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Abstract

Gathering and processing events from cyber-physical systems provides users with
the opportunity to continuously be aware of current performance indicators and
potentially upcoming issues (situational awareness) as well as to optimize maintenance
processes based on the current condition of machines or other equipment (condition-
based maintenance). Due to the large volume and variety of data and, in addition, the
demand for real-time analysis, these scenarios require appropriate technologies. In
this context, Event Processing has become an established technology to process event
streams in real-time while providing capabilities to detect event patterns based on
spatial, temporal or causal relationships.
In contrast, today’s available systems still suffer from high technical complexity in
terms of their underlying declarative languages. On the one hand, such systems re-
quire deep technical knowledge of event processing systems, making the development
of real-time applications a time-consuming task due to slow development cycles. On
the other hand, event processing applications are often highly dynamic in regard to
oftentimes changing requirements of observed situations as well as frequent syntactic
and semantic changes of incoming sensor data.
The main contribution of this thesis enables application specialists to define, modify
and execute event processing applications in a self-service manner by abstracting from
underlying technical details in form of so-called real-time processing pipelines. The
contributions of this thesis are summarized as follows:

1. A methodology supporting the development of real-time applications under
special consideration of extensibility and accessibility for application specialists.

2. Models to semantically describe characteristics of event producers, event pro-
cessing agents and event consumers.

3. A system to execute processing pipelines consisting of geographically distributed
event processing components.

4. A software artifact that supports graphical modeling of processing pipelines
and automatic pipeline execution.

These contributions are introduced, applied and evaluated based on multiple scenarios
from two application domains, manufacturing and logistics.
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1
Introduction

The term Internet of Things (IoT) defines a vision of a global infrastructure of physical
and virtual devices which communicate based on standard web protocols [Vermesan
and Friess 2014]. Typical IoT applications are often built on top of platforms providing
capabilities to integrate a large variety of hardware- or software-based sensors and
actuators in order to provide insights, derive situations and to trigger actions.
In industrial settings, the Industrial Internet of Things (IIOT) is an emerging paradigm
focusing on integration of data continuously gathered from industrial processes, their
correlation and analysis in order to (automatically) react on expected or unexpected
situations. A good example to describe benefits of IIOT applications is the manufactur-
ing domain. Production processes often involve a large number of different production
machines, human workers and transportation systems as intermediaries between ma-
chines performing parts of the production process. Common goals in these use cases
include optimized usage of resources and to achieve minimal production downtimes
by avoiding unexpected failures. Recently, continuous monitoring of machine data in
real-time has led to novel methods such as Condition-based Maintenance (CBM) [Jardine
et al. 2006]. In CBM, machine maintenance is not longer scheduled at fixed intervals,
but triggered in case of predicted breakdowns calculated through continuous analysis
of any kind of sensor data which is known to have potential influence on machine
performance. While in the past Manufacturing Execution Systems (MES) were often
operated in an isolated way disconnected from other machines involved in the same
production process, IIOT applications are able to further improve maintenance inter-
vals by also taking into account dependencies between systems which are not directly
connected. For instance, planned maintenance of two machines can be aligned in
order to reduce downtime.
From a technology perspective, systems supporting such use cases need to gather and
integrate data from multiple sources in a continuous manner, and perform operations
(e.g., transformations and analyses) on these data streams in order to detect situations
of interest, e.g., specific states in the system indicating a real-world problem which
could affect the observed object of interest.
Event Processing Systems (EPS) have established themselves as technology drivers
for processing of real-time data by applying declarative rules (e.g., in form of event
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patterns) on a continuous stream of incoming events in order to detect situations with
minimal delay. In this context, events are defined as occurrences within a particular
system [Etzion and Niblett 2010]. Event processing is based on the Event-driven
architecture (EDA) paradigm. EDA is a software architecture style defined by the
following five principles: Event reporting (notifications of particular occurrences within
a domain of interest), push notifications (events are pushed to interested consumers
instead of requesting them), immediate responsiveness (consumers automatically react
upon the occurrence of an event), one-way communication (events are sent in a fire-and-
forget style) and freedom of commands (events do not contain information on operations
that should be performed on it) [Chandy and Schulte 2009].
Event Processing provides methods to transform input event streams to output streams
by implementing an event processing network which defines a set of filtering or trans-
formation components called Event Processing Agents (EPA) and the routing between
EPAs through the network. One of the main advantages of EP is its capability for
event-at-a-time operations which enables systems to detect sequences of events as well
as co-occurrences between events in a continuous fashion. Moreover, implementations
of event processing networks are not hard-coded in a typical software engineering
process, but make use of declarative (e.g., SQL-based) languages which contain the
application logic. This logic is then translated into an executable event processing
network specific to the actual technology used.
As EDA and, in particular, event processing systems work well in geographically
distributed systems, they are a good fit as technology foundations for (I)IoT applica-
tions that demand for real-time data processing and immediate situation detection.
However, a particular drawback of today’s existing solutions for event processing
is its accessibility for application specialists: While requirements for specific event
processing applications are generated by domain experts such as business analysts,
their implementation still remains a rather technical process requiring for develop-
ment skills and deep knowledge of event-based applications. This circumstance not
only slows down development processes of real-time applications, it also hinders
event processing technologies from wider adoption in emerging application areas
such as IIOT applications. Moreover, it can be shown that many use cases requiring
for real-time processing do not rely on static programs which can be left untouched
for a long time, but need to be adapted frequently in order to reflect new requirements
and business needs.
This problem is further strengthened due to a lack of standards for event processing
languages and representations for events leading to heterogeneous data formats, com-
munication protocols and run-time implementations which cannot be easily connected.
Especially for distributed application scenarios building upon concepts such as mar-
ketplaces where application specialists are able to create event processing applications in
a self-service manner by combining data sources, transformations and consumers (also
described as sinks) offered by different providers, this problem remains a challenge.
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While similar problems have already been investigated in areas following the re-
quest/response interaction style like Service-Oriented Architectures (SOA) resulting
in solutions for (semi-) automatic web service composition (e.g., Semantic Web Ser-
vices) and Workflow Management, solutions for (complex) event processing following
the EDA paradigm are still missing.
This thesis develops a novel methodology targeting the development process of event
processing applications applicable to distributed application scenarios such as the
IoT. Furthermore, we provide models to semantically describe event producers, event
processing logic and event consumers in a higher-level way independent from their
specific run-time implementation. These models are used to provide an integra-
tion layer which leverages business analysts to create event processing pipelines out
of heterogeneous systems without the need for deep technical knowledge of event
processing technology and by using a graphical modeling interface.

1.1 Research Questions
Our research aims to provide a novel methodology which allows application specialists
such as business analysts with little programming experience to quickly build event
processing pipelines, i.e., event processing applications which integrate distributed,
heterogeneous real-time processing logic, event producers and event consumers. The
main problem, the inability for application specialists to develop event processing
applications along with the need to provide ways for such users to be able to quickly
observe and get insights on ongoing problems and opportunities within their domain
of interest leads to the following principal research question:

How can we enable application specialists to define and modify distributed event
processing applications?

This research question poses three terms which require for further explanations:
Application specialists, event processing applications and distributed systems. First of all,
we target application specialists as the main role we aim to support in our research
as an audience which is not familiar with technical details of specific characteristics
of event-driven applications or even their technical implementation. Although this
role might often be confused with business analysts as experts within a domain of
interest, we use the term application specialists to strengthen the main purpose of our
research which tries to shift development-oriented tasks to more specialist-oriented
tasks. Roles and assigned tasks in our methodology are further detailed in chapter 6
where we introduce our methodology.
Second, event processing applications are systems following the event-driven archi-
tecture paradigm, which has a strong focus on push-based communication between
data producers and consumers in a very loosely coupled fashion. In section 2, we



6 1 Introduction

show that event processing applications usually implement an event processing network
consisting of a set of data transformation components. In section 3, we argue why
access for application specialists to stream processing applications is important due
to a strong focus on the generation of real-time insights, which also implies short
intervals from requirements elicitation to a deployed and running application.
Finally, support for distributed systems is a mandatory requirement for solutions
targeting these problems. Opposed to event processing systems operating as single-
host systems, an open research question here is how stream processing applications in
geographically distributed settings can be built.
The principal research question itself can be broken down into four sub-questions,
whereas each question targets a different view or aspect of the main research question.

Research Question 1 (Development Process). How can we improve the development
process of event processing applications?

The first research question deals with the development process of event processing ap-
plications. Answering this question requires an investigation of today’s development
process for event processing and the roles involved. Therefore, we analyze typical tool
support available today ranging from pure programming-oriented models to graphi-
cal editors. Observations gathered from these tools are used to collect requirements
for a novel methodology. The main challenge of this research question is to keep
a high level of flexibility and expressivity provided by existing technologies, while
at the same time usability for non-development oriented roles such as application
specialists must be guaranteed.
This question is motivated in section 3.3.1 and answered in chapter 6.

Research Question 2 (Model). How can we model event processing blocks independent
from their specific run-time implementation?

Event processing blocks refer to the three main building blocks of event processing
networks, namely event producers, event processing agents and event consumers.
On the one hand, this question targets the development of a vocabulary providing a
high-level abstraction from event processing operators in order to achieve accessibility
for application specialists. On the other hand, technical details have to be included into
the vocabulary to ensure proper execution of event processing networks. Moreover, as
we specifically target scenarios such as the IoT, these models must include fine-grained
specifications of sensor properties (e.g., quality aspects) and be independent from
specific implementation details. The main challenge is to provide reusable models
which are specific enough to support event processing operators as well as custom
on-line analytics methods and ensuring extensibility, while at the same time general
enough to allow business analysts to instantiate them without developer support.
This question is motivated in section 3.3.1 and answered in chapter 7.
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Research Question 3 (Domain Knowledge). How can we separate domain knowledge
from the technical specification of event processing languages?

Domain knowledge refers to non-technical details which are part of the specification
of an event processing network. For instance, event pattern representations include
both technical details, such as event schema descriptions, as well as domain knowledge
such as threshold values. This makes even those modifications, which are only related
to the business logic of event processing networks, a time-consuming task. Therefore,
an approach is required to separate the definition of domain knowledge from the
specific technical implementation. The goal is to store and maintain knowledge apart
from technical details and automatically adapt affected event processing applications
once the knowledge base has been modified.
We further motivate this question in section 3.3.2 and answer it in chapter 7.

Research Question 4 (Execution). How can we author and execute event processing
pipelines consisting of heterogeneous processing blocks?

This question includes two aspects: The first part is related to the authoring of event
processing pipelines. This part aims at providing ways to build pipelines consisting
of multiple building blocks described using implementation-independent models in
a way which is acceptable for application specialists. The second part of this question
is how to execute such pipelines even though they are composed of heterogeneous
and geographically distributed run-time implementations.
This question is motivated in section 3.3.3 and answered in chapter 8.

1.2 Research Methodology
The research methodology of this thesis is based upon the design science paradigm.
Design science refers to a problem-solving process which aims to create and evaluate
IT artifacts intended to solve identified organizational problems [Hevner et al. 2004].
Artifacts in this sense may be software like implemented prototypes demonstrating
the solution the research was targeting at, but may also be models or formal logic.
Design science research relies on the principle that “knowledge and understanding of
a design problem are acquired in the building and application of an artifact”. Thus,
Henver et. al. have proposed guidelines which should be addressed in research
relying on the design science paradigm, namely Design as an Artifact (G1), Problem
Relevance (G2), Design Evaluation (G3), Research Contributions (G4), Research Rigor (G5),
Design as a Search Process (G6) and Communication of Research (G7).
The main artifact developed within the course of this thesis is a novel methodology
for the development and management of stream processing applications. This arti-
fact has also been instantiated in a software toolkit called StreamPipes [Riemer et al.
2015] which covers all phases and tasks our methodology is built upon (G1). This
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methodology is built upon a specific organizational problem that has been identified
as the non-accessibility of stream processing applications for application specialists
such as business analysts. In chapter 3, we focus on problem relevance (G2) by further
elaborating on the specific problem, and, even more important, by showing the need
to solve this problem. Design evaluation (G3) is done in the end of this thesis by
presenting multiple evaluations we performed to gain insights on the performance of
our solution, model completeness and consistency as well as usability. Therefore, the
main research contributions (G4) of this thesis are the methodology and a prototype
system we developed as the artifact itself. Guidelines G5 and G6 have been imple-
mented by presenting foundations presented in chapter 2, a requirements collection
and a discussion of related work in chapters 4 and 5 as well as the presentation of
evaluation results in chapter 9. The main contributions of this research have already
been communicated to technical-oriented audiences at various outlets presented in
more detail later in this section (G7).

1.3 Contributions
This research has led to several contributions along the research questions identified
and detailed in section 1.1.

• (C1) Methodology. We present a novel methodology supporting the devel-
opment of stream processing applications. It consists of two phases, the first
one named setup phase targeted at software developers and the second one
named execution phase targeted at business analysts and pattern engineers
(further detailed in section 6.4). The goal of the setup phase is the development
of reusable stream processing logic along with a semantic description specifying
input requirements, generated output and required static data such as user input
or required external knowledge. This description is used within the execution
phase to assist application specialists in defining event processing pipelines out
of the main event processing building blocks event producers, event processing
agents and event consumers. This contribution is related to research question 1.

• (C2) Models. Besides the methodology, we have developed vocabularies and
models to describe event producers, event streams, event processing agents and
background knowledge. These models are designed to support characteristics
of heterogeneous data sources (e.g., text-based streams and sensor data streams),
but specifically focuses on fine-granular description of sensor-based streams,
e.g., by providing sensor-specific capabilities to define quality aspects such as
frequency and accuracy. Models additionally support the description of event
processing logic as a higher-level abstraction based on input requirements, ab-
stract output type and required static data. The models have been defined in RDF
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ensuring interoperability between heterogeneous run-time implementations.
This contribution is related to research questions 2 and 3.

• (C3) System. We provide a system to define and execute stream processing
pipelines in a distributed manner. This contribution targets distributed applica-
tion scenarios such as IoT platforms and marketplaces and includes a reference
architecture to build stream processing pipelines for users with little program-
ming skills. This contribution is mainly related to research question 4.

• (C4) Software Artifact. The conceptual contributions C1-C3 have been imple-
mented as a software artifact. To demonstrate feasibility and applicability of
our approach for evaluation purposes, we provide software tooling covering all
phases and tasks of our methodologies. This includes run-time wrappers ab-
stracting from data models, formats and protocols for different event processing
engines demonstrating the ability of our approach to combine heterogeneous
run-time implementations, and an application programming interface (API)
to describe stream processing logic according to our models without required
knowledge of semantic web technologies. In addition, we provide a web-based
authoring tool for the definition of event processing pipelines, a model editor
and code generation module supporting the extension of our system at runtime
and an integration layer for semantics-based matching of stream requirements
and capabilities between event processing building blocks and execution man-
agement.

1.4 Research Projects and Publications
The outcome of the research presented in this thesis is the result of our work in several
European and German-funded research projects. Our methodology and its design
have been presented in various publications, while software demonstrations of our
prototype have been given at several conferences.

ALERT (Active Support and Real-Time Coordination based on Event Processing in FLOSS
development, 08/2011-05/2013, EU-STREP)

The goal of the ALERT project was to provide a platform which improves the collabora-
tion of software developers in medium and large-scale software development projects.
ALERT followed the idea of integrating different tools supporting the whole software
development life cycle such as issue trackers (e.g., Jira), source code management
systems (e.g., Subversion), wikis (e.g., Mediawiki). On top of real-time sensors that
were deployed in those systems, we developed an event processing infrastructure
which allows users to define a complex event pattern that matches their interest by
using a graphical modeling tool. For instance, developers could create notification if
a bug they were assigned to was reopened within a specific time period after it was



10 1 Introduction

closed together with frequent activity in an online forum covering technical aspects
of this bug.
In ALERT, we discovered the need for an approach as described in this thesis and
performed first experiments with a higher-level language for event processing systems.
We further analyzed the need of non-technical users to define situations of interest in an
ad-hoc manner. In addition, we developed the conceptual model for a transformation
module that is able to translate event patterns modeled in a graphical editor into a
logic-based event processing engine (ETALIS).
Publications

• Dominik Riemer, Ljiljana Stojanovic, Nenad Stojanovic. Using Complex Event
Processing for Modeling Semantic Requests in Real-Time Social Media Mon-
itoring. Sixth International AAAI Conference on Weblogs and Social Media
(ICWSM). 2012, Dublin, Ireland. (see [Riemer et al. 2012]).

• Ljiljana Stojanovic, Sinan Sen, Jun Ma, Dominik Riemer. ALERT: Semantic
Event-Driven Collaborative Platform for Software Development. Proceed-
ings of the 6th International Conference on Distributed Event-Based Systems.
2012, Berlin, Germany. (see [Stojanovic et al. 2012]).

• Dominik Riemer, Ljiljana Stojanovic, Nenad Stojanovic. Demo: ALERT: Real-
Time Coordination in Open Source Software Development. Proceedings of
the 7th International Conference on Distributed Event-Based Systems (DEBS).
2013, Arlington, Texas, USA. (see [Riemer et al. 2013a]).

Reflex (Reinforcing FLEXibility of SMEs by Dynamic Business Process Management, 08/2011
- 03/2013, EU-SME)

In Reflex, we were working on an architecture for adaptive business process manage-
ment in the logistics domain. Despite further collecting requirements for application
specialist-oriented access to event processing applications, our work in Reflex has
also influenced the development of our event model related to the representation of
geographically-enriched sensor data.
Publications

• Babis Magoutas, Dominik Riemer, Dimitris Apostolou, Jun Ma, Gregoris Mentzas,
Nenad Stojanovic. An Event-Driven System for Business Awareness Manage-
ment in the Logistics Domain. Business Process Management Workshops,
Springer Berlin Heidelberg, 2013. (see [Magoutas et al. 2013]).

ProaSense (The Proactive Sensing Enterprise, 11/2013-01/2017, EU-STREP)

The main parts of this thesis have been developed within the ProaSense project. The
overall goal of ProaSense was to develop a system for proactive monitoring and
detection of failures within industrial manufacturing processes. In ProaSense, the
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methodology presented in this thesis has been conceptually designed, implemented
and evaluated.
Publications

• Dominik Riemer, Nenad Stojanovic, Ljiljana Stojanovic. A Methodology for
Designing Events and Patterns in Fast Data Processing. Proceedings of the
25th Conference on Advanced Information Systems Engineering (CAiSE). 2013,
Valencia, Spain. (see [Riemer et al. 2013b]).

• Dominik Riemer, Ljiljana Stojanovic, Nenad Stojanovic. SEPP: Semantics-based
Management of Fast Data Streams. Proceedings of the 7th IEEE International
Conference on Service-Oriented Computing and Applications (SOCA). 2014,
Matsue, Japan. (see [Riemer et al. 2014]).

• Dominik Riemer, Florian Kaulfersch, Robin Hutmacher, Ljiljana Stojanovic.
StreamPipes: Solving the DEBS Challenge with Semantic Stream Processing
Pipelines. Proceedings of the 9th International Conference on Distributed Event-
Based Systems (DEBS). 2015, Oslo, Norway. (see [Riemer et al. 2015]).

1.5 Structure of the Thesis
This thesis is structured as illustrated in figure 1.1. First, we describe basic founda-
tions in the field of event processing by discussing relevant terms, architectures and
technologies. Section 3 motivates our research by presenting two motivating scenarios
which illustrate challenges this thesis targets. These scenarios are then used to formu-
late a problem statement. Section 4 discusses previous work on design-time issues of
event processing systems as well as other related areas with similar problems such as
workflow management. Motivation, identified problems and related work are then
used to perform a requirements elicitation process in 5. Afterwards, in section 6, we
introduce our methodology targeted at providing access for application specialists to
event processing applications. This methodology, consisting of two phases, is further
detailed in section 7 by presenting a semantics-based model for the representation of
streams, event processing agents and event consumers, followed by a model for the
definition and execution of stream processing pipelines in section 8. Section 9 presents
evaluation results, which is followed by a conclusion and an outlook for future work.
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2
Foundations

This chapter introduces the foundations of this thesis. We start with explaining basics
in the area of Information Flow Processing. We further elaborate on the notion of Events
and Event Processing as the main field this thesis is built upon.
The main content of this thesis is based in the field of Real-Time Data Processing.
Real-time data processing refers to systems that are able to process data immediately
as it arrives. In this context, it is important to define the scope of the notion of real-time.
In contrast to hard real-time systems where data must be processed within the scope
of a given time guarantee, near real-time (or also business real-time) systems are
designed to process data as soon as possible with small latency, but without certain
processing guarantees [Luckham 2011].

2.1 Information Flow Processing
Systems for Real-Time Data Processing originate from the area of Information Flow
Processing (IFP). Such systems have their origin in early systems for discrete event
simulation. In general, IFP subsumes tools which are capable of timely processing of
large amounts of information as it flows through the system [Cugola and Margara
2012]. The two main building blocks of IFPs mentioned here are timeliness and flow
processing. Timeliness refers to the notion of near real-time and expects an IFP system to
immediately detect any information that is being observed by the system immediately
after occurrence. The term flow processing characterizes IFPs by the continuous
analysis of data in contrast to other systems like databases where queries are triggered
upon the request of a user.
IFPs can be further categorized into a set of different technologies, namely Active
Databases, Data Stream Management Systems, Publish/Subscribe and Complex Event Pro-
cessing [Andrade et al. 2014].
One of the first approaches to bring real-time awareness to business-level software
were active databases [McCarthy and Dayal 1989]. Such systems are usually built as
extensions on top of traditional databases and provide capabilities to react on specified
conditions of database states. Usually, such systems implement the Event-Condition-
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Action (ECA) paradigm [Paton and Diaz 1999] by capturing events from a database,
checking for a condition that has been specified in advance and executing a certain
action. While such systems were already able to detect Situations of Interest (SoI)
in a timely manner, they do not target use cases that include very high volumes of
real-time data as in today’s IoT scenarios and were not primarily designed to perform
stateful operations, e.g., detection of sequences on event streams by applying sliding
windows.
In contrast to active databases, Data Stream Management Systems (DSMSs) go one
step further and operate on unbounded event streams. Streams are considered an
unbounded sequence of form of so-called events, usually ordered by time. A DSMS
expects a query as an input and runs this query in a continuous manner until it is
(manually) stopped [Babcock et al. 2002]. Incoming data is matched against such
a Continuous Query (CQ). In general, DSMS work like a database from an upside-
down view: While databases perform rather dynamic queries against a more static
dataset, DSMS run static queries against dynamic event streams [Cugola and Margara
2012]. Typical DSMS scenarios often include monitoring tasks where users are actively
notified (also in form of event streams) once the situation specified in the CQ can be
found in the incoming data stream.
The next technology area in the field of IFPs are publish/subscribe systems. Such
systems implement a loosely coupled, asynchronous architectural design which relies
on the following components: A message publisher, a message-oriented middle-
ware (typically a message broker) and a message subscriber. Publishers push data
asynchronous in a fire-and-forget manner to the middleware. Depending on the ar-
chitecture, subscribers can express their interest in a specific event by means of either
an event channel, where streams are published to a specific topic that usually groups
events of a similar type (topic-based publish/subscribe) or by means of a condition
such as filter rules which are directly applied on each incoming event (content-based
publish/subscribe) [Eugster et al. 2003]. Many publish/subscribe systems additionally
support topic hierarchies enabling systems to subscribe to a more general topic and
receive all subtopics that are leafs of the topic hierarchy.
Finally, the (Complex) Event Processing (CEP) paradigm has become a popular tech-
nology within the last years. CEP relies on many foundations from DSMS and pub-
lish/subscribe systems and extend these with more advanced operators to define
event patterns in form of detecting sequences or correlations between single events in
order to create derived events [Andrade et al. 2014]. CEP systems also make a strong
focus on the occurrence time of events by providing mechanisms to correlate events
based on sliding data windows.
In the following sections, we introduce the term Event Processing in more detail and
elaborate on characteristics and implementation details of event processing systems.
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2.2 Events
In real-time data processing, we often face the notion of an event. The term event in
the context of real-time data processing was first introduced by Luckham who defines
an event as being the record of an activity in a system [Luckham 2002]. In this sense,
we consider an event as something that occurs after an activity in any kind of system
has happened. We will later see that a system in this definition can be anything that
is being able to generate an event, e.g. a software system that receives orders from an
web shop or a hardware sensor that measures air humidity.
Another definition of the term event is given by Etzion who defines an event as follows
[Etzion and Niblett 2010]:

An event is an occurrence within a particular system or domain; it is
something that has happened or is contemplated as having happened in
that domain.

The main difference to Luckham’s event definition is a slightly broader view on an
event occurrence. Etzion does not only consider anything that has happened within
a system (which is closely related to Luckham’s record of an activity) as an event, but
also includes things that are contemplated as having happened in his definition. This
allows to cover the practical fact that most event processing systems may also detect
events which must later be recognized as false positives, which Etzion explains by
the means of a fraud detection system producing irrelevant fraud events [Etzion and
Niblett 2010].
Now as we have defined the general notion of an event, we elaborate on the characteristics
of events. According to Luckham, events are mainly defined by three aspects [Luckham
2002]:

• Form requires that an event contains at least a set of data components.
• Significance requires that an event signifies the activity it is related to
• Relativity requires an event to be related (e.g., by time or causality) to another

event of a system.
As an example, we consider an event that is produced by a Global Positioning Service
(GPS) sensor to submit current vehicle positions. The form of such an event typically
includes data components like the actual encoded geospatial coordinates and a vehicle
identifier. Its significance is determined by the activity of a new coordinate that the
sensor has acquired. Finally, the relativity of such an event is often characterized by
the time of this event which assigns the coordinates to a specific time at which the
value has been measured.
These requirements also clearly distinguish an event from a simple message, which also
may have a form similar to an event but may be missing the two other characteristics,
significance and relativity [Luckham 2002].
Finally, we elaborate on the representation of events. As we assume that most events
relevant in the scope of event processing systems have to be processed by an IT system
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to gather any new insights from the raw event, events need to be represented in a
machine-readable form. This includes the structure of an event as well as the actual
data format. In order to describe the structure, the main building blocks of an event
are event objects, event types and event attributes [Etzion and Niblett 2010].
First, Event objects are considered the representation of an event occurrence. A set of
event objects with the same structure and semantics specify an event type. Each event
object has a set of data components which include the data that is part of the event
payload. These data components are called event attributes.
In this context, we may often also find the term event instance as a synonym for event
object and event property as a synonym for event attribute.
Many event processing systems available today allow to define an event instance based
on the following structure, as also described by Etzion: An event instance consists of
a header, a payload and eventually some additional open content.
Figure 2.1 illustrates an example event representation. Header attributes are com-
monly referred to as specifications that contain meta-information about the event. An
important header attribute is usually the occurrence time of an event, but may include
other attributes such as event certainty, a type specification or further information
about the source that produces the event instance. Event payload focuses on the
data components which signify the corresponding activity. Typically, the event type
specifies a fixed set of event attributes for all event instances of this type. Payload
definitions usually include the name of an event attribute as well as the data type
(which in most cases must at least contain a primitive data type specification). Last, the
open content part may contain more information on the event instance in a potentially
arbitrary format.

Event Type

Header

timestamp : long

Payload

vehicleId : string
latitude : double
longitude : double

Open Content

Event Object

Header

timestamp : 1453478150

Payload

vehicleId : HHUW4
latitude : 35.685
longitude : 139.75138

Open Content

Event Representation (JSON)

Event Attribute

{
‘header’ : 

{
‘timestamp’ : 1453478150

}
‘payload’ : 

{
‘vehicleId’ : ‘HHUW4’,
‘latitude’  : 35.685,
‘longitude’ : 139.75138

}
}

Figure 2.1 Event Representation: Example
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In terms of the data format, the representation of an event depends on the actual
implementation that is used for event processing. In many cases, events are repre-
sented in standard data formats such as programming language-specific (e.g., Java’s
Plain Old Java Objects (POJOs)) or interchangeable formats (e.g., Extensible Markup
Language (XML)1 or JavaScript Object Notation (JSON)2) .

2.3 Event Processing
Event processing is about performing operations on events [Luckham 2002]. Opera-
tions in event processing might include reading, creating, transforming and deleting
events [Etzion and Niblett 2010]. It is noteworthy that events in event processing are
typically considered as immutable [Luckham and Schulte 2011]. According to our
definition of the term event above, where an event is defined as something that has
happened and therefore cannot being made unhappened, deleting events is often
referred to removing events from a stream in form of a filtering operation. During the
last years, event processing has gained considerable attraction in both research and
practice. This has led to quite a large variety of different terms, which, besides event
processing are mainly Stream Processing, Complex Event Processing or Event Stream Pro-
cessing. For instance, some authors distinguish between Stream Processing and Complex
Event Processing in the form that the first is focused more on stateless operations (one
event at a time is transformed without taking into account other events) on event
streams with very high throughput and the latter setting a focus on fine-grained,
stateful operations (other events are kept in memory) on streams in order to find (time
and causal) correlations [Bruns and Dunkel 2010]. On the other hand, conceptual
models such as the Event Processing Network which is described in more detail below,
define a complete set of abstract processing agents subsuming stateless and stateful
operators. Therefore, in this thesis we will consequently use the term Event Processing
to subsume all technologies that are able to a) focus on the processing of unbounded
data streams, b) provide a high-level API or Domain-Specific Language (DSL) which
implement one or more specific event processing agents and c) provide a runtime
implementation which performs operations on events as defined by Etzion [Etzion
and Niblett 2010].
In the following section, we further explain structure and scope of event processing
networks.

2.3.1 Event Processing Network
The architecture of event processing systems can be described as an Event Processing
Network (EPN). An EPN consists of three main components, namely Event Producer
1 https://www.w3.org/XML/
2 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

https://www.w3.org/XML/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
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(EP), Event Processing Agent (EPA) and Event Consumer (EC) as well as a fourth compo-
nent Event Channel, which acts as an intermediary element between some of the three
main components. An EPN defines an event processing application by describing the
flow of an event stream from an event producer to an event consumer as well as any
intermediate processing tasks which transform the input event stream to an output
event stream. An EPN might consist of an arbitrary number of event producers, event
channels, event processing agents and event consumers and can contain feedback
loops, so that the output of an EPA can be the input of a preceding EPA. An EPN can
be formally defined as a graph [Sharon and Etzion 2007]. Event processing systems
typically implement EPNs in form of rule-based languages, imperative programming
languages or stream-oriented languages similar to database query languages [Etzion
and Niblett 2010].
Figure 2.2 illustrates a simple EPN which is further explained in the following sections.

Event 
Producer

Event 
Consumer

Event 
Processing 
Agent

EP

EP

EPA

EPA

EPA

Event 
Channel

EC

EC

EC

EC

EC

EC

EC

EC

Figure 2.2 Event Processing Network

Event Producer (EP)

An EP acts as a source of an event processing system and therefore pushes data into
the system. It is often related to some real-world entity such as a hardware sensor and
can produce one or more event streams. Producers observe the system they belong
to in an non-invasive manner so that the system itself is not being changed but can
be observed for the occurrence of an event of interest [Luckham 2002]. Additionally,
producers adapt the observed events and transform them into a machine-readable
format which can be processed by the event channels and processing agents.
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Examples for event producers include software applications (e.g., order management
systems), processes (e.g., workflow management systems) or sensors (e.g., mobile
phone sensors). Etzion categorizes different types of event producers by hardware,
human interaction and software [Etzion and Niblett 2010]. In this categorization,
human interaction refers to events that are manually generated by humans, such as
mobile terminals in factories which expect scrap information to be entered by factory
workers or security systems which expect biometric data for access control.

Event Channel

The next building block of event processing networks are event channels. The main
purpose of event channels is to receive events from an EP or EPA, to make routing
decisions and to forward events to another main component of the EPN.
At a first glimpse, it may appear non-intuitive that channels are modeled as blocks in
an EPN architecture (and not as an arrow as the name channel may suggest). How-
ever, channels often have their own logic: Quality of Service (QoS) attributes such as
security considerations (which roles are allowed to access a specific topic), encryp-
tion of streams, filters (content-based publish/subscribe) or performance restrictions
therefore justify the modeling of channels itself as blocks.
In real-world systems, channels are usually implemented by using a message-oriented
middleware which supports the publish/subscribe pattern. In this case, events are
published to the middleware, where they are forwarded to the succeeding components
of the EPN. In some settings it might be feasible that all event channels of an EPN use
a single event broker. However, especially in highly distributed application scenarios
such as the IoT where components have to communicate via different publish/sub-
scribe protocols, event channels can rely on heterogeneous channel implementations.

Event Processing Agent (EPA)

EPAs are the central concept of an EPN. Processing agents perform the actual real-time
processing logic by transforming input event streams to output streams according to
their specific type. In this section, we introduce the conceptual model and a hierar-
chy of event processing agents from the literature which is illustrated in figure 2.3.
The section thereafter shows how this model can be implemented in different event
processing systems.
In general, EPAs perform operations which can either be stateless (as only a single
event is used to perform the operation) or stateful (as more than one event is used in
order to produce the output) [Etzion and Niblett 2010].
The most basic EPA type is the Filter EPA. Filtering does not transform an event (as
the event type of the output is equal to the input event type), but outputs a subset of
the incoming event stream. According to Etzion, a Filter EPA may have several output
terminals, e.g., in order to output a result stream which contains the events filtered
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Event 
Processing 
Agent

Filter Transformation Pattern Detect

Translate Aggregate Split Compose

Enrich Project

Figure 2.3 Hierarchy of Event Processing Agents

by the filter expression, another output stream which includes all events that did not
match the filter expression and a third output stream providing events where the filter
expression could not be applied upon. A valid specification of a filter EPA does not
require to offer all output terminals.
Transformation EPAs denote a class of processing agents which, in contrast to pure
filtering, perform an operation that also changes the type of the input event stream.
Generally speaking, a transformation derives an output event from one or more input
events. This class subsumes the EPAs as follows:

• Translate EPAs expect a single input event and derive an output event by ap-
plying a derivation formula. Therefore, the output event type differs from the
input event type. For instance, an EPA which transforms a vehicle position event
that provides the geospatial vehicle position as latitude/longitude coordinates
to another position event which represents the same position using another
coordinate system is considered a transformation EPA. Two special cases of
translate EPAs exist: First, an Enrich EPA extends an input event with one or
more additional event attributes (e.g., extending the vehicle position event with
an additional attribute city which is being derived by a reverse geocoding func-
tion). Additional properties are often derived from global state elements, which
perform a (e.g., database) function on static data sources by providing an at-
tribute from the input event as a function parameter (e.g., an event property that
identifies a machine which is used to enrich the event with additional machine
parameters). Project EPAs operate the other way around and therefore remove
an event attribute from the input event stream, so that the output event contains
only a subset of the input event properties.
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• Aggregate EPAs operate in a stateful fashion. The input is a set of events, which
are temporarily stored in the EPA, often in form of sliding windows. A function
is applied in order to calculate aggregated values based on the input events.
As an example, we consider an event which measures the oil temperature of a
machine. A component which measures the average oil temperature during the
last 5 minutes is considered an Aggregate EPA.

• Split EPA. Sometimes it is required to split an event stream in order to route
events to multiple successors which perform different operations. In this case,
a single input event is being duplicated by a Split EPA so that a collection of
output events is produced. Output events are then routed to different desti-
nations. An example use case is an EPN which observes and aggregates oil
temperature values as explained above. Usually, such monitoring EPNs are used
for two purposes: One the one hand, the aggregated values are filtered against a
threshold value which could trigger a notification in case that high temperature
values occur in a machine. On the other hand, such data often needs to be stored
in storage components such as databases in order to prepare data for off-line
analysis. Such use cases can be implemented with the help of Split EPAs.

• Finally, Compose EPAs require a collection of events as input and produce a
single derived event as an output. Such an operation is similar to join operations
known from database query languages. Compose EPAs can either compose a
new output event based on the last event from each input stream, or they can
provide a matching operator which allows to define restrictions on the input
events that should be combined.

Pattern Detect EPAs provide operators to detect more advanced situations in event
streams. We already mentioned that occurrence time is an important concept in event
processing systems. Pattern Detection makes strong use of event time by taking into
account the sequence of an event in the stream and is seen as one of the most important
benefits of event processing. In order to explain the function of a Pattern Detect EPA,
we start with defining the notion of pattern. For a complete specification of event
patterns, we refer to the literature [Etzion and Niblett 2010].
In general, a pattern in event processing is defined as a template which specifies a
combination of events. At runtime, this template is matched against the event stream
and outputs an event once the template satisfies the event sequence.
According to Etzion, Pattern Detect EPAs can be divided into basic patterns and
dimensional patterns. Basic patterns implement basic operations on event types
or on a set of event types. This category includes logical patterns, threshold patterns,
subset selection patterns and modal patterns. Logical patterns define a template where
a specific set of event must occur together, e.g., within a certain time. Threshold
patterns additionally include an aggregation of event occurrences, which can be used,
for instance, to detect at least a minimum count of events of the same type within a
certain time. Subset patterns define a class of patterns where the template specifies
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a set of output events which must be inferred from the input stream (e.g., the top-k
highest temperature values of a machine during one hour) . Finally, modal patterns
require that a given assertion is valid for all events in the event set of interest. The
always pattern which detects a set of events where all events in the set satisfy a given
assertion is an example from this group.
In contrast, dimensional patterns focus on the occurrence time or other dimensions
of events. These include, besides temporal aspects, spatial aspects or a combination of
both.
A frequently used example pattern which makes strong use of temporal aspects is the
sequence pattern. This pattern detects a sequence of events, which can be defined in a
fine-granular manner by not only taking into account the order of event occurrences,
but also the exact time which elapses between two or more events in the participant
set. Examples for spatial patterns include geospatial operations on location-based
events. For instance, geospatial patterns can be used to perform advanced geofencing
operations in order to detect when a location-based event arrives within a given
geographical area.
Although this list of pattern detection EPAs cannot be considered complete and is
likely to be extended with other dimensions or subtypes, an event processing operation
can usually be assigned to one of the top-level EPAs as defined by Sharon and Etzion
[Sharon and Etzion 2007].

Event Consumer (EC)

ECs represent sinks in event processing networks. ECs receive events from its prede-
cessors in the event processing network and include application logic which decides
about the intended actions that should be invoked after an event has been received.
An EC can perform a wide variety of different subsequent operations, whereas a
high-level categorization can be given in the same way as event producers: Hardware
event consumers often implement actuators which directly invoke a specific action
of a hardware device. For instance, a situation detected by the event processing net-
work (e.g., high oil pressure values observed over some time period) might require
to automatically open a valve in the corresponding machine. Human interaction
consumers represent a class of event consumers which require any human interaction,
this category mainly involves the generation of alerts, notifications or visualizations in
form of dashboard tools, which, depending on the consumer implementation, might
also include semi-automatic decision-making support. Finally, software consumers
interact with and manipulate software systems. A typical use case in this category is
the interaction with business processes, so that event consumers might automatically
invoke web services in order to trigger business processes.
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2.3.2 Event Processing Systems
Now after having presented the conceptual model behind the event processing
paradigm, we introduce some characteristics of existing Event Processing Systems
(EPSs) from a more implementation-oriented point of view. Although many EPSs
originate from financial application domains being the main technology driver for
real-time situation detection tasks (e.g., fraud detection and algorithmic trading),
event processing has already been applied in heterogeneous application scenarios
such as logistics [Metzke et al. 2013], manufacturing [Bousdekis et al. 2015], social
media monitoring and marketing [Riemer et al. 2012], early news and topic detection
[Osborne et al. 2014] or even earthquake prediction [Olson et al. 2011]. Therefore,
many existing systems today are generic enough to support a wide variety of use
cases and major software companies like Oracle3, SAP4, Microsoft5 or Software AG6

have brought event processing products to the market7.
Besides industrial solutions, a number of open-source event processing systems ex-
ist, for instance, Esper 8, Etalis [Anicic et al. 2012] and the WSO2 Complex Event
Processor9.
Recently, the demand for fast processing of event streams with very high throughput
has led to the emergence of another class of EPS under the label Distributed Stream
Processing. These systems do not provide the same level of developer support in
terms of the programming model, but are able to provide implicit parallelism so that
processing tasks are automatically distributed around a cluster of computing nodes
[Andrade et al. 2014]. The first system in this category is Apache Storm10, which
was open-sourced by Twitter where Storm was acquired and later extended in order
to provide real-time search results on the Twitter stream. Besides Storm, Apache
Spark Streaming11 and Apache Flink12 also offer scalable open-source solutions for
large-scale event processing. Although sometimes EPSs are distinguished from stream
processing systems in terms of their processing semantics by means of support for
event-at-a-time operators (e.g., event sequences) in contrast to a set-at-a-time focus for
stream processing systems, we can recently observe that the boundaries between both

3 Oracle Event Processing, see http://www.oracle.com/technetwork/middleware/complex-event-
processing/overview/index.html

4 SAP Event Stream Processor, see http://go.sap.com/product/data-mgmt/complex-event-processing.
html

5 Microsoft StreamInsight, see https://technet.microsoft.com/en-us/library/ee362541(v=sql.111).aspx
6 Apama, see http://www.softwareag.com/corporate/products/apama_webmethods/analytics/

overview/
7 see http://www.complexevents.com/2015/05/10/cep-tools-market-survey-1q-2015 for a market survey

of EP applications
8 http://www.espertech.com, also available with commercial support
9 http://wso2.com/products/complex-event-processor/

10 http://storm.apache.org
11 http://spark.apache.org
12 http://flink.apache.org

http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://go.sap.com/product/data-mgmt/complex-event-processing.html
http://go.sap.com/product/data-mgmt/complex-event-processing.html
https://technet.microsoft.com/en-us/library/ee362541(v=sql.111).aspx
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/
http://www.complexevents.com/2015/05/10/cep-tools-market-survey-1q-2015
http://www.espertech.com
http://wso2.com/products/complex-event-processor/
http://storm.apache.org
http://spark.apache.org
http://flink.apache.org
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categories blur as they converge into a single class of systems. For instance, Flink now
also provides a CEP library which implements support for event-at-a-time operators
such as sequences and sliding windows.
In the next section, we give a short overview of implementation aspects of these
systems. First, we focus on design-time issues by analyzing the programming model
of some systems. Second, we discuss run-time aspects by discussing some typical
commonalities and differences of the systems introduced in this section.

Design-Time Aspects

Design-time aspects mainly cover issues around the programming model of EPS. The
programming model defines the event processing network by means of required event
schemas, the processing logic, the data flow between the individual components of
the network and consumers. Although recently there has been some research in the
area of pattern mining (e.g., [Margara et al. 2014]), i.e., by deriving relevant situations
of interest directly from the event stream, the definition of the intended behavior of
an EPN is usually done in an expert-driven manner.

High-Level Application Programming Interface (API)
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Figure 2.4 Programming Models of Event Processing Systems

In general, the programming model can be divided into different abstraction layers
as illustrated in figure 2.4. The most basic category are high-level APIs. Such APIs
are often used as a programming model for state-of-the-art distributed stream pro-
cessing systems. Although these models often provide high-level support for specific
operators frequently used in event processing, they require the developer of the event
processing logic to be familiar with the programming language the API relies on.
The complete application logic is therefore written in code and must be compiled
and deployed in order to execute the event processing network. Therefore, runtime
changes of the event processing network (e.g., the modification of event schemes) are
not possible or hard to achieve in many cases. Although this category offers a high
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level of extensibility, development of such logic is often more time-consuming than
other programming models.
Due to that reason, declarative or domain-specific languages (DSL) have been devel-
oped in order to assist developers in writing event processing logic. This category
comprises stream-oriented languages and rule-oriented languages [Etzion and Niblett
2010].
Stream-oriented languages are based on data flow programming and basically imple-
ment an event processing network as a directed graph of nodes. The syntax of such
languages is often defined as an extension of existing Structured Query Language
(SQL)-based languages known from relational databases. Extensions comprise opera-
tors specific to event processing, especially data windows and dimensional patterns.
An example stream-oriented language is Esper’s Event Processing Language (EPL) or
Oracle’s Continuous Query Language (CQL).
Rule-oriented languages subsume production rules, active rules and logic programming
rules. Production rules detect state changes in a forward-chaining way by firing an
action once a condition has been fulfilled in the event processing network. Active
rules implement the event-condition-action paradigm by waiting for a specific event
to occur, evaluating this for a given condition and firing an action once it is fulfilled.
Finally, visual modeling interfaces provide graphical tool support to define an event
processing network. This allows developers to implement the processing logic in a
drag-and-drop style by connecting streams to EPAs and consumers. Although these
systems usually require less programming, they are often provided as plug-ins for
integrated developer environments and therefore target developers and not business
analysts as they still require knowledge on implementation details of the system.
For instance, StreamBase Studio 13 (illustrated in figure 2.5) is based on the Eclipse
Modeling Framework (EMF). Although these systems are extensible by providing
high-level APIs for the definition of new processing agents, the modeling toolkits
themselves are bound to the operators available in the system.

Run-Time Aspects

Run-time aspects focus on the behavior of an EPS once it has been configured. The
programming model described in the previous section is translated into an executable
program depending on the implementation of the event processing system.
One important run-time aspect of EPSs is scalability. Scalability relates to a system’s
performance and refers to its capability to accommodate increasing loads by adding
new resources (often in form of additional computing nodes). Scalability in event
processing systems is an important issue as the throughput of an event stream might
change very fast without prior warnings. For instance, in 2013 Twitter’s tweet count

13 http://www.streambase.com/

http://www.streambase.com/
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Figure 2.5 Visual Modeling of Event Processing Networks in StreamBase Studio [StreamBase
Visual Editor 2016]

jumped from 5000 tweets per second to over 140,000 tweets per second within an hour
due to a public event in Japan14.
However, EPSs supporting the full set of EPAs (from the category sometimes called
Complex Event Processing Systems) are often implemented as single-host or multi-host
systems. In contrast to most distributed event processing systems, where streams
can be repartitioned at run-time in order to adapt to increased loads, single-host
systems perform the whole processing in a single processing node limiting the overall
throughput of those systems. In contrast, multi-host systems are able to distribute the
work load to different processing nodes, but require manual effort (e.g., re-compiling)
to modify nodes in the computing cluster. This is due to the fact that more complex
event processing networks often make strong use of time windows and event-at-a-time
operators that are hard to distribute due to extensive state management requirements
[Andrade et al. 2014].
Another important run-time issue of event processing systems is fault-tolerance which
refers to the capability of a system to recover from failures at run-time. Especially
in highly distributed systems, failures can frequently happen due to hardware prob-
lems such as network connectivity issues or unavailable processing nodes or software
problems such as unexpected crashes. Therefore, fault-tolerance must be achieved
throughout the whole system by monitoring the nodes of an event processing network
and by providing strategies to replay data through the data flow graph in case any
incomplete processing has occurred. Recently, architectures such as the Kappa Archi-
tecture [Erb and Kargl 2015] have been proposed which describes a system comprised
of Kafka [Kreps et al. 2011] as a highly distributed, fault-tolerant message broker
and Apache Flink 15 providing a scalable, fault-tolerant event processing system. For
instance, Flink uses a checkpointing mechanism based on distributed snapshots to
establish fault-tolerance by still maintaining exactly-once processing guarantees.

14 https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
15 http://flink.apache.org

https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
http://flink.apache.org


3
Motivation

In this chapter, we motivate our research by presenting two scenarios from the In-
dustrial Internet of Things (IIOT) domain. These scenarios are used to define basic
needs having influence on event-driven application design. Furthermore, we analyze
problems these applications face today that are related to the main research questions
this thesis targets.

3.1 Industrial Internet of Things
In general, the Internet of Things (IoT) relies on the idea of a world-wide network
where uniquely addressable objects communicate with each other based on standard
communication protocols [Infso 2008]. Therefore, objects in this sense can represent
anything which is able to communicate with other objects, ranging from hardware like
sensors, actuators or mobile phones to software systems like enterprise applications.
The main vision of the IoT is to embed things which have previously operated indepen-
dently from the outside world into a common layer which allows for communication
between things itself and autonomous decisions [Atzori et al. 2010]. Some possible
IoT-related use cases include the Smart Factory, which focuses on connecting machines,
devices and sensors in production facilities or Smart Supply Chains focusing on the
integration of supply chain networks.
The application of the IoT paradigm to industrial use cases is often summarized as the
Industrial Internet of Things. The IIoT vision is closely related to the term Industrie 4.0
[Kagermann et al. 2008] often used in European countries as a synonym for the fourth
industrial revolution. One of the main assumptions of the IIoT is the digitalization
of industrial processes. While today’s production systems often already employ a
high degree of automation, they are often operated in silos where data is kept inside
specialized systems. However, by using standardized communication protocols, this
data can be used to foster intelligent production systems and processes which are able to
perceive information, derive findings from it and to change the behavior of machines
and plants [Kagermann et al. 2008].
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From an event processing perspective, IoT applications in general are challenging
application scenarios as they demand for the main pillars event processing is built
upon as discussed in chapter two. Therefore, event processing systems can be seen as
a critical success factor to further implementing the vision of an IIOT.
In the following sections, we present two IIOT scenarios we will use as examples
throughout the thesis in order to motivate our research contributions.

3.1.1 Digital Factory
Our first use case is related to the Digital Factory. We consider a company providing
services for the oil drilling business. Oil drilling is a very challenging business that
requires companies to continuously monitor drilling equipment in order to be able to
quickly react on potential problems which occur during an ongoing drilling operation.
For this reason, many safety- and operational-critical devices are already equipped
with sensors which continuously measure a number of parameters in real-time.
In our scenario, we envision a drilling machine which produces events from two
sensors: The first one measures the swivel oil temperature, while the second one
measures swivel vibration. An example event schema is illustrated in figure 3.1.
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Oil Temp
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Temperature
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seconds

Sequence within 10 
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Swivel
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Aggregate 
Vibration over
20 seconds

Detect
Temperature
Increase
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Figure 3.1 Example EPN: Digital Factory

Now we consider the following situation that might be relevant to detect a potential
failure in a drilling machine: If a significant temperature increase is being detect in the
swivel oil temperature sensor followed by an increase in the vibration of the swivel’s
vibration sensor within a certain time period, this might be an indication for a sudden
failure of its function.
Such a situation is a pretty basic use case for CEP systems. A simple event processing
network which would be able to detect such a situation is illustrated in 3.1. In this
example, we first use an Aggregation EPA to aggregate temperature and vibration
events by computing the average within a small time window. Afterwards, we detect
abnormal temperature and vibration values by computing the relative increase of
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these parameters. Finally, a Pattern Detect EPA is applied on both streams to detect a
sequence of both increase events within a specified time.
We will use this example throughout the thesis, but it is important to stress the fact
that such situations might change very often depending on additional sensors that
are installed in existing machines, new machines that are deployed at different oil
fields, changed requirements from the business perspective or other circumstances
which require operational staff to deploy and modify such situations frequently.

3.1.2 Connected Logistics
Our second use case is based in the logistics and transportation domain. In this
application area, the basic needs for event processing originates from the fact that
production companies today rely on just-in-time delivery of production goods due
to minimized local stocks. However, it is often the case that goods are delivered
late which can be caused by a number of exceptions during ongoing transportation
processes. For instance, heavy traffic may cause delays to transportation vehicles, third
party manufacturers of ordered goods might not be ready to load products on time,
goods could get damaged in the course of delivery. For these reasons, continuous
monitoring and detection of potential threats during the execution of transportation
processes has become mandatory.
In one of our projects we have developed a flexible solution to enhance transparency
and disruption management capabilities to inbound transport processes of automotive
companies. In this solution, drivers use a mobile application which continuously
gathers both human-generated information (e.g., acknowledgments that specific prod-
ucts have been loaded onto the vehicle) as well as sensor readings such as location or
acceleration. This information is then forwarded to a component performing event
processing in order to detect (potential) disruptions and to generate recommended
actions to mitigate the impact of problems.
One example pattern in this case is the computation of the average time a driver
spends at the premises of a supplier. Long waiting times in front of a loading ramp at
a specific supplier might be a trigger for delays in the ongoing transportation process,
but could also easily violate an existing Service Level Agreement (SLA) between
supplier and receiver. Such a performance indicator can already be computed in a
continuous manner with standard event processing tooling and would result in an
event processing network similar to figure 3.2. In this example, we span a geofence
around the supplier’s premises and define an EPA which detects if a vehicle enters
the defined geographical area. In the same way, we detect vehicles which leave the
specified area. By combining both events and subtracting the timestamps of both
events, we can calculate the length of the per-vehicle stay of a transportation vehicle.
In addition, we could detect the absence of a departure event within a maximum
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time period to immediately initiate countermeasures such as re-planning of other tour
stops.
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Detect Arrival 
at Supplier A
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Departure Event 
within 30 minutes

Notification

Vehicle
Position

Detect
Departure at 
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Figure 3.2 Example EPN: Logistics

In this use case, it is important to stress that even medium-sized companies might easily
have a rather large network of suppliers that are involved in daily inbound logistics
processes (so-called milk runs). This quickly leads to the need for a large number of
very similar event patterns from a structural point of view (i.e., all of them detecting
the time of a vehicle spent at the supplier’s premises), with the main difference that
the background knowledge (in our example the geographical location of the geofences
and the allowed duration of a stay) differs between the pattern definitions.

3.2 Needs
Although both scenarios have slightly different characteristics, we can observe some
similar needs of today’s existing or emerging requirements for event-driven appli-
cations from a business-level perspective. In this section, we outline needs related
to these use cases by means of the development process and execution of event pro-
cessing networks. Afterwards, we identify the gap between these requirements and
existing solutions in order to formulate a problem statement.
In general, it is worthwhile to categorize the purpose of real-time IIOT applications
which demand for the application of event processing techniques:

• Integrated Monitoring. Although many devices (e.g., machines) in IIOT ap-
plications provide interfaces to monitor a system’s current state, integrated
solutions which deliver a single user interface in form of real-time cockpits are
still rare in real production settings. Integrated monitoring solutions need to
combine machine data coming from a large variety of machines with other data
such as production plans in order to detect not only failures in a single system,
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but by also observing interdependencies between different heterogeneous systems
affecting potential production failures. Therefore, integrated monitoring solu-
tions are a typical use case for event-driven applications as they must reflect
the current state of the whole production with little delay. Such systems also
need to be configurable so that experts are able to generate on-demand insights
depending on different contexts (e.g., produced products or shift changes) and
different granularity levels.

• Continuous Data Harmonization. With a rising number of sensors that are
used to monitor production processes, data harmonization becomes an impor-
tant problem. Data harmonization refers to continuous transformation of events
from multiple input sources to a another output source. For instance, sensor data
should often be transferred in a continuous manner to external systems in order
to construct data bases for off-line analyses (e.g., to transfer data to a distributed
file system such as Hadoop File System (HDFS)1) or search engines such as
Elasticsearch2). Such an approach is similar to existing Extract, Transform, Load
(ETL) processes known from data warehouses [Vassiliadis 2009], but transforms
data directly once it is generated. An important problem in this context is data
drift which describes changes in sensor data based on syntax (e.g., structural
changes in the data produced by machines such as additional parameters) or
semantics (e.g., change of measurement units). Therefore, systems supporting
continuous data harmonization need to be flexible in order to detect data drift
and react quickly by adding and modifying input sources, transformations and
data sinks.

• Situational Awareness. Besides monitoring, situational awareness is an important
point in order to not only observe the state of ongoing production processes,
but also to immediately identify situations and potential failures immediately.
Situational awareness refers to an understanding of what is currently going on
in a specific subject of interest and sets the basis for decision making. Being
aware of situations often requires for more complex transformation processes
such as on-line analytics and correlations between different sensors in contrast
to pure monitoring solutions, for instance, in order to enable condition-based
maintenance scenarios. In addition, situations to be detected might change
quickly and continuously due to the availability of new sensors, new algorithms
or changed business requirements. An example from the manufacturing domain
is the integration of pattern detection algorithms in order to correlate sequences
of events (e.g., from oil temperature and current flow rate) in order to get early
indications on potentially harmful situations.

1 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
2 https://www.elastic.co/

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.elastic.co/
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It is noteworthy that all these categories highlight the need for frequent changes of
event processing networks, which strengthens the requirement for techniques which
abstract from hard-coded, rigid applications to more high-level languages.

3.2.1 Access for Application Specialists
By looking at these three general application scenarios presented above, it becomes
clear that event processing networks have to be able to adapt quickly, to support a
large variety of protocols and data formats and to be able to be extended in terms
of new input sources or transformation tasks. As such changes might occur unex-
pectedly as new requirements arise, the time needed from requirements specification
to the execution of the underlying event processing network at run-time needs to be
minimized. Therefore, tool support is mandatory which reduces time for creating
and modifying event processing networks.
This raises the question which user roles should create the application logic. As an
Event Processing Network (EPN) typically represents some form of a business need,
it has early been recognized that the application logic can be best defined by business
analysts. Surveys have shown that more than 80% of companies implementing real-
time applications expect business analysts or specialists to write the application logic,
whereas only 16 percent would assign such a task to software developers [Etzion and
Halle 2013]. Similar observations have previously also been made in related areas
such as business rules systems, where lots of research has been done in order to enable
business users to create rules [Witt 2012].
For distributed (I)IoT applications, this issue has become even more important due to a
rather large number of sensors originating from potentially many different sources and
therefore large pattern bases which need to be managed. Access for non-programmers
in these scenarios imposes not only the need to abstract from existing graphical editors
as they still rely on a programming-oriented modeling style, but also ways to provide
support for managing pattern bases, e.g., by reducing time and effort needed to modify
existing patterns [Sen 2013].
Therefore, leveraging non-programmers to write event processing logic ad-hoc with-
out necessary developer consultancy is an essential requirement in order to support
real-time IIOT applications.

3.2.2 Distributed Event Marketplaces
A second need is related to the specific characteristics of IIOT applications. In general,
one major characteristic of IoT applications is a high degree of geographically dis-
tributed sensors, processing logic and actors which communicate over standard web
protocols. In this context, the vision of event marketplaces has been proposed (albeit
with the assumption of a central processing logic as part of the marketplace) [Stühmer
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et al. 2012a]. Such marketplaces aim at developing elastic and reliable architectures
for complex event-driven interaction in highly distributed and heterogeneous service
systems. From a more practical point of view, the overall goal of event marketplaces
are platforms which serve as an endpoint for heterogeneous event-producing sensors
and applications, vendor-independent (real-time) processing services for analytics or
situation detection and event-consuming applications. This is illustrated in figure 3.3.
Suppliers of input data, data transformations and consumer logic offer processing
capabilities to a central registry in the marketplace. Users can express their interest
in form of situations or data harmonization rules by defining processing pipelines.
Such pipelines are then deployed as distributed event processing networks with the
marketplace offering non-functional services such as pricing mechanisms and security
and acting as a mediator between providers and consumers of processing services.
As an example, a logistics service provider could be interested in a processing pipeline
which correlates vehicle positions, weather and traffic data in order to detect incidents
leading to delayed deliveries. In this case, the corresponding pipeline would consume
traffic and weather data from a third-party provider and vehicle positions directly
from internal systems which receive GPS coordinate from the vehicles. Another
marketplace participant could offer a real-time processing service to continuously
calculate the estimated time of arrival based on position, weather and traffic data.
This is an example for a generic real-time service which can be bound to any input
stream matching the input criteria of the service provider.
In IIOT applications, such marketplaces allow for the development of distributed event
processing pipelines by providing mechanisms such as unified authoring interfaces
that integrate decentralized processing logic and provide application specialists with
opportunities to define applications in a self-service manner without the need for
developer consultancy.

3.3 Problem Statement
The two needs gathered in the previous section are now used to discuss problems of
existing solutions. First, we outline and analyze the current development process of
event processing applications. It is shown that non-programmer access to developing
such kind of applications is prevented by a rather technical abstraction of event
processing logic, and that this assumption is valid for declarative languages, high-
level developer APIs and even graphical modeling interfaces.
Afterwards, we analyze current problems in terms of the applicability of existing
solutions for pipeline authoring and execution in more geographically distributed
settings.
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Figure 3.3 Event Marketplace

3.3.1 Development Process
A typical development process of event processing applications is illustrated in figure
3.4. Such a process consists of at least two roles, business analysts and software
developers3.
Business analysts initially specify requirements for event processing systems. Usually,
such requirements are driven by the need to get informed about a situation of interest
and can usually be assigned to one of the following categories:

• KPI tracking. A Key Performance Indicator (KPI) is a metric which quantifies
“the current efficiency and effectiveness of past actions through acquisition,
collation, sorting, analysis, interpretation and dissemination of appropriate
data” [Neely 2002]. In this sense, a KPI just measures a defined metric (e.g., the
current scrap rate of a machine). Event processing use cases usually focus on
rather short-term KPIs in order to reflect the current state of an object of interest.

• Goal fulfillment. Goals or targets in business contexts are referred to an objec-
tive which is defined by a strategy and pursued during subsequent business
operations [Jiang et al. 2011]. Goals are assigned to a specific KPI and specify
whether the KPI currently fulfills a defined threshold value. In event processing,
applications tracking goal fulfillments often trigger notifications once a goal is
satisfied or missed.

• Situation detection. According to the Business Intelligence Model (BIM), a
situation is defined as a partial state of the world [Barone et al. 2010]. In business

3 Although there might be easily more roles involved in the development of event processing applications
such as testing personnel similarly to standard software engineering processes, we focus on a minimal set
of roles in order to foreground the arguments made.



3.3 Problem Statement 37

Development Continuous Computation

Visualizations, 
Notifications, 

Actions, Storage

Change Requests

Developer Business Analysts

Cluster/Engine

Results

External SystemsDevelopment Environment

Deployment

Requirements

Figure 3.4 Development Process of EP Applications

contexts, situations often refer to an opportunity the company aims for or a
threat which should be avoided. Situation detection is a frequent use case for
event processing applications, as these often result in immediate actions.

• Data preparation. Data preparation tasks serve to provide business analysts
with data which is further being used for off-line analyses or other analytics
purposes. In this case, event processing applications are used in order to harmo-
nize data streams, e.g., by filtering out events that are irrelevant for the business
analyst.

Such requirements are subsequently given to developers in order to implement the
application as an event processing network. Typically, this process includes the
following steps:

• Development of input adapters. The system which produces the required input
data needs to be connected to the event processing application. If data is not yet
published to a messaging middleware, input adapters must be explicitly written
in order to implement push-style event notifications.

• Event schema definition. Afterwards, the input event schema needs to be de-
fined. A minimal schema definition contains information about event property
names as well as their (primitive) types. Depending on the specific implemen-
tation, some event processing engines support definition of schemes using the
provided declarative language. In other cases, schema definitions need to be
done in a programmatic way.
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• Development of the event processing logic. The main task is the development
of the specific run-time logic. If the system provides a declarative language to
define the event processing logic, an event pattern can be written and directly
deployed to the engine. In other cases, the logic needs to run through the whole
software development cycle, i.e., testing, packaging and deployment.

• Development of output adapters. Finally, output adapters must be written
according to the desired action. This includes connection to storage systems,
dashboards or notification modules which are either developed manually or
make use of existing application programming interfaces or web services.

Once the event processing logic has been deployed in the engine, results are contin-
uously computed until it is manually stopped. Events are sent to external systems
where business analysts are able to consume them as requested initially. As the devel-
opment process as described here is in general manual and developer-focused, the
whole life cycle must be re-initiated whenever change requests or new requirements
arise.
We will now take a closer look at the specific technical implementation of event
processing applications based on various solutions currently available systems offer.

Event Pattern Languages

First, we analyse the definition of an event processing application using a declarative
language. Listing 3.1 shows an example SQL-based language written in the Esper
Event Processing Language (EPL)4. Similar languages are available for other tools,
e.g., Apama, Oracle CEP or WSO2. The listing shows a rather simple application
consisting of two event statements, whereas the first statement calculates a moving
average of oil temperature values over a time window of 10 seconds per machine. The
second statement receives this stream as an input and detects an increase of the oil
temperature by 50 per cent within 1 minute.
In these languages, streams are defined in a similar way to relations in databases. Our
example defines two complex events by using an insert into directive. The payload of a
derived event is defined by the select keyword of the language, and an input stream is
defined using the from keyword. An input stream can be partitioned by adding a group
by clause. Data windows can be directly applied on an input stream by providing the
window type and its length. The second statement shows a sequence pattern, which
defines a sequence of one event occurrence, followed by a time interval of 1 minute
and another event occurrence of the same type.
Although such event patterns are conceptually easy to define, there are two drawbacks
in terms of usability and expressivity.
In terms of usability, it is worthwhile to note that, due to an increased complexity of
such languages compared to database query languages, technical skills are required

4 http://www.espertech.com

http://www.espertech.com
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Listing 3.1 Example Esper Pattern to Detect Oil Temperature Increase

1 insert into AggTemperature
2 select machineId , avg( temperature ) from SwivelOilTemperature .win:time (10

seconds )
3 group by machineId
4
5 insert into OilTempIncrease
6 select a1. temperature , a2. temperature from pattern
7 [ every (a1= AggTemperature -> timer : interval (1 minute ) -> a2= AggTemperature )

]
8 where
9 a1. machineId =a2. machineId and

10 a2. temperature > a1. temperature *1.5

and training is needed. Implementation skills are also required in order to connect
results of event patterns to data sinks. Moreover, as shown in listing 3.1, resulting
event patterns are hardly reusable, e.g., when applying the same business logic to
a different input stream. For instance, the business logic defined in our example
implements a rather generic task, detection of an increase of a numerical value within
a time period, which could be applied to other input streams requiring for similar
processing. However, as the implementation is bound specifically to an event type
and its properties, the transfer of event processing business logic to support different
situations and input event streams is hard to achieve.
Concerning expressivity, use cases often require more complex analytics-oriented
event processing tasks (e.g., on-line recognition of drilling activities) that cannot be
expressed with standard event processing operators. Although most event processing
languages can be extended with custom application logic, it further slows down
development processes.

High-Level Programming APIs

Recent frameworks for distributed, scalable event processing such as Apache Flink or
Apache Spark Streaming5 provide high-level application programming interfaces to
define event processing logic. This software must be written by developers, packaged,
tested and deployed into a cluster. Listing 3.2 illustrates the same use case as described
above using Flink’s DataStream API. The API provides a powerful abstraction from
the internal complexities of Flink’s runtime (implemented as a distributed streaming
dataflow) by omitting details about scheduling and distribution of processing nodes,
and also provides high-level access to event-at-a-time operators. However, writing
such code requires for extensive knowledge of a programming language as well as

5 http://spark.apache.org

http://spark.apache.org
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Listing 3.2 Development of an event processing application in Apache Flink

1 DataStream <Tuple2 <String , Integer >> stream = inputStream
2 . keyBy (" machineId ") ,
3 . window ( TumblingTimeWindows .of(Time.of (10 , TimeUnit . Seconds )))
4 .avg (1);
5
6 DataStream <Tuple2 <String , Integer >> stream = oilTemp
7 . windowAll ( TumblingTimeWindows .of(Time.of(1, TimeUnit . MINUTES ))
8 . apply (new AllWindowFunction <Tuple2 <String , Integer >, Tuple2 <Integer , Integer >,

Window () {
9 public void apply ( Window window , Iterable <Tuple2 <String , Integer >> values ,

Collector <Integer , Integer > out) {
10 // Custom application logic
11 }
12 }

knowledge of the specific APIs making development of event processing applications
for scalable system hard to achieve for business analysts.
It is worth mentioning that, although this approach seems to be a step backwards
compared to declarative languages as introduced above, scalable systems for event
processing have a higher complexity compared to single-host systems and therefore
often require for additional configuration (e.g., proper stream partitioning). Never-
theless, declarative languages suitable for scalable event processing engines are likely
to be introduced in the near future.

Graphical Modeling Tools

In order to improve accessibility of event processing systems in terms of faster de-
velopment cycles, graphical modeling tools have been proposed. From commercial
systems, StreamBase represents one of the first event processing systems providing a
graphical user interface to model event processing networks.
StreamBase (as shown in figure 3.5) provides a Graphical User Interface (GUI) to
develop an event processing application using a blocks-and-arrows style, whereas
blocks represent sources, EPAs and sinks and arrows define the flow of events through
the network. Although resulting graphs in StreamBase are intuitive to read, definition
of these graphs remains a technical task targeted at developers.
First, while input adapters can be chosen from pre-defined libraries leveraging access
to event streams originating from frequently used event sources such as message
brokers, software systems or file systems, event schemas must be defined by providing
data types and exact field names. Additionally, provided event processing operators
are low-level, e.g., aggregation or pattern detect operators. This requires general
understanding of event-driven systems.
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Figure 3.5 Visual Modeling of Event Processing Applications with StreamBase [StreamBase
Studio 2016]

Finally, tools like StreamBase are often implemented as extensions of integrated devel-
opment environments such as Eclipse6 and therefore require at least knowledge of
standard development life cycles and tooling (such as debugging, testing and packag-
ing). Consequently, the goal of StreamBase is more to reduce development effort of
event processing applications from the software development perspective.
We show in chapter 4 that existing efforts from both industry and academia to provide
better accessibility for the definition of event processing networks can be compared to
solutions like StreamBase. In summary, although existing graphical authoring tools
are able to reduce development efforts with better tool support, these solutions are
not capable of shifting definition of event processing networks from developer roles
to business-oriented roles.

3.3.2 Mixture of event processing logic and knowledge
A second problem is related to mixture of event processing logic and background
knowledge. In general, an event processing application consists of some form of
business logic (defining what should be done) and its parameterization with specific

6 http://www.eclipse.org

http://www.eclipse.org
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parameters coming from business requirements. An example related to the aforemen-
tioned use case is given in figure 3.6. Technical-oriented parts concern the definition
of schema-related aspects such as input streams and property definitions the logic
should be applied upon. Additionally, the pattern also includes domain knowledge
describing the length of time windows, the specific output needed and the increase
itself.

insert into OilTempIncrease select a1.temperature, a2.temperature from

pattern [every (a1=AggTemperature ‐> timer:interval(1 minute) ‐> 

a2=AggTemperature)] where a1.machineId=a2.machineId and a2.temperature > 

a1.temperature*1.5

Detect
Increase

Developer Business Analyst

business-triggered changestechnical-triggered changes

Figure 3.6 Event Pattern: Background Knowledge

Mixing both domain knowledge and technical specification in a single pattern repre-
sentation leads to problems concerned with modifications. In case of change requests,
even if the logic of a pattern remains unchanged, it needs to be modified once business
requirements change. Such behavior could be avoided if a knowledge base is kept apart
from the technical specification allowing business analysts to change business-related
parts of the pattern.
Admittedly, besides complete recompiling which would be necessary in the case of
most scalable event processing systems, knowledge can also be separated into external
configuration files. However, allowing business analysts to adapt such files results in
custom-built instead of generic solutions.
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Altogether, event processing applications are hard to maintain and lack re-usability
due to their languages which mix domain knowledge and technical details, and they
are bound to specific event streams.

3.3.3 Heterogeneity and Interoperability

EP EPA

EPA EC

EP EPA

EPA

EPA

Engine/Cluster

Figure 3.7 Event Processing Network implemented in a single system

A possible solution to the problems mentioned above would be the design of a high-
level language which enables non-programmers to write event processing applications,
e.g., a graphical editor abstracting from technical details. This is a suitable approach
for use cases as illustrated in figure 3.7, where an EPN is deployed in a single engine
or a scalable event processing system. The advantage of such a solution is that such a
language is only required to cover the features supported by the system itself.
However, we explicitly target geographically distributed environments suitable for
IoT use cases, for instance, to support aforementioned marketplace scenarios. This
results in architectures as highlighted in figure 3.8.
First, geographical distribution of the EPN requires for the integration of independent
event processing agents communicating over web protocols. Second, EPAs within
an EPN can be implemented using heterogeneous implementations such as scalable
event processing systems, single-host engines or custom algorithms. Third, communi-
cation between nodes is not standardized: Multiple protocols (e.g., MQTT7, AMQP8,

7 http://mqtt.org/
8 https://www.amqp.org/

http://mqtt.org/
https://www.amqp.org/
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Websocket9) might be supported within a single EPN , but also support for data
formats may vary between the individual processing elements. The to-be situation is
illustrated in the lower-right corner: Authoring systems supporting non-programmer
access to the definition of event processing applications should support execution
of event processing networks in distributed environments by abstracting from the
technical heterogeneity mentioned above.

Geographical Distribution Heterogeneity of run-time technologies
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Figure 3.8 Challenge: Authoring of geographically distributed EPNs

3.3.4 Conclusion
In this chapter, the motivation behind our research has been presented. We defined two
use cases taken from the Industrial Internet of Things domain. Based on the use cases,
we identified business needs requiring for technical support. Furthermore, based
on these needs, we analyzed currently available systems and approaches in order to
provide a problem statement. Finally, we identified non-programmer access to event
processing systems in terms of both usability and adaptivity and knowledge-agnostic
pattern representations under the constraint to support definition of geographically
distributed system as the main research problems targeted within the course of this
thesis.

9 https://www.w3.org/TR/2009/WD-websockets-20091222/

https://www.w3.org/TR/2009/WD-websockets-20091222/
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Related Work

This chapter analyzes relevant state of the art in the area of event processing. In
addition, related work from other domains tackling similar problems is investigated
and compared to specific requirements for event processing applications.

4.1 Related work on Event Processing
This section encompasses related work in the area of event processing. Our focus in on
research on development methodologies, i.e. tackling the whole development life cycle
of event processing applications and approaches focusing modeling support for Event
Processing System (EPS). Furthermore, we discuss work related to interoperability
issues and semantic approaches to event processing. In general, accessibility for
non-programmers to EP could be improved by more advanced support for expert-
driven definition of EP applications in a top-down manner, or by applying bottom-up
approaches such as learning of event processing networks as proposed recently in
[Margara et al. 2014]. Although self-learning approaches can be useful in order to assist
users in defining event processing applications (e.g., to detect unexpected situations),
this thesis focuses on expert-driven definition as many of the use cases presented in
section 3.3.1 require business analysts to know in advance the specific purpose of an
event processing application.

4.1.1 Development methodologies
An approach for user-oriented rule management has been proposed in [Obweger
et al. 2011a; Obweger et al. 2011b]. Aiming at providing business users to create event
processing applications, they distinguish between two types of rules. Infrastructural
rules are defined by system operators and serve as input for higher-level sense-and-
response-rules created by business operators. Pattern definitions are provided by
defining a set of input parameters, output parameters and a decision graph which
describes the event processing logic itself. Rules are deployed as executor nodes in
the commercial platform UC4 Decision. Although we make use of a similar approach
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by dividing technical-oriented tasks from business logic-oriented tasks, we differen-
tiate from this approach mainly by the usage of semantic models to describe event
processing blocks and an abstraction from a vendor-specific event processing logic.
[Sen and Stojanovic 2010; Sen 2013] introduced GRuVe, a methodology supporting
the management of event patterns. The authors propose a life cycle covering genera-
tion, execution and evolution of event patterns and provide an RDFS-based model to
describe event patterns. In addition, an authoring tool for graphical pattern definition
is introduced, however, it is restricted to the event processing operations filter and
pattern detection as well as support for time windows. Compared to our approach,
we target a higher-level abstraction for non-programmers, while the engine-specific
evolution approaches (c.f., white box event processing) can be re-used in our method-
ology.
A business-oriented methodology for complex event processing has been developed
by [Vidačković et al. 2010; Vidačkovič and Weisbecker 2011]. The methodology is
based on the Business Motivation Model (BMM) which provides methods to specify
business-related KPIs, goals and objectives. Based on these definitions, the authors
identify event patterns monitoring these metrics. An executable program suitable for
the Esper event processing engine is generated out of manually defined KPI derivation
rules. The main purpose of this approach is to provide better support for process
monitoring. The main difference to our approach is that we target other use cases
besides KPI calculation, e.g., continuous ingestion of events to third party systems. In
addition, our methodology does not focus on supporting a single event processing
language, but to integrate heterogeneous event processing run-time implementations.

4.1.2 Modeling support
Model4CEP [Boubeta-Puig et al. 2015; Boubeta-Puig et al. 2014] is a domain-specific
modeling language for event processing. Its goal is to provide a modeling language
characterized by high expressiveness and flexibility, independence from specific im-
plementation code and suitability for business users. Model4CEP consists of a CEP
domain meta model to define events, event properties and their types and a modeling
language to define event patterns. The capability of the pattern language comprises
unary and binary operators, temporal operators, (filter) conditions and arithmetic
operations. These elements can be connected using a graphical editor based on the
Eclipse framework. Although the system claims to be extensible, the provided opera-
tors implement rather low-level event processing logic requiring users to be familiar
with event-driven thinking. In contrast to our approach, Model4CEP focuses on stan-
dard CEP operators (especially Pattern Detect EPAs and Filtering), while other EPAs
requiring custom processing logic such as enrichment of events or transformations
are not the main focus of this work.
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SpChains [Bonino and Corno 2012; Bonino and De Russis 2012; Bonino et al. 2013] is a
framework supporting modeling of event processing applications independent from
a specific run-time implementation. SpChains defines an (extensible) set of stream
processing blocks which can be connected in order to create stream processing chains. Each
block parametrizes a specific event processing logic and blocks can be combined using
a filter-and-pipe pattern. Blocks consist of input and output ports handling a specific
event type and can be instantiated by a provided XML-based language. Although
SpChains abstracts from stream processing logic to input/output descriptions of
operators similar to our approach, a main difference is that we represent streams and
event processing logic using a semantics-based model allowing for more sophisticated
matching between multiple processing blocks.
[Karampiperis et al. 2014] present a graphical authoring tool called Event Recogni-
tion Designer Toolkit (ERDT). The main design goals of ERDT were simplicity and
user-friendliness, support for multiple event processing languages and cross-platform
implementation. ERDT is extensible and provides out-of-the-box support for tem-
poral operators and logical operators. Graphically defined rules can be compiled to
executable languages like SQL and Event Calculus. The main difference to our work is
that ERDT compiles a graphical model into a specific target language, e.g., a graphical
pattern definition is executed in a single-host system, whereas our approach aims to
integrate heterogeneous run-time implementations by a common description layer on
top of the implementation logic.

4.1.3 Interoperability
We discuss related work concerned with interoperability of event processing systems.
[Hoßbach et al. 2013] present a middleware for Event Producer (EP) systems which
aims at overcoming heterogeneity of EP systems by providing an abstract model based
on common EP functionality named Java Event Processing Connectivity (JEPC). JEPC
targets Java-based implementations of EP systems and supports operators widely used
in event processing such as aggregations, patterns and time windows. EP systems can
be connected by implementing bridges to specific implementations. As a result, JEPC
supports switching of EP systems without the need to modify existing event processing
logic. This approach has been further detailed in [Hoßbach 2015]. Drawbacks of this
approach are limited support for non-standard event processing operators and the
limitation to a specific programming language.
Another approach aiming at increasing interoperability are Event Stream Processing
Units (SPUs) as introduced by [Appel et al. 2013]. SPUs also encapsulate event pro-
cessing logic by using an abstraction mechanism called Eventlets. Eventlets, being
higher-level containers for event processing logic, consist of meta data which describes
preconditions required for an eventlet to listen for. If an event stream matches this
filter condition, the SPUs business logic is executed. Eventlets listen for streams pub-
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lished through a Java Message Service (JMS)-enabled middleware. In contrast to our
approach, once eventlets are implemented and deployed, they listen for events which
match the preconditions specified in the eventlet description, but they still rely on a
pre-defined implementation. Our methodology aims at instantiating event processing
logic based on pipelines which have been defined by non-developers.
Potocnik and Juric [Potocnik and Juric 2014] introduce the concept of complex event-
aware services as part of SOA. The authors extend the Web Service Definition Language
(WSDL) with CEP-specific elements, however, the usage of WSDL limits the description
of Event Processing Agents (EPAs) to technical aspects omitting the semantics of EPAs.
In order to achieve better interoperability, semantics-based approaches to event pro-
cessing have been developed. For instance, a semantics-based event model is intro-
duced in [Stühmer et al. 2012b; Stühmer 2015], where the authors develop a lightweight
model to represent events in RDF. The advantage is that events can be exchanged
between multiple consumers using standard web protocols, however, it relies on the
usage of RDF as common event format. On the pattern definition side, in [Anicic et al.
2011] EP-SPARQL has been proposed as an extension of SPARQL. EP-SPARQL sup-
ports most operators frequently used in event processing and is translated to ELE rules
supported by the logic-based event processing engine ETALIS. Similar approaches in
this area are C-SPARQL [Barbieri et al. 2009] and SPARQLStream [Calbimonte et al.
2010].
These approaches focus on the extension of event processing systems at run-time by pro-
viding native RDF processing and often also stream reasoning capabilities. However,
although interoperability is improved by making use of standard web languages and
data models, these approaches do not differ from existing event processing languages
in terms of non-programmer access and, in addition, strictly rely on events represented
in RDF. In our work, we do not explicitly expect semantics-based event formats at
run-time, but use semantic descriptions at design-time to model the characteristics of
events including event schemas and their technical representation. This enables us
to use more lightweight event formats at run-time which potentially improves event
processing performances.

4.1.4 Event processing and background knowledge
Other approaches make use of semantics to assist users at design-time by expanding or
replacing event patterns with background knowledge represented in ontologies. Work
in this area primarily focuses on separating the business logic of event processing
applications from historical as well as static data.
For instance, [Binnewies and Stantic 2011; Binnewies and Stantic 2012] introduced the
OECEP (ontology-enhanced complex event processing) framework. OECEP relies on
the core concepts rule rewriting, input rewriting and output rewriting in order to separate
background knowledge available in an RDF-based knowledge base from the pattern
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definition. As an example, queries can be expressed by referring to a concept in the
ontology, whereas these concepts are replaced with its instances prior to deployment.
A similar concept has also been proposed in our earlier work [Riemer et al. 2012]
with the introduction of semantic requests, extensions of standard event processing
languages that can be used to automatically expand event patterns with ontolog-
ical background knowledge. However, both approaches are solutions targeting
implementation-specific event processing languages and do not consider a generic ap-
proach to integrate multiple implementations in a single event processing application.
[Teymourian et al. 2012; Teymourian and Paschke 2010] introduced knowledge-based
event processing, also tackling the problem of separating knowledge from more tech-
nical representations. The authors apply a concept named Event Query Pre-Processing,
where event patterns are preprocessed, and rewritten according to static data fetched
from a knowledge base. Patterns are executed in the rule engine Prova.
The main advantage of these methods is that inferencing, which usually implies sig-
nificance fall-offs in terms of performance (see [Stühmer 2015] for a discussion), are
shifted from run-time to event pattern design-time, where performance is much less
an issue in applications processing high throughputs of events. However, these ap-
proaches are engine-specific solutions that do not tackle the integration of distributed
event processing logic which is, for instance, needed for application scenarios such as
the event marketplace.

4.2 Related work on Semantic Web Services
Similar problems, integration of heterogeneous and geographically distributed com-
puting resources, as well as modeling issues from a non-programmer perspective, have
also been investigated in other domains, especially by the web services community.
Web services are typically defined as functionality of information systems exposed
through standard web technologies [Alonso et al. 2004] or, more precisely, “self-
contained, modular business applications that have open, Internet-oriented, standards-
based interfaces” [Walsh 2002]. Web services therefore abstract from specific imple-
mentation details by providing a well-defined public interface which can be invoked
by consumers if requested. In this context, the service-oriented architecture (SOA)
paradigm has become the architectural approach to composition of web services in
order to enable automatic execution of business processes in workflow management
systems.
In general, approaches targeting semantic web services which rely on request /
response-based architectures cannot be directly applied to our approach which focuses
on publish/subscribe architectures. However, solutions regarding the description of
requirements and capabilities of web services can partially be re-used and extended
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in our approach. Therefore, sections 4.2.1 and 4.2.2 present several approaches, while
differences to our approach are discussed in section 4.2.3.

4.2.1 Semantic Web Services
One of the first approaches to provide semantic annotations of web services is OWL-S
[Martin et al. 2004]. OWL-S describes a service by means of a Service Profile, a Service
Model and a Service Grounding. Service profiles specify what a service does, e.g., goals
a service can accomplish. The service model describes how a services can be used,
e.g., by providing information about the structure of valid requests, service invocation
and also possible service compositions. Finally, service groundings describe technical
details on service invocation, such as specific protocols and message formats.
The Web Service Modeling Ontology (WSMO) is another approach to semantic web
services [Feier et al. 2005; Roman et al. 2005]. WSMO specifies an ontology with the
top notions Ontologies formalizing background knowledge, Goals specifying client
objectives, Service Descriptions describing functional, non-functional and behavioral
aspects and Mediators as enabler for interoperability. In contrast to OWL-S, WSMO
does not rely on a web standard such as OWL, but implements its own formalism. One
of the main purposes of WSMO is the notion of goals which should enable automatic
service discovery and invocation. WSMO’s reference implementation WSMX also
includes an editor for specifying WSMO-compliant ontologies and a service registry.
[Gessler et al. 2009] proposed the Simple Semantic Web Architecture and Protocol for
Semantic Web Services (SSWAP). The goal of SSWAP is to offer a more lightweight
alternative to SWS compared to OWL-S and WSMO. The authors developed a common
syntax, shared semantics and a mechanism supporting semantic discovery based on
an architecture similar to REST. In SSWAP, participants exchange data via graphs
represented in OWL-DL. A service provider publishes a Resource Description Graph
(RDG) to offer a service capability at a specific URL. A consumer can invoke such a
service by sending a HTTP POST request containing a Resource Invocation Graph (RIG)
to the service’s URL. SSWAP’s reference implementation also includes a graphical
tool to create service pipelines in a drag-and-drop fashion. In our approach, a similar
communication model is being used to exchange descriptions of event processing
elements by using description graphs and exchange details on the specific configuration
of event processing logic by using invocation graphs.
Multiple web services can be combined in order to form composite applications, so
that capabilities of individual web services can be used to achieve more complex
goals. A major challenge when combining web services is the matching of individual
capabilities of two services in order to determine their compatibility. In this context,
several approaches have been discussed in the web services community to discover
web services based on service requests and service advertisements. [Paolucci et al. 2002]
present a semantic web service matching approach based on the service description
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language DAML-S and propose four different degrees of matching: An exact match
is given if an advertisement and a request are equivalent, a plug-in match indicates
that an advertisement subsumes a requirement, a subsumes match describes a partial
fulfillment of the request and fail a non-match between advertisement and request.
Our approach also aims to match an offered event stream against a stream requirement
provided by an event processing agent or an event consumer based on their semantics,
however, in contrast to semantic web service approaches which aim to enable (semi-)
automatic web service composition, our approach aims at supporting users while
defining processing pipelines out of individual pipeline elements. Therefore, in our
approach we seek to find exact matches between pipeline elements based on a set of
element characteristics (schema, grounding and quality) targeted at stream processing
applications as described in chapter 7.

4.2.2 Linked Services
Due to several reasons, most semantic web service approaches did not gain much
popularity. On the one hand, this is due to the fact that also the corresponding web
services standards (namely WSDL/SOAP/UDDI) were not broadly adapted due to
their high complexity1. Most first-generation semantic web services suffered from
the same problem together with further increased complexity and inadequate tool
support. Therefore, another generation of web services based on RESTful architectures
has gained attraction (for a complete survey, see [Verborgh et al. 2014]).
Linked USDL [Pedrinaci et al. 2014], an improved version of the Unified Service De-
scription Language (USDL) [Kona et al. 2009] provides an RDFS-based vocabulary
to describe web services. Linked USDL relies on existing vocabularies such as the
Minimal Service Model (MSM) [Pedrinaci and Domingue 2010] and the GoodRela-
tions ontology [Hepp 2008] and defines top-level concepts to describe ServiceOfferings
offering a set of services, Services itself and ServiceModels as families of services with
common characteristics, but also defines concepts for service binding, e.g., Commu-
nicationChannels. Tool support for creating and exporting services based on Linked
USDL is available.
Hydra [Lanthaler and Gütl 2013] is another approach to lightweight semantic web
services. It provides a vocabulary to create and describe Web APIs based on RESTful
architectures and JSON-LD as a message interchange format. Due to this focus, the
advantage of Hydra is that it re-uses technologies that are already widely used in the
web and therefore lowers the barrier for web developers to annotate their existing ap-
plications with semantics. Hydra defines web services based on an ApiDocumentation
which describes, among others, input requirements in form of supportedClasses and

1 For instance, the unofficial web services technology stack known as WS-* comprises more than 50 standards
for purposes such as security, reliability, policies, trust and notifications, among others
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their required data model as supportedProperties. Operations the web service supports
rely on the basic HTTP operations GET, POST, PUT and DELETE.

4.2.3 Discussion
Although semantic web services are similar to our approach in terms of the objective
(providing a higher-level abstraction on the actual implementation to provide better
accessibility and ensure interoperability), different underlying architectural paradigms
prevent direct re-use of web service approaches due to the following reasons:
First, almost all web services operate on a request/response architecture. In such
architectures, requests are sent from a service consumer to a service provider, where
a result is computed and sent back to the consumer. In contrast, event-driven archi-
tectures operate on a publish/subscribe architecture. A producer of events does not
know in advance of its consumers, and there could be more than one consumer for
a specific event type. As an important difference, a message used for web service
invocation includes specifications on the operation that should be executed as well as
the input data the web service should consume. In event-driven architectures, events
do not provide any commands on its processing need (see the definition of the term
event in section 2.2), the routing of the events is defined in the EPN specification itself.
Next, event-driven services rely on different execution model. A workflow manage-
ment usually creates a new process instance per event, executes services as defined in
the process model and destroys the instance once the process has finished. In event
processing, a single instance is created at deployment time of the event processing
network. The network then listens for events to arrive, processes them according to the
EPN specification and runs potentially forever until it is stopped manually. Therefore,
event processing applications have a much stronger focus on stateful processing.
Finally, while service-oriented architectures usually perform operations based on
the input data to calculate an output, event-driven applications have a focus on the
manipulation of events, e.g., transforming, enriching or filtering events. This has
important implications related to the modeling of the output of an event processing
operation, most importantly, the output cannot be defined at design-time as the specific
event input is not known at the time the EPN is designed.
However, despite these differences, useful lessons can be learned from approaches to
semantic web services. Therefore, we can re-use and adapt ideas from semantic web
service approaches such as input requirements and capability definitions.
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5
Requirements

This chapter derives requirements as a basis for the design of our approach. Require-
ments are collected based on the needs gathered from the motivating scenarios in
chapter 3 and related work in chapter 4. We start by discussing the requirements
elicitation process, in more detail, how requirements have been derived based upon
the research questions identified in chapter 1. The following sections present various
requirements related to the methodology, the underlying model and the system itself.

5.1 Requirements Elicitation
Requirements elicitation is a process that aims to seek, uncover, acquire and elabo-
rate requirements for computer-based systems [Loucopoulos and Karakostas 1995].
Therefore, collection of requirements implies a process that involves several activities.
Such activities typically involve understanding of the application domain, identification
of sources of requirements, analyzing stakeholders, selection of techniques for requirements
elicitation and finally the elicitation of requirements from stakeholders itself [Zowghi and
Coulin 2005].
Many of these activities have already been presented and discussed in detail within
this thesis. Concerning the application domain, our work targets application do-
mains which require for frequent changes of event processing logic and therefore
need approaches leveraging fast development of Event Processing Systems (EPSs), as
described in section 3.2.
Sources of requirements mainly include (potential) stakeholders and relevant docu-
ments such as reports, research papers and existing systems. This activity was mainly
performed within chapter 4, where we discussed related academic approaches as well
as industry systems. Additionally, some of our requirements also originate from our
experience in various research projects (as mentioned in section 1.4) and interviews
with stakeholders involved in the development and application of event processing
systems.
In our work, analysis of stakeholders can be best performed based on the intended
users of our approach, where we mainly target software developers and business
analysts. On the one hand, business analysts need to be supported for fast development
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of event processing applications. On the other hand, development of event processing
logic which is re-usable and independent from specific implementations requires for
methodological and tool support for software developers.
Techniques, approaches and tools provide different ways to gather requirements. As
research work generally relies on existing approaches, introspection (i.e., deep analysis
of something) played a major role in our requirements elicitation process. Addition-
ally, interviews and a domain analysis of existing real-world systems contributed to
requirements collection.
Upon these activities, we can elicit requirements by identifying an initial classifi-
cation along the identified research questions. Research question 1, dealing with
the reduction of the development effort of event processing applications, leads to
a class of general requirements relevant for the whole development methodology.
Research question 2, dealing with the modeling of event processing logic independent
from implementation details, as well as question 3, concerned with the separation
of background knowledge from event processing logic, can be assigned to a class
of model-related requirements. Finally, the actual execution of distributed event
processing pipelines leads to a set of system-related requirements.
Figure 5.1 illustrated the specific categories of requirements related to our identified
research questions.

Development process-
related requirements

Model-related requirements System-related requirements

Usability

Reusability Expressivity

Interoperability

Extensibility

Resilience

InteroperabilityAbstractionAdaptivity

RQ 1 RQ 2,3 RQ 4

Figure 5.1 Requirements related to research questions
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5.2 Development process-related requirements
We start with presenting requirements related to the general development process of
event processing applications.
The first requirement deals with re-usability. In section 3.3.1, we have already shown
that many pattern languages are hard to maintain, as input and output streams are
directly bound to the event pattern description. Therefore, event processing logic
should be provided in a more generic way, allowing for more intuitive parameteriza-
tion of the specific functionality without having to touch the actual application logic.
This results in the following requirement:
Requirement R1: Generic event processing logic
Event processing logic is defined in a generic way independent from specific input and output
streams.
Besides generic processing logic, use cases often require domain-specific processing
of event streams. For instance, in the oil drilling scenario presented in section 3.1.1,
specialized algorithms need to be part of the application in order to detect drilling
operations in a data-driven way. Such requirements generally restrict a possible
solution of having a fixed set of generic, reusable components, but stress the need to
provide support for the integration of domain-specific event processing logic at any
time, resulting in requirement 2:
Requirement R2: Domain-specific event processing logic
Domain-specific event processing logic must be supported.
As described in section 2.3.1, event processing applications are represented by a
network connecting event producers, processing agents and consumers. In section
2.3.1, we have shown that several ways (domain-specific languages, high-level APIs
and visual editors) exist to build an EPN. As we target business analysts to build
event processing applications without developer support, this approach requires for
graphical modeling languages which abstract from technical details.
Requirement R3: Graphical Modeling Language
Event processing applications can be defined using a graphical modeling language.
Integration of custom domain-specific event processing in graphical modeling lan-
guages implies the need for individual development. For instance, specific algorithms
need to be developed programmatically before they can be made available as high-level
building blocks in graphical notations. Therefore, tool support for developers is re-
quired to speed up the development of event processing logic, leading to requirement
4:
Requirement R4: Developer Support
Developer support to create reusable event processing logic is available.
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In section 3.3.2, the need to separate knowledge from the technical specification of
event processing applications was motivated. Knowledge implies static data which is
needed to instantiate an event processing agent, as well as historic data. This requires
tools to assist in the definition of knowledge models which can be re-used in the
graphical modeling language.
Requirement R5: Knowledge Modeling
Knowledge can be modeled separated from the event processing logic.
The next requirement deals with the ability of the system to modify existing logic.
Once requirements change, users should be able to adapt an EPN without the need to
restart components. For instance, sensor data might change over time. In such cases,
adaptation of event processing applications should be possible without the need to
adapt programming code. This requires for mechanisms to support modifications of
existing EPNs.
Requirement R6: Adaptivity of EP applications
Event processing applications can be modified without developer consultancy.

5.3 Model-related requirements
The next category of requirements is related to the underlying model. The purpose of
this model is to provide capabilities to describe event processing logic independent
from their implementation, and to abstract from technical details. In this way, the
model should be expressive enough to cover the targeted use cases and general event
processing capabilities and needs to contain all required technical specifications to
instantiate event processing logic properly, but at the same time needs to abstract from
technical details in terms of accessibility for non-programmers.
The following requirements are therefore concerned with expressivity. In section 2.3.1,
we presented a hierarchy of event processing agents from the literature. This model
has important implications in terms of the design of an event processing system.
Requirement R7: Event processing agents
The model supports all basic types of event processing agents.
In order to understand event streams, the event schema and its properties need to
be modeled. A minimal description of an event property contains its key and its
type specification. Additional schema-related properties such as value ranges further
increase the understanding of an event schema.
Requirement R8: Event schema
The model supports definition of event schemas and its properties, types and value ranges.
Many event processing applications make use of events originating from sensors.
Quality aspects of sensors on both stream level (e.g., frequency and latency) and event
level (e.g., accuracy and resolution) are useful metrics to determine whether a specific
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Event Processing Agent (EPA) is able to process a specific event. This results in the
following requirement:
Requirement R9: Quality of events
The model supports definition of quality aspects related to events and processing agents.
Besides technical specifications of event, static data is often required to instantiate event
processing logic. Static data involves parameters in an event processing application
such as expected user input. Further examples include links to data stored in 3rd
party systems such as production plans and referenced knowledge items related to
business-level requirements, such as specific products or places.
Requirement R10: Static data
The model supports definition of static data.
In section 3.3.3, we have highlighted the need for event processing systems that are
able to integrate heterogeneous and distributed event processing logic. A model
supporting interoperability should be format-agnostic, i.e., the model itself should
specify the event format used at run-time.
Requirement R11: Run-time representation: Event format
The model is independent from a specific run-time event format.
A similar requirement can be formulated for communication protocols. As many
standards within certain application domains exist for transmitting events based on
publish/subscribe protocols, the model needs to be agnostic in terms of a specific
protocol. Instead, the protocols used at run-time by event streams and those which
are supported by processing elements need to be described by the element itself.
Requirement R12: Communication protocol
The model is independent from a specific run-time communication protocol.
The next requirement deals with the representation of the model itself. In order to
ensure interoperability, this representation should be based on existing standards. In
this context, the Resource Description Framework (RDF) and the schema language
RDFS1 provide a widely-used framework to describe data models based on web
technologies. RDF allows to describe a resource in form of statements, where a
statement is formulated as a subject-predicate-object expression. Since resources are
identified by unique, global identifiers, existing resources in RDF can be easily re-used
and extended. As a result, many vocabularies for various domains already exist which
allow to re-use knowledge that is represented in RDF.
In addition, the schema language RDFS provides ways to define concepts and data
types. In contrast to object-oriented programming languages, concepts described
in RDFS are based on the Open World Assumption (OWA), which assumes, that, in
contrast to the semantics of common data models, non-defined facts are not automati-
cally considered false. An implication of this assumption is that properties are not
1 http://www.w3.org/TR/rdf-schema/

http://www.w3.org/TR/rdf-schema/
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assigned to concepts directly, but can generally be applied to any RDFS concept. This
circumstance allows for extension and re-use of knowledge represented in RDF at any
time.
Due to these reasons, we can benefit from re-using existing vocabularies not only
in terms of our model itself, but also use it as a representation to store background
knowledge which we aim to isolate from the technical EPN specification in RDF.
Requirement R13: Design-time representation: Model
RDF is used as a data model and to represent knowledge.
Finally, in order to achieve our goal to assist application specialists in creating event
processing applications, the model should provide higher-level access to event pro-
cessing operators. In other words, one major requirement for the models that are to
be developed is their ability to be expressive enough to support the development of
advanced event processing applications, but at the same time to be able to abstract
from technical details. This leads to the following requirement:
Requirement R14: Abstraction
The model should abstract from low-level event processing operators.

5.4 System-related requirements
In this section, we discuss requirements related to the system. These requirements
mainly include technical aspects which affect the execution of the event processing
system.
The first requirement is related to extensibility. In distributed settings such as the IoT,
event processing systems must be easily extensible with new data sources, processing
logic and sinks. In marketplace scenarios as presented in section 3.2.2, participants
may provide new processing capabilities at any time to other participants. Therefore,
our system needs to be capable of run-time extensibility.
Requirement R15: Extensibility
Event producers, processing agents and consumers can be added at run-time.
In order to assist non-programmers in creating event processing applications based
on graphical modeling, the compatibility of two arbitrary elements which should be
connected in an EPN must be evaluated. Therefore, a matching mechanism is needed.
A simple matching schema could work on the syntax level. In this case, a processing
element would define the requirement for a specific data type an incoming stream
should have. However, such mechanisms are not suitable for advanced scenarios,
where many different characteristics (e.g., the measurement unit of an event property
or the frequency of a stream) influence a potential matching. This leads to the following
requirement:
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Requirement R16: Matching
The system is able to evaluate the compatibility of two event processing blocks based on their
semantics.
At run-time, failures in distributed systems might occur due to several reasons. For
instance, sensors might simply fail, data being sent by sensors could change causing
the event processing application to stop, or network issues could lead to the absence
of events. Therefore, event processing systems need to be able to recognize failures.
Requirement R17: Failures
Failures in processing nodes can be detected.
Besides failure recognition, systems ideally should be able to recover from failures.
This requirement involves two aspects: On the run-time layer, event processing sys-
tems often have their own mechanisms to ensure fault tolerance. In other cases, where
failures do not depend on the system itself, but, for instance, on the hardware of sen-
sors, fault tolerance also involves automatic replacement with components providing
the same capability, e.g., backup sensors.
Requirement R18: Fault Tolerance
The system provides capabilities to recover from failures.
The next two requirements are related to the ability of the system to integrate hetero-
geneous event processing systems. First, event processing applications which need to
integrate geographically distributed systems must be supported to cover scenarios
such as the event marketplace.
Second, as our approach does not rely on the development of a specific event pro-
cessing run-time implementation, our system should be independent from the event
processing technology itself. Both assumptions result in the following two require-
ments:
Requirement R19: Distributed Execution
The system can integrate distributed event processing logic.
Requirement R20: Heterogeneous run-times
The system does not depend on a specific event processing run-time system.
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Methodology

In order to solve the problems introduced in the first part of the thesis, this chapter
introduces a methodology which aims at providing a novel way to develop event
processing applications. In section 6.1, we introduce basic terms which are frequently
being used in the course of this thesis. Section 6.2 briefly presents our approach in
form of a walkthrough of this chapter. Afterwards, we introduce a methodology
supporting the development of event processing applications in section 6.3. Our
approach targets different user roles, which are defined in section 6.4. The individual
phases of the methodology are further explained in sections 6.5 and 6.6. Finally,
section 6.7 introduces tools we provide in order to support individual tasks of the
proposed methodology.

6.1 Terms
In order to facilitate a common understanding of the terms used within the following
chapters, we refine the following notions partially already used in this thesis:
Processing Pipeline. A processing pipeline describes an event processing network
consisting of a set of event producers, event processing agents and event consumers
and a data flow describing the communication between these elements. A process-
ing pipeline can employ heterogeneous underlying run-time technology in a single
pipeline. In section 8.2, processing pipelines are defined formally.
Pipeline Element. A pipeline element is either an event producer, an event processing
agent or an event consumer.
Processing Element. We use the term processing element to subsume consuming
pipeline elements in an event processing network, which includes event processing
agents and event consumers.

6.2 Walkthrough
Before we dive deeper into details of the methodology itself, we briefly sketch our
approach. Figure 6.1 gives a high-level view of the conceptual architecture. This
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model extends the development process of event processing applications as sketched
in section 3.3.1.
Requirements collected by business analysts are realized by pattern engineers. Our
approach aims at enabling pattern engineers to model processing pipelines consisting
of event producers, processing agents and event consumers using graphical tool
support. Pipelines are created based on a set of re-usable pipeline elements. These
elements are created by software developers based on requests for new application
logic formulated by pattern engineers. Re-usable pipeline elements generally consist
of a specific implementation covering execution details of an element, and a semantic
description which provides information on how an element can be used.
Once new application logic is required, developers first start with modeling details on
a pipeline element. In case of a new requirement for an event producer, a description
is generated which includes details on the producer itself and event streams published
by the producer. This description contains information on the event objects, their
content and technical details on the event format as well as the technical connectivity,
e.g., the communication protocol used to transmit event streams. Afterwards, adapters
can be implemented for event streams, e.g., connectors which consume data directly
from sensors.
In a similar process, processing agents are defined. In contrast to event producers,
processing agents are first described by providing information on input stream require-
ments the component expects in order to ensure proper execution in addition to static
data (e.g., required user input) which is needed for the instantiation of the processing
logic. Furthermore, developers additionally provide information on how the agent
transforms an event stream to a specific output stream. Afterwards processing agents
are further customized with specific application logic.
Pipeline elements are registered in a centralized repository, located in a pipeline
management component. This repository provides elements that can be used by
pattern engineers to create processing pipelines, which can afterwards be deployed
in the engine in order to execute the event processing logic. Events are forwarded
to external systems in order to support business analysts directly with the output
produced by a processing pipeline.

6.3 Methodology: Overview
In general, a methodology is defined as a set of methods, rules, or ideas that are
important in a science or art [Merriam-Webster 2009]. Methodologies usually define
procedures which aim at solving or assist to solve a specified problem. Especially in
software engineering, methodologies pursue the goal to split development processes
into smaller parts, such as phases, tasks and tools. The overall objective in this thesis
is to enable non-programmers to develop event processing applications.
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Figure 6.1 Conceptual model of our approach

Based on the requirements presented in the previous chapter, we developed a method-
ology to support this objective, which is illustrated in figure 6.2.
In general, our methodology consists of two phases:
The setup phase deals with the development of building blocks which are prerequi-
sites for the definition of real-time applications by focusing on two main processes
which constitute the setup phase:
The first process covers the definition of pipeline elements which should be later
available for the development of event processing applications. This phase targets
technical experts, i.e., software developers. The main tasks during this process are to
implement the application logic of processing elements.
The second process during the setup phase is the modeling of knowledge required for
specific processing pipelines (which are built in the execution phase). Obviously, this
process is targeted at business analysts who are experts in the application domain of
interest.
Second, the execution phase deals with the definition, execution and maintenance
of processing pipelines. Processing pipelines run through a life cycle consisting of
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Figure 6.2 Methodology

pipeline identification, authoring, deployment and evolution. This phase is targeted
at business analysts and pattern engineers.
The setup phase is, as a preparation phase, triggered by requirements coming from
needs which usually originate from the execution phase. Requirements might be
expert-driven, i.e., they are derived by business analysts during pipeline identification.
For instance, the requirement to implement a new sensor adapter might come from the
need to monitor a specific parameter the sensor produces. In addition, requirements
can be evolution-driven, e.g., system-generated recommendations to adapt event
processing logic based on analyzed event streams. These requirements are gathered
(semi-) automatically during the execution of pipelines by applying pipeline evolution
techniques [Sen 2013].
The main advantage of the approach suggested by our methodology is that reuse of
pipeline elements is facilitated. Developers in the setup phase first define pipeline
elements using a vocabulary which abstracts from a specific technical implementa-
tions. Furthermore, we provide tool support which enables developers to implement
processing elements which do not depend on specific input streams, but are able to
solely operate based on modeled input requirements and output specifications.
Before we define roles and further explain the individual processes and tasks within
each phase, we give an illustrative example for a logistics-based use case.
Example. During pipeline identification, a business analyst is interested in getting noti-
fications once a vehicle which transports hazardous goods arrives at one of the company’s
warehouses. The company has already equipped drivers with a mobile application which is able
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to collect position data and information about the current load, but this data is only stored in a
central database for off-line analysis.
In the setup phase, business analysts first define domain knowledge. In this example, domain
knowledge contains information about warehouse locations as well as the definition of products
along with their classification as being hazardous. In the meanwhile, technical experts are
required to develop an adapter which forwards the events collected by the app in real-time
to a message broker, an event processing agent which implements a geofencing algorithm,
another event processing agent which implements a filter functionality based on products and
a notification component.
Taking the example of the geofencing component, the first modeling task is to describe the
expected input stream of the component. In our example, the developer defines a stream
restriction which accepts any event stream that provides geographical coordinates. In addition,
the model defines required static data in form of a coordinate which marks the center of the
geofence. This coordinate can be linked to a concept in the knowledge base. Based on the
model, provided tool support is able to generate an implementation template, which leaves
developers with the task to implement the specific geofencing functionality. After deployment,
the geofencing component can be used in the pipeline editor.
The specific tasks within the setup phase and execution phase are further detailed in
sections 6.5 and 6.6.

6.4 Roles
We have already introduced three roles we relate to in our methodology, namely
business analysts, pattern engineers and technical experts. In this section, we briefly define
these roles and discuss the core competencies they require.

• Business Analyst. According to the International Institute of Business Analysis
[Brennan 2009], the role of business analysts is defined as a “liaison among
stakeholders in order to understand the structure, policies, and operations of
an organization, and to recommend solutions that enable the organization to
achieve its goals”. As we focus on the development of real-time applications,
our definition of this role is more specialized and targets business analysts
who are concerned with tasks related to immediate situation detection or have
an interest in data preparation for further analysis. In many cases, business
analysts define relatively fine-grained business goals and opportunities, which
should be detected at runtime as well as (potential) threats which might affect
the fulfillment of goals.

• Pattern Engineer. Pattern engineers play a key role in our methodology as they
are responsible for the development of processing pipelines. This role is closely
related to the role of Systems Analysts, who are defined as a “person who uses
analysis and design techniques to solve business problems using information
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technology” [Walford 2014]. Thus, systems analysts usually build a bridge be-
tween more business-oriented analysts on the one hand, and technical experts on
the other hand. This perfectly matches the role we envision for pattern engineers.
The main responsibility of this role is to implement processing pipelines based
on business requirements. Pattern engineers compose processing pipelines by
choosing appropriate event streams, and connect them with processing elements
prepared by technical experts during the setup phase. The main competencies
required for the pattern engineer role are therefore to have basic knowledge of
event-driven computing as well as data transformation processes and analysis.

• Technical Experts. Technical experts are responsible to build the technical
basis needed for building processing pipelines, i.e., to build re-usable pipeline
elements. The role primarily targets people responsible for software engineering
tasks and requires specific knowledge on event processing systems and their
implementations.

6.5 Setup Phase
In this section, we describe tasks assigned to the setup phase in more detail. Figure
6.3 details processes and tasks within this phase. In general, two main processes are
defined: Knowledge modeling deals with the definition of background knowledge
which is later needed in the execution phase to define domain-specific data. The event
processing process is related to technical-oriented tasks in order to prepare pipeline
elements for use within the execution phase.

6.5.1 Event processing tasks
Main goals of event processing-related tasks during the setup phase are to model,
implement and deploy event producers, event streams and event consumers.

Pipeline Element Modeling

The first task is to define an implementation-independent model of necessary pipeline
elements. While the specific details of this model are presented in detail in chapter 7,
this section discusses the basic elements that need to be described for each pipeline
element are introduced in this section.
Event Producers and Streams. Event producers are entities which produce a number
of event streams. The ultimate goal of this modeling task is to describe the run-time
behavior of streams, including the structure of events, the meaning of event properties
such as measurements and their technical accessibility. Figure 6.4 shows sample
properties which can be defined for event producers. It is noteworthy that we do
not define the run-time message itself, but only the semantic description how events
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are expected to look like at run-time. This design decision allows to use lightweight
message formats at run-time and even binary formats which are potentially faster
when processing event streams with high frequency, while still being able to benefit
from an advanced description of events.
First, an event producer needs to be specified. An event producer is related to a
specific real-world object which produces event streams, such as a specific sensor. A
single event producer can produce multiple event streams. For each stream, its specific
characteristics are defined. In general, an event stream consists of an unbounded
sequence of events having the same type. Thus, the event type (or, in other words,
the event schema) needs to be modeled. The schema usually consists of a number of
event properties which correspond to specific measurement values of the event source,
for instance, a temperature sensor produces a stream which contains temperature
measurement values. For each event property, several characteristics can be defined
such as:

• The property type, which defines the data type of the measurement value in the
technical representation (e.g., a numerical value),

• the runtime name, which defines the identifier of the measurement value in the
technical representation (e.g., a variable in a JSON representation),

• the semantics of the property, which define what is being measured and
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• the value specification, e.g., the value range of a numerical property.
Besides the schema, quality specifications can be given. Qualities can be defined either
on the stream level (e.g., the frequency of events a stream produces), or on the event
level (e.g., accuracy of a measurement). In addition, technical information on the event
channel is required which specifies how the event stream can be consumed, including
its run-time format used to represent the event and its communication protocol.
Additional properties can be assigned to a stream definition, this is further detailed in
chapter 7.
Event Processing Agents. Example properties which are modeled for EPAs are il-
lustrated in figure 6.5. EPAs are basically defined by their input requirements, their
output specification and additionally required human input. The input is defined
based on the event stream model, however, an EPA specifies requirements the under-
lying implementation needs to execute the processing logic. Example requirements
include schema-level requirements (e.g., a specific data type) which specify a set
of event properties an incoming stream must have. Quality requirements are con-
cerned with minimum or maximum quality criteria an input stream needs to provide.
For instance, an EPA which provides an online algorithm might require a minimum
frequency of incoming events in order to produce proper results.
Besides input requirements, the output of an EPA is described by providing transfor-
mation types. These types specify the characteristics of an output stream in relation
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to the specific input stream. Transformation types depend on the type hierarchy of an
EPA introduced in section 2.2. For instance, a filter EPA does not change the schema
of an input event stream, but might influence the frequency of an output stream.
Finally, static data input needs to be described for an EPA. In this task, developers
specify additional information which is needed to instantiate the EPA in the execution
phase. This might involve the specification of supported operations (for instance, a
Filter EPA could operate on multiple filter conditions), human input (e.g., additional
user input required to instantiate the EPA) or required instances from the knowledge
base.
Event Consumers. The third model-related task in the setup phase is modeling of
event consumers. Required properties for event consumers are in large parts identical
to EPAs, as they also specify input stream requirements and static input. However,
consumers as sinks in an event processing network do not need to specify the output
type.
The main results produced in this task are implementation-independent models
which describe the intended run-time behavior of event sources, processing agents
and consumers.

Pipeline Element Implementation

After pipeline elements have been modeled in an implementation- independent way,
the next task is to create re-usable run-time implementation logic.
For EPAs and event consumers, this logic is not bound to specific event streams, but is
solely able to operate on the input requirements and output specification defined in
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the modeling task. Implementation tasks first involve the selection of an appropriate
event processing system (e.g., an existing framework as introduced in section 2.3.2 or
a custom implementation). Afterwards, the software engineering process consists of
two parts:
The first task is not specific to the business logic, but related to the technical connec-
tivity of the processing element. Input and output adapters need to be defined, e.g.,
communication channels and protocols which should be supported. Subsequently,
the specific business logic (e.g., the event transformation process) of the element can
be implemented. In section 7.6.1, we will show that appropriate tool support can be
used to automate the generation of code needed for the first task.
For event producers, the implementation task includes the development of specific
event adapters which read directly from sensors or other event sources. In addition,
the technical connection to the event channel used for transmitting event data to a
message broker needs to be implemented.
The main result which is produced in this task is a software artifact which contains a
re-usable implementation of a pipeline element.

6.5.2 Knowledge modeling
The second process assigned to the setup phase is knowledge modeling. While the
setup phase serves to identify and capture domain knowledge, it is mainly used in the
execution phase to support pipeline authoring with domain-specific background
knowledge. Domain ontologies generally capture knowledge for a particular type of
domain [Studer et al. 1998]. The exact process to identify and model knowledge for
this purpose is a separate topic and therefore out of scope of this thesis, but widely-
used methodologies for knowledge engineering can be re-used [Sure et al. 2003; Sure
et al. 2004; Fernández-López et al. 1997].
The resulting artifact of the knowledge modeling task is a domain model as illustrated
in figure 6.3.

6.5.3 Deployment
Finally, the artifacts developed in the setup phase are made accessible to the execution
phase by performing a deployment task. Captured knowledge is usually deployed in
a knowledge base which only contains the domain knowledge that has been identified
as relevant for building processing pipelines. Deployment also includes making the
knowledge base technically accessible (e.g., in form of a SPARQL1 endpoint) for tools
used within the execution phase.
The implementations of pipeline elements are also deployed to a repository. This
repository provides endpoints to access the pipeline element model, i.e., the descrip-

1 a query language for RDF-based databases: https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/
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tion of an element. This description can be read by tools in the execution phase to
retrieve information on available event streams, processing agents and consumers.
Depending on the event processing system used for the actual implementation, addi-
tional tasks might be required prior to deployment, e.g., setting up of the required
run-time infrastructure which executes the event processing logic.

6.6 Execution Phase
Now we move to the execution phase and the tasks which are performed in this phase
as illustrated in figure 6.6.
In general, the execution phase starts with the identification of required pipelines
by business analysts. From this point, pattern engineers are responsible for pipeline
authoring, deployment and finally evolution. This process can be triggered either in
an expert-driven manner, or in an evolution-driven way: By analyzing the current
execution status, recommendations for new pipelines or modifications to existing
pipelines can be generated. If any missing event sources or processing elements are
identified in one of these tasks, the setup phase is entered in order to implement the
missing components.

Pipeline 
Identification

Pipeline 
Authoring

Pipeline 
Deployment

Pipeline 
Evolution

Setup Phase Setup Phase

Required pipeline Specific pipeline
model

Executable
pipeline

Required pipeline
modifications

Figure 6.6 Execution Phase: Tasks

6.6.1 Pipeline Identification
Before processing pipelines can be defined by pattern engineers, the purpose of the
pipeline needs to be defined. Pipeline identification is a manual task performed by
business analysts. It follows a requirements engineering process which depends on
the intended purpose of the processing task.
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In section 3.2, we have already introduced three general application domains where
real-time processing is advantageous, namely monitoring, data harmonization and
situation detection.
While pipelines which are intended to support data harmonization are usually built
with the goal to transfer data to external systems in order to prepare data for off-
line analysis, pipeline identification for this category is pretty straightforward as
requirements directly arise from business needs.
Business needs targeting monitoring and situation detection are in general related
to business goals. Business goals describe target values for specific performance in-
dicators an organization aims to achieve. Tracking of current performance and goal
fulfillment are the main business drivers for monitoring-related pipelines. Further-
more, enterprise architecture models such as the Business Motivation Model (BMM)
[Business Motivation Model - Version 1.1 2010] provide methods to identify threats (as
negative goal influencers) and opportunities (as positive goal influencers), which are
the business drivers for situation detection tasks in event processing.
In this thesis, we do not further investigate pipeline identification as it is more related
to business-related research areas, but many approaches already exist which allow to
identify business goals, performance indicators and situations [Kavakli 2004].

6.6.2 Pipeline Authoring
Afterwards, the identified pipeline is being defined by pattern engineers. This task
includes the selection of appropriate event streams according to the identified business
need. Based on the input streams, processing elements (which have already been
implemented in the setup phase) need to be selected and connected to describe the
data flow in form of a processing pipeline. In this process, each element needs to be
configured based on the input stream and static data requirements depending on the
specific element. In addition, configuration also includes the assignment of knowledge
items from the domain ontology. Supporting pipeline authoring for non-programmers
is one of the main objectives of this thesis. Chapter 8 presents an in-depth description
of this task and details on processing pipelines.
The main artifact produced within this task is a stream-specific pipeline model.

6.6.3 Pipeline Deployment
After pipelines have been defined, the pipeline model must be translated into an
executable model. This is done by invoking the run-time implementation of each pro-
cessing element which is part of the pipeline. Depending on the underlying event pro-
cessing systems which contain the implementation logic, additional implementation-
specific tasks might be required. For instance, CEP systems which use a declarative
pattern language to reflect the event processing logic need to be parameterized with
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stream-specific input event types and static data provided in the authoring task. In
contrast, many distributed event processing systems need to submit the instantiated
implementation logic to a cluster which controls distributed execution.

6.6.4 Pipeline Evolution
Finally, pipeline evolution deals with monitoring and evolution of pipelines. Monitor-
ing is mainly concerned with technical surveillance of the current execution status of
pipelines and its processing elements. For instance, failures of sensors or individual
processing elements need to be detected as they occur in order to avoid unexpected
data loss. In contrast, evolution, which is also based on monitoring, primarily deals
with the inspection of the data flow in a pipeline with the main goal to generate
recommendations on adaptation of processing elements. Supporting adaptivity of
real-time processing pipelines in a bottom-up manner by using data mining and
machine learning techniques is still an active research area, some approaches can be
found in [Sen et al. 2010a; Sen et al. 2010b; Lee et al. 2015; Margara et al. 2014].

6.7 Tool Support: StreamPipes
In order to demonstrate the feasibility of this methodology and for evaluation purposes,
we created tool support in form of StreamPipes [Riemer et al. 2015]. StreamPipes is a
software framework which provides various tools for the individual phases and tasks
of our methodology. Figure 6.7 shows the tool coverage of StreamPipes in relation
to the methodology. The setup phase is supported by four different tools: First,
the knowledge editor (1) helps to capture and manage domain-specific knowledge.
Second, a description model editor (2) provides a web-based interface to generate
implementation-independent models to describe pipeline elements. In addition, a
Software Development Kit (SDK, 3) is provided which offers high-level access to model-
specific parameters and abstracts from event processing-specific implementation tasks
which are not directly related to the business logic. Finally, we have created run-
time wrappers (4) for various existing event processing systems in order to show the
applicability of our approach for a wide range of existing tools which are typically
used for event processing.
For the execution phase, we have created a graphical editor (5) to compose event
processing pipelines out of existing, reusable pipeline elements. The integration and
execution engine (6) is a back end component for the authoring tool and manages
the life cycle of a processing pipeline by providing matching capabilities between
processing elements at design-time (e.g., in order to determine whether two pipeline
elements are compatible to each other based on their underlying description) and
handles the execution management of distributed event processing logic.
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Figure 6.7 Methodology: Tool Coverage

This section only briefly introduces these tools. Details are provided within chapters
7 and 8, where we focus on technical details that are concerned with each phase.

6.7.1 Knowledge Editor
The user interface of the knowledge editor is illustrated in figure 6.8. This tool is
basically an ontology editor for the management of domain knowledge. Although
various tools exist to manage ontologies (see below), we decided to create a lightweight
editor which is directly integrated into the framework due to the following reasons:
As modeling of knowledge is a task assigned to the role of business analysts, usability
is an important issue. Most ontology editors such as Protégé2 or TopBraid Composer
(TBC) 3 are more technical-oriented tools which require advanced knowledge of
semantic web applications and are therefore not suited for our purpose. Furthermore,
by providing our own solution we were able to provide a simplified user interface
that also allows convenient access for more advanced concepts such as definition of
property value specifications. Although such functionality is supported by existing
ontology modeling tools (by providing the required concepts and properties), our
editor provides higher-level access to such specifications.
Features of the knowledge editor include definition of concepts, properties and in-
stances, management of namespaces, and import of existing RDF-based vocabularies.

2 http://protege.stanford.edu/
3 http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/

http://protege.stanford.edu/
http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
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Furthermore, data models can be specified for concepts by making use of schema.org’s
domainIncludes and rangeIncludes properties.

6.7.2 Description Model Editor
Figure 6.9 shows the main screen of the description model editor. This editor serves
to assist technical experts in describing process elements according to our vocabulary
without requiring knowledge of semantic web technologies.
Features include definition of new event producers, event processing agents and
consumers. If a source has already been implemented and is publishing event streams
to an existing message broker, they can be made directly accessible into the pipeline
authoring tool from this interface.
The description model editor is connected to a code generation module (see below)
which allows developers to generate an implementation template for supported event
processing systems directly from the model.

6.7.3 Software Development Kit (SDK)
The SDK is a software library implemented in Java which provides high-level pro-
gramming access to our model. Instead of using the model editor, descriptions for
pipeline elements can also be created by using the SDK. In addition, the SDK includes
a web server implementation to make event processing logic available for invoca-
tion at a specified HTTP endpoint. Such an endpoint publishes the description of a
pipeline element and receives invocation messages from the execution engine. The
SDK automatically performs transformations between RDF graphs and Java-based
programming models, allowing developers to completely abstract from the RDF layer.

6.7.4 Runtime-Wrapper
In order to show the ability of our approach to manage processing pipelines which are
consisted of heterogeneous underlying run-time technologies, StreamPipes includes
run-time wrappers for several open source event processing frameworks. These
wrappers are built as a bridge between our implementation-independent model and
framework-specific implementation details.
StreamPipes currently includes run-time wrappers for the CEP engine Esper4, the
distributed stream processing frameworks Apache Flink5 and Apache Storm6 and a
wrapper for custom event processing systems that do not rely on an existing frame-
work.

4 http://www.espertech.com
5 http://flink.apache.org
6 urlhttp://storm.apache.org

http://www.espertech.com
http://flink.apache.org
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6.7.5 Pipeline Authoring Tool
The pipeline authoring tool (illustrated in figure 6.10) is a web-based editor for model-
ing processing pipelines. The editor consists of three separate views to select from
available event streams, processing agents and consumers. Elements can be dragged
into an assembly area to create pipelines. Whenever a new connection between to ele-
ments is made, the integration engine is invoked to verify that a connection is possible
and to recompute the required human input which is needed for instantiation of a
processing element based on the set of previously defined static data requirements.
The authoring tool additionally includes functionality for users to receive recommen-
dations for elements and to execute and modify pipelines directly from the user user
interface. Chapter 8 presents the authoring tool in detail.

6.7.6 Integration and Execution Engine
Finally, StreamPipes includes an engine to support the integration of heterogeneous
run-time event processing logic and to control the execution of processing pipelines.
Integration is supported by matching algorithms to determine the ability of two
pipeline elements to be connected within a processing pipeline. This algorithm expects
two description graphs as an input, performs verification checks based on schema-level
requirements, quality-level requirements and supported communication protocols
and negotiates the run-time communication between two elements. In section 8.3, we
further describe this matching process.
Execution includes the instantiation of distributed processing pipelines by invoking
the implementation logic of each involved pipeline element. In addition, functionality
to support pipeline evolution is provided, e.g., by establishing monitoring nodes
for running pipelines to detect failures and create recommendations on pipeline
modifications based on available pipeline elements.

6.8 Summary
In this section, we proposed a methodology supporting the development process of
event processing applications. We presented the methodology itself, followed by a
more detailed discussion of phases, processes and tasks. Our methodology splits the
development process into two phases, the setup phase and the execution phase. While
the setup phase serves to prepare re-usable event processing logic, the execution phase
deals with the definition of processing pipelines by connecting re-usable elements
with specific input event streams. The main advantage of this approach is, while non-
programmers are provided with the possibility to define event processing applications
abstracted from technical details without developer consultancy, at the same time the
event processing system does not rely on a predefined, fixed set of pipeline elements.
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The setup phase ensures extensibility of the system at any time once new requirements
arise. Thus, our methodology combines a highly flexible system with an intuitive way
to create event processing applications.
Additionally, we introduced tool support in form of StreamPipes, a reference imple-
mentation providing end-to-end tool coverage of our methodology. Details on specific
tools that are part of StreamPipes are further explained in the upcoming sections.
In chapter 7, we build upon this methodology by introducing a vocabulary supporting
the setup phase. Chapter 8 targets the execution phase in more detail by presenting
details on pipeline authoring and deployment.



7
Setup Phase

In this chapter, we focus on the setup phase by developing models which are needed
to describe event producers, processing agents and sinks independent from their
underlying implementation. In addition, we discuss how this description can be made
accessible to other elements and define the execution flow of events at run-time. In
section 7.1, the general approach is briefly described. Section 7.2 introduces some
existing vocabularies we re-use and extend as a basis for a vocabulary which defines
a semantic model for pipeline elements. This vocabulary is presented in detail in
sections 7.3, 7.4 and 7.5. Finally, tools we have developed to support the setup phase
are presented in section 7.6.

7.1 Walkthrough
As in the previous chapter, we briefly sketch the approach which is being introduced
within this chapter.
Figure 7.1 illustrates a conceptual view on the pipeline element modeling task of the
setup phase. The goal of this task is to define a specification of event producers,
processing agents and consumers, meaning a description of the run-time event streams
produced by an event source and requirements as well as output specifications for
Event Processing Agents (EPAs) and consumers.
As pipeline elements should be used as part of processing pipelines, this description
needs to be made available in order to allow other components to retrieve information
on the element. Our approach realizes this by providing a description graph which
contains the complete specification of a pipeline element. This graph is based on the
RDF model and represented as a JSON-LD1 document. This document is attached to a
RESTful2 interface, so that information on a pipeline element can be retrieved globally

1 JSON-LD is a JSON-based format to serialize RDF data. In contrast to RDF/XML, JSON-LD has a syntax
which is easier to read and, in contrast to human-readable RDF serializations such as Turtle, JSON-LD is
based on standards used in the web.

2 Representational State Transfer (REST) is an architectural style for web services based on HTTP operations.
REST handles manipulation of resources (e.g., web documents) by use of standard HTTP operations GET,
POST, PUT and DELETE.
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Figure 7.1 Setup Phase: Approach

from the web. Section 7.2 introduces the vocabulary used to generate description
graphs.
Event producer descriptions are passive, i.e., they only provide information on event
streams. That is, the way streams are published to a message broker and details on
the events that are sent. In contrast, processing elements are active elements, i.e., they
need to be instantiated with binding information, i.e., a configuration containing the
specific input streams and static data needed in order to execute the run-time logic.
The instantiation of a processing element is called invocation. In our architecture, a
processing element is being invoked by sending an invocation graph to a REST interface
of the element. In section 8.2, we define a vocabulary used to create invocation graphs.

7.2 Ontology re-use
One of the advantages of using RDF as a data model is drastically increased re-usability
of shared conceptualizations. Ontology re-use enables interoperability of systems
by merging different ontologies into a single one and by extending, specializing or
adapting existing ontologies to support new objectives [Pinto and Martins 2000].
In concern to our approach, re-use of existing ontologies is beneficial for our provided
vocabulary to describe pipeline elements, as concepts from other ontologies can be
extended and specialized. In addition, re-use facilitates knowledge modeling. By
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re-using standard external vocabularies which follow the linked data principles3,
interoperability is increased as vocabularies can be shared among multiple stakehold-
ers, which is a main requirement for distributed application scenarios such as event
marketplaces.
In general, our ontology re-uses several existing vocabularies:

• Dublin Core. Dublin Core (DC) is a vocabulary which provides terms that can
be used to describe resources [Weibel et al. 1998]. The current DC vocabulary
provides an element set called Dublin Core Metadata Initiative (DCMI) Metadata
Terms4, which defines a set of terms to describe metadata. The DC vocabulary is
available as an RDF model.

• Semantic Sensor Network Ontology (SSN). The SSN is an ontology to describe
capabilities and properties of sensors and their observations [Compton et al.
2012]. The core vocabulary allows to model capabilities of sensors (e.g., mea-
surement capabilities), observation values, operating restrictions of sensors and
deployment-related properties. The SSN model is defined as an Web Ontology
Language (OWL) ontology using the OWL 2 standard.

• Schema.org. Schema.org has been developed by major search engines Google,
Bing and Yahoo! as a common vocabulary aiming to support data markup on
web pages [Guha 2011]. It is worth to note that Schema.org does not directly
depend on RDF as a data model, but defined its own model with some semantic
differences to the RDF(S) standard. For instance, while RDFS provides the
properties rdfs:domain and rdfs:range to assign an instance to a specific concept,
Schema.org provides the properties domainIncludes and rangeIncludes, which
define a set of allowed concepts for a given property. This approach has the
advantage that it adheres more to the intuitive understanding of most web
developers as it helps to define specific properties a concept might have, which
is practically not possible in RDFS. The Schema.org representation is available in
RDFa5 and therefore can be reused in RDF-based vocabularies [Brickley 2011].

In this chapter, we use the following namespaces to identify these vocabularies:
• dc to identify the Dublin Core vocabulary,
• ssn to identify the SSN vocabulary,
• so to identify the Schema.org vocabulary,
• rdf to identify the RDF vocabulary,
• rdfs to identify the RDF Schema vocabulary, and
• epa to identify the vocabulary developed within this chapter.

3 Four main rules are typically defined as Linked Data Principles: (1) Use of URIs as names for things, (2)
use of HTTP URIs, (3), make things dereferencable, (4) include links to other URIs. (https://w3.org/
DesignIssues/LinkedData.html)

4 http://dublincore.org/documents/dcmi-terms/
5 Resource Description Framework in Attributes (RDFa) is a W3C standard to augment HTML document

with RDF-based metadata.

https://w3.org/DesignIssues/LinkedData.html)
https://w3.org/DesignIssues/LinkedData.html)
http://dublincore.org/documents/dcmi-terms/
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As follows, we present details on the vocabulary which allows to create description
graphs for event producers, event processing agents and event consumers. For each
of these elements, we describe the main purpose of defined concepts and properties
including examples.

7.3 Semantic Event Producers
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Adapter 1
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Figure 7.2 Semantic Event Producers: Conceptual View

In this section, a conceptual architecture and a vocabulary to describe event producers
is introduced. Figure 7.2 illustrates this architecture. In general, an event producer
consists of a description layer and an implementation layer. The description layer spec-
ifies the properties of a producer, most importantly, the stream it provides and their
characteristics. These properties are represented in a description graph containing all
necessary information required to consume the event streams belonging to a producer
and are subsequently made available to the web. A description graph therefore has a
unique URL and can be retrieved by performing a HTTP GET request on the URL,
which returns the graph serialized as a JSON-LD document.
At run-time, an EP produces one or more event streams, and events are continuously
pushed to a message broker using a publish/subscribe protocol. Details on the specific
protocol, such as the URL of the broker or the target topic are derived directly from
the description.



7.3 Semantic Event Producers 87

Semantic Event 
Producer

Event Stream

Event 
Schema

Stream 
GroundingStream Quality

rdf:Property

so:DataType

so:Text

TransportFormat

TransportProtocol

Event 
Property

domainProperty

runtimeName

runtimeType

ssn:Frequency

ssn:Accuracy

ssn:Measurement
Propertyssn:Precision

ssn:Resolution

so:QuantitativeV
alue

Property Quality

KafkaProtocol

MQTTProtocol

Binary Format

Text Format

AvroFormat

ThriftFormat

propertyQuality

hasEventProperty

hasSchema hasGrounding

produces ssn:Platform

hasStreamQuality

hasTransportFormat

Enumeration

Value 
Specification

valueSpecification

hasTransportProtocol

Figure 7.3 Semantic Event Producers: Vocabulary

As follows, we call an event producer which publishes a semantic description of its
specific properties according to our model a Semantic Event Producer (S-EP).
We will now describe the vocabulary used to specify an S-EP in more detail. Figure
7.3 outlines the main terms and their relations. The goal of this figure is not to show
a precise model, but is intended to give a first view on the general way our model
works.
The concepts illustrated in this figure are further explained within this section by using
the following approach: The vocabulary is defined in a top-down manner starting with
the definition of an S-EP itself. Related concepts of S-EPs are explained in subsections,
where we start with explaining the general purpose of each concept. Afterwards, the
vocabulary is introduced in detail. Finally, the real-world usage is shown based on
illustrative examples.
The top-level concept is the term SemanticEventProducer, which is a direct subclass
of ssn:Platform. The ssn:Platform concept allows to define metadata for the producer
itself, e.g., its location and or name if needed. A single S-EP can produce one or more
event streams. Human-readable information which indicates the purpose of the S-EP
can be assigned to a producer definition.
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Listing 7.1 Example Event: Vehicle Position

1 {
2 " timestamp " : 1234567 ,
3 " plateNumber " : "AB -CDE",
4 " latitude " : 48.23 ,
5 " longitude " : 7.46 ,
6 }

Vocabulary

Tables 7.1 and 7.2 explain top-level concepts and properties of an S-EP.

Table 7.1 Concepts: Semantic Event Producers
Concept rdfs:subClassOf Description

epa:SemanticEventProducer ssn:Platform An entity which produces event streams

epa:EventStream rdfs:Class Defines an event stream

Table 7.2 Properties: Semantic Event Producers

Property
so:domainIncludes

so:rangeIncludes
Description

dc:title
epa:SemanticEventProducer
epa:EventStream

so:Text
Assigns a human-readable title to a Seman-
ticEventProducer or an EventStream

dc:description
epa:SemanticEventProducer
epa:EventStream

so:Text
Assigns a human-readable description to an Se-
manticEventProducer or an EventStream

epa:produces
epa:SemanticEventProducer

epa:EventStream
Assigns an EventStream to a SemanticEventPro-
ducer

Example

We illustrate the usage of our vocabulary based on the following example: We imagine
a mobile phone application used in the logistics domain which continuously gathers
real-time data on the current location of transportation vehicles. These parameters
are published in a single event stream. The run-time event format we aim to describe
in this example is a JSON message consisting of four event properties as defined in
listing 7.1:
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Listing 7.2 Example: Event Producer Definition

1 :App rdf:type epa: SemanticEventProducer .
2 :App dc: title " Mobile application producer " .
3 :App dc: description " Publishes events produced by the mobile application " .
4 :App epa: produces : PositionStream .

Listing 7.2 shows the definition of an event producer. For better readability, these
examples are given in Turtle6 notation, which is a W3C recommendation to represent
RDF triples.

7.3.1 Event Stream
An event stream defines a continuous stream of events produced by an S-EP. It can
also be described with a title and a description and is further related to three concepts
(event schema, stream quality, stream grounding, further explained below) which
detail the characteristics of the stream itself. The model and an example instantiation
of an event stream, further described in section 7.3.1 are illustrated in figure 7.4. An
event stream publishes an unbounded sequence of events of the same type. The event
type defines the payload of an event, i.e., its structure. Such specifications can be
attached to an event stream by relating it to an instance of the EventSchema concept.
Besides information about the structure of an event, characteristics of the event stream
itself can be relevant. This mainly includes non-functional properties, such as the
frequency or throughput the event stream provides. For this purpose, a stream can be
related to a StreamQuality. Finally, information about the connectivity to an event
stream must be given. As event streams are possibly consumed by other processing
elements, information on the communication channel and the run-time event format
needs to be known in advance in order to subscribe to the stream. Modeling technical
information on an event stream can be done by defining a specific StreamGrounding.

Vocabulary

Concepts and properties related to streams are summarized in the following tables
7.3 and 7.4.

6 https://www.w3.org/TR/turtle/

https://www.w3.org/TR/turtle/
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Figure 7.4 Event Stream: Model and Example

Table 7.3 Concepts: Event Streams
Concept rdfs:subClassOf Description

epa:EventSchema rdfs:Class An entity specifying the event type

epa:StreamQuality epa:Quality An entity specifying quality aspects of an event
stream

epa:StreamGrounding rdfs:Class Specifies the technical grounding of an event
stream

Table 7.4 Properties: Event Streams

Property
so:domainIncludes

so:rangeIncludes
Description

epa:hasSchema
epa:EventStream

epa:EventSchema
Assigns an event schema to an event stream

epa:hasStreamQuality
epa:EventStream

epa:StreamQuality
Assigns a stream quality to an event stream

epa:hasGrounding
epa:EventStream

epa:StreamGrounding
Assigns a stream grounding to an event stream

Example

Listing 7.3 creates an example PositionStream. It contains a title and a description to
describe the stream in a human-readable manner and, in addition, relates this stream
to a specific schema, a stream quality and a stream grounding. Examples of these
specific instances are described in subsequent sections.
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Listing 7.3 Example: Event Stream Definition

1 : PositionStream rdf:type epa: EventStream .
2 : PositionStream dc: title " Vehicle Position Stream " .
3 : PositionStream dc: description " Stream that publishes data gathered by several

sensors " .
4 : PositionStream epa: hasSchema : PositionSchema .
5 : PositionStream epa: hasStreamQuality : PositionStreamQuality .
6 : PositionStream epa: hasGrounding : PositionStreamGrounding .

7.3.2 Event Schema
An event schema defines the type of an event. In event processing applications, an
event consist of a set of event properties (also called event attributes) which specify
the payload of an event. Figure 7.5 illustrates the vocabulary provided to define an
event schema. Event properties might be of one of the following types:

Model Example: Position Schema

provided in the setup phase
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Event Property

hasEventProperty

Primitive 
Event Property

List Event 
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Nested Event 
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runtimeName
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domainProperty

Position Schema

Latitude
Property

hasEventProperty
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runtimeName
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Longitude
Property

longitude so:Float geo:long

domainProperty

runtimeType

runtimeType

Figure 7.5 Event Schema: Model and Example

PrimitiveEventProperty defines a type of a simple key-value based event property,
where the key specifies the identifier of a specific measurement. A primitive property
has a runtimeName indicating this key in the resulting run-time event format, a
runtimeType indicating its data type and a domainProperty. Run-time types are
modeled based on schema.org’s DataType definition. This concept specifies several
subtypes to define basic data types such as numbers and strings similar to the data
type definition from XML Schema7 often used in RDF vocabularies, but provides a
type hierarchy for numerical values.
7 https://www.w3.org/TR/swbp-xsch-datatypes/

https://www.w3.org/TR/swbp-xsch-datatypes/
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The domainProperty relation allows us to add a semantic annotation to the event
property specification. The description of an event property on a semantic level
instead of pure data type level provides benefits during the pipeline authoring task, as
it can be used as an additional information source to determine the matching between
two processing elements. The range of a domainProperty includes any sub property
of rdf:Property. Although it may sound counterintuitive to define an rdf:Property as
the range of a property itself, we made this design decision due to the circumstance
that existing RDF vocabularies can be better re-used in our approach, which is clarified
in the example at the end of this section.
Primitive event properties are rather simple event types. In many cases, event types can
have a more complex structure consisting of list-based properties or nested structures.
To support such use cases, we have defined a concepts to represent lists containing
multiple values of the same type (ListEventProperty) and nested properties. Nested
event properties consist of a runtimeName and an additional definition of underlying
event properties and therefore allow to define event hierarchies.

Vocabulary

The complete vocabulary to describe an event schema is explained in tables 7.5 and
7.6.

Table 7.5 Concepts: Schema Definitions
Concept rdfs:subClassOf Description

epa:EventProperty rdfs:Class Represents a single event property of an event
schema

epa:PrimitiveEventProperty epa:EventProperty An entity which represents a key-value-based
event property

epa:ListEventProperty epa:EventProperty Represents a list-based event property

epa:NestedEventProperty epa:EventProperty Represents a nested event property

Table 7.6 Properties: Schema Definitions

Property
so:domainIncludes

so:rangeIncludes
Description

epa:hasEventProperty
epa:EventSchema

epa:EventProperty
Assigns an event property to an event schema

epa:runtimeName
epa:EventProperty

so:Text
Assigns the nameof the event property at run-time
to an event property

Continued on next page



7.3 Semantic Event Producers 93

Property
so:domainIncludes

so:rangeIncludes
Description

Continued from last page

epa:runtimeType
epa:PrimitiveEventProperty
epa:ListEventProperty

xsd:string
Indicates the primitive type of an event property at
run-time

epa:domainProperty
epa:PrimitiveEventProperty
epa:ListEventProperty

rdf:Property
Indicates the semantics of an event property

Example

The following listing 7.4 shows a schema definition for our example. It defines four
primitive event properties timestamp, plateNumber, latitude and longitude with different
run-time types. The example also shows the usage of domain properties. For instance,
the geo:lat property from the W3C Geo Ontology8 is assigned to the LatitudeProperty
in order to indicate this property measures a geospatial coordinate.

Listing 7.4 Example: Event Schema Definition

1 : PositionSchema rdf:type epa: EventSchema .
2 : PositionSchema epa: hasEventProperty : TimestampProperty .
3 : PositionSchema epa: hasEventProperty : PlateNumberProperty .
4 : PositionSchema epa: hasEventProperty : LatitudeProperty .
5 : PositionSchema epa: hasEventProperty : LongitudeProperty .
6
7 : TimestampProperty rdf:type : PrimitiveEventProperty .
8 : TimestampProperty epa: runtimeName " timestamp " .
9 : TimestampProperty epa: runtimeType so: Integer .

10 : TimestampProperty epa: domainProperty epa: timestamp .
11
12 : PlateNumberProperty rdf:type : PrimitiveEventProperty .
13 : PlateNumberProperty epa: runtimeName " plateNumber " .
14 : PlateNumberProperty epa: runtimeType so:Text .
15 : PlateNumberProperty epa: domainProperty : licensePlate .
16
17 : LatitudeProperty rdf:type : PrimitiveEventProperty .
18 : LatitudeProperty epa: runtimeName " latitude " .
19 : LatitudeProperty epa: runtimeType so: Float .
20 : LatitudeProperty epa: domainProperty geo:lat .
21
22 : LongitudeProperty rdf:type : PrimitiveEventProperty .
23 : LongitudeProperty epa: runtimeName " longitude " .
24 : LongitudeProperty epa: runtimeType so: Float .
25 : LongitudeProperty epa: domainProperty geo:long .

8 https://www.w3.org/2003/01/geo/

https://www.w3.org/2003/01/geo/
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7.3.3 Quality
Besides the pure event schema, quality attributes of event streams can be relevant. For
instance, processing elements often require a minimum throughput of an incoming
event stream in order to produce viable results (e.g., an activity detection algorithm
based on accelerometer sensor data). In this case, the binding of an event stream
that doesn’t match this throughput requirement should be omitted at design-time.
In addition, more information on the run-time behavior of an event property can be
useful: For instance, if the measurement range of a sensor-based property is already
known at design-time, this information can be used to assist users in selecting ap-
propriate filter expressions. On the other hand, by assigning an accuracy value to an
event property, we can prohibit the connection to processing elements which require
for a finer-grained measurement. As an example, an event processing agent which
performs a geofencing operation usually requires a minimum accuracy of GPS signals
in order to produce useful results.
In order to be able to consider such use cases, our model supports the definition of
quality attributes as illustrated in figure 7.6. Qualities can be defined on two levels:
StreamQuality defines quality definitions on the stream level, PropertyQualities
relate quality definitions to event properties. Both concepts are subclasses of the
ssn:MeasurementProperty concept.
While specific concepts to define stream- and property-based qualities are out of scope
of this thesis, the ssn:Frequency concept is an example subconcept of a StreamQuality.
Examples for property qualities are ssn:Accuracy (defining the deviation of the ob-
served measurement and the real value of the measurement) and ssn:Latency (defined
as the time between a request to receive sensor observations and the provision of the
result), among others.
Both quality-related concepts can be instantiated by specifying a quantityValue ex-
pressing the quantitative value of the quality, and an additional so:unitCode which
indicates the measurement unit. The range of this property is a UN/CEFACT Common
Code9 specifying the unit in a standard format.
In addition, value specifications can be assigned to event properties. A value specifica-
tion provides information about the expected values of an event property at run-time.
The value specification depends on the type of an event property. In case of sensors,
sensor observations are often provided as numerical values. To specify the value
range of numerical values, we relate the concept so:QuantitativeValue to a property
quality. This type is provided in the schema.org vocabulary and defines properties
to define a minimum value, a maximum value and a unit code. In order to support
text-based event properties which have a restricted set of expected values, we have
defined the concept epa:Enumeration, which is a subconcept of so:Enumeration with
an additional property to specify a single runtime value for each member of the enu-

9 http://www.unece.org/cefact/codesfortrade/codes_index.html

http://www.unece.org/cefact/codesfortrade/codes_index.html
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meration. Enumerated values are frequently used in event processing, especially for
header properties which often define identifiers to distinguish events of the same type
coming from different sources (e.g., a vehicle identifier).

Model Example: Position Quality Definition

provided in the setup phase
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Figure 7.6 Quality Definitions: Model and Example

Vocabulary
Concepts and properties related to the definition of quality attributes are summarized
in tables 7.7 and 7.8.

Table 7.7 Concepts: Quality Definitions
Concept rdfs:subClassOf Description

epa:StreamQuality ssn:MeasurementProperty A quality attribute of an event stream

epa:PropertyQuality ssn:MeasurementProperty A quality attribute of an event property

ssn:Frequency epa:StreamQuality The smallest possible time between one observa-
tion and the next [Compton et al. 2012]

ssn:Latency epa:StreamQuality The time between a request for an observation
and the sensor providing a result [Compton et al.
2012]

ssn:Accuracy epa:PropertyQuality The closeness of agreement between the value of
an observation and the true value of the observed
quality [Compton et al. 2012]

ssn:Precision epa:PropertyQuality The closeness of agreement between replicate
observations on an unchanged or similar quality
value [Compton et al. 2012]

Continued on next page
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Concept rdfs:subClassOf Description

Continued from last page

ssn:Resolution epa:PropertyQuality The smallest difference in the value of a quality be-
ing observed that would result in perceptably dif-
ferent values of observation results [Compton et
al. 2012]

so:QuantitativeValue rdfs:Class A point value or interval

epa:Enumeration so:Enumeration An entity defining a fixed set of possible values for
an event property

Table 7.8 Properties: Quality Definitions

Property
so:domainIncludes

so:rangeIncludes
Description

epa:hasPropertyQuality
epa:EventProperty

epa:PropertyQuality
Assigns a property quality to an event stream

epa:hasStreamQuality
epa:EventStream

epa:StreamQuality
Assigns a stream quality to an event stream

epa:valueSpecification

epa:PrimitiveEventProperty
epa:ListEventProperty

epa:QuantitativeValue
epa:Enumeration

Assigns a value specification to an event stream

so:minValue
so:QuantitativeValue

so:Number
Indicates the minimum value of a quantitative
value interval

so:maxValue
so:QuantitativeValue

so:Number
Indicates the maximum value of a quantitative
value interval

epa:runtimeValue
epa:Enumeration

so:Text
Indicates the value of an event property at run-
time

epa:quantityValue
ssn:MeasurementProperty

so:Number
Indicates the quantitative value of a quality at-
tribute

so:unitCode
ssn:MeasurementProperty
so:QuantitativeValue

so:Text
Assigns a measurement unit to a property

Example

The following listing 7.5 aims to clarify the usage of quality definitions in an event
stream definition. First, we define two value specifications to model expected values of
event properties. The event property definition representing the vehicle plate number
is assigned to a specific enumeration type consisting of two specific vehicles. For
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Listing 7.5 Example: Quality Definition

1 : PlateNumberProperty epa: valueSpecification : VehicleEnumeration .
2 : LatitudeProperty epa: valueSpecification : LatitudeValueSpecification .
3 : LatitudeProperty epa: hasPropertyQuality : LatitudeAccuracy .
4 : PositionStream epa: hasPropertyQuality : PositionLatency .
5
6 : VehicleEnumeration rdfs: subClassOf epa: Enumeration .
7 : Vehicle1 rdf:type : VehicleEnumeration .
8 : Vehicle1 epa: runtimeValue : "AB -C" .
9 : Vehicle2 rdf:type : VehicleEnumeration .

10 : Vehicle2 epa: runtimeValue : "AB -D" .
11
12 : LatitudeValueSpecification rdf:type so: QuantitativeValue .
13 : LatitudeValueSpecification so: minValue 10 .
14 : LatitudeValueSpecification so: maxValue 43 .
15
16 : LatitudeAccuracy epa: quantityValue : 15 .
17 : LatitudeAccuracy so: unitCode : "MTR" .
18
19 : PositionLatency epa: quantityValue : 13 .
20 : PositionLatency so: unitCode : "C26" .

the latitude property, we define a value range between 10 and 43 to indicate that
latitude coordinates are always expected to be within this range. Finally, we define
an accuracy value of 15 meters (identified by the UN/CEFACT Code "MTR") to the
latitude property and a latency of 13 milliseconds.

7.3.4 Stream Grounding
The stream grounding defines technical aspects of event streams. As we aim to provide
an implementation-independent description of event streams, it becomes necessary
to define the protocol which is being used at run-time as an event channel as well as
the run-time format in which events are represented. Model and example to define a
stream grounding are illustrated in figure 7.7.
For instance, a stream could be transmitted via multiple publish/subscribe protocols
such as Java Message Service (JMS)10, MQTT11 or it might send events to an Apache
Kafka12 broker. Also the message format might differ ranging from a broad spectrum
from different text-based message formats (e.g., XML or JSON) to binary formats such
as Apache Thrift13.

10 http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
11 http://mqtt.org/
12 http://kafka.apache.org/
13 http://thrift.apache.org/

http://mqtt.org/
http://kafka.apache.org/
http://thrift.apache.org/
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In order to assign a protocol to an event stream definition, a subconcept of epa:Transport-
Protocol can be defined. For message formats, the concept epa:TransportFormat is
provided.

Model Example: Position Grounding

provided in the setup phase
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Figure 7.7 Stream Grounding: Model and Example

Vocabulary
Concepts and properties related to definition of stream groundings are summarized
in tables 7.9 and 7.10.

Table 7.9 Concepts: Grounding Definitions
Concept rdfs:subClassOf Description

epa:TransportProtocol rdfs:Class An entity representing the run-time communica-
tion protocol

epa:TransportFormat rdfs:Class An entity representing the run-time event format

Table 7.10 Properties: Grounding Definitions

Property
so:domainIncludes

so:rangeIncludes
Description

epa:hasTransportProtocol
epa:StreamGrounding

epa:TransportProtocol
Assigns a transport protocol to a stream ground-
ing

epa:hasTransportFormat
epa:StreamGrounding

epa:TransportFormat
Assigns a transport format to a stream grounding
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Listing 7.6 Example: Stream Grounding Definition

1 : PositionStreamGrounding epa: hasTransportProtocol : PositionMQTTProtocol .
2 : PositionStreamGrounding epa: hasTransportFormat : PositionJsonFormat .
3
4 : PositionMQTTProtocol rdf:type : MQTTProtocol .
5 : MQTTProtocol rdfs: subClassOf epa: TransportProtocol .
6 : PositionMQTTProtocol : topicName " Company . Sensor . Position " .
7 : PositionMQTTProtocol : brokerUrl " 192.168.0.1 " .
8 : PositionMQTTProtocol : brokerPort 1883 .
9

10 : PositionJsonFormat rdf:type : FlatJsonFormat .
11 : FlatJsonFormat rdfs: subClassOf epa: TransportFormat .

Example

The following listing 7.6 defines a grounding for the position stream. Events are pub-
lished to an MQTT server in a flat JSON-based format as illustrated in the beginning
of this section.

7.4 Semantic Event Processing Agents
We start with introducing the notion of Semantic Event Processing Agents (S-EPA) by
explaining their conceptual architecture as illustrated in figure 7.8. Similar to event
producers, S-EPAs consist of a description layer and an implementation layer. The
description layer defines how an EPA works. It provides information on required
event streams, required static data and the supported event transformation leading to
an output stream. While this description is exposed via HTTP similar to event pro-
ducers, S-EPAs provide another endpoint to receive invocation graphs. An invocation
graph contains information on the instantiation of an S-EPA, i.e., it defines required
configuration parameters for the implementation layer needed to execute the event
processing logic and is generated during the execution phase, further explained in
chapter 8.
The implementation layer controls the run-time behavior of the EPA. In contrast to
event producers, it consists of several runtime-independent components, i.e., compo-
nents which do not depend on the actual processing logic that can be re-used among
different EPAs. This includes a topic which connects to a message broker in order to
consume events from a topic specified in the invocation graph. Depending on the
message format of the event, an appropriate input adapter transforms this format
into a generic, format-independent data structure (in our implementation, we use
adapters to transform from arbitrary message formats to a Map data type). Output
events generated by the runtime-specific event processing systems are transformed
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Figure 7.8 Semantic Event Processing Agents: Conceptual View

to the target output format and published to a message broker using the protocol
specified in the invocation graph.
The vocabulary to describe semantic event processing agents is summarized in figure
7.9. Similar to event producers, a title and a description can be assigned to an S-EPA.
In addition, an S-EPA can define required streams, which specify minimum require-
ments an incoming event stream of an instantiated S-EPA needs to provide. Besides
stream requirements, required static data can be defined by relating the S-EPA to a
StaticProperty.
As the specific output event stream of an S-EPA is, in most cases, not known at the time
the description is generated (as an event processing agent performs a transformation
of an input stream to an output stream, and the exact input stream is not yet known
in the setup phase as it is selected by pattern engineers in the execution phase), we
have introduced the concept of OutputStrategies. An output strategy specifies this
transformation process on an abstract level. In conjunction with a specific input event
stream, an expected output stream can be computed during the pipeline authoring
process.
Finally, a S-EPA might support multiple transportation formats and protocols on
both input (subscriber) and output (publisher) sides. To define such properties, a
SupportedGrounding can be assigned to an S-EPA.

Vocabulary
Basic concepts and properties to describe Semantic Event Processing Agents are
summarized in tables 7.11 and 7.12.
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Figure 7.9 Semantic Event Processing Agents: Vocabulary

Table 7.11 Concepts: Semantic Event Processing Agents
Concept rdfs:subClassOf Description

epa:SemanticEventProcessingAgent rdfs:Class An entity which provides event processing capa-
bilities

epa:StaticProperty rdfs:Class Defines user input required to instantiate an event
processing agent

epa:OutputStrategy rdfs:Class Defines the output transformation strategy of an
event processing agent
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Table 7.12 Properties: Semantic Event Processing Agents

Property
so:domainIncludes

so:rangeIncludes
Description

dc:title

dc:description

epa:SemanticEventProcessingAgent
epa:EventStream

so:Text
Assigns a human-readable title/description to
a SEMANTIC EVENT PROCESSING AGENT or an
EVENTSTREAM

epa:requiresStream
epa:SemanticEventProcessingAgent

epa:EventStream
An event stream definition required by a SEMANTIC
EVENT PROCESSING AGENT

epa:hasStaticProperty
epa:SemanticEventProcessingAgent

epa:StaticProperty
Assigns a static property to a SEMANTIC EVENT
PROCESSING AGENT

epa:hasOutputStrategy
epa:SemanticEventProcessingAgent

epa:OutputStrategy
Assigns an output strategy to a SEMANTICEVENT-
PROCESSINGAGENT

epa:supportedGrounding
epa:SemanticEventProcessingAgent

epa:StreamGrounding
Defines a grounding a SEMANTICEVENTPROCESSIN-
GAGENT supports

Example

In this section, we use the following example to illustrate the definition of an S-EPA:
Based on the event producer presented in the previous section, a geofencing EPA
should be developed. The goal of this EPA is to detect whether a vehicle arrives within
a certain radius around a specific location. In addition, the EPA should support a
second operation and indicate if a vehicles leaves a geofenced area. In order to provide
this functionality, three different forms of static data input are required: 1) the location
of the center of the geofence needs to be defined, 2) the radius of the geofence from
the center and 3) the operation type, i.e. whether the arrival within or departure from
a geofence should be detected.
As we aim to create re-usable event processing agents, the EPA should not be bound
to specific vehicle position events as shown in Listing 7.1. Thus, we need to create an
S-EPA which operates on any event type which provides geospatial coordinates. The
following listing first defines a Geofencing S-EPA along with one required event stream,
three static property definitions and an output strategy. The supported grounding is
restricted to a MQTT protocol.

Listing 7.7 Example: S-EPA Definition

1 : GeofencingEpa rdf:type epa: SemanticEventProcessingAgent .
2
3 : GeofencingEpa dc: title " Geofencing " .
4 : GeofencingEpa dc: description " Performs geofencing operations on geospatial

event types " .
5
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6 : GeofencingEpa epa: requiresStream : GeospatialStream .
7
8 : GeofencingEpa epa: hasStaticProperty : GeofencingOperation .
9 : GeofencingEpa epa: hasStaticProperty : GeofenceCenter .

10 : GeofencingEpa epa: hasStaticProperty : GeofenceRadius .
11
12 : GeofencingEpa epa: hasOutputStrategy : GeofencingOutput .
13
14 : GeofencingEpa epa: supportedGrounding : MqttGrounding .

7.4.1 Stream Requirements
In order to describe the expected input of an S-EPA, we can specify requirements on
event streams. A stream requirements can be modeled in form of an event stream
template, i.e., an event stream which provides the minimum capabilities the S-EPA
expects. Therefore, most concepts and properties from event streams can be re-used
to define stream requirements. In addition, the vocabulary to define quality aspects
is extended with concepts and properties to define minimum and maximum quality
requirements. For instance, a maximum requirement assigned to a frequency-related
stream quality allows to define a maximum frequency an S-EPA is able to process.

Vocabulary

Tables 7.13 and 7.14 explain additional concepts for event streams to define quality
requirements.

Table 7.13 Concepts: Stream Requirements
Concept rdfs:subClassOf Description

epa:StreamQualityRequirement rdfs:Class Defines a stream quality requirement

epa:PropertyQualityRequirement rdfs:Class Defines a property quality requirement

Table 7.14 Properties: Stream Requirements

Property
so:domainIncludes

so:rangeIncludes
Description

epa:hasStreamQualityReq
epa:EventStream

epa:StreamQualityRequirement
Assigns a quality requirement to an event stream

epa:hasPropertyQualityReq
epa:PrimitiveEventProperty
epa:ListEventProperty

epa:PropertyQualityRequirement
Assigns a property quality requirement to an event
stream

Continued on next page
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Property
so:domainIncludes

so:rangeIncludes
Description

Continued from last page

epa:minStreamQuality
epa:StreamQualityRequirement

epa:StreamQuality
Defines a minimum stream quality requirement

epa:maxStreamQuality
epa:StreamQualityRequirement

epa:StreamQuality
Defines a maximum stream quality requirement

epa:minPropertyQuality
epa:PropertyQualityRequirement

epa:PropertyQuality
Defines a minimum property quality requirement

epa:maxPropertyQuality
epa:PropertyQualityRequirement

epa:PropertyQuality
Defines a maximum property quality requirement

Example

Listing 7.8 creates a stream requirement for the Geofencing S-EPA. In order to be able
to provide viable results, any event stream which can be bound to the S-EPA must
provide an event schema that contains a geospatial location. In the same way, quality
restrictions could be assigned to an event stream.

Listing 7.8 Example: Stream Requirement Definition

1 : GeospatialStream rdf:type epa: EventStream .
2
3 : GeospatialStream epa: hasSchema : GeospatialSchema .
4 : GeospatialSchema epa: hasEventProperty : SomeLatitudeProperty .
5 : GeospatialSchema epa: hasEventProperty : SomeLongitudeProperty .
6
7 : SomeLatitudeProperty epa: domainProperty geo:lat .
8 : SomeLongitudeProperty epa: domainProperty geo:long .

7.4.2 Static Properties
Static properties define, besides stream restrictions, further data an S-EPA requires for
its instantiation. Static properties are therefore not part of the event payload, but are
typically user-defined during pipeline authoring, or are related to concepts defined in
the knowledge modeling task.

Single-value Properties The most basic static property type are single-value proper-
ties. These properties can be used to define a required user input in form of a single
data value. As illustrated in figure 7.10, the concept SingleValueProperty allows
to define such data requirements along with a requiredDatatype specifying the ex-
pected data type. In addition, a so:PropertyValueSpecification, which allows to define
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value ranges in form of minimum, maximum and step values, can be assigned to a
single-value property. Furthermore, an event property can be assigned to a Single-
ValueProperty by using the mapsTo relation. This allows to restrict the value range of
the required value to the value range of the assigned event property of the incoming
event stream.
Example. An S-EPA provides filter capabilities on text-based event properties. A filter keyword
is required, this can be modeled as a single-value property.

Model Example: Filter keyword

provided in the setup phase provided in the execution phase

SingleValueProperty

so:DataType Event Property

xsd:string so:Property Value 
Specification

mapsTorequiredDatatype

so:value

valueSpecification

FilterKeyword

so:Text

exampleText

requiredDatatype

so:value

Figure 7.10 Single-value Properties: Model and Example

Multiple values and selections In many cases, an S-EPA might provide multiple opera-
tions or alternative configurations users can choose from during pipeline definition.
To support these use cases, we have created the concepts MultiValueProperty and
SelectionStaticProperty (illustrated in figure 7.11). Both concepts can be related to
a number of options specifying an operation alternative or configuration type users
can select from. The difference of both elements are the underlying semantics: While
MultiValueProperties allow to select multiple values from the list of available options,
SelectionStaticProperties require users to select exactly one available options.
Example. The same filter S-EPA as described above is able to filter events based on an exact
match, i.e., the property equals the provided filter keyword, or an inexact match, i.e., the property
value contains the provided keyword. This choice can be modeled as a SelectionStaticProperty.

Domain properties and background knowledge By now, we have focused on static data
requirements which are only required for a specific user input. In contrast, such
data frequently comes from knowledge bases. In order to provide a mechanism to
align requirements of event processing agents with concepts and instances defined
in a knowledge base, we created the concept DomainStaticProperty. A Domain-
StaticProperty defines a required resource of an external vocabulary by providing a
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Model Example: Filter operation

provided in the setup phase provided in the execution phase
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ContainsOption

desc Contains false

Figure 7.11 Selection Static Properties: Model and Example

requiredClass and one or more supportedProperties. During the pipeline authoring
process, an RDF-based knowledge base is first queried for instances belonging to the
concept defined in requiredClass. Afterwards, for each instance it is verified whether
they provide all rdf:Property assignments that are defined as supportedProperties.
The usage of domain static properties illustrated in figure 7.12.
Example. We might be interested in filtering the VehiclePositionStream for specific plate
numbers. This could be easily done by specifying a single-value property which allows users
to enter a vehicle plate number as a filter condition. However, this approach is error-prone as
pattern engineers need to look up the list of available vehicles in order to manually enter the
plate number. By using a domain static property, we can link the required filter condition to a
Vehicle concept in the knowledge base and additionally define a hasPlateNumber property the
Vehicle concept need to provide. As a result, during the pipeline authoring process the pattern
engineer is provided with a search interface to look up suitable instances in the knowledge base.

Model Example: Location search

provided in the setup phase provided in the execution phase

DomainStaticProperty

rdfs:Class SupportedProperty

hasSupportedProperty
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so:valuesupportsProperty
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Figure 7.12 Domain Static Properties: Model and Example
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MappingProperty Stream requirements define properties a specific event stream needs
to provide. In many cases, event properties defined as stream requirements need to be
used at run-time to parameterize the event processing logic. In order to map an event
property defined as a stream requirement to a specific event property of an event
stream during the invocation of an element, we provide the concept MappingProperty.
A mapsFrom relation assigns a mapping property to an event property of a stream
requirement (see figure 7.13).
We provide two specializations of mapping properties: MappingPropertyUnary de-
fines a mapping from an event property in a stream requirement to a single event
property of a specific event stream, while a MappingPropertyNary defines a mapping
to multiple event properties of a specific event stream.
Example. We illustrate the usage of MappingProperties based on a basic text filter S-EPA
presented in the beginning of this section. The only stream requirement of such a component
is typically the occurrence of an event property in a bound event stream which provides a
text-based data type (so:Text). If such a stream contains more than one event property matching
this criterion, users at pipeline authoring time need to select a specific event property the filter
operation should be performed upon. The mapping between this specific property and the
requirement is modeled as a unary mapping property.

Model Example: Latitude Mapping

provided in the setup phase provided in the execution phase

Mapping Property

Event Property

mapsFrom

Event Property
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Latitude Mapping

Latitude Property 
Requirement

mapsFrom

Latitude Event 
Property
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Figure 7.13 Mapping Properties: Model and Example

MatchingProperty MatchingStaticFeatures (figure 7.14) are a static property used for
S-EPAs with more than one input channel, i.e., S-EPAs which require for at least two
input streams. Typical use cases for such S-EPAs are event-at-a-time operators such
as detection of co-occurrences or sequences of events. In such use cases, events are
frequently correlated based on a common event property value. Incoming streams
are then partitioned, i.e., results are computed separately per property value. In order
to define a matching between property values of two streams that should provide
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the same value, MatchingProperties can be used. MatchingProperties can define
two relations indicating one event property from each incoming event stream which
should provide the same values.
Example. We consider a Sequence S-EPA which detects the sequential occurrence of two
events within a specified time windows. This component can be used to detect the arrival of a
vehicle at a warehouse followed by the departure (in the form Arrival followed by Departure
within 5 minutes). In order to indicate that the correlation between arrival and departure
should be matched based on the same vehicleId, a matching property can be used.

Model Example: Sequence

provided in the setup phase provided in the execution phase

Matching Property

Event Property

matchLeft

Event Property

matchRight

Sequence Matching

mapsFrom

RightVehicleId

mapsTo

LeftVehicleId

Figure 7.14 Matching Properties: Model and Example

Vocabulary
The complete vocabulary provided to model static properties is further detailed in
tables 7.15 and 7.16.

Table 7.15 Concepts: Static Properties
Concept rdfs:subClassOf Description

epa:SingleValueProperty epa:StaticProperty An entity representing required user input in form
of a single data value

epa:MultiValueProperty epa:StaticProperty An entity representing required user input in form
of multiple data values

epa:SelectionStaticProperty epa:StaticProperty An entity representing required user input in form
of a single data value based on a fixed set of se-
lection options

epa:DomainStaticProperty epa:StaticProperty An entity representing required user input from in-
stances of a knowledge base

Continued on next page
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Concept rdfs:subClassOf Description

Continued from last page

epa:MappingProperty epa:StaticProperty Defines a mapping between properties from
stream requirements and properties from event
streams

epa:MappingPropertyUnary epa:MappingProperty Defines a mapping from one event property from
a stream requirement to one event property from
an event stream

epa:MappingPropertyNary epa:MappingProperty Defines a mapping from one event property from
a stream requirement to multiple event properties
from an event stream

epa:MatchingProperty epa:StaticProperty Defines a relationship between two event proper-
ties from different event streams

epa:Option rdfs:Class An entity representing a selection option

epa:SupportedProperty rdfs:Class Defines an RDF:PROPERTY of a concept in the
knowledge base that is supported by a domain
static property.

Table 7.16 Properties: Static Properties

Property
so:domainIncludes

so:rangeIncludes
Description

epa:requiredDatatype
epa:SingleValueProperty

so:DataType
Defines the required data type of a SINGLEVALUE-
PROPERTY

epa:hasOption
epa:MultiValueProperty
epa:SelectionStaticProperty

epa:Option
Assigns a selection option to a MULTIVALUEPROP-
ERTY or an SELECTIONSTATICPROPERTY

epa:requiredClass
epa:DomainStaticProperty

rdfs:Class
Indicates the required RDFS:CLASS of a required in-
stance from the knowledge base

epa:hasSupportedProperty
epa:DomainStaticProperty

epa:SupportedProperty
Assigns a SUPPORTEDPROPERTY to a DOMAINSTAT-
ICPROPERTY

epa:requiredProperty
epa:SupportedProperty

rdf:Property
Indicates a required RDF:PROPERTY of a required
instance from the knowledge base

epa:mapsFrom
epa:MappingProperty

epa:EventProperty
Assigns a property requirement to amapping prop-
erty

epa:mapsTo
epa:MappingProperty
epa:SingleValueProperty

epa:EventProperty
Assigns an event property to a mapping property
or a single value property

epa:valueSpecification
epa:SingleValueProperty

so:PropertyValueSpecification
Assigns a value specification to a single value
property

Continued on next page
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Property
so:domainIncludes

so:rangeIncludes
Description

Continued from last page

epa:matchLeft
epa:MatchingProperty

epa:EventProperty
Assigns an event property from the first event
stream to a matching property

epa:matchRight
epa:MatchingProperty

epa:EventProperty
Assigns an event property from the second event
stream to a matching property

Example

As already mentioned, the Geofencing S-EPA requires the selection of a geofencing op-
eration, a location which represents the center of the geofence and a radius indicating
the size of the geofence. In addition, we define two mapping properties linking to
the required event properties defined as stream restrictions. Human-readable labels
which identify the purpose of static properties to pipeline authors are omitted. Listing
7.9 illustrates the usage of these static properties:

Listing 7.9 Example: Static Property Definition

1
2 : GeofencingEpa epa: hasStaticProperty : GeofencingOperation .
3 : GeofencingEpa epa: hasStaticProperty : GeofenceCenter .
4 : GeofencingEpa epa: hasStaticProperty : GeofenceRadius .
5 : GeofencingEpa epa: hasStaticProperty : LatitudeMapping .
6 : GeofencingEpa epa: hasStaticProperty : LongitudeMapping .
7
8 : GeofencingOperation rdf:type epa: SelectionStaticProperty .
9 : GeofencingOperation epa: hasOption : ArrivesOption .

10 : ArrivesOption dc: title " Arrive " .
11 : GeofencingOperation epa: hasOption : DepartsOption .
12 : DepartsOption dc: title " Depart " .
13
14 : GeofenceCenter rdf:type epa: DomainStaticProperty .
15 : GeofenceCenter epa: requiredClass geo: Location .
16 : GeofenceCenter epa: hasSupportedProperty : LatitudeSupported .
17 : GeofenceCenter epa: hasSupportedProperty : LongitudeSupported .
18
19 : LatitudeSupported rdf:type epa: SupportedProperty .
20 : LatitudeSupported epa: supportedProperty geo:lat .
21 : LatitudeSupported so: valueRequired true .
22
23 : LongitudeSupported rdf:type epa: SupportedProperty .
24 : LongitudeSupported epa: supportedProperty geo:lat .
25 : LongitudeSupported so: valueRequired true .
26
27 : GeofencingRadius rdf:type epa: SingleValueProperty .
28 : GeofencingRadius epa: requiredDatatype so: Integer .
29 : GeofencingRadius epa: valueSpecification : RadiusValueSpecification .
30
31 : RadiusValueSpecification rdf:type so: PropertyValueSpecification .
32 : RadiusValueSpecification so: minValue 0 .
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33 : RadiusValueSpecification so: maxValue 200 .
34 : RadiusValueSpecification so:step 5 .
35
36 : LatitudeMapping rdf:type epa: MappingPropertyUnary .
37 : LatitudeMapping epa: mapsFrom : LatitudeProperty .
38
39 : LongitudeMapping rdf:type epa: MappingPropertyUnary .
40 : LongitudeMapping epa: mapsFrom : LongitudeProperty .

7.4.3 Output Strategy
By providing an output strategy, developers are able to describe the intended output
of an S-EPA. As already explained, in most cases it is not possible to define the specific
output event stream in the setup phase, as the exact output stream depends on the
input stream selected in the execution phase. Therefore, the output depends on both
the schema of an input event stream and the transformation performed by the S-EPA
itself. In order to be able to describe this transformation, we have developed the con-
cept of output strategy. Output strategies allow developers to define the transformation
decoupled from specific business logic. In addition, at pipeline execution time the
output stream can be easily computed during pipeline definition and therefore allows
to form pipelines consisting of heterogeneous processing elements.
In general, five different output strategies are part of our vocabulary to describe
S-EPAs:

KeepOutput (Figure 7.15) The most basic output strategy is a KeepOutput strategy.
This strategy allows to define filter operations, where the output stream corresponds
to the specific input stream of a processing element, i.e., it provides the same event
schema. This output strategy does not require for any further configuration. If an
S-EPA has more than one input event stream, a KeepOutput produces an output event
which contains the union of all event properties from all input streams.

Model Example: Numerical Filter

NumericalFilter
Output

provided in the setup phase provided in the execution phase

Run-time

Keep Output

timestamp: 12345
machineId: 3
temperature: 45

EPA

Input

Output

timestamp: 12345
machineId: 3
temperature: 45

run-time view

Figure 7.15 Keep Output: Model and Example
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AppendOutput (Figure 7.16) S-EPAs using an AppendOutput strategy are typically
processing elements which correspond to the Enrich EPA, i.e., one or more event
properties are added to an existing input event schema. An AppendOutput can be
defined by providing one or more additional event properties by using the relation
appendsProperty.

Model Example: Geocoding EPA

latitude:47
longitude: 6

Event Property

appendsProperty

GeocodingOutput

CityEventProperty

appendsProperty

CountryEventProperty

appendsProperty

provided in the setup phase provided in the execution phase

Run-time

Append Output

latitude: 47
longitude: 6
city: Karlsruhe
country: Germany

EPA

Input

Output

run-time view

Figure 7.16 Append Output: Model and Example

FixedOutput (Figure 7.17) FixedOutput strategies do not depend on the schema of an
input event stream. The output event schema is solely defined by developers during
the setup phase. For instance, an activity recognition algorithm which identifies
physical activities based on an acceleration sensor typically outputs an event schema
which is known in advance and can therefore provide a FixedOutput strategy.

timestamp: 12345
text: Lorem ipsum

Model Example: Word Count 

Event Property

hasEventProperty

WordCount
Output

WordProperty

hasEventProperty
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hasEventProperty

provided in the setup phase provided in the execution phase

Run-time

Fixed Output

word: Lorem
count: 12

EPA

Input

Output

timestamp: 12345
text: Lorem ipsum

run-time view

Figure 7.17 Fixed Output: Model and Example

TransformOutput (Figure 7.18) EPAs belonging to the Transformation category trans-
form one or more event properties from an input stream to one or more properties in
the output stream. In general, transformations potentially affect multiple aspects of an
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event schema, e.g., the run-time name in order to rename properties for data harmo-
nization purposes, the run-time type or the domain property. An S-EPA which defines
a transformation-based output strategy must therefore be able to express supported
transformations. Based on these definitions and an inbound event stream, specific
transformation options can then be computed and presented to users. To support
transformations in our vocabulary, a TransformOutput can be created. For each prop-
erty restriction the S-EPA has defined, an UriPropertyMapping can be assigned. This
mapping requires a replaceFrom property which represents a property restriction,
and additional properties to define supported transformations (renamingAllowed,
typeCastAllowed and domainPropertyCastAllowed).

timestamp: 12345
text: Lorem ipsum

Model Example: Temperature Converter
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Figure 7.18 Transform Output: Model and Example

CustomOutput (Figure 7.19) Finally, an S-EPA might leave the choice which input re-
quirements from the input streams should be available in the output stream up to
users. In this case, an output schema can be manually defined during the pipeline
authoring process.

timestamp: 12345
text: Lorem ipsum

Model Example: Projection
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Figure 7.19 Custom Output: Model and Example
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Table 7.17 Concepts: Output Strategies
Concept rdfs:subClassOf Description

epa:AppendOutput epa:OutputStrategy An entity representing an append output strategy

epa:CustomOutput epa:OutputStrategy An entity representing a custom output strategy

epa:FixedOutput epa:OutputStrategy An entity representing a fixed output strategy

epa:KeepOutput epa:OutputStrategy An entity representing a keep output strategy

epa:TransformOutput epa:OutputStrategy An entity representing a transform output strategy

epa:UriPropertyMapping rdfs:Class An entity representing a mapping between two
event properties which should be replaced with
each other

Table 7.18 Properties: Output Strategies

Property
so:domainIncludes

so:rangeIncludes
Description

epa:appendsProperty
epa:AppendOutput

epa:EventProperty
Assigns an event property which is appended to
an input stream

epa:hasEventProperty
epa:FixedOutput

epa:EventProperty
Defines an event property that is part of an output
stream

epa:producesProperty
epa:CustomOutput

epa:EventProperty
Defines an event property from the input stream
that is kept in the output stream

epa:replacesFrom
epa:UriPropertyMapping

epa:EventProperty
Assigns an event property which should be re-
placed by a transform output strategy

epa:replacesWith
epa:UriPropertyMapping

epa:EventProperty
Defines the event property that should replace an
event property from an input stream

epa:replacesProperty
epa:TransformOutput

epa:UriPropertyMapping
Assigns an URIPROPERTYMAPPING to a transform
output strategy

epa:typeCastAllowed
epa:UriPropertyMapping

xsd:boolean
Determines whether the output strategy allows a
type cast

epa:domainPropertyCastAllowed
epa:UriPropertyMapping

xsd:boolean
Determines whether the output strategy allows a
domain property cast

epa:renamingAllowed
epa:UriPropertyMapping

xsd:Boolean
Determines whether the output strategy allows to
rename an event property
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Listing 7.10 Example: Output Strategy Definition

1
2 : GeofencingOutput rdf:type epa: AppendOutput .
3
4 : GeofencingOutput epa: appendsProperty : EnterTimeProperty .
5 : EnterTimeProperty rdf:type epa: PrimitiveEventProperty .
6 : EnterTimeProperty epa: runtimeName " timeOfArrival " .
7 : EnterTimeProperty epa: runtimeType so:Text .
8 : EnterTimeProperty epa: domainProperty so: DateTime .

Example

We show the usage of output strategies in Listing 7.10 based on an enriched output
strategy the Geofencing S-EPA supports: For each vehicle which enters or leaves the
defined geofence, an output event is generated which contains the original event
payload of the input stream and, in addition, the time the vehicle has crossed the
geofence.

7.5 Semantic Event Consumers
Event consumers represent sinks in an event processing network. Sinks often provide
connections to other third party systems, such as databases, external message brokers
or visualization components. Figure 7.20 illustrates the conceptual architecture of
Semantic Event Consumers (S-EC). In general, an S-EC provides similar characteristics
as S-EPAs. Stream restrictions define requirements an input event stream needs to
provide, and static properties needed to configure the consumer implementation
can be defined. However, in contrast to S-EPAs, events are not forwarded to other
processing elements within an event processing network, i.e., no output event stream
is produced.
Therefore, the vocabulary to define S-ECs can mostly be re-used from already intro-
duced concepts and relations to define S-EPAs, but do not offer a possibility to define
an output strategy.

7.6 Tools
In order to support the development of S-EPs, S-EPAs and S-ECs, we have developed
extensive tool support which aims at reducing the programming effort to define both
the description layer and implementation layer of processing elements. In this section,
we introduce these tools and briefly explain their usage.
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Figure 7.20 Semantic Event Consumers: Conceptual View

7.6.1 Model Generation
Model generation refers to the first task of the setup phase, namely pipeline element
modeling. From a conceptual point of view, pipeline element modeling requires
developers to build the description layer for processing elements by providing an
appropriate instantiation of the concepts introduced in the previous section.
In general, the description layer can also be built using standard tooling available
for ontology modeling. However, one of our design goals was to enable developers
to build models without the need for any knowledge related to semantic web tech-
nologies. We believe this is an important cornerstone as many developers concerned
with the development of event-based applications are not trained for semantic web
programming. This approach aims to reduce the implementation effort needed to
make existing event processing logic available using our model.
Developer support to create event processing logic is available in form of a Software
Development Toolkit (SDK) and a graphical model editor.

SDK

The SDK is available as a Apache Maven14 artifact and provides high-level program-
ming access for creating and deploying semantic descriptions as well as methods

14 http://maven.apache.org

http://maven.apache.org
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to retrieve configuration parameters from invocation graphs. In general, the SDK
supports especially three different use cases:

• Model Definition. Models can be created without the need for RDF and se-
mantic web technologies in general. A pure Java interface can be used to create
descriptions by using a Java-to-RDF mapper. This part of the SDK supports
the full vocabulary presented in the previous sections and includes consistency
checking of models in order to assist developers in creating the description layer.

• Deployment. Based on these Java-based models, description graphs are auto-
matically generated. In addition, the SDK provides methods to support the
deployment process, e.g., the generation of RESTful endpoints which provide
the description of a model and retrieve invocation graphs. Several deployment
options are supported, so that implementations can be hosted standalone using
an embedded web server or in an already existing servlet container.

• Configuration. For S-EPAs and S-ECs, the SDK provides endpoints which are
prepared to receive and transform invocation graphs. These graphs contain
parameters needed to configure the underlying implementation layer. By using
the SDK, high-level methods for retrieving these parameters can be used.

Appendix A illustrates the usage of our SDK to create a description for the Geofencing
S-EPA introduced in section 7.4.

Model Editor

Instead of the SDK, we also provide graphical tool support to create pipeline elements.
The model editor is a web-based interface which allows to create descriptions for
event producers, event processing agents and event consumers. The model editor
and its features are illustrated in Figure 7.21. In general, the editor leverages users
to inspect existing pipeline elements and to create new elements. New elements can
either be created from scratch, or existing elements can be cloned, i.e., the description
of another element can be extended and/or modified.
Definition of new elements is implemented as a guided step-by-step process, which is
described below:

1. Pipeline Element Selection. As illustrated in figure 7.21, the first task is to
select a pipeline element which should be created. By selecting "Data Sources"
from the top-level menu, configuration options for event producers and streams
become visible.

2. Producer Definition. Two ways exist for creating new event producers: An
element can be selected from the list of existing producers. The “clone” fea-
ture creates a new element in the background and copies the description of
the selected element, which is useful for producers which have a description
similar to an already existing element. In other cases, a new producer must be
defined. The editor first requires users to provide basic settings (such as title and
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description) for the producer, which corresponds to the vocabulary presented
in section 7.3.

3. Stream Definition. Afterwards, streams can be assigned to the producer. The
definition of event streams is a guided process starting with basic descriptions.
Afterwards, event schema, transport protocol and transport format need to
be provided by users. The event schema can be built by adding an arbitrary
number of event properties including their runtime name, type and assigned
domain property, while the system allows to re-use properties which have been
previously defined in the knowledge base.

4. Export. After the model has been created, it can be exported in several ways. The
dialog which allows users to choose from multiple export options is shown in
figure 7.22. The first task is to select an export type. Three different export types
are offered: First, an implementation can be generated, which creates program-
ming code packaged as a Maven project which contains all required instances to
further refine the model or to implement the producer-specific implementation
layer. Second, the description graph can be exported as a JSON-LD document,
which can subsequently be embedded into existing software modules. Third,
if an implementation is not needed (e.g., as streams are already published to a
message broker), the description can be directly imported, so that the pipeline
element is immediately available for pattern engineers in the execution phase.
After selection of an export type, a run-time implementation can be chosen.
For event processing agents, implementations for multiple event processing
systems are available. For event producers, the resulting implementation pro-
vides interfaces in order to implement connections to external systems acting
as event sources. Afterwards, a deployment option can be selected. Standalone
deployment generates a software project with an embedded web server capable
to host the element description and to receive invocation graphs. An embedded
deployment creates an implementation which can be deployed in an existing
servlet container such as Apache Tomcat15. Finally, the export can be started,
which triggers a code generation module.

Runtime-Wrapper

While the SDK primarily focuses on the description layer providing high-level access
to description graphs, run-time wrappers focus on the implementation layer and en-
compass its implementation-specific part. We provide tool support for four different
run-time implementations. We’ve selected these implementations described in more
detail below in order to show the ability of our approach to support different program-
ming models: Declarative languages, which are often part of event processing systems
focusing on pattern detection, distributed systems, which focus on processing of event

15 http://tomcat.apache.org

http://tomcat.apache.org
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streams with high throughput in a cluster and standalone algorithms which do not
rely on a specific event processing system, but implement their own programming
model. Although the wrappers we have developed are implemented in Java, our
approach is not bound to a specific programming language as our model generally
relies on the exchange of RDF-based graphs.
The wrappers described below use a common run-time system which encapsulates
implementation-independent logic. In order to show the independence of our ap-
proach in terms of specific run-time communication protocols and formats, support
for multiple message brokers and converters for several event formats is provided.
On the protocol side, we have developed implementations for MQTT, JMS, Kafka and
Websocket. Concerning event formats, implementations for JSON, XML and several
Apache Thrift-based formats are available.

Esper Wrapper Esper16 is a complex event processing engine with a strong focus on
pattern detection. Event processing logic in Esper is defined using a declarative
domain-specific language called EPL. Our Esper wrapper provides several helper
functions to create EPL descriptions from invocation graphs in a re-usable way by
abstracting from specific event streams bound to an EPL declaration.

Flink Wrapper The Flink17 wrapper encapsulates a run-time implementation for
Apache Flink programs. In contrast to Esper, Flink focuses on distributed stream
processing and therefore follows a different programming model. A Flink program
must be provided as a packaged jar file which contains all dependencies required
by the program. This file is submitted to a JobManager, where it is distributed to
TaskManagers which execute the application logic. A single Flink program can be
executed on multiple TaskManagers at the same time, enabling parallel execution of
the event processing application.
Our Flink wrapper provides support to write Flink programs by taking care of event
subscription, publishing, message transformation and deployment, allowing develop-
ers to implement specific implementation logic from a single interface. At invocation
time, the program is parameterized based on the configuration retrieved from the
invocation graph and submitted to the JobManager.

Storm Wrapper Apache Storm18 is another system supporting distributed processing
of event streams. A Storm topology logically consists of a set of spouts acting as event
producers and a set of bolts acting as event processing agents. A storm topology needs
to be submitted to a master node called Nimbus. This nodes distributes the topology
to multiple worker nodes, where the it can be executed.

16 http://esper.codehaus.org
17 http://flink.apache.org
18 http://storm.apache.org

http://esper.codehaus.org
http://flink.apache.org
http://storm.apache.org
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In contrast to Flink, a Storm topology needs to be packaged before it is submitted to
the Nimbus node. In order to allow the development of re-usable elements for Storm,
an invocation graph is stored in a database. At deployment time, a graph id is passed
to the topology which allows to retrieve the invocation graph from the database. This
enables us to configure the topology at run-time.

7.6.2 Knowledge Modeling
Finally, tool support for knowledge modeling is provided. The knowledge editor is
a web-based component embedded into the StreamPipes web application. Its main
purpose is to capture knowledge which is re-used across multiple processing pipelines,
not to provide a complete knowledge base for the domain of interest.
The knowledge editor is illustrated in figure 7.23. In general, the editor follows an
approach known from existing ontology editors. It provides ways to create concepts,
relations between concepts and instances. However, higher-level support for users
that are not experts in the usage of semantic web tools is provided. For instance, users
are able to define in which concepts a property can be used. This corresponds to the
creation of a data model which describes the intended use of a property. Although this
approach differs from most knowledge modeling approaches, which assume an open
world assumption and therefore rather define to which concepts a property belongs,
it is more intuitive for the targeted user roles to define a model based on assigned
properties.
Modeling of domain knowledge using the editor can be performed as follows:

1. Vocabulary Import. If needed, existing RDF vocabularies can be imported into
the knowledge base.

2. Property definition. The knowledge editor provides an interface to create prop-
erties and to define their range. Multiple options are available for range defini-
tion, for instance, a range can be a primitive type (similar to datatype properties
in OWL), a fixed set of values (by applying schema.org’s Enumeration concept)
or a quantitative value representing numerical properties with an additional
range of values such as minimum, maximum and step. Although such func-
tionality can also be provided by existing ontology modeling tools, our editor
provides high-level concepts targeted at modeling knowledge that can be re-used
in pipeline definitions.

3. Concept definition. Concepts can be created by providing a label, a description
and a set of properties which should be assigned to the concept. Internally, we
represent property assignments by adding a so:domainIncludes statement to a
property.

4. Instance definition. For each concept, instances can be created. The editor
receives all properties which have a so:domainIncludes property assigned to the
concept and renders forms which allow users to provide the required values.
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7.7 Summary
This chapter introduced concepts supporting the setup phase. The first contribution
presented in this chapter are conceptual models that define Semantic Event Producers
(S-EP), Semantic Event Processing Agents (S-EPA) and Semantic Event Consumers
(S-EC). Each of these elements consists of a description layer, specifying properties
of event producers, processing agents and consumers and an implementation layer,
specifying the actual implementation logic. The description layer exposes these prop-
erties using standard RESTful interfaces and therefore allows an element description
to be made available in the web.
The second contribution is associated with the description itself. We provided an
RDF-based vocabulary that allows to define event processing building blocks. Related
to event producers, the vocabulary comprises the definition of event streams by
providing concepts and properties to assign event schemas, quality-oriented properties
and grounding information. Furthermore, we proposed a vocabulary to model event
processing agents. This model takes into account stream requirements, as well as static
properties expressing input required from users in the execution phase. In addition,
the concept of output strategies allows developers to express the transformation an
S-EPA performs on an input event stream.
Finally, tools supporting both main processes in the setup phase were introduced.
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Execution Phase

The last chapter has already introduced a vocabulary used to define capabilities of
pipeline elements and an architecture to publish these as a description graph. In
this chapter, we move on to the question how processing pipelines can be authored
and executed. After a walkthrough in section 8.1, we define the notion of processing
pipelines and explain the usage of invocation graphs in section 8.2. Section 8.3 focuses
on the second task in the execution phase and describes the pipeline authoring process.
Finally, the pipeline deployment task is described.

8.1 Walkthrough
After pipeline identification, the execution phase primarily deals with the definition
and execution of processing pipelines. Processing pipelines define a data flow between
the pipeline elements defined in the previous chapter. Building upon the conceptual
architecture of pipeline elements, figure 8.1 illustrates our approach. The application
layer shows the conceptual architecture for individual pipeline elements. The RDF
description each element offers after it has been deployed within the setup phase
can be imported into a repository as part of the management layer, which makes the
element available in the modeling layer. The modeling layer itself consists of a graphical
tool to define processing pipelines. The graphical editor solely operates based on
description graphs provided by individual pipeline elements in the application layer.
Pipeline elements available in the repository can therefore be connected to form a
pipeline consisting of event sources publishing a specific event stream provided by a
corresponding producer, processing agents and consumers. For each connection which
is made during the pipeline authoring process, we verify the ability of two elements to
be connected with each other based on provided and required schema-, quality- and
stream grounding-related aspects; if the verification is unsuccessful, the connection is
omitted. Once a pipeline has been created, it can be started. The management layer
creates one RDF-based invocation graph for each processing element of a pipeline.
This graph contains configuration options for the individual processing elements,
their exact stream binding and information on the output schema. The graph is
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subsequently sent to the HTTP endpoints provided by each processing element. At run-
time, events are exchanged by connecting to message brokers and topics as provided
in the invocation graph. The management layer itself assigns run-time communication
protocols and topics to each processing element based on provided capabilities.

HTTP
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EPProducer
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Message Broker

Message Broker
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JSON‐LD
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Figure 8.1 Processing Pipelines: Conceptual Architecture

8.2 Processing Pipelines
As a basis for an in-depth view on the management of processing pipelines, within this
section processing pipelines are formally defined. In addition, we introduce structure
and vocabulary of invocation graphs.

8.2.1 Definition
In this section, we give a formal description of a processing pipeline, which is com-
posed from the three building blocks presented in the previous section. We consider
a model base M which contains a set of event sources (S), event processing agents (A),
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event consumers (C) and a set of processing pipelines P such that M = (S,A,C,P). A
Processing Pipeline p ∈ P is a quadruple p = (Sp,Ap,Cp,Fp), such that Sp denotes a
set of event sources with Sp ⊆ S, Ap denotes a set of semantic event processing agents
with Ap ⊆ A, Cp denotes a set of semantic event consumers with Cp ⊆C. Fp denotes a
binary relation defining the connections between these sets in a directed acyclic graph,
such that Fp ⊆ (Sp×Ap)∪ (Ap×Ap)∪ (Ap×Cp) and ∀a ∈ Ap : {a,a} /∈ Fp.
Furthermore, N = S∪A∪C is defined as the set of nodes and each f ∈ F is called an
arc. d+(n) denotes the number of output arcs and d−(n) denotes the number of input
arcs of n ∈ N. p is syntactically valid if the following applies:

1. |Sp| ≥ 1 ,|Ap| ≥ 1 ,|Cp| ≥ 1, p is built by at least one source, one S-EPA and one
S-EC.

2. |Cp|= 1, each P consists of exactly one event consumer.
3. ∀a ∈ Ap : d+(a) = 1 , each agent has exactly one output arc.
4. ∀a ∈ Ap : d−(a)≥ 1∧d−(a)≤ 2, each agent has exactly one or two input arcs.
5. ∀s ∈ Sp : d+(s)≥ 1, a source has at least one output arc.
6. ∀s ∈ Sp : d−(s) = 0, a source has zero input arcs.
7. ∀c ∈Cp : d−(c) = 1, a consumer has exactly one input arc.
8. ∀c ∈Cp : d+(c) = 0, a consumer never has an output arc.

Figure 8.2 Syntactically Valid Processing Pipelines: Examples

Examples for syntactically valid processing pipelines are illustrated in figure 8.2.
The attentive reader will have noticed that we do not allow splits in pipelines, i.e.,
an S-EPA is not allowed to have more than one output arc. We made this design
decision due to the assumption that a pipeline should generally pursue a single
scope, e.g., transforming one or more input streams to exactly one output stream.
However, as splits might be useful to route events based on filter expressions to
different consumers, we support the concept of partial pipelines. A partial pipeline p′ ∈
P′ is formally defined as a triple p′ = (Sp′ ,Ap′ ,Fp′) where Fp′ ⊆ (Sp′ ×Ap′)∪ (Ap′ ×Ap′)
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and ∀a ∈ Ap′ : {a,a} /∈ Fp′ ., i.e., a partial pipeline is a graph similar to a processing
pipeline, but does not provide a consumer element. Instead, a partial pipeline can
be used as a block within a processing pipeline, which basically means that every
part of a processing pipeline can be re-used in another pipeline which practically
leads to the same functionality as a Split EPA, but ensures more intuitive modeling of
pipelines. Therefore, we extend the definition of Fp to include partial pipelines such
that Fp ⊆ (Sp×Ap)∪ (Ap×Ap)∪ (Ap×Cp)∪ (P′×Ap)∪ (P′×Cp).

8.2.2 Invocation Graphs
Invocation graphs encapsulate configuration information for processing elements. In
contrast to description graphs for Semantic Event Processing Agents (S-EPAs) and
Semantic Event Consumers (S-ECs), an invocation graph explicitly specifies how the
implementation logic of a processing element can be instantiated.
In figure 8.3, we illustrate how invocation graphs are generated. A software mod-
ule, the integration and execution engine, receives a description graph as an input.
Based on the specification contained in the description graph, required user input is
calculated. Required user input can be presented to pattern engineers involved with
pipeline authoring. Tools such as graphical editors are then able to generate views
which request users to provide the required input. Once user input has been provided,
the invocation graph can be calculated. This graph contains information about the
input event stream the S-EPA should subscribe, the output event stream, configuration
values depending on the user input and grounding information on input and output
streams.
In section 8.3.5, the generation of invocation graphs is presented in detail.

Description Graph Invocation Graph

user input

Required input streams

Required static properties

Supported grounding

Output strategy

determine required
user input

Integration & 
Execution Engine

Specific input stream

Specific output stream

Element configuration

Selected grounding

Pattern Engineer

Figure 8.3 Invocation Graphs: Generation
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Although many elements of the vocabulary presented in chapter 7 can be re-used
for invocation graphs, some extended concepts and properties are necessary. An
invocation is represented either by an AgentInvocation to invoke S-EPAs or a Con-
sumerInvocation to invoke S-ECs. While both concepts are related to one or more
input streams, only an AgentInvocation provides information on an output stream.

Vocabulary

Concepts and properties that are intended to be used with invocation graphs are listed
in tables 8.1 and 8.2.

Table 8.1 Concepts: Processing Element Invocation
Concept rdfs:subClassOf Description

epa:Invocation rdfs:Class An entity representing information on the invoca-
tion of a pipeline element

epa:AgentInvocation epa:Invocation An entity representing information on the invoca-
tion of an S-EPA

epa:ConsumerInvocation epa:Invocation An entity representing information on the invoca-
tion of an S-EC

Table 8.2 Properties: Processing Element Invocation

Property
so:domainIncludes

so:rangeIncludes
Description

epa:hasInputStream
epa:Invocation

epa:EventStream
Assigns an input event stream to an
EPA:INVOCATION

epa:hasOutputStream
epa:AgentInvocation

epa:EventStream
Assigns an output event stream to an
EPA:AGENTINVOCATION

epa:hasStaticProperty
epa:Invocation

epa:StaticProperty
Assigns a static property to an EPA:INVOCATION

Example

Our example is based on the examples given in chapter 7. Based on the PositionStream
and the Geofencing S-EPA, the following listing shows how an invocation graph is
being defined in order to instantiate the Geofencing S-EPA.
In general, the description graph of the Geofencing element has defined multiple
static properties containing configuration parameters needed for the instantiation of
the element’s implementation logic.
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• Geofencing Operation, which expects users to select the operation that should
be performed. The description offers two operations, the arrival within a ge-
ofence and the departure from a geofence.

• Geofence Center, which expects users to provide a center coordinate of the
geofence. This has been modeled as a DomainStaticProperty, i.e., it links to a
required concept from the knowledge base.

• Geofence Radius, which expects users to provide the size of the geofence as a
single value.

• Latitude and Longitude Mapping, which expect users to select a specific prop-
erty from a list of possible properties from the input stream (in this example
the PositionStream) which match the property requirement defined in the S-EPA
description. In our case, as only a single property in the input stream matches
each of the requirements, no further user input is required.

According to Listing 8.1, we first specify that the Geofencing S-EPA should detect an
arrival of a vehicle within the geofence by assigning a true value to the optionSelected
property.
Next, both supported properties are assigned numbers to indicate the geofencing
center. The specific numbers are directly derived from the knowledge base, section
8.3.5 illustrates the implementation of a lookup in the knowledge base. In addition, the
center of the geofence is specified by assigning a value to the static property. Finally, the
invocation includes information about the specific latitude and longitude properties
from the PositionStream that should be used to calculate the geofence detection.

Listing 8.1 Example: Invocation Graph

1 : GeofencingInvocation rdf:type epa: AgentInvocation .
2
3 : GeofencingInvocation epa: hasInputStream : PositionStream .
4
5 : GeofencingInvocation epa: hasStaticProperty : GeofencingOperation .
6 : GeofencingEpa epa: hasStaticProperty : GeofenceCenter .
7 : GeofencingEpa epa: hasStaticProperty : GeofenceRadius .
8 : GeofencingEpa epa: hasStaticProperty : LatitudeMapping .
9 : GeofencingEpa epa: hasStaticProperty : LongitudeMapping .

10
11 : GeofencingOperation epa: hasOption : ArrivesOption .
12 : ArrivesOption epa: optionSelected true .
13
14 : GeofenceCenter rdf:type epa: DomainStaticProperty .
15 : GeofenceCenter epa: requiredClass geo: Location .
16 : GeofenceCenter epa: hasSupportedProperty : LatitudeSupported .
17 : GeofenceCenter epa: hasSupportedProperty : LongitudeSupported .
18
19 : LatitudeSupported so: value 49 .
20 : LongitudeSupported so: value 7 .
21
22 : GeofencingRadius rdf:type epa: SingleValueProperty .
23 : GeofencingRadius epa: requiredDatatype so: Integer .
24 : GeofencingRadius epa: valueSpecification : RadiusValueSpecification .
25 : GeofencingRadius so: value 500 .
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26
27 : LatitudeMapping rdf:type epa: MappingPropertyUnary .
28 : LatitudeMapping epa: mapsFrom : LatitudePropertyRequirement .
29 : LatitudeMapping epa: mapsTo : LatitudeProperty .
30
31 : LongitudeMapping rdf:type epa: MappingPropertyUnary .
32 : LongitudeMapping epa: mapsFrom : LongitudePropertyRequirement .
33 : LongitudeMapping epa: mapsTo : LongitudeProperty .

8.3 Pipeline Authoring
In this section, we describe the pipeline authoring process in more detail. Although we
suggest that pipeline authoring targeted at non-programmers can be best supported
by using graphical editors to define processing pipelines, our vocabulary in general is
not restricted to be used with a single tool for pipeline authoring. However, in order
to better illustrate the pipeline authoring process within this section, our examples
are given by showing examples from the pipeline editor we developed as part of the
StreamPipes framework.

8.3.1 StreamPipes Pipeline Editor
The StreamPipes pipeline editor is a web-based application to create processing
pipelines using a blocks-and-arrows-based notation. Figure 8.4 illustrates the main
interface of the pipeline editor. The top navigation bar allows users to select an element
type. The Data Streams section displays event streams extracted from all available S-EP
descriptions, Processing Elements lists available S-EPAs and Data Sinks shows available
S-ECs. Elements users are able to select are shown in the pipeline element section.
The lower area of the pipeline editor, subsequently called the assembly area, is the
main canvas to define processing pipelines. In order to create a pipeline, individual
pipeline elements can be dragged from the pipeline element selection into the assembly
area. Starting with the selection of streams, pipelines can be formed by connecting
individual pipeline elements with other elements according to the pipeline authoring
process described in the next section.

8.3.2 Authoring Process
Pipeline authoring follows a defined process which is illustrated in figure 8.5. This
process includes both user-related tasks and system-related tasks. In this section,
we briefly summarize the authoring process, while the following sections present
selected tasks in more detail. In general, the pipeline authoring process starts with
the selection of a data sources of the pipeline. The next user-related task is to select an
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S-EPA. Depending on the number of input nodes, both elements are connected with
each other.
Once a connection has been made, this connection is verified based on the description
of both elements. The verification process considers schema-related, grounding-
related and quality-related requirements as introduced in chapter 7. If a connection is
considered valid, the element customization process is entered. In this process, stream-
specific mapping properties are computed for the element. Based on the possible
mapping between event property requirements and event properties provided from
the incoming streams, in addition to defined static properties of the S-EPA, required
user input is computed. After users have configured the element with the required
parameters, the output stream can be computed. Once all required S-EPAs have been
added to the pipeline, an S-EC needs to be selected, which acts as the sink of the
pipeline. Connections between S-EPAs and S-ECs are also verified and customized
before the pipeline can be started. At pipeline startup time, invocation graphs are
computed for all processing elements of the pipeline. Afterwards, these graphs are
sent to the HTTP endpoints of each processing element, where the individual run-
times implementations are parameterized based on the configuration parameters
included in the invocation graph.
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Figure 8.5 Pipeline Authoring: Process
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8.3.3 Stream/S-EPA Selection
The first two tasks within the pipeline authoring process are user-related. By using the
graphical editor, an event source can be dragged into the assembly area. Afterwards,
either additional sources or an S-EPA can be selected. This process is illustrated in
figure 8.6. By using the StreamPipes editor, users are further provided with two
features assisting to select appropriate elements. First, for a given source, elements are
recommended based on an analysis of the pipeline repository, which simply counts
the number of successful connections of previously created pipelines between two
elements and generates a recommendation consisting of the top-k recommended
elements. Second, each element provides an option to filter for pipeline elements
which are compatible to each other based on the verification. By choosing this option,
the pipeline element selection area only displays elements that can be connected with
the active element.
Source elements and S-EPAs provide an output port. This port can be used to create a
connection to another element, which triggers the verification process as described
below.

Figure 8.6 Pipeline Authoring: Stream Selection

8.3.4 Verification
Once a connection between two pipeline elements has been made, we are interested in
figuring out whether these elements can be connected. Instead of a pure syntactical-
oriented approach based on data types, we aim to verify a connection based on the
vocabulary defined in chapter 7. Therefore, a connection is considered valid if an
input stream satisfies all stream requirements of a processing element. In addition, an
input stream must at least support one grounding which is required by a processing
element.
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In order to formally describe the verification of two pipeline elements, which is also
being used in our provided tools to determine two compatible elements, we extend
the model base defined in section 8.2 as follows:

M = (S,A,C,P,E,Γ,Π,K,Q,T,D,Ψ,Φ)

with
• E as the set of all event schemas,
• Γ as the set of all stream groundings,
• Π as the set of all event properties,
• K as the set of all stream qualities,
• Q as the set of all property qualities,
• T as the set of all data types,
• D as the set of all domain properties,
• Ψ as the set of all transport protocols and
• Φ as the set of all transport formats.

Furthermore, O represents a StreamOffer and R represents a StreamRequirement. We
further define two functions o f f ers and requires, whereas a StreamOffer can be made
by sources and event processing agents and a StreamRequirement can be made by event
processing agents and event consumers. Note that, as defined above, event processing
agents and consumers might have either one or two input ports and therefore can
define one or two StreamRequirements.

o f f ers :S∪A→ O

requires :A∪C→ R×R

In order to decide whether an offer fulfills a requirement, the event schema, stream
qualities and the stream groundings are taken into account.

O,R⊆ E×Γ×2K

In general, a StreamOffer fulfills a StreamRequirement if its event schema matches the
schema requirement (ematch), its stream qualities match the stream quality require-
ments (kmatch) and if a stream grounding (gmatch) which both sides support can be
found.

∀r ∈ R,o ∈ O :(matchAll(r = (εR,γR,κR),o = (εO,γO,κO))

⇔ ematch(εR,εO)∧gmatch(γR,γO)

∧ (∀κR ∈ KR∃κO ∈ KO : kmatch(κR,κO)))
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From a grounding point of view, a StreamOffer fulfills a StreamRequirement if at least
one common transport protocol (ψ) and one common transport format (φ ) can be
found. Therefore, the function sup(a,b) defines whether a grounding supports a
specific format or protocol.

∀γR,γO ∈ Γ :(gmatch(γR,γO)⇔
(∃ψ ∈Ψ : sup(γR,ψ)∧ sup(γO,ψ))

∧ (∃φ ∈Φ : sup(γR,φ)∧ sup(γO,φ)))

Quality attributes defined as requirements on the stream level need to be fulfilled by
an input event stream. As defined in chapter 7, a stream quality requirement might
provide a minimum value, indicating that an input stream must at least support the
provided value, or a maximum value, indicating that an input stream must not exceed
the provided value. Therefore, we define a function ktype, which maps a stream
quality κ to a min/max type and a function kvalue, which maps a stream quality κ to
a numerical value.

ktype :K→{{min},{max}}
kvalue :K→ R

A stream quality match is defined as follows: Whenever an offered stream quality κO

exceeds a required minimum stream quality κR or an offered stream quality κO does
not exceed a required maximum stream quality, then κR, κR and κO match.

∀κR,κO ∈ K :(kmatch(κR,κO)⇔
(ktype(κR) = {min}∧ (kvalue(κR)≤ kvalue(κO)))

∧ (ktype(κR) = {max}∧ (kvalue(κR)≥ kvalue(κO))))

Besides grounding and stream quality, the schema of an event stream is relevant to
determine a matching between a StreamOffering and a StreamRequirement. An event
schema consists of one or more event properties.

E ⊆ 2Π

In order to determine a schema match between a stream offering and a stream re-
quirement, for each event property defined in the requirement specification an event
property needs to be present in the offering which matches the property requirement.
A pmatch defines such a property match.
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∀εR,εO ∈ E :(ematch(εR,εO)⇔
(∀πR ∈ ER∃πO ∈ EO : pmatch(πR,πO)))

An offered event property matches a required event property, if three conditions are
fulfilled. First, if the property requirement specifies a data type, the schema of a
stream offering needs to provide an event property with the same data type (tmatch).
Second, if the property requirement specifies a domain property, the schema of a
stream offering needs to provide an event property with the same domain property
(dmatch). Third, if a property requirement specifies one or more property qualities,
these quality requirements must also be fulfilled by an event property that belongs to
a stream offering.

Π⊆ 2Q×D×T

∀πR,πO ∈Π :(pmatch(πR = (QR,dR, tR),πO = (QO,dO, tO))⇔
(∀qR ∈ QR∃qO ∈ QO : qmatch(qR,qO))∧
dmatch(dR,dO)∧ tmatch(tR, tO))

A tmatch indicates whether a required data type is matched by an offered data type.

∀tR, tO ∈ T : (tmatch(tR, tO)⇔ (tR = tO)

A dmatch indicates whether a required domain property is matched by an offered
domain property. In contrast to data types, a domain property match is not only
satisfied if a domain property specified in the requirement is provided in the offering,
but also matches all domain properties in the offering that are sub properties (based on
an rdfs:subPropertyOf relation). The function spo(a,b) determines whether a domain
property b is a sub property of a.

∀dR,dO ∈ D : (dmatch(dR,dO)⇔ (spo(dR,dO))

Finally, property quality is matched similar to stream qualities. For each property
quality assigned in a property requirement, an event property in the offering must
fulfill the quality specification.
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qtype :Q→{{min},{max}}
qvalue :Q→ R

∀qR,qO ∈ Q :(qmatch(qR,qO)⇔
(qtype(qR) = {min}∧ (qvalue(qR)≤ qvalue(qO)))

∧ (qtype(qR) = {max}∧ (qvalue(qR)≥ qvalue(qO))))

Based on this approach, we are able to determine whether two pipeline elements can
be connected. If this is the case, the next step is to compute the input required from
users. Technically, this task implies the preparation of an invocation graph. Although
the exact output stream is not yet known before the user-related customization of
an element has been finished, some static properties need to be re-configured based
on the exact input stream. For instance, for each mapping property defined in the
description of a processing element, specific event properties from the input event
stream need to be found.
Algorithm 1 defines the algorithm used to create an invocation graph. The input
of this algorithm is a temporary pipeline containing all pipeline elements that have
been added so far. Therefore, the minimum size of a temporary pipeline is 2, an
input stream and the first element that has just been connected. The output of the
algorithm is a prepared invocation graph, i.e., an invocation graph that still does not
contain information on output event streams, but already includes both input event
stream definitions and user-related static property requirements.
As follows, we define the root element of a pipeline as the first element of a pipeline
which is not yet been fully customized by the user, i.e., the last pipeline element that
has been connected. The initial step of the algorithm is to extract partial pipelines.
Starting from the root element, for each input channel that already has an arc to a
predecessor, a partial pipeline is built. The output stream of each partial pipeline is
then added as an input stream of the invocation graph. Afterwards, static properties
are attached to the invocation graph. For each static property that is part of the root
element’s description graph, we determine whether the static property is either of
type MappingProperty or MatchingProperties. As introduced in chapter 7, mapping
properties are used in order to map an operation of an S-EPA or S-EC to a specific
event property from an input stream. For instance, considering an S-EPA which
filters numerical event properties in order to detect whether a value exceeds a custom-
defined threshold value, the mapping properties’ mapsFrom relation links to an event
property defined in the stream requirement in the S-EPA’s description graph. For the
invocation graph, the mapsFrom relation needs to be rewritten in order to link to “real”
event properties from the input event stream, i.e., all event properties which match
the property defined in the mapsFrom relation. This is performed in lines 11-16 of the
algorithm. In addition, matched properties from the input event stream need to be
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Algorithm 1 Compute Invocation Graph
Input:

incomplete temporary pipeline pt .
Output:

prepared invocation graph i.

1: partialPipelines[]← extractPartialPipelines(pt )
2: r← getRoot(pt )
3: d← getDescriptionGraph(r)
4: i← empty invocation graph

5: for all p′ in partialPipelines[ ] do . incoming streams of r
6: s← getOutputStream(p′)
7: addInputStream(i,s)
8: addOutputStrategies(i, d)
9: for all sp in getStaticProperties(d) do

10: if sp typeof MappingProperty then . modify Mapping Properties
11: epm← getMapsFrom(sp)
12: spm← new mapping property
13: for all si in getInputStreams(i) do
14: ep[]s← collectMatchedProperties(si, epm)
15: addMapsFrom(spm, ep[]s)
16: addStaticProperty(i, spm)
17: else if sp typeof MatchingProperty then . modify Matching Properties
18: epl ← getMatchLeft(sp)
19: epr← getMatchRight(sp)
20: spc← new matching property
21: for all si in getInputStreams(i) do
22: ep[]l ← collectMatchedProperties(si, epl)
23: ep[]r← collectMatchedProperties(si, epr)
24: addMatchLeft(spc, ep[]l)
25: addMatchRight(spc, ep[]r)
26: addStaticProperty(i, spc)
27: else
28: addStaticProperty(i, sp)

return i
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Algorithm 2 Collect matched properties
Input:

event stream s.
event property requirement epr

Output:
set of matched event properties ep[]m

1: ep[]m← /0
2: ess← getEventSchema(s)
3: ep[]s← getEventProperties(ess)
4: for all eps in ep[]s do
5: if pmatch(epr, eps) then . property match
6: ep[]m← ep[]m∪ eps

return ep[]m

found for both properties defined in the matchLeft and matchRight relations assigned
to MatchingProperties, which is done in lines 18-26 of the algorithm.
Algorithm 2, being used both for rewriting MappingProperties and MatchingProperties
within algorithm 1 provides an algorithm to find matching properties from an event
stream based on a given event property.
The algorithm returns a prepared invocation graph which can be used by the graphical
editor in order to guide the user to correctly instantiate the run-time implementation
of the processing element.

8.3.5 Element Customization
After a connection between two elements has been verified, and the prepared invocation
graph has been computed, a customization dialog is presented to users as illustrated
in figure 8.7. Available customization options depend on static properties and the
provided output strategy. For each static property and each output strategy requiring
for further user customization, a web-based form input element is generated.
Table 8.3 shows how static properties and output strategies are transformed to form el-
ements. We briefly summarize the elements supported in the StreamPipes framework
and describe their usage. It is noteworthy that the assignment from a static property
to a generated form element is not necessarily fixed, but depends on the individual
semantics of the underlying property. For instance, if a domain static property requires
properties from an instance of a geo:Location class, a map can be displayed showing
available locations gathered from instances found in the knowledge base.
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Table 8.3 Generation of Form Elements
Required User Input Additional Constraints Generated Form Element

SingleValueProperty

-

PropertyValueSpecification

mapsTo (Quantitative Value)

mapsTo (Enumeration)

Text Input

Slider Input

Slider Input

Select Input

MultiValueProperty - Checkbox Input

SelectionStaticProperty - Radio Input

DomainStaticProperty - Instance Search

MappingPropertyUnary - Select Input

MappingPropertyNary - Checkbox Input

MatchingStaticProperty - Multiple Select Input

CustomOutputStrategy - Checkbox Input

TransformOutputStrategy - Transform Input

• Text Input requires a free text input and can additionally be restricted to a
required data type as provided in the associated SingleValueProperty.

• Slider Input requires a numerical value with specified minimum and maximum
values. A slider input is displayed if the associated SingleValueProperty either
contains a mapsTo relation which links to an event property having a quantitative
value definition. In addition, a slider input is shown if the SingleValueProperty
itself provides a PropertyValueSpecification.

• Select Input requires the selection of one or more options. SingleValueProper-
ties which have an assigned mapsTo relation linking to an event property with
an enumerated value specification are displayed as select inputs. In addition,
possible property mappings defined in a mapping property are presented as
select inputs.

• Checkbox Input lets users select multiple options from a list of available op-
tions. This corresponds to the specification of MultiValueProperties, where
users can select one or more supported operations the run-time implementa-
tion supports and instances of MappingPropertyNary allowing users to select
multiple mappings.

• Radio Input corresponds to the functionality of a Select Input and is used in
order to present multiple configuration options a SelectionStaticProperty offers,
whereas users can select from one of these options.

• Instance Search. User input required for domain static properties linking to
concepts and supported properties from a knowledge base are rendered as an
instance search component. This component allows users to search for instances
in the knowledge base based on keywords. The search component auto-suggests
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matching instances found in the knowledge base. Once an instance has been
selected by the user, supported properties are automatically extracted from the
instance and attached to the domain static property definition.

• Multiple Select Input is used to support MatchingStaticProperties. A multiple
select input basically consists of two select inputs which require users to select
one event property from each stream which should provide the same value.

• The Transform Input allows users to specify the transformation. Depending on
the specification of the corresponding TransformOutputStrategy, input forms
are generated to provide a new runtimeName, runtimeType or domainProperty.

Figure 8.8 illustrates examples for generated forms based on DomainStaticProperties
as well as SingleValueProperties providing a PropertyValueSpecification. The left
example shows the configuration of a DomainStaticProperty. The customization
dialog is shown for the case of a Apache Kafka Sink which forwards an incoming event
to a topic of an Apache Kafka message broker. In this example, specific broker settings,
such as the URL of the broker and the port that should be used to initiate the broker
connection can be selected from a list of available brokers previously configured in
the knowledge base. The instance search dialog presents a search interface to look up
such instances in the knowledge base. The right example shows the appearance of a
SingleValueProperty which has an assigned PropertyValueSpecification. In this case,
instead of a plain text input field, a slider input is generated enabling users to directly
select a numerical value according to the allowed range of the value specification. In
this example, the radius property of the already mentioned Geofencing S-EPA can be
instantiated using a slider input.

8.3.6 Computation of Output Streams
Once users have provided inputs for all required values, the output stream can be
computed. Algorithm 3 summarizes the steps required to compute an output event
stream based on input event streams and provided user input. The input of this
algorithm are all input event stream definitions of a processing element and the
output strategy the element provides.
First, in lines 4-5, the event properties of both input streams are collected. Depend-
ing on the output strategy, a set of output event properties is defined. In case of a
KeepOutput, the set of input event properties also represents the set of output event
properties. An AppendOutput defines the output stream as the union set of all input
event properties and additional event properties defined in the output strategy. In case
of a FixedOutput, output event properties correspond to the set of event properties
defined by the output strategy. CustomOutput uses the set of user-selected event
properties, which are a subset of all event properties from the input event streams.
Finally, if the output strategy is of type TransformOutput, event properties from the
input event stream are replaced with new event properties according to the transfor-
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mation type (partly) indicated for by users. Therefore, for each UriPropertyMapping
a set of replaceFromProperties and a set of replaceWith properties is collected. The
set of output event properties contains all input event properties that are not affected
by the transformation in addition to transformed event properties.

Algorithm 3 Compute Output Stream
Input:

input stream definitions Si.
output strategy o

Output:
output stream definition so

1: ep[]i← /0 . input event properties
2: ep[]o← /0 . output event properties

3: for all si in Si do
4: esi← getEventSchema(si)
5: ep[]i← ep[]i∪ getEventProperties(esi)
6: if o typeof KeepOut put then
7: ep[]o← ep[]i
8: else if o typeof AppendOut put then
9: ep[]o′ ← getAppendOutputProperties(o)

10: ep[]o← ep[]i∪ ep[]o′
11: else if o typeof FixedOut put then
12: ep[]o′ ← getFixedOutputProperties(o)
13: ep[]o← ep[]o′
14: else if o typeof CustomOut put then
15: ep[]o′ ← getUserDefinedOutputProperties(ep[]i)
16: ep[]o← ep[]i∩ ep[]o′
17: else if o typeof Trans f ormOut put then
18: ep[]r′ ← /0 . properties to remove
19: ep[]i′ ← /0 . properties to include
20: for all u typeof getUriPropertyMappings(o) do
21: ep[]r′ ← ep[]r′∪ getReplaceFromProperty(u)
22: ep[]i′ ← ep[]r′∪ getReplaceWithProperty(u)
23: ep[]o← (ep[]i \ ep[]r′)∪ ep[]i′
24: eso← makeSchema(ep[]o)
25: so← makeStream(eso)
26: return so
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8.4 Pipeline Deployment
Finally, once a pipeline has been completed, its deployment process can be started.
Pipeline deployment is manually triggered by users by requesting a pipeline to be
started. At this time, a pipeline is represented by one or more source definitions
indicating the input event streams and a set of prepared invocation graphs which already
include input stream definitions, an output stream definition and configuration pa-
rameters. Therefore, the final missing building block is the communication between
pipeline elements, i.e., the transport protocol and format event streams are exchanged
in form of their individual stream groundings. Although we have already ensured
within the verification task that connected pipeline elements provide at least one
common grounding, a specific protocol, transport format and a topic used for publishing
and subscription needs to be chosen.

Algorithm 4 Complete Invocation Graphs
Input:

temporary processing pipeline pt .
Output:

processing pipeline pt

1: tree← buildTree(pt )
2: root← getRoot(tree)
3: pipelineElements← traversePostOrder(tree)
4: for pipelineElement in pipelineElements do
5: if pipelineElement = root then
6: break;
7: else
8: parentElement← getParent(pipelineElement)
9: so← getOutputStream(pipelineElement)

10: si← getInputStream(pipelineElement, parentElement)
11: sgr[]l ← getSupportedGrounding(pipelineElement)
12: sgr[]r← getSupportedGrounding(parentElement)
13: sgrc← selectStreamGrounding(sgr[]l ,sgr[]r)
14: assignSelectedGrounding(si, sgrc)
15: assignSelectedGrounding(so, sgrc)

return p

This is done as summarized in algorithm 4. The input of this algorithm is a temporary
processing pipeline. First, a tree is built with the S-EC as the root node. Afterwards,
we traverse this tree in post-order. For each output-input connection between two
pipeline elements, a specific stream grounding needs to be selected. The algorithm
finishes once the root element has been reached. A stream grounding is selected
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by comparing the supported grounding of a pipeline element and the supported
grounding of its direct ancestor element in the pipeline. Afterwards, the function
selectStreamGrounding, described in algorithm 5, is called which finds a common
grounding supported by both elements and assigns a topic to the transport protocol
of the grounding. If a source (which was already assigned a topic in the setup phase)
is the current pipeline element, the topic from the source is being re-used. Otherwise,
a random topic is generated. The grounding is then assigned to both the output event
stream definition from the current pipeline element and the input stream definition
from the parent element.

Algorithm 5 Select stream grounding
Input:

supported stream groundings left sgr[]l
supported stream groundings right sgr[]r

Output:
selected stream grounding sgrc

1: sgrc← /0
2: for all sgrr in sgr[]r do
3: for all sgrl in sgr[]l do
4: if gmatch(sgrr,sgrl) then
5: sgrc← sgrr
6: topic← chooseTopic( )
7: assignTopic(sgrc, topic)
8: breakreturn sgrc

Finally, for each processing element of an invocation graph exists which contains
all necessary configuration required for the instantiation of the element. Graphs
are subsequently sent to the HTTP endpoints of each processing element where
the implementation logic is invoked. A processing pipeline is successfully started
if all processing elements of the pipeline are successfully invoked. Our provided
tool support includes an interface to trigger the start of a pipeline as illustrated in
figure 8.9. This interface also indicates whether all pipeline elements could be started
successfully.

8.5 Summary
In this chapter, the execution phase was discussed in detail. We first gave a formal
definition of processing pipelines which consist of a number of potentially distributed
Semantic Event Producers (S-EP), Semantic Event Processing Agents (S-EPA) and
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Semantic Event Consumers (S-EC). Afterwards, the pipeline authoring process was
presented in details. Along a process model describing the individual steps required
to create processing pipelines, we formally presented details on the matching process
between stream offerings (provided by an S-EP or an S-EPA) and stream requirements
(provided by an S-EPA or an S-EC). Finally, algorithms were introduced that facilitate
the generation of invocation graphs, which contain the necessary information required
to invoke the run-time implementation of geographically distributed pipeline elements
in order to execute a processing pipeline.
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9
Evaluation

In this chapter, we evaluate our approach. Evaluations are performed based on
the artifacts we developed in order to implement the methodology that has been
introduced in chapter 6 and further detailed in chapter 7 and 8. Section 9.1, the
first part of this chapter introduces the evaluation methodology and describes our
implementation which is used as the artifact to evaluate the proposed methodology.
Section 9.2 presents three case studies where we present experiences made by applying
our methodology in various application domains in terms of the development process.
In section9.3, we perform a conceptual investigation in order to analyse the expressivity
of our approach by discussing the fulfillment of requirements collected in chapter 5.
We evaluate the usability of our approach in section 9.4. Finally, section 9.5 deals with
performance measurements to compare the performance of our approach to existing
event processing systems.

9.1 Evaluation Methodology
In this section, we discuss the design of evaluations performed in order to show to
what extend our contributions are able to solve the identified problems. Therefore,
an evaluation strategy is required. As we followed the design science research (DSR)
paradigm as a research methodology during the course of this thesis, a strategy
supporting the evaluation of design science artifacts is required [Pries-Heje et al. 2008].
An overview of variables and values for the evaluation of DSR artifacts is given in
[Cleven et al. 2009], which include, among others, the selection of an artifact type (e.g.,
a model or an instantiation, an evaluation method (e.g., a Case study), and a function the
evaluation serves.
According to [Venable et al. 2012], an evaluation design process starts with a require-
ments elicitation. Our evaluation design is defined along the research questions
identified in chapter 1 and briefly recapped below. For each research question, we
define evaluation metrics which are able to give evidence of the fulfillment degree of
our approach in relation to the research question. Based on each metric, we select an
evaluation method which is able to acquire knowledge on the fulfillment of an evalua-



154 9 Evaluation

tion metric. Finally, a software artifact which implements the metric under evaluation
is chosen. Details on the evaluation methods itself are given in the respective sections.
Our evaluation methodology is summarized in figure 9.1.

Evaluation Methodology

Expressivity Usability

SDK

Performance TestsUser SurveyConceptual Investigation

Development process & 
re-usability

Case studies

RQ 1
Development process

RQ 2
Model

Performance

RQ 3
Domain Knowledge

RQ4
Authoring & ExecutionResearch Question

Evaluation Metric

Evaluation Method

Evaluation Artifact Pipeline EditorVocabulary Runtime-WrapperModel Editor

Figure 9.1 Evaluation: Methodology

We will now identify metrics, methods and artifacts for the research questions identi-
fied in chapter 1.

Research Question 1 (Development Process). How can we improve the development
process of event processing applications?

This research question targets the efficiency of event processing development pro-
cesses. As a main artifact, in chapter 6 we introduced a novel methodology supporting
the development of event processing applications. The main advantage of this method-
ology is to leverage software engineers to provide event processing building blocks
(i.e., producers, event processing agents and consumers) which can be re-used by
non-programmers in various settings without further software development effort.
Therefore, we can answer this question by showing that a) the effort to develop re-
usable building blocks is not significantly higher than the development of hard-coded
building blocks and b) building blocks developed with our methodology are in fact
re-usable. An evaluation method which is able to answer this research question could
therefore compare the development effort typically needed for existing development
processes with the effort needed when applying our methodology in order to make
results measurable. However, in order to get comparable results, such an approach
would require developers to implement event processing logic twice. Thus, we were
not able to perform such an evaluation. Instead, we decided to conduct case studies.
In these studies, we developed multiple building blocks by applying the developed
methodology in various use cases and discuss experiences made during the devel-
opment. The main software artifacts under evaluation in the case study are tools we
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provide to support the Setup Phase, namely the StreamPipes Software Development Kit
(SDK) and the Model Editor. Results from this study are presented in section 9.2.

Research Question 2 (Model). How can we model event processing blocks independent
from their specific run-time implementation?

Research Question 3 (Domain Knowledge). How can we separate domain knowledge
from the technical specification of event processing languages?

Research questions 2 and 3 deal with the development of a model supporting imple-
mentation-independent description of event producers, processing agents and con-
sumers and the separation of background knowledge from an event pattern specifi-
cation. In order to indicate the fulfillment degree of our approach related to these
research questions, the expressivity of our vocabulary needs to be investigated. Ex-
pressivity deals with the ability of our model to support the targeted use cases and
indicates whether or vocabulary is missing any required concepts. Therefore, the
conduction of case studies can also give information on the expressiveness of our
vocabulary. In addition, we perform a conceptual investigation by analyzing the
fulfillment degree of our approach compared to the requirements elicited in chapter 5
as well as a comparison to the theoretical hierarchy of event processing agents from
the literature as introduced in chapter 2. The conceptual investigation is conducted in
section 9.3.

Research Question 4 (Execution). How can we author and execute event processing
pipelines consisting of heterogeneous processing blocks?

The last research question deals primarily focuses on the Execution Phase, especially
the authoring and execution of processing pipelines. Pipeline authoring is a task
performed by pattern engineers. The primary evaluation metric of interest related
to pipeline authoring is the usability of the pipeline editor itself. We investigate
usability by presenting a user study we conducted together with partners from the
industry in one of our research projects. This study also covers the usability of the
knowledge editor used by business analysts during the setup phase. Finally, we
conduct performance tests. Performance tests are used in order to gain insights on
the run-time performance. Compared to the deployment of pipelines in a single-host
system, our approach adds overhead in terms of message broker communication due
to its distributed execution model. Therefore, we present performance tests which
use several run-time wrappers we developed as part of our framework, which we
compare against a single-host solution.

9.1.1 Software Artifact
Although our methodology is not bound to a specific tool, we have developed
StreamPipes as a reference implementation. Most evaluation methods therefore
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make use of StreamPipes as the evaluated software artifact. The framework pro-
vides complete tool coverage for our methodology and consists of about 140,000 lines
of code packaged into 30 Maven1 modules containing the implementation itself in
addition to samples we developed applying the methodology in various projects.
The component architecture is illustrated in figure 9.2. Thus, we briefly describe the
individual components.

Provided Artifacts

Application Layer

Modeling Layer

Management Layer

semantic-epa-client
Standalone Model Submitter, Embedded Model Submitter, Client-based Rest Interfaces

semantic-epa-runtime
Client-Side Routing, Interfaces for pub/sub communication and message transformation

semantic-epa-manager

Matching Engine, Execution
Engine

semantic-epa-
model

S-EP, S-EPA, 
S-EC 

vocabulary

semantic-epa-runtime-camel
Apache Camel-supported run-time

semantic-epa-runtime-flat
Standalone run-time

semantic-epa-esper

Esper Wrapper

semantic-epa-flink

Flink Wrapper

semantic-epa-storm

Storm Wrapper

semantic-epa-esper-
samples

Esper samples

semantic-epa-sources-
samples

Producer samples

semantic-epa-flink-
samples

Flink samples

semantic-epa-storm-
samples

Storm Samples

semantic-epa-sinks-
samples

Consumer samples

semantic-epa-
commons

Helper 
methods and

Utilities

semantic-epa-storage

Storage API, Model Store, 
Knowledge Store

semantic-epa-rest

Restful Interfaces, 
Transformation

semantic-epa-code-
generation

S-EP/S-EPA/S-EC Code 
Generation

semantic-epa-webapp

Pipeline Editor, Knowledge Editor, Model Editor, Dashboard, Import

semantic-epa-
sdk

High-level 
methods for

client
development

semantic-epa-
algorithms

Custom Algorithms

Figure 9.2 Implementation: Provided Software Artifacts

The modeling layer is implemented by the module semantic-epa-webapp, which con-
tains all user-related components that include graphical editors, i.e., the pipeline
editor, the model editor and the knowledge editor. In addition, this module contains
an implementation of a dashboard showing real-time visualizations for pipelines
which use a visualization as event consumer. The webapp also allows to import new
pipeline elements at run-time by requiring users to specify the link to a URL which
returns a description graph.
The management layer serves as a backend to the modeling layer and consists of
several modules leveraging the definition and execution of pipelines. semantic-epa-
manager realizes the matching engine triggered during pipeline definition and the
execution engine responsible for the generation and distribution of invocation graphs.
The component semantic-epa-storage serves as an API for storage-related services and

1 http://maven.apache.org

http://maven.apache.org
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implements the database connection to OpenRdf Sesame2 which we use as a triple
store. semantic-epa-rest provides RESTful interfaces for user interface interaction,
while semantic-epa-code-generation realizes the generation of Java code in order
to prepare implementations for new elements that have been created by using the
model editor. On the application layer, the first three layers from the top implement
implementation-independent run-time logic, e.g., HTTP endpoints used to serve and
receive description and invocation graphs (semantic-epa-client) and to realize the
connection to message brokers and message transformation (semantic-epa-runtime).
The layer below consists of several modules implementing the run-time wrappers
we already introduced in chapter 6. Finally, sample projects are available which
demonstrate the definition and usage of S-EPs, S-EPAs and S-ECs. These samples also
implement most of the functionality used within the case studies.
Finally, three modules contain layer-independent implementations, most importantly,
semantic-epa-sdk which contains the software development kit that assists developers
to define new pipeline elements and semantic-epa-model containing the model used
to create description and invocation graphs.

9.2 Case Studies
In order to derive information whether our methodology is able to reduce the devel-
opment effort of event processing applications, we have applied our methodology
during the development of event processing applications in several use cases. In
total, we have created more than 100 pipeline elements including producers, S-EPAs
for all supported run-time wrappers and S-ECs in form of data storage components,
visualizations and actuators. Some examples are presented in this section.
This section is structured as follows: First, we present generic pipeline elements we
initially developed to support a wide variety of use cases. Afterwards, we present
three case studies and explain pipeline elements we have developed specifically for
these use cases. The first case study, presented in section 9.2.2 is taken from the
application of our methodology for an industry partner from the automotive industry
in the manufacturing domain. The second case study elaborates on the application
of our methodology for a demonstration production facility (section 9.2.3). Finally,
in section 9.2.4 we present a case study conducted for the Debs Grand Challenge,
a competition aimed at evaluating event-based systems using complex real-world
scenarios. At the end of this section, we discuss experiences we gathered from these
case studies in relation to the development effort.

2 http://openrdf.org

http://openrdf.org
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9.2.1 Generic elements
Before diving deeper into the specific problems within each use case, we introduce
some pipeline elements we have developed as an initial set of generic elements. These
elements implement basic operators and features closely related to standard event
processing functionality such as pattern detection and filtering. Table 9.1 summarizes
these elements.
Generic elements in this sense are S-EPAs and S-ECs with few stream requirements,
e.g., they work in general for a large variety of input event streams. For instance,
pattern detection is supported by the S-EPAs Absence to detect missing events, And
to detect co-occurrences within a specified amount of time and Sequence to detect
two events occurring one after the other within a specified time window. In addition,
basic EPA types are provided, e.g., to join events based on a Compose EPA and to
remove event properties from a stream using a Project EPA. The goal of developing
generic elements was not to provide a complete set, but rather to start with an initial
set of components which we believed might be frequently re-used across different
application scenarios.

Table 9.1 Case studies: Initial set of generic elements
Name Type Description

Absence S-EPA Detects the absence of an event in the form a AND NOT b WITHIN time_window

Aggregation S-EPA Aggregates (min, max, sum, avg) an event property over a sliding window

Count S-EPA Counts a numerical event property value over a sliding window

Rate S-EPA Calculates the rate in which events are arriving per second

Compose S-EPA Implementation of the Compose EPA (see section 2.3.1)

Math S-EPA Performs basic math operations on numerical event properties

Numerical Filter S-EPA Filters numerical event properties based on a filter condition

Projection S-EPA Implementation of the Project EPA (see section 2.3.1)

Text Filter S-EPA Filters text-based event properties based on a filter condition

And S-EPA Detects the co-occurrence of two events in the form a AND b within time_window

Sequence S-EPA Detects a sequence of events in the form a FOLLOWED_BY b within time_window

Table S-EC Visualizes an event schema in a real-time table

Line Chart S-EC Visualizes numerical event properties in a real-time line chart

Jms Publisher S-EC Publishes an event stream to a Java Message Service (JMS)-enabled message bro-
ker

Gauge S-EC Visualizes numerical event properties in a gauge chart
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9.2.2 Case study 1: Manufacturing
The first case study was conducted in collaboration with an automotive supplier in the
manufacturing domain. Our goal was to provide an integrated view on the current
status of production processes. This implied the need for a) monitoring machine-
related key performance indicators, b) to detect early warnings on upcoming situations,
which might cause production failures and c) it was required to continuously store
gathered data in a database for off-line analytics purposes.

Setup Phase

In the setup phase, we first had to create models for various sensors. This included
sensors for several production machines and sensors equipped along a transportation
system used to move products between machines and environmental sensors. In
addition, a human sensor type had to be integrated in order to process data gathered
from employees during the production process. While specific adapters for the con-
sumption of data from these sensors have already been put in place, we only needed to
develop our model. Modeling of sensors was mainly done by using the model editor,
which allowed to directly import sensors into the system as no further implementation
was required.
In addition, several additional S-EPAs and S-ECs were developed in order to support
the targeted use cases. First, we created generic elements to detect relative increases
of numerical data values. The S-EPA Increase implements this functionality. It allows
users to define a percentage value which represents a relative decrease or increase. In
addition, a data window type (time and count) can be defined along with a window
size. For instance, this S-EPA allows to recognize steadily rising temperature values
measured in a machine. In addition, a NumberClassification S-EPA was developed
which allows to assign a label to an event property based on the value of a numerical
event property (e.g., by assigning the label low to an event that contains a sensor
measurement between 0 and 20). This label can be used in order to perform off-line
analyses based on previously classified data. In this use case, we also had to integrate
some external algorithms which apply a previously learned model on data streams
in order to derive predictions. While we did not develop the algorithm itself, we
have provided the model of the S-EPA in order to use the algorithm as part of a
pipeline. Besides S-EPAs, we developed a new consumer element that allows to store
data in Elasticsearch3, which was intended to be used for analysis of historical data
and another element that is capable to forward data to a message broker. Finally, a
notification component was developed which enables business analysts to receive
immediate notifications on desired situations.

3 A distributed schemaless search engine, see http://elasticsearch.co

http://elasticsearch.co
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The full set of custom implementations provided for this use case is summarized in
table 9.2.

Table 9.2 Manufacturing: Elements developed in the Setup Phase
Name Type Description

Machine Sensor 1 S-EP Machine parameters

Transportation Shuttle S-EP Movement of transportation shuttles

Environmental Sensor S-EP Environmental sensor parameters

Human Sensor S-EP Data gathered from human input

Number Classification S-EPA Labels numerical data based on a customizable value range

Increase S-EPA Detects an increase of a numerical value over a customizable time window

Algorithm #1 S-EPA Confidential algorithm #1

Algorithm #2 S-EPA Confidential algorithm #2

Field Renamer S-EPA Renames event property keys

Elasticsearch Sink S-EC Stores events in an Elasticsearch cluster

Kafka Publisher S-EC Forwards events to an Apache Kafka broker

Notification S-EC Triggers a notification in the StreamPipes Dashboard

Execution Phase

The execution phase was planned to be performed by the partner itself. In order to
enable business analysts of the company to create processing pipelines, we conducted
a training session of about one hour and explained the purpose of individual pipeline
elements. In general, many generic elements could already be re-used within this
use case. For instance, aggregation and pattern detect operators could be directly
re-used without customization. An example pipeline we used within this use case is
illustrated in figure 9.3. This pipeline is used for continuous ingestion of sensor data
and consists of two input sources, machine data (1, the exact purpose is omitted in this
case due to confidentiality) and environmental sensor data (2). Both streams are first
joined (3), before a parameter is aggregated (4). Afterwards, event property names are
renamed (5), a subset of properties is selected (6) and events are continuously stored
in Elasticsearch (7).

9.2.3 Case study 2: Smart Automation
The second case study also deals with manufacturing systems. The SmartAutomation
system (illustrated in figure 9.4) is a demonstration production facility which serves
to provide researchers with a non-productive, but real-world system that allows to
deploy and test new technologies. The demonstrator consists of a water pump station
and a set of water tanks allowing to pump water from one tank to another. Multiple
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Figure 9.3 Manufacturing Use Case: Example Pipeline

sensors are attached to the demonstrator that can be used to monitor the current
state of the system. In addition, various valves can be used to modify the water flow
through the system and therefore leverages to simulate potential failures or undesired
situations. For instance, water level sensors continuously monitor the water level per
tank and flow rate sensors are able to measure the flow rate within water pipes.
We used this system in order to implement a live demonstrator which explains how
to define processing pipelines using StreamPipes. For the implementation of the
demonstrator itself, we applied our own methodology to define data sources and
specific S-EPA and S-EC implementations required for the demonstration.

Setup Phase

In the setup phase, we started with the development of event sources. In contrast to
the manufacturing use case, adapters to gather data from hardware sensors did not
yet exist. We first developed a model for each producer in the system as depicted in
table 9.3. Afterwards, for each producer an adapter was implemented. The next step
included the definition of S-EPAs and S-ECs. In terms of S-EPAs we only added one
new pipeline element as most required functionality was already covered by existing
elements. The ObserveNumerical S-EPA operates on events containing numerical
values and detects whether a sensor value is out of a defined range for a customizable
time window. Additionally, three different S-ECs have been created. The first con-
sumer element serves for logging purposes and continuously writes events to a file.
Second, we created a controller component for an actuator in form of an alarm light.
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Figure 9.4 Smart Automation Use Case: Demonstrator

The implementation logic of this S-EC comprises the generation and submission of
messages to trigger the alarm light, while the model defines a SingleValueSelection
static property to let users choose whether to turn the alarm on or off. Finally, another
visualization was created in form of a VerticalBarChart, which provides customiz-
able minimum and maximum values and is used in this use case in order to visualize
the current water level.

Table 9.3 Smart Automation: Elements developed in the Setup Phase
Name Type Description

Water Level Sensor S-EP Measures the water level in a water tank

Tank Pressure Sensor S-EP Measures the pressure in a pressurized water tank

Continued on next page
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Name Type Description

Continued from last page

Flow Sensor (Siemens) S-EP Measures the flow rate in a water pipe

Flow Sensor (Festo) S-EP Measures the flow rate in a water pipe

Temperature S-EP Measures the water temperature

Observe Numerical S-EPA Detects whether a numerical value is out of range

File Writer S-EC Writes events to a file

Alarm Light S-EC Controls an alarm light

Vertical Bar Chart S-EC Visualizes a vertical bar chart

Execution Phase

In the execution phase, due to the intended scope of the use case to demonstrate the
capabilities of the pipeline editor, we mainly focused on developing pipelines with
visualizable elements as data sinks. An example pipeline is illustrated in figure 9.5.
This pipeline uses two data sources as an input, water temperature (1) and water level
(2). Temperature values are processed by the Increase S-EPA (3) mentioned above,
while the water level is processed by a ObserveNumerical S-EPA in order to detect
a low water level (4). Once both S-EPA trigger an event within a time window of 30
seconds (5), the alarm light is triggered (6).

Figure 9.5 Smart Automation Use Case: Example Pipeline
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9.2.4 Case study 3: Debs Grand Challenge
In order to show the ability of our approach to also support more complex scenar-
ios, we participated in the Debs Grand Challenge 2015. The ACM Conference on
Distributed Event-Based Systems4 is a major conference in the area of event process-
ing and provides a forum for researchers to exchange recent developments around
event-based systems. The overall goal of the DEBS Grand Challenge is to provide a
common ground for researchers to evaluate and compare event-driven systems. The
2015 Grand Challenge provided a data set of publicly available taxi usage data from
New York City. The whole dataset includes around 173 million events (where an event
includes 17 parameters such as pickup time, location, drop-off location, fare amount,
tip amount and trip duration) collected for one year in 2013. The main tasks of the
Debs Grand Challenge 2015 were defined as follows:

• Frequent Routes (Query 1). The goal of the first query was to output the top
10 most frequent routes during the last 30 minutes. A route was defined as a
trip between two cells, whereas a cell was defined as a rectangle of 500 square
meters starting from a fixed location outside of New York City. A trip could be
derived directly from the data set, where a single entry contained the location
of the pickup and the drop-off.

• Profitable Areas (Query 2). The goal of the second query was to find the most
profitable areas within the last 15 minutes based on a profitability value that
had to be computed by dividing the median profit (defined as fare amount plus
tip) with the number of empty taxis.

Setup Phase

In the setup phase, we had to create a set of new pipeline elements as depicted in
table 9.4. For each query, we developed components in two ways. First, for each query
we designed an S-EPA which includes the whole implementation logic required to
produce the intended result of the query in a single component. Therefore, the Debs
Grand Challenge 1 S-EPA was designed to expect an event containing four event
properties representing the coordinate values for the pickup and drop-off.
As for our second solution, we aimed to create re-usable pipeline elements, where
each pipeline element should perform a single processing step of the whole query.
We therefore had to develop the following additional S-EPAs:

• Grid Enrichment. The Grid Enrichment S-EPA requires a location-based event
stream and assigns a cell identifier to the location. The cell size is modeled as a
SingleValueProperty, whereas the starting location used to compute the cell
size is modeled as a DomainStaticProperty linking to the knowledge base.

4 http://www.debs2015.org/

http://www.debs2015.org/
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• Top-k. The Top-k S-EPA stores incoming events in a sliding time window and
sorts events based on an event property. The output stream contains a list of the
events containing the top-k values, while the output frequency can be configured
during the pipeline authoring process.

• Univariate Statistics. This S-EPA offers multiple options to calculate univariate
statistics. For instance, the median of a property value can be continuously
calculated over a sliding time window. We created this S-EPA in order to support
the median fare calculation required for query 2.

These S-EPAs (among additional elements as summarized in table 9.4) were mostly
implemented using the wrapper for the Esper engine. The solution for query 2 was
also implemented using the Apache Storm run-time wrapper. In order to define the
description graphs, we used the StreamPipes SDK, as the model editor was not yet
fully functional at this time.

Table 9.4 Debs Grand Challenge: Elements developed in the Setup Phase
Name Type Description

Taxi Data Producer S-EP Simulator to read taxi data from a CSV file and publish to a message broker

Grid Enrichment S-EPA Assignment of location-based events to a grid of a customizable size

Geofencing S-EPA Detect whether a location-based event arrives within a customizable radius
around a customizable center coordinate

Top-k S-EPA Outputs a list sorted by a customizable event property value of a customizable
size within a customizable time window

Univariate Statistics S-EPA Calculate univariate statistics for an event property

Debs Challenge 1 S-EPA Calculates the result of Task 1 of the Grand Challenge

Debs Challenge 2 S-EPA Calculates the result of Task 2 of the Grand Challenge

Map S-EC Displays location-based event properties in a real-time map

Route S-EC Displays routes in a real-time map

Heatmap S-EC Generates a heatmap of aggregated location-based events over a sliding time
window

Bar Chart S-EC Real-time bar chart

Execution Phase

In the execution phase, we defined the pipelines required to solve the Grand Challenge.
Figure 9.6 shows the query 1 modeled as a processing pipeline in the Pipeline Editor.
As a data source, the taxi event simulator is being used (1). In order to assign the
pickup and drop-off coordinates to a grid cell, the GridEnrichment S-EPA is invoked
two times. First, the cell identifier of the pickup coordinate is calculated and added
to the event payload (2), afterwards the drop-off coordinate is calculated and added
to the event payload (3). Afterwards, the Count S-EPA (4) counts the number of
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trips between the pickup cell and the drop-off cell by partitioning the input stream
based on the cell identifiers. Events are then forwarded to the Top-k S-EPA (5) which
ranks routes depending on the count value and outputs a new result once the ranking
changes. Frequent routes are displayed in the dashboard using a table element (6).

Figure 9.6 Debs Grand Challenge: Query 1

By providing re-usable elements, we were able to show additional scenarios on top
of the required queries. For instance, we created various map-based visualization
components which were able to show current frequent routes directly in a map. A
Heatmap consumer allowed to visualize frequently serves areas. Most importantly,
the Debs Grand Challenge provided a good use case to demonstrate the value of
re-usable elements. For instance, the GridEnrichment S-EPA was easy to instantiate
with other parameters such as other cell sizes and starting locations which allowed us
to analyse taxi data based on multiple settings, e.g., finer-grained cells. Compared to
the complexity of the scenarios, it is also worth mentioning that only three additional
elements had to be created, which demonstrates the usefulness of providing re-usable
elements.

9.2.5 Discussion
The goal we pursued when performing the case studies was to get insights on the
development effort and to get feedback on possible shortcomings of our model in
terms of its expressivity.
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Concerning the development effort, our goal was to show that, by using our method-
ology, the development effort can be reduced by providing re-usable elements that
can be used in various settings without developer consultancy. If this is the case,
the second assumption that needs to apply is that the development effort to create
re-usable elements itself does not increase compared to other implementations. The
latter clearly depends heavily on the provided tool support. Therefore, we put effort
in providing assistance to developers lowering the barrier to define event processing
logic according to our vocabulary to reduce the overhead as much as possible.
Although this is hard to quantify, based on our experience with developing more
than 100 pipeline elements, we believe that this is the case. For instance, in our case
studies we observed that the development effort for providing event producers mostly
depends on the implementation logic, i.e., the development of adapters which connect
to the actual systems. This effort is not increased by applying our methodology and
is the same as required for standard development of event processing applications.
Concerning the development of S-EPAs and S-ECs, the definition of models requires
additional effort. However, by providing a model editor to allow graphical modeling
of the semantic description, by completely abstracting from specific characteristics
and pitfalls of RDF modeling, this effort is significantly reduced.
In addition, the run-time wrappers we developed for various popular event processing
systems (as introduced in section 7.6.1) are able to take over most of the additional
effort required for the parameterization of pipeline elements and the connection to
publish/subscribe systems. By using the provided code generation module, a major
part required to lift existing event processing logic to be supported by our methodology
is being taken away from developers. In contrast, in order to develop event processing
logic using existing systems, effort needs to be spent into the development of input
and output adapters, which is not needed when using the tool support we provide.
In terms of re-usability, the case studies have shown that in most cases, it is possible
to define event processing logic in a more abstract way by omitting implementation
details. Even besides the rather generic components we have developed initially,
many use-case specific building blocks could be re-used in other case studies with-
out additional customization effort. We therefore believe that the need to develop
new processing elements will be decreased over the time. Also our participation
in the Debs Challenge has shown that even more complex tasks can be separated
into fine-grained building blocks that serve multiple purposes. Although not further
described in this section, we have conducted experiments by employing our method-
ology in another project in the logistics domain using similar examples as presented
throughout the course of this thesis. During these experiments, we were also able to
re-use geographical processing elements we initially developed for the Debs Grand
Challenge.
However, although our methodology and specifically the tasks related to the setup
phase have been successfully performed by multiple software developers including
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both people concerned with the implementation of our approach itself and developers
who were unfamiliar with the complete framework, we were not able to perform a
complete study that quantifies the development effort needed to build event processing
using our model to standard development processes. Even though this requires for
deeper investigation using longer-term studies, we are confident that our methodology
is able to significantly improve the way event processing applications are developed.

9.3 Conceptual Investigation
In this section, we evaluate the expressivity of our approach. Although the case
studies have already provided clues in terms of the completeness of our vocabulary,
this section elaborates on the expressivity using a conceptual investigation method.
In section 9.3.1, we therefore discuss the fulfillment of requirements along the re-
quirements identified in chapter 5. Section 9.3.2 investigates the expressivity of our
approach in relation to the hierarchy of event processing agents.

9.3.1 Fulfillment of Requirements
First, we discuss to what extent our approach fulfills the requirements collected in
chapter 5.2 by focusing on requirements related to the development process. Table 9.5
summarizes these requirements and their fulfillment degree. The first two require-
ments are directly implemented in our methodology. Generic event processing logic
is supported by the pipeline element modeling tasks which produce event processing
building blocks independent from specific event streams. The second requirement,
domain-specific event processing is provided by the methodology itself, i.e., the setup
phase which is designed to be a developer-oriented preparation phase that has the
goal to develop domain-specific event processing logic once requirements arise from
the execution phase. Requirement R3, definition of event processing applications
using graphical modeling languages, is supported by our methodology within the
pipeline authoring task of the execution phase as well. In addition, tool support for
graphical modeling is provided as part of the StreamPipes framework, our reference
implementation to the methodology. Requirement R4 is fulfilled by the provision of
a vocabulary supporting the setup phase and also in form of tool support with the
provision of a model editor to instantiate models in order to generate S-EP, S-EPA and
S-EC descriptions and the Software Development Kit.
Requirement R5 deals with the separation of domain knowledge from the event
processing logic. Our methodology implements this requirement by introducing
a separate task targeted at business users within the setup phase which supports
the definition of knowledge apart from the development of event processing logic.
In addition, our vocabulary includes concepts to define static data requirements
that link to concepts available in the knowledge base, allowing pattern engineers
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to use domain knowledge during the pipeline authoring task. Finally, adaptivity
of EP applications (R6) is supported by the pipeline identification and authoring
tasks within the execution phase, which exactly targets this requirement by providing
strategies and tools to create processing pipelines based on re-usable elements.
Requirements R7-R13 deal with the model used to describe event producers, process-
ing agents and consumers. While requirement R7 is further investigated in the next
section, requirement R8 demands for expressive representation of event schemes We
support this requirement by providing a vocabulary which includes concepts and
properties to define a schema based on its event properties, whereas event properties
can be described using the provided RDF properties propertyType, runtimeName)
and domainProperty. In addition, we added support for representing value ranges in
form of quantitative values and enumerated property types.
Requirement R9, dealing with the support for quality-oriented aspects related to events
and processing agents, is fulfilled by the concept StreamQuality and PropertyQuality
in our vocabulary. These concepts can be used to express offered quality attributes
on both event property level (e.g., accuracy of measurement values) and stream level
(e.g., frequency of streams) by event streams and in form of quality requirements to
express minimum quality requirements processing elements expected to be provided.
In order to integrate static data, as demanded by requirement R10, our vocabulary
provides various concepts to define static data requirements which express additional
configuration parameters required to be provided by pattern engineers in order to
instantiate the implementation logic of a processing element. We also provide a
concept DomainStaticProperty which allows to express static data that can be directly
connected to instances from a knowledge base. Further concepts to represent static
data have been included in form of SingleValueProperties, MultiValueProperties
and MappingProperties, besides others.
Finally, Requirements R11-R12 express the need for a model independent from run-
time formats and run-time protocols. We ensured this in our vocabulary by the
provision of the concept StreamGrounding, which allows an S-EPA to express multiple
supported groundings based on the TransportFormat and TransportProtocol.
R13, which required the usage of RDF as a data model throughout the system is en-
sured by using an RDF-based knowledge store in addition to RDF-based descriptions
for event producers, event processing agents and event consumers. R14 is fulfilled
by the presented vocabulary, which provides abstractions from event processing
operators in form of multiple static properties.
Requirements R15-R17 deal with system-related requirements. Extensibility (R15)
which demands for the system’s capability to be extended with new pipeline elements
at run-time is ensured by our architecture (see chapter 8.1), which allows to make
new elements available in the execution phase by providing the link to an URL which
returns a description graph. Requirement R16 is realized by the matching engine,
which is intensively discussed in chapter 8.3.
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Requirements related to failure recognition (R17) and fault tolerance (R18) are partly
fulfilled by our methodology. In terms of detection of failures, our system is able
to detect failures during pipeline deployment and to propagate errors occurring
at run-time from the individual run-time wrappers back to the pipeline authoring
environment. Therefore, failures in processing nodes can be detected. In contrast, fault
tolerance is not necessarily supported. A completely fault tolerant pipeline does not
only depend on fault-tolerant pipeline elements (which can be ensured by selecting a
run-time event processing system which supports fault tolerance, e.g., Apache Flink),
but also in-between, which requires for handling of fault tolerance on the message
broker level. Although our system supports the development of processing pipelines
on architectures that support fault tolerance (e.g., Flink wrappers in combination with
Apache Kafka as a message broker), it cannot necessarily be ensured by our system.
Requirement R19 requires for support to integrate geographically distributed exe-
cution, which is directly implemented in our conceptual architecture. As pipeline
elements communicate by the means of description graphs and invocation graphs
that are made available over standard web protocols, processing pipelines are able
to integrate geographically distributed systems. In terms of heterogeneous run-time
technologies (R20), we could show the support for multiple existing event processing
systems in form of provided run-time wrappers.

Table 9.5 Requirements Fulfillment
# Description Fulfilled by

R1 Generic event processing logic Methodology, Setup Phase (Chapter 6.5)

R2 Domain-specific event processing
logic

Methodology, Setup Phase (Chapter 6.5)

R3 Graphical Modeling Language Execution Phase, Pipeline Authoring, StreamPipes Pipeline Editor (Chapter
8.3)

R4 Developer Support Setup Phase, Pipeline Element Modeling, StreamPipes SDK (Chapter 7.6)

R5 Knowledge Modeling Setup Phase, Domain Knowledge Modeling, StreamPipes Knowledge Editor
(Chapter 7.6)

R6 Adaptivity of EP applications Execution Phase, Pipeline Authoring (Chapter 8.3)

R7 Event processing agents Vocabulary, S-EPAs (Chapter 7.4)

R8 Event schema Vocabulary, Event schema (Chapter 7.3)

R9 Quality of events Vocabulary, Event Schema (Chapter 7.3)

R10 Static data Vocabulary, S-EPAs, Static Properties (Chapter 7.4)

R11 Run-time representation: Event for-
mat

Vocabulary, Stream Grounding, Run-time wrapper (Chapters 7.3 and 7.6)

R12 Communication protocol Vocabulary, Stream Grounding, Run-time wrapper (Chapters 7.3 and 7.6)

R13 Design-time representation: Model Vocabulary (Chapter 7)

Continued on next page
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# Description Fulfilled by

Continued from last page

R14 Abstraction Vocabulary (Chapter 7)

R15 Extensibility Setup Phase, Deployment (Chapter 7.6)

R16 Matching Execution phase, pipeline authoring task (Chapter 8.3)

R17 Failures Execution phase, pipeline deployment (Chapter 8.4)

R18 Fault tolerance depends on run-time implementation

R19 Distributed execution Architecture (Chapter 8.1)

R20 Heterogeneous run-times Architecture, run-time wrappers (Chapter 7.1)

9.3.2 Supported Event Processing Agents
This section investigates the expressivity of our vocabulary in terms of its support
for the hierarchy of event processing agents as defined by [Etzion and Niblett 2010].
By assuming that any event processing logic can be assigned to one of the agents
introduced in section 2.3.1 and summarized in table 9.6, we are able to show that
our vocabulary is expressive enough by showing that each of the basic EPAs can be
properly described.
In table 9.6, for each EPA a mapping to specific properties of our model is illustrated
with IS indicating the minimum number of input streams, OS indicating the number
of output streams and Static Properties indicating the minimum set of static properties
needed to define such an EPA. Output Strategy assigns possible output strategies to
each EPA.
In general, all abstract EPA types are supported with the exception of the Split EPA. In
chapter 8.2, we have discussed why we decided to not support split pipeline elements
and have shown that a split element can be replaced by the usage of partial pipelines
in our model. For the other elements, we regularly assume the most basic use case
without any further provided configuration. For instance, a Filter EPA can be modeled
implemented by assigning a KeepOutput strategy along with a single MappingProper-
tyUnary which links to an event property where the filter condition should be applied
upon. In this case, no further configuration is possible and we assume that filter
conditions are hard-coded in the S-EPA implementation. In order to provide more
configuration options, additional static properties (such as SelectionStaticProperty
to allow for the selection of multiple supported filter operations) can be assigned.
Translate EPAs can be defined by using a TransformOutput strategy along with a
mapping property specifying the event property that will be modified by the S-EPA.
Aggregations as an example for stateful event processing agents, can be implemented
with a single mapping property and an output strategy of type Append or Fixed. Com-
pose EPAs require for two input event streams and can be used with multiple output
strategies. An Enrich EPA can be described without the need for providing a mapping
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property (in this case, the same value would be added to each incoming event) and
needs to provide an Append output strategy. Project EPAs, which output a subset of
the event properties of an input stream, can be directly represented in our model by
using a Custom output strategy. Finally, pattern detect EPA minimally require for two
input streams and may be implemented using multiple output strategies. No further
static properties are required assuming that the configuration is completely fixed and
hidden from the user.

Table 9.6 Mapping of EPA types to our model
EPA IS OS Static Properties Output Strategy

Filter 1 1 MPU Keep

Translate 1 1 MPU Transform

Aggregate 1 1 MPU Append, Fixed

Split - - - -

Compose 2 1 - Keep, Custom, Fixed

Enrich 1 1 - Append

Project 1 1 - Custom

Pattern Detect 2 1 - Append, Custom, Fixed

In summary, we can show that basic EPA types are supported either by our model
directly or are indirectly supported by features of processing pipelines. The result
therefore indicates that the set of output strategies we have introduced is complete
enough to support all abstract event processing agents from the literature.

9.4 User Study
In this section, we present results gathered in form of a user study in the manufacturing
domain. The user study was performed in order to get insights on the acceptance
of the pipeline editor. While we were able to study our methodology in the setup
phase during the case studies, the goal of this study was to gain insights on the
execution phase, i.e., the ability of non-programmers to create processing pipelines in
a self-service manner.

9.4.1 Setup
The target user group for our study were business analysts and operators of production
companies. Our goal was not to perform a study with a broad spectrum of participants,
but to find business experts which were able to identify situations within their domain
of interest in order to find out if they were able to model such situations by using
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the pipeline editor. The individual participants of our study were selected by the
companies themselves. In the end, six experts participated in the survey. In the
first step, we prepared an instance of the StreamPipes framework for each company
and created pipeline elements (event producers, processing agents and consumers)
specific to the targeted use cases. After the installation, we provided the participants
with a short documentation explaining the functionality of the pipeline editor and, in
addition, provided a short video that demonstrated the usage of the editor.
After a test phase lasting two weeks, participants were given a survey consisting of
20 questions, 14 of them related to their user experience with the pipeline editor. All
answers had to be provided using a 5 point Likert scale ranging from 1 (strongly
disagree) to 5 (totally agree).

9.4.2 Results
In this section, we present results from the user study. The complete survey and
individual answers are shown in appendix B. The first question asked about previous
experience with stream processing applications. 4 out of 6 participants had low
experience with this kind of applications.
Individual answers to the questions related to the usage of the pipeline editor are
illustrated in figures 9.7, 9.8, 9.9 and 9.10. Questions 1-5 are related to general issues
concerned with usability of the system. We asked users on their opinion concerning
the overall look and feel of the StreamPipes GUI, the overall usage, the ability to
understand error messages and the navigation. In general, results are above average
in all categories, while the look and feel as well as the intuitiveness is rated rank 4
or higher. An exception in question 4 concerning the ability to understand system
messages is remarkable.
Questions 6 and 7 were asked in order to gather insights whether a tool to create
event processing pipelines is useful to solve a specific business problem. Question 6
is concerned with the general capability of the pipeline editor to improve the work
experience, while question 7 is concerned with the functionality of StreamPipes in
order to fulfill the needs of the participant’s jobs. Question 6 is rated well above
average, while question 7 only receives average grades. This might be due to the fact
that we only presented a limited set of pipeline elements to the participants. Therefore,
it is likely that this selection is not able to fully support the requirements in terms
of functionality. We plan to further evaluate the pipeline editor after the system has
been fully deployed in the individual companies.
Questions 8-12 are concerned with the usability of the pipeline authoring tool itself.
We first asked participants to determine whether the general approach to provide a
graphical notation to develop event processing applications is useful. This question
was positively answered by all participants, which contributes to the assumption that
our design decision to provide a high-level graphical modeling language is useful
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Figure 9.7 User Study: Answers (1)

for the intended target group. Afterwards, we asked users to assess whether they
understood the meaning of pipelines. Although most answers were rated above
average, one participant did not fully understand the meaning of processing pipelines.
This shows that, even though the system was assessed to be simple to use, training is
required in order to make users familiar with event processing applications in general
and specifically the purpose of pipelines. Question 10, where we asked if users were
able to understand how to start and stop pipelines, was completely positively answered
by 5 out of 6 participants. Even more important is the result of our user survey in
question 11: 4 out of 6 participants strongly agree that the average time to create a
pipeline is satisfying. This is a rather interesting result and shows that our approach
enables application specialists to create processing pipeline within a satisfying time
frame. Question 12 finally tries to figure out how much guidance is needed in order
to enable business users to create processing pipelines. Although some users state
that they do not need any guidance at all, the answers suggest that training prior to
pipeline development might be useful.
Finally, questions 13 and 14 asked for the participant’s opinion on specific features
of the pipeline editor. In general, users mostly liked the recommendation feature
(described in section 8.3), and most users are satisfied with the consistency checking
of pipelines, which targets the usefulness of our matching engine. Although we
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Figure 9.8 User Study: Answers (2)

delivered a fully functional version of the matching engine at the time the user study
was conducted, some features related to client-side type checking during pipeline
definition were not fully functional and might therefore explain two average and
below-average answers.

9.4.3 Discussion
We briefly discuss the results gathered from the user survey. Although a user survey
consisting of six participants might provide limited evidence in terms of usability, the
results show that our general methodology, to provide re-usable elements to business
users in order to enable them to create processing pipelines in a self-service manner,
is considered useful.
Figure 9.11 shows the average rating per user. Based on the first question, which asked
for the expertise level related to stream processing applications, we additionally cate-
gorized the user into two groups. The Higher Experience group consists of participants
who rated their stream processing experience rank 3 or higher (resulting in a total
number of two participants). The Lower Experience group consists of participants with
an experience level of two or lower (resulting in a total number of four participants).
The average rating per user over all questions spans from 3,69 (user 3) to 4,84 (user
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Figure 9.9 User Study: Answers (3)

Figure 9.10 User Study: Answers (4)

5). The Higher Experience group has an average rating of 4,58 compared to an average
rating of 3,92 of the Lower Experience group. These results suggest that the usage of
our system is considered more useful if there is a higher expertise level related to
stream processing applications.
In order to compare the results between two user groups, we further categorized
the question type. In general, questions 2-11 mainly asked for the overall impression
of our approach to model processing pipelines with graphical tool support and the
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Figure 9.11 User Study: Average Rating per User

system itself, while questions 12-14 are targeted at specific (potentially more advanced)
features and the guidance users needed in order to start creating pipelines. Results
grouped by these question types are shown in figure 9.12. The group that rated their
own experience level higher provides an average rating of 4,55 for questions Q2-Q11
and an average rating of 4,67 for questions Q12-Q14. It becomes obvious that this group
rated advanced features such as pipeline recommendation and consistency checking
higher than the average ratings of the more basic questions Q2-Q11. By looking at the
user group with lower experience, we can see contrary results: Questions Q2-Q11 are
rated 4,08 on average, while questions Q12-Q14 only receive average values of 3,42.
This result suggests that more training is needed for more inexperienced users and
that more advanced features are better understood by more experienced users.
In general, the user survey shows an agreement among all participants that the
pipeline editor enables users to create pipelines within a satisfying time period. This
strengthens our attempt to divide the development process into two phases and shows
that business users generally acknowledge the usefulness of using graphical modeling
of processing pipelines in a self service manner (question 8).
The survey also suggests that, even though the navigation and general usage of the
pipeline editor is positively assessed by all participants, training is needed in order to
enable business users to create pipelines. This is reflected in our methodology, which
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Figure 9.12 User Study: Average Rating per User (Grouped by Question Type)

foresees a new role in form of pattern engineers (as a more specialized role compared
to business analysts), who are able to build stream processing pipelines.

9.5 Performance
In this section, we present tests that evaluate how our system performs at run-time.
In general, our system relies on the exchange of events between distributed pipeline
elements by using publish/subscribe middleware in form of message brokers. Our
approach therefore adds overhead to the broker. A comparison to other approaches
is illustrated in figure 9.13. In general, single-host systems usually consume events
from a message broker and perform the actual event processing logic in a single
centralized system, before events are published back to the message broker, where
they are available for consumption by external systems. Although this approach has
limited load on the message broker, the engine itself, running on a single host, is
limited in terms of throughput. Distributed systems, which are able to distribute
workload across multiple computing nodes, are able to process hight throughputs of
events due to the parallelization of tasks, especially in conjunction with distributed
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message brokers. However, distributed programs must be written in a language the
system supports and they are depend on a specific run-time implementation.
In contrast, our approach builds on top of these technologies and allows to integrate
heterogeneous run-time technologies in a single pipeline. This comes at the cost
of broker overhead. Although a single pipeline may facilitate multiple distributed
message brokers to exchange data, each pipeline element needs to consume events
from the middleware and to publish results back to the broker. In comparison to
single-host systems and distributed systems, increased network communication likely
has impact on latency.

Engine

Events Events

Cluster

Node
Node

Node

Pipeline

Node Node

Single Host Systems

Distributed Systems
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Message Broker

Message Broker

Message Broker
Events Events

Events Events

Figure 9.13 Data Flow: Comparison

By conducting performance tests, we aimed to figure out to what extent performance
decreases compared to single-host solutions. These results are useful to give decision
support concerning the development of event processing systems based on two levels:
Depending on the desired performance metrics and the requirement for fast adaptation
of processing pipelines in a specific use case, it might be more feasible to implement
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the application logic as a single-host solution or a single processing element (see our
discussion on our solution to the Debs Grand Challenge in section 9.2.4). In addition,
performance results also can give advice about the granularity in which re-usable
processing elements should be developed. Finer-grained elements tend to produce
more broker overhead as they require for larger pipeline sizes, but might be better
re-usable, while elements subsuming more logic in a single pipeline elements might
be harder to be re-used, but produce less broker overhead.

9.5.1 Settings
Our performance tests were performed on a virtual geographically distributed system
consisting of three servers as depicted in table 9.7. These systems were identical but
were equipped with different memory sizes. Server 1 was assigned 24 Gigabytes (GB)
of memory, server 2 had 12 GB memory and server 3 was equipped with 8 GB.

Table 9.7 Hardware Setup for Performance Measurements
Feature Server 1 Server 2 Server 3

Memory 24 GB 12 GB 8 GB

CPU 4x 2.3 Ghz 4x 2.3 Ghz 4x 2.3 Ghz

Network 1 Gbit 1 Gbit 1 Gbit

Operating System Ubuntu 14.04 Ubuntu 14.04 Ubuntu 14.04

Table 9.8 shows the assignment of components used for the performance tests to
servers. We briefly summarize the components used:

• Apache Kafka was used as a message broker. Although Kafka is designed as a
distributed messaging system allowing to spread topics over multiple computing
nodes, we conducted our tests using a single instance of Kafka.

• Apache Zookeeper is a distributed configuration service required by Kafka.
• Apache ActiveMQ was used as a second message broker to simulate the usage

of multiple transportation protocols.
• semantic-epa-actions-samples contained an S-EC implementation of a file

writer component which was designed to write events to a log file.
• Event Simulator produced events containing random numbers and was used

as an event source for the performance tests.
• Apache Flink, an Apache Flink cluster consisting of a single task manager .
• semantic-epa-flink, the run-time wrapper for Apache Flink.
• semantic-epa-esper, the run-time wrapper for Esper.
• semantic-epa-backend, consisting of the pipeline editor and the backend in-

cluding the matching and execution engine.
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• OpenRdf Sesame, used as a triple store which contained the description graphs
of pipeline elements.

Table 9.8 Assignment of Components to Servers
Server Components

Server 1

Apache Kafka

Apache Zookeeper

Apache ActiveMQ

semantic-epa-actions-samples

Event Simulator

Server 2

Apache Flink

semantic-epa-flink

semantic-epa-esper

Server 3
semantic-epa-backend

OpenRdf Sesame

The performance tests were designed as followed: We created pipelines of different
sizes, each of them consisting of the same data producer (random number stream,
RNS) and a set of S-EPAs of the type EnrichTimestamp. These components correspond
to an enrich EPA, where each incoming event is enriched with an additional event
property which contains the current time. As a consumer node, we created a file
writer component (evaluation file output, EFO), which measures the time difference
between the first pipeline element and the last element and outputs the whole event
payload to a file. An example pipeline used for the performance tests is illustrated in
figure 9.14.

Figure 9.14 Performance Evaluation: Pipeline

We ran several tests by adjusting the pipeline size and the throughput of the random
number generator. The throughput was chosen based on performance tests of the
Kafka broker itself prior to the evaluation in order to avoid the selection of evaluation
settings which exceed the broker’s performance capabilities. Finally, we conducted
tests for 2 simulation settings (1000 events/sec and 5000 events/sec) using pipeline
sizes of 1, 2 and 5. For each test, we produced 100,000 events in order to see whether
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the processing time remains constant for higher loads. We evaluated three different
configurations: The first configuration was a plain Esper (esper) instance, which reflects
a single-host system. In this system, we manually created event patterns. The second
configuration, semantic-epa-esper, uses our system and uses Esper nodes as run-time
implementation. The third configuration, semantic-epa-flink, uses our run-time wrapper
for Apache Flink.

9.5.2 Results
First, we present evaluation results from a low-throughput scenario, which was run
at a throughput rate of 1000 events per second. Figure 9.15 shows a histogram of
each configuration related to the pipeline size. In general, in all configurations almost
all events were processed with latency less than 6 milliseconds. Although the esper
configuration is significantly faster with latency less than a millisecond, this can be
explained by the simple use case. The patterns developed for the esper configuration
only require to add a timestamp to an existing event, which is a very fast operation on
a single-host system. Both configurations relying on our system are comparable in
terms of performance with a median value of 2 milliseconds for the pipeline consisting
of one node, and about 3 milliseconds for the 2-nodes configuration. For the pipeline
of size 5, the latency increases to around 4 milliseconds for the semantic-epa-esper and
the Flink-based configuration.
The second experiment was performed with higher throughput. In total we simulated
100,000 events with a total throughput of 5000 events per second. The results are
illustrated in figure 9.16. While the latency of the Esper configuration almost remains
constant at latency measurements below 1 millisecond, we can observe a performance
decrease in the distributed configurations. For small pipelines consisting of a single
processing element, the median latency remains almost constant, but a higher variance
becomes visible. At pipeline size 2, both configuration have slightly increased latency
measurements compared to the low-throughput configuration. At higher throughput
and a pipeline size of 5, the latency for the semantic-epa-esper configuration increases
to around 10 milliseconds, while the semantic-epa-flink configuration has a median
latency of 16 milliseconds. We were not able to verify whether this difference originates
from the system itself; another explanation might be found due to the circumstance
that different broker implementations were used for both configurations.
In order to assess the performance of our solution, it is also necessary to show that
the latency remains constant over time. Therefore, in figure 9.17, we show the latency
on a per-event basis for all 6 configurations related to the experiment with 5000
events per second. It can be easily seen that the latency remains constant in all
six configurations. Compared to the semantic-epa-esper configuration, the higher
variance for the semantic-epa-flink configuration also becomes visible. The fluctuation
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Figure 9.15 Performance Evaluation: 1000 events/second

at certain time intervals can be explained by the garbage collection performed by the
Java Virtual Machine (JVM).
In general, the performance tests give good advice about application domains and
limits of our system. Although it can be seen that our approach produces increased
load on the message broker, which especially decreases latency in high-throughput
scenarios in conjunction with larger pipeline sizes, the absolute latency achieved by
our system is still competitive. Most scenarios do not require latencies below one
second, and we argue that use cases which have stricter requirements in terms of
latency usually do not require for quick adaptation of processing pipelines by business
analysts. In such cases, it is therefore more feasible to hard-code event processing
logic in single-host systems.
The performance tests also justify our argumentation to move semantic descriptions
of events and their properties to design-time instead of using native RDF processing
at run-time. This allows us to achieve much higher performance compared to existing
RDF stream processing systems, which currently are able to process events with
latency measurements in the area of hundreds of milliseconds [Stühmer 2015]. It
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Figure 9.16 Performance Evaluation: 5000 events/second

is also worth to note that our tests were performed using a single broker, causing a
potential bottleneck. Therefore, splitting the payload among multiple brokers, and
also scaling the brokers itself, which is supported by systems such as Apache Kafka
further reduces the overhead leading to potentially lower latency.



9.5 Performance 185

Figure 9.17 Performance Evaluation: Comparison





10
Conclusion

In this thesis, we introduced a methodology and a corresponding instantiation tar-
geting the development process of event processing applications. The presented
methodology aims at reducing the development effort in distributed settings by pro-
viding methods that allow non-programmers to create processing pipelines consisting
of heterogeneous and geographically distributed pipeline elements. In addition, we
have developed end-to-end tool support in form of StreamPipes, a reference imple-
mentation demonstrating the application of our methodology.
This thesis is concluded with summarizing the main contributions along the research
questions identified in section 10.1. In section 10.2, the significance of our results is
discussed by elaborating on the applicability of our approach in various emerging
application areas. Finally, section 10.3 discusses our point of view on future work in
this area to further improve the development process of event processing applications.

10.1 Summary
In summary, we recap the initially identified research questions and discuss our
approach and main results that target these questions.

Research Question 1 (Development Process). How can we improve the development
process of event processing applications?

The first research question, concerned with the development process of event pro-
cessing applications, was answered in chapter 6. Related to our main goal, enabling
application specialists to define event processing applications in a self-service manner,
we introduced a novel methodology which basically splits the development process
into two parts, the Setup Phase and the Execution Phase. In general, the setup phase
is designed as a preparation phase which includes two main processes. On the one
hand, software developers are leveraged to define event producers and re-usable
pipeline elements in form of event processing agents and event consumers. Re-usable
pipeline elements are not bound to specific input event streams, but express stream
requirements needed to parameterize the underlying event processing logic. On the
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other hand, domain knowledge required as static data within an event processing
pipeline is defined by business analysts. Re-usable pipeline elements and domain
knowledge are made accessible in a central repository to the execution phase. Within
the execution phase, processing pipelines can be defined without further development
effort. Pattern engineers are responsible to author processing pipelines using graphi-
cal tool support based on previously registered pipeline elements in conjunction with
knowledge gathered in the setup phase, and pipeline are automatically deployed by
invoking the underlying run-time implementations.
The main advantage of this approach is, while application specialists are provided
with the possibility to define event processing applications abstracted from technical
details without developer consultancy, at the same time the event processing system
does not rely on a predefined, fixed set of pipeline elements. The setup phase ensures
extensibility of the system at any time new requirements arise. Thus, our methodology
combines a highly flexible system with an intuitive way to create event processing
applications.
Our reference implementation provides tool support covering all tasks of the proposed
methodology. The setup phase is supported by providing a model editor and a
software development toolkit which support the development of re-usable pipeline
elements. In addition, a knowledge editor is proposed assisting business analysts to
gather knowledge needed as static data within processing pipelines. The execution
phase is supported by a graphical editor that allows to create processing pipelines,
and a backend component ensuring proper execution of pipelines.
Our methodology was evaluated by presenting three case studies from various do-
mains, resulting in the development of more than 100 pipeline elements. This allowed
us to inspect the applicability of our approach in multiple application domains.

Research Question 2 (Model). How can we model event processing blocks independent
from their specific run-time implementation?

The second research question dealt with the modeling of event processing blocks
independent from their run-time implementation. The main resulting artifact we
developed in chapter 7 of this thesis is an ontology-based vocabulary that allows
to define a semantics-based description layer which expresses requirements and
capabilities of pipeline elements. We introduced a conceptual model of Semantic Event
Producers, Semantic Event Processing Agents and Semantic Event Consumers, each of them
consisting of a description layer and an implementation layer. In the description layer,
concepts and properties have been proposed to define characteristics of event streams
independent from a specific run-time event format or communication protocol. In
contrast to other semantics-based approaches to event processing, where the semantics
are directly included as part of the event payload, the main advantage of our approach
is that lightweight and thus potentially faster run-time event formats can be used,
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while at the same time a rich semantic model of an event exists that can be used at
design-time for matching and integration purposes.
In chapter 9, we evaluated our model based on three case studies and a conceptual
investigation of the expressivity of the developed model along the requirements
identified in chapter 5.

Research Question 3 (Domain Knowledge). How can we separate domain knowledge
from the technical specification of event processing languages?

In section 3.3.2, the need was stressed to separate background knowledge from the
technical specification of event patterns. Our approach ensures this feature in the
proposed methodology by introducing a process that allows business analysts to
define knowledge required as part of processing pipelines. This knowledge can be re-
used in the execution phase during the pipeline authoring process. More specifically,
we have developed concepts that allow to define requirements for the integration of
background knowledge as part of the description of pipeline elements.

Research Question 4 (Execution). How can we author and execute event processing
pipelines consisting of heterogeneous processing blocks?

Finally, research question 4, covering the authoring and execution of processing
pipelines based on heterogeneous run-time implementations as discussed in chapter
8, was answered based on two defined tasks being part of the execution phase. First,
pipeline authoring allows to define processing pipelines based on pipeline elements
previously developed in the setup phase. The pipeline authoring task solely relies on
the modeling of pipelines based on a pipeline element’s description hiding implemen-
tation details from the user. In section 8.3, we introduced the process concerned with
pipeline authoring and showed how heterogeneous pipeline elements can be inte-
grated in a single pipeline. Finally, we tackled geographically distributed execution of
pipelines, which is based on the exchange of invocation graphs between the pipeline
authoring environment and individual pipeline elements deployed at geographically
distributed locations.
Provided tool support demonstrates the pipeline authoring and execution process.
We developed a graphical editor that allows to import pipeline elements at run-time
and provides capabilities to author pipelines based on these elements. In addition, we
created run-time wrappers for multiple event processing systems showing the ability
of our system to integrate heterogeneous event processing logic.
We conducted a user study involving a number of business experts from the man-
ufacturing domain in order to evaluate the ability of the pipeline editor to allow
non-programmers to build processing pipelines. In addition, we conducted perfor-
mance tests in order to show that our approach is able to process events with high
throughput and low latency, although it generates workload due to increased message
broker communication due to its distributed compared to single-host system.
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10.2 Significance of the results
Our approach improves and simplifies the development of event processing applica-
tions. The proposed methodology ensures flexibility in the sense that new require-
ments for integrating event producers in form of new physical devices or software,
but also requirements demanding for new event processing logic and consumers
can be directly implemented. At the same time, our methodology pushes the de-
velopment of event processing applications to a higher level making the previously
technical-oriented development of processing pipelines better accessible to application
specialists.
Many emerging application domains potentially benefit from event processing applica-
tion development in a self-service manner. For instance, from a technical perspective,
the initially discussed concept of marketplaces in the Internet of Things (IoT) domain is
fully supported. On the one hand, our approach allows to define processing pipelines
spanning technology-independent and geographically distributed event processing
logic. In addition, as pipeline elements make their requirements and capabilities
available using RDF-based description graphs, interoperability is facilitated.
From a use case perspective, our approach contributes to needs where fast definition
and adaptation of real-time processing logic is required. It was already shown in
section 3.2 that mainly three different purposes, including integrated monitoring of a
wide variety of data sources, but also situation detection (e.g., anomaly detection) and
continuous data ingestion (e.g., data harmonization) require for fast development of
event processing applications.

10.3 Outlook
This thesis provides methods to improve the development of event processing applica-
tions for application specialists. Our methodology improves the development process
while it still maintains flexibility in form of an extensible approach. In addition,
the pipeline editor we provide as tool support ensures fast definition of processing
pipelines by abstracting from technical details specific to event processing. Future
work can further simplify the development of event processing applications:

Pipeline Expansion Our matching process, described in section 8.3, considers multiple
criteria in order to detect whether two pipeline elements are compatible to each other.
Although tool support is provided to assist users during the pipeline authoring process
(e.g., in form of recommendations), more sophisticated methods might be able to go
beyond direct matching by finding indirect matches, i.e., by automatically including
pipeline elements that are able to mediate between two potentially non-compatible
elements. Furthermore, it might be worth to be investigated whether a kind of reverse
pipeline authoring process might be feasible, for instance, by letting users express
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their intended analysis purpose first, while the system assists in finding sensors and
event processing agents supporting this purpose. Such pipeline expansion methods
might require further extensions to the model that need to be researched.

Context-aware Pipeline Management Currently, pipelines defined by users are static,
e.g., they do not change over time and are executed until they are manually stopped.
In addition, users select pipelines that are started at some point in time. However,
it might be useful to investigate (semi-) automatic adaptations of pipelines in the
pipeline evolution task of the execution phase by also taking into account contextual
information. For instance, a system that observes the current scrap rate in a production
facility could automatically adapt thresholds based on the currently produced prod-
ucts. One approach in this area would be to support context-defining pipelines, which
detect a specific context in terms of time, location or other parameters. Depending on
the currently active context, pipelines could be automatically deployed, removed and
modified using different parameters specific to the context.
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A
Runtime-Wrapper: Description

Listing A.1 Description: Geofencing S-EPA

1 package de.fzi.cep.sepa. esper .geo. geofencing ;
2
3 import java.net.URI;
4 import java.util. ArrayList ;
5 import java.util. Arrays ;
6 import java.util.List;
7
8 import de.fzi.cep.sepa. commons . Utils ;
9 import de.fzi.cep.sepa. esper . config . EsperConfig ;

10 import de.fzi.cep.sepa. model . builder . EpProperties ;
11 import de.fzi.cep.sepa. model . builder . EpRequirements ;
12 import de.fzi.cep.sepa. model . builder . StaticProperties ;
13 import de.fzi.cep.sepa. model .impl. EpaType ;
14 import de.fzi.cep.sepa. model .impl. EventSchema ;
15 import de.fzi.cep.sepa. model .impl. EventStream ;
16 import de.fzi.cep.sepa. model .impl. Response ;
17 import de.fzi.cep.sepa. model .impl. eventproperty . EventProperty ;
18 import de.fzi.cep.sepa. model .impl. graph . SepaDescription ;
19 import de.fzi.cep.sepa. model .impl. graph . SepaInvocation ;
20 import de.fzi.cep.sepa. model .impl. output . AppendOutputStrategy ;
21 import de.fzi.cep.sepa. model .impl. output . OutputStrategy ;
22 import de.fzi.cep.sepa. model .impl. staticproperty . DomainStaticProperty ;
23 import de.fzi.cep.sepa. model .impl. staticproperty . MappingPropertyUnary ;
24 import de.fzi.cep.sepa. model .impl. staticproperty . OneOfStaticProperty ;
25 import de.fzi.cep.sepa. model .impl. staticproperty . Option ;
26 import de.fzi.cep.sepa. model .impl. staticproperty . PropertyValueSpecification ;
27 import de.fzi.cep.sepa. model .impl. staticproperty . StaticProperty ;
28 import de.fzi.cep.sepa. model .impl. staticproperty . SupportedProperty ;
29 import de.fzi.cep.sepa. model .util. SepaUtils ;
30 import de.fzi.cep.sepa. model . vocabulary .Geo;
31 import de.fzi.cep.sepa. runtime .flat. declarer . FlatEpDeclarer ;
32 import de.fzi.cep.sepa. client .util. StandardTransportFormat ;
33
34 public class GeofencingController extends FlatEpDeclarer < GeofencingParameters >

{
35
36 @Override
37 public SepaDescription declareModel () {
38 EventStream stream1 = new EventStream ();
39 EventSchema schema = new EventSchema ();
40 EventProperty e1 = EpRequirements . domainPropertyReq (Geo.lat);
41 EventProperty e2 = EpRequirements . domainPropertyReq (Geo.lng);
42 EventProperty e3 = EpRequirements . stringReq ();
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43 schema . setEventProperties ( Arrays . asList (e1 , e2 , e3));
44
45 SepaDescription desc = new SepaDescription (" geofencing ", " Geofencing ", "

Detects whether a location - based stream moves inside a ( circular ) area
around a given point described as latitude - longitude pair .");

46
47 stream1 . setEventSchema ( schema );
48 desc. addEventStream ( stream1 );
49
50 List < OutputStrategy > strategies = new ArrayList < OutputStrategy >();
51 List < EventProperty > additionalProperties = new ArrayList < >();
52 additionalProperties .add( EpProperties . longEp (" geofencingTime ", "http ://

schema .org/ DateTime "));
53 additionalProperties .add( EpProperties . booleanEp (" insideGeofence ", "http ://

schema .org/Text "));
54 AppendOutputStrategy appendOutput = new AppendOutputStrategy ();
55 appendOutput . setEventProperties ( additionalProperties );
56 strategies .add( appendOutput );
57 desc. setOutputStrategies ( strategies );
58
59 List < StaticProperty > staticProperties = new ArrayList < StaticProperty >();
60
61 OneOfStaticProperty operation = new OneOfStaticProperty (" operation ", " Enter

/ Leave Area", " Specifies the operation that should be detected : A
location - based stream can enter or leave the selected area .");

62 operation . addOption (new Option (" Enter "));
63 operation . addOption (new Option (" Leave "));
64
65 staticProperties .add( operation );
66 staticProperties .add( StaticProperties . integerFreeTextProperty (" radius ", "

Radius (m)", " Specifies the geofence size (the radius around the
provided location ) in meters .", new PropertyValueSpecification (0,
10000 , 10)));

67
68 SupportedProperty latSp = new SupportedProperty (Geo.lat , true);
69 SupportedProperty lngSp = new SupportedProperty (Geo.lng , true);
70
71 List < SupportedProperty > supportedProperties = Arrays . asList (latSp , lngSp );
72 DomainStaticProperty dsp = new DomainStaticProperty (" location ", " Location ",

" Specifies the center of the geofence ", supportedProperties );
73
74 staticProperties .add(dsp);
75
76 MappingPropertyUnary latMapping = new MappingPropertyUnary (URI. create (e1.

getElementId ()), "mapping - latitude ", " Latitude Coordinate ", " Specifies
the latitude field of the stream .");

77 staticProperties .add( latMapping );
78
79 MappingPropertyUnary lngMapping = new MappingPropertyUnary (URI. create (e1.

getElementId ()), "mapping - longitude ", " Longitude Coordinate ", "
Specifies the longitude field of the stream .");

80 staticProperties .add( lngMapping );
81
82 MappingPropertyUnary partitionMapping = new MappingPropertyUnary (URI. create

(e3. getElementId ()), "mapping - partition ", " Partition Property ", "
Specifies a field that should be used to partition the stream (e.g., a

vehicle plate number )");
83 partitionMapping . setValueRequired ( false );
84 staticProperties .add( partitionMapping );
85
86 desc. setStaticProperties ( staticProperties );
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87 desc. setSupportedGrounding ( StandardTransportFormat . getSupportedGrounding ())
;

88 return desc;
89 }
90
91 @Override
92 public Response invokeRuntime ( SepaInvocation invocationGraph ) {
93 String operation = SepaUtils . getOneOfProperty ( invocationGraph , " operation ")

;
94
95 int radius = (int) Double . parseDouble ( SepaUtils .

getFreeTextStaticPropertyValue ( invocationGraph , " radius "));
96
97 DomainStaticProperty dsp = SepaUtils . getDomainStaticPropertyBy (

invocationGraph , " location ");
98 double latitude = Double . parseDouble ( SepaUtils . getSupportedPropertyValue (

dsp , Geo.lat));
99 double longitude = Double . parseDouble ( SepaUtils . getSupportedPropertyValue (

dsp , Geo.lng));
100
101 GeofencingData geofencingData = new GeofencingData (latitude , longitude ,

radius );
102
103 String latitudeMapping = SepaUtils . getMappingPropertyName ( invocationGraph ,

"mapping - latitude ");
104 String longitudeMapping = SepaUtils . getMappingPropertyName ( invocationGraph ,

"mapping - longitude ");
105 String partitionMapping = SepaUtils . getMappingPropertyName ( invocationGraph ,

"mapping - partition ");
106 GeofencingParameters params = new GeofencingParameters ( invocationGraph ,

getOperation ( operation ), geofencingData , latitudeMapping ,
longitudeMapping , partitionMapping );

107
108 try {
109 invokeEPRuntime (params , Geofencing ::new , invocationGraph );
110 return new Response ( invocationGraph . getElementId () , true);
111 } catch ( Exception e) {
112 e. printStackTrace ();
113 return new Response ( invocationGraph . getElementId () , false , e. getMessage ());
114 }
115 }
116
117 private GeofencingOperation getOperation ( String operation ) {
118 if ( operation . equals (" Enter ")) return GeofencingOperation . ENTER ;
119 else return GeofencingOperation . LEAVE ;
120 }
121
122 }
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User Survey

Table B.1 User Survey: Answers
Id Question #1 #2 #3 #4 #5 #6

1 My expertise level related to stream processing/complex event processing applica-
tions is high.

3 2 2 2 4 1

2 I like the look and feel of the StreamPipes GUI. 5 4 4 4 5 4

3 The StreamPipes GUI is easy and intuitive to use. 4 5 4 5 5 4

4 I could easily understand the messages displayed by the system 5 1 4 4 5 4

5 Navigating through the system is simple and clear. 5 4 3 4 5 3

6 StreamPipes is capable of improving my overall working exprience. 4 4 4 5 5 4

7 The functionalities of StreamPipes are sufficient for the needs of my job. 3 3 4 5 3 4

8 Using graphical notations to model stream processing pipelines is useful. 4 4 4 5 5 4

9 I understood the meaning of pipelines in the StreamPipes component. 4 4 2 4 5 4

10 I could easily understand how to start and stop a pipeline. 5 5 5 5 5 4

11 The average time to create a pipeline is satisfying. 4 5 5 5 5 4

12 I didn’t need any guidance in creating pipelines using the graphical modeling nota-
tion.

5 4 3 4 5 2

13 The element recommendation feature is useful. 4 3 4 4 5 4

14 I am satisfied with the support for consistency checking of pipelines. 4 3 2 4 5 4
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