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We present an improved method for a sound probabilistic estimation of the model count of a boolean
formula under projection. The problem solved can be used to encode a variety of quantitative pro-
gram analyses, such as concerning security of resource consumption. We implement the technique
and discuss its application to quantifying information flow in programs.

1 Introduction

The #SAT problem is concerned with counting the number of models of a boolean formula. Since #SAT
is a computationally difficult problem, not only exact but also approximative solutions are of interest.
A powerful approximation method is probabilistic approximation, making use of random sampling. We
call a probabilistic approximation method sound when the probability and magnitude of the sampling-
related error can be bounded a priory. A prominent recent development in sound probabilistic #SAT is
APPROXMC [1].

In this paper we present APPROXMC-P, an improved method and a tool for sound probabilistic
#SAT with projection. Just as APPROXMC, which it enhances, APPROXMC-P belongs to the category
of (ε,δ ) counters. In this context, the parameter ε represents the tolerance and 1−δ the confidence of
the result. For example, choosing ε = 0.1 and δ = 0.14 implies that the computed result provably lies
with a probability of 86% between the 0.9-fold and the 1.1-fold of the correct result. Both parameters
can be configured by the user.

An enticing application of #SAT solvers is quantitative program analysis, which often requires estab-
lishing cardinality of sets defined in terms of the set of reachable program states. Reducing an analysis
to #SAT has the advantage that one can use a variety of established reasoning techniques. At the same
time, it is reasonably easy to represent behavior of intricate low-level programs in boolean logic. Yet,
#SAT alone is typically not sufficient for this purpose—one needs a way to reason about program reach-
ability. In logic, this reasoning corresponds to projection. If a boolean formula encodes a relation (e.g.,
a transition relation on states), then computing the image or the preimage of the relation is a projection
operation.

APPROXMC-P takes as input a boolean formula in conjunctive normal form together with a projec-
tion scope (a set of variables) and the parameters ε and δ and estimates the number of models of the
formula projected on the given scope. Of course, by setting the scope to encompass all variables in the
logical signature, one can use APPROXMC-P as a non-projecting #SAT solver.

The specific contributions of this paper are the following:
First, we materially improve the performance of APPROXMC, in particular its base confidence. Prob-

abilistic counters meet confidence demands above the base confidence by repeating the estimation. We
reduce the number of repetitions for confidence values above 0.6 by about an order of magnitude on
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average. Furthermore, we reduce, for one repetition, the number of SAT solver queries by at least 15%.
A detailed comparison is presented in Section 3.1.

Second, we combine probabilistic model counting with projection, even though the ideas behind this
combination are not completely new. A particular special case has previously appeared in [2] in the
context of uniform model sampling. There, the formula ϕ is treated by considering only its projection on
the independent support. An independent support is a subset of variables that uniquely determines the
truth value of the whole formula. It is often known from the application domain. For formulas generated
from deterministic programs, for instance, the independent support is the preimage of the transition
relation. Our approach is more general in that we explicitly consider projection on arbitrary scopes.

Third, we implement the method and map its pragmatics. We show that APPROXMC-P is effective
for large formulas with a large number of models, which may make other #SAT tools run out of time or
memory. Finally, we discuss applications of APPROXMC-P to quantifying information flow in programs.

1.1 Logical Foundations

We assume that logical formulas are built from usual logical connectives (∧, ∨, ¬, etc.) and propositional
variables from some vocabulary set Σ. A model is a map assigning every variable in Σ a truth value. A
given model M can be homomorphically extended to give a truth value to a formula ϕ according to
standard rules for logical connectives. We call a model M a model of ϕ , if M assigns ϕ the value TRUE.
A formula ϕ is satisfiable if it has at least one model, and unsatisfiable otherwise.

In the following, we assume that Σ and ∆ are vocabularies with ∆ ⊆ Σ. A Σ-entity (i.e., formula or
model) is an entity defined (only) over vocabulary from Σ. We assume that ϕ denotes a Σ-formula and
M a Σ-model. With vocab(ϕ) we denote the vocabulary actually appearing in ϕ .

With modelsΣ(ϕ) we denote the set of all models of ϕ . If ϕ is unsatisfiable, the result is the empty
set /0. With |ϕ| we denote the number of models of the formula ϕ (i.e., |ϕ|= |modelsΣ(ϕ)|). With M

∣∣
∆

we denote the ∆-model that coincides with the Σ-model M on the vocabulary ∆.
With ϕ

∣∣
∆

we denote the projection of ϕ on ∆, i.e., the strongest ∆-formula that, when interpreted
as a Σ-formula, is entailed by ϕ . The projected formula ϕ

∣∣
∆

says the same things about ∆ as ϕ does—
but nothing else. Projection of ϕ on ∆ can be seen as quantifying the Σ \∆-variables in ϕ existentially
and then eliminating the quantifier (i.e., computing an equivalent formula without it). Furthermore,
models∆(ϕ

∣∣
∆
) = {M

∣∣
∆
|M ∈ modelsΣ(ϕ)}.

1.2 Related Work

A number of exact boolean model counters exist. Counters such as DSHARP [17] and SHARPSAT [22]
are based on compiling the formula to the Deterministic Decomposable Negation Normal Form (d-
DNNF). They are geared toward formulas with a large number of models but tend to run out of memory
as formula size increases. An extension of the above with projection has been presented in [11]. An-
other class of exact counters implements variations of the blocking clause approach (cf. Section 2.3) and
includes tools such as SHARPCDCL [11] and CLASP [5]. The counters in this class are often already
projection-capable. They can deal with very large formulas (hundreds of megabyte in DIMACS format)
but are challenged by large model counts.

The probabilistic counters can be divided into three classes. The first class are the already men-
tioned (ε,δ ) counters. These counters were originally introduced by Karp and Luby [9] to count the
models of DNF formulas. They guarantee with a probability of at least 1− δ that the result will be be-
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tween 1−ε and 1+ε times the actual number of models. An instantiation of this class for CNF formulas
is APPROXMC [1].

For reasons unknown to us, APPROXMC deviates from the original definition [9] of an (ε,δ ) counter
by defining the tolerable result interval as [|ϕ|/(1+ ε), |ϕ| · (1+ ε)]. We adhere to the original defi-
nition of the tolerable interval, that is [|ϕ| · (1− ε), |ϕ| · (1+ ε)]. We discuss the differences between
APPROXMC and our work in detail in Section 3.1.

The second class are lower/upper bounding counters. These counters drop the tolerance guarantee
and compute an upper/lower bound for the number of models that is correct with a probability of at
least 1−δ (for a user-specified δ ). Examples are BPCOUNT [12], MINICOUNT [12], MBOUND [7] and
HYBRID-MBOUND [7].

The third class are guarantee-less counters. These counters provide no formal guarantees but can be
very good in practice. Examples are APPROXCOUNT [24], SEARCHTREESAMPLER [4], SE [18] and
SAMPLESEARCH [6].

2 Method

2.1 The Idea

The intuitive idea behind APPROXMC-P is to partition the set modelsΣ(ϕ
∣∣
∆
) into buckets so that each

bucket contains roughly the same number of models. The partitioning is based on strongly universal
hashing and is, surprisingly, attainable with high probability without any knowledge about the structure
of the set of models. The count of modelsΣ(ϕ

∣∣
∆
) can then be estimated as the count of models in one

bucket multiplied with the number of buckets.
More technically, APPROXMC-P is based on Chernoff-Hoeffding bounds, one of the so called con-

centration inequalities. This theorem (Theorem 2.6) limits the probability that the sum of random vari-
ables – under certain side conditions – deviates from its expected value. To apply the theorem we make
use of a trick common in counting, namely that set cardinality can be expressed as the sum of the mem-
bership indicator function over the domain.

Assume that we fixed the set of buckets B, a way of distributing models of ϕ into buckets by means
of a hash function h, and distinguished one particular bucket. We now associate each model with an
indicator variable (a random variable over the hash function h) that is 1 iff the model is within the
distinguished bucket and 0 otherwise. Hence, for a given hash function h, the sum of all those indicator
variables is exactly the amount of models within the distinguished bucket. We will determine this value
by means of a deterministic model counting procedure BOUNDED#SAT (Section 2.3).

On the other hand, the expected number of models in the bucket when choosing h randomly from the
class of strongly r-universal hash functions (Section 2.2) is |modelsΣ(ϕ

∣∣
∆
)|/B. The Chernoff-Hoeffding

theorem tells us that the measured and the expected values are probably close and allows us to esti-
mate |modelsΣ(ϕ

∣∣
∆
)|.

We first explain how to build an (ε,δ ) counter this way for a fixed confidence 1− δ ≈ 0.86 (Sec-
tion 2.4). Then, we generalize this result to arbitrary higher confidences (Section 2.5).

The idea behind adding projection capability is to hash partial models (i.e., models restricted to the
projection scope) and to use a projection-capable version of BOUNDED#SAT. To separate concerns,
we postpone discussing projection until Section 2.6. The algorithms we present in the following are
capable of projection, but we begin with a tacit assumption that they are always invoked with the value
of the scope ∆ = Σ, i.e., in a non-projecting fashion. We will show that this assumption is superfluous in
Section 2.6.
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2.2 Strongly r-Universal (aka r-Wise Independent) Hash Functions

The key to distributing models of a formula into a number of buckets filled roughly equally is to apply
strongly r-universal hashing [23] (also known as r-wise independent or, simply, r-independent hashing).
Every concrete strongly r-universal hash function depends on a parameter. By choosing the parameter
at random, one can make a good distribution of values into hash buckets likely, even when the keys are
under adversarial control.

Definition 2.1 (strongly r-universal hash functions [23]). Let K be some universe from which the keys to
be hashed are drawn, and B a set of buckets (hash values). A family of hash functions H = {h : K→ B}
is strongly r-universal, iff for any h ∈ H chosen uniformly at random, the hash values of any r-tuple of
distinct keys (k1, . . . ,kr) ∈ Kr are independent random variables, i.e., for any r-tuple of (not necessarily
distinct) values (v1, . . . ,vr) ∈ Br

Pr
h∈H

[
h(k1) = v1∧ . . .∧h(kr) = vr

]
=

(
1
|B|

)r

.

In the following, we are interested in families of strongly r-universal hash functions with K = Zn
2

and B = Zm
2 . We denote any such family as H(n,m,r). Functions h ∈H(n,m,r) can be used to distribute

models with n variables into 2m buckets. While we keep the rest of the presentation generic, our im-
plementation resorts to a particular family Hxor(n,m,3) of such functions with r = 3. Any discussion of
concrete values refers to this family and the corresponding degree of strong universality. Note that the
construction operates on Z2∼= {0,1}, and that addition on Z2 corresponds to exclusive or (boolean XOR),
while multiplication on Z2 corresponds to conjunction (boolean AND). Otherwise, the usual matrix and
vector arithmetic rules apply.

Construction 2.2 (Hash function family Hxor(n,m,3)). Let n and m be arbitrary natural numbers. Any
m · (n+1) values b1;0, . . . ,bm;n ∈ Z2 define a hash function h : Zn

2→ Zm
2 by

z̄ 7→

b1;0
...

bm;0

⊕
b1;1 · · · b1;n

...
. . .

...
bm;1 · · · bm;n

⊗
z1

...
zn

 .

We denote the class of all such hash functions as Hxor(n,m,3).

Theorem 2.3 ([8]). The hash function class Hxor(n,m,3) is strongly 3-universal.

By sampling b1;0, . . . ,bm;n uniformly from Z2, we can sample uniformly from Hxor(n,m,3).

Construction 2.4. Let h ∈ Hxor(n,m,3) be a hash function. Fixing its output induces a predicate on its
inputs. In this paper, we will consider for each h, the predicate h(z̄) = 1m. This semantical predicate can
be represented syntactically as a formula of propositional logic built from m XOR clauses:(

b1;0⊕ (b1;1∧ z1)⊕ . . .⊕ (b1;n∧ zn)
)
∧ . . .∧

(
bm;0⊕ (bm;1∧ z1)⊕ . . .⊕ (bm;n∧ zn)

)
. (1)

Construction 2.5. Given a hash function h, we use the notation ϕh to denote the conjunction of a
formula ϕ with the clause representation (1) of the predicate induced by h.

For presentation purposes, we assume w.l.o.g. that Σ = {z1, . . . ,zn} and ∆ = {z1, . . . ,z|∆|} in the
following. Our implementation does not have this limitation.
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2.3 Helper Algorithm BOUNDED#SAT: Iterative Model Enumeration

Algorithm 1: BOUNDED#SAT(ϕ,∆,n)

1 k← 0 ;
2 M← SAT(ϕ) ;
3 while (M 6=⊥)∧ (k < n) do
4 k← k+1 ;
5 ϕ ← ϕ ∧ (∆ 6'M

∣∣
∆
) ;

6 M← SAT(ϕ) ;
7 end
8 return k

To enumerate the models in a single bucket we are us-
ing the well-known algorithm BOUNDED#SAT (Algo-
rithm 1). Given a formula ϕ , a projection scope ∆ ⊆ Σ,
and a bound n > 0, the algorithm enumerates up to n
models of ϕ

∣∣
∆
, i.e., it returns min(|ϕ

∣∣
∆
|,n). The algo-

rithm makes use of the oracle SAT(·), which for a CNF
formula returns either a model or ⊥, in case none ex-
ists. BOUNDED#SAT works by repeatedly asking the
oracle for a model M of ϕ , and extending ϕ with a block-
ing clause (∆ 6' M

∣∣
∆
) ensuring that any model found

later must differ in at least one ∆-variable. The formula
∆ 6' M

∣∣
∆

can be constructed as
∨

v∈∆ flip(v,M), where
flip(v,M) = v, if M(v) = FALSE, and flip(v,M) =¬v, if M(v) = TRUE. The algorithm is widely-known as
part of the automated deduction lore. We have reported on our experiences with using it for quantitative
information flow analysis in [11].

2.4 Counting with a Fixed Confidence of 86%

Algorithm 2: CORE(r, ϕ , ∆, ε)

1 n := |∆| ;
2 pivot :=

⌈
2·r·(1+ε)· 3√e

ε2

⌉
;

3 m← 0 ;
4 repeat
5 m← m+1 ;

6 h random← H(n,m,r) ;
7 c← BOUNDED#SAT(ϕh,∆,pivot+1) ; // c = min(|ϕh

∣∣
∆
|,pivot+1)

8 until c≤ pivot ∨ m >
⌈

log2

(
(1+ε)·2n

pivot

)⌉
;

9 return c ·2m ; // Count of one bucket times number of buckets

We first explain how to build an (ε,δ ) counter for a fixed confidence 1− δ ≈ 0.86: the algorithm
CORE. The number stems from the probability of deviation eb−r/2c ≈ 0.14 for r = 3 in the following
theorem.

Theorem 2.6 (Chernoff-Hoeffding bounds with limited independence [19]). If Γ is the sum of r-wise
independent random variables, each of which is confined to the interval [0,1], then the following holds
for µ := E[Γ] and for every ε ∈ [0,1]: If r ≤ bε2 ·µ/ 3

√
ec then Pr [|Γ−µ| ≥ ε ·µ]≤ eb−r/2c.

Corollary 2.7. If r ≤ bε2 ·µ/ 3
√

ec, then Pr [(1− ε) ·µ ≤ Γ≤ (1+ ε) ·µ]≥ 1− eb−r/2c.

Construction 2.8. Let h be chosen randomly from H(n,m,r). For each M ∈ modelsΣ(ϕ), we define an
integer random variable γM (random over h) such that

γM :=

{
1, if h(M) = 1m

0, otherwise.
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The sum of these random variables we denote by Γ := ∑M∈modelsΣ(ϕ) γM.

Clearly, Γ = |ϕh| (cf. Construction 2.5).

Lemma 2.9. For the above construction, the following holds:

1. The variables γM are r-wise independent.

2. For any M ∈ modelsΣ(ϕ), Pr[γM = 1] = 1/2m.

The expectation of Γ (over h) is thus µ :=E[Γ] =∑M∈modelsΣ(ϕ) E[γM] =∑M∈modelsΣ(ϕ) 2−m ·1= |ϕ| ·2−m.
Substituting these values into Corollary 2.7, we obtain:

Lemma 2.10 (Models in a hash bucket). Let ϕ ∈ FmlΣ, n := |Σ|, ε ∈ [0,1], let m∈N with m≤ blog2(|ϕ| ·
ε2/(r · 3

√
e))c, h ∈ H(n,m,r) a randomly chosen strongly r-universal hash function. It holds:

Pr
[
(1− ε) · |ϕ|

2m ≤ |ϕh| ≤ (1+ ε) · |ϕ|
2m

]
≥ 1− eb−r/2c .

One could think that this lemma is sufficient for estimating |ϕ| by determining |ϕh| for some m
(e.g., with BOUNDED#SAT), but, unfortunately, the upper bound on the admissible values of m depends
on |ϕ|, the very value we are trying to estimate. This fact forces us to search for a “good” value of m in
CORE (Lines 4–8). The search proceeds in ascending order of m for reasons of soundness, which will
be explained in the main theorem below. At the same time, smaller values of m correspond to larger
values of |ϕh|, which may be infeasible to count (for m = 0, for instance, ϕh = ϕ). We thus introduce
the counting upper bound pivot, which only depends on the tolerance and is defined in CORE. The
search terminates successfully when |ϕh| ≤ pivot. We show that this search criterion does not reduce the
probability of correct estimation (Theorem 2.12).

Lemma 2.11. CORE terminates for all inputs.

Proof. The loop has two exit conditions combined in a disjunction (Line 8). Since m is monotonically
increasing, the second exit condition guarantees termination. Note that the second exit condition makes
use of the fact that |ϕ| ≤ 2n and is essentially an emergency stop. It does not, in general, entail that
the algorithm returns a tolerable estimation. This is not a problem, as we will show that the first exit
condition (which implies an estimation within desired tolerance) terminates the loop sufficiently often
for the desired confidence level.

Theorem 2.12 (Main result). For ε ∈ (0,1] algorithm CORE returns with a probability of at least 1−
eb−r/2c a value within [(1− ε) · |ϕ|,(1+ ε) · |ϕ|].

Proof. It is easy to see that c = min(|ϕh|,pivot + 1) is an invariant of the loop in CORE. If the exit
condition c≤ pivot comes to hold, the invariant dictates that CORE returns 2m · |ϕh|.

We now show that there is at least one iteration of the loop (indexed by m = m′) such that with a
probability of at least 1− eb−r/2c the following is true: the exit condition c ≤ pivot holds and the return
value 2m′ · |ϕh| ∈ [(1− ε) · |ϕ|,(1+ ε) · |ϕ|]. But first, we interrupt the proof for a lemma.

Lemma 2.13. For the given choice of pivot, there exists m′ such that:

dlog2((1+ ε) · |ϕ|/pivot)e ≤ m′ (2)

m′ ≤ blog2(|ϕ| · ε2/(r · 3
√

e))c . (3)

Proof. It is straightforward to show that dlog2((1+ ε) · |ϕ|/pivot)e ≤ blog2(|ϕ| · ε2/(r · 3
√

e))c.
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Condition (3) on m′ fulfills the precondition of Lemma 2.10 and thus entails

Pr
[
(1− ε) · |ϕ|

2m′ ≤ |ϕh| ≤ (1+ ε) · |ϕ|
2m′

]
≥ 1− eb−r/2c (4)

which together with condition (2), which is equivalent to (1+ ε) · |ϕ|
2m′ ≤ pivot, gives

Pr
[
(1− ε) · |ϕ|

2m′ ≤ |ϕh| ≤ (1+ ε) · |ϕ|
2m′ ≤ pivot

]
≥ 1− eb−r/2c (5)

resp.

Pr
[
(1− ε) · |ϕ|

2m′ ≤ |ϕh| ≤ (1+ ε) · |ϕ|
2m′ ∧ |ϕh| ≤ pivot

]
≥ 1− eb−r/2c .

Since we are incrementing m during search, the last equation implies that both loop termination and result
quality are likely at some point. We also note that an earlier termination with m < m′ is not problematic,
since result quality hinges on condition (3), which is an upper bound on m.

2.5 Scaling to Arbitrary Confidence

Algorithm 3: MAIN(r, ϕ , ∆, ε , δ )

1 t := min
({

n ∈ N : δ ≥ ∑
n
k=dn/2e

(n
k

)
· eb−r/2c·k · (1− eb−r/2c)n−k

})
;

2 pivot :=
⌈

2·r·(1+ε)· 3√e
ε2

⌉
;

3 c← BOUNDED#SAT(ϕ,∆,pivot+1) ;
4 if c≤ pivot then
5 return c ; // solution is exact with confidence 1
6 else
7 samples← repeat(t, CORE(r, ϕ , ∆, ε)) ; // do Core t times
8 return median(samples) ;
9 end

Since CORE returns the correct result with a probability of approx. 0.86 > 0.5, it is possible to
amplify the confidence by repeating the experiment. This is what algorithm MAIN does. To prove its
correctness (Theorem 2.15), a technical lemma is needed first.

Lemma 2.14 (Biased coin tosses and related estimations). Let p := Pr[head] be the probability of tossing
head with a biased coin.

(a) The probability to toss m times head in n > m independent coin tosses is
(n

m

)
· pm · (1− p)n−m

(b) The probability of tossing at least m heads is: ∑
n
k=m

(n
k

)
· pk · (1− p)n−k

(c) (Geometric series) For every non-negative integer n: ∑
n
k=0 xk = 1−xn+1

1−x

(d) The probability to toss at least m = dn/2e times head for p ∈ [0,1/2] can be bounded from above:

n

∑
k=dn/2e

(
n
k

)
· pk · (1− p)n−k ≤ 1− p

1−2 · p
·
(√

4 · p · (1− p)
)n

.
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Theorem 2.15 (Theorem 3 in [1]). Let ϕ be a formula, δ and ε parameters in (0,1], and c̃ an output of
MAIN(r,ϕ,ε,δ ). Then Pr

[
(1− ε) · |ϕ|6 c̃ 6 (1+ ε) · |ϕ|

]
> 1−δ .

Proof. If |ϕ| ≤ pivot, MAIN returns the exact solution (Algorithm 3, Line 5). If not, the algorithm returns
the median c̃ of t probabilistic estimations (t is defined in Algorithm 3, Line 1). The goal is to show that
the probability of c̃ being outside the tolerance is at most δ .

A necessity for c̃ being outside the tolerance is that at least dt/2e of the estimations of CORE are
outside the tolerance, due to the definition of the median. The probability that a single estimation of
CORE is outside the tolerance is at most eb−r/2c by Theorem 2.12. Now, the probability to have at least
dt/2e estimations (out of t estimations in total) outside the tolerance can be seen as the probability to
toss at least dt/2e times head in a series of t coin tosses where Pr[head] = eb−r/2c. By Lemma 2.14 b,
this probability is:

t

∑
k=dt/2e

(
t
k

)
· eb−r/2c·k ·

(
1− eb−r/2c

)t−k
.

Due to the choice of t, this probability is smaller than δ . The existence of t is ensured, because t can be
bounded from above per Lemma 2.14 d:

t ≤max

(
1,

⌈
log√

4·eb−r/2c·(1−eb−r/2c)

(
δ · 1−2 · eb−r/2c

1− eb−r/2c

)⌉)
.

The value of t can be (pre-)computed by a simple search (see Table 2).

Note 2.16 (Leap-frogging). We observe that every repetition of CORE begins the search for the proper
number of buckets with m = 1. It is natural to ask if the repeated search can be abridged. In [1], a
heuristic called leap-frogging is proposed. Leap-frogging tracks the successful values of m (i.e., the ones
upon termination) as CORE is repeated. After a short stabilization period, subsequent runs of CORE

begin the search not with m = 1 but with the minimum of the successful values observed so far. The
authors report that leap-frogging is successful in practice. We choose to abstain from it nonetheless, as
leap-frogging nullifies all soundness guarantees.

A sound optimization is possible if one knows a lower bound L on the number of models of ϕ

resp. ϕ
∣∣
∆
. In this case, it is sound to start the search with m = dlog2((1+ ε) ·L/pivot)e as per proof

of Theorem 2.12.

2.6 Counting with Projection

To show that APPROXMC-P works properly for ∆ ⊂ Σ, we show that the result in this case is the same
as computing ϕ

∣∣
∆

in some other way and then applying APPROXMC-P as a non-projecting counter (i.e.,
as discussed so far). We begin with a lemma.

Lemma 2.17. If h only contains vocabulary from ∆ (and constants), then (ϕ
∣∣
∆
)h ≡ ϕh

∣∣
∆
.

Proof. First, since h only contains vocabulary from ∆, h
∣∣
∆
= h. Second, projection distributes over

conjunction (elementary). Together: (ϕ
∣∣
∆
)h ≡ ϕ

∣∣
∆
∧h≡ ϕ

∣∣
∆
∧h
∣∣
∆
≡ (ϕ ∧h)

∣∣
∆
≡ ϕh

∣∣
∆
.

We are now interested to establish result equality in the following two executions:

CORE(r,ϕ,∆,ε) = CORE(r,ϕ
∣∣
∆
,∆,ε) . (6)
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We note that since the first, third, and fourth parameters are identical in both invocations, it is sound
to assume the same random choices of h in both executions. Thus, the validity of (6) reduces to the
following equality (assuming an arbitrary h that can be chosen by the algorithm):

BOUNDED#SAT(ϕh,∆,n) = BOUNDED#SAT((ϕ
∣∣
∆
)h,∆,n) (7)

This equality follows from Lemma 2.17, the functionality of BOUNDED#SAT, the observation that
vocab(ϕ

∣∣
∆
) ⊆ ∆ (by definition of projection), and vocab(h) ⊆ ∆ (by third parameter when invoking

CORE).
Observe that in the execution on the right, all invocations are non-projecting, if one considers Σ = ∆,

and are thus correct according to the previous proofs.

3 Implementation and Evaluation

3.1 Changes and Improvements over the Original APPROXMC

0.0 0.2 0.4 0.6 0.8 1.0

Confidence 1− δ

0

2

4

6

8

10

Lo
g
 n

u
m

b
e
r 

o
f 

re
p
e
ti

ti
o
n
s 

lo
g

2
t

0.86

[1]
[15]
ApproxMC-p

The upper curve visualizes t(1− δ ) = d35 · log2(3/δ )e
as used in [1]. The middle one is t(1 − δ ) =

min
({

n ∈ N : δ ≥ ∑
n
k=dn/2e

(n
k

)
· (2/5)k · (1− (2/5))n−k

})
as used in the master thesis [15] connected to the publica-
tion [1]. The lower curve is the function in Algorithm 3,
Line 1 for r = 3.

Figure 1: Comparison of required number of repeti-
tions t of CORE (logarithmic scale) for desired level of
confidence 1−δ

In comparison to the original APPROXMC [1],
following differences are of note:

Elimination of ⊥. The original versions
of CORE and MAIN potentially returned an er-
ror value ⊥ instead of an estimation. This
distinction has not been exploited to achieve
smaller values for pivot and t and hence has
been dropped here for more compact and more
understandable proofs.

Test |ϕ| ≤ pivot hoisted out of the inner
loop. The result of this test does not change
when repeating CORE, so it has been moved to
MAIN.

Smaller values for pivot. We have per-
formed a more exact estimation of the needed
value of pivot. Our value of pivot, as defined
in Algorithm 3, Line 2, is at least 15% smaller
than in [1] (cf. Table 1).

Increased base confidence (fewer repeti-
tions). The number of repetitions needed for
the demanded confidence has been substantially
reduced (Table 2 and Figure 1). The reasons
for this are twofold. First, in [1], the Chernoff-
Hoeffding inequality is missing the floor opera-
tor, unnecessarily reducing the base confidence.
Second, in [1], the “successful” termination of the loop in CORE and the tolerable quality of the achieved
estimation are treated as independent events and their probabilities multiplied. We show in Theorem 2.12
that the latter actually entails the former.
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Table 1: Sample values for pivot depending on the tolerance

tolerance (ε)

0.75 0.5 0.25 0.1 0.05 0.03 0.01 0.005 0.001

pivot in [1] 54 90 248 1198 4364 11662 100912 399660 9912124
pivot now 27 51 168 922 3517 9584 84575 336622 8382049

Table 2: Sample values for t depending on the confidence

confidence (1−δ )

0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999 0.9999

t in [1] 91 102 117 137 172 207 289 405 521
t in [15] 1 1 7 17 41 67 133 235 339
t now 1 1 1 1 3 3 7 13 19

3.2 Implementation

We have implemented APPROXMC-P and make our implementation available.1 Algorithms CORE and
MAIN are implemented in Python, while different implementations of BOUNDED#SAT can be plugged
in. As the source of random bits we use Python’s Mersenne Twister PRNG, seeded with entropy obtained
from /dev/urandom (Linux kernel PRNG seeded from hardware noise). We have chosen a pseudo-
random number generator instead of a true randomness source (e.g., the HotBits service used in [1])
for reasons of reproducibility and ease of benchmarking. By reusing the random seed it is possible to
reproduce results and also benchmark different implementations of BOUNDED#SAT.

Our principal BOUNDED#SAT implementation is based on CRYPTOMINISAT5 [21], which is a re-
cent successor to CRYPTOMINISAT4. CRYPTOMINISAT5 has built-in support for model enumeration
and efficient XOR-SAT solving by using the Gauss-Jordan elimination as an inprocessing step2. We
modified the tool to support projection by shortening the blocking clauses used for model enumeration.

It is also possible to use other model enumerators such as SHARPCDCL or CLASP [5]. However,
these tools are not designed with native support for XORs. As such they cannot directly parse XOR-CNF
inputs, an issue that we work around by translating XORs into CNF using Tseitin encoding. The tools do
not employ Gauss-Jordan elimination either, which makes them not competitive against CRYPTOMINI-
SAT5 in our scenario. In the future, it would be interesting to benchmark these enumerators combined
with Gauss-Jordan elimination as a preprocessing step, though they would still lack inprocessing in the
style of CRYPTOMINISAT5.

3.3 Experiments

An off-the-shelf program verification system together with projection and counting components is suf-
ficient to implement an analysis quantifying information flow in programs (QIF) [10]. The measured
number of reachable final program states corresponds to the min-entropy leakage resp. min-capacity
of the program [20] and can be used as a measure of confidentiality or integrity. For generating veri-
fication conditions we are using the bounded model checker CBMC [13], for projection and counting

1http://formal.iti.kit.edu/ApproxMC-p/
2Please note that Gauss-Jordan elimination has to be turned on both during compilation and runtime.

http://formal.iti.kit.edu/ApproxMC-p/
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APPROXMC-P. The experiments were performed on a machine with an Intel Core i7 860 2.80GHz
CPU (same machine as in [11]). APPROXMC-P was configured with the default tolerance ε = 0.5 and
confidence 1−δ = 0.86.

Synthetic QIF benchmarks. In [16], the authors describe a series of QIF benchmarks, which have
become quite popular since then. As was already noted in [11], the majority of the benchmarks are too
easy in the meantime. We use two scaled-up benchmark instances, which could not be solved in [11]
without help of a dedicated SAT preprocessor [14].

In both benchmarks, the size of the projection scope |∆|= 32, and |ϕ
∣∣
∆
|= 232. The first benchmark,

sum-three-32, contains 639 variables and 1708 clauses. The average run time of APPROXMC-P was
1.2s. The average run time for bin-search-32 (4473 variables, 14011 clauses) was 5.2s.

Quantifying information flow in PRNGs. In [3], we present an information flow analysis aimed at
detecting a certain class of errors in pseudo-random number generators (PRNGs). An error is present
when the information flow from a seed of M bytes to an N-byte chunk of output is not maximal. In [3]
we detect such deviations from maximality but do not obtain a quantitative measure of the flow. While
quantifying the flows needed for practical application in the domain (at least 20 bytes) is still not feasible,
this scenario provides a scalable benchmark.

Here, we are quantifying the flow through the OpenSSL PRNG with cryptographic primitives re-
placed by idealizations. For M = N = 10, the 59-megabyte formula contains 590 thousands variables
and 2.5 millions clauses. APPROXMC-P counts all 280 models in 10.5 minutes (631.7s on average),
which is beyond the capabilities of any other counting tool known to us. The largest flow we could mea-
sure in this benchmark was at 15 bytes (measured in a single experiment over the course of 47 hours),
while reaching the count of 14 bytes in the same experiment took only roughly 32 minutes.

4 Conclusion

The experiments show that APPROXMC-P can effectively and efficiently estimate model counts of pro-
jected formulas that are not amenable to other counting tools. At the same time, APPROXMC-P, like any
tool, has its own particular pragmatical properties, which need to be carefully considered when choosing
a tool for an application.

First, APPROXMC-P offers no approximation advantage for formulas with few models. For instance,
at tolerance level ε = 0.1, formulas with fewer than 922 models are counted exactly (cf. Table 1). On
the other hand, there is no penalty for these formulas either, as APPROXMC-P then simply behaves
as BOUNDED#SAT, which offers the best pragmatics for this class of formulas. For formulas with
model counts larger but still comparable with pivot, APPROXMC-P will perform more SAT queries than
BOUNDED#SAT, due to search for the proper number of buckets and experiment repetition at confidence
values over 0.86 (base confidence). We also note that performance of APPROXMC-P does not increase
by lowering the confidence under 0.86.

Concerning enumeration performance, CRYPTOMINISAT5 is currently the best overall implementa-
tion of BOUNDED#SAT due to its built-in support for XORs. Yet, beside Gauss-Jordan elimination, there
are various other factors influencing performance (if to a lesser degree): non-XOR solver performance,
enumeration algorithm, solver preprocessor, etc. To better understand the individual contributions of
these factors, much more benchmarking and investigation is needed.
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Finally, APPROXMC-P, in general, does not make larger formulas amenable to counting, merely for-
mulas with more models. For QIF analyses, this means that APPROXMC-P is attractive for quantifying
confidentiality in systems with large secrets, as acceptable information leakage is coupled to the secret
size. Alternatively, APPROXMC-P can be used for quantifying integrity and related properties.
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1. (Measurable) function application preserves independence.

2. We will prove that strong r-universality implies strict r−1-universality. The claim of the theorem
corresponds to strict 1-universality.
Assuming, there are at least r distinct keys in K and that B = {w1, . . . ,w|B|}:

Pr
h∈H

[ r−1∧
i=1

h(ki) = vi
]
= existence of h(kr)

Pr
h∈H

[ r−1∧
i=1

h(ki) = vi∧
|B|∨
j=1

h(kr) = w j
]
= distributivity

Pr
h∈H

[ |B|∨
j=1

(
r−1∧
i=1

h(ki) = vi∧h(kr) = w j)
]
= orthogonal disjuncts

|B|

∑
j=1

Pr
h∈H

[ r−1∧
i=1

h(ki) = vi∧h(kr) = w j
]
= strong r-universality

|B| ·
(

1
|B|

)r

=

(
1
|B|

)r−1

.

Proof of Lemma 2.13.

1+ log2

(
(1+ ε) · |ϕ|

pivot

)
≤ log2

(
|ϕ| · ε2

r · 3
√

e

)
⇐⇒ log2(2)+ log2

(
(1+ ε) · |ϕ|

pivot

)
≤ log2

(
|ϕ| · ε2

r · 3
√

e

)
⇐⇒ log2

(
2 · (1+ ε) · |ϕ|

pivot

)
≤ log2

(
|ϕ| · ε2

r · 3
√

e

)
⇐⇒ 2 · (1+ ε) · |ϕ|

pivot
≤ |ϕ| · ε

2

r · 3
√

e

⇐⇒
⌈

2 · r · (1+ ε) · 3
√

e
ε2

⌉
≤ pivot

Proof of Lemma 2.14. Lemma 2.14 a and c are widely known and b is trivial with a. Therefore only d
will be proved.

Firstly, because for all k ∈ {dn/2e, . . . ,n} it is true that
(n

k

)
6 2n it holds:

n

∑
k=dn/2e

(
n
k

)
· pk · (1− p)n−k = (1− p)n ·

(
n

∑
k=dn/2e

(
n
k

)
·
(

p
1− p

)k
)

≤ (1− p)n ·2n ·

(
n

∑
k=dn/2e

·
(

p
1− p

)k
)

(8)
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Secondly, due to the restriction of p to be in [0,1/2] the value (p/(1− p))dn/2e is smaller than or
equal to (p/(1− p))n/2. Hence it applies:

n

∑
k=t

(
p

1− p

)k

≤ 1− p
1−2 · p

·
(√

p
1− p

)n

(9)

The following estimation shows that:

n

∑
k=dn/2e

(
p

1− p

)k

=
n

∑
k=0

(
p

1− p

)k

−

(
dn/2e−1

∑
k=0

(
p

1− p

)k
)

c
=

1−
(

p
1−p

)n+1

1− p
1−p

−
1−
(

p
1−p

)dn/2e

1− p
1−p

=
1− p

1−2 · p
·

((
p

1− p

)dn/2e
−
(

p
1− p

)n+1
)

≤ 1− p
1−2 · p

·
(

p
1− p

)dn/2e

=
1− p

1−2 · p
·
(√

p
1− p

)n

If Equation 9 is inserted into Equation 8 you get:

1− p
1−2 · p

·2n · (1− p)n ·
(√

p
1− p

)n

︸ ︷︷ ︸
=
(√

4·p·(1−p)
)n
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