
Master thesis

Scalable Kernelization for the Maximum
Independent Set Problem

Demian Hespe

Date: 30. Januar 2017

Supervisors: Prof. Dr. Peter Sanders
Dr. rer. nat. Christian Schulz
Dr. Darren Strash

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197512953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The NP-hard maximum independent set problem has applications in many real-world do-
mains, such as coding theory [13], computer graphics [42], computational biology [15, 21]
and route planning [29]. While the problems arising from these areas are not always in the
form of graphs, they can be transformed into one and then handled by an independent set
algorithm independent from the domain.

A technique that has been part of exact maximum independent set algorithms [2, 25, 48]
for a long time and recently has been discovered to be beneficial for inexact algorithms [18,
32] is kernelization. Kernelization is the process of reducing the size of a graph without
losing the information required to compute a maximum independent set of the original
graph. Algorithms for finding a kernel are much faster than algorithms for directly find-
ing a maximum independent set. Intuitively, a kernel is the part of a graph that makes the
maximum independent set problem hard. Exact branch-and-reduce algorithms find a ker-
nel of the input graph, then branch at carefully chosen vertices and compute kernels of the
new graphs after branching. Recently, finding a kernel before or during local search and
evolutionary algorithms has also be found to be beneficial.

In the past, extensive work has been done to lower the theoretical worst-case time com-
plexity of finding a maximum independent set. Furthermore, there is a growing focus on
algorithms that find large independent sets, but not necessarily a maximum independent
set. However, very little work has been done parallelizing maximum independent set al-
gorithms. As kernelization plays an important role in both these approaches, we develop
a fast parallel algorithm for finding a relaxed version of a kernel. This relaxed kernel is
sufficiently small but might still have potential to be reduced to an even smaller size by
sequential algorithms. Beside parallelism we also employ a technique to prune vertices
that cannot be used to further decrease the graph size at the current state of the algorithm.

In this thesis we give a detailed explanation of how our kernelization algorithm works.
Besides a theoretical view on the parallel application of kernelization techniques and the
pruning of vertices, we also employ an extensive experimental evaluation of our implemen-
tation. Our results show that sequentially, we can find a kernel a factor of up to 4 faster
than previous results and a factor of up to 11 faster using parallelism.

Zusammenfassung

Das NP-schwere Problem der größten unabhängigen Menge findet Anwendung in vielen
Domänen, wie Kodierungstheorie [13], Computergrafik [42], Bioinformatik [15, 21] und
Routenplanung [29]. In einigen dieser Bereiche liegt das Problem nicht in Form eines
Graphen vor. Indem die relevanten Teile der Problemstellung in einen Graphen konvertiert
werden, können sie von einem Algorithmus gelöst werden, der unabhängig von der ur-
sprünglichen Domäne entwickelt werden kann.

Eine Technik, die bereits seit Langem für exakte Algorithmen zur Findung von größten
unabhängigen Mengen [2, 25, 48] verwendet wird und kürzlich auch für inexakte Algorith-
men [18, 32] als hilfreich entdeckt wurde, ist die Kernfindung. Die Kernfindung bezeichnet
einen Prozess, in dem die Größe des Eingabegraphen verkleinert wird, ohne dabei die In-
formationen zu verlieren, die zur Berechnung einer größten unabhängigen Menge benötigt
werden. Die hierfür verwendeten Algorithmen sind deutlich schneller als Algorithmen,
die direkt eine größte unabhängige Menge finden. Anschaulich ist ein Kern der Teil eines
Graphen, der das Problem der größten unabhängigen Menge schwer macht. Exakte branch-
and-reduce-Algorithmen berechnen einen Kern des Eingabegraphen, verzweigen dann an
sorgfältig ausgewählten Knoten und berechnen erneut Kerne der neuen Graphen, die beim
Verzweigen entstanden sind. Kürzlich wurde die Kernfindung auch erfolgreich vor oder
während lokaler Suche- und evolutionären Algorithmen eingesetzt.

In der Vergangenheit gab es bereits weitgehende Forschung mit dem Ziel die worst-case
Laufzeit von exakten Algorithmen für größte unabhängige Mengen zu senken. Ebenfalls
gibt es ein größer werdendes Interesse an inexakten Algorithmen, die zwar eine große un-
abhängige Menge berechnen, allerdings nicht zwingend eine größtmögliche. Ein Bereich,
in dem es allerdings überraschend wenig Ergebnisse in der Literatur gibt, ist die Paral-
lelisierung solcher Algorithmen. Da die Kernfindung eine entscheidende Rolle in sowohl
exakten als auch inexakten Algorithmen spielt, wird ein schneller paralleler Algorithmus
zur Findung einer relaxierten Version eines Kerns entwickelt. Dieser relaxierte Kern ist
ausreichend klein um ihn für weiterführende Algorithmen zu verwenden, könnte aber mit
sequenziellen Algorithmen noch weiter verkleinert werden. Neben Parallelismus wird auch
eine Technik angewendet, durch die Knoten zeitsparend ausgeschlossen werden können,
die im aktuellen Zustand nicht zur weiteren Verkleinerung des Graphen beitragen können.

Die vorliegende Arbeit erklärt detailliert, wie der entwickelte Kernfindungsalgorithmus
funktioniert. Neben einer theoretischen Sicht auf die parallele Anwendung von Kernfind-
ungstechniken und die Ausschließung von Knoten, wird auch eine ausführliche experi-
mentelle Evaluation durchgeführt. Die dabei erzielten Ergebnisse zeigen, dass ein Kern in
einer Laufzeit gefunden werden kann, die um einen Faktor von bis zu 4 schneller ist als
bisherige Ergebnisse. Durch die Verwendung von Parallelismus kann ein Kern sogar um
einen Faktor 11 schneller gefunden werden.

Acknowledgments

I would like to thank my supervisors Dr. Christian Schulz and Dr. Darren Strash as well
as Prof. Dr. Peter Sanders for the opportunity to work on such an interesting topic. I had
countless helpful discussions with my supervisors and got valuable feedback from them. I
felt very well cared for under their supervision.

I would also like to thank all the other students in the student lab for the valuable conver-
sations with them about my thesis project as well as interesting talks about their work. The
working environment in the student pool made the challenging work on my thesis project
much more pleasant.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts
für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fas-
sung beachtet habe.

Karlsruhe, den 30.01.2017

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Structure of Thesis . 2

2 Preliminaries 3
2.1 General Definitions . 3
2.2 Graph Partitioning . 3
2.3 The Maximum Independent Set Problem 4
2.4 Kernelization for the Maximum Independent Set Problem 5

3 Related Work 7
3.1 Kernelization . 7
3.2 Exact Algorithms . 8
3.3 Local Search Algorithms . 8
3.4 Evolutionary Algorithms . 10
3.5 Parallel Algorithms . 11

4 Reductions 13
4.1 Vertex Fold Reduction . 13
4.2 Isolated Clique Reduction . 14
4.3 Twin Reduction . 15
4.4 Unconfined Reduction . 16
4.5 Diamond Reduction . 17
4.6 Relaxed Integer Linear Program . 19

5 Dependency Checking 23
5.1 Reduction Order . 24

5.1.1 Vertex Fold and Isolated Clique Reductions 25
5.1.2 Vertex Fold and Unconfined Reductions 30

ix

6 Parallel Framework 31
6.1 Data Structure . 31
6.2 Reductions in the Parallel Framework . 32

6.2.1 Vertex Fold Reduction . 33
6.2.2 Isolated Clique Reduction . 34
6.2.3 Twin Reduction . 35
6.2.4 Unconfined Reduction . 37
6.2.5 Diamond Reduction . 38

6.3 Relaxed Integer Linear Program . 40
6.4 The Final Algorithm . 41

7 Experimental Evaluation 43
7.1 Impact of Partitioning . 44
7.2 Impact of Reductions . 46
7.3 Scaling Experiments . 47
7.4 Comparison with Previous Work . 49

8 Discussion 53
8.1 Conclusion . 53
8.2 Future Work . 53

A Reduction Order 55

Bibliography 57

1 Introduction

1.1 Motivation

Independent sets, i.e. sets of pairwise nonadjacent vertices in a graph, have applications in
many areas, including coding theory, computer graphics and route planning. Most applica-
tions require large independent sets or even one of maximum cardinality (or equivalently a
minimum vertex cover or a maximum clique). In coding theory [13], a maximum indepen-
dent set is used to find a code with a minimum hamming distance of h. In the respective
graph, a vertex is added for every possible code word and an edge between two vertices is
added if the hamming distance between the associated code words is less than h. A maxi-
mum independent set in this graph represents a maximum cardinality code with minimum
hamming distance h. In computer graphics [42] a small vertex cover is used to find a set of
triangles that cover all edges in a triangle mesh. In computational biology [15] maximum
cliques are used to find maximally complementary sets of donor/acceptor pairs for protein
docking. Other examples of maximum cliques in computational biochemistry can be found
in [21]. Independent sets are also used for map labeling [22, 23] by building a graph where
each label is represented by a vertex and and edge is added when a label would overlap
with some other label. Every independent set then represents a set of labels that can be
drawn without overlapping. In route planning [29], in particular contraction hierarchies,
independent sets can be used to find vertices that can be contracted in parallel.

A technique that has proven to be efficient in both theory [25, 48] and practice [1, 2,
18, 32] is to modify the input graph and decrease its size such that it is possible to obtain
a maximum independent set of the input graph from a maximum independent set of the
smaller graph. We call this smaller graph the kernel of the graph and obtain it by applying
a set of reduction rules. After finding a maximum independent set of the kernel we can
undo the reduction rules to get a maximum independent set of the original graph.

Finding the kernel often has a huge impact on the running time of algorithms. In most
algorithms that use a kernel, a significant part of the running time is spend on kernelization.
For example, the evolutionary algorithm by Lamm et al. [32] finds a very large indepen-
dent set very fast after finding a kernel. However, kernelization is a bottleneck for their
algorithm.

1

1 Introduction

1.2 Contribution

We aim to reduce the long kernelization times by designing a parallel kernelization algo-
rithm in combination with other techniques to speed up the computation of a kernel. We
compute a kernel by partitioning the input graph in blocks and processing each block in a
separate thread, while trying to apply as many reductions as possible. We also introduce a
technique for selecting vertices that are candidates for further reductions.

We evaluate our algorithm on a set of large network graph instances and compare our
results to previous work. Sequentially, we can find a kernel a factor of up to 4 faster than
previous work and a factor of up to 11 faster using parallelization. We believe that we can
speed up maximum independent set algorithms significantly by using our fast kernelization
as a preprocessing step.

1.3 Structure of Thesis

We start by giving an overview of the notation and definitions used throughout the thesis
in Chapter 2. We then survey related work on independent sets and related problems in
Chapter 3. In Chapter 4 we describe the reductions used for our algorithm. In Chapter 5 we
introduce a way to restrict attention to areas of the graph where reductions can be applied
and explain the parallel application of reductions in Chapter 6. Chapter 7 then discusses
our experimental evaluation and we close in Chapter 8.

2

2 Preliminaries

2.1 General Definitions

In this section we cover general definitions required to follow the rest of the thesis.
A graph G = (V,E) consists of a set of vertices V and a set of edges E ⊂ V × V

connecting vertices. In this thesis we assume undirected graphs where when an edge (u, v)
is in E then (v, u) must also be in E, so edges can be written as unordered pairs {u, v}
rather than ordered pairs. When there is an edge between two vertices u and v, we say
that u and v are adjacent and u is v’s neighbor. For an edge e = {u, v} we say that e and u
(and e and v) are incident.

We call the set NG(v) consisting of all of v’s neighbors in a graph G the open neighbor-
hood of v and |NG(v)|, which is the number of edges incident to v, the degree of v. We also
define the closed neighborhood of a vertex: NG[v] = NG(v)∪{v}. These definitions can be
extended for sets of vertices S ⊆ V to NG(S) =

⋃
v∈S NG(v) and NG[S] =

⋃
v∈S NG[v].

We omit the subscript G when the graph used is clear.
A graph G′ = (V ′, E ′) with V ′ ⊂ V and E ′ ⊂ E ∩ (V ′ × V ′) is called a subgraph of G

and G′′ = (V ′, E ′′) with E ′′ = E ∩ (V ′ × V ′) is called the subgraph induced by V ′. A
graphG = (V,E) is called a clique if all vertices inG are pairwise adjacent. For simplicity
we also use the term clique for a set of vertices that induce a clique.

2.2 Graph Partitioning

The graph partitioning problem is the problem of dividing a graph G = (V,E) into blocks
V1 ∪ · · · ∪ Vk = V with Vi ∩ Vj = ∅, ∀i 6= j while optimizing some cost function,
typically the number of edges that have end points in different blocks. Additionally, a
balance constraint is applied, demanding that the blocks have about equal size with respect
to the number of vertices or the sum of some weights associated with the vertices. Vertices
that are adjacent to vertices in other blocks and edges that cross block boundaries are of
special interest. We call these boundary vertices and cut edges, respectively. We use the
notation b[v] to denote the block that v belongs to, so ∀v ∈ Vi : b[v] = Vi.

Graph partitioning is a technique commonly used to solve problems in parallel. Usually
a vertex represents some unit of work. Units of work have dependencies, usually the need
to communicate results, represented by edges between the respective vertices. By assigning

3

2 Preliminaries

(a) A maximum independent
set of G

(b) A minimum vertex cover
of G

(c) A maximum clique of the
complement graph Ḡ

Figure 2.1: The maximum independent set problem and the related problems minimum vertex
cover and maximum clique for a graph G. The green vertices are in the respective set.

each block of the partition to a processor, we have an equal amount of work on each pro-
cessor (due to the balance constraint) and the communication required between processors
is minimized (due to the cost function).

2.3 The Maximum Independent Set Problem

An independent set (IS) in a graph G = (V,E) is a set of vertices I ⊂ V such that
∀u, v ∈ I : {u, v} /∈ E. That is, all vertices in I are pairwise nonadjacent. A maximal
independent set is an independent set I that is not a proper subset of any other independent
set. The maximum independent set problem (MIS) is the problem of finding an independent
set that has maximum cardinality. That is, no other independent set contains more vertices.
We denote the size of the maximum independent set of a graph G by α(G), also called the
independence number of G. Figure 2.1a shows a maximum independent set in an example
graph. It is well known that finding the maximum independent set of a graph is NP-hard.

Finding a maximal/maximum independent set is equivalent to finding a minimal/minimum
vertex cover: A vertex cover is a set of vertices C ⊂ V such that C contains either u or v
for every edge {u, v} ∈ E. Given a maximal/maximum independent set I , C = V \ I is
a minimal/minimum vertex cover in G. Figure 2.1b shows a minimum vertex cover in an
example graph.

The maximum clique problem is the problem of finding a maximum cardinality set of
vertices in G that form a clique. We can transform it to the maximum independent set
problem by constructing the complement graph: Ḡ = (V, Ē), Ē = {u, v ∈ V | u 6=
v ∧ {u, v} /∈ E}. A clique in Ḡ is a maximum independent set in G. Figure 2.1c shows a
maximum clique in an example graph.

4

2.4 Kernelization for the Maximum Independent Set Problem

2.4 Kernelization for the Maximum Independent Set
Problem

One approach to finding a maximum independent set or at least a large independent set
is to reduce the size of the graph by applying reduction operations before running algo-
rithms to find these independent sets. Reduction operations are functions r that transform
a graph G = (V,E) into a new graph r(G) = G′ = (V ′, E ′) with |V ′| < |V |. We can then
find a maximum independent set of G′ and revert the reductions applied to get a maximum
independent set of G. We repeatedly apply a set of reductions to the graph. When none of
these reductions can be applied to the graph anymore, we call the resulting graph a kernel.
There are three general patterns for reducing the graph size used in this thesis:

• Prove that there is at least one maximum independent set that does not contain a
certain vertex and remove it from the graph.

• Prove that there is at least one maximum independent set that does contain a certain
vertex and fix it to be in an independent set I . Note that the neighborhood of this
vertex cannot be in I , so we can remove the vertex and its neighborhood from the
graph.

• Remove a set of vertices and replace it with a smaller set of vertices. After finding
a maximum independent set of the kernel, this operation has to be reversed in order
to find the maximum independent set of the original graph. This can be done when
the larger set of vertices show a structure that can be expressed as a smaller set of
vertices.

5

2 Preliminaries

6

3 Related Work

Kernelization is widely used for solving MIS and related problems in theory and practice.
We give a short overview on previous work focusing on reductions or using reduction
operations as part of their algorithm.

3.1 Kernelization

Guo and Niedermeier [25] give a theoretical overview on kernelization for different prob-
lems, including k vertex cover, k independent set and bounds on the kernel size for the
decision variants of the problems. The decision problem k independent set is, given a pa-
rameter k, is there an independent set of size at least k (or a vertex cover of size at most k
for the k vertex cover problem). Here, a more restrictive definition of the term kernel is
used where the size of the resulting graph must be bound by a function g(k) only depend-
ing on the parameter k, not the size of the input graph. One important result in literature is
that, given the parameter k for the vertex cover problem, the optimal kernel size achievable
by polynomial algorithms is greater than 1.36k (Dinur and Safra [19]) unless P = NP
and there are kernelization algorithms that achieve a kernel size of 2k (Nemhauser and
Trotter [38]).

Abu-Khzam et al. [1] use a collection of reduction rules to kernelize a collection of
four small graphs that are complements of maximum clique instances from computational
biology. In particular, they use the isolated clique reduction (described in Section 4.2)
for cliques of size three or less, the vertex fold reduction (described in Section 4.1), the
crown reduction (not used in this thesis) and two versions of the LP reduction (described in
Section 4.6): One solving the linear program directly and one using a maximum matching
of the bi-double graph. As they assume a given maximum size k of the vertex cover, they
can also remove every vertex of degree ≥ k from the graph as it must be in all minimum
vertex covers.

7

3 Related Work

3.2 Exact Algorithms

Applying reduction rules to instances of NP-hard problems is used in algorithms that imple-
ment the branch-and-reduce paradigm where the instance is reduced by a set of polynomial
time reduction rules followed by a branching into two or more sub problems. Branch-and-
reduce algorithms for MIS use special algorithms for low degree graphs (with a degree
bounded by some integer i) to obtain better worst case running times. For example, the
vertex fold reduction (explained in Section 4.1) in combination with a special case of the
isolated clique reduction (explained in Section 4.2) are used to solve MIS for graphs with
a maximum degree of two.

The first important algorithm for MIS is due to Tarjan and Trojanowski [45] which uses
the branch-and-reduce paradigm and runs in time O(nn/3). Later, Fomin et al. [20] in-
troduced a new technique for analyzing branch-and-reduce algorithms called measure &
conquer and show its effectiveness by proving a running time of O∗(20.287n)1 for a simple
algorithm for MIS. To the best of our knowledge the currently fastest exact polynomial
space algorithm for MIS is by Xiao and Nagamotchi [48] and runs in O∗(1.1996n), ana-
lyzed by the measure & conquest method. For their algorithm they consider three reduction
rules: The first rule they use is removing so called unconfined vertices, which is also part of
our algorithm (described in Section 4.4). The second rule is folding so called complete k-
independent sets for k ≤ 2. This reduction is also part of our algorithm: For k = 2 this
corresponds to the vertex fold reduction (Section 4.1) and for k = 1 it is a special case
of the isolated clique reduction (described in Section 4.2). The last reduction is used for a
better worst case analysis and removes so called line graphs of four-regular graphs.

Akiba and Iwata [2] design and implement an exact branch-and-reduce algorithm for the
minimum vertex cover problem where they use a superset of the kernelization rules covered
in this thesis for the reduction step. They show that kernelization is actually an important
step of their algorithm in order to solve large instances by testing their algorithm with
different sets of reduction rules. We believe that by improving scalability of kernelization,
even larger instances can be solved.

3.3 Local Search Algorithms

As all exact algorithms for MIS and the related problems run in exponential time, unless
P = NP , heuristic algorithms have been studied extensively. Local search algorithms try
to improve one (or many) initial solution and alter it in order to improve its quality. While
these algorithms often do not give a guarantee for the quality of their solution, they can
often find high quality solutions significantly faster than exact algorithms.

1The O∗ notation hides polynomial factors, so for functions f and g, f(n) ∈ O∗(g(n)) if
f(n) ∈ O(g(n) · poly(n)) for some polynomial poly(n).

8

3.3 Local Search Algorithms

There have been several local search algorithms published for the maximum clique prob-
lem. Grosso et al. [24] develop an algorithm called Deep Adaptive Greedy Search (DAGS).
In a first step they find large maximal cliques, starting at every vertex by a greedy search
and swapping vertices that result in an equal sized clique. In the second step they then
pick the most promising vertices from the first step and try to find large cliques including
these vertices by running multiple iterations that add feasible vertices to the clique with a
probability proportional to a vertex weight. This weight is decreased whenever a vertex is
added to a clique in an iteration.

Pullan and Hoos [41] present Dynamic Local Search - Max Clique (DLS-MC) which
alternately applies a greedy expansion of the current clique and a plateau search (that is,
swapping vertices in the current clique with other vertices while keeping the clique size).
In order to add some diversity, they employ a penalty to vertices that are added to the clique
that decays over the iterations. Pullan [39] further improves this algorithm by using differ-
ent phases, each with a different strategy of choosing vertices that are added (or swapped)
into the clique, adding random vertices to the clique to increase diversity and adaptively
choosing the rate at which the penalty decays. In [40] Pullan adapts this algorithm for
maximum independent set and minimum vertex cover.

Cai et al. [16] introduce NuMVC, a local search algorithm for the minimum vertex cover
problem. Their main idea is to remove a vertex from a candidate set and then search for
a new vertex to add to the candidate set in a second step. This differs from most previous
approaches that try to find a vertex in the candidate set and another one outside of the
candidate set which are then exchanged. They also employ a vertex weighting scheme that
pushes edges that have been uncovered for many iterations into the candidate set. In order
to take into account recent iterations more than older iterations, they scale the current edge
weights down if the average weight surpasses some threshold.

Andrade et al. [3] present a local search algorithm, iterated local search, that is often
referred to as ARW, for finding large independent sets by repeatedly removing a vertex
from a maximal independent set and replacing it with two other vertices, increasing the
IS size by one each time they perform this operation. Using appropriate data structures,
finding such a swap is possible in time linear in the number of edges. In order to find
subsequent swaps, they maintain a list of candidate vertices that may be removed during a
swap which ensures that a vertex is only considered for a swap again if there is a certain
change in its neighborhood. To add diversity they randomly force vertices into the solution,
causing other vertices to be removed from the solution.

There are many other local search algorithms for MIS and the related problems. For this
thesis, however, we want to draw attention to a result that combines local search algorithms
with kernelization techniques from exact algorithms. Dahlum et al. [18] improve the ARW
algorithm by removing high degree vertices from the graph and using the isolated clique
reduction, which we also use in this work, online during local search. In particular, when-
ever they add a vertex to the independent set using the ARW algorithm, they check whether
that vertex is simplicial (which means that the isolated clique reduction can be applied to

9

3 Related Work

it) and has degree less than three and apply the reduction if possible. They report very high
speedups for this algorithm (OnlineMIS) compared to other approaches including the basic
ARW algorithm. They also present an algorithm (KerMIS) using a kernelization step, high
degree vertex removal and the ARW algorithm which, in many cases, computes the largest
independent set they find. Their results show that kernelization is an important preprocess-
ing step to enable local search algorithms to solve even very large instances. However,
kernelization is a slow preprocessing step. For example, on a graph with about 50 · 106

vertices 2 · 109 edges, KerMIS was only able to output a first independent set after 104

seconds, making OnlineMIS the more appealing algorithm. It is therefore an interesting
research topic to speed up the kernelization step in order to make KerMIS competitive with
OnlineMIS in terms of execution time as it gives higher quality results.

3.4 Evolutionary Algorithms

Evolutionary algorithms are inspired by nature’s concept of survival of the fittest, recombi-
nation and mutation. They usually hold some set of candidate solutions, called the popula-
tion, and combine them using crossover operations to produce offspring or mutate them to
add diversity to the population.

There have been several evolutionary algorithms for MIS and the related problems.
Algorithms like the ones described by Bäck and Khuri [6], Singh and Gupta [43] or
Borisovsky and Zavolovskaya [12] use very little domain knowledge and thus do not
achieve results as good as most local search algorithms.

Balas and Niehaus [8] describe an evolutionary algorithm for the maximum clique prob-
lem. In contrast to the algorithms mentioned above, they use domain knowledge for their
crossover operation: They generate an offspring of two parent cliques, by searching for the
largest clique in the subgraph induced by the union of the parent cliques. By using bipartite
maximum matching algorithms this is possible in polynomial time.

Lamm et al. [31] develop an evolutionary algorithm (EvoMIS) for computing high car-
dinality independent sets by using graph partitioning for crossovers. They compute a node
separator V1∪V2∪S and combine two individuals by taking the vertices in the independent
set in V1 from one of the parents and in V2 from the other parent. Using a node separator
ensures that there are no edges between V1 and V2, hence the offspring is always a valid
independent set. To make the offspring a maximal independent set they greedily add the
vertices in S to the IS and then improve the result using the ARW algorithm by Andrade et
al. [3]. In [32] Lamm et al. use EvoMIS as a subroutine of an algorithm (ReduMIS) that re-
peatedly computes the graphs kernel, runs EvoMIS and forces low degree vertices from the
current independent set into the final solution. In their experiments, ReduMIS always finds
an exact maximum independent set when its size is known and consistent sizes when the
independence number is unknown. They use the same kernelization algorithm as KerMIS,
so again, kernelization is a bottleneck.

10

3.5 Parallel Algorithms

3.5 Parallel Algorithms

As our main technique for speeding up kernelization is parallelization, we give a short
overview of parallel algorithms in the scope of MIS and related problems. Probably the
most popular parallel algorithm for computing maximal independent sets (not maximum)
is the algorithm by Luby [34]: In each iteration a setX of vertices is randomly chosen from
all vertices remaining in the graph. If any two vertices in this set are adjacent, the vertex
with the lower degree is removed from X . X is then added to the intermediate independent
set and N [X] is removed from the graph. The algorithm terminates when there are no
vertices remaining in the graph. Because it is independently decided whether a vertex is
added to X , every step in this algorithm can be performed in parallel.

Xiang et al. [46] present a parallel branch and bound algorithm for the maximum clique
problem in the MapReduce framework. They recursively partition the graph into sub-
graphs that they can solve independently. They stop the recursion when the estimated time
to solve a subgraph falls under a predefined threshold. They prune a subgraph when an
upper bound for the maximum clique in this subgraph, based on graph coloring, is below
the largest clique found so far in addition to some other, simpler pruning rules. Using their
algorithm they were able to solve maximum clique for the instance C4000.5 from the sec-
ond DIMACS implementation challenge [27] which is a randomly generated graph with
4000 vertices and and approximately 4 · 106 edges. Other algorithms found a clique of the
same size for this instance before but they were the first to prove its optimality. The com-
putations for this took 39 hours on a highly parallel system and they estimate a sequential
running time of over one year.

11

3 Related Work

12

4 Reductions

We now describe the reductions we use in this thesis. In this section we focus on the
definitions and proofs of several key reductions for self containment and to help a better
understanding of the techniques developed in this thesis. Later sections will explain how to
apply them in parallel and other techniques to speed up kernelization. We cover the vertex
fold reduction by Chen et al. [17] in Section 4.1, the isolated clique reduction found in the
paper by Butenko et al. [14] in Section 4.2, the twin and unconfined reductions by Xiao and
Nagamochi [47] in Sections 4.3 and 4.4, respectively, the diamond reduction by Akiba and
Iwata [2] in Section 4.5 and the LP reduction by Nemhauser and Trotter [38] in Section 4.6.
All proofs of the reductions can be found in the respective papers and are included here for
completeness and deeper understanding.

4.1 Vertex Fold Reduction

If a vertex v has degree two and its neighbors u and w are nonadjacent, either v or both u
and w can be in a maximum independent set of the graph but never v in combination with
either one of u or w. The vertex fold reduction by Chen et al. [17] uses this property by
combining these three vertices into one vertex, reducing the size of the graph by two.

Theorem 4.1. In a graph G = (V,E), let v be a vertex with NG(v) = {u,w} and let u and
w be nonadjacent. We can build a new graphG′ = (V ′, E ′) with V ′ = (V \{u, v, w})∪{x},
E ′ = {{a, b} ∈ E | a, b ∈ V ′} ∪ {{x, a} | a ∈ (NG(u) ∪ NG(w)) \ {v}}. If x is in a
maximum independent set I ′ of G′, then I = (I ′ \{x})∪{u,w} is a maximum independent
set of G. If it is not, then I = I ′ ∪ {v} is a maximum independent set of G.

Proof. Both cases imply that |I| = |I ′| + 1 so we have to prove that α(G) = α(G′) + 1
and that the construction actually produces an independent set. If v is in a maximum
independent set I of G then I \ {v} is an independent set of G′. If it is not then at least one
of v’s neighbors is in I (since it is of maximum cardinality). If only one of v’s neighbors
a ∈ NG(v) is in I , I \{a} is an independent set of G′. Otherwise, both u and w are in I . In
this case I \ {u,w} ∪ {x} is an independent set of G. This shows that α(G′) ≥ α(G)− 1.

If x is in a maximum independent set I ′ of G′, then (I ′ \{x})∪{u,w} is an independent
set ofG. Otherwise, I ′∪{v} is an independent set ofG. It follows that α(G) ≥ α(G′) + 1.

Figure 4.1 illustrates the vertex fold reduction.

13

4 Reductions

v

u w x

Figure 4.1: The vertex fold reduction: The vertices u, v and w are removed and a new vertex x is
inserted.

v v

Figure 4.2: The isolated clique reduction: All of v’s neighbors are pairwise adjacent, so v is in-
serted into the independent set and removed from the graph along with its neighbors.
Green and red vertices as well as dashed edges are removed from the graph. Green
vertices are added to, and red vertices are excluded from the independent set.

4.2 Isolated Clique Reduction

Butenko et al. [14] have shown the effectiveness of removing so called isolated cliques
from the graph: If the subgraph induced by a vertex v and all its neighbors is a clique
then there is always a maximum independent set containing v. Hence we can add v to the
independent set and remove it and all its neighbors from the graph. We call v a simplicial
vertex. More formally:

Theorem 4.2. In a graph G, let v be a vertex with ∀u ∈ NG(v) : NG[v] ⊆ NG[u]. Let
G′ be the graph obtained by removing NG[v] from G. For a maximum independent set I ′

of G′, I = I ′ ∪ {v} is a maximum independent set of G.

Proof. As none of v’s neighbors is in G′, it is easy to verify that I ′ ∪ {v} is an inde-
pendent set of G for any maximum independent set I ′ of G′, so α(G) ≥ α(G′) + 1.
Similarly, I \ {v} is an independent set of G′ for any maximum independent set I of G,
so α(G′) ≥ α(G) − 1.

Figure 4.2 shows an example of the isolated clique reduction.

14

4.3 Twin Reduction

v

x

u

Figure 4.3: Twin reduction case 1: The three neighbors of u and v are not adjacent to each other,
so we remove u, v and their neighbors and insert a new vertex x.

vu vu

Figure 4.4: Twin reduction case 2: Two of the neighbors of u and v are adjacent so we add u and
v to the independent set and remove NG[u] ∪ NG[v] from the graph. Green and red
vertices as well as dashed edges are removed from the graph. Green vertices are added
to, and red vertices are excluded from, the independent set.

4.3 Twin Reduction

The twin reduction by Xiao and Nagamochi [47] is a generalization of the vertex fold
reduction. Two vertices u, v with degree three that have the same three neighbors are
called twins. The reduction of twins is split up into two cases:

(i) If no pair of vertices in the neighborhood of v and u are adjacent either u and v can
be in the independent set or N(u) but never u or v in combination with any vertex
in N(v). We capture this in the reduction by replacing all five vertices with a new
vertex.

(ii) If at least two neighbors of v and u are adjacent, any independent set can contain at
most two of the vertices in N(v) so we can just add u and v to the independent set
and remove all five vertices from the graph.

We split the proof for these two cases:

Theorem 4.3. In a graph G = (V,E), let u, v be two nonadjacent vertices of degree three
with NG(u) = NG(v) and let the vertices in NG(u) be pairwise nonadjacent. We can build
a new graph G′ = (V ′, E ′) with V ′ = (V \ {u, v} \ NG(u)) ∪ {x} and E ′ = {{a, b} ∈
E | a, b ∈ V ′} ∪ {{x, a} | a ∈ NG(NG(u)) \ {u, v}}. Let I ′ be a maximum independent
set of G′. If x ∈ I ′, then I = (I ′ \ {x}) ∪ NG(u) is a maximum independent set of G.
Otherwise, if x /∈ I ′, I = I ′ ∪ {u, v} is a maximum independent set of G.

15

4 Reductions

Proof. As both cases imply |I| = |I ′| + 2, we have to prove that α(G) = α(G′) + 2 and
the construction actually results in a valid independent set.

Let I be a maximum independent set of G. If u, v ∈ I , then I ′ = I \ {u, v} is an
independent set of G′. Note that if u/v is in some maximal independent set, then v/u is
also in this set. If for some proper subset S ofN(u) (so |S| ≤ 2), S ⊆ I andNG(u)\S /∈ I ,
then I \S is an independent set of G′. Otherwise, NG(u) ⊆ I . In this case (I \NG(u))∪x
is an independent set of G′. It follows that α(G′) ≥ α(G)− 2.

Let I ′ be a maximum independent set of G. If x ∈ I ′, then (I ′ \ {x}) ∪ NG(u) is an
independent set of G. Otherwise, x /∈ I ′. In this case I ′∪{u, v} is an independent set of G.
It follows that α(G) ≥ α(G′) + 2.

Figure 4.3 illustrates this case.

Theorem 4.4. In a graph G = (V,E), let u, v be two nonadjacent vertices of degree three
with NG(u) = NG(v) and let some of the vertices in NG(u) be adjacent. We can build a
new graph G′ = (V ′, E ′) with V ′ = V \ N [v] \ {u}, E ′ = E ∩ (V ′ × V ′). Let I ′ be a
maximum independent set of G′, then I = I ′ ∪ {u, v} is a maximum independent set of G.

Proof. Let I be a maximum independent set of G, then I \ ({u, v} ∪ NG(v)) is an inde-
pendent set of G′. Any maximal independent set that contains u also contains v and does
not contain any vertex from NG(v). Furthermore, if an independent set contains any ver-
tex w ∈ NG(v), it cannot contain v or u and at most two vertices from NG(v) can be in any
independent set. It follows that α(G′) ≥ α(G)− 2.

Let I ′ be a maximum independent set of G′. Because none of u’s and v’s neighbors is
in G′, I ′ ∪ {u, v} is an independent set of G. It follows that α(G) ≥ α(G′) + 2.

We illustrate this case in Figure 4.4.

4.4 Unconfined Reduction

The unconfined reduction by Xiao and Nagamochi [47] proves that there is some maximum
independent set that does not contain a given vertex v.

Definition 4.5 (Child). A child of a set S is a vertex u ∈ N(S) with |N(u) ∩ S| = 1. The
unique vertex s ∈ S with {s, u} ∈ E is called the parent of u.

Theorem 4.6. Let S be a set of vertices contained in every maximum independent set of a
graph G = (V,E). Then every maximum independent set of G contains at least one vertex
from N(u) \N [S] for every child u of S.

16

4.5 Diamond Reduction

Algorithm 1: IsUnconfined
Input: A vertex v and a graph G = (V,E)
Output: Whether v is unconfined

1 S ← {v}
2 while True do
3 u← u ∈ N(S) such that |N(u) ∩ S| = 1 and |N(u) \N [S]| is minimized
4 if u = None then
5 return False // See Figure 4.5b

6 if N(u) \N [S] = ∅ then
7 return True // See Figure 4.5c

8 if N(u) \N [S] = {w} then
9 S ← S ∪ {w} // See Figure 4.5a

10 else
11 return False // See Figure 4.5d

Proof. We prove the contrapositive: We assume there is a maximum independent set that
does not contain any vertex from N(u) \ N [S] for some child u of S and then conclude
that there is some other maximum independent set which does not completely contain S.

Assume that there is a maximum independent set I of G with I ∩ (N(u) \ N [S]) = ∅
for some child u of S. Then for the parent s of u, I ′ = (I \ {s}) ∪ {u} is a maximum
independent set ofG becauseN(u)∩(N [S]\{s}) = ∅. This contradicts that S is contained
in every independent set of G because s ∈ S.

We can use this theorem by starting with S = {v} and assuming that S is a sub-
set of every maximum independent set of G. We then repeatedly add vertices w with
N(u) \N [S] = {w} for children u of S to S because they must also be in every maximum
independent set of G. If we find a child u of S with N(u) \ N [S] = ∅, the assumption
was false and we can remove v because there is a maximum independent set that does not
contain v. We then say that v is unconfined. Algorithm 1 decides whether a vertex is un-
confined. If a vertex v is unconfined, there always exists a maximum independent set that
does not include v so we remove it from the graph.

4.5 Diamond Reduction

The diamond reduction by Akiba and Iwata [2] is an extension to the unconfined reduction.
It uses the set S that is constructed for the unconfined reduction. Akiba and Iwata use it in
their implementation but it is not explained in their paper. The definition and proof were
kindly provided by Yoichi Iwata (slightly modified to be in the scope of MIS):

17

4 Reductions

v

w u

v

w u

(a)

v

(b)

v

u

(c)

v

u

(d)

Figure 4.5: The unconfined reduction. The green box represents the set S. (a) There is a vertex
u ∈ N(S) such that |N(u) ∩ S| = 1 and N(u) \ N [S] = {w}, so we add w to S.
(b) There is no vertex u ∈ N(S) such that |N(u) ∩ S| = 1, so we cannot conclude
that u is unconfined. (c) There is a vertex u ∈ N(S) such that |N(u) ∩ S| = 1 and
N(u) \ N [S] = ∅. It follows that S is not contained in every maximum independent
set, so u is unconfined and we can remove it from the graph. (d) There is a vertex
u ∈ N(S) such that |N(u) ∩ S| = 1 but [N(u) \ N [S]] > 1. In this case we cannot
conclude that v is unconfined.

Theorem 4.7. Let S be the set constructed in the unconfined reduction for a vertex v that is
not unconfined. If there are nonadjacent vertices u1, u2 inN(S) such thatN(u1)\N(S) =
N(u2) \N(S) = {v1, v2}, then there exists a maximum independent set of G that does not
contain the vertex v. (Note that the condition implies v1, v2 ∈ S)

Proof. Assume that every maximum independent set of G contains v. Then, from the
construction of S, it holds that S ⊆ I for any maximum independent set I of G. Let I ′ =
(I \ {v1, v2}) ∪ {u1, u2}. This is also a maximum independent set and does not satisfy the
condition S ⊆ I , which is a contradiction. Thus, there exists a maximum independent set
that does not contain v.

Figure 4.6 illustrates a simple example of the diamond reduction.

18

4.6 Relaxed Integer Linear Program

v

u1

v1 v2

u2

Figure 4.6: The diamond reduction. If a maximum independent set I contains the set S, then there
is another maximum independent set I ′ = (I \ {v1, v2}) ∪ {u1, u2}. It follows that
there is a maximum independent set that does not completely contain S, so we can
remove v from the graph.

4.6 Relaxed Integer Linear Program

The problem of finding a maximum cardinality independent set can be written as an integer
linear program (ILP) as follows:

minimize
∑
v∈V

xv such that (4.6.1)

xv ∈ {0, 1} for v ∈ V, (4.6.2)
xu + xv ≥ 1 for {u, v} ∈ E, (4.6.3)

xv ≥ 0 for v ∈ V. (4.6.4)

If xv is 0 in a solution then v is in the independent set.
This can be relaxed to a linear program (LP) by replacing constraint 4.6.2 with 0 ≤ xv ≤ 1.
It can be shown that

• There exists a solution such that each variable takes a value in {0, 1
2
, 1} (Nemhauser

and Trotter [37]).
• If a variable xv takes a value in {0, 1}, there always exists an integer solution where
xv takes the same value (Nemhauser and Trotter [38]).

Nemhauser and Trotter [38] also show that a solution with values in {0, 1
2
, 1} can be

found by reducing the LP to the bipartite matching problem as follows: We construct the
bi-double graph B(G) = {LV ∪RV , E

′} with:

LV = {lv|v ∈ V },
RV = {rv|v ∈ V },
E ′ = {{lu, rv}|{u, v} ∈ E}.

From a minimum vertex coverC ′ ofB(G), we can find a solution with values in {0, 1
2
, 1}

for the LP:

19

4 Reductions

3 1

2

4

65

(a)

1

2

3

4

5 5′

6 6′

4′

3′

2′

1′

(b)

1

2

3

4

5 5′

6 6′

4′

3′

2′

1′

(c)
1

2

3

4

5 5′

6 6′

4′

3′

2′

1′

(d)

3 1

2

4

65

(e)

Figure 4.7: The LP reduction: (a) We start with an input graph G, (b) construct the bi-double graph
B(G) and (c) compute a maximum cardinality matching on it. (d) Next, we mark all
vertices reachable on alternating paths starting at unmatched vertices on the left side.
(d) We then use these markings to determine whether a vertex is in the independent
set or not. As none of the vertices corresponding to 4, 5 and 6 are reachable in the
bipartite graph, they remain in the kernel. Green and red vertices as well as dashed
edges are removed from the graph. Green vertices are added to, and red vertices are
excluded from the independent set.

x∗v =

0 if lv, rv /∈ C ′,
1 if lv, rv ∈ C ′,
1
2

otherwise.

Note that we can find C ′ in linear time after finding a maximum cardinality bipartite
matching on B(G) by finding vertices that are reachable by alternating paths starting at
unmatched vertices in LV (König’s theorem).

Algorithm 2 explains the LP reduction as pseudocode. Marking all vertices that are
reachable on alternating paths is possible in linear time using a depth first search that stops
when reaching a vertex that has already been visited, so the running time is dominated by
the matching algorithm. A maximum matching in a bipartite graph can be computed by the

20

4.6 Relaxed Integer Linear Program

Hopcroft Karp algorithm [26] inO((m+n)
√
n). An example application of this algorithm

is shown in Figure 4.7.

Algorithm 2: The LP reduction
Input: A graph G = (V,E)
Output: A reduced graph G′ and an independent set I (such that

I ∪MaximumIndependentSet(G′) is a maximum independent set of G)
1 M ←MaximumMatching(B(G))
2 R← ∅
3 for lv ∈ G | lv is unmatched in M do
4 R← R ∪ V erticesOnAlternatingPaths(lv, B(G),M) // Vertices reachable by

alternating paths in B(G) (with matching M) starting at vertex lv
5 G′ ← G
6 I ← ∅
7 for v ∈ V do
8 if lv ∈ R ∧ rv /∈ R then
9 I ← I ∪ {v}

10 G′ ← G′ \ {v} // Remove v from V and all incident edges from E

11 else if lv /∈ R ∧ rv ∈ R then
12 G′ ← G′ \ {v} // Remove v from V and all incident edges from E

13 return G′, I

21

4 Reductions

22

5 Dependency Checking

In this section we introduce a technique to prune vertices from the kernelization algorithm
if the part of the graph close to it did not change recently. By this we reduce the amount
of work for kernelization, especially in the later stages of the algorithm, where only a few
reductions can be applied, scattered across the graph.

To compute a kernel, Akiba and Iwata [2] apply their reductions r1, . . . , rj as in Al-
gorithm 3. The implementation by Strash [44] uses a scheme for checking dependencies
between reductions for the isolated clique and vertex fold reductions. After unsuccessfully
trying to apply a reduction to a vertex, one only has to consider this vertex again for re-
duction after its neighborhood has changed. So when the neighborhood of a vertex v has
changed while applying a reduction to another vertex w, v is added to a set of vertices that
should be considered for reduction. Initially all vertices in the graph are added to this set
so that every vertex is considered at least once for reduction. We use this set for the vertex
fold, isolated clique, and twin reductions.

In the following proofs we assume that none of the reductions adds or removes edges
between vertices that are already in the graph. Put more formally: For every reduction r
and every graph G = (V,E), in r(G) = G′ = (V ′, E ′), ∀u, v ∈ V ∩ V ′ : {u, v} ∈ E ⇔
{u, v} ∈ E ′. This assumption is true for all reductions used in this thesis: The unconfined,
isolated clique and LP reductions only remove edges by removing vertices from the graph,
and the vertex fold and twin reductions remove edges by removing vertices from the graph
and add edges to newly inserted vertices.

Theorem 5.1. Let G be a graph and G′ the graph after applying some reduction to G. Let
v be a vertex that cannot be removed by a vertex fold reduction in G. If NG(v) = NG′(v),
the vertex fold reduction cannot be applied to v in G′.

Proof. Assume that the vertex fold reduction can be applied to v in G′, then NG(v) =
NG′(v) = {u,w}. Furthermore, there must be an edge {u,w} ∈ E ′ which implies
{u,w} ∈ E. It follows that we can apply the vertex fold reduction to v in G which is
a contradiction.

Theorem 5.2. Let G be a graph and G′ the graph after applying some reduction to G. Let
v be a vertex that is not simplicial in G. If NG(v) = NG′(v), then v is not simplicial in G′.

Proof. Assume that v is simplicial in G′, then for all neighbors u ∈ NG′(v), NG′ [v] ⊆
NG′ [u]. However, this contradicts to v not being simplicial in G because NG′ [v] = NG[v]
and we assume that no edge {u,w} can be added for w ∈ N(v).

23

5 Dependency Checking

Algorithm 3: Kernelization as in [2]
Input: A graph G = (V,E)
Output: A reduced graph G′

1 i← 1
2 do
3 G← ri(G) // Apply ri to all vertices
4 if G changed by applying ri then
5 i← 1

6 while i ≤ j
7 return G

Theorem 5.3. Let G be a graph and G′ = r(G) the graph after applying some reduction
to G. Let v, u be vertices that are not twins in G. If NG(v) = NG′(v), v and u are not twins
in G′.

Proof. Assume that v and u are twins in G′, then NG′(v) = NG′(u). As this implies
NG(v) = NG(u), u and v are also twins in G. It follows that u and v cannot be twins
in G′.

For the unconfined and diamond reductions, this is not applicable because it might be
possible to apply the unconfined reduction to a vertex even if its direct neighborhood did
not change, but another vertex further away did. We can, however, add the neighbors
of vertices removed by the unconfined reduction to the dependency checking set for bet-
ter performance of the reductions that benefit from it. For the LP reduction, dependency
checking is also not applicable because we have to consider the entire graph for finding a
maximum bipartite matching. We can add vertices to the dependency checking set as in the
unconfined and diamond reductions so that other reductions can benefit from it.

A possible speedup for our algorithm is to consider only cliques of small size (say, at
most k) for the isolated clique reduction. This is done in the algorithm by Akiba and
Iwata [2] for k = 3. In this case we can prune all vertices with degree greater than min(3, k)
(we need vertices of degree two for the vertex fold reduction and vertices of degree three
for the twin reduction) from the dependency checking set.

5.1 Reduction Order

The dependency checking scheme proposed in this section (and the parallelization intro-
duced in the next section) changes the order in which reductions are applied to the vertices
compared to other implementations like the one by Akiba and Iwata [2]. We want to inves-
tigate the impact the change of the order has on the kernel size. In a kernelization algorithm

24

5.1 Reduction Order

that applies just the isolated clique reduction, we can see that for every simplicial vertex
v, N [v] will always be removed from the graph independent from the order in which the
reductions are applied. The reason is that v will always be simplicial, even if a vertex
u ∈ N(v) is removed by some other isolated clique reduction.

For other reductions, the case is not that simple. In Section 5.1.1 we will investigate
a kernelization algorithm that uses just the isolated clique and vertex fold reductions, for
which the order of reductions does not seem to change the kernel. In Section 5.1.2 we show
that the order in which the vertex fold and unconfined reductions are applied does lead to
different kernels.

5.1.1 Vertex Fold and Isolated Clique Reductions

We investigate the result of kernelization using just the isolated clique reduction and the
vertex fold reduction. Empirical evidence suggests that independent from the order in
which we apply the reductions, the size of the kernel does not change. We modify the code
by Strash [44] to choose vertices from the dependency checking set at random and observe
that the reductions are applied in a different order in every run of the algorithm. We perform
ten runs on each graph from a set of ten graphs and the results of these experiments show
that for all sequences of reductions that occurred, the kernel size was the same. The results
can be found in Table A.1 in the appendix. We conjecture something stronger. That is, all
kernels reachable by reordering the reductions are isomorphic.

Conjecture 5.4. Let K1, K2 be two kernels reachable by different sequences of vertex fold
and isolated clique reductions, then K1 and K2 are isomorphic.

We make some first steps towards solving Conjecture 5.4 by considering local changes
around reductions. We investigate each combination of two reductions that "conflict" with
each other and show that isomorphic graphs can be reached after applying either of the two.
However, in some of the cases, the application of either of the reductions does not immedi-
ately result in isomorphic graphs. In these cases another reduction is possible and has to be
applied for the resulting graphs to be isomorphic (see for example Theorem 5.8). Before
these additional reductions are applied, the graph could be changed by other reductions,
which makes a complete proof of Conjecture 5.4 difficult - we do not prove it fully.

First, we consider a vertex v in a graph G on which we can apply the vertex fold reduc-
tion. Vertex v is not simplicial as the vertex fold reduction requires v’s neighbors u and w
to be nonadjacent. For the other two vertices that get removed by the vertex fold reduction
(i.e., u and w), there are several cases which are identical for u and w, so w.l.o.g. we only
consider u here.

Theorem 5.5. Let v be a vertex that we can apply the vertex fold reduction on and u,w
its neighbors. Let u have degree one (so u is simplicial). Let G1 be the graph resulting
from applying the vertex fold reduction to v and G2 the graph resulting from applying the
isolated clique reduction to u, then G1 and G2 are isomorphic.

25

5 Dependency Checking

w u′

v

x/w u′/x

u

Figure 5.1: Applying conflicting vertex fold reductions. The reduced graphs when folding v or u
first, are isomorphic.

Proof. Applying the isolated clique reduction would remove v and u from the graph and
leave w in the new graph G2. When applying the vertex fold reduction on v, the resulting
graph after the reduction does not contain any of the vertices v, u, w and a new vertex x is
inserted which is connected to the same neighbors as w in G2.

Next, we are going to consider graphs where a neighbor u of v has degree two. Note that
u is not simplicial because v ∈ NG(u) cannot be adjacent to the other vertex in NG(u). We
are going to consider the case that we apply the vertex fold reduction to u. The case where
u’s other neighbor is simplicial is covered in Theorem 5.7.

Theorem 5.6. Let v be a vertex that we can apply the vertex fold reduction on and u,w
its neighbors. Let u have degree two with NG(u) = {u′, v}. Let G1 be the graph resulting
from applying the vertex fold reduction to v and G2 the graph resulting from applying the
vertex fold reduction to u, then G1 and G2 are isomorphic.

Proof. Let x1 and x2 be the new vertices inG1 andG2, respectively. Consider the graphG1

obtained from applying the vertex fold reduction to v. Here, NG1(x1) = (NG(w)∪ {u′}) \
{v} and NG1(u

′) = (NG(u′) \ {u}) ∪ {x1}. In G2, NG2(x2) = (NG(u′) ∪ {w}) \ {u} and
NG2(w) = (NG(w)\{v})∪{x2}. These graphs are isomorphic with the mapping from G1

to G2: x1 7→ w, u′ 7→ x2 and a 7→ a for all other vertices.

An example for Theorem 5.6 can be found in Figure 5.1.
If u has degree greater than two, we cannot apply any reduction to it, as it cannot be

simplicial because v ∈ NG(u) is not adjacent to any other vertex in NG(u). We have to
consider that u can be removed from the graph by other reductions, changing the neighbor-
hood of v. We split this into two cases covered in the following theorems.

Theorem 5.7. Let v be a vertex that we can apply the vertex fold reduction on and u,w
its neighbors. Let a vertex u′ ∈ NG(u) be simplicial. Let G1 be the graph resulting
from applying the vertex fold reduction to v and G2 the graph resulting from applying the
isolated clique reduction to u′, then we can reach isomorphic graphs G′1, G

′
2 by applying

more reductions to G1 and G2, respectively.

26

5.1 Reduction Order

v

u w

u′

v

u w

u′ v

u w

u′

u′ u′

isolated clique

isolated clique

isolated clique

vertex fold

x x

Figure 5.2: In the input graph on the left, the vertex u is part of a vertex fold and an isolated
clique reduction. (Top): When applying the isolated clique reduction on vertex u′

first, vertex v becomes simplicial and is reduced too. (Bottom): When applying the
vertex fold reduction on vertex v first, we can still apply the isolated clique reduction
on vertex u′. The resulting graphs are isomorphic. Green and red vertices as well
as dashed edges are removed from the graph. Green vertices are added to, and red
vertices are excluded from the independent set.

Proof. In G1, u′ is still simplicial, because NG1(x) ∩ NG1(u
′) = NG(u) ∩ NG(u′) and

x ∈ NG1(u
′), so NG1 [u

′] ⊆ NG1 [x] if NG[u′] ⊆ NG[u]. Let G′1 be the graph obtained by
applying the isolated clique reduction on u′ in G1. The difference between G and G′1 is
equivalent to removing {v, u, w} ∪NG[u′] = {v, w} ∪NG[u′] from the graph.

In G2, v has degree one because u is removed from the graph. Let G′2 be the graph
obtained from applying the isolated clique reduction to v in G2. It is easy to see that G′2 is
isomorphic to G′1 since vertices N [u′] ∪ {v, w} are removed from the graph.

An example for Theorem 5.7 can be found in Figure 5.2.

Theorem 5.8. Let v be a vertex that we can apply the vertex fold reduction on and u,w its
neighbors. Let a vertex u′ ∈ NG(u) be a candidate for a vertex fold reduction. Let G1 be
the graph resulting from applying the vertex fold reduction to v and G2 the graph resulting
from applying the vertex fold reduction to u′, then we can reach isomorphic graphs G′1, G

′
2

by applying more reductions to G1 and G2, respectively.

27

5 Dependency Checking

v

u w

u′ u′

Figure 5.3: Two conflicting vertex fold reductions with same neighbors. Folding either of the
vertices v or u′ will result in a new vertex connected to u’s and w’s neighborhood and
v/u′ (depending on which vertex was chosen for the reduction).

u′ v

w′ u w

Figure 5.4: Two conflicting vertex fold reductions with nonadjacent neighbors. After applying
both vertex fold reductions, the resulting graph is a new vertex connected to the neigh-
bors of w′, u and w.

Proof. Let N(u′) \ {u} = {w′}. We differentiate between three cases:

(i) w′ = w: In this case N(v) = N(u′). W.l.o.g. we apply the vertex fold reduction to
v. The newly created vertex is connected to (N(w) ∪ N(u)) \ {v}. See Figure 5.3
for an illustration.

(ii) w′ and w are nonadjacent: Unaffected by the order, applying both reductions results
in one vertex connected to the neighborhoods of w, u and w′. An example can be
found in Figure 5.4.

(iii) w′ and w are adjacent: Unaffected by the vertex we chose for the vertex fold reduc-
tion, the newly created vertex has neighbors u′ (or v, depending on which vertex fold
reduction is applied) and w′ (or w) which are adjacent, so we can apply the isolated
clique reduction on the new vertex. Figure 5.5 shows an example of this case.

Now we are going to consider a vertex v in a graph G that is simplicial. The interactions
with the vertex fold reduction were already covered above. For all neighbors u of v there
are two scenarios of how they could be removed from the graph by the isolated clique
reduction covered in the following theorems.

Theorem 5.9. Let v and u ∈ N(v) be simplicial. Let G1 and G2 be the graphs obtained

28

5.1 Reduction Order

u′ v

w′ u w

v

w

u′

w′

u′

w′

v

w

vertex fold

vertex fold

isolated clique

isolated clique

Figure 5.5: Two conflicting vertex fold reductions with adjacent neighbors. After applying the
vertex fold reduction on vertex u′ or v, the resulting graph is a clique with simplicial
vertex v or u′ which is removed from the graph by the isolated clique reduction. Green
and red vertices as well as dashed edges are removed from the graph. Green vertices
are added to, and red vertices are excluded from the independent set.

by applying the isolated clique reduction to v or u, respectively, then G1 and G2 are iso-
morphic.

Proof. The property that both v and u are simplicial implies that N [u] = N [v] which
means that the same set of vertices will be removed from the graph with u or v being added
to the independent set, and all other vertices being excluded from the independent set.

Theorem 5.10. Let v and w ∈ N(N(v)) \ {v} be simplicial. Let G1 and G2 be the graphs
obtained by applying the isolated clique reduction to v or u, respectively. We can obtain
isomorphic graphs G′1, G

′
2 by applying further reductions on G1 and G2, respectively.

Proof. If w ∈ N(v), see Theorem 5.9. If w /∈ N(v) we can apply both isolated clique
reductions, resulting in N [v] ∪N [u] being removed from the graph.

We have now shown that for every combination of two "conflicting" isolated clique and
vertex fold reductions, we can reach isomorphic graphs after applying either of them, pos-
sibly having to apply more reductions. Note that we also showed that the vertex fold
and isolated clique reductions are only influenced by changes to their neighborhood in the
beginning of this chapter. Some of the theorems used in this section require one more re-
duction ri to be applied in order to reach isomorphic graphs. Now assume there is some
other reduction rj that can change the "neighborhood" of reduction ri. We believe that it

29

5 Dependency Checking

vertex fold

remove
unconfined

u

v w
v w

x

Figure 5.6: Example of the vertex fold reduction and the unconfined reduction leading to different
kernel sizes. Vertex u is unconfined so it is removed. After removing u neither the
unconfined reduction nor the vertex fold reduction can be applied to any of the two
remaining vertices, thus the kernel size is 2. When applying the vertex fold reduction
to u, the result is a single new vertex. The kernel size is 1.

can be shown that we will reach isomorphic graphs independent from the order we apply
these in because we can inductively apply our theorems from this section.

5.1.2 Vertex Fold and Unconfined Reductions

In case we want to apply just the vertex fold and unconfined reductions, the order in which
these two are applied can influence the kernel size. Figure 5.6 we can apply either the
unconfined reduction or the vertex fold reduction to vertex u. After applying any of these
reductions, no other vertex can be removed by either of the two reductions. Applying the
unconfined reduction results in a larger kernel.

30

6 Parallel Framework

Our main tool for improving the performance of kernelization is parallelization. As re-
ductions on one vertex can influence reductions on other vertices, a fine grained parallel
algorithm where every vertex is processed separately seems hard to achieve. Furthermore,
the number of synchronization steps for an algorithm that applies each reduction sepa-
rately using a fine grained parallel algorithm would be very high when the reduced graph
approaches a kernel. Which would limit the scalability of such an algorithm.

As the goal of graph partitioning is to split an input graph into blocks for parallel pro-
cessing, using it seems promising. We partition the graph into p blocks and process each
block on a different thread. While this means that we can apply most reductions on the
inner vertices of a block in the same way as in sequential algorithms, we have to treat the
vertices in the outer part of the blocks with special caution.

6.1 Data Structure

Our graph data structure represents vertices in a graph G = (V,E) as integers v =
{0, . . . , |V |−1} and edges using a two-dimensional array neighbors such that neighbors[v] =
N(v). When adding a new edge {u, v} to the graph, the size of the buffer containing
neighbors[v] might already be full, resulting in a reallocation of neighbors[v] to a new
buffer that is large enough to add u.

An array inGraph contains information about which vertices are removed from the
graph, so inGraph[v] = true for vertices v that are still in the graph and inGraph[v] =
false for vertices v that have been removed from the graph. After a preliminary exper-
imental evaluation, we decide to keep removed vertices in the neighbors array of their
neighbors, so when iterating over the neighborhood of a vertex, we have to check whether
the neighbors are still in the graph and skip them if they are not. Removing the vertices
from the neighbors array of their neighbors causes a significant increase in running time.

In order to iterate over all vertices in a block of the partition V1, . . . , Vk, we hold an array
verticesInBlock such that verticesInBlock[i] = Vi. As we have to check which block
contains a given vertex v, we also keep an array b such that b[v] is the block that contains v.

Some of the reductions we use, make use of the degree of a vertex, which is expensive
to obtain using just the array neighbors because it contains vertices that are removed from
the graph. In order to still have constant time access to the degree of a vertex, we keep an

31

6 Parallel Framework

Block i

Block j
v

u
w

(a)

3

4

6

8

3

4

6

8

9

−

thread i

read

thread j

insert

relocate

(b)

Figure 6.1: (a) The vertex fold reduction can be applied to vertex u and the isolated clique re-
duction can be applied to vertex v. Both would remove vertex w. We cannot apply
the isolated clique reduction to vertex v without breaking Property (i). (b) Thread j
inserts a new neighbor (9) to the neighborhood of some vertex. As the buffer holding
the neighborhood is full, it is reallocated and the old buffer is freed. If thread i starts
iterating over the array before the reallocation, it tries to access unallocated memory.
This behavior is avoided by Properties (ii) and (iii).

array deg that holds the current degree for every vertex. As we have to determine whether
a given vertex is a boundary vertex, we also keep an array cutEdges such that for every
vertex v, cutEdges[v] = |N(v) \ b[v]|. A vertex is a boundary vertex if cutEdges[v] > 0.

6.2 Reductions in the Parallel Framework

When applying a reduction to a vertex v in a graph G = (V,E) to obtain a new graph
G′ = (V ′, E ′), we define the following properties that must hold to avoid race conditions,
allowing the application of our reductions without the use of locks:

(i) ∀u /∈ b[v] : u ∈ V ⇔ u ∈ V ′,
(ii) ∀u ∈ V ′ : u /∈ b[v]⇒ NG′(u) ⊆ NG(u),

(iii) ∀u /∈ b[v]: The reduction algorithm must not use the set N(u).
We cannot remove vertices from different blocks in a single reduction, as this would

result in race conditions when another thread tries to apply a reduction on the removed
vertex, hence Property (i). An example can be found in Figure 6.1a. Property (ii) deals with
a problem in the representation of the graph: Adding a new neighbor v to the neighbors
array of a vertex u (e.g., in the vertex fold reduction described in Sections 4.1 and 6.2.1)

32

6.2 Reductions in the Parallel Framework

Block i

Block j

(a)

Block i

Block j

Block i

Block j

(b)

Figure 6.2: The vertex fold reduction in the parallel framework. The orange vertex is a candidate
for the vertex fold reduction. (a) Its neighbors (red) are located in another block, so
we cannot remove them from the graph without violating Property (i). (b) The orange
vertex and its neighbors (blue) are located in the same block. However, when applying
the vertex fold reduction, we have to connect the black vertices in block j to the new
vertex (yellow) in block i by adding new edges (red). This would break Property (ii)

may result in a race condition when u and v are in different blocks of the partition: We have
to add u to the list of v’s neighbors. If another thread iterates over v’s neighbors while a new
neighbor is being added this can result in race conditions when there is not enough memory
in v’s buffer for storing neighbors and it has to be reallocated. Similarly, we cannot use the
neighbors array of a block j when processing a vertex in block i (see Property (iii)). The
thread that processes block j can change or reallocate it while we iterate over its contents.
Figure 6.1b illustrates these race conditions.

Furthermore, the algorithm must still be correct when a vertex u /∈ b[v] is removed from
the graph. As these restrictions mean that most reductions cannot be applied to boundary
vertices, it is essential for our algorithm to use a partition with a small cut. However,
even with a small cut, we cannot apply all reductions that would be possible without these
restrictions, so the result of our algorithm is not a kernel by definition. We call the reduced
graph computed on the partitioned graph a quasikernel. We now describe how we apply
each reduction in our parallel framework under the restrictions given above. We are going
to refer to the initial graph asG = (V,E) and to the reduced graph r(G) andG′ = (V ′, E ′).

6.2.1 Vertex Fold Reduction

As connecting the newly created vertex x to v’s two-neighborhood requires adding x as a
neighbor to v’s two-neighborhoodN(N(v))\{v}we cannot apply the reduction to vertices
whose two-neighborhood is not fully contained in the same block. For vertices whose two-
neighborhoods are in the same block as the vertex itself, we can apply the reduction as
described in Section 4.1.

33

6 Parallel Framework

Algorithm 4: ParallelVertexFoldReduction
Input: A vertex v and a graph G = (V,E)
Output: A reduced graph G′

1 if |NG(v)| 6= 2 then
2 return G

3 if NG(v) /∈ b[v] then
4 return G

5 if NG(NG(v)) /∈ b[v] then
6 return G

7 if {u,w} /∈ E for NG(v) = {u,w} then
8 V ′ ← (V \NG[v]) ∪ {x}
9 E ′ ← {{a, b} ∈ E | a, b ∈ V ′} ∪ {{x, a} | a ∈ NG[NG[v]] \NG[v]}

10 return G′ = (V ′, E ′)

11 else
12 return G

Theorem 6.1. The vertex fold reduction cannot be applied lock free to vertices v with
N [N [v]] 6⊆ b[v].

Proof. The vertex fold reduction removesNG[v] from the graph, so for v withNG[v] 6⊆ b[v]
Property (i) does not hold. It remains to show that the vertex fold reduction cannot be
applied to vertices with NG(NG(v)) \ {v} = NG(u) ∪ NG(w) 6⊆ b[v]. As {{x, a} | a ∈
(NG(u) ∪NG(w))} ⊆ E ′, Property (ii) is not fulfilled in this case.

See Figure 6.2 for an illustration.

Theorem 6.2. The vertex fold reduction can be applied lock free to qualified vertices v
with N [N [v]] ⊆ b[v].

Proof. Similar to the proof above, we can show that Properties (i) and (ii) are fulfilled.
Furthermore, Algorithm 4 does not use N(u) for any vertex u /∈ b[v].

6.2.2 Isolated Clique Reduction

As we cannot remove vertices from another block than v’s block, we can only apply the
isolated clique reduction on non-boundary vertices.

Theorem 6.3. The isolated clique reduction cannot be applied lock free to vertices v with
N [v] 6⊆ b[v].

34

6.2 Reductions in the Parallel Framework

Block i

Block j

Figure 6.3: The isolated clique reduction in the parallel framework. The orange vertex is simpli-
cial. However, one of its neighbors (red) is located in another block. We cannot apply
the isolated clique reduction, which would remove the red vertex from the graph, with-
out breaking Property (i)

Algorithm 5: ParallelIsolatedCliqueReduction
Input: A vertex v and a graph G = (V,E)
Output: A reduced graph G′

1 if N [v] 6⊆ b[v] then
2 return G

3 for all u ∈ N(v) do
4 if N [v] 6⊆ N [u] then
5 return G

6 return G \N [v] // Remove N [v] from V and all incident edges from E

Proof. The isolated clique reduction removes N [v] from the graph, hence for N [v] 6⊆ b[v],
violating Property (i).

Figure 6.3 shows an example for this situation.

Theorem 6.4. The isolated clique reduction can be applied lock free to qualified vertices
v with N [v] ⊆ b[v].

Proof. As no vertex u /∈ N [v] is removed from the graph by the isolated clique reduction,
Property (i) holds. Also, no edges are added to the graph, so ∀u ∈ V ′ : NG′(u) ⊆ NG(u),
so Property (ii) is fulfilled. Algorithm 5 holds Property (iii).

6.2.3 Twin Reduction

The two cases of the twin reduction perform different actions on the graph, thus we have
to consider each case separately in order to achieve a maximum number of reductions.

35

6 Parallel Framework

Block j

Block i

(a)

Block j

Block i

Block j

Block i

(b)

Figure 6.4: The twin reduction in the parallel framework. The orange vertices are twins. (a) The
twin reduction always removes the twins and all their neighbors. In this example,
the neighbors (red) of the twins are located in other blocks than the twins, hence we
cannot remove them without breaking Property (i). (b) When applying case 1 of the
twin reduction, we have to connect the new vertex (yellow) with its new neighborhood
by adding new edges (red). However, doing so would not comply with Property (ii).

Case 1 is very similar to the vertex fold reduction. It can only be applied to vertices whose
two-neighborhood N [N [v]] is completely contained in the same block b[v] because
we can not connect the newly created vertex x to its new neighborhood if some of
the neighbors are in different blocks.

Case 2 is similar to the isolated clique reduction. We can only remove vertices in a reduc-
tion that are in the same block, so we apply this case to all non boundary vertices.

Theorem 6.5. Neither case of the twin reduction can be applied to vertices v and their
twins u with b[v] 6= b[u] or NG(v) 6⊆ b[v].

Proof. As v, u /∈ V ′ for both cases of the twin reduction, Property (i) does not hold if
b[v] 6= b[u]. Also, both cases of the twin reduction remove NG[v] from G, so if w /∈ b[v]
for some w ∈ NG(v), Property (i) does not hold.

Figure 6.4a illustrates this situation.

Theorem 6.6. We cannot apply case 1 of the twin reduction to twins v, u withNG[NG[v]] 6⊆
b[v].

Proof. For NG(v) 6⊆ b[v], see the theorem above. It remains to show that we cannot apply
case 1 to twins v, u with NG(NG(v)) \NG[v] 6⊆ b[v]. Case 1 of the twin reduction adds an
edge (a, x) to E ′ for all a ∈ NG(NG(v)) \NG[v], so Property (ii) is not fulfilled.

See Figure 6.4b for an example.

Theorem 6.7. Let v, u be twins with b[u] = b[v]. We can apply case 1 of the twin reductions
if NG[NG[v]] ⊆ b[v] and case 2 if NG[v] ⊆ b[v] without the use of locks.

36

6.2 Reductions in the Parallel Framework

Algorithm 6: ParallelFindTwin
Input: A vertex v and a graph G = (V,E)
Output: A twin u of v

1 if |NG(v)| 6= 3 then
2 return None

3 if NG(v) 6⊆ b[v] then
4 return None

5 w ← u ∈ NG(v) such that NG(u) is minimal
6 for u ∈ NG(w) ∩ b[v] do
7 if NG(u) = NG(v) then
8 return u

9 return None

Algorithm 7: ParallelTwinReduction
Input: Twins v, u such that b[v] = b[u] and NG(v) ⊆ b[v], and a graph G = (V,E)
Output: A reduced graph G′

1 if ∀a, b ∈ NG(v) : {a, b} /∈ E then // Uses NG(w) for vertices w ∈ NG(v)
2 return G \ (NG[v] ∪ {u}) // Remove NG[v] ∪ {u} from V and all incident edges

from E

3 else if NG(NG(u)) ⊆ b[v] then
4 V ′ ← V \ (NG[v] ∪ {u})
5 E ′ ← {{a, b} ∈ E | a, b ∈ V ′} ∪ {{x, a} | a ∈ NG(NG(u)) \ {u, v}}
6 return G′ = (V ′, E ′)

Proof. It is easy to see that Properties (i) and (ii) hold in these cases. We can find a twin
u for a vertex v (if one exists) such that b[v] = b[u] and NG(v) 6⊆ b[v] using Algorithm 6
which fulfills Property (iii). Property (iii) also holds for Algorithm 7 which applies the
reduction, given twins v and u.

6.2.4 Unconfined Reduction

The unconfined reduction can be applied to boundary vertices. However, the distance of
vertices required for detecting an unconfined vertex is unbounded and iterating over the
neighbors of a vertex u in another block will result in race conditions when the list of
neighbors of u is modified. Algorithm 8 finds unconfined vertices without breaking Prop-
erty (iii). In line 5 we only chose u if b[u] = b[v] because we have to use N(u) in the next
steps. We also cannot return true if N(u) \ N [S] = ∅ for b[u] 6= b[v] because u might get

37

6 Parallel Framework

Algorithm 8: ParallelIsUnconfined
Input: A vertex v and a graph G = (V,E)
Output: Whether v is unconfined

1 S ← {v}
2 while True do
3 B ← ∅ // Blacklisted vertices
4 while no vertex is added to S do
5 u← u ∈ (N(S) ∩ b[v]) \B such that |N(u) ∩ S| = 1 and |N(u) \N [S]| is

minimized
6 if u = None then
7 return False

8 if N(u) \N [S] = ∅ then
9 return True

10 if N(u) \N [S] = {w} then
11 if b[w] = b[v] then
12 S ← S ∪ {w}
13 else
14 B ← B ∪ {u}

15 else
16 return False

removed from the graph by another thread. In line 11 we check whether w is in the same
block as v because we have to use N(s) for all s ∈ S, so we cannot add w to S if it is in a
different block than v. Additionally, if w is in a different block than v, it could be removed
from the graph by the thread responsible for b[w]. In the case that b[w] 6= b[v], we try to
find another vertex u by adding the current u to a black list. It is easy to check that all
vertices for which Algorithm 8 returns true, are unconfined. However, it is possible that we
falsely classify a vertex as not unconfined because we restrict the vertices u and the set S
to b[v]. Figure 6.7 illustrates some of the situations where the parallel algorithm behaves
differently from its sequential counterpart. If a vertex is unconfined, we remove it from the
graph, which never breaks Properties (i) or (ii).

6.2.5 Diamond Reduction

We can apply the diamond reduction on both boundary and non-boundary vertices. How-
ever, since some vertices might not get inserted into S during the unconfined reduction,
there might be u1, u2 such thatN(u1)\N(S) = N(u2)\N(S) = {v1, v2} and {v1, v2} 6⊆ S
because they are located in different blocks, so we have to make sure that v1, v2 ∈ S. If

38

6.2 Reductions in the Parallel Framework

Block j

Block i

Sw

u

(a)

Block j

Block i

S

u

(b)

Block j

Block i

Su

w

(c)

Figure 6.5: The unconfined reduction in the parallel framework. (a) We cannot add w to S because
we cannot iterate over u’s neighborhood to find w. (b) We cannot conclude that v is
unconfined because u might be removed from the graph by a different thread. (c) We
cannot add w to S because it might get removed from the graph by some other thread.
We also cannot iterate over its neighborhood for future iterations.

Block j

Block i

S
u1 u2

v1

v2

Figure 6.6: The diamond reduction in the parallel framework. In a sequential scenario, v2 would
be added to S by the algorithm for the unconfined algorithm. However, the parallel
algorithm for the unconfined reduction does not add v2 to S because it is located in a
different block than v. As v2 might get removed from the graph by another thread, we
cannot apply the diamond reduction here.

they are not, they might be removed by another reduction which would lead to the diamond
reduction being falsely applied. Figure 6.6 illustrates this situation.

Algorithm 9 finds diamond reductions while holding Property (iii). In Line 3, we can
only consider u1, u2 ∈ b[v] because we have to use their neighborhoods in the next step.
In Line 4 we have to check if v1, v2 ∈ S as explained above. It is easy to check that
the algorithm only finds valid diamond reductions, but it might return false negatives when
u1, u2, v1 or v2 are in different blocks than v. When the algorithm finds a diamond reduction
on some vertex v, we simply remove it from the graph, which never violates Properties (i)
or (ii).

39

6 Parallel Framework

Algorithm 9: ParallelDiamondReduction
Input: A vertex v, a set S from the unconfined reduction, and a graph G = (V,E)
Output: Whether the diamond reduction can be applied to v

1 if |S| < 2 then
2 return False

3 for u1, u2 ∈ N(S) ∩ b[v] such that u1 /∈ N(u2) do
4 if N(u1) \N(S) = N(u2) \N(S) = {v1, v2} ⊆ S then
5 return True

6 return False

6.3 Relaxed Integer Linear Program

The LP reduction is not applied on single vertices like the other reductions discussed in
this thesis but uses a global view on the graph to find vertices to remove. When we apply
the reduction to each block separately, the result is not guaranteed to be valid because ad-
jacent boundary vertices can be fixed into the independent set (see Figure 6.7a). An idea
that might come into mind is to use boundary vertices in the LP reductions of all adja-
cent blocks. This can also lead to incorrect kernels, for example vertices being excluded
from the independent set that should be included, as it still lacks global knowledge of the
graph. Figure 6.7b shows an example where a block incorrectly excludes a vertex from
the fixed independent set. As there are scalable parallel maximum bipartite matching algo-
rithms available, we modify Algorithm 2 to process the graph in parallel without requiring
a partition:

Azad et al. [4] present a parallel augmenting path based algorithm for maximum bipar-
tite matching. Augmenting path based algorithms usually start with a maximal matching,
i.e. a matching where no edge can be added without removing some other edge from the
matching. Then a path that starts and ends on an unmatched vertex is found that alternates
between edges inside and outside of the matching. By removing all matched edges and
adding all unmatched edges in this path to the matching, we increase the size of the match-
ing by one. However, when these paths get long, it is hard to achieve good scalability in
a parallel algorithm. Furthermore, it is desirable to start the search for augmenting paths
from multiple source vertices in parallel. When starting the search at a single vertex and
not finding any augmenting path in the search tree, the entire search tree can be pruned for
future searches as the contained vertices and edges cannot be part of any augmenting path,
even in future stages of the algorithm. When starting at multiple vertices, this does not
hold. Azad et al. come around this issue by storing the disjoint search trees if they do not
contain an augmenting path (so called active trees). When a search tree contains an aug-
menting path (a renewable tree), the matching is updated and relevant vertices connected
to an active tree are added the respective active trees. Using this technique, they only have

40

6.4 The Final Algorithm

Block i
3 1

2

4

65
Block j

(a)

Block j

Block i

block i

block j

1

2

4 5

3

6 7

1

2

4 5

3

6 7

1

2 3

(b)

Figure 6.7: (a) We apply the LP reduction to blocks i and j independently. The result is incorrect,
because vertices 4, 5 and 6 are all fixed into the independent set. (b) We apply the LP
reduction to block i and j and consider boundary vertices from other blocks. The result
of block i leads to a wrong kernel because it excludes vertex 1 from the independent
set, even though vertex 1 is part of the only maximum independent set of the graph.

to continue the search in the next phase from the leafs of active trees. As their algorithm
uses a maximal matching as input, we start with the maximal matching algorithm by Karp
and Sipser [28] which has been parallelized by Azad et al. [5].

We perform the loop in Lines 3 and 4 of Algorithm 2 in parallel for all unmatched
vertices in LV . We keep the search paths disjoint by pruning the search when we reach
a vertex that has already been marked as visited by another search. The loop in Lines 7
through 12 is easy to perform in parallel and our graph data structure allows removing
vertices in parallel. For better performance at repeated applications of the LP reduction,
we reuse the parts of the previous matching which are still part of the graph. If the graph
only changed slightly since the last application of the LP reduction, the matching from the
previous application is still close to a maximum matching, which results in less work for
the maximum matching algorithm.

6.4 The Final Algorithm

Our parallel algorithm using partitioning and dependency checking is described in Algo-
rithm 10. We iterate over the blocks of the partition in parallel and keep a set of vertices
that is used for dependency checking for each block separately. For each vertex in this set,
we try to apply the isolated clique, vertex fold and twin reductions and add neighbors to
the dependency checking set if a reduction was applied. After applying these reductions
exhaustively, we apply the unconfined and diamond reductions to all vertices in the block.
After applying the block-wise reductions, we synchronize the parallel loop and apply the

41

6 Parallel Framework

LP reduction. If the graph has changed, we go back to the block-wise reductions. During
the unconfined, diamond and LP reductions, we add the neighbors of removed vertices to
the respective set Ci. Because preliminary experiments gave faster reduction times when
applying the LP reduction before the other reductions, we add an additional LP reduction
before performing the block-parallel reductions.

Algorithm 10: Parallel kernelization algorithm using partitioning
Input: A graph G = (V,E)
Output: A reduced graph G′

1 V1, . . . Vk ← PartitionGraph(G, k)
2 ApplyParallelLPReduction(G)
3 for Vi ← V1 to Vk in parallel do
4 Ci ← Vi // Set of candidates for the reductions. Used for dependency checking

5 while G was changed in the last iteration do
6 for Vi ← V1 to Vk in parallel do
7 for v ∈ Ci do
8 ApplyDependencyCheckingReductions(v) // Isolated clique, vertex fold

and twin reductions

9 for v ∈ G do
10 ApplyUnconfinedAndDiamondReductions(v)

11 ApplyParallelLPReduction(G)

12 return G

42

7 Experimental Evaluation

In this section we evaluate our algorithm and test it on a set of real-world instances. We
show the impact of both, our dependency checking technique and parallelization by parti-
tioning. We also compare our results to previous work to show an improvement on current
implementations of kernelization.

In Table 7.1 we list the graphs we use in our evaluation. The web graphs are crawls
restricted to some top level domain or a specific language. Road networks model the streets
of a region. We obtain our graphs for the Laboratory for Web Algorithmics (LAW) [10, 11]
and the 10th DIMACS implementation challenge [7]. Most of the web crawls from the
LAW were crawled by UbiCrawler [9].

name type # vertices # edges source
arabic-2005 web 22.7 M 553.9 M [9, 10, 11]
uk-2002 web 18.5 M 261.8 M [7]
uk-2005 web 39.5 M 783.0 M [9, 10, 11]
uk-2007-05 web 105.9 M 3,301.9 M [9, 10, 11]
it-2004 web 41.3 M 1,027.5 M [10, 11]
sk-2005 web 50.6 M 1,810.1 M [9, 10, 11]
europe.osm road 50.9 M 54.1 M [7]

Table 7.1: The graphs used in our evaluation.

We implement our algorithm using C++ and compile it with gcc 4.8 using full opti-
mizations (-O3). For shared memory parallelization we use OpenMP. We evaluate our
implementation on a machine with 500 GB RAM and two Intel Xeon E5-2683 v4 proces-
sors with 16 cores each. The operating system is Ubuntu 14.04.5 LTS which runs Linux
version 3.13.0-100-generic.

The structure of our experimental evaluation is as follows: In Section 7.1 we exam-
ine the impact of partitioning quality and load balancing measures on our algorithm. In
Section 7.2 we evaluate the impact that the reductions used in our algorithm have on the
execution time and the quasikernel size. In Section 7.3 we give results of our scaling exper-
iments considering both the execution time and quasikernel size. Section 7.4 then closes
our evaluation with a comparison with previous work. This includes the impact of our de-
pendency checking technique as well as the speedup we obtain by running our algorithm
in parallel.

43

7 Experimental Evaluation

7.1 Impact of Partitioning

As our algorithm uses partitioning for parallelization, we evaluate how to find a partition
that helps the scaling of our algorithm without spending too much time on partitioning. We
use the parallel graph partitioner by Meyerhenke et al. [36] for partitioning.

There are two factors we want to consider when evaluating partitioning for our algorithm:

(i) Kernelization time: Because we have to spend a different amount of work on every
vertex, load balancing is an important factor. If many vertices requiring much work
on are in the same block, the algorithm cannot scale well. We try to attack this prob-
lem by estimating the expected cost of processing a vertex and use these estimates as
vertex weights for partitioning. The balance constraint should then cause a partition
that is balanced in terms of computation time.

(ii) Size of the quasikernel: The size of our quasikernel is dependent on the boundary
vertices because most reductions cannot be applied to these. We thereby expect a
smaller quasikernel for more time consuming configurations of the partitioner.

A simple solution is to expect equal workloads for each vertex and thus use uniform
vertex weights. As all reductions use at least the direct neighborhood of a vertex when
processing it, we also evaluate the use of vertex degrees as vertex weights. In preliminary
experiments, we also tried using the number of vertices reachable on paths of length two
as weights, because most reduction algorithms also iterate over these vertices. In our ex-
periments however, the weights of some vertices were overwhelmingly large so that the
partitioner could not find a balanced partition.

In our experiments we use the three partitioner configurations ultrafast, fast and eco
which usually compute decreasing cuts at the cost of increasing computation time. They
mainly differ in the number of cycles used in their multilevel algorithm and the time used
to find an initial partitioning. Additionally, we compare the results obtained from a parti-
tioning by a sophisticated partitioner with those obtained from a much simpler sequential
implementation of a label propagation algorithm (LPA) implemented by Christian Schulz.
This algorithm computes a partitioning by starting with a random partition and then apply-
ing a size-constrained label propagation algorithm to improve the cut. The size-constrained
label propagation algorithm has been taken from [35]. Overall, this partitioning algorithm
is sequentially faster but does not provide as good solutions as the parallel partitioner.

We use all the reductions as explained in Chapter 6 but limit the isolated clique reductions
to cliques with at most three vertices. In preliminary experiments we found that including
larger cliques does not significantly change the quasikernel size.

We list the results of our experiments on partitioner configurations in Table 7.2. We run
our full set of reductions on our benchmark graphs using 16 threads. As a preprocess-
ing step, we partition the graphs into 16 blocks, also using 16 threads. The table shows
the speedup in time and the relative change of the quasikernel size for each configuration
compared to a baseline configuration. The kernelization time includes every reduction per-

44

7.1 Impact of Partitioning

speedup for
weight configuration partitioning kernelization total quasikernel size
degree eco 1.0 1.0 1.0 +0.0%
degree fast 5.0 0.9 3.8 +1.7%
degree ultrafast 11.2 1.0 7.0 +3.4%
degree LPA* 5.0 0.9 4.2 +58.0%
uniform eco 1.1 1.1 1.2 -0.3%
uniform fast 5.9 1.0 4.4 +0.5%
uniform ultrafast 13.8 1.0 7.8 +1.7%
uniform LPA* 4.9 0.8 4.0 +59.9%

Table 7.2: Evaluation of different partitioner configuration on 16 threads. Speedups and change in
quasikernel size with the eco configuration and vertex degrees as weights as baseline.
Partitioning is the time for partitioning the graph into 16 blocks. Kernelization is the
time spent on the block-wise parallel reductions and total is partitioning + kernelization.
Results are averaged over all our benchmark graphs. Results for LPA are on a subset of
our benchmark graphs.

formed in the block parallel section of our algorithm (recall that the LP reduction is not
parallelized by partitioning).

We could not run experiments using LPA for partitioning on graphs with more than 231

edges due to the use of 32-bit integers in the partitioner. The quasikernel for europe.osm
using a partition from LPA was more than a factor 70,000 larger than the baseline. As this
largely outweighs the results from the other graphs, we decide to not include europe.osm
in the results for a partitioning by LPA. The reason for this is that the structure of road
networks causes a huge increase in quasikernel size with a low quality partitioning. For
example, the vertex fold reduction, which is applied very often on road networks, is only
applicable if a vertex does not have boundary vertices as neighbors. For the other graphs
this effect is not as drastic but still significant. We conclude that a somewhat high quality
partitioning is important for a small quasikernel size.

Due to the faster total times as a result of faster partitioning times, we decide to use the
ultrafast configuration for further experiments. Using the fast or eco configurations results
in slightly smaller kernel sizes and sometimes even faster kernelization times but this does
not seem to justify the significantly higher partitioning time.

Our results also suggest that using uniform vertex weights leads to better load balancing
on average, which is why we use this configuration for further experiments. However,
these results are not consistent among all graphs. For some of our benchmark graphs, using
vertex degrees as weights for partitioning leads to significantly shorter kernelization times.
We provide sample plots for two of our benchmark graphs in Figure 7.1. The figure shows
box plots of the kernelization time spent on every block for the graphs it-2004 (7.1a) and
uk-2007-05 (7.1b). We can see that for it-2004, using vertex degrees as weights performs

45

7 Experimental Evaluation

uniform degree
0

100

200

300

Weight

R
un

tim
e

(s
)

it-2004

(a)

uniform degree
0

1,000

2,000

3,000

Weight

R
un

tim
e

(s
)

uk-2007-05

(b)

Figure 7.1: Box plots of the running time per block using the ultrafast configuration.

significantly better than using uniform weights due to some blocks requiring much more
time than the others. However, for uk-2007-05 we observe the opposite.

7.2 Impact of Reductions

We want to evaluate the impact of each reduction on our parallel kernelization. We run a
set of experiments where we exclude each reduction from our algorithm and list the results
in Table 7.3. As a base case, we use a configuration that is aimed to be comparable to
the implementation by Akiba and Iwata [2]. As they remove degree zero and one vertices
and remove isolated cliques of size three as part of their vertex fold reduction, we limit
our isolated clique reduction to cliques of at most three vertices. We also list results for
using isolated cliques of arbitrary sizes. As the diamond reduction needs the computation
used for the unconfined reduction, we cannot exclude the unconfined reduction without
excluding the diamond reduction as well. Note that the times reported here do not include
the time for partitioning the graph.

We find that the LP, unconfined and vertex fold reductions largely contribute to kernel-
ization: The quasikernel we achieve when excluding these reductions is significantly larger.
Excluding the diamond or the twin reduction results in a quasikernel that is approximately
5% larger than the quasikernel computed by using all reductions and the kernelization time
without these reductions does not change significantly. The difference in quasikernel size
between the base case and the version without the isolated clique reduction is less than
1%. This can be explained by other reductions covering at least parts of the isolated clique
reduction. For example, the LP reduction will always remove isolated vertices which are

46

7.3 Scaling Experiments

configuration reduction time quasikernel size
all reductions +0.0% +0.0%
no LP +52.1% +250.0%
no diamond +0.3% +5.6%
no isolated clique +7.9% +0.2%
no twin -4.1% +4.1%
no unconfined, no diamond -29.4% +771.0%
no vertex fold +28.5% +1749.8%
arbitrary size isolated clique +1.0% -0.1%

Table 7.3: We exclude each reduction from our parallel kernelization algorithm and list the change
compared to the base case of using all reductions. Experiments are run on 16 threads
and kernelization times do not include time for partitioning. Results are averaged over
all our benchmark graphs.

always simplicial. We keep the isolated clique reduction in our algorithm because remov-
ing it increases kernelization time. Removing isolated cliques of arbitrary sizes does not
significantly decrease the quasikernel size because large cliques are very rare in networks.
However, because of the additional work required to check high degree vertices, the ker-
nelization time is slightly higher than for the base case. We thus decide to limit the isolated
clique reduction to cliques of size at most three for further experiments.

7.3 Scaling Experiments

We evaluate the scaling behavior of our algorithm on up to 64 threads on our benchmark
graphs using a partitioning in p blocks for p threads. This shows the impact that paralleliza-
tion has on our algorithm.

Figure 7.2a shows the speedup of our algorithms for 2i, i ∈ {0, 1, 2, 3, 4, 5, 6, 7} threads
(excluding the time for partitioning). The speedup for i threads is the time required by
an algorithm sequentially divided by the time it takes using i threads. For our benchmark
graphs, the fastest running time we achieve is typically about a factor 10 faster than the
sequential running time (5 for the street graph). One reason for this is load imbalance:
While some threads finish very fast, there are others that take considerably more time. As
we already found imbalanced times per thread in Section 7.1, we expected similar behavior
for other numbers of threads. It would be possible to bypass this by partitioning the graph
into far more blocks than the number of threads used. Dynamic load balancing would then
help improving the running time. However, this results in smaller quasikernel sizes due to
more boundary vertices. Also, the parallel bipartite maximum matching algorithm used by
the LP reduction shows a similar scaling behavior. In a micro benchmark we performed
during our experimental evaluation on the instance europe.osm, we noticed that a simple
program which iterates over the outgoing edges of every vertex shows a similar scaling

47

7 Experimental Evaluation

1 2 4 8 16 32 64
0

5

10

Number of threads

Sp
ee

du
p

arabic-2005
europe.osm
it-2004
sk-2005
uk-2002
uk-2005
uk-2007-05

(a) Speedup

1 2 4 8 16 32 64
80

85

90

95

100

Number of threads

%
of

re
m

ov
ab

le
ve

rt
ic

es

(b) Vertices removed

Figure 7.2: Strong scaling experiments on up to 64 threads. (a) The speedup of our algorithm
compared to our algorithm on one thread. (b) The number of vertices removed by our
algorithm relative to one thread.

48

7.4 Comparison with Previous Work

behavior on our benchmark machine to our algorithm.
Figure 7.2b shows the number of vertices removed in the strong scaling experiments.

Even though our algorithm does remove fewer vertices in parallel, this decrease is very
minor. We still remove more than 99% of the removable vertices in parallel. Note that
using only one block (and thus one thread), our algorithm finds an exact kernel.

7.4 Comparison with Previous Work

We compare our implementation to the one by Akiba and Iwata [2] written in Java. The
code they published computes a minimum vertex cover but it can easily modified to stop
after kernelization. As they implement a larger set of reduction rules, adding the desk and
funnel reductions by Xiao and Nagamochi [47], we expect them to achieve smaller kernel
sizes. However, as they only apply a scheme similar to our dependency checking for the
removal of degree zero and one vertices, we expect faster kernelization times.

Table 7.4 shows our comparison between their and our implementation running single-
threaded. For a more fair comparison, we also supply the time their algorithm takes to find
a graph size equal our kernel. More specifically, we log the time and graph size after the
application of every reduction and give the time when their algorithm first outputs a size
smaller than (or equal to) our final size. We find that our algorithm finishes significantly
faster than their implementation on all benchmark instances. Also, the time their algorithm
takes to find a graph of size equal to our kernel is significantly longer than our kerneliza-
tion time. We attribute this to our dependency checking technique. Their algorithm tries
to apply every reduction to every vertex left in the graph until no more reductions can be
applied. In contrast, our algorithm prunes a large part of the vertex set from further ap-
plication of reductions because their neighborhood did not change since the last attempt
of applying reductions. For the instance europe.osm, this is most notable. This can be
explained by the structure of road networks. Because road networks have many degree two
vertices, the vertex fold reduction can be applied very often, which is significantly sped up
by dependency checking.

Table 7.5 compares the implementation of Akiba and Iwata with a fully parallel run of
our algorithm. Again, for a more fair comparison we also compare our execution time to the
time their implementation takes to output a smaller size than our algorithm in Table 7.6.
As expected, the size of our quasikernel is higher than the exact kernel from the single-
threaded experiment. For most of the runs we are able to execute our algorithm on 64
threads, we observe a faster kernelization by a factor of 10 to 30. Also, compared to the
time their implementation takes to achieve a size equal to our quasikernel size, we can
achieve significantly faster times using parallelization. We also observe that partitioning
the graph makes up for a significant part of our algorithm for the smaller instances. For our
biggest instance, partitioning does only slightly contribute to the overall running time.

As it might be important for some algorithms to find an exact kernel instead of our

49

7 Experimental Evaluation

Akiba and Iwata [2] Our algorithm Same size comparison
graph size time [s] size time [s] speedup time [s] speedup
arabic-2005 574,878 1,033 610,408 359 2.9 655 1.8
europe.osm 8,366 302 14,044 47 6.4 218 4.6
it-2004 1,602,560 6,749 1,645,597 2,264 3.0 4,892 2.2
sk-2005 3,200,806 10,010 3,255,991 2,509 4.0 6,724 2.7
uk-2002 241,517 337 255,458 108 3.1 253 2.3
uk-2005 835,480 541 854,511 602 0.9 337 0.6
uk-2007-05 3,514,783 18,829 3,632,844 9,285 2.0 13,326 1.4

Table 7.4: Sequential comparison with the implementation by Akiba and Iwata. We give the kernel
size and the kernelization time for both implementations. For better comparison we also
give the time when their algorithm first found a graph smaller or equal than our kernel.
Speedup columns are their time divided by our time.

Akiba and Iwata [2] Our algorithm
graph size kern. [s] size part. [s] kern. [s] total [s] speedup
arabic-2005 574,878 1,033 667,649 15 43 58 17.8
europe.osm 8,366 302 16,949 13 9 22 13.8
it-2004 1,602,560 6,749 1,762,705 44 198 243 27.8
sk-2005 3,200,806 10,010 3,967,500 116 235 351 28.5
uk-2002 241,517 337 293,341 23 12 35 9.7
uk-2005 835,480 541 978,740 65 64 129 4.2
uk-2007-05* 3,514,783 18,829 3,733,325 59 1,805 1,864 10.1

Table 7.5: Parallel comparison with the implementation by Akiba and Iwata with a quasikernel.
We give the kernel size and kernelization time for the implementation by Akiba and
Iwata. For our implementation, we give the size of the quasikernel, the time for parti-
tioning, the kernelization time and the sum of partitioning and kernelization times. We
ran our algorithm on 64 threads, using a partition into 64 blocks. For graphs marked
with a star (*), we ran our algorithm on 32 threads using a partition into 32 blocks due
to memory limitations.

quasikernel, we do an experiment where we find an exact kernel by an additional sequential
run on the quasikernel. Because the LP reduction does find exact results, we still perform
it in parallel. Tables 7.7 and 7.8 show the results for these experiments. We find that the
speedup we obtain over Akiba and Iwata for finding a graph of our kernel size is actually
better than for the quasikernel on most instances. This can be explained by the dependency
checking that speeds up our sequential reductions, as well as the LP reduction that we
perform in parallel.

50

7.4 Comparison with Previous Work

[2] Our algorithm
graph size kern. [s] part. [s] kern. [s] total [s] speedup
arabic-2005 667,649 361 15 43 58 6.2
europe.osm 16,949 202 13 9 22 9.2
it-2004 1,762,705 2,412 44 198 243 9.9
sk-2005 3,967,500 2,356 116 235 351 6.7
uk-2002 293,341 149 23 12 35 4.3
uk-2005 978,740 128 65 64 129 1.0
uk-2007-05* 3,733,325 11,828 59 1,805 1,864 6.3

Table 7.6: Comparison of our quasikernel with the time the implementation by Akiba and Iwata
takes to find a graph of equal size. We give the kernel size used and times for both
implementations. The experimental setup is the same as in Table 7.5.

Akiba and Iwata [2] Our algorithm
graph size kern. [s] size part. [s] kern. [s] total [s] speedup
arabic-2005 574,878 1,033 610,461 15 60 75 13.8
europe.osm 8,366 302 14,293 13 10 23 13.2
it-2004 1,602,560 6,749 1,651,441 44 332 376 18.0
sk-2005 3,200,806 10,010 3,260,217 116 376 492 20.3
uk-2002 241,517 337 255,514 23 15 38 8.9
uk-2005 835,480 541 854,687 65 74 138 3.9
uk-2007-05* 3,514,783 18,829 3,629,210 59 1,967 2,025 9.3

Table 7.7: Parallel comparison with the implementation by Akiba and Iwata with an exact kernel.
All columns are the same as in Table 7.5. We ran our algorithm on 64 threads, using
a partition into 64 blocks. After the parallel quasikernel computation, we find an exact
kernel by a sequential run on the quasikernel (the LP reduction was performed in par-
allel). For graphs marked with a star (*), we ran our algorithm on 32 threads using a
partition into 32 blocks due to memory limitations.

[2] Our algorithm
graph size kern. [s] part. [s] kern. [s] total [s] speedup
arabic-2005 610,461 655 15 60 75 8.7
europe.osm 14,293 210 13 10 23 9.2
it-2004 1,651,441 4,376 44 332 376 11.6
sk-2005 3,260,217 5,781 116 376 492 11.7
uk-2002 255,514 250 23 15 38 6.6
uk-2005 854,687 323 65 74 138 2.3
uk-2007-05* 3,629,210 14,543 59 1,967 2,025 7.2

Table 7.8: Comparison of the exact kernel found by our algorithm with the time the implementa-
tion by Akiba and Iwata takes to find a graph of equal size. All columns are the same
as in Table 7.6, the experimental setup is the same as in Table 7.7.

51

7 Experimental Evaluation

52

8 Discussion

8.1 Conclusion

We presented an algorithm that significantly speeds up kernelization for the maximum
independent set problem. We believe this can be used to make large real-world instances
more feasible to solve by speeding up initialization phases of algorithms that first kernelize
the input graph.

Our first technique for speeding up kernelization - dependency checking - was shown to
be effective in practice, achieving a speedup of up to 4.6 over previous kernelization algo-
rithms. While dependency checking gave good results for some reductions, we currently
do not know how to apply this technique to all reductions.

Our second technique - parallelization by partitioning - also sped up kernelization signif-
icantly. However, due to an overhead for partitioning the graph as a preprocessing step and
load balancing issues, we found the scalability to be limited. While improving partitioning
algorithms is out of the scope of this work and using lower quality partitionings has been
shown to be ineffective, it remains open how load balancing can be improved.

Overall, speeding up kernelization for the maximum independent set problem is an in-
teresting and promising step to improving the scalability of maximum independent set
algorithms. While working on this thesis, we got new insights into the behavior of the
reduction techniques and developed more ideas to scale up algorithms that can be an entry
point for future work.

8.2 Future Work

A factor that is limiting the scalability of our implementation is load balancing. In fact,
for all graphs and partitioner configurations, we find one block of the partition that has
a significantly longer running time than all other blocks. It would be interesting to seek
methods to better balance the work in each block. One possible solution for this can be
to find a better weight to use for partitioning. This would include finding a fast-to-find
estimate of how much work is spent on each vertex during the kernelization algorithm.

The problem of load balancing might also be eliminated by designing a fine grained
parallel kernelization algorithm that does not require a partitioned graph. While we already
parallelized the LP reduction without the need of a partitioned graph, we believe that this is

53

8 Discussion

also possible for at least some other reductions. We already developed ideas for the isolated
clique reduction that seemed promising in preliminary experiments and for the unconfined
reduction.

The dependency checking scheme used in this thesis is limited to the isolated clique,
vertex fold and twin reductions. While the unconfined reduction is much more complex, it
might be possible to apply some kind of dependency checking to it. Furthermore, it might
be possible to use a specialized dependency checking scheme for every reduction, which
needs further investigation. A simple example is that there is no need to attempt applying
the vertex fold reduction to vertices with a degree other than two.

In Section5.1.1 we make first steps towards proving that the order in which we apply the
isolated clique and vertex fold reductions does not change the kernel that is reached. A full
proof for this seems achievable and remains for future work.

Additionally, we plan to evaluate the application of (inexact) maximum independent set
algorithms as those that are mentioned in Chapter 3 on our quasikernel.

54

A Reduction Order

kernel size
graph source min average max
cnr-2000 [10, 11] 67341 67341 67341
in-2004 [10, 11] 192067 192067 192067
petster-friendships-cat-uniq [30] 68643 68643 68643
petster-friendships-dog-uniq [30] 139861 139861 139861
zhishi-baidu-relatedpages [30] 14011 14011 14011
roadNet-CA [33] 305342 305342 305342
roadNet-PA [33] 169067 169067 169067
roadNet-TX [33] 194358 194358 194358
web-Google [33] 21101 21101 21101
web-NotreDame [33] 42373 42373 42373

Table A.1: Random order of the isolated clique and vertex fold reductions over 10 runs on each
graph. The kernel size is the same for all runs on every graph.

55

A Reduction Order

56

Bibliography

[1] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A. Langston,
W. Henry Suters, and Christopher T. Symons. Kernelization algorithms for the vertex
cover problem: Theory and experiments. In Proceedings of the Sixth Workshop on
Algorithm Engineering and Experiments and the First Workshop on Analytic Algo-
rithmics and Combinatorics, pages 62–69, 2004.

[2] Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/fpt algorithms in
practice: A case study of vertex cover. Theoretical Computer Science, 609:211–225,
2016.

[3] Diogo V. Andrade, Mauricio G.C. Resende, and Renato F. Werneck. Fast local search
for the maximum independent set problem. In Proceedings of the International Work-
shop on Experimental and Efficient Algorithms, pages 220–234. Springer, 2008.

[4] Ariful Azad, Aydin Buluç, and Alex Pothen. Computing maximum cardinality match-
ings in parallel on bipartite graphs via tree-grafting. IEEE Trans. Parallel Distrib.
Syst., 28(1):44–59, 2017.

[5] Ariful Azad, Mahantesh Halappanavar, Sivasankaran Rajamanickam, Erik G. Boman,
Arif Khan, and Alex Pothen. Multithreaded algorithms for maximum matching in
bipartite graphs. In Parallel & Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, pages 860–872. IEEE, 2012.

[6] Thomas Back and Sami Khuri. An evolutionary heuristic for the maximum inde-
pendent set problem. In Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First IEEE Conference on, pages
531–535. IEEE, 1994.

[7] David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea
Kappes, and Dorothea Wagner. Benchmarking for graph clustering and partition-
ing. In Encyclopedia of Social Network Analysis and Mining, pages 73–82. Springer,
2014.

[8] Egon Balas and William Niehaus. Optimized crossover-based genetic algorithms for
the maximum cardinality and maximum weight clique problems. Journal of Heuris-
tics, 4(2):107–122, 1998.

[9] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubi-
crawler: A scalable fully distributed web crawler. Software: Practice & Experience,
34(8):711–726, 2004.

57

Bibliography

[10] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for compressing social net-
works. In Proceedings of the 20th international conference on World Wide Web, pages
587–596. ACM Press, 2011.

[11] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression tech-
niques. In Proc. of the Thirteenth International World Wide Web Conference (WWW
2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

[12] Pavel A. Borisovsky and Marina S. Zavolovskaya. Experimental comparison of two
evolutionary algorithms for the independent set problem. In Workshops on Applica-
tions of Evolutionary Computation, pages 154–164. Springer, 2003.

[13] Sergiy Butenko, Panos Pardalos, Ivan Sergienko, Vladimir Shylo, and Petro Stetsyuk.
Finding maximum independent sets in graphs arising from coding theory. In Proceed-
ings of the 2002 ACM symposium on Applied computing, pages 542–546. ACM, 2002.

[14] Sergiy Butenko, Panos Pardalos, Ivan Sergienko, Vladimir Shylo, and Petro Stetsyuk.
Estimating the size of correcting codes using extremal graph problems. In Optimiza-
tion, pages 227–243. Springer, 2009.

[15] Sergiy Butenko and Wilbert E. Wilhelm. Clique-detection models in computational
biochemistry and genomics. European Journal of Operational Research, 173(1):1–
17, 2006.

[16] Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. Numvc: An efficient local
search algorithm for minimum vertex cover. Journal of Artificial Intelligence Re-
search, 46:687–716, 2013.

[17] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: further observations and
further improvements. Journal of Algorithms, 41(2):280–301, 2001.

[18] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and
Renato F. Werneck. Accelerating local search for the maximum independent set prob-
lem. In Proceedings of the International Symposium on Experimental Algorithms,
pages 118–133. Springer, 2016.

[19] Irit Dinur and Shmuel Safra. The importance of being biased. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 33–42. ACM,
2002.

[20] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer ap-
proach for the analysis of exact algorithms. Journal of the ACM, 56(5):25, 2009.

[21] Eleanor J. Gardiner, Peter Willett, and Peter J. Artymiuk. Graph-theoretic techniques
for macromolecular docking. Journal of Chemical Information and Computer Sci-
ences, 40(2):273–279, 2000.

[22] Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg. Trajectory-based
dynamic map labeling. In Proceedings of the International Symposium on Algorithms
and Computation, pages 413–423. Springer, 2013.

58

Bibliography

[23] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Evaluation of labeling strate-
gies for rotating maps. Journal of Experimental Algorithmics, 21(1):1–4, 2016.

[24] Andrea Grosso, Marco Locatelli, and Federico Della Croce. Combining swaps and
node weights in an adaptive greedy approach for the maximum clique problem. Jour-
nal of Heuristics, 10(2):135–152, 2004.

[25] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kerneliza-
tion. SIGACT News, 38(1):31–45, March 2007.

[26] John E. Hopcroft and Richard M. Karp. An nˆ5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[27] David S. Johnson and Michael A. Trick. Cliques, coloring, and satisfiability: second
DIMACS implementation challenge, October 11-13, 1993, volume 26. American
Mathematical Soc., 1996.

[28] Richard M. Karp and Michael Sipser. Maximum matching in sparse random graphs.
In Foundations of Computer Science, 1981. SFCS’81. 22nd Annual Symposium on,
pages 364–375. IEEE, 1981.

[29] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed time-
dependent contraction hierarchies. In Proceedings of the International Symposium on
Experimental Algorithms, pages 83–93. Springer, 2010.

[30] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1343–1350. ACM, 2013.

[31] Sebastian Lamm, Peter Sanders, and Christian Schulz. Graph partitioning for inde-
pendent sets. In Proceedings of the International Symposium on Experimental Algo-
rithms, pages 68–81. Springer, 2015.

[32] Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Wer-
neck. Finding near-optimal independent sets at scale. In Proceedings of the 18th
Workshop on Algorithm Engineering and Experiments (ALENEX 2016), pages 138–
150. SIAM, 2016.

[33] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[34] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM journal on computing, 15(4):1036–1053, 1986.

[35] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Partitioning complex net-
works via size-constrained clustering. In International Symposium on Experimental
Algorithms, pages 351–363. Springer, 2014.

[36] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Parallel graph parti-
tioning for complex networks. In Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International, pages 1055–1064. IEEE, 2015.

[37] George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex packing and
independence system polyhedra. Mathematical Programming, 6(1):48–61, 1974.

59

http://snap.stanford.edu/data

Bibliography

[38] George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: structural properties
and algorithms. Mathematical Programming, 8(1):232–248, 1975.

[39] Wayne Pullan. Phased local search for the maximum clique problem. Journal of
Combinatorial Optimization, 12(3):303–323, 2006.

[40] Wayne Pullan. Optimisation of unweighted/weighted maximum independent sets and
minimum vertex covers. Discrete Optimization, 6(2):214–219, 2009.

[41] Wayne Pullan and Holger H. Hoos. Dynamic local search for the maximum clique
problem. Journal of Artificial Intelligence Research, 25:159–185, 2006.

[42] Pedro V Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe. Efficient traver-
sal of mesh edges using adjacency primitives. In ACM Transactions on Graphics,
volume 27, page 144. ACM, 2008.

[43] Alok Singh and Ashok Kumar Gupta. A hybrid heuristic for the maximum clique
problem. Journal of Heuristics, 12(1-2):5–22, 2006.

[44] Darren Strash. On the power of simple reductions for the maximum independent set
problem. In Proceedings of the International Computing and Combinatorics Confer-
ence, pages 345–356. Springer, 2016.

[45] Robert Endre Tarjan and Anthony E. Trojanowski. Finding a maximum independent
set. SIAM Journal on Computing, 6(3):537–546, 1977.

[46] Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. Scalable maximum clique compu-
tation using mapreduce. In Data Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 74–85. IEEE, 2013.

[47] Mingyu Xiao and Hiroshi Nagamochi. Confining sets and avoiding bottleneck cases:
A simple maximum independent set algorithm in degree-3 graphs. Theoretical Com-
puter Science, 469:92–104, 2013.

[48] Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent
set. In Proceedings of the International Symposium on Algorithms and Computation,
pages 328–338. Springer, 2013.

60

	Abstract
	Introduction
	Motivation
	Contribution
	Structure of Thesis

	Preliminaries
	General Definitions
	Graph Partitioning
	The Maximum Independent Set Problem
	Kernelization for the Maximum Independent Set Problem

	Related Work
	Kernelization
	Exact Algorithms
	Local Search Algorithms
	Evolutionary Algorithms
	Parallel Algorithms

	Reductions
	Vertex Fold Reduction
	Isolated Clique Reduction
	Twin Reduction
	Unconfined Reduction
	Diamond Reduction
	Relaxed Integer Linear Program

	Dependency Checking
	Reduction Order
	Vertex Fold and Isolated Clique Reductions
	Vertex Fold and Unconfined Reductions

	Parallel Framework
	Data Structure
	Reductions in the Parallel Framework
	Vertex Fold Reduction
	Isolated Clique Reduction
	Twin Reduction
	Unconfined Reduction
	Diamond Reduction

	Relaxed Integer Linear Program
	The Final Algorithm

	Experimental Evaluation
	Impact of Partitioning
	Impact of Reductions
	Scaling Experiments
	Comparison with Previous Work

	Discussion
	Conclusion
	Future Work

	Reduction Order
	Bibliography

