

Transport along grain boundaries through alumina investigated by atom probe tomography

Torben Boll*, Kinga A. Unocic, Bruce A. Pint, Krystyna Stiller

Atom Probe Tomography: Zr at a grain boudary in Al_2O_3 , Each dot represents one atom, Al and O atoms are not displayed

CHALMERS

TEM of typical oxide on NiAl

- Protective Al₂O₃ coating on NiAl-alloy
- O (and all other elements) in α-alumina diffuse mostly via grain boundaries (GBs)
- Minor outward diffusion of metal
- Decoration of GBs will influence the diffusion and thus oxidation
- Apparently grows inwards

Material	Ni	Al	Zr	Hf	N	С	Sxx	0	В	Cr
	at.%	at.%	ррта							
Zr-doped	49.95	49.99	520	0	0	0	3	48	30	0
Hf-doped	49.83	50.07	0	480	30	36	0	43	0	100

Outward diffusion: Exp. idea

a) After 1st exposure

CHALMERS

TEM of mech. pol. Hf sample

- No Ga contamination
- GB enriched with Hf and some Ni

CHALMERS

TEM of Zr sample

• Zr enriched at the GB

How to calculate the flux

- Calculate the flux
 - Number of diffused Al-atoms N_{GB}^{Al}
 - Exposure time Δt (10h)
 - Calculate number of atoms
 - Volume of ridge $V^{Al} = A^{Al} L_{GB}$
 - Length of GB L_{GB} (not height!)
 - Cross section area of ridge A^{Al}
 - Volume of Al_2O_3 unit cell: V_u =2.54 10⁻²² cm³
 - Number of AI atoms per unit cell: 12

$$N_{GB}^{Al} = \frac{12 V^{Al}}{V_u} \qquad J_{Al} = \frac{12 A^{Al}}{V_u}$$

 $J_{Al} = \frac{N_{GB}^{Al}}{L_{GB}\Delta t}$

Flux of Al through GBs at 1100°

Flux of AI through GBs at 1100°

- Mech. polishing enhances ridge growth
- Zr allows higher outward flux than Hf
- Inward flux six orders of magnitude larger

Should follow Fick's 1. law (assuming h_{oxide} is constant) $J_{GB}^{Al} = -\frac{A}{h_{oxide}}$

APT of Hf sample

APT of Zr sample

20 nm

- Protective Ag on top of ridge-GB
- No Ni found
- Γ_{Zr} : 2.5 nm⁻²

Outward flux of Ni, Hf, Zr

Outward flux of Ni, Hf, Cr

Conclusions

CHALMERS

- Outward Diffusion of AI along Al₂O₃ GBs is observed by STEM Mechanical polishing introduces defects that promote diffusion
 - Hf reduces Al-outward diffusion stronger than Zr
- Zr is enriched at GBs \rightarrow Outward diffusion of Zr, Hf
- Hf is enriched at GBs
- Ni is found at the GB and at the top of the ridge in the Hf sample
 → Outward diffusion of Ni
- $J_{\rm O} \sim 10^6 \,\mathrm{nm^{-1}s^{-1}} >> J_{\rm Al} \sim 1 \,\mathrm{nm^{-1}s^{-1}} >> J_{\rm Hf,Ni,Zr} \sim 10^{-3} \,\mathrm{nm^{-1}s^{-1}}$

Thank you for your attention

You also want APT results: knmf.kit.edu, or contact me KNMF grants APT time to suitable projects

> Acknowledgements For help with 2nd exposure and sputter coating: Patrik Alnegren