between
donor and acceptor molecules have to be analyzed, it is possible to either treat
these complexes as one single fragment of the system or to enforce an integer
charge transfer by treating the charge transfer dimer as two oppositely charged
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molecules.

The same principle can be applied for the analysis of excited molecules. The
coupling of the different molecules via point charges makes it possible to treat the
central, excited molecule with another method than the polarized molecules in its
environment. Using such a hybrid approach, different methods for the description
of the electronic structure can be combined. In particular, higher level methods
such as coupled cluster approaches or the GW method for the more accurate
description of excited states can be combined with standard DFT methods for
the evaluation of the polarization effect. The implementation of such a hybrid
method will be presented in the next chapter.

3.2.4 Hybrid quantum patch method

The Quantum Patch method introduced in this chapter is computationally de-
manding. As described in Chapter 3.2.3, the modeling of additional charges and
excitations leads to high computation times. Nonetheless, the method scales lin-
early with the number of molecules in the system. This is achieved by partitioning
of the system into single molecules which are only coupled via their electrostatic
interaction.

For each charged or excited molecule which is analyzed, the electrostatic interac-
tion between the neighboring molecules in a shell of about 25Å (approximately 100
molecules) around the central molecule needs to be calculated in a self-consistent
way. In addition, the electrostatic background potential of all molecules within a
cutoff distance of 60Å (up to 3000 molecules) enters the calculation in a static
way. This segmentation is based on the slowly decaying electrostatic interaction
between charges and molecular dipole moments which requires the consideration
of a large number of molecules for a converged electrostatic embedding. The po-
larization effect of additional charges on the other hand decays relatively fast,
making a smaller polarization shell around the central site possible.

In general, the Quantum Patch is not limited to treat all molecules in all shells
on the same level of accuracy. As only the properties of one central molecule
are analyzed, it is possible increase the accuracy of computations of this molecule.
This also allows the analysis of excited states of this molecule with methods which
go beyond standard DFT or Hartree-Fock. Furthermore, it becomes possible to
reduce the computational cost of the Quantum Patch calculation by using more
approximate methods for molecules which only indirectly enter the calculation. A
possible approach for the implementation of hybrid methods will be explained in
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the next section. Results of the hybrid Quantum Patch approach will be presented
in Chapter 4.3.

Methodology

In the hybrid QM/QM Quantum Patch approach, fast semi-empirical DFTB [148]
calculations for remote shells around a central molecule are combined with more
accurate DFT calculations for the charged central site and its direct neighbors.
In the Quantum Patch method, the interaction between molecules is mapped
onto clouds of molecular partial charges. These point charges are fitted to mimic
the static and induced dipole moment and higher electrostatic moments of the
molecules. Usually, the charge-dipole interaction between the charged central site
and its neighboring molecules is the leading contribution to the electrostatic in-
teraction.

If the molecular dipole moments calculated using the DFTB method are com-
parable to their DFT counterparts, replacements of expensive DFT calculations
at least for remote parts of the system are possible without loss of accuracy. To
investigate the potential and limitation of this DFT/DFTB combination, the mo-
lecular morphology is partitioned into a number of regions as shown in Fig. 4.4 of
Chapter 4.3. Different segmentation schemes are then compared to the result and
performance of the standard Quantum Patch method where explicit additional
charges are considered.

The first approximation to the charged Quantum Patch method is the treat-
ment of polarized and unpolarized molecules in remote areas with the faster
semi-empirical DFTB2 method. This will be referred to as the “hybrid large”
method. The next approximation is the replacement of the DFT calculations in
direct neighborhood to the central molecule with DFTB calculations (the “hybrid
small”). In this case, all molecules except the charged molecule will be treated with
DFTB. A full DFTB treatment of all molecules including the charged molecule
completes the comparison of the calculations with the full Quantum Patch method
(“semi-empirical”).
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Figure 3.5: In a superexchange process, a charge hops from molecule A to molecule C via a
virtual state localized on molecule B.

3.3 Superexchange mechanism in hopping trans-
port

Direct hopping processes involving two molecules as initial and final states are
the most important contribution to charge transport in many disordered systems.
Nonetheless, higher-order processes exist, which also contribute to the charge mo-
bility. These higher-order processes involve states on more than two molecules,
where only the states on the initial and final molecule are real, whereas the states
on intermediate molecules are virtual. This process is depicted in Fig. 3.5 for one
intermediate state. Besides systems such as loaded metal-organic frameworks [18],
it plays a role in mixed guest host systems as used in emissive layers of OLEDs.
Such a system is depicted in Fig. 3.6. The hopping rate for the superexchange pro-
cess can be expressed as a Marcus rate (see Eq. 3.15) with a modified electronic
coupling, which can be derived using first order perturbation theory (Eq. 3.16).

kAC =
2π

ℏ
|Jsx|2

1√
4πλACkBT

exp

(
−(λ+ ∆EAC)

2

4λACkBT

)
(3.15)

The transfer integrals Jsx for charge hopping processes including a virtual state
on the bridging molecule are calculated using first order perturbation theory. In
agreement with literature [149, 150], this yields a hopping matrix element

Jsx,AC =
JABJBC

∆Esx
, (3.16)

where A is the initial molecule, C the final molecule and B the virtual transition
state molecule. ∆Esx is the vertical energy difference between the virtual state and
the A-C-transition state in the transition state geometry (see Fig. 3.7a). As the
transition state geometry is not known, one can use the formalism of the Marcus
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Figure 3.6: The superexchange mechanism plays an important role in guest-host systems
with a low guest concentration, where the guest molecules act as traps for charge carriers.
Superexchange facilitates guest-to-guest hopping via virtual host states.

theory to derive an expression for the energy difference ∆Esx. In general, it is
possible to separate ∆Esx in three contributions:

∆Esx = ∆Erel − ∆E∗
1 + ∆E∗

2 (3.17)

The first contribution Erel depends only on the two ground states of an ad-
ditional charge localized on one of the two molecules. These ground state en-
ergies can be predicted in microscopic simulations. The last two contributions
incorporate energies of transition state geometries, which are not accessible in a
straight-forward way. Nonetheless, using the assumption of harmonic potential
energy surfaces from Marcus theory, it is possible to calculate the contributions
∆E∗

1 and ∆E∗
2 . The derivation in Section 3.3.1 yields the following expression for

∆Esx.

∆Esx = EB − EA − EC

2
+

λB

2
(3.18)

In principle, the superexchange coupling element from Eq. 3.16 is reduced by
a factor of J/∆Esx compared to a non-superexchange coupling. Typical electronic
couplings are in the order of 1 · 10−3 eV, whereas typical energy differences are in
the order of 0.1 eV, leading to a reduction in electronic coupling by a factor of 102
and a reduction of the rate by a factor of 104.

3.3.1 Energy denominator

Using the harmonic potential energy approximation shown in Fig. 3.7, one can
calculate the three components given in Eq. 3.17 for the energy denominator ∆Esx

required in Eq. 3.16 to calculate the superexchange coupling element Jsx. The
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first component is the difference between the state where the additional charge is
localized on the initial molecule and the state, where it is localized on the bridging
molecule:

∆Erel = E(ANB
∗
CCN)− E(A∗

CBNCN) = EB − EA (3.19)

The calculation of ∆E∗
1 uses the assumption of Marcus theory that the potential

energy surface of a molecule can be approximated as a harmonic function of a
multi-dimensional reaction coordinate centered around the ground state geometry.
This yields:

∆E∗
1 = E(A∗

TBNCT)− E(A∗
CBNCN)

= E(A∗
TCT)− E(A∗

CCN)

=
1

4λAC
(∆EAC + λAC)

2

(3.20)

To estimate ∆E∗
2 , it is helpful to consider the single-molecule picture as shown

in Fig. 3.7b. Under the assumption of equal curvatures of the charged and un-
charged potential energy surfaces of molecules A and C, one can split ∆E∗

2 in two
contributions.

∆E∗
2 = E(ATB

∗
NCT)− E(ANB

∗
CCN)

= (E(ATCT)− E(ANCN)) +
λB

2

(3.21)

In the second step, the definition of the reorganization energy for molecule B
was used:

λB

2
= E(B∗

N)− E(B∗
C) . (3.22)

One can now partition E(ATCT) − E(ANCN) in two single molecule contribu-
tions and again use Marcus theory to obtain

E(AT)− E(AN) =
1

2

1

4λCA
(∆ECA + λCA)

2 (3.23)

and

E(CT)− E(CN) =
1

2

1

4λAC
(∆EAC − λAC)

2 . (3.24)

Combining everything above yields:

∆Esx = EB − 1

2
(EA + EC) +

λB

2
. (3.25)
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Figure 3.7: a) Three molecule parabolas showing the contributions of the energy denomi-
nator E. b) Single molecule parabolas and combined two-molecule parabolas for the charge
transfer process from molecule A to molecule C. The geometry of molecule B remains in its
neutral state.

This is a symmetric expression which can be interpreted as the difference be-
tween the energy of the virtual transition state and the mean energy of the initial
and the final states. An additional contribution of λB/2 of the transition molecule
is added to this energy difference. The reason for this is that the virtual transition
molecule was only virtually occupied and could not respond to the occupation.
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3.4 Monte Carlo based demixing algorithms

Amorphous thin films consisting of two or even more phase-separated components
as used in in organic solar cells. The phase-separated morphology is called bulk
heterojunction. It can be produced by co-deposition of two materials in a vacuum
deposition process. Alternatively, it can be printed from a solution of the different
components followed by an annealing process. The demixing process usually hap-
pens at temperatures well above room temperature on a seconds to minutes time
scale. Demixing is drastically decelerated when the thin film is cooled to room
temperature, leading to a meta stable, glassy state of the thin film. The domain
size of the phase separated structure depends on the annealing temperature and
duration. In case of solution processed films, the concentration and solubility of
the materials in the solvent as well as the processing technique, post-treatment of
the films and the evaporation temperature of the solvent play an important role
in domain formation.

As explained in Chapter 2.1.2, efficient exciton separation requires small ma-
terial domains in the bulk heterojunction, while for efficient charge extraction,
larger domains are desirable. These two opposed requirements have to be bal-
anced in order to maximize the power conversion efficiency. Typical domain sizes
of efficient solar cells are in the order of 10 nm (several thousand molecules), while
demixing times are in the order of seconds or more. This renders atomistic sim-
ulations impossible. Molecule based coarse grained MD or MC simulations [151–
153] including several thousand molecules offer a possible solution, but are still
computationally highly demanding. An alternative to these simulations are ther-
modynamics based phase field approaches.

In this chapter, an efficient model for the simulation of phase separated multi-
component bulk heterojunctions will be presented. Acceleration techniques for
this method are presented in Appendix C. All presented methods are based on the
quantization of space in a cubic lattice with lattice constant a. General phase-field
approaches assign a certain phase to each of the cubes i, which can for example
be the material concentration φi of one of the materials of a binary mixture. The
approaches described in this chapter only considers completely demixed materials
and therefore only use φi values of 0 or 1. Thus, each voxel only contains either
material A or material B of a binary A-B-mixture (see Fig. 3.8).

During the Metropolis Monte Carlo simulation, random exchanges of neighbor-
ing voxels are proposed and accepted with a certain probability. This probability
is calculated using the Metropolis Monte Carlo criterion (Eq. 3.26, see also Chap-
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ter 2.4.2). It depends on the difference between the total energy of the system
before and after the exchange process.

ω(0 → 1) =

{
1 if Ef ≤ Ei

exp
(
−Ef−Ei

kBT

)
if Ef > Ei

(3.26)

In this equation, ω is the acceptance probability, T is the temperature and kB

the Boltzmann constant. The energies Ei and Ef are calculated based on the in-
teraction energy between the voxels. The energy model can be based on molecule
specific ab initio calculations as shown in Chapter 3.4.2). As an alternative, one
can also use an ad hoc energy model as shown in Mönch et al. [132]. This energy
model assigns interaction energies to each voxel interface, which depend on the
content of the two connected voxels. In a realistic energy model, energy densities
of interfaces between different materials are pre-calculated. In such a model, the
interaction energy also depends on the interface area a2.

In case the Metropolis criterion for a proposed move with a initial energy Ei

and a final energy Ef is fulfilled, the move is accepted and the system is up-
dated. Afterwards, a new move is proposed. The initial configuration is a random
configuration with desired concentrations of all materials.

3.4.1 Demixing with and without external constraints

In case of free demixing, exchange moves between all neighboring voxels are pro-
posed independent of the direction of interchange. External constraints can be in-
troduced, if required by the purpose of the simulation. These constraints can e.g.
restrict proposed moves to certain directions in order to fix local concentrations.
To compare simulations to experimental measurements and in order to generate
realistic three-dimensional representations of two-dimensional experimental data
(as shown in Chapter 4.7.5), an algorithm is useful which constrains exchange of
voxels in vertical direction (z-direction). In this way, the projection of the three-
dimensional structure in z-direction is kept frozen.

By appropriate choice of the initial three-dimensional voxel distribution, the sys-
tem can be generated in a way that the z-projection is equal to a two-dimensional
experimental input. As an example, this input can be obtained from STEM-EDX
measurements, as explained in Chapter 4.7.5. The element specific STEM-EDX
measurements yield the integrated amount of a certain element or material as a
function of the lateral position within a thin film. In this way, these measurements
give quantitative results about the lateral material distribution and can be used
as input for the constraining algorithm mentioned above. In Fig. 3.8, only moves
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Figure 3.8: A system of voxels containing two materials A and B. The arrows indicate the
possible moves of the system. The colormap on top of the box represents the projection of
the content of one of the materials in z-direction. In case of demixing with two-dimensional
constraints, only moves in z-direction are allowed (red arrows).

marked with red arrows are allowed. The (experimental) projection in z-direction
is indicated using the colormap on top of the system.

3.4.2 Parameterization of interaction energies

For the methods presented in Chapter 3.4.1, an energy model is required. More
specifically, the evaluation of the Metropolis criterion presented in Eq. 3.26 re-
quires energy terms for interface energies of homointerfaces (A-A or B-B) or het-
erointerfaces (A-B).

One way to obtain these interface energies is by generating atomistically re-
solved morphologies (for example using the Deposit method as described in Chap-
ter 3.1.2) including either one material or a junction of two materials in a layer-
on-layer structure. Based on this morphology, interface pairs are identified using
distance criteria on the pair distance and the maximum distance of each molecule
to the (local) interface. Using these pairs, the interaction energy density can be
extracted in two ways. In a first approach, the classical intermolecular Lennard-
Jones and Coulomb energies of each pair are calculated and added up to a total
interaction energy. The interface energy density can be obtained by dividing this
total energy by the area of the morphology which was generated and analyzed.
Edge effects can be avoided using periodic boundary conditions during the mor-
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Figure 3.9: In a) and b), the molecular structure of phenanthrene and succinonitrile is
shown. The images in c)-e) show atomistically resolved (bilayer) systems of c) phenanthrene,
d) phenanthrene on succinonitrile and e) succinonitrile. These systems are used for the param-
eterization of interaction energies for the Monte Carlo based demixing simulation.

phology generation and energy extraction. In a second, quantum mechanical ap-
proach, pair energies are obtained from DFT calculations of molecular pairs as
defined above. Here, the total energy of a pair is calculated and the total energies
of the single molecules are subtracted. In this way, the Coulomb energy is calcu-
lated more accurately than in the first method and repulsive Pauli interaction is
included. Dispersion corrections accounting for attractive van der Waals interac-
tion have to be explicitly added to correct the missing electron correlation in DFT.

Fig. 3.9 shows two molecules, namely phenanthrene (PHEN) shown in Fig. 3.9a
and succinonitrile (SUC) shown in Fig. 3.9b, which are discussed in Singh
et al. [154]. To simulate the phase separation of these two molecules, atom-
istic morphologies were generated and used to parameterize the interaction en-
ergy as explained above (Fig. 3.9c-e). This calculation using classical Lennard-
Jones energies yields interface energy densities of EPHEN,PHEN = −0.42 eV/nm2,
EPHEN,SUC = −0.65 eV/nm2 and ESUC,SUC = −1.00 eV/nm2. A further discussion
and usage of these parameters will be found in the Master’s thesis by Manuel
Konrad [155].
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4
Method application, results and

discussion

4.1 Introduction

Amorphous organic semiconductors based on small molecules are used in a wide
spectrum of applications (see Chapter 2.1), e.g. in organic light emitting diodes
or in organic solar cells. Disordered organic materials possess a low charge carrier
mobility (µ ≈ 10−10−101 cm2/(Vs) [156]) compared to typical inorganic semicon-
ductors (µ ≈ 102 − 104 cm2/(Vs)) [157–159]. This limits the efficiency of devices
as well as the range of possible applications, e.g. in large area devices. The low
charge mobility is mainly determined by the mechanism of charge transport in
disordered systems itself, i.e. hopping transport (see Chapter 2.1.4). The aim of
this work is the identification of factors determining and potentially limiting the
charge mobility of disordered organic materials. Relations between microscopic
molecular properties and macroscopic charge carrier mobility are identified and
used for the systematic improvement of the electron mobility of a widely used
electron transport material (Alq3). This proof of principle shows that in silico
screening of numerous chemical compounds for the development of highly effi-
cient opto-electronic devices is useful and promising.

In Chapter 4.3 and 4.4, the multiscale method outlined in Chapter 3.1 is applied
to calculate energy disorder and hole mobility of the materials presented in Chap-
ter 4.2. Different approaches for the calculation of energy disorder of electrons
and holes are tested and benchmarked in Chapter 4.3. Microscopic molecular pro-
perties and macroscopic hole mobility of different compounds are presented and
discussed in Chapter 4.4. To understand the molecular origin of charge mobil-
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ity, several molecular properties which influence the hole mobility of thin films
are identified and explained in Chapter 4.5. Such structure-property relationships
enable the postulation of design rules for high mobility materials. A proof of prin-
ciple of these design rules is given in Chapter 4.6, where new compounds based on
Alq3 are investigated theoretically. A promising candidate showing a high electron
mobility is identified, synthesized and electronically characterized. Measurements
show a three orders of magnitude increase in electron mobility of the in silico
designed molecule compared to the reference material.

4.2 Materials

To test and validate the multiscale methods presented in Chapter 3, the fol-
lowing widely studied small molecule organic semiconductors were used: Tris(8-
hydroxyquinolinato)aluminum (Alq3), N4,N4’-di(biphenyl-3-yl)-N4,N4’-diphenyl-
biphenyl-4,4’-diamine (mBPD), N1,N4-di(naphthalen-1-yl)-N1,N4-diphenylben-
zene -1,4-diamine (NNP), 1,1-bis-(4,4’-diethylaminophenyl)-4,4-diphenyl-1,3,bu-
tadinene (DEPB), N,N’-bis(1-naphthyl)- N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine
(α-NPD), N,N’-diphenyl-N,N’-bis-(3-methylphenylene)-1,10-diphenyl-4,40-diami-
ne (TPD), N,N’-bis-[9,9-dimethyl-2-fluorenyl]-N,N’-diphenyl-9,9-dimethylfluorene-
2,7-diamine (pFFA), tetracene (TET) and pentacene (PEN).

These compounds are shown in Fig. 4.1. They represent a wide range of exper-
imentally investigated organic semiconductors. Alq3 is an example of a commonly
used material in electron transport layers (ETL) of OLEDs, whereas α-NPD is an
established hole transport layer (HTL) material. The first seven materials (Alq3

to TPD) form disordered films, whereas tetracene and pentacene are mainly used
in their crystalline phase. The hole mobility of these materials spans a range of
more than ten orders of magnitude, which represents a challenge for any model-
ing approach. Furthermore, α-NPD, Tris(4-carbazoyl-9-ylphenyl)amine (TCTA)
and Spiro-4,4’-Bis(2,2-diphenylvinyl)-1,1’-biphenyl (Spiro-DPVBi) (see Fig. 4.2)
are used for the investigation of correlations presented in Appendix E and F. An
analysis of their orbital structure and degeneracy is presented in Appendix D. For
the active layer of the solar cells discussed in Chapter 4.7.5, the C60 Fullerene and
the dicyanovinyl-substituted oligothiophene derivative DCV5T-Me were used (see
Fig. 4.3).
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Figure 4.1: a) Alq3, b) mBPD , c) NNP, d) DEPB, e) α-NPD, f) TPD, g) pFFA, h)
tetracene, i) pentacene. The energy disorder and hole mobility of these experimentally widely
studied materials is analyzed in Chapter 4.3 and 4.4. While Alq3 us usually used as an elec-
tron conducting material, all other materials are mainly used in hole transport layers of or-
ganic light emitting diodes or organic solar cells.
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Figure 4.2: a) TCTA, b) Spiro-DPVBi. The correlations between energy levels of these two
materials (and α-NPD shown in Fig. 4.1e) are analyzed in Appendix E and F.

a)

b)

Figure 4.3: a) C60 (Fullerene), b) DCV5T-Me. These two materials are studied in Chap-
ter 4.7.5, where they are applied in an active bulk heterojunction layer of an organic solar cell.
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4.3 Application and validation of the Quan-
tum Patch method

To test and validate the quantum patch method presented in Chapter 3.2 and its
hybrid extension presented in Chapter 3.2.4), different protocols for the calcula-
tion of energy disorder in organic semi-conductors are tested in this chapter. The
protocols are defined in Tab. 4.1 and apply for the partitioning scheme shown in
Fig. 4.4. Most of the data and discussion presented in this chapter was published
in Friederich et al. [129]. For each protocol, the energy disorder of seven widely
studied materials is calculated (Alq3, α-NPD, DEPB, mBPD, NNP, pFFA and
TPD, see Fig. 4.1). The zero-field mobility of these materials covers a range be-
tween 1 · 10−10 cm2/(Vs) for Alq3 [160–164] to 7.6 · 10−4 cm2/(Vs) for pFFA [165].
The results of the various protocols are shown in Fig. 4.5. A benchmark of the
results is shown in Appendix B

The “full QM” calculations are performed using the charged Quantum Patch
method as derived in Chapter 3.2.2 and 3.2.3. They are used as reference calcu-
lations for the hybrid approach presented in Chapter 3.2.4. In the “QM one shell
only” method, one shell of molecules surrounding the charged species is used as
embedding in the Quantum Patch method. Full polarization cannot take place
(see convergence calculations in Friederich et al. [68, 69]), resulting in an overes-
timation of the energy disorder. At the same time, large parts of the electrostatic
background potential are neglected which also influences energy disorder and cor-
relations.

Table 4.1: Five different partitioning schemes for the (hybrid) Quantum Patch method are
tested. The different regions (defined in Fig. 4.4 and in the text) are the charged molecule
(charged mol.) and different shells which are treated in a self-consistently way (s.-c.) or as
static partial charges.

full QM QM one hybrid hybrid semi-
shell only large small empirical

Charged mol. s.-c. DFT DFT DFT DFT DFTB
12Å env. s.-c. DFT DFT DFT DFTB DFTB
25Å env. s.-c. DFT DFTB DFTB DFTB
60Å env. static DFT DFTB DFTB DFTB

71



ii) iii) iv)i)
unpolarized

iii)i)

a) b)

ii)
unpolarized

Figure 4.4: a) Cutoff scheme for the full hybrid quantum patch method including explicit
polarons. The colored regions are treated in a self-consistent way and contain about 100
molecules. Region i): charged molecule. Region ii): next nearest neighbor molecules within
a cutoff distance of 12Å. Region iii): neighbors within a distance of 25Å. Region iv): unpo-
larized molecules within a cutoff distance of 60Å (approximately 3000 molecules). b) Cutoff
scheme for the neutral Quantum Patch method where the system is equilibrated without ex-
plicit additional charges. Region ii): molecules within a 25Å cutoff distance around the central
part i) of the morphology. Each molecule in regions i and ii) is treated in a self-consistent way.
The energy disorder is only extracted in the central region i) to avoid edge-effects at the bor-
der between polarized and unpolarized regions. Region iii) corresponds to region iv) in the
charged Quantum Patch method shown in panel a).

To correct these errors, the “hybrid large” method is introduced. In this method,
the first coordination shell of molecules around the charged centers are fully calcu-
lated using DFT. A second shell of molecules in distances between 12Å and 25Å
is treated in a self-consistent way using semi-empirical methods. The long-range
electrostatic background (distances between 25Å and 60Å) is calculated once and
kept static. This method leads to very accurate energy disorder parameters com-
pared to the “full QM” method for all tested materials (see Fig. 4.5 and Tab. 4.2
and 4.3). At the same time, it leads to a reduction of CPU-time of about one
order of magnitude (see Fig. B.1).

In the “hybrid small” method, only charged molecules are treated on a DFT
level. All neighboring molecules in self-consistently evaluated shells as well in the
static shell are computed using DFTB. This method yields energy disorder values
with deviations of −10% and +10% to the “full QM” results for Alq3 (electrons)
and NNP (holes), respectively. As charge carrier mobility is exponentially depen-
dent on the square of the energy disorder (µ ∝ exp(−C(βσ)2) [14, 49, 53, 166,
167], the “hybrid small” method will lead to considerable errors in mobility. Thus,
it is not accurate enough to be used as a predictive tool for the screening of novel
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Table 4.2: Energy disorder of holes computed using the protocols introduced in Tab. 4.1

Energy disorder of holes σ [eV]

full QM QM one hybrid hybrid semi-
shell only large small empirical

Alq3 0.240 0.258 0.247 0.246 0.191
α-NPD 0.155 0.198 0.156 0.149 0.090
mBPD 0.133 0.156 0.143 0.142 0.119
DEPB 0.126 0.142 0.130 0.131 0.069
NNP 0.152 0.167 0.161 0.167 0.108
pFFA 0.123 0.141 0.122 0.130 0.083
TPD 0.142 0.159 0.135 0.133 0.082

Table 4.3: Energy disorder of electrons computed using the protocols introduced in Tab. 4.1

Energy disorder of electrons σ [eV]

full QM QM one hybrid hybrid semi-
shell only large small empirical

Alq3 0.220 0.236 0.223 0.197 0.185
α-NPD 0.099 0.120 0.093 0.091 0.094
mBPD 0.140 0.159 0.143 0.151 0.150
DEPB 0.105 0.113 0.096 0.101 0.099
NNP 0.104 0.121 0.098 0.094 0.102
pFFA 0.102 0.133 0.097 0.096 0.091
TPD 0.157 0.177 0.161 0.147 0.108
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Figure 4.5: Energy disorder of a) holes and b) electrons in seven different materials. The
methods used for the calculation of energy disorder are described in the text. To reproduce
the results of the full QM reference method, the hybrid large method is found to be most ap-
propriate. The image is taken from Friederich et al. [129].

materials.

The “full semi-empirical” algorithm systematically underestimates the energy
disorder of holes. For electrons in α-NPD, mBPD, and NNP, it yields results
within 6% of the “full QM” results. A possible source of error in this method is
the minimal basis sets used in the semi-empirical DFTB calculations. This might
cause underpolarization [168] especially of the charged species and therefore lead
to a wrong description of electrostatic effects. This implies that the energies of
the charged molecules cannot be reliably predicted with exclusive use of semi-
empirical methods. As an example, the deviation of energy differences between
DFT and DFTB for 300 Alq3 pairs is ±0.142 eV for positively charged molecules
and ±0.108 eV for negatively charged molecules. This leads to large discrepancies
between the energy disorder calculated with the “full QM” and the “semi-empirical”
method.

Tab. 4.2 and 4.3 show values of the energy disorder of all materials and methods
tested. For completeness, the results of the charged Quantum Patch method were
compared to energy disorder computed with the faster, neutral Quantum Patch
method. The results of this study are shown in Tab. 4.4. The purely semi-empirical
method yields deviations from the “full QM” methods, which vary between +12%
for α-NPD electron disorder and −30% for TPD hole disorder. In contrast to
the charged Quantum Patch method, splitting of the neutral system into DFT
and semi-empirical parts is not possible. Therefore, the neutral Quantum Patch
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Table 4.4: Comparison of the energy disorder calculated using the neutral Quantum Patch
method (see Chapter 3.2.2) performed on a DFT (“full QM”) and DFTB (“semi-empirical”)
level.a

Energy disorder σ [eV]

full QM semi-empirical

Alq3 0.224 0.239 0.212 0.204
α-NPD 0.144 0.111 0.107 0.125
mBPD 0.130 0.131 0.140 0.140
DEPB 0.109 0.120 0.083 0.128
NNP 0.135 0.112 0.138 0.116
pFFA 0.112 0.102 0.089 0.109
TPD 0.129 0.157 0.093 0.155

a Deviations of up to 30% in energy disorder depending on the used calculation methods
along with no simple way to ”hybridize” the polarization approach with obvious CPU-time
savings made usage of DFTB within this approach unfavorable.

method does not allow for hybrid implementations.

In order to estimate if the hybrid implementations of the Quantum Patch
method are accurate enough to be used for predictive simulations, the influence
of deviations of the energy disorder on the charge carrier mobility has to be
evaluated. Therefore, the sensitivity of the charge carrier mobility on positive or
negative deviations of the energy disorder is shown in Fig. 4.6. The exponential
dependence of the mobility on the energy disorder results in order of magnitude
changes of mobility even at small errors in energy disorder. Therefore, apart from
the “full QM” method, only the “hybrid large” method will be used in in the fol-
lowing chapters.

To better understand the reason of the hybrid approach to work or fail in some
cases, a direct comparison between DFT and DFTB calculations for a few relevant
quantities was performed. Typical DFT derived dipole moments of neutral Alq3

molecules in vacuum are dDFT = (4.9 ± 0.9)Debye, whereas the dipole moments
in DFTB of the same set of molecules are dDFTB = (4.2 ± 0.8)Debye. Thus, the
energy disorder will slightly be underestimated in the semi-empirical methods.
This can explain the deviations of the “hybrid small” and “hybrid large” method
but it is not sufficient to understand the deviations of the “semi-empirical” method.
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For the positively charged Alq3 molecules in vacuum, the center of charge differs
by only 0.36± 0.17Å between DFT and DFTB, indicating a method independent
electronic structure. Thus, the differences between DFT and DFTB lie in the
evaluation of energies rather than in the charge density itself. Therefore, total
energy differences between neighboring molecules were tested. For reliable results,
the total energy difference of two molecules is expected to be independent of the
calculation method. This corresponds to a small difference of the total energy dif-
ferences δ∆E calculated using different methods. However, for positively charged
Alq3 molecules, this difference is δ∆E = ± 0.43 eV. This indicates that while
DFTB seems to captures the charge density itself very well, there are large dis-
crepancies in the evaluation of the molecular energy differences. As the primary
interest of hybrid implementations of the Quantum Patch method is the reproduc-
tion of the “full DFT” results, these observations justify the “onion” type model of
the “hybrid large” method, where a number of radial cutoffs for DFT (especially
the inner part where the total energies are relevant) and DFTB (focusing mainly
on a realistic long range electrostatic background) is used.

In the next chapter, the energy disorder values obtained in this chapter are
combined with other microscopic molecular properties such as electronic couplings
and reorganization energies to obtain a quantitative estimate of the charge carrier
mobility in different materials. This next step will show the applicability of the
multiscale modeling approach for a quantitative and parameter-free prediction of
macroscopic properties such as the charge carrier mobility.

4.4 Charge carrier mobility in amorphous or-
ganic systems: Prediction and validation

In Chapter 4.3, the energy disorder of a range of materials was calculated using the
Quantum Patch method and a hybrid extension to this method. In this chapter,
the results of the neutral Quantum Patch method (see Tab. 4.4) will be used
for the prediction of the hole mobility of nine different materials. The results are
compared to the experimental hole mobility available in literature to validate the
applicability and accuracy of the multiscale modeling approach. Chapter 4.4 and
4.5 are based on work reported in Friederich et al. [131]. Figures and parts of the
discussion are adopted from this publication.
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4.4.1 Marcus parameters

The mobility of nine different materials is computed using the multi-scale simula-
tion approach illustrated in Fig. 3.1. Firstly, atomistically resolved morphologies
of the materials in an amorphous solid phase are generated. In this step, mole-
cular dynamics simulations are performed to generate amorphous morphologies
of the size of 300 molecules. Periodic boundary conditions (see Chapter 3.1.2)
allow a periodic extension of the systems in all dimensions. The final morpholo-
gies of Alq3, α-NPD, DEPB, mBPD, NNP, pFFA and TPD (see Fig. 4.1) show
a disordered structure without any indications of crystalline domains. Crystalline
structures of pentacene and tetracene are obtained from Schiefer et al. [169]. After
morphology generation, the electronic structure of the molecules in the amorphous
system is characterized using the neutral Quantum Patch method on periodically
extended structures incorporating approximately 5000 molecules as embedding.
Pairwise electron and hole coupling matrix elements (Jif) for approximately 600
molecular pairs, reorganization energies (λif) and site energy differences (∆Eif)
including polarization and conformational disorder are computed. The Quantum
Patch approach permits an ab initio characterization of polarization effects, which
are critical to accurately describe the energy disorder of amorphous systems. The
inner part of the reorganization energy λ is calculated based on Nelsens four point
procedure [64].

The hopping matrix elements Jif between each molecule and all of its neighbors
are calculated based on the Löwdin orthogonalization procedure [61, 62] using the
highest occupied molecular orbitals (HOMO). In this procedure, frontier orbitals
as well as Fock- and overlap matrices are extracted from monomer and dimer
calculations in a sufficiently large embedding environment. Using this procedure,
a distance dependent distribution of hopping matrix elements is obtained using
molecular dimers extracted from large disordered morphologies. For complete-
ness, a similar procedure was applied to the lowest unoccupied molecular orbitals
(LUMO). These LUMO levels are in first approximation responsible for electron
transport while the HOMOs are used to estimate the hole mobility.

Statistical averages of these microscopic material characteristics are used as
input for the generalized effective medium model (GEMM) [14] shown in Eq. 2.17.
In this model, the mobility is obtained from an approximative solution of the
master equation using an effective medium model (see Chapter 2.1.4). According
to the GEMM model, the charge carrier mobility depends on the mean number
of nearest-neighbor molecules M , averages over the hopping matrix elements and
distances (⟨J2r2⟩) and averaged reorganization energies (λ).
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4.4.2 Charge carrier mobility and microscopic analysis

Fig. 4.7 shows the comparison between the computed hole mobility and exper-
imental data of the materials presented above. The corresponding microscopic
parameters (energy disorder in Fig. 4.8, electronic couplings in Fig. 4.9 and reor-
ganization energies in Fig. 4.10) are summarized in Tab. 4.5. As shown in Fig. 4.8a,
the distributions of polaron energies are well described by Gaussian distributions
[52, 53]. The width of the distribution of on-site energies crucially influences the
Marcus hopping rates. Fig. 4.8a shows the distributions of energy levels of two
specific materials, NNP and pFFA. NNP has a 21% larger energy disorder than
pFFA. This corresponds to a decrease in hole mobility of one order of magnitude,
even though the remaining microscopic parameters are quite comparable. Fig. 4.9a
depicts the distance dependence of the electronic coupling matrix elements of two
molecules, namely Alq3 and pFFA. Alq3 is a compact “sphere-like” molecule with a
narrow distribution of hopping matrix elements, which decays exponentially with
distance. pFFA, a more extended and flexible molecule, shows a rather diffuse
and wide-spread distribution of coupling matrix elements. This leads to an overall
reduction of ⟨J2r2⟩ by an order of magnitude (⟨J2r2⟩ = 9.99 · 10−3 eV2Å2 for Alq3

vs. ⟨J2r2⟩ = 1.46 · 10−3 eV2Å2 for pFFA, see Tab. 4.5 and Fig. 4.9b). As the mean
electronic coupling ⟨J2r2⟩ only enters the calculation of charge carrier mobility in
the prefactor (see Eq. 2.17), it only linearly influences the charge mobility. The
parameter responsible for the much lower mobility of Alq3 compared to e.g. pFFA
is the comparatively large energy disorder σ of Alq3.

In addition to the microscopic properties required for the calculation of charge
carrier mobility, the energy levels of molecules in the disordered system were
analyzed. These are of crucial importance for the device architecture as holes and
electrons have to be injected or extracted from the respective materials. Fig. 4.11
shows the HOMO levels and the ionization potentials of all tested materials. These
energies were calculated for molecules in vacuum as well as for molecules embedded
in a self-consistently evaluated electrostatic environment.

4.4.3 Frozen-dihedral approximation

In many publications [68, 86, 90], the reorganization energy has been calculated
in vacuum, where a full relaxation of the molecule is possible. Such complete con-
formational freedom is not realistic for condensed systems, where the molecules
are confined by their individual confinement. The internal degrees of freedom
which are strongly affected by this confinement are dihedral rotations. In order
to avoid an overestimation of the internal reorganization energy in the condensed
phase, a novel procedure was developed and implemented in this work. In this
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Table 4.5: Microscopic input parameters required by the GEMM model to calculate the
charge carrier mobility of the different materials. The energy disorder σ is split into two con-
tributions, namely the conformational disorder σi and the electrostatic disorder σp. This seg-
mentation as well as the quantity ∆Eint,HOMO will be explained in the Chapter 4.5.

σ σi σp ∆Eint,HOMO ⟨J2r2⟩ M λ
[eV] [eV] [eV] [eV] [eV2Å2] [eV]

Alq3 0.224 0.166 0.151 - 9.99 · 10−3 7.31 0.296
mBPD 0.110 0.080 0.075 0.186 1.52 · 10−3 8.52 0.143
NNP 0.135 0.137 - 0.431 1.64 · 10−3 7.65 0.160
DEPB 0.130 0.086 0.098 0.272 1.42 · 10−3 8.16 0.266
α-NPD 0.144 0.126 0.070 0.250 2.04 · 10−3 7.73 0.158
TPD 0.129 0.097 0.084 0.197 1.56 · 10−3 8.49 0.110
pFFA 0.112 0.100 0.049 0.366 1.46 · 10−3 7.70 0.134
TET 0.0 0.0 0.0 - 1.13 · 10−2 15.8 0.114
PEN 0.0 0.0 0.0 - 3.07 · 10−2 15.8 0.097

Table 4.6: The simulated hole mobility in the second column exponentially depends on the
disorder strength σ and the frozen-dihedral reorganization energy λ shown in Tab. 4.5. The
prefactor is a function of

⟨
J2r2

⟩
incorporating the hopping matrix elements J and the hop-

ping distance r. The third and fourth columns give literature values and sources of the experi-
mental hole mobility.

µsim. µexp. Source
[cm2/(Vs)] [cm2/(Vs)]

Alq3 1.01 · 10−10 1.46 · 10−10 [160, 162, 163, 170, 171]
mBPD 7.38 · 10−4 1.49 · 10−5 [165]
NNP 4.31 · 10−5 2.99 · 10−5 [172]
DEPB 2.09 · 10−5 1.17 · 10−4 [173]
α-NPD 1.84 · 10−5 2.70 · 10−4 [160, 164]
TPD 1.52 · 10−4 5.74 · 10−4 [160, 163, 173, 174]
pFFA 5.70 · 10−4 7.60 · 10−4 [165]
TET 3.83 0.4 [175]
PEN 13.35 3.0/21 [176, 177]
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frozen-dihedral approach, reorganization energies in the solid phase are calculated
while constraining the dihedral angles of each molecule to the values observed
in the disordered morphology. Only relaxation of other degrees of freedom such
as breathing modes and angle-relaxations are permitted, which do not result in
large-scale conformation changes [178].

The effect of fixed dihedral angles can be observed in the analysis of the hole
mobility of different materials in Fig. 4.10a. The reorganization energies system-
atically decrease up to 55% for NNP. Fixing dihedral angles is still a rough ap-
proximation to the relaxation processes, which might lead to an underestimation
of the reorganization energy. Considering that the full vacuum relaxation will
overestimate the inner part of the reorganization energy, the frozen-dihedral ap-
proximation can be considered as a lower limit. The two methods can thus be
used as upper and lower bound of reorganization energies. Fig. 4.10b shows that
the observed agreement with experimental data can only be achieved if the re-
organization energies are evaluated in the frozen-dihedral approximation. More
exact reorganization energies can be obtained using full quantum mechanical em-
bedding procedures, where explicit intermolecular exchange and correlation effects
are taken into account. QM/MM methods can also elucidate this problem further.
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4.5 Molecular origin of the charge carrier
mobility

To systematically improve material properties, it is necessary to fully understand
the relations between molecular and macroscopic properties. As shown in the last
section, the simulation approach used in this work is able to calculate and predict
the charge carrier mobility of amorphous materials without parameterization or
experimental input. Therefore, it can be used to systematically investigate the
molecular origin of charge carrier mobility by identification of causal correlations
between molecular properties and charge mobility. The first step in this process is
the decomposition of the charge mobility in factors which depend on different mo-
lecular properties. This procedure will be presented in Chapter 4.5.1. Afterwards,
the factors with strongest influence on charge carrier mobility will be analyzed and
related to molecular properties. These factors include the electrostatic disorder,
which is mainly determined by molecular dipole moments (see Chapter 4.5.2) and
the internal or conformational disorder due to molecular distortions in the amor-
phous solid state (see Chapter 4.5.3). Using these two quantities, it is possible
to derive design rules, which will be applied in Chapter 4.6. Before that, correla-
tions effects will be studied in Appendix F. These correlations can also influence
macroscopic transport properties. The figures and parts of the discussion in this
chapter are adopted from Friederich et al. [131].

4.5.1 Mobility factorization

To analyze the molecular properties which determine the charge carrier mobility,
the GEMM model in Eq. 2.17 is decomposed as

log µ = log µ0 − Cβλ− Cβ2(σ2
i + σ2

p) (4.1)

where µ0 is the prefactor and C is the C-factor discussed in Appendix E. The
energy disorder σ is decomposed into an intrinsic component σi and a polarization
component σp. The intrinsic contribution σi arises from the molecular distortions
due to packing, i.e. conformational disorder, whereas the polarization part σp

arises from the individual electrostatic environment of each molecule. The physical
nature of these two sources of disorder is fundamentally different. Thus, they can
be treated in first approximation as uncorrelated quantities. This means that the
square of the width of the full energy disorder σ is the sum of the individual
contributions:

σ2 = σ2
i + σ2

p (4.2)
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The intrinsic component of the energy disorder is directly extracted from Quan-
tum Patch calculations by computing the single molecule energy level variance of
molecules without electrostatic environment effects. Based on that, the polariza-
tion contribution σ2

p = σ2 − σ2
i can be computed indirectly. It represents the

electronic (polarization) effect of the environment.

Fig. 4.12 shows the decomposition of the molecular contributions of the charge
carrier mobility. The mobility µ0 (blue bars) can be obtained when only the pref-
actor of Eq. 4.1 is taken into account. It can be interpreted as the mobility of
a fictional material comprised of electrostatically non-interacting molecules with
equal conformations and reorganization energy. This mobility µ0 is of the same or-
der of magnitude for all disordered materials studied in this work. The crystalline
materials tetracene and pentacene (not shown in the graph) show a value of µ0

which is approximately one order of magnitude higher compared to the disordered
materials. The reason for that are the higher average coupling matrix elements in
the crystalline structure of these polycyclic hydrocarbons. The µ0 values of the
amorphous compounds provide an order-of-magnitude estimate of the maximal
possible mobility of amorphous small-molecule organic semiconductors. Reorgani-
zation and energy disorder due to dipole moments and molecular flexibility lead
to values of charge carrier mobility which are orders of magnitude lower.

4.5.2 Electrostatic disorder

A first reduction of the maximum mobility µ0 arises from the reorganization en-
ergy λ. This reorganization-related reduction is to some extend not avoidable in
materials with localized polarons. However, the impact of reorganization on the
charge mobility (green bars) is smaller than one order of magnitude. Differences
in the reorganization energy of the materials therefore only play a minor role.
As mentioned above, the most dominant contributions to charge carrier mobility
are electrostatic and conformational disorder. As discussed in literature [179], the
electrostatic polarization (yellow bars) plays a major role in determining the mo-
bility of amorphous materials. In agreement with arguments made by Bässler and
others [75, 179], a correlation between molecular dipole moments, disorder para-
meters and charge carrier mobility can be observed. This correlation is illustrated
in Fig. 4.13a.

Even though the small polaron model might not be fully appropriate to describe
charge transport in crystal structures of rigid molecules, it is interesting to con-
sider pentacene and tetracene as low-disorder reference materials in this approach.
A consequence of low disorder, charge transport in these materials is dominated
by reorganization energy and the electronic coupling elements. The experimental
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Table 4.7: Analysis of the average molecular dipole moments in vacuum (|d⃗vac|) and within a
self-consistently evaluated amorphous structure (|d⃗p|).

|d⃗vac| |d⃗p|
[Debye] [Debye]

Alq3 4.9± 0.9 6.2± 1.4
mBPD 1.5± 0.7 1.7± 0.8
NNP 1.4± 0.6 1.7± 0.7
DEPB 2.8± 0.8 3.3± 1.0
α-NPD 1.3± 0.7 1.8± 1.2
TPD 1.5± 0.7 1.7± 0.7
pFFA 1.8± 0.8 2.0± 0.9

hole mobility of pentacene shown in Fig. 4.7a is obtained from experiments us-
ing thin-film transistors (µ = 3 cm2/(Vs) [176]) as well as from THz experiments
(µ = 21 cm2/(Vs) [177]). The simulations used for the calculation of hole mobility
are based on an idealized, crystalline system. Therefore, these simulations yield
a hole mobility of µ = 13 cm2/(Vs) which is larger than the thin-film transistor
mobility, where grain boundaries play an important role. The calculated charge
mobility is closer to the value observed in THz experiments [177]. Nonetheless, it
is not possible to judge whether the model of activated hopping transport is fully
applicable without analysis of the temperature dependence of the charge carrier
mobility. In case of activated transport, mobility increases with temperature while
in case of delocalized states or even band transport, the mobility decreases due to
increased electron phonon interaction and scattering.

For a rough estimate of the electrostatic energy disorder, it is useful to calculate
either molecular dipole moments in vacuum or equilibrated dipole moments in an
amorphous system. In Tab. 4.7, the average dipole moments of the molecules
both in vacuum and in the morphology are shown. The dipole strength leads to
electrostatic interaction and therefore polarization disorder which can be roughly
estimated using e.g. the work by Young et al. [72]. Here, the energy disorder σp is
estimated using a dipole lattice model which requires the average dipole moment,
the relative permittivity and the density of the molecules. Alq3 exhibits a large
intrinsic dipole moment (approximately 5Debye). The high polarization disorder
caused by these dipole moments leads to the lowest mobility among the materials
studied, which indicates that the intrinsic molecular dipole has to be minimized
when designing new materials.
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found for the specific dihedral angle in the amorphous material. The HOMO energy variance,
defined in the bottom panel varies significantly from molecule to molecule. A large HOMO
energy variance (see panel b) and text) can lead to a higher degree of intrinsic disorder and
hence a lower mobility. The image is taken from Friederich et al. [131].

88



4.5.3 Conformational disorder

The molecules mBPD - pFFA (indicated in the frame in Fig. 4.13b) have small
intrinsic dipole moments (1.5 to 4Debye) and therefore only weak electrostatic
disorder. Nonetheless, they show large variations in total disorder σ and hole
mobility. This variation arises from the second contribution to energy disorder
and mobility, which is the intrinsic (conformational) disorder σi. This quantity is
connected to distortions of molecules in amorphous systems (see Fig. 4.12). The
conformational disorder contribution dominates the variation of the hole mobility
for all non-crystalline materials with small dipole moment, i.e. typical HTL ma-
terials as indicated in the frame in Fig. 4.13a.

To investigate the impact of conformational variations on the site-energies and
the energy disorder, the geometry of molecules in disordered films was analyzed.
The molecular position and conformation in the bulk is the result of a minimization
of the molecular total energy including inter-molecular interactions. A trade-off
between improved alignment with neighboring molecules and internal distortions
leads to energy and conformational variations of the molecules. As already dis-
cussed in Chapter 4.4.3, the lowest-energy degrees of freedom of many molecules
are rotations of dihedral angles. These significantly change the molecular shape at
low excitation energies. Distortions of the molecular geometry almost always lead
to changes of ionization potential and hole energy, which can be approximated
by changes of the HOMO energies. Panels b-d of Fig. 4.13 illustrate the HOMO
energies as well as molecular total energies as functions of single, arbitrarily cho-
sen dihedral angles. HOMO distributions resulting from rotations around other
dihedral angles show analogue behavior.

To develop a quantitative and molecule specific model for the origin of the
intrinsic disorder contribution in organic materials, the distributions of dihedral
angles of the molecules in the amorphous morphologies were analyzed. These dis-
tributions are shown in the top panels of Fig. 4.13c and 4.13d for the molecules
NNP and pFFA. In the bottom panels, variations of the total energy and the
HOMO energy of the corresponding molecules as a function of the dihedral angle
are shown. These energies were computed DFT calculations in the gas phase. The
maximum of the dihedral angle distribution agrees with the minimum of the total
energy profile. The width of the distribution for both molecules is comparable.
However, a significant difference in the variance of HOMO energies is observed
when comparing NNP and pFFA. While the HOMO energy of pFFA is nearly in-
dependent of the specific dihedral angle, the NNP HOMO energy strongly varies
as a function of the angle. This difference in orbital energy variation for NNP and
pFFA leads to drastic differences in the internal disorder contribution σi, (0.14 eV
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vs. 0.10 eV) which strongly influences the hole mobility of the respective materials
(0.4 · 10−4 cm2/(Vs) vs. 5.7 · 10−4 cm2/(Vs)). This effect directly correlates single
molecule properties with the macroscopic charge mobility. To quantize its size,
∆Eint,HOMO is defined as the range of the HOMO energy at dihedral angles close
to the total energy minimum (∆Eint,HOMO = 0.43 eV vs. 0.37 eV for NNP and
pFFA, see Tab. 4.5). The quantity ∆Eint,HOMO was computed using an evaluation
of all dihedral rotations of a molecule in vacuum while relaxing all other dihe-
dral angles. The largest and smallest HOMO energies within an interval of ±20 ◦

around the total energy minima of all dihedral potentials were used as upper and
lower bounds for the calculation of ∆Eint,HOMO.

Extending this analysis to all HTL materials (Fig. 4.13b) yields a correlation
between ∆Eint,HOMO and the internal energy disorder. This indicates that the vari-
ation of HOMO energies in energetically accessible molecular conformations can
be used as an indicator of conformational disorder and therefore charge carrier
mobility of common HTL materials. A relationship between molecular conforma-
tions and energy disorder was already suggested in literature but could not be
fully quantified for realistic systems [100, 180]. While the observations shown in
this section do not fully address the differences between experimental and theoret-
ical charge mobility, it is nonetheless a significant step toward in silico molecule
design. Furthermore, the single molecule indicators of energy disorder, namely
dipole moment and HOMO variation ∆Eint,HOMO, can be used as a fast single-
molecule based screening and selection technique of the chemical compound space.
In Chapter 4.6, an extension of this method will be used for targeted molecule
design.
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4.6 Improvement of the electron mobility of
Alq3 by rational materials design

Attempts to improve the charge mobility of amorphous organic semiconductors to
date mainly rely on costly experimental efforts to test and find new materials. This
chapter shows a systematic study using the parameter-free multiscale prescreening
tool presented in the Chapter 3 on the way to rational design of organic electronics
components. The capability of in silico molecule design is demonstrated by sys-
tematically improving the electron mobility of hydroxyquinoline based aluminum
complexes leading to the prediction of a new molecule with increased electron
mobility. SCLC measurements confirm this increase of electron mobility of three
orders of magnitude compared to the established Alq3 compound. In addition to
that, design rules are deduced which can generally be applied to organic semi-
conductors. These design rules include a controlled modification of energy levels,
which are crucial for charge transport across materials interfaces and injection.
Secondly, guidelines are provide to systematically decrease intermolecular electro-
static interaction and energy disorder and thus increase charge mobility.

From the very initial stages of development of organic electronics [181], Alq3

(Tris-(8-hydroxyquinoline)aluminum) has established itself as a standard electron
transporting layer (ETL), most prominently used in organic light emitting diodes
[182, 183]. Alq3’s stability as well as synthetic simplicity have tremendously con-
tributed to its general acceptance. However, its electron mobility of 1.1 · 10−10 to
3.7 · 10−7 cm2/(Vs) [160, 162, 164, 170, 171, 184] is several orders of magnitude
lower than typical hole transporting layer, e.g. α-NPD [160, 164]. This has brought
improvement attempts to the focus of the organic electronics community rather
early on. Improvement of the charge carrier mobility is directly connected to the
efficiency of an OLED as higher charge mobility leads to lower resistivity and
power consumption of the device. Therefore, several different ideas to improve the
conductivity of organic semiconductors have been proposed in the literature. Some
of the most prominent attempts comprise doping with small molecule dopants.
At the same time, many theories and models were developed describing charge
transport in disordered organic semiconductors using various different techniques.
These include the early analytical works of Bässler et al. [52, 75], extensions to
these models [49, 70, 95, 134, 185], KMC techniques [48] and multiscale modeling
approaches [68, 90, 126, 127, 131]. Despite all of this work, so far no systematic
example of in-silico design of new organic semiconductors has been shown.
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4.6.1 Simulation protocol

In order to theoretically predict the charge carrier mobility and other material
properties such energy levels, the multiscale simulation approach presented in
chapter 3.1 is used. For the calculations presented in this chapter, the follow-
ing steps were applied. In silico morphology generation of thin films using the
Deposit method presented in chapter 3.1.2 [12] is followed by density functional
theory (DFT) based analysis of the molecules within their unique local environ-
ment using the Quantum Patch method presented in chapter 3.2 [68, 129]. The
bulk electron mobility is then estimated using the analytical Generalized Effective
Medium Model (GEMM) (see chapter 2.2.3) [14].

In more detail, the geometries of the molecules are optimized using DFT calcu-
lations. If required, internal dihedral rotations are parameterized for the following
force-field based morphology generation. The geometry and partial charges ob-
tained in DFT are required by the simulated annealing Monte Carlo protocol
Deposit [12] (see Chapter 3.1.2). With this protocol, atomistic morphologies con-
sisting of 1000 molecules per system were generated. The morphologies are period-
ically extended in x- and y-direction and used as input for the electronic structure
calculations. Here, the energy disorder of the system is calculated by evaluating
the site energies for additional electrons and holes in the system explicitly using
the charged Quantum Patch method. Polarization effects due to intermolecular in-
teraction and polaron effects are treated self-consistently in a quantum mechanical
way. Electronic couplings were calculated using the Löwdin orthogonalization [61,
62] in electrostatically self-consistent, neutral systems. From these systems, the
dipole moments of molecules embedded in the morphology are extracted. As shown
in Chapter 4.4, they can drastically deviate from ground-state dipole moments of
molecules in vacuum. Reorganization energies are estimated using Nelsen’s four-
point-procedure [64]. Site energies as well as energy disorder, electronic couplings
and reorganization energies are used in an effective medium model (Chapter 2.2.3)
to estimate the zero-field electron mobility.

4.6.2 Mobility prediction

Using this multiscale approach, the electron mobility of a set of materials (see
Fig. 4.14a-e) is calculated, including the well-known Alq3 and various new alu-
minum complexes derived from Alq3. Using the molecules shown in Fig. 4.14a-d,
design rules are derived to systematically enhance electron mobility. These rules
were applied to develop the materials shown in Fig. 4.14e. The predicted elec-
tron mobilities of these compounds outperform the electron mobility of Alq3 by

92



up to three orders of magnitude (Fig. 4.14f). To test the theoretical predictions,
the most promising candidate Alq2MHept was synthesized at the Institute of
Nanotechnology (INT) at KIT by Dr. Verónica Gómez. Space charge limited cur-
rent (SCLC) mobility measurements performed at the Light Technology Institute
(LTI) at KIT by Michael Jenne and Christian Sprau confirmed the theoretically
predicted electron mobility. The design rules as well as the experimental findings
will be presented in this chapter.

For the utilization of a material in an e.g. OLED device, the on-site energy
levels for electrons and holes in the respective material are of crucial importance
for charge injection and the required driving voltage. For electron conducting ma-
terials, the electron affinity (EA) has to be in close alignment with the Fermi
level of the electron injecting electrode. If the EA is lower, injection is hindered
by an injection barrier leading to an increase of on-set voltage of the device and
a decrease in efficiency. In case of a too high EA, a certain part of the energy is
transferred to molecular vibrations leading to a loss in efficiency.

The results for HOMO and LUMO levels as well as ionization potential and elec-
tron affinity (IP and EA) obtained in a self-consistently evaluated electrostatic
environment are shown in Fig. 4.15. Especially for the IP/EA values, the absolute
energy levels are shifted by polarization effects of the local and global environ-
ment. Simple vacuum calculations do not capture this effect, making a detailed
quantum-mechanical treatment of the polarization effects necessary. All materials
having at least one quinoline-ligand as largest conjugated electronic system show
similar LUMO levels and IPs as the reference molecule Alq3 whose HOMO-LUMO
gap is indicated as dashed lines. The strongest deviations occur for the molecules
Alq2Op, AlOp3, AlPopy3 and AlAcac3 (see Fig. 4.14a-c). The two materials con-
taining the Op-ligand show lower LUMO energies and higher electron affinities
compared to Alq3. This can be explained by a stronger orbital delocalization on
the π-conjugated Op-ligand compared to quinoline with the smaller π-system.
The increased delocalization leads to lower orbital energies, larger electron affini-
ties and smaller HOMO-LUMO gaps. The opposite effect can be observed in the
very small π-conjugated system of the Acac ligand (5 carbon atoms). This ligand
leads to a low electron affinity of AlAcac3 and a high LUMO energy. The slightly
larger ligands Popy (2× 6 aromatic carbon atoms) and Trop (7 aromatic carbon
atoms) still lead to an increased LUMO level and reduced electron affinity com-
pared to Alq3 with a ligands size of 10 aromatic carbon atoms. This behavior is
systematically analyzed for the exchange of quinoline ligands by Acac ligands from
Alq3 over Alq2Acac and AlqAcac2 to AlAcac3 (indicated in red in Fig. 4.15). The
less quinoline ligands are available for additional electrons, the smaller becomes
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Figure 4.14: The aluminum complexes studied in this work. Panels a) and b) show
molecules, in which at least one of the three quinoline ligands of Alq3 was exchanged by lig-
ands with a) larger and b) smaller conjugated π-systems. c) shows the systematic exchange of
quinoline ligands of Alq3 by Acac ligands. d) Alq2X molecules where X was chosen in order to
minimize the dipole moment of the molecules without having a large conjugated π-system. e)
Alq2X molecules where X was chosen in order to minimize the electrostatic potential created
by the molecule. This is achieved by protecting the highly polar core of the molecule. Figure
f) shows the predicted electron mobilities of the 19 materials. The reference material Alq3

is highlighted in red, Alq2MHept as a promising candidate with improved electron mobility
compared to Alq3 is marked in green. Its calculated (green bar) and measured (yellow circles)
electron mobility is more than three orders of magnitude higher than the electron mobility of
Alq3 (red bar).
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Figure 4.15: a) Energy levels for all tested materials are shown. The order of the ma-
terials corresponds to the bulk LUMO levels. The dashed horizontal lines indicate the
HOMO/LUMO gap of the reference system Alq3. The materials Alq3 to AlAcac3 (see
Fig. 4.14) marked in red show the systematic increase of LUMO energy due to systematic
exchange of quinoline ligands. Alq2MHept having the largest simulated electron mobility is
marked in green.

the electron affinity and the higher becomes the LUMO level. Replacement of one
quinoline ligand shifts the levels less than 0.2 eV whereas the step from AlqAcac2
to AlAcac3 increases the LUMO level by more than 0.5 eV. Thus, the energy levels
of a homoleptic complex are rather insensitive towards replacement of one ligand
with another (smaller) ligand because the decisive molecular orbitals stay unaf-
fected on the remaining quinoline ligands. This opens possibility for modifications
of other molecular properties by modification of one of the three quinoline ligands
of Alq3. The effect can be summed up as a rule for the design of new electron
conducting molecules: The LUMO-level and the electron affinity are mainly de-
termined by the largest conjugated π-system of a molecule.

One of the most decisive quantities for the performance of a molecule in a device
is the charge carrier mobility. The charge carrier mobility exponentially depends
on the square of the microscopic energy disorder of a material [14, 53]. As shown
in the last chapter, apart from internal distortions of the molecules in the amor-
phous phase, one of the main sources of energy disorder is electrostatic interaction
between molecules (see Fig. 4.16). Fig. 4.17a depicts the correlation between mole-
cular dipole moments and energy disorder. This correlation is rather weak due to a
group of outliers, which are marked in red. The common feature of these outliers
is the uncommon combination of low molecular dipole moments with high val-
ues of energy disorder. Examples for such materials are shown in Fig. 4.14d. The
reason of this unexpected behavior is strong short-range electrostatic interaction
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Figure 4.16: Electron mobilities of the set of aluminum complexes shown in Fig. 4.14a-e.
Alq3 and Alq2MHept are marked as red and green squares. The bars show different contri-
butions to charge carrier mobility. The blue bars depict the prefactor of the charge mobility
which mainly depends on electronic couplings. Taking reorganization energies into account
(green bars) leads to a spread of mobility of less than two orders of magnitude. The main dif-
ference between the different materials is the energy disorder (yellow bars).
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Figure 4.17: Panels a) and b) show the energy disorder σ and electron mobility µ compared
to the dipole moment (panel a) and the mean potential (panel b) of the respective molecule.
For the calculation of the mean potential, the electrostatic potential is averaged on shells at
distances of 3.2Å and 4.6Å around the molecules.

between the highly polar aluminum core of the molecules. These local electrostatic
monopole moments are not included in the long-range dipole moment. A quantity
which includes both long-range dipole moment and local electrostatic moments is
the mean electrostatic potential in medium proximity of a molecule. As shown in
Fig. 4.17b, energy disorder σ and electron mobility µ show a strong correlation
with this mean interaction potential. The strongest correlation with a correlation
coefficient of r = 0.80 is achieved by evaluation of the electrostatic environment on
surfaces between 3.2Å and 4.6Å around the molecules. While keeping the energy
levels shown in Fig. 4.15 constant, the mean electrostatic potential can be contin-
uously tuned between 40mV and 170mV by adjusting only one ligand in order
to reduce the energy disorder of a molecule and maximize the charge mobility.

4.6.3 Experimental validation

Using the materials shown in Fig. 4.14a-d, design criteria were derived in the
last chapter. These rules are now applied to systematically increase the charge
mobility of Alq3. For this purpose, the Acac-ligand of Alq2Acac is systematically
adjusted to decrease the mean interaction potential and to improve the screening
of the polar core of the compounds (see Fig. 4.14e). An additional Methyl group
in the middle of the Acac-ligand reduces the dipole moment while the elongation
of the Alkyl chain from five to seven carbon atoms improves the shielding of the
aluminum core. With these changes, a predicted electron mobility of more than
1 · 10−4 cm2/(Vs) is obtained for the molecule Alq2MHept.

97



Voltage [V]

C
ur

re
nt

[m
A

]

c)

Alq3

Alq2MHept

a)

Glass
ITO
ZnO

AlqX

LiF
Al

10−3 10−2 10−1 100 101

regime
regime

Alq2MHept
fit to Alq3

fit to Alq2MHept

Alq3

10−8

10−6

10−4

10−2

100

102

quadratic
linearb)

Figure 4.18: Panel a) shows spin-coat layers of Alq3 and Alq2MHept. In panel b), the stack
design of the devices used for the SCLC measurements is shown. Panel c) shows the current
voltage characteristics of the SCLC measurements of Alq3 and Alq2MHept. A transition
from a linear to the quadratic SCLC regime is observed. The vertical dotted lines indicate
the range of data points used for fitting. The dotted lines between them indicate the slopes of
I ∝ U and I ∝ U2 respectively. The dashed and dashed-dotted lines are fits to the experimen-
tal data of Alq3 and Alq2MHept, respectively. The measurements were performed by Michael
Jenne and Christian Sprau at LTI, KIT.

This theoretical prediction was experimentally confirmed by synthesis of the
molecule followed by space-charge limited current (SCLC) measurements of spin-
coated thin films. The results are shown in Fig. 4.18. The electron mobility is
derived from the I ∝ U2 regime of the SCLC measurements.

I =
9

8
Aεε0µ

U2

d3
(4.3)

In this equation, I is the measured current, A = 0.035 cm2 is the device area,
ε0 is the vacuum permittivity ε ≈ 3 the relative permittivity, µ is the charge
carrier mobility, U the applied voltage and d the layer thickness obtained in surface
profilometer measurements (d = 150 nm for Alq3 and d = 250 nm for Alq2MHept).
Eq. 4.3 yields electron mobilities of µe = 6.5 · 10−8 cm2/(Vs) for Alq3, and µe =
3.3·10−4 cm2/(Vs) for Alq2MHept. The experimental electron mobility is indicated
by the yellow circles in Fig. 4.14f. The values confirm the theoretical predictions
(µe = 7.4 · 10−8 cm2/(Vs) for Alq3, and µe = 1.4 · 10−4 cm2/(Vs)) and show an
improvement of electron mobility of three orders of magnitude between Alq3 and
Alq2MHept.
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Figure 4.19: a) Absorption spectra of Alq3, Alq2Acac and Alq2MHept show characteristic
peaks of the quinoline ligands at a wavelength of λ = 380 − 390 nm and of the Acac ligands
at a wavelength of λ = 300 − 320 nm. The photoluminescence maxima are at wavelengths of
λ = 510 − 530 nm. Panels b) and c) show the normalized absorbance and luminescence max-
ima. Shifts of maximum absorbance and luminescence arise from replacement of one quino-
line ligand by MHept and Acac ligands, respectively. The measurements were performed by
Michael Jenne and Christian Sprau at LTI, KIT.

4.6.4 Absorption and photoluminescence

In order to investigate further properties of Alq3, Alq2Acac and Alq2MHept, the
absorption and photoluminescence spectra of these materials were measured. The
results are shown in Fig. 4.19. Analysis of the absorbance and photoluminescence
(PL) maxima shows a blueshift from Alq3 to Alq2Acac and Alq2MHept. The ab-
sorption maximum of Alq3 is at a wavelength of λ = 390 nm while Alq2Acac
and Alq2MHept show maxima of λ = 384 nm and λ = 386 nm, respectively (see
Fig. 4.19b). This is in agreement with the slightly increased HOMO-LUMO gap
due to the smaller conjugated systems of the Acac and MHept ligands com-
pared to the replaced quinoline ligand. The same blueshift can be observed in
the PL peaks in see Fig. 4.19c. Here, the shift of the peak is slightly larger, go-
ing from λ = 523 nm for Alq3 to λ = 511 nm for Alq2Acac and λ = 512 nm for
Alq2MHept. To compare computed ionization potentials to measurements, Photo-
Electron Spectroscopy in Air measurements (PESA) were performed by Christian
Sprau at LTI, KIT. These show an ionization potential of IP = 5.85 eV for Alq3

and ionization potentials of IP = 5.88 eV and IP = 5.89 eV for Alq2Acac and
Alq2MHept, respectively. The shift in experimental ionization potential is in agree-
ment with the calculated HOMO energies of EHOMO = 5.07 eV, EHOMO = 5.16 eV
and EHOMO = 5.21 eV for Alq3 to Alq2Acac and Alq2MHept, respectively. The
computed ionization potentials are IP = 5.34 eV, IP = 5.46 eV and IP = 5.31 eV.
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In this chapter, design rules for the systematic generation of new molecular
structures with improved properties such as charge carrier mobility and energy
levels were derived. It was shown that the ionization potential and electron affin-
ity are directly linked to the electronic properties of the ligand where additional
charges are localized. Since these energy levels are decisive for injection barriers
and interface properties, precise adjustment of energy levels is of primary impor-
tance for the application of a material in a device. The electrostatic properties of
the ligands have a strong impact on the molecular dipole moment and on inter-
molecular interaction which is a decisive part of energy disorder and charge mo-
bility. Thus, the systematic modification of the Alq3 ligand system yields insights
into the factors that govern charge mobility. Using these results, a new aluminum
complex was designed showing a predicted and experimentally confirmed electron
mobility which is three orders of magnitude higher than the electron mobility
of Alq3. As these observations are applicable to all organic semiconductors, the
design rules established in this work extend well beyond the studied systems.
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4.7 Further applications

Apart from the examples presented in this work, many more open scientific ques-
tions related to organic electronics are discussed in literature. Examples are mate-
rial interfaces [186], chemical doping [187] and morphological anisotropy [46]. For
many of such topics, the multiscale approach presented in this work can be used
to gain further inside into material and system properties. In most of the cases,
this insight can be used for targeted material design and to guide experiment in
improving device characteristics.

This chapter will present organic materials and applications, in which the simu-
lations methods developed in this work were applied to answer fundamental ques-
tions concerning charge transport. Firstly, four topics will be discussed briefly,
namely chemically doped organic materials, correlated systems, self-assembled
materials with low energy disorder and the simulation of excited states in or-
ganic materials. Secondly, the simulation of an organic solar cell will be presented
and discussed in Chapter 4.7.5. These simulations cover the generation of three-
dimensional coarse grained morphologies as well as an estimate of charge mobility
and exciton diffusion length in mixed materials.

4.7.1 Doped organic materials

One way to to increase charge carrier density and thus conductivity of semicon-
ductors is doping of the material. In organic semiconductors, a certain amount of
dopant molecules is mixed into the amorphous thin film. The dopant molecules are
chosen in a way that they either remove electrons from the occupied states of the
host matrix (p-doping) or inject electrons into the unoccupied states of the host
matrix (n-doping). This process strongly depends on the differences of ionization
potential and electron affinity of the host and the dopant molecules. The presence
of dopant molecules and the charge transfer between dopant and host molecules
not only increases the charge carrier density but also influences the charge mo-
bility of the host material. I applied the Quantum Patch method to such doped
systems in order to analyze the interaction between host and dopant molecules.
This analysis can be compared to doping efficiencies and the influence of doping
of charge mobility and conductivity. Detailed understanding of these microscopic
effects finally helps to improve existing and design new doping materials. In a first
work, I theoretically investigated the influence of dopant molecules on the energy
levels of host molecules via electrostatic interaction. This effect is discussed in
Schneider et al. [15] using different experimental and theoretical methods.
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4.7.2 Correlated systems

Another important factor influencing charge transport characteristics are correla-
tions. I analyzed different forms of correlations, e.g. spatial correlations between
energy levels due to long-range electrostatic interaction (see Massé et al. [20] and
Appendix F), correlations between orbital energies (mainly HOMO and LUMO)
which potentially influence exciton transport (see Massé et al. [21]) as well as cor-
relations of the molecular orientation leading to an anisotropy of the amorphous
material. The latter effect is experimentally known as giant surface potential ef-
fect [188]. This effect occurs in many organic semiconductors due to an anisotropic
distribution of molecular dipole moments in amorphous thin films. In Friederich
et al. [16], this effect will be discussed from a microscopic and theoretical point of
view. Monte Carlo methods for the generation of atomistically resolved molecular
systems as well as the Quantum Patch method will be used to investigate and
understand the origin of the giant surface potential which only occurs for certain
materials.

4.7.3 Self-assembled materials

Charge transport properties of all materials presented in this work are dominated
by structural and energetic disorder. Self-assembled materials such as molecular
wires and metal organic frameworks (MOFs) are examples of regularly applied
materials, in which disorder is not the dominating property. In contrast to amor-
phous materials, both material classes show a comparatively low energy disorder,
making electronic couplings the dominant contribution to charge transport pro-
perties. In Karipidou et al. [17], I analyzed the charge transport mechanism in
molecular wires, where differences between hopping processes along and between
wires play an important role. Charge transport in loaded MOFs on the other hand
can be dominated by super-exchange processes between the guest molecules via
intermediate virtual states. The super-exchange mechanism and its application to
organic guest-host system is presented in Symalla et al. [19]. Here, I contributed
to an extension of the super-exchange formalism for mixed disordered organic ma-
terials. This formalism is used to analyze charge transport in loaded metal organic
frameworks in Neumann et al. [18], where I calculated the electronic structure and
super-exchange hopping rates in MOFs loaded with TCNQ and F4TCNQ.

4.7.4 Excited states

The flexibility of the Quantum Patch method and the possibility of hybrid imple-
mentations (as shown in Friederich et al. [129]) makes it furthermore possible to
study non-ground-state properties like polarons, charge transfer states and exci-
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tons in disordered systems. The latter play a crucial role in organic light emitting
diodes as well as in organic solar cell. Thus, the Quantum Patch method has been
be extended to analyze the excited states properties of excitons and their inter-
action with other species like polarons. The results of this work will be presented
in Setzer et al. [189].

4.7.5 Nano- and mesoscale properties of organic solar
cells

In this section, some of the methods presented in Chapter 3 are applied to study
the influence of meso- and nanoscale morphology on exciton separation and charge
transport in the active layer of an organic solar cell. The figures and parts of the
discussion are adopted from Mönch et al. [132].

In organic solar cells (see Chapter 2.1.2), two competing demands, namely small
material domains for exciton separation and large material domains for efficient
charge extraction have to be fulfilled [190, 191]. Thus, the grain size of the bulk
heterojunction (BHJ) morphology of an organic solar cell has to be optimized.
Experimentally, this can be achieved by adjusting the substrate temperature dur-
ing vacuum deposition of the active layer of the solar cell [192–195]. This section
will discuss the influence of the substrate temperature during vapor deposition
of the solar cell on nano- and mesoscale properties of the bulk heterojunction.
The system analyzed here and in Mönch et al. [132] consists of a nip-sandwiched
structure with an active layer made of the dicyanovinyl-substituted oligothiophene
derivative DCV5T-Me as donor [194, 196–199] and a fullerene C60 as acceptor [27]
(see Fig. 4.3). With this material system, a power conversion efficiency (PCE) of
8.3% were reported in literature [200].

Experimental work

In Mönch et al. [132], DCV5T-Me:C60 solar cells are analyzed which were pre-
pared at different substrate temperatures (room temperature (RT) and 80 ◦C).
The current-voltage (j − V ) characteristics of these solar cells are shown in
Fig. 4.20 and the respective open circuit voltages VOC. The solar cell deposited at
a substrate temperature of 80 ◦C shows an improved power conversion efficiency
(PCE) of PCE = 6.8% compared to the solar cell deposited at room temperature
(PCE = 4.5%).

To investigate properties of the bulk heterojunction in the active layer, energy
dispersive X-ray (EDX) measurements (STEM-EDX) [201] were performed to in-
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Figure 4.20: j − V curves of solar cells deposited at a substrate temperature of RT (blue
circles) and 80 ◦C (green squares). The solid lines without symbols show the j − V curves
without illumination. The data is taken from Mönch et al. [132].

vestigate phase separation at the required nanoscale resolution [202]. The EDX
signal arises from chemical contrast between DCV5T-Me and C60 [203–205]. As
sulfur is only present in DCV5T-Me, the STEM-EDX signal quantitatively mea-
sures the amount of this material in the layer at a certain point. The resolution
of the measurement is limited by the focus of the electron beam, which is on
the order of several nanometers. The sulfur sensitive STEM-EDX measurements
of samples annealed at room temperature and at 80 ◦C are shown in Fig. 4.21a
and b. Thickness variations were measured using the high-angle annular dark-field
imaging technique as a reference to the STEM-EDX measurements.

Fig. 4.21a shows the sulfur sensitive STEM-EDX signal of a DCV5T-Me:C60

layer deposited at room temperature. A fine-grained domain structure of DCV5T-
Me and C60 can be observed. Fig. 4.21b depicts the thin-film morphology of the
absorber layer deposited at 80 ◦C. Here, small carbon-rich islands with a diameter
larger than 10 nm can be observed. These are embedded in a well-connected sulfur-
rich network. The phase separation of the absorber layer is accompanied by an
increased domain purity compared to the sample deposited at room temperature.
This observation correlates well with the increased short circuit current density
and fill factor of the solar cell.
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Figure 4.21: Panels a) and b) show the relative amount of DCV5T-Me in the RT and the
80 ◦C samples. The data is extracted from the experimental STEM-EDX measurements. It
is used for the generation of mesoscopic three-dimensional morphologies. Panels c) and d)
show top-view images of three-dimensional morphologies generated using the STEM-EDX
input. Panels e) and f) show side views of the sections marked in green. The C60 domains are
transparent. The Figure is taken from Mönch et al. [132].
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Solar cell model

To link microscopic images to macroscopic j−V characteristics, simulations were
performed to better understand the microscopic and mesoscopic properties of
DCV5T-Me:C60 solar cells. As described in Chapter 2.1.2, strongly bound ex-
citons are generated in the bulk heterojunction and migrate until they reach a
material interface. At the interface, the excitons dissociate with a certain proba-
bility into bound electron-hole pairs in charge transfer states, where the electron
is localized on a C60 molecule and the hole on a DCV5T-Me molecule. Once the
charge transfer states are separated, the resulting free electrons and holes move
towards the electrodes in a diffusive process. Since the charge carriers are confined
to either donor or acceptor material, closed connections from each point of the
donor-acceptor interface to the respective electrodes are required.

The efficiency of the device is, among others, dependent on three factors: 1)
exciton diffusion, 2) exciton dissociation and 3) charge carrier collection. In order
to dissociate, excitons must reach a material interface within their lifetime and
diffusion length. The probability of this process increases if the exciton diffusion
length is large compared to the domain size of the absorber material. In this study,
the dissociation rate of the exciton, once it has reached an interface, is assumed to
be independent of the morphology and therefore sample independent. The third
important factor in the model is the degree of connectivity of the different material
domains. Considering the exciton diffusion process, the room temperature sample
shown in Fig. 4.21a should have a higher internal quantum efficiency in compar-
ison to the 80 ◦C sample shown in Fig. 4.21b. This assumption contradicts the
experimental findings. On the other hand, small domains, as visible in the room
temperature sample, might lead to island formation. This would not only reduce
the connectivity of material domains but also facilitate charge carrier recombi-
nation, which will counterbalance the increased exciton separation probability by
decreasing the efficiency of charge extraction.

To quantify the interplay between domain size and island formation, three-
dimensional coarse-grained morphologies (see Chapter 3.4) based on the STEM-
EDX data for the room temperature and the 80 ◦C samples were generated. The
results are presented in Section 4.7.5. Furthermore, the exciton and charge mobil-
ity in both samples was estimated using atomistic morphologies and the Quantum
Patch method (results in Section 4.7.5).
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Mesoscale Monte Carlo simulations

To generate three-dimensional morphologies, a Monte Carlo based simulated an-
nealing method as presented in Chapter 3.4 is used [206]. The three-dimensional
morphology generation is based on two-dimensional STEM-EDX data obtained
from the sulfur-sensitive images shown in Fig. 4.21a and Fig. 4.21b. The STEM-
EDX signal allows to quantitatively extract the relative amount of DCV5T-Me
in the layer below each pixel of the STEM-EDX image. The three-dimensional
morphologies generated in this procedure have the same out-of-plane-projection
of the DCV5T-Me content as the experimental STEM-EDX input. Representative
illustrations of the morphologies with isotropic domain sizes and interconnectivity
in all three dimensions are shown in Fig. 4.21c-f.

Based on these morphologies, the connectivity of each material domain to
the respective electrodes was analyzed. In agreement with visual inspection (see
Fig. 4.21c-f), the quantitative analysis yields that the 80 ◦C sample consists of two
interpenetrating, singly connected C60 and DCV5T-Me domains that percolate
through the entire sample. Surprisingly, the connectivity of the room temperature
sample is equally good, despite its apparent finer grain size of the bulk hetero-
junction. At both substrate temperatures, more than 99% of the material in both
domains are connected to the electrodes. This is in agreement with classical per-
colation theory, as the volume fraction of the two material components (0.44) is
larger than the percolation threshold of 0.10 to 0.31, depending on the degree of
connectivity [207, 208].

The consequence of this observation is depicted in the side views shown in
Fig. 4.21e and f, where the color represents the connectivity of material domains.
It is visible that almost all domains are interconnected and build up a complete
percolation network (marked in blue). Single isolated islands are highlighted in
different colors. This explains the observation of similar currents at high negative
voltages in Fig. 4.20. At these voltages, almost all charge carriers in domains with
a connection to the electrodes are extracted with negligible recombination losses.
Thus, only exciton separation and material connectivity play a role.

Based on the simulated three-dimensional morphologies, the mean distance each
exciton has to travel to reach an interface was computed. This was done by map-
ping the interface distances of the three-dimensional morphology on a model where
all domains have a spherical shape. This analysis results in an average interface
distances of RRT = 3.1 nm and 2.8 nm for C60 and DCV5T-Me domains, respec-
tively. For the device prepared at 80 ◦C, R80 ◦C = 10.6 nm and 9.8 nm for C60 and
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DCV5T-Me are obtained, respectively. These average interface distances are in
good agreement with visual analysis of the two-dimensional images in Fig. 4.21a
and b. Despite an average interface distance of approximately 10 nm in the 80 ◦C
sample, 83% of the excitons generated are within 4 nm from a donor-acceptor in-
terface. This is still within the limits of typical exciton diffusion lengths of 5−40 nm
and matches the value of the comparable molecule DCV-6T (9± 3 nm) [209–212].
Those values demonstrate that the phase separation at a substrate temperature of
80 ◦C does not lead to losses due to exciton recombination. Experimental support
for this hypothesis is given by the slightly larger current density at negative volt-
ages in the 80 ◦C sample compared to the room temperature sample (see Fig. 4.20).
As the external electric field does not influence the diffusion process of a neutral
exciton, this current density reflects the total amount of electrons and holes being
generated in the sample and extracted due to the high field strength.

Atomistic simulations

To understand why the sample deposited at room temperature has a smaller effi-
ciency than the 80 ◦C sample, the influence of the microscopic material composi-
tion on the charge carrier mobility and exciton diffusion length is estimated in this
section. As discussed in Chapter 4.4, the most significant quantity determining
the mobility of charge carriers in disordered organic semiconductors is the width
of the distribution of site energies σ [14, 48, 68, 131, 167]. There are two sources
of energy disorder (see Chapter 4.5) for charges and excitons. These sources are
differences of the molecular geometry (conformational disorder) and polarization
effects due to electrostatic interaction between the molecules (electrostatic disor-
der). As both C60 and DCV5T-Me are relatively rigid, the energy disorder mainly
arises from electrostatic interactions between the molecules at different sites and
their environment [213].

To estimate the energy disorder as a function of the local material composi-
tion, the strength of polarization effects and their influence on the local energy
levels in mixed and pristine material domains was investigated. Due to the small
domain size in the sample annealed at room temperature, almost each molecule
is in relatively close proximity to a molecule of the other phase. In the samples
annealed at 80 ◦C, the domain sizes are considerably larger. To account for these
differences in interface proximity, atomically resolved morphologies for pure C60

and mixed DCV5T-Me:C60 morphologies were generated using the Deposit proto-
col (Chapter 3.1.2) [12]. These two extreme cases are representative for the small,
rather intermixed domains in the room temperature sample and the larger and
purer domains in the sample deposited at 80 ◦C. Each morphology contains 700

108



a) b)

18 nm 18 nm

Energy difference [eV] Energy difference [eV]

a.
u.

a.
u.

-0.4 -0.2 0.0 0.2 0.4

HOMO
LUMO

σ=0.003 eV
σ=0.008 eV

σ=0.14 eV
σ=0.14 eV

HOMO
LUMO

-0.4 -0.2 0.0 0.2 0.4

Figure 4.22: Atomistic morphologies and distributions of orbital energy differences of a) pure
C60 and b) mixed DCV5T-Me:C60 morphologies. The distributions show the differences of C60

HOMO and LUMO energies (black and red) in the morphologies shown in panels a) and b).
The solid lines are fits to the Gaussian distributions. Electrostatic interaction between C60

and DCV5T-Me leads to a broadening of the distribution of energy differences. The Figure is
taken from Mönch et al. [132].

molecules which are periodically extended in x- and y-direction to obtain an elec-
trostatic bulk embedding.

Fig. 4.22 shows the distribution of C60 HOMO and LUMO energies calculated
using mixed DCV5T-Me:C60 (Fig. 4.22a) and pure C60 domains (Fig. 4.22b), which
correspond to the limiting cases of strongly mixed domains in the RT sample and
large, relatively pure domains in the 80 ◦C sample. The width of the distribution
of energy differences is closely related to the local density of states which is cal-
culated using the Quantum Patch method [68] (Chapter 3.2).

Calculations yield a electrostatic energy disorder in the pristine C60 system of
σe = 8meV for electrons and σh = 3meV for holes, respectively. Consideration
of thermal fluctuations of the order of 25meV leads to values of approximately
26meV which is commensurate with literature data for crystalline organic semi-
conductors [50]. In the mixed morphology shown in Fig. 4.22a, the energy disorder
of C60 molecules (see Fig. 4.22a)) is drastically increased to σe = 158meV for elec-
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trons and σh = 164meV for holes. This order of magnitude increase is caused by
the random orientation of DCV5T-Me molecules in close proximity to the C60

molecules. The intrinsic electrostatic dipole moments of DCV5T-Me molecules
(1.0Debye) generate a unique and strong electrostatic environment for each C60

molecule which shifts the C60 energy levels. This leads to a two to three orders of
magnitude increase in charge carrier mobility in pure domains of the 80 ◦C sample,
compared to the mixed domains of the samples deposited at room temperature
(details in Mönch et al. [132]).

As the exciton diffusion coefficient and the exciton diffusion length are ex-
ponentially dependent on the energy disorder, a similar effect can be expected
for excitons. This would largely overcompensate the negative effect of increased
domain size on the exciton separation probability in the 80 ◦C sample [167]. In
pristine DCV5T-Me domains, the size of the dipole has a much weaker influence
on energy disorder and exciton diffusion length, as these are expected to be highly
ordered and, thus, have an energy disorder similar to the low values computed for
C60 [197].

At the same time, improved charge mobility leads to a faster charge extraction
and to a lower series resistance yielding an improved fill factor of the solar cell.
These findings are well supported by both theory and experiment and conclusively
explain the improved performance of the 80 ◦C sample. Simultaneously, they give
design rules for the development of more efficient organic solar cells. One impor-
tant factor determining the device efficiency is the formation of either pristine or
ordered material domains. As shown in this section, one way of improving domain
separation is the adjustment of the substrate temperature during deposition of
the bulk heterojunction.
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5
Summary and outlook

Summary

Amorphous organic semiconductors are used in applications such as organic light
emitting diodes and organic solar cells. Despite technical advances of commercially
available organic devices, many material properties and physical processes are to
date not well understood. One example is the relation between quantum mechan-
ical properties of single molecules on the angstrom scale and thin film charge
carrier mobility on the nanometer to micrometer scale. Better understanding of
the basic physical principles of amorphous organic materials can enable rational
material development and thus improvement of device efficiencies.

Charge carrier mobility µ of amorphous semiconductors is a strongly vary-
ing function of the energy disorder σ and the inverse temperature β: µ ∝
exp(−Cβ2σ2). The energy disorder arises from molecular distortion of the dis-
ordered molecules as well as from interaction between the molecules and their
individual environment. To reliably compute the charge carrier mobility of or-
ganic materials, the energy disorder has to be calculated with high precision. This
requires the combination of quantum mechanical analysis of the electronic struc-
ture of single molecules with meso-scale analysis of the disordered morphology.

In this work, I presented a multiscale simulation method which quantitatively
predicts the charge carrier mobility of amorphous organic semiconductors. The
ab-inito-based method only requires the chemical structure of a molecule as in-
put and can therefore be used for predictive and reliable materials screening and
design. The approach consists of several steps, covering all length scales which
are relevant to describe the necessary processes determining macroscopic charge
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transport properties.

Central and novel ingredient of the method is the Quantum Patch method which
analyses the electronic structure of atomistically resolved molecular systems using
quantum mechanical methods such as density functional theory (see Friederich et
al. [68, 69, 129, 130] and Meded et al. [145]). The Quantum Patch method provides
a self-consistent framework to compute the polaron energy on chosen molecules of
the system, incorporating the individual molecular conformation as well as its in-
teraction with the environment. This fulfills both requirements for the calculation
of the aforementioned energy disorder. In order to accurately predict the energy
disorder, molecular systems including several thousand molecules have to by an-
alyzed. So far, this was only possible with empirically parameterized, molecular
mechanics based methods which did not take into account quantum effects. The
linearly scaling Quantum Patch method allows the analysis of such large systems
and therefore enables the parameter-free prediction of energy disorder in realistic
systems.

I have computed the charge carrier mobility of different experimentally known
materials to test the capabilities and validate and results of the newly developed
methods (see Friederich et al. [131]). The tests show a good agreement between
theoretically calculated hole mobility and experimental measurements, where the
charge mobility of the different materials spans a range of more than ten orders of
magnitude. Furthermore, I used the results of these simulations to shed light on
the relations between molecular and thin film properties. I could identify different
molecular properties which mainly determine macroscopic charge mobility. This is
achieved by factorization of the charge carrier mobility obtained with an effective-
medium model [14] into different contributions. These contributions include the
influence of different sources of energy disorder in amorphous systems as well as
of reorganization energy and the electronic coupling between molecules.

The analysis of relations between molecular structure and thin film charge mo-
bility enabled the postulation of design rules for new organic compounds. These
rules were then used to systematically improve the widely used electron conducting
molecule Alq3 (see Magri et al [214] and Friederich et al. [215]). Here, I analyzed
several novel materials and computed their charge carrier mobility. Targeted mod-
ifications of the molecular structures led to an increase in electron mobility of more
than two orders of magnitude compared to the reference material Alq3. One of the
most promising candidates was synthesized by Verónica Gómez in the group of
Mario Ruben at INT, KIT. Measurements of the electron mobility were performed
by Michael Jenne and Christian Sprau in the group of Alexander Colsmann at
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LTI, KIT. SCLC measurements confirm the simulation results which predict an
improvement of the electron mobility of almost three orders of magnitude. This
proof of principle of in-silico molecule design demonstrates the potential of the
multiscale workflow to be applied in targeted material development. Beyond the
aluminum complexes shown in this works, it can be used for the improvement of
charge mobility in different classes of molecules and material combinations.

Outlook

To extend the range of possible applications of the methods presented in this
work and to further improve their capability of tackling open scientific questions
in the field of organic electronics, several extensions are planned. One example
it the modeling of full devices which includes the explicit simulation of charge
and exciton transport using kinetic Monte Carlo approaches. The approximative
effective medium model used in this work is useful for the determination of the
molecular origin of charge mobility. Due to its restriction to single layers with
only one type of charge carrier, this model cannot be used for device simulations,
where the interaction between electrons, holes and excitons as well as more com-
plicated device architectures play an important role. This type of systems can be
modeled using kinetic Monte Carlo (KMC) approaches, where all processes are
simulated explicitly. Similar to the effective medium model, all KMC simulations
require process rates, which depend on microscopic material properties such as
electronic couplings and reorganization energies of large systems. This challenge
can be tackled using a combination of the Quantum Patch method and KMC
simulations.

In order to include and analyze excited state properties of organic materials
which are relevant in both OLEDs and organic solar cells, improved methods for
the generation of atomistic morphologies are required. State of the art molecu-
lar dynamics or Monte Carlo simulations use classical force fields to describe the
interaction between molecules during the generation of molecular systems. Even
molecule specific parameterization of these force-fields, especially for soft intra-
molecular degrees of freedom, is in many cases not accurate enough to be used in
quantum mechanical calculations of excited state properties. Fixed point charges
describing the electrostatic interaction between molecules as well as the neglect
of correlations between internal degrees of freedom and the neglect of quantum
effects due to localization and delocalization of molecular orbitals are approxi-
mations, which can be overcome in more sophisticated approaches. Correlations
between internal degrees of freedom can be mapped to classical force fields using
the quantum mechanical eigenmodes of the molecules instead of bond lengths and
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(dihedral) angles as free parameters. Orbital (de)localization and changes of the
electron density of individually distorted molecules are much more challenging to
map to classical force fields. Here, a full quantum mechanical analysis of molecular
structures becomes inevitable. This can be achieved on different levels of accu-
racy. Errors in electrostatics can be fixed using a re-evaluation of partial charges
after each deposition step. Inaccuracies in internal degrees of freedom can either
be improved using a quantum mechanical post-relaxation of each newly deposited
molecule or using a self-consistent relaxation of the entire molecular structure in
a self-consistent procedure similar to the Quantum Patch method.

Last, but not least, the flexibility of the multiscale method and in particular the
Quantum Patch method can be used to analyze, understand and improve state-of-
the art materials used in highly efficient organic light emitting diodes and organic
solar cell. This includes the analysis of the stability of phosphorescent emitter
and host molecules and their degradation mechanism, the targeted improvement
of highly efficient molecules showing thermally activated delayed-fluorescence, the
investigation of charge separation at organic heterointerfaces in solar cells and
many more. Furthermore, most of the highly efficient, solution processed organic
solar cells use polymers to absorb light and to generate excitons. Extensions of the
Quantum Patch method are possible which can be used to study the transport
mechanism of partially delocalized states in such high-mobility polymers.
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A
Abbreviations

AG (german) Arbeitsgruppe
α-NPD Organic molecule, see Chapter 4.2
Alq3 Metal-organic complex, see Chapter 4.2
AM1 Austin model 1
AMBER Assisted model building with energy refinement
AMOEBA Atomic multipole optimized energetics for biomolecular

applications
AO Atomic orbital
B3LYP Hybrid DFT functional, see Chapter 2.3.2
BCC Bond charge corrections
BHJ Bulk heterojunction
BP86 also b-p, DFT functional, see Chapter 2.3.2
cDFT Constrained density functional theory
CDM Correlated disorder model
CIGS Copper indium gallium selenide
COG Center of geometry
COM Center of mass
CPU Central processing unit
CT Charge transfer
DCV5T-Me Organic oligomer, see Chapter 4.2
DEPB Organic molecule, see Chapter 4.2
DFTB Density functional based tight binding
DFT Density functional theory
EA Electron affinity
ECDM Extended correlated disorder model
ECP Effective core potentials

117



EDX Energy dispersive X-ray detector
EGDM Extended Gaussian disorder model
EL Emissive layer
EQE External quantum efficiency
ESP Electrostatic potential
ETL Electron transport layer
FF Fill factor
FHJ Flat heterojunction
F4TCNQ Organic molecule
GAFF General AMBER force field
GDM Gaussian disorder model
GEMM Generalized effective-medium model
GGA Generalized gradient approximation
GPU Graphics processing unit
GSP Giant surface potential
HAADF High-angle annular dark field
HF Hartree-Fock
HOMO Highest occupied molecular orbital
HTL Hole transport layer
INT Institute of Nanotechnology
IP Ionization potential
IQE Internal quantum efficiency
KIT Karlsruhe Institute of Technology
KMC Kinetic Monte Carlo
LDA Local-density approximation
LED Light emitting diode
LJ Lennard-Jones
LTI Light Technology Institute
LUMO Lowest unoccupied molecular orbital
mBPD Organic molecule, see Chapter 4.2
MC Monte Carlo
MD Molecular dynamics
ME Master equation
MOF Metal-organic framework
MO Molecular orbital
MSL Materials Science Laboratory Sony, Stuttgart
NNP Organic molecule, see Chapter 4.2
NPT Number of particles, pressure, temperature
NVT Number of particles, volume, temperature
OFET Organic field effect transistor
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OLED Organic light emitting diode
OPV Organic photovoltaics
OSC Organic solar cell
PBC Periodic boundary conditions
PCBM Organic molecule, see Chapter 4.2
PCE Power conversion efficiency
PCM Polarizable continuum model
pFFA Organic molecule, see Chapter 4.2
PF Poole-Frenkel
PHEN Organic molecule phenanthrene
PL Photoluminescence
QM/MM Quantum mechanics/molecular mechanics
RFID Radio-frequency identification
RT Room temperature
SA Simulated annealing
SCF Self-consistent field method
SCLC Space charge limited current
sEQE Sensitive external quantum efficiency
SOMO Single occupied molecular orbital
STEM Scanning transmission electron microscope
SUC Organic molecule succinonitrile
SUMO Singly unoccupied molecular orbital
SV(P) Split valence basis-set with polarization, see Chap-

ter 2.3.2
SX Superexchange
TCNQ Organic molecule
TPD Organic molecule, see Chapter 4.2
TZVP Triple-ζ split valence basis-set with polarization, see

Chapter 2.3.2
vdW van der Waals
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B
Benchmark of the Quantum Patch

method

To estimate the efficiency of the hybrid methods presented in Chapter 4.3, the
computational requirements of the protocols presented above were compared. The
results are depicted in Fig. B.1. The calculations were performed on 2.6GHz In-
tel Xeon processors E5-2670 (Sandy Bridge). One DFT calculation of a charged
molecule takes approximatively 15min of CPU-time on a including pre- and post-
processing of a charged molecule while the effort for an uncharged molecule are
6min. Here, a B3LYP [22]/SV(P) [23] level of theory was used as implemented in
TURBOMOLE [24, 216]. The corresponding calculations using DFTB [148, 217,
218] take on average 4 s per molecule. Typically, seven iteration steps according
to the Quantum Patch method are required to reach converged self-consistency.
In each step, 100 charged centers are considered, each of them surrounded by
approximatively 100 molecules which are self-consistently re-evaluated in each
iteration cycle. In the “hybrid large” method, on average 12 of these 100 en-
vironment molecules are treated using DFT while the rest is calculated using
DFTB. For simplification, all additional preparation steps as well as necessary
pre-calculations were not taken into account. In this case, the “full QM” method
requires 14210CPU-h. The “hybrid large” method giving the most accurate results
reduces the “full QM” effort to 15.2% or 2167CPU-h. The “hybrid small” method
reduces the computational effort to 3.6% or 506CPU-h, whereas the purely semi-
empirical method requires only 156 h, which is 1.1% of the “full QM” CPU-time.

As a comparison, the last column of Fig. B.1 shows the computational effort
of the neutral Quantum Patch method. This method is required as a reference
method to calculate ionization potentials and electron affinities (for details, see
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Figure B.1: Computational effort of the methods presented in Tab. 4.1. The most accurate
method ”hybrid large” (see Fig. 4.5) is reducing the computational cost by over 80% without
significant loss of precision. The image is taken from Friederich et al. [129].

Friederich et al. [68]). Apart from the reference “full QM” approach, the most
accurate method is the “hybrid large” approach, which is less than a factor of two
more expensive than the neutral Quantum Patch method. This enables in silico
materials prescreening with high accuracy and reliability.

121



C
Accelerated demixing algorithms

Typical STEM-EDX images, such as the ones presented in Chapter 4.7.5 and in
Mönch et al. [132], have lateral sizes if 512 × 512 pixels. In z-direction, approx-
imately 70 pixels are required in this example to account for the film thickness.
Thus, three dimensional morphologies of these samples contain approximately 18
million voxels. The demixing simulation starts with an initial, random state and
converges as soon as the system reaches a isotropic three-dimensional representa-
tion of the experimental two-dimensional input. For this procedure, several billion
steps are required. Without technical and numerical methods to accelerate the
simulation, this system size cannot be simulated within acceptable time scales.
Two methods which accelerate the demixing simulations will be presented in this
chapter.

Parallelization

The first method is a technical solution using massive parallelization. In the model
presented in this chapter, no long range interactions are taken into account. Due
to the local energy model, the acceptance criterion for the exchange of neighboring
voxels only depends on the first neighbor shell of the respective particles. There-
fore, many exchange processes can be evaluated simultaneously and independent
of each other in different parts of the system. This allows for parallelization of the
Monte Carlo simulation. Fig. C.1 illustrates one possibility of parallelization of
moves. In Fig. C.1a, one single exchange process in a conventional Monte Carlo
simulation is shown. Using the grid shown in Fig. C.1b, many moves can be evalu-
ated simultaneously. Due to the spacing between the grid cells, the evaluations of
all acceptance criteria are independent from one another. Using e.g. GPU-based
parallelization techniques, the Monte Carlo simulation can be accelerated by fac-
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a) b)

Figure C.1: a) One random move is performed in each step of a conventional Monte Carlo
simulation. b) All moves in the red subgrid can be evaluated simultaneously and indepen-
dently from one another. This allows for parallelization of the Monte Carlo simulation.

tors in the order of 104 to 105. In systems of size N3 voxels and a subgrid of size
3 × 3 × 4 = 36 voxels, N3/36 steps can be evaluated in parallel. Due to the size
of available GPUs, the speed-up is limited by the number of GPU cores.

Resolution scaling

A second method to accelerate the generation of three-dimensional morpholo-
gies is called resolution scaling. Here, the experimental input structure is first
scaled down to a lower resolution. In this lower resolution, a three-dimensional
representation is generated and simulated until convergence. Afterwards, the two-
dimensional input and the converged three-dimensional representation are scaled
up and used in a second simulation. Due to intrinsic uncertainties in the upscaling
process, the initial three-dimensional structure of the second calculation contains
defects and artifacts such as large step edges and random vacancies. During the
simulations, these errors are fixed and the structure is equilibrated at the higher
resolution. This procedure is repeated until the final resolution of the original
experimental image is reached.

An example of this resolution scaling technique is shown in Fig. C.2. Here,
an experimental input structure with the size 100 × 100 pixels (see Fig. C.2c)
is scaled down to 25 × 25 (Fig. C.2a) and 50 × 50 pixels (Fig. C.2b) before the
simulation reaches the full resolution. Fig. C.2a, b and c are the z-projections of
the simulation. Fig. C.2d, e and f are projections in x-direction and Fig. C.2g,
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Figure C.2: Examples of the resolution scaling technique. The first column shows a simu-
lation with a lateral box size of 25 × 25 pixels, while the simulation boxes in the second and
the third column have sizes of 50 × 50 pixels and 100 × 100 pixels, respectively. The images
in the first line (a, b and c) show z-projections of the simulation box while the images in the
second (d, e and f) and third (g, h and i) line are projections in x-direction and y-direction,
respectively.

h and i are projections in y-direction. It is visible that the converged structure
shows similar grain sizes in all three dimensions.
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D
Orbital degeneracy and level splitting

In this section, the structure and degeneracy of HOMO and LUMO orbitals of
α-NPD, TCTA and Spiro-DPVBi in amorphous films is analyzed and compared
to vacuum optimized structures of the molecules. The individual symmetry of the
molecules in their vacuum relaxed structure leads to a characteristic degeneracy of
occupied and unoccupied states. This degeneracy is lifted in the amorphous thin
film due to disorder effects as discussed in the last chapters. The level spacing
between different occupied orbitals (∆EHOMO) as well as between unoccupied
orbitals (∆ELUMO) is analyzed in the following section. The names HOMO−1
and LUMO+1 refer to the orbitals below the highest occupied molecular orbital
and above the lowest unoccupied molecular orbital, respectively.

Spiro-DPVBi

The vacuum structure of Spiro-DPVBi shows a D2d symmetry with two equivalent
molecular units rotated 90◦ with respect to each other. This leads to a degener-
acy of both the HOMOs and the LUMOs (see Fig. D.1). The energy splitting
between HOMO and HOMO−1 is ∆EHOMO = 0.060 eV while the energy splitting
between LUMO and LUMO+1 is ∆ELUMO = 0.012 eV. The energy gap below
HOMO−1 and above LUMO+1 is considerably larger. In the amorphous phase,
the symmetry is distorted which lifts the degeneracy of the energy levels. Energy
splittings extracted from the molecular system are ∆EHOMO = (0.203± 0.047) eV
and ∆ELUMO = (0.200 ± 0.124) eV. As shown in Fig. D.2a and D.2b, HOMO
and HOMO−1 are no longer symmetric and antisymmetric linear combinations
of nearly degenerate orbitals of the two molecular units but rather show char-
acteristics of molecular orbitals of the single units. The hybridization of orbitals
as shown in HOMO and HOMO−1 in Fig. D.1 might be an artifact of missing

125



a) HOMO−1 b) HOMO c) LUMO d) LUMO+1

Figure D.1: Vacuum orbitals of Spiro-DPVBi.

a) HOMO b) HOMO c) LUMO d) LUMO

Figure D.2: Orbitals of Spiro-DPVBi in the amorphous phase.

exchange energy in LDA and GGA-functionals of DFT. Even the hybrid B3LYP
functional used here may not fully correct this error. In addition to that, the mo-
lecular orbitals become asymmetric themselves due to environment and bending
effects (see Fig. D.2b). The nearly degenerate vacuum LUMO and LUMO+1 keep
their general shape but also become less symmetric in the amorphous system (see
Fig. D.2c and D.2d).

α-NPD

The HOMO of α-NPD in vacuum is separated from the HOMO−1 by 0.455 eV,
whereas the LUMO and LUMO+1 shown in Fig. D.3 are separated by only
0.033 eV. The reason for this is the molecular structure which contains two naph-
thyl groups with similar electronic structure. Similar to Spiro-DPVBi, this de-
generacy is lifted in the solid state due to electrostatic interaction and confor-
mational disorder of the molecules. The LUMO to LUMO+1 gap increases to
∆ELUMO = (0.093 ± 0.058) eV. Also here, the hybridization of two unoccupied
naphthyl orbitals to symmetric and antisymmetric linear combinations as shown
in the LUMO and LUMO+1 in Fig. D.3 might be an artifact of DFT. In the
solid phase, the HOMO remains delocalized over the entire molecule (Fig. D.4a
and Fig. D.4b) while the symmetry of the two naphthyl units is distorted and the
LUMOs localize on opposite sides of the molecule (see Fig. D.4c and D.4d).
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a) HOMO b) LUMO c) LUMO+1

Figure D.3: Vacuum orbitals of α-NPD.

a) HOMO b) HOMO c) LUMO d) LUMO

Figure D.4: Orbitals of α-NPD in the amorphous phase.

TCTA

TCTA shows a propeller-like C3 symmetry. The highest occupied molecular orbital
is delocalized over all three arms of the molecule with a gap to HOMO−1 of
0.348 eV. The lowest unoccupied orbitals are linear combinations of orbitals of
the three phenyl groups directly connected to the central nitrogen atom. Three of
these linear combinations are very close in energy with gaps of 0.012 eV between
LUMO and LUMO+1 and 0.023 eV between LUMO and LUMO+2 (see Fig. D.5).
Similar to Spiro-DPVBi and α-NPD, the symmetry is broken in the amorphous
state leading to an increase in energy splittings. In the solid state, ∆ELUMO,1

becomes (0.090 ± 0.064) eV. and ∆ELUMO,2 becomes (0.152 ± 0.075) eV. These
(lifted) degeneracies reflect themselves in the shape of HOMOs and LUMOs in
the matrix as shown in Fig. D.6. The HOMO of TCTA therefore localizes on two
or only one arm whereas it is symmetrically delocalized in the vacuum geometry.
The lowest unoccupied molecular orbital localizes on only one of the central phenyl
rings (Fig. D.6c). In some cases, the orbital order even changes and a carbazole-
orbital becomes the lowest unoccupied molecular orbital of TCTA as shown in
Fig. D.6d.
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a) HOMO b) LUMO c) LUMO+1 d) LUMO+2

Figure D.5: Vacuum orbitals of TCTA.

a) HOMO b) HOMO c) LUMO d) LUMO

Figure D.6: Orbitals of TCTA in the amorphous phase.
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E
C-factor dependence of charge mobility

As shown Rodin et al. [14, 68], the GEMM model with C = 1/4 corresponds to
the effective medium limit. This is in agreement with previously reported effective
medium approaches [14, 70, 99]. As illustrated in Fig. E.1, this C-factor leads to
best agreement between simulated charge mobility and experimental data. Fig. E.1
furthermore shows the charge carrier mobility in case the GEMM expression is
modified to KMC fitted values of C = 0.36 which are assumed to be valid for
medium disorder strength and finally C = 0.44, which is valid in the percolation
limit. For all materials except mBPD, the discrepancies between calculations and
experiment become considerably larger with increasing C-factor. It is possible but
unlikely that a systematic error in the calculation of the microscopic input para-
meters would bias the charge mobility of almost all materials tested toward the
effective medium limit.

More complex analytic models have been discussed in literature (see e.g.
Fishchuk et al. [95]). Such models use C-factors, which depend on the interplay be-
tween energy disorder and reorganization energy. As pointed out by Bässler et al.
[53], this relationship depends on molecular connectivity and off-diagonal disorder.
Many models are parameterized using kinetic Monte Carlo (KMC) calculations
performed on perfect rectangular lattices. Rodin et al. pointed out in Ref. [14]
that connectivity might actually be different for real morphologies compared to
perfect rectangular or face-centered cubic (fcc) lattices. Therefore, the GEMM
approach in Eq. 2.17) with C = 0.25 is used throughout this work. Nonetheless,
kinetic Monte Carlo (KMC) simulations using realistic lattices and off-diagonal
disorder are required to definitively answer this question. However, systems like
Alq3 require system sizes, which are not within the capability of KMC programs
and hardware available today [98].

129



Alq3
α-NPD

DEPB
mBPD

NNP
pF

FATPD
TET

PEN

C
ar

ri
er

m
ob

ili
ty

[c
m

2
/V

s]

10−2

10−4

10−6

10−8

10−10

10−12

100

C = 0.25

C = 0.36

Experiment

102

C = 0.44

Figure E.1: Charge carrier mobility calculated using different C-factors in the GEMM model
in Eq. 2.17. C varies between 0.25 (effective medium), 0.36 (KMC fitted, medium disorder
strength), and 0.44 (percolation). The image is taken from Friederich et al. [131].
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F
Correlations

Until now, the distribution of HOMO and LUMO energies (or ionization poten-
tials and electron affinities) in amorphous molecular systems was considered to
be distributed according to a Gaussian distribution. Calculation results as shown
in Fig. 4.8a support this assumption. Nonetheless, correlations between energy
levels of molecules can lead to deviations from this Gaussian distribution. One
widely studied example are correlations arising from the long-range dipole inter-
action which is responsible for parts of the energy disorder [166, 219–222]. Analytic
models as discussed in Bouhassoune et al. [219] investigate the influence of spatial
correlations on the field- and disorder-dependence of the charge carrier mobility.
Until recently, the strength of correlation effects could not be quantified due to a
lack of computational approaches for the analysis of microscopic systems. Differ-
ent models were used ranging from purely dipole correlated disorder to completely
uncorrelated energy distributions.

In this chapter, amorphous systems of α-NPD, TCTA and Spiro-DPVBi are
analyzed (see Fig. 4.1 and 4.2). Firstly, the effect of spatial correlations due to
monopole-dipole and dipole-dipole interaction will be discussed. This discussion
is also part of Massé et al. [20], my master’s thesis [69] and Friederich et al.
[131]. Afterwards, local correlations between HOMO and LUMO energies will be
analyzed. This potentially influences electron-hole interactions as well as exciton
transport and will be discussed in Massé et al. [21].

Spatial correlations due to long-range electrostatic interaction

The energy disorder σ, which is used for the calculation of charge carrier mobility,
is the width of the local density of states. It is calculated using the distribution
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of local energy differences ∆E between molecules, which has a width of σ(∆E).
In this distribution of energy differences, only pairs with non-vanishing electronic
couplings are included, following the assumption that the charge hopping is a lo-
cal process limited to nearest-neighbor hopping events. Therefore, it contains only
information about the local environment of charges and the local hopping rates
which contribute to charge transport. This local energy disorder σloc(E) shown in
Tab. 4.5 is calculated as σ(∆E)/

√
2, which is the energy disorder of a reference

system without spatial correlations but with the same distribution of local energy
differences. From a microscopic point of view, spatial correlations due to long
range electrostatic interaction might lead to a broadening of the global density
of states (σglob(E) > σ(∆E)/

√
2). Local properties such as σ(∆E) and the local

energy disorder σloc(E) on the other hand are insensitive to spatial correlations
and thus will not be modified.

The difference of local and global energy distributions is shown in Fig F.1 for
ferroelectric system with an internal electric field. While the local energy disorder
σloc(E) can be calculated using σloc(E) = σ(∆E)/

√
2, the global energy distribu-

tion is much wider and does not follow a Gaussian distribution.

Fig. F.2 shows the ratio of σ(∆E) and σglob(E) of different materials as a func-
tion of the maximum pair distance for different materials. In case of the uncorre-
lated model, this ratio is equal to

√
2 for all pair distances. In the dipole correlated

model, the ratio is significantly smaller than
√
2, indicating a broadening of the

global density of states compared to the local density of states. The correlation
strength observed for amorphous α-NPD, TCTA and Spiro-DPVBi systems lies
between the uncorrelated and the correlated model systems. Amorphous Spiro-
DPVBi systems show weak correlations while the correlations in TCTA and α-
NPD structures are not negligible. The off-set between σ(∆E)/σglob(E) and

√
2

even at large pair-distances might arise from long-range ordering effects as the-
oretically investigated in Friederich et al. [16] and experimentally observed in
Ref. [223–225] (see illustration in Fig. F.1). The correlation strength calculated
in this section can be used in charge transport simulations using master equation
based methods (see Chapter 2.2). More details about these simulations can be
found in Massé et al. [20].

Correlations between hole and electron transport levels

In this section, the correlations between the frontier orbitals (HOMO and LUMO)
of α-NPD, TCTA and Spiro-DPVBi are analyzed. The effect of conformational
disorder is separated from the effect of electrostatic interaction with the neigh-
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Figure F.1: Local and global distribution of molecular energies in case of a highly correlated
ferroelectric system. While the local energy disorder σloc(E) can be calculated using local
energy differences (see text), the global energy distribution is not a Gaussian distribution and
the global energy disorder σglob(E) is not well defined any longer.
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Figure F.3: HOMO and LUMO distributions of a) Spiro-DPVBi, b) α-NPD and c) TCTA.
The numbers in the bottom left corners of each plot are the respective correlation coeffi-
cients. The scatter plots in the third column consider full energy differences between HOMO
or LUMO energies of neighboring molecules. In the first column, contributions from internal
molecular distortions (bending) to the full energy differences are extracted while in the second
column, only intermolecular electrostatic interaction effects are considered (polarization). Us-
ing this analysis, it is possible to analyze the origin of the negative and positive energy level
correlations for Spiro-DPVBi and α-NPD/TCTA, respectively.

boring molecules. The polarization effects show positive correlations due to the
smooth long-range potential caused by the dipole moments of the molecules (see
Fig. F.3). Internal dihedral distortions of α-NPD and TCTA do not lead to any
significant correlation between HOMO and LUMO energies. In Spiro-DPVBi, the
HOMO and LUMO energies show a strong anti-correlated behavior. This anti-
correlation is caused by distortions of the dihedral angles connecting the side
groups to the central spiro unit. The delocalization of occupied and unoccupied
orbitals strongly depends on the dihedral angle leading to the anti-correlation of
the HOMO and LUMO levels of Spiro-DPVBi.
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In order to analyze the origin of local correlations between HOMO and LUMO
orbitals, it is useful to separate the source of disorder into an electrostatic and a
conformational part. The results of this analysis are shown in Fig. F.3. To quan-
tify the correlations, the Pearson product-moment correlation coefficients c for the
different HOMO and LUMO distributions was calculated (see Fig. F.3). The anal-
ysis shows that the correlation coefficient arising from orbital energy shifts due to
electrostatic interaction and polarization (second column in Fig. F.3) is positive
for all molecules. This indicates that the electrostatic potential varies on length-
scales larger than the typical size of molecules. This type of smooth electrostatic
potential is caused by the (relatively small) dipole moments of the molecules. It
influences and shifts HOMO and LUMO energies of each molecule in the same
way, leading to a local correlation between HOMO and LUMO levels. The second
contribution comes from internal distortions of the molecules in the solid state and
shows a different behavior than the electrostatic correlations. In Spiro-DPVBi, a
strong negative correlation coefficient (c = −0.866) between HOMO and LUMO
energies can be observed. This negative correlation dominates the overall HOMO-
LUMO correlation of Spiro-DPVBi. In α-NPD and TCTA, the correlation coeffi-
cient due to conformational disorder is almost negligible (c = 0.007 and c = 266,
respectively). Here, the positive correlation coefficient due to electrostatic disorder
dominates the overall HOMO-LUMO correlation.

In order to track down the strong, negative correlation between HOMO and
LUMO energies in Spiro-DPVBi (see Fig. F.2, top left panel), the response of
HOMO and LUMO orbital energies upon dihedral bending is analyzed. The four
equivalent dihedral angles in direct contact to the central spiro unit of Spiro-
DPVBi show a strongly anti-correlated behavior for HOMO and LUMO energies.
One of these four (identical) dihedral potentials is shown in Fig. D.1, the position
of the respective dihedral angle(s) is sketched in Fig. F.5.

The potential shown in Fig. F.5b shows a strong anti-correlated behavior of
occupied and unoccupied orbital energies. While HOMO and HOMO−1 energies
have a minimum at a dihedral angle of ±90◦ and a maximum at 0◦, the unoccu-
pied orbitals LUMO and LUMO+1 show the exact opposite trend. The dihedral
angle dependence of the LUMO and LUMO+1 energies can be explained using
the shape of these orbitals which are shown Fig. D.1a. As LUMO and LUMO+1
are decoupled orbitals of the two symmetric parts of the Spiro-DPVBi molecule
(see also Fig. D.1), one of these two orbitals strongly reacts on distortions of a
single dihedral angle and the other does not. At a dihedral angle of 0◦, the delocal-
ization of the LUMO has its maximum. Increase of the dihedral angle towards 90◦
decreases this delocalization, leading to higher energies of the LUMO. At around
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Figure F.4: Dihedral angles of Spiro-DPVBi, which show an anti-correlated behavior of
HOMO and LUMO energies (see Fig. F.5) are marked with green dots. Distortions of these
dihedral angles may cause the anti-correlation of Spiro-DPVBi in Fig. F.3.

approximately 40◦, the order of LUMO and LUMO+1 changes and the orbital
incorporating the ligand with a distorted dihedral angle becomes higher in energy
than the undistorted one.

The HOMO orbitals on the other hand behave differently (see Fig. F.5c). At
0◦, the HOMO orbitals of the two symmetric molecular units hybridize. HOMO
and HOMO−1 are linear combinations of these orbitals and delocalize over the
entire spiro unit and parts of the side-groups. A dihedral angle of 90◦ prevents
delocalization, leading to a symmetry breaking of the two molecular units. This
asymmetry of the two units hinders hybridization, separating the HOMO and
HOMO−1 on two different parts of the Spiro-DPVBi molecule. This is energeti-
cally favorable for HOMO and HOMO−1, leading to a decrease rather than to an
increase in orbital energy.
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Figure F.5: a) HOMO−1 and HOMO orbitals at dihedral angles of 0◦ and 90◦. The distri-
bution of dihedral angles in an amorphous morphology is shown as a histogram. b) Dihedral
potential for two occupied and two unoccupied frontier orbitals. c) LUMO and LUMO+1 or-
bitals at dihedral angles of 0◦ and 90◦. The dihedral angle which is rotated is indicated in
green. All other dihedral angles are relaxed. The energy scale is in eV but the orbital energies
have an off-set and the HOMO-LUMO gap is decreased. The solid lines are a spline fit to the
calculated data shown as points.
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