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Abstract

The seismic full-waveform inversion (FWI) has become increasingly popular in recent
years because of its high resolution and its capability to handle highly heterogeneous
subsurfaces. Whereas seismic velocity models can be built reliably in most cases the
treatment of density is still challenging because of the low sensitivity of seismic waves
to density variations and trade-o� e�ects between the involved parameters. Moreover,
seismic amplitudes depend not only on the density, but also on e�ects like attenuation,
anisotropy and noise. In contrast, classical gravimetric inversion su�ers from latent ambi-
guities and resolves density distributions only for long wavelengths.
To overcome these inherent limitations we perform a joint acoustic full-waveform and
gravity inversion where we do not use empirical relationships or criteria based on struc-
tural similarity. For this purpose, a synthetic reconstruction test is applied to a salt dome
structure which is embedded in sedimentary layers.
The reconstructed density model of the joint inversion contains short wavelength infor-
mation about sedimentary layers which are not included in the gravity inversion results.
Compared to the pure acoustic FWI the joint inversion su�ers less from trade-o� e�ects
and the �nal density model explains the pseudo-observed gravity �eld almost perfectly. In
contrast, the �nal gravity �eld of the acoustic FWI shows signi�cant residuals.
In conclusion, the integration of gravity data can in fact reduce trade-o� e�ects between
P-wave velocity and density while a higher resolution can be achieved compared to the
pure gravity inversion. Our approach allows a more con�dential interpretation of density
distributions than each individual method.
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Zusammenfassung

Die seismische full-waveform inversion (FWI) genießt in jüngster Zeit wegen ihres hohen
Au�ösungsvermögens und der Fähigkeit auch hochgradig heterogenen Untergrund auf-
zulösen immer größere Beliebtheit. Seismische Geschwindigkeitsmodelle können in der
Regel zuverlässig bestimmt werden, wohingegen immer noch große Schwierigkeiten bei
der Inversion nach der Dichte bestehen. Dies liegt zum einen an der geringen Sensitivität
seismischer Wellen in Bezug auf Dichtevariationen und zum anderen an trade-o� E�ekten
zwischen den involvierten Parametern. Außerdem ist die Interpretation der seismischen
Amplituden grundsätzlich mehrdeutig, da neben der Dichte auch E�ekte wie Dämpfung,
Anisotropie und Rauschen eine Rolle spielen. Die klassische Schwereinversion leidet dage-
gen an inhärenter Mehrdeutigkeit, da die Schwere ein Potentialfeld darstellt, und weist
nur eine Au�ösbarkeit im langwelligen Bereich auf.
Um diese Einschränkungen zu überwinden führen wir eine gemeinsame Inversion von
Druckseismogrammen und Schweresignalen durch. Dabei benutzen wir weder empirische
Beziehungen noch Kriterien, die auf strukturellen Ähnlichkeiten basieren. Als Testmodell
für einen Rekonstruktionstest benutzen wir einen Salzdom, der in einige Sedimentschich-
ten eingebettet ist.
Das rekonstruierte Dichtemodell der gemeinsamen Inversion enthält kurzwellige Informa-
tionen über die Sedimentschichten, welche nicht in den Resultaten der reinen Schwerein-
version enthalten sind. Im Vergleich zu der reinen FWI leidet die gemeinsame Inversion
weniger an gegenläu�gen Abhängigkeiten zwischen den unterschiedlichen Parametern.
Außerdem erklärt das �nale Dichtemodell die pseudo-observierten Schweresignale fast
perfekt. Dies ist bei der reinen FWI nicht der Fall.
Abschließend ist zu sagen, dass die Integration von Schweredaten in der Tat die trade-o�
E�ekte zwischen der P-Wellengeschwindigkeit und der Dichte verringern kann und dass
außerdem eine höhere Au�ösung des Dichtemodelles im Vergleich zu der reinen Schwe-
reinversion erreichbar ist. Unsere Inversionsstrategie erlaubt es, eine vertrauenswürdigere
Interpretation von Dichteverteilungen durchzuführen als es die individuellen Methoden
gewährleisten.
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1. Introduction

A major goal of geophysical applications is to obtain knowledge about the earth’s inner
structure from global to local scale. Continuous information about large areas is derived
by the acquisition and interpretation of di�erent types of geophysical data such as seismic,
electromagnetic and gravimetric data. Today, the seismic full-waveform inversion (FWI)
is increasingly popular because of its high resolution and its capability to handle highly
heterogeneous subsurfaces. When it was introduced into the seismic community by Lailly
(1983), Tarantola (1984), and Mora (1987) limited computational resources restricted its
application. However, due to fast improvements of the computational power FWI is now
feasible even with a large number of model parameters. During the FWI full seismograms
are �tted which leads to a resolution of up to half of the propagated wavelength. Generally,
the seismic FWI can be used to build velocity models and density models. While seismic
velocity models can be built reliably it is still challenging for density distributions in the
subsurface (e.g. Przebindowska, 2013). The main reason is the low sensitivity of seismic
waves to the density which is mostly restricted to density variations at layer boundaries.
Moreover, trade-o� e�ects between seismic velocities and density may also complicate
the inversion. The success of the FWI and especially of the density model building highly
depends on the initial model, the low frequency and wavenumber content of the seismic
wave�eld and the acquisition geometry (Virieux and Operto, 2009).
A strategy to mitigate the nonlinearity and trade-o� e�ects is to apply a hierarchical
inversion where seismic velocities or Lamé parameters are updated in the �rst stage and
density in the second stage (e.g. Jeong et al., 2012). In this case, the overall velocity trend is
already correct before �tting the amplitudes by updating the density model (Przebindowska
et al., 2012). In contrast, a simultaneous seismic multi-parameter inversion can also be
successful if di�erent step lengths are used for each parameter class (Xu and McMechan,
2014). Instead of inverting for the density directly empirical laws like Gardner’s relation
are often used to update the density model. However, empirical laws are usually not
valid for various rock types and may produce unsatisfactory results. In a recent study,
Wehner (2015) showed that it is possible to improve the inversion for the density by using
a combined elastic full-waveform and gravity inversion. He applied a gravity inversion in
the �rst stage of the inversion to introduce long wavelength information to the density
model. Later, a pure FWI was applied and led to an improved density reconstruction
compared to the pure FWI. A disadvantage of this strategy is that the density update by
the gravity inversion may be reversed in the subsequent pure FWI and trade-o� e�ects
cannot be reduced e�ciently.
To reduce trade-o� e�ects and to use the complementary information of di�erent geo-
physical methods joint inversions are applied. However, many di�erent joint inversion
approaches have been studied in the past and there is no obvious strategy which gives
satisfying results in all possible cases. Until now, most of the joint inversion strategies

1



1. Introduction

focussed on empirical or analytical laws between di�erent physical parameters and on
structural similarities. Physical parameters can be linked by using cross-gradient criteria
(Gallardo and Meju, 2004) or by connecting the gradients by empirical relationships (Bjoern
Heincke et al., 2006). A more general approach is to use empirical or analytical parameter
relationships and structural similarities as a constraint during the inversion (Colombo
and De Stefano, 2007; Björn Heincke et al., 2010). However, the assumption of structural
similarity and the validity of empirical laws is not always justi�ed. Consequently, we do
not make use of them.

To overcome the drawbacks of joint inversions based on empirical relations and structural
similarity and of the combined inversion where long wavelength information is only
used in the �rst inversion stage we present a joint full-waveform and gravity inversion.
Thereby, both methods can be weighted relative to each other to control the in�uence of
each method. We choose acoustic instead of elastic inversion to avoid additional trade-o�
e�ects between shear wave velocity and density and because it is computationally more
e�cient. With this joint approach we would like to derive a high resolution density
model with reliable density values. Therefore, on the one hand we would like to over-
come the latent ambiguity of gravimetry and its restricted resolution by providing high
resolution seismic data. On the other hand we would like to mitigate trade-o� e�ects
between P-wave velocity and density and to compensate the limited sensitivity of seismic
waves to density variations by simultaneously minimizing the residuals of the gravity �eld.

Finally, we give a short overview of the structure of this thesis. In the second chapter we
explain the theoretical background of acoustic waves, the gravitational �eld and inverse
problems. Therefore, we derive the second-order linearized acoustic wave equation and the
gravitational �eld of continuously distributed bodies. Afterwards we discuss the general
challenge of inverse problems, how we can de�ne a solution and which inversion strategies
exist. In the third chapter we describe the implementation. It consists of the acoustic and
gravimetric forward and inverse problem and the joint inversion strategy. Subsequently,
the salt dome model which is subject to the synthetic reconstruction test is described in the
fourth chapter as well as the pseudo-observed data. Additionally, the forward modeling
and inversion parameters are explained. In the �fth chapter we present the results of the
reconstruction test which are divided into four sections: acoustic full-waveform inversion
results, gravity inversion results of three di�erent inital models, two joint inversion results
with di�erent relative weightings between seismics and gravity and �nally a comparison
of the reconstructed density models. In the last, sixth chapter we summarize the results
and give an outlook to future studies and possible further improvements.

2



2. Theoretical background

In this chapter, we describe the basics of acoustic wave propagation, the gravitational �eld
and inverse problems. Therefore, the linearized acoustic wave equation is derived shortly
as well as the gravitational �eld of continuously distributed bodies based on Newton’s law
of universal gravitation. Subsequently, we introduce the concept of inverse problems and
their challenges. Finally, we adress the question how we can de�ne a solution of inverse
problems and how to choose a suitable inversion strategy.

2.1. Acoustic waves

Acoustic waves are the simplest type of seismic waves. They occur in a medium with
reference density ρ0 and reference pressure p0 if the state of equilibrium is disturbed, e.g.
by a local change of pressure. As a result the medium will be deformed and alternately
compressed and dilatated. Therefore, acoustic waves are also known as compressional or
pressure waves. In the following we will shortly derive the linear acoustic wave equation.
A more detailed description can be found in Ehrenfried (2004) and Chapman (2004).
In general three di�erent equations are needed, the equation of motion (conservation of
momentum), the continuity equation (conservation of mass) and a constitutive equation
(in thermodynamics also called equation of state):

1. equation of motion:

ρ

[
∂~v

∂t
+ (~v · grad)~v

]
= grad(p), (2.1a)

2. continuity equation:
∂ρ

∂t
+ div(ρ~v ) = 0, (2.1b)

3. constitutive equation:

K = V

(
∂p

∂V

)
S

. (2.1c)

Here, we neglected volumetric forces and friction and assumed that acoustic waves can
be regarded as an adiabatic process which excludes convection. Moreover, it should be
mentioned that the pressure tensor σp is not de�ned in the conventional way as the
negative of the stress tensor, but as σp = pI. Hence the bulk modulus K also has to be
de�ned with opposite sign. Nevertheless, the wave equation will be exactly the same.
In the next step, equations 2.1a and 2.1b will be linearized (cf. Ehrenfried, 2004). Therefore,
we divide the pressure p, the density ρ and the particle velocity ~v into a constant (denoted

3



2. Theoretical background

by 0) and perturbated (denoted by a stroke) part. We assume that the medium is in a static
condition at the beginning so that ~v0 = 0 is ful�lled:

p = p0 + p′,

ρ = ρ0 + ρ′,
~v = ~v0 + ~v′ = ~v′.

(2.2)

As a result we obtain the following linearized equations:

1. equation of motion
∂~v′

∂t
=

1
ρ0

grad(p′), (2.3a)

2. continuity equation
∂ρ′

∂t
+ ρ0 div(~v′) = 0, (2.3b)

3. constitutive equation

K = −ρ0

(
∂p′

∂ρ′

)
S

. (2.3c)

Now, equations 2.3b and 2.3c can be combined yielding a new constitutive equation:

∂p′

∂t
= K div(~v′). (2.4)

If we calculate the time derivative of equation 2.4 and substitute equation 2.3a, we obtain
the second-order linearized acoustic wave equation for variable density:

1
K

∂2p′

∂t2 − div
(

1
ρ0

grad(p′)
)
= 0. (2.5)

The compressional velocity is given by

vp =

√
K

ρ0
. (2.6)

2.2. Gravitational field

2.2.1. Newton’s law of universal gravitation

The law of universal gravitation was published in 1687 by Isaac Newton in his Philosophiae
Naturalis Principia Mathematica. It states the existence of a mutual gravitational force ~F
between two point masses whose magnitude is proportional to each mass and inversely
proportional to the square of their distance r . The force of a point mass mS centered
at source point S (xS ,yS ,zS ) applied on a point mass mP centered at observation point
P (x ,y,z) can be formulated in cartesian coordinates as follows (see �gure 2.1(a)):

4



2.2. Gravitational �eld

mP

mS

S(xS , yS , zS)

P ( x , y , z)

r̂

r

y

x

z

(a)

P ( x , y , z)

r̂

ρS( xS , yS , zS)
dV

r

z

x

y

(b)

Figure 2.1.: Gravitational attraction of a point mass (a) and of a continuously distributed
body (b) measured at observation point P

~F = −G
mSmP

r 2 r̂ (2.7)

with

r =
√
(x − xS )2 + (y − yS )2 + (z − zS )2. (2.8)

Here, G = 6.67384 m3

kg·s2 denotes the gravitational constant. Furthermore, we follow the
convention that r̂ is directed from the source to the observation point.

2.2.2. Gravitational potential and attraction

If we apply Newton’s second law (conservation of momentum), i.e. dividing the force by
the mass mP , we obtain the gravitational attraction (also called gravitational acceleration)
~д at P (x ,y,z) caused by massmS :

~д(P ) = −G
mS

r 2 r̂ . (2.9)

The variable ~д has the SI (Système Internationale and International System respectively)
unit m/s2. In the cgs system the unit is cm/s2 or Gal (named after Galileo Galilei) where
1 Gal equals 1 cm/s2. In geophysical applications the unit mGal is commonly used with
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2. Theoretical background

the conversion 1 mGal = 1 · 10−5 m/s2.
In contrast to Newton’s original interpretation of gravity as a point attraction, gravity
is thought today as a �eld. In this sense, instead of a direct force between two point
masses all point masses together are the cause of the gravitational �eld. A test particle
then moves according to the �eld strength ~д. In general relativity the �eld is described as
the curvature of spacetime. However, in our considerations classical gravity is a su�cient
approximation.
Because the gravitational �eld (equation 2.9) is free of rotation it de�nes a conservative
�eld and thus can be expressed as the gradient of a scalar potential ϕ:

~д(P ) = ∇ϕ (P ). (2.10)
The gravitational potential ϕ (also called Newtonian potential) represents the work per
unit mass which is done by the �eld if a test particle is moved from its original location to
a di�erent one. The total amount of work only depends on the starting point and endpoint.
Hence, the gravitational potential can be written as follows:

ϕ (P ) = G
mS

r
. (2.11)

If the gravitational attraction is de�ned as ~д = −∇ϕ, the potential ϕ represents the work
that is done by the test particle instead of the �eld.

2.2.3. Gravitational field of continuously distributed bodies

In the �eld of celestial mechanics it may be feasible to think of a celestial body as a point
mass, but in geophysics we are interested to learn about the continuous distribution of
matter within the earth. Therefore we replace the point mass or sum of point masses by a
continuous density distribution ρS (xS ,yS ,zS ) where the in�nitesimal mass element dmS

can be written as dmS = ρS (xS ,yS ,zS )dV (see �gure 2.1(b)). Amongst others Kellogg (1929)
discussed why the transition from particles to continuously distributed matter is justi�ed.
Using the principle of superposition and the integral calculus we now rewrite the Newto-
nian potential:

ϕ (P ) = G

∫
V

dmS

r
= G

∫
V

ρS (xS ,yS ,zS )

r
dV . (2.12)

In fact, in �eld work not the potential is measured, but the vertical component of the
gravitational �eld дy . This can be calculated by making use of potential theory (equation
2.10):

дy (P ) =
∂ϕ (P )

∂y
=
∂

∂y

[
G

∫
V

ρS (xS ,yS ,zS )

r
dV

]
= − G

∫
zS

∫
yS

∫
xS

y − yS
r 3 ρS (xS ,yS ,zS ) dxS dyS dzS .

(2.13)

In a similar way gravity gradiometry data can be calculated, i.e. the second derivative of
the potential. Today gravity gradiometry data is commonly used in gravity interpretation,

6



2.3. Inverse problems

but we will focus only on gravity data in this study.
Moreover, it should be mentioned that gravity is not the only physical theory which incor-
porates potential theory. It also has high signi�cance in electrostatics or magnetostatics.
A comprehensive discussion of potential �elds in di�erent physical theories is given by
Blakely (1995) and Kellogg (1929).

2.3. Inverse problems

In general, a physical system can be parameterized by a set of model parameters ~m from the
model space M and a set of measured data ~d from the data space D. The model parameters
and measured data are connected by a physical theory represented by the operator A. Such
a theory can be Newton’s law of universal gravitation which connects a density model
with an observable gravitational �eld or the acoustic wave equation which connects a
density and P-wave velocity model with an observable pressure �eld.
The process of determining the data by a given set of model parameters and a physical
theory is called forward problem. In contrast, the process of determining the model
parameters by a given set of data and a physical theory is called inverse problem (cf.
Tarantola, 2005). In this respect, nonlinear problems can be denoted as:

A(~m) = ~d forward problem (2.14a)

A−1(~d ) = ~m inverse problem (2.14b)

Usually it is inevitable to understand the forward problem as it is part of many inversion
strategies.

2.3.1. Ill-posed problems

When we think about inverse problems the following three questions play an important
role:

1. Does a solution exist?

2. Is this solution unique?

3. Is this solution stable?

If the answer to all these questions is positive, the associated problem is called well-posed
according to Hadamard (1902), if not, it is called ill-posed. From a physical point of view it
is certain that a solution exists because we study real physical situations and do actual
measurements. So the question of existence refers to the mathematical problem formula-
tion. Mathematically it is possible that there is no exact solution because �eld data always
is noisy and the physical theory represented by operator A does not explain the noise.
Also, it is possible that we describe the physics incompletely. However, as we investigate
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2. Theoretical background

synthetic data without noise a solution should exist.
Especially in gravity inversion the question of uniqueness is of high signi�cance. Because
the gravitational �eld is an integral representation of the density distribution it is intrin-
sically ambiguous. In other words, an in�nite number of density distributions can be
added to a density model without changing the externel gravitational �eld. Such a density
distribution can be created by �nding two di�erent models with the same external gravity
e�ect and taking their di�erence (cf. Jacoby and Smilde, 2009, p.274). The seismic inverse
problem can be regarded as reasonably unique, at least if the illumination by the waves
is su�cient. Although a unique solution should exist, it is not a trivial task to �nd this
solution as it will be explained later in more detail (see section 3.1.2 and 4.3).
Finally, the stability of the solution is also connected to the noise contamination (cf. Zh-
danov, 2002). Moreover, instabilities can also occur during the inversion process depending
on the chosen inversion strategy.
In this thesis, the goal is to overcome the inherent di�culties of each method by applying
a simultaneaous joint inversion of acoustic and gravity data. From the viewpoint of regu-
larization theory it can be said that gravity works as a regularization of acoustic inversion
and vice versa.

2.3.2. Solution of the inverse problems

When we think about how we can obtain a solution of the inverse problem, it is crucial to
�rst think about how we de�ne a solution. In the probabilistic approach not one single
solution exists, but a set of solutions whose probability is described by a probability
function. These solutions and their probabilities incorporate the a priori information, the
information associated with the actual data and a physical theory (cf. Tarantola, 2005).
This is a very general approach and has the positive property to take the inherent ambiguity
of inverse problems into account. However, as it is computationally expensive we will
make use of a deterministic inversion. In this sense, we will look only for one single
solution which is called optimum solution. To �nd the optimum solution we �rst de�ne a
mis�t or objective functional E. In our case it is the L2-norm of the data residuals δ ~d

E (~m) =
1
2
δ ~dTδ ~d (2.15)

with

δ ~d = ~dmod(~m) − ~dobs, (2.16)

where ~dmod(~m) denotes the forward modeled data and ~dobs the actually observed data.
If the mis�t functional takes its global minimum (many global minima may exist), the
model which is associated with the forward modeled data will be regarded as the optimum
solution.

2.3.3. Inversion strategies

The problem of inversion and optimization is a broad �eld and a large number of inversion
strategies exists. The method of choice depends on the concrete problem and also on the
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computational resources. Extensive discussions are given by Nocedal and Wright (2006),
Tarantola (2005), Jacoby and Smilde (2009), and Zhdanov (2002). Numerical optimization
by Nocedal and Wright (2006) is probably the de�nitive book if it comes to optimization
strategies. Tarantola (2005) focusses on geophysical applications especially on seismics,
Jacoby and Smilde (2009) on gravity interpretation and Zhdanov (2002) on regularization
in the context of di�erent geophysical applications.
If the relationship between model parameters and data is linear, equations 2.14 can be
formulated as matrix vector multiplication and solved by simple matrix inversion. Anyhow,
the seismic inverse problem is nonlinear and a di�erent strategy is needed. Generally,
nonlinear optimization strategies can be divided into two types: global optimization
algorithms and local optimization algorithms. Within global optimization algorithms many
forward problems have to be solved, especially if a high number of model parameters is
used. Thus, in seismics global optimization algorithms are not applicable with today’s
computational resources. In contrast, local optimization algorithms can be very e�cient
but they may get caught in a local minimum. In this regard seismic inversion strategies
can be adjusted to reduce the nonlinearity of the inverse problem and avoid the algorithm
to get caught in a local minimum as will be explained later. Within local optimization
algorithms gradient type algorithms are very prominent. Such a method will be used in
this thesis and the basic scheme will be explained in the following.
We already introduced the mis�t functional E which depends on the model parameters
and on the data. First, we consider the mis�t functional of an initial guess ~m0 and regard a
small change in the model space ∆m. The mis�t functional of the new model

~m = ~m0 + ∆~m (2.17)

can be written as a second-order Taylor series:

E (~m) = E (~m0 + ∆~m)

= E (~m0) + ∆~m

(
∂E (~m0)

∂~m

)
+

1
2
∆~m

(
∂2E (~m0)

∂~m2

)
∆~mT + O ( | |∆~m | |3).

(2.18)

A necessary condition for a minimum is that the �rst derivative of the mis�t functional
with respect to ~m vanishes:

J E (~m) =
∂E (~m)

∂~m
≈
∂E (~m0)

∂~m
+ ∆~m

(
∂2E (~m0)

∂~m2

)
!
= 0. (2.19)

Rearrangement of equation 2.19 leads to a new expression for the model change:

∆~m = −

(
∂2E (~m0)

∂~m2

)−1 (
∂E (~m0)

∂~m

)
= −H−1

E (~m0) · J E (~m0). (2.20)

The variable J E denotes the Jacobian matrix or gradient of the mis�t functional which
takes the form of a vector in our case. With N as the number of grid points it can be
written as

J E (~m) =

(
∂E

∂mi
(~m)

)
i=1,...,N

=
(
∂E
∂m1

(~m) ∂E
∂m2

(~m) · · · ∂E
∂mN

(~m)
)T
. (2.21)
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2. Theoretical background

The variable HE denotes the Hessian matrix which holds information about the curvature
of the mis�t functional:

HE (~m) =

(
∂2E

∂mi∂mj
(~m)

)
i,j=1,...,N

=




∂2E
∂m1∂m1

(~m) ∂2E
∂m1∂m2

(~m) · · · ∂2E
∂m1∂mN

(~m)
∂2E
∂m2∂m1

(~m) ∂2E
∂m2∂m2

(~m) · · · ∂2E
∂m2∂mN

(~m)
...

...
. . .

...
∂2E

∂mN ∂m1
(~m) ∂2E

∂mN ∂m2
(~m) · · · ∂2E

∂mN ∂mN
(~m)



. (2.22)

Finally, the basic scheme of a gradient type optimization method can be written as follows:

~mn+1 = ~mn + ∆~mn = ~mn −H
−1
E (~mn ) · J E (~mn ). (2.23)

The model at iteration n + 1 can be calculated by updating the model at iteration n in the
steepest descent direction of the mis�t functional −J E (~mn ). The Hessian matrix adjusts
the steepest descent direction by incorporating information about the curvature of the
mis�t functional to �nd a faster way to a local minimum. If the Hessian matrix is neglected
the scheme is called gradient method. If it is calculated and used completely the scheme
is called Newton method. Lastly, if the Hessian matrix is not calculated explicitly but
approximated the scheme is called quasi-Newton method. Such a quasi-Newton method
will be used in this study.
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In this chapter, we explain how the forward and inverse problems of seismics and gravity
are solved. Moreover, the implementation of the joint inversion is presented. The software
that is used in this study is called IFOS2D (Inversion of Full Observed Seismograms). Its
seismic forward code was originally developed by Bohlen (1998). The seismic inversion
code is based on the f ull-waveform inversion (FWI) code of Köhn (2011). Finally, the grav-
ity forward and inversion code as well as the joint inversion approach was implemented
on the basis of a work by Wehner (2015). IFOS2D is maintained and further developed
by the Geophysical Institute of the Karlsruhe Institute of Technology (KIT) and available
under the GNU General Public License (http://www.gpi.kit.edu/Software.php).

3.1. Acoustic code

3.1.1. Forward problem

3.1.1.1. Finite-di�erence scheme

The acoustic forward problem is solved by a time-domain �nite-di�erence (FD) scheme
(Bohlen, 1998). This means that the partial derivatives of the acoustic wave equation are
approximated by �nite-di�erence operators and solved numerically.
Therefore, we �rst discretize the model on an equidistant staggered grid (Virieux, 1986;
Levander, 1988) with a grid spacing ∆h and calculate the pressure and particle velocity at
proceeding time steps ∆t :

x = i∆h, i = 1, ...,Nx , (3.1a)
y = j∆h, j = 1, ...,Ny , (3.1b)
t = n∆t , n = 1, ...,Nt . (3.1c)

Here, Nx denotes the number of grid points in x-direction, Ny the number of grid points
in y-direction and Nt the number of time steps. The pressure �eld

p := p
n
2
[i,j] (3.2)

is de�ned on integral grid points in space and half-integral time steps as demonstrated in
�gure 3.1. The particle velocity �eld

vx := vn
x ,[ i2 ,j]

and vy := vn
y,[i, j2 ]

(3.3)
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Figure 3.1.: Staggered �nite-di�erence grid. Black dots represent integral grid points, grey
squares and diamonds half-integral grid points.

is de�ned on half-integral gridpoints in space and integral time steps.

To derive the FD operators we consider the second-order Taylor series of a function f
with the supporting point x0:

f (x ) =
N∑
n=0
∂nx f (x0)

1
n!
(x − x0)

n = f (x0) + ∂x f (x0) (x − x0) + O (x2). (3.4)

If we calculate f (x0 + ∆h), ignore higher orders and reorganize the equation, we obtain
the FD forward operator (equation 3.5a). Evaluating the function at x0 − ∆h leads to the
FD backward operator (equation 3.5b). The arithmetic mean of the forward and backward
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operator results in the FD central operator (equation 3.5c). The central operator of the
staggered grid is given by equation 3.5d.

∂ f (x0)

∂x
≈

f (x0 + ∆h) − f (x0)

∆h
= D+ f (x0) (3.5a)

∂ f (x0)

∂x
≈

f (x0) − f (x0 − ∆h)

∆h
= D− f (x0) (3.5b)

∂ f (x0)

∂x
≈

f (x0 + ∆h) − f (x0 − ∆h)

2∆h
= D0 f (x0) =

1
2

[
D+ f (x0) + D− f (x0)

]
(3.5c)

∂ f (x0)

∂x
≈

f (x0 + ∆h/2) − f (x0 − ∆h/2)
∆h

= D0,sg f (x0) (3.5d)

These FD operators are of second order. A better approximation of the partial derivatives
can be achieved by expanding the Taylor series, i.e. using higher FD orders. With the central
operator of the staggered grid the linearized acoustic wave equation can be discretized.
Instead of using the second-order formulation of the acoustic wave equation (equation
2.5), we use the pressure-velocity formulation which is a system of two coupled �rst-order
di�erential equations (equations 2.3a and 2.4):

v[n+1]
x ,[i+ 1

2 ,j]
− v[n]

x ,[i+ 1
2 ,j]

∆t
=

1
ρ̄[i+ 1

2 ,j]

p
[n+ 1

2 ]
[i,j] − p

[n+ 1
2 ]

[i+1,j]

∆h
, (3.6a)

v[n+1]
y,[i,j+ 1

2 ]
− v[n]

y,[i,j+ 1
2 ]

∆t
=

1
ρ̄[i,j+ 1

2 ]

p
[n+ 1

2 ]
[i,j] − p

[n+ 1
2 ]

[i,j+1]

∆h
, (3.6b)

p
[n+ 1

2 ]
[i,j] − p

[n− 1
2 ]

[i,j]

∆t
= ρ[i,j]v

2
p,[i,j]

v[n]
x ,[i+ 1

2 ,j]
− v[n]

x ,[i− 1
2 ,j]

+v[n]
y,[i,j+ 1

2 ]
− v[n]

y,[i,j− 1
2 ]

∆h
. (3.6c)

The density on half-integral grid points is averaged as follows:

ρ̄i+ 1
2 ,j
=
ρ[i,j] + ρ[i+1,j]

2
and ρ̄i,j+ 1

2
=
ρ[i,j] + ρ[i,j+1]

2
. (3.7)

By rearranging equations 3.6 we obtain the �nal FD scheme:

v[n+1]
x ,[i+ 1

2 ,j]
= v[n]

x ,[i+ 1
2 ,j]

+
1

ρ̄[i+ 1
2 ,j]

∆t

∆h

(
p

[n+ 1
2 ]

[i,j] − p
[n+ 1

2 ]
[i+1,j]

)
, (3.8a)

v[n+1]
y,[i,j+ 1

2 ]
= v[n]

y,[i,j+ 1
2 ]

+
1

ρ̄[i,j+ 1
2 ]

∆t

∆h

(
p

[n+ 1
2 ]

[i,j] − p
[n+ 1

2 ]
[i,j+1]

)
, (3.8b)

p
[n+ 1

2 ]
[i,j] = p

[n− 1
2 ]

[i,j] + ρ[i,j]v
2
p,[i,j]

∆t

∆h

(
v[n]
x ,[i+ 1

2 ,j]
− v[n]

x ,[i− 1
2 ,j]

+v[n]
y,[i,j+ 1

2 ]
− v[n]

y,[i,j− 1
2 ]

)
. (3.8c)
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Table 3.1.: Number of grid points per minimum wavelength n and factor h for di�erent
lengths of the FD Taylor operator.

FD order n h
2nd 12 1.0
4th 8 7/6
6th 6 149/120
8th 5 2161/1680

3.1.1.2. Grid dispersion and instability

The spatial and temporal sampling have to ful�ll one criterion each to avoid numerical
dispersion and instabilities, respectively. The criterion for numerical dispersion is given as

∆h ≤
λmin

n
=
vp,min

nfmax
≈
vp,min

n2fc
. (3.9)

The variable n denotes the number of grid points per minimum wavelength and depends
on the FD order (see table 3.1). In the case of second-order FD operators 12 grid points per
minimum wavelength should be su�cient. The maximum spatial sampling that avoids
numerical disperion can be written in terms of the central frequency fc and the lowest P-
wave velocityvp,min in the model. A sampling according to the Nyquist-Shannon sampling
theorem is generally not high enough.
The Courant-Friedrichs-Lewy condition (Courant et al., 1928) states that a minimum
temporal sampling ∆t has to be chosen to ensure the stability of the modeling. The
temporal sampling has to be smaller than the time a wave needs to travel between two
adjacent grid points. If this criterion is not ful�lled, the wave amplitude will grow to
in�nity. In a 2D medium the condition can be written as follows:

∆t ≤
∆h

h
√

2vp,max
. (3.10)

The factor h also depends on the FD order (see table 3.1).

3.1.1.3. Initial and boundary conditions

At the beginning, the medium is supposed to be in equilibrium. Therefore the particle
velocity and the pressure at every location ~x is given in the following way:

~v (~x ,t = 0) = 0, ~̇v (~x ,t = 0) = 0, p (~x ,t = 0) = 0, ṗ (~x ,t = 0) = 0. (3.11)

At the top of the model a free surface boundary condition is applied using the mirroring
technique (Levander, 1988). At the remaining three boundaries a convolutional perfectly
matched layer (C-PML) is used (Komatitsch and Martin, 2007). It works as a stretching
of the coordinates at the model boundaries by mapping them to complex numbers. As a
consequence the waves decay exponentially and arti�cial re�ections from the boundaries
can be avoided.
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3.1.2. Inverse problem

The inverse problem of acoustic wave propagation is solved by a full-waveform inversion
(FWI) algorithm. A comprehensive overview of the FWI was written by Virieux and
Operto (2009). In contrast to classical traveltime tomography where only �rst arrivals
are �tted in FWI algorithms whole seismograms are �tted. This provides an increased
resolution up to half of the propagated wavelength. The phase information of the wave
�eld is mostly determined by the P-wave velocity whereas the density contributes mainly
to the amplitude. As we are especially interested in a high resolution reconstruction of the
density the advantage of the FWI should be evident.
Key to the FWI is an e�cient and accurate forward modeling engine (see section 3.1.1).
As we explained in section 2.3 we will make use of local optimization. Therefore, the
convergence to a global minimum cannot be assured. It depends on the accuracy of the
initial model, the quality of low frequency information, the noise contamination and
the accuracy of the simulation of wave-physics by the forward engine. To mitigate the
nonlinearity and ill-posedness a hierarchical multi-stage inversion is recommended. This
is done by an 8-stage work�ow which includes sequential low-pass frequency �ltering,
o�set-dependent trace killing and a single parameter inversion at the beginning (see
section 4.3).

3.1.2.1. Misfit functional

The acoustic mis�t functional is de�ned as

EFWI(~m) =
1
2
δ~pTδ~p =

1
2

∑
sources

∫
dt

∑
receiver

| |δ~p | |2 (3.12)

with the data residuals

δ~p = ~pmod(~m) − ~pobs, (3.13)

where the modeled pressure ~pmod := ~pmod(~xs,~xr,t , ~m) depends explicitly on the source
position ~xs, the receiver position ~xr, the time t and the model parameters ~m and the
observed pressure ~pobs := ~pobs(~xs,~xr,t ) on the the source position ~xs, the receiver position
~xr and the time t . The explicit dependence on source position, receiver position and time
is omitted in all equations for the sake of shortness. Only the dependence on the model
parameters of the modeled data and the mis�t functional is kept because it is essential for
the derivation of the gradient of the mis�t functional.

3.1.2.2. Gradient calculation with adjoint state method

For the inversion procedure the gradient of the mis�t functional has to be calculated (see
section 2.3.3). This is done with the adjoint state method which originated from control
theory. It was introduced to geophysical applications by Lailly (1983), Tarantola (1984) and
Mora (1987). A more recent overview is given by Plessix (2006). The adjoint state method
can be used to calculate the gradient of a mis�t functional with respect to the model
parameters if the mis�t functional does not depend on the model parameters directly, but
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through state variables which are solutions of the forward problem. In the acoustic case,
the state variables are the modeled pressure data and the model parameters are the P-wave
velocities and the densities ~m = (~ρ, ~vp)

T .
The adjoint state method in combination with the minimization of a mis�t functional is
only one possible inversion strategy. Another widely used strategy is the linearization
and iterative solution of the inverse problem. However, within this framework the Fréchet
derivative of the data with respect to the model parameters, ∂

~d (~m)
∂~m

, is needed which is
represented by a M × N matrix. Thereby M denotes the number of observations and
N the number of model parameters. Thus, the calculation of the Fréchet derivative is
computationally expensive and it is not independent of the number of receivers which
is the case in the adjoint state method (see equation 3.19). One advantage would be the
possibility of a sensitivity analysis where it is necessary to calculate the Fréchet derivative.
In the following we show how the gradient of the mis�t functional is derived with the
adjoint state method. Generally, the gradient of the mis�t functional can be written as

∂EFWI(~m)

∂~m
=

1
2

∑
sources

∫
dt

∑
receiver

∂ | |~pmod(~m) − ~pobs | |
2

∂~m

=
∑

sources

∫
dt

∑
receiver

∂~pmod(~m)

∂~m
δ~p.

(3.14)

Now, we consider the linear mapping of a small change in the model space δ ~m′ to the data
space δ~p′:

δ~p′ =

∫
V

dV
∂~p (~m)

∂~m
δ ~m′. (3.15)

For example, this could mean that we observe how the data, i.e. the pressure, at a speci�c
receiver changes if the P-wave velocity is changed at one speci�c location in the subsurface.
The integration over the whole model V sums up the e�ects of all single changes of the
model parameters. Here, ∂~p (~m)

∂~m
is the Fréchet derivative. Analogously, we can write the

mapping from the data space to the model space:

δ ~m′ =
∑

sources

∫
dt

∑
receiver

∂~m(~p)

∂~p
δ~p′ =

∑
sources

∫
dt

∑
receiver

[
∂~p (~m)

∂~m

]∗
δ~p′. (3.16)

The asterisk denotes the adjoint operator. Because the mapping is linear, the Fréchet
derivative and its adjoint are identical (Tarantola, 2005):[

∂~p (~m)

∂~m

]
=

[
∂~p (~m)

∂~m

]∗
. (3.17)

We observe that equation 3.16 takes the same form as equation 3.14 and therefore the
gradient of the mis�t functional is equal to the mapping from the data space to the model
space:

∂EFW I (~m)

∂~m
= δ ~m′. (3.18)

16



3.1. Acoustic code

If we �nd a solution to the forward problem which corresponds to equation 3.15, we can
identify the Fréchet derivatives and calculate the gradient by using equations 3.16 and
3.17. The small change in the data space δ~p′ can then be interpreted as the data residuals
(equation 3.13).
This is only to give the general idea of the adjoint state method. The whole derivation is
not part of this work, so we refer to the works of Tarantola (1984) and Mora (1987) for
more details. The actually used gradients are based on the elastic gradients by Köhn (2011).
They were adapted to the acoustic case yielding

∂EFWI

∂K
= −

∑
sources

∫
dt

p · p̃

ρ2v4
p
,

∂EFWI

∂ρ
= −

∑
sources

∫
dt

(
vxṽx +vyṽy

)
,

(3.19)

where p is the forward propagated pressure �eld and p̃ the backward propagated pressure
�eld. Moreover, vx and vy denote the forward propagated particle velocity �elds and ṽx
and ṽy the backward propagated particle velocity �elds. Overall, the gradients of the mis�t
functional are the zero lag cross-correlation of the forward and backward propagated
pressure and velocity �elds. In addition, it can be seen that they are now independent of
the receiver number which is a bene�cial feature regarding the computational e�ciency.
Because the gradients were derived in the parameterization of density ρ and bulk modulus
K , but we need the gradients in the parameterization of density ρ and P-wave velocity vp,
a �nal transformation has to be performed:

∂EFWI

∂vp
= 2ρvp

∂EFWI

∂K
,

∂EFWI

∂ρ′
= v2

p
∂EFWI

∂K
+
∂EFWI

∂ρ
.

(3.20)

3.1.2.3. Gradient preconditioning

As explained in the previous section the gradient is calculated by a zero lag cross-correlation
of the forward and backward propagated wave �elds. Due to geometrical spreading the
amplitude of the wave �elds decay with distance resulting in relatively high amplitudes
in the vicinity of the sources and adjoint sources, i.e. receivers. Hence, the model update
is concentrated on the vicinity of the sources and receivers which is not desired and can
even prevent the convergence of the inversion. To overcome this problem and allow model
updates to be distributed over the whole model two types of gradient preconditioning are
used.
The �rst one is a local preconditioner which damps the high amplitudes in the vicinity of
the sources. It is a circular taper which sets the gradient to zero at the source position and
increases logarithmically to one until the boundary of the circle is reached. The precondi-
tioning taper is applied shotwise to preserve information about the source positions from
the neighbouring sources.
The second preconditioner is applied globally and also shotwise over the whole model. It
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represents an approximation of the inverse of the diagonal Hessian matrix elements H−1
a

and was developed by Plessix and Mulder (2004):

H−1
a (~xs,~x ) =

[
ϵFWI +

∫
dt |~u (~xs,~x ,t ) |

2
(
asinh

(
xmax

r (~xs) − x

z

)
− asinh

(
xmin

r (~xs) − x

z

))]−1

.

(3.21)
The parameter ~u represents the forward modeled wave �eld, ~xs the source position and
xmax

r and xmin
r the maximum and minimum receiver position of each source, respectively.

The hyperbolic functions result from an approximation of the receiver Green’s function.
This preconditioner does not only damp the gradient in the vicinity of the sources but
also increases values in those areas with poor illumination. The parameter ϵFWI denotes
the water level and ensures the stability of the matrix inversion in the case of very small
amplitudes of the wave �eld.

3.1.2.4. Hessian calculation with multi-parameter L-BFGS

The preconditioner of Plessix and Mulder (2004) represents only a rough approximation
of the inverse of the true Hessian matrix. Especially, it ignores the o�-diagonal elements
which are crucial to reduce trade-o�s between di�erent model parameters. In the following,
we shortly explain the quasi-Newton limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method based on Nocedal and Wright (2006), Brossier (2011), and Wittkamp
(2016).
In contrast to the full BFGS algorithm curvature information from only the most recent
iterations is used. Because the curvature information from earlier iterations usually has
no signi�cant in�uence on the current Hessian matrix, the convergence of the inversion
should not be a�ected negatively. This approach has the advantage of reduced memory
storage demands compared to the full BFGS method and much less computation time
compared to the calculation of the full Hessian matrix. For the approximation of the
Hessian matrix the gradient di�erences

yn = ∇~mEn+1(~m) − ∇~mEn (~m) (3.22)

and the model di�erences

sn = ~mn+1 − ~mn (3.23)

of the most recent iterations are needed. Here, n denotes the iteration number. According
to Nocedal and Wright (2006) a number of 3 to 20 iterations is su�cient. We use the
gradient and model di�erences of 10 previous iterations in every inversion. Using the
gradient and model di�erences the L-BFGS algorithm directly provides the model update

∆~mn = −H
−1
a,n · ∇~mEn (~m). (3.24)

Introducing the step length αn we rewrite the inversion scheme represented by equation
2.23:
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3.1. Acoustic code

~mn+1 = ~mn + αn · ∆~mn . (3.25)

The step length is introduced to make sure that the model update ful�lls some kind of
convergence condition. The convergence conditions used in this study are explained in
the subsequent section. Before the algorithm can be started an initial guess of the Hessian
matrix is required. This initial guess consists of the gradient and model di�erences of
the previous iteration. For this reason in the �rst iteration of every work�ow stage (see
section 4.3) a classical steepest descent update is performed using a parabolic line search to
estimate the step length (Nocedal and Wright, 2006). To ensure the stability of the L-BFGS
algorithm it is reset at the beginning of each work�ow stage.
A major advantage of the L-BFGS algorithm compared to the steepest descent method is that
it yields a model update with physical meaningful units (m/s or kg/m3, respectively). This
is the case because the gradient of the mis�t functional (unit: Pa2

m/s and mGal2
kg/m3 respectively)

is weighted by the inverse of the approximated Hessian matrix (unit: m2/s2

Pa2 and kg2/m6

mGal2
respectively).
A small adaption of the algorithm is needed because we use di�erent parameter classes in
this study (P-wave velocity and density). Thus, the model and gradient di�erences show
di�erent orders of magnitude and an individual L-BFGS optimization for each parameter
class would be necessary. In this case, the approximated Hessian matrix could not be
used e�ciently to reduce trade-o�s between di�erent parameter classes. To overcome this
problem we use a dimensionless L-BFGS algorithm with normalized parameter classes. In
the end, the model update is denormalized to obtain again physical meaningful values (cf.
Brossier, 2011; Wittkamp, 2016).

3.1.2.5. Wolfe line search

After the model update is calculated a line search is executed to �nd a step length which
decreases the mis�t functional signi�cantly. In this study we use the Wolfe conditions as
decision criterion (Nocedal and Wright, 2006). The �rst Wolfe condition is called su�cient
decrease condition and states:

E (~m + α · ∆~m) ≤ E (~m) + c1 · α · ∇~mE (~m)T · ∆~m. (3.26)

The parameter c1 is set to zero during every inversion. Consequently, the mis�t only has
to decrease in general instead of decreasing below the straight line de�ned by the right
hand side of equation 3.26. The second Wolfe condition, named curvature condition, is
written as follows:

∇~mE (~m + α · ∆~m)T · ∆~m ≥ c2 · ∇~mE (~m)T · ∆~m (3.27)

It ensures that too small steps are refused by comparing the curvature of the mis�t
functional. The slope of the mis�t functional after the update has to be greater than c2
times the initial slope. This indicates that a signi�cant decrease of the mis�t functional is
possible. The parameter c2 is set to 0.9 during every inversion.
The step length estimation is done by a line search algorithm for the Wolfe conditions
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3. Implementation

(Nocedal and Wright, 2006; Métivier, 2014; Wittkamp, 2016). It is initiated with the step
length α = 1. If the step length does not ful�ll the Wolfe conditions, it will be reduced
and tested again. Note that as long as the �rst Wolfe condition is ful�lled and only the
second condition is not ful�lled the step length will be increased and tested again. After
�ve unsuccessful tests the step length which reduces the mis�t functional most is used.
If the mis�t functional cannot be reduced the L-BFGS algorithm will be terminated and
restarted in the next iteration. The inversion will go on with the next work�ow stage and
if there is no further work�ow stage the inversion is �nished.
As additional criterion for the termination of the inversion or the change of a work�ow
stage we use the following abort criterion AC with n as the iteration number:

ACn (in %) = 100 ·
En−2 − En

En−2
(3.28)

It is checked whether the relative reduction of the mis�t functional is big enough. The
value of the abort criterion is set manually.

3.2. Gravity code

3.2.1. Choice of parameterization

Generally there are two basic strategies to interpret gravity data (cf. Last and Kubik, 1983).
From equation 2.13 it can be seen that the gravitational acceleration depends on the one
hand on the densities in the subsurface and on the other hand on a geometrical factor
which contains the distance to the source and the shape of the source.
The �rst strategy is to �x the density values and change only the geometry of the sources.
In this case a homogeneous body is obtained. A disadvantage is that the relationship
between the data and model parameters is nonlinear and the �exibility of the geometry is
restricted.
The second approach is to �x the geometry and change only the density values. Here,
the relationship between the data and model parameters is linear and a high �exibility
is achieved. However, a major disadvantage arises from a strong ambiguity of the corre-
sponding inverse problem that makes the use of regularization necessary.
In this thesis we use the second strategy because it can easily be implemented in our exist-
ing �nite-di�erence forward code. If we used the �rst strategy we would need additional
model parameters and an interface between the �nite-di�erence grid and the additional
parameters. Although the inverse problem of gravity is then linear, we use a nonlinear
quasi-Newton inversion algorithm. Otherwise, we could not use the same inversion code
for the acoustic FWI, the gravity inversion and the joint inversion. The increased ambiguity
that comes with this parameterization should be restricted by a simultaneous �tting of the
pressure seismograms in the joint inversion.
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3.2. Gravity code

3.2.2. Forward problem

3.2.2.1. Gravitational field by rectangular prisms

In gravity interpretation the forward problem describes the calculation of the gravitational
�eld by a given density distribution. In subsection 2.2.3 we showed how to calculate the
vertical component of the gravitational �eld at a speci�c observation point analytically
using equation 2.13. This formulation is still very general because the integration has
not been speci�ed yet. For each observation point the volume integral has to be evalu-
ated which is not a trivial task. For complicated source shapes this integral can become
arbitrarily di�cult to be calculated computationally. Therefore we will �x the geometry
as mentioned above by using rectangular prisms (Blakely, 1995; Nagy et al., 2000). The
geometry can be seen in �gure 3.2 where the blue prism is one voxel (volumetric pixel)
and all voxels have the same volume.
Now we show how the vertical component of the gravitational �eld can be calculated
with this parameterization. At �rst, we simplify the integral by shifting the coordinate
system such that the origin of the new system coincides with the observation point
P (x′ = 0,y′ = 0,z′ = 0):

x′ = x − xS ,

y′ = y − yS ,

z′ = z − zS ,

r ′ =
√
x′2 + y′2 + z′2.

(3.29)

The new coordinates x′, y′ and z′ represent the distance between source and observation
point and thus are more intuitive when considering the distance dependent gravitational
�eld. Following the principle of superposition we calculate the in�uence of each prism
separately and sum the in�uence of all N prisms to obtain the complete y-component
of the gravitational �eld at one observation point. Consequently, we substitute the new
coordinates into equation 2.13 and perform the integration over the corners of the prism,
xi , yi and zi and accordingly x′i , y

′
i and z′i :

дy,prism(P ) = − G

∫ z2

z1

∫ y2

y1

∫ x2

x1

y − yS
r 3 ρS (xS ,yS ,zS ) dxS dyS dzS

= G

∫ z ′2

z ′1

∫ y ′2

y ′1

∫ x ′2

x ′1

y′

r ′3
ρS (x − x

′,y − y′,z − z′) dx′ dy′ dz′

= G ρS (x − x
′,y − y′,z − z′) K ,

(3.30)

where K denotes the geometrical kernel. The geometrical kernel is constant for every
combination of observation point and subsurface grid point. Therefore, the gravitational
�eld is a simple weighting of the density by the gravitational constant and the geometrical
kernel. The solution of this integral is given by Blakely (1995) and Nagy et al. (2000)
amongst others. The geometrical kernel can then be written in the following way:
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K =

∫ z ′2=z−z2

z ′1=z−z1

∫ y ′2=y−y2

y ′1=y−y1

∫ x ′2=x−x2

x ′1=x−x1

y′

r ′3
dx′ dy′ dz′

=

(
y′ · arctan

(
x′z′

y′r ′

)
− x′ · ln(z′ + r ′) − z′ · ln(x′ + r ′)

) �����
x ′2

x ′1

�����
y ′2

y ′1

�����
z ′2

z ′1

=

(
x′ · ln(z′ + r ′) + z′ · ln(x′ + r ′) − y′ · arctan

(
x′z′

y′r ′

)) �����
x ′1

x ′2

�����
y ′1

y ′2

�����
z ′1

z ′2

.

(3.31)

Note that the density has to be constant within each prism, otherwise this approach would
not be valid. Also note that we assumed implicitly a �at earth approximation which should
be justi�ed in the considered model dimensions (see section 4.1). In a discretized way we
can write equation 2.13 as follows:

дm = G
N∑
n=1

ρnKmn, (3.32)

wherem denotes the observation point and n the grid point.

3.2.2.2. Boundary conditions

The implementation of proper boundary conditions is a crucial part of gravity modeling
both in respect of accuracy and computational e�ciency (cf. Wehner, 2015). If completely
neglected the gravitational �eld would decrease rapidly at the boundaries. As a result, the
arti�cial gravity anomalies could be misinterpreted as a density variation in the subsurface.
To avoid such undesired e�ects the model is elongated in positive and negative x- and
z-direction. This is done by a continuation of the boundary grid point density values in
the respective direction. The length of the continuation is symmetric and speci�ed by bx
and bprism. Furthermore, we assume that the density model possesses no signi�cant lateral
variations in greater depth1. Thus, an elongation in the y-direction is not needed because
a constant half space has the same in�uence on every gravimeter station.
The elongation in z-direction is only a multiplication with a constant and consequently
has no in�uence on the calculation time. In contrast, the elongation in x-direction expands
the grid and thus has a signi�cant in�uence on the computation time.
A second way of mitigating the boundary e�ects is to apply a Bouguer plate reduction.
Thereby, a plate with a constant density value is subtracted from the density model
before calculating the gravitational �eld. In this case, only relative gravity variations are
considered and not the absolute �eld strength. Moreover, background density models
which are not constant can be used by using a priori information.
In section 4.2.2, the e�ect of di�erent continuation lengths and the Bouguer plate reduction
is demonstrated.

1This is actually the case (see section 4.1).
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Figure 3.2.: Parameterization with rectangular prisms (blue) which are integrated into
the �nite-di�erence grid. The grey coordinate system corresponds to the
original �nite-di�erence grid, the black coordinate system is centered around
the observation point P as origin.
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3.2.3. Inverse problem

The inverse problem of gravity is also solved with the quasi-Newton L-BFGS algorithm
and a Wolfe line search. Therefore, again the gradient of the mis�t functional is needed.

3.2.3.1. Misfit functional

First, we de�ne the mis�t functional

EGRAV(~ρ) =
1
2
δ~дTy δ~дy (3.33)

with the data residuals

δ~дy = ~дy,mod(~ρ) − ~дy,obs. (3.34)

The modeled data ~дy,mod := ~дy,mod(~xstat, ~ρ) depends explicitly on the position of the gravime-
ter station ~xstat and the density model ~ρ. The observed data ~дy,obs := ~дy,obs(~xstat) only
depends on the position of the gravimeter station ~xstat. The explicit dependence on the
gravimeter station is omitted as in the acoustic case.

3.2.3.2. Gradient calculation

The gradient calculation is straightforward. By making use of equation 3.32 we obtain
(Wehner, 2015):

J EGRAV =

{
∂EGRAV(ρn )

∂ρn

}
n=1,...,N

(3.35)

=

 ∂∂ρn 
1
2

M∑
m=1

(G
N∑
n=1

ρnKn − дy,obs)
2
m




n=1,...,N

(3.36)

=

 1
2

M∑
m=1

[(GKn )m · 2(G
N∑
n=1

ρnKn − дy,obs)m]


n=1,...,N

(3.37)

=

G M∑
m=1

(δдyKn )m


n=1,...,N

. (3.38)

Here, n denotes again the grid point, N the total number of grid points, m the observation
point and M the total number of observation points. If we interprete the forward problem
as a projection of the density values onto the observation plane, we can interprete the
gradient as the projection of the data residuals (δдy )m from the observation plane to the
model. Consequently, the value of the gradient at one grid point is the sum of the data
residuals weighted by the corresponding geometrical kernel and the gravitational constant.
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3.3. Joint inversion

3.2.3.3. Gradient preconditioning

The gravitational �eld, more precisely the geometrical kernel, decays rapidly with in-
creasing distance between observation point and source point. Thus, the gradient has
naturally relatively high values at the top of the model and low values in the deeper parts.
This would restrict the model update to the upper parts of the model which is not desired
because it does not re�ect the real geological situation in general. To distribute the model
update over the whole model with a similar probability we introduce a depth weighting
function as preconditioner (Li and Oldenburg, 1998; Boulanger and Chouteau, 2001).
The depth weighting function is an exponential function of the depth y with an adjustable
exponent β . It represents an approximation of the diagonal elements of the Hessian matrix
and is written as follows:

H−1
a = wdepth = (y + ϵGRAV)

β . (3.39)

The water level, ϵGRAV = 0.0005, is introduced for stability reasons. The exponent β is
set to 0.8. Tests showed that this value provides good results and it is also within the
recommended range (Li and Oldenburg, 1998; Wehner, 2015). An illustrative comparison
of the geometrical kernel for one and for multiple observation points and with or without
depth weighting, respectively, can be found in the work of Wehner (2015).
It is also possible to calculate the true diagonal elements of the Hessian matrix e�ciently:

{
∂2EGRAV(ρn )

∂ρ2
n

}
n=1,...,N

=

 ∂∂ρn

G

M∑
m=1

(δдzKn )m




n=1,...,N

=

G2
M∑

m=1
(Kn )

2
m


n=1,...,N

.

(3.40)
Compared to the depth weighting the true diagonal Hessian matrix takes the radial decay
into account. Moreover, the high amplitudes in the vicinity of the observation points are
considered. However, tests revealed that the gravity inversions with depth weighting
and with the true diagonal Hessian matrix as preconditioner, respectively, do not di�er
signi�cantly. Additionally, further tests showed that in the case of gravity gradiometry
data the true diagonal elements of the Hessian matrix are not su�cient to overcome the
natural decay of the geometrical kernel. In conclusion, we use only the depth weighting
in this study because of its �exibility and generality.

3.3. Joint inversion

A crucial part of this study is the implementation of a simultaneous joint inversion of
acoustic and gravimetric data. The goal is to derive a P-wave velocity model and a density
model which explain both data sets. The individual inversions are completely independent
and have to be connected somehow for this purpose. In ealier studies empirical and
analytic relations between di�erent model parameters have been used as well as structural
similarities (e.g. Colombo and De Stefano, 2007). However, the validity of empirical
relationships and structural similarity is not always justi�ed, especially not in cases of salt
or basalt structures. A more general and sophisticated approach is to connect the gradients
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of the mis�t functionals during the nonlinear local optimization directly. Minimized is in
any case a joint mis�t functional.
The basic scheme of one iteration within the inversion framework is shown in �gure 3.3.
The forward modeling, mis�t calculation and gradient calculation and preconditioning of
both methods are done independently. Afterwards the mis�t functionals and gradients
are connected. How this is done will be explained in the following. The joint gradients
are then smoothed with a median �lter to avoid small-scale artifacts. The �lter length is
approximately the minimum wavelength excited in the model. Finally, the model update
is calculated and applied by using the multi-parameter L-BFGS algorithm and the Wolfe
line search. This process is repeated until the abort criterion is ful�lled or no step length
can be found which reduces the mis�t.

3.3.1. Joint misfit functional

The joint mis�t functional is the weighted sum of the individual mis�t functionals:

EJOINT(~vp, ~ρ) = EFWI(~vp, ~ρ) + λ1 · EGRAV(~ρ)

=
1
2
· δ~pTδ~p + λ1 ·

1
2
· δ~дTy δ~дy .

(3.41)

The weighting is necessary because the magnitude of the individual mis�t functionals
di�ers in general. Without a weighting e�ectively only one mis�t functional is minimized.
The weighting parameter λ1 is de�ned as follows:

λ1 = γ
EFWI(~vp, ~ρ)

EGRAV(~ρ)
. (3.42)

Apparently the gravity mis�t functional is normalized to be in the same scale as the
seismic mis�t functional. The parameter γ is chosen manually and helps to control the
in�uence of each individual method. If γ is set for example to 0.1, the ratio of the individual
contributions is 1:10. Note also that λ1 is always calculated during the �rst iteration of
every work�ow stage and is constant during each work�ow stage (see section 4.3).

3.3.2. Joint gradients

The gradients are combined in a similar way:

∂EJOINT(~vp, ~ρ)

∂~ρ
=
∂EFWI(~vp, ~ρ)

∂~ρ
+ λ2 ·

∂EGRAV(~ρ)

∂~ρ
(3.43a)

∂EJOINT(~vp, ~ρ)

∂~vp
=
∂EFWI(~vp, ~ρ)

∂~vp
. (3.43b)

Because the gravitational acceleration is not sensitive to the P-wave velocity only the
gradients with respect to the density have to be added. The weighting parameter λ2 is
then de�ned as
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Model (P-wave velocity & density) at iteration n

ACOUSTICS

Joint misfit functional and gradient
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Gradient smoothing

Model (P-wave velocity & density) at iteration n + 1

GRAVITY

Gradient preconditioning
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Misfit calculation

Gradient calculation
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Figure 3.3.: Flow chart of one iteration of the inversion algorithm.
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Figure 3.4.: Weighting between acoustic full-waveform and gravity inversion.

λ2 = γ
max

(���� ∂EFWI (~vp,~ρ)

∂~ρ

����
)

max
(���� ∂EGRAV (~ρ)

∂~ρ

����
) . (3.44)

Again, λ2 is calculated during the �rst iteration of every work�ow stage and is constant
during each work�ow stage.
Finally, in �gure 3.4 the weighting between the acoustic full-waveform and gravity in-
version is illustrated. In chapter 5 the results of a pure FWI (γ = 0), three di�erent pure
gravity inversions (γ = 106) and two joint inversions (γ = 0.1 and γ = 0.3) are presented.
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4. Model, forward modeling and inversion
parameters

In this chapter we describe the salt dome model and the setup of the forward modeling
and the inversion. The results shown in the subsequent chapter represent a reconstruction
test, i.e. the true model is known ab initio. Based on the true model we calculate pseudo-
observed data with the forward engines explained in sections 3.1.1 and 3.2.2. The goal
is to derive the true model from an initial guess by �tting the forward modeled data to
the pseudo-observed data. Therefore, in the �rst section we introduce the true P-wave
velocity and density model, in the second section the pseudo-observed data and the forward
modeling parameters and �nally in the third section the inversion parameters.

4.1. Salt domemodel

The true model is a typical salt dome structure from Northern Germany and was provided
by the company TERRASYS Geophysics. The shape of the salt dome and the density
distribution were adapted for our purpose. It was chosen mainly for two reasons. First,
gravity is only sensitive to lateral inhomogeneities and thus a model with strong lateral
density variations ensures that gravity can provide a signi�cant contribution to the joint
inversion. Secondly, a current challenge in exploration geophysics is the interpretation of
salt and basalt structures because empirical relationships like Gardner’s relation (Gardner
et al., 1974) are generally not valid in this context. Additionally, the high re�ectivity of
salt may cause a poor illumination with seismic waves resulting in di�culties during the
inversion or migration.
The true density model is shown in �gure 4.1. It consists of di�erent layers of sedimentary
rock with a dominant salt dome structure between approximately 7 km and 14 km. The
whole model is 16 km wide and 5 km deep. The grid spacing ∆h is 12.5 m resulting in a grid
size of 1280 times 400 grid points. During the formation of the dome due to the relatively
small density of salt the sedimentary layers were pushed upwards resulting in dipping
structures close to the dome. At the top of the salt dome there is a thin high density layer,
also an artifact of the formation process. Moreover, the right �ank of the dome is covered
by another high density layer. The di�erent rock types marked in �gures 4.1 and 4.2 are
listed in the following:
The true P-wave velocity model is derived from the density model by Gardner’s relation
(Gardner et al., 1974):

vp = 0.3048 ·
( ρ

230

)4
. (4.1)
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Figure 4.1.: True density model of the salt dome structure. An explanation of the di�erent
geological bodies can be found in table 4.1.

Table 4.1.: Explanation of the geological bodies in the true P-wave velocity and density
model.

1. Tertiary 5. Keuper 9. Buntsandstein

2. Upper Cretaceous 6. Muschelkalk 10. Zechstein

3. Lower Cretaceous 7. Roet 1 11. Pre-Zechstein

4. Jurassic 8. Roet 2
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Figure 4.2.: True P-wave velocity model of the salt dome structure. An explanation of the
di�erent geological bodies can be found in table 4.1.

Here, the P-wave velocityvp is given in m/s and the density in kg/m3. The P-wave velocity
values of the salt dome are set manually to 4500 m/s because Gardner’s relation is not
valid for salt rocks. For the salt density of 2180 kg/m3 Gardner’s relation yields a P-wave
velocity of about 2460 m/s. In contrast, in literature (cf. Kearey et al., 2013) values between
4500 m/s and 5000 m/s are mentioned. The true P-wave velocity model is shown in �gure
4.2.

4.2. Pseudo-observed data and forward modeling
parameters

4.2.1. Acoustics

The acoustic forward modeling parameters are displayed in table 4.2. Both, the pseudo-
observed data as well as the forward modeled data during the inversion are calculated
with the same parameters.
An exemplary shot of the pseudo-observed data, i.e. the forward modeled data with the true
model, is given in �gure 4.3 for shot 6 at a distance of 4500 m. Note that the seismogram is
trace-normalized for demonstrative reasons whereas the data is not normalized during
the inversion. The wave�eld is rather complex and can be divided into four groups of
wave types: direct wave, re�ections from sedimentary layers, salt dome re�ections and
refracted and scattered waves. Especially complicated is the behaviour of the wave�eld
when it reaches the salt dome. First, some waves are refracted and guided towards the
salt dome. There, some waves travel through the salt structure and reach the receivers at
the opposite side. Others are scattered at the sharp edges at about 9 km distance or at the
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Table 4.2.: Acoustic forward modeling parameters.
FD order 2

Grid spacing 12.5 m
Grid size 16 × 5 km

1280 × 400 grid points
Recording time 6 s
Sampling rate 0.0015 s

Time steps 4000
Source type Explosion

Source shape Ricker wavelet
Central frequency 5 Hz
Number of shots 21

First shot 1000 m
Last shot 15000 m

Shot spacing 700 m
Shot depth 0 m

Number of receivers 156
First receiver 250 m
Last receiver 15750 m

Receiver spacing 100 m
Receiver depth 0 m

PML width 125 m
PML reference frequency 5 Hz
PML reference velocity 3500 m/s
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Figure 4.3.: Trace-normalized pseudo-observed data for shot 6.

overhang at 12 km distance, respectively. If the sources are located above the salt dome
multiple re�ections will be excited with high amplitudes. This will result in high values in
the gradients and therefore further complicate the inversion process. The corresponding
amplitude-frequency spectrum of shot 6 is shown in �gure 4.4. The main frequency content
is between 2 Hz and 14 Hz which corresponds to a minimal wavelength of about 120 m
and a maximum wavelength of about 2500 m. If we calculate the mean P-wave velocity
and assume 8 Hz to be the mean frequency of the signal we will obtain a mean wavelength
of about 480 m.

4.2.2. Gravity

The gravimetric forward modeling parameters are shown in table 4.3. As in the acoustic
case, the pseudo-observed data as well as the forward modeled data during the inversion
are calculated with the same parameters.
The choice of the model extensions bx and bprism (cf. section 3.2.2.2) is now explained in
more detail. Figure 4.5 shows the vertical gravity component for three di�erent cases:
variable extension in z-direction with Bouguer plate reduction and �xed extension in
x-direction (b), variable extension in x-direction with Bouguer plate reduction and �xed
extension in z-direction (c) and variable extension in x-direction without Bouguer plate
reduction and with �xed extension in z-direction (d). For the Bouguer plate reduction the
mean density of the model, ρ̄ = 2360 kg/m3, is chosen.
From �gure 4.5b it can be seen that the extension in z-direction has no signi�cant in�uence
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Figure 4.4.: Amplitude-frequency spectrum of the pseudo-observed data for shot 6.

Table 4.3.: Gravimetric forward modeling parameters.
Grid spacing 12.5 m

Grid size 16 × 5 km
1280 × 400 grid points

Number of gravity stations 104
First station 250 m
Last station 15700 m

Station spacing 150 m
Station depth 0 m

bx 560 grid points (7 km)
bprism 100 km

Bouguer plate ρ̄ = 2360 kg/m3
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on the shape of the gravity signal. A di�erence of the shape is only noticeable for the
smallest extension of 1 km. With increasing extension the signal is mainly shifted with
respect to its amplitude. When the extension reaches 100 km the signal does not change
signi�cantly if the model is further extended. In this context note that the black line is
hidden beneath the orange line. This is not surprising because the gravitational �eld is
distance dependent and the attraction from masses which are far away from the observation
point diminishes. As a result, we choose 100 km as the perpendicular extension of the
model as the signal converges at this point.
In �gure 4.5c the in�uence of the extension in x-direction is demonstrated. In this case, the
signals show a di�erent shape at the boundaries. If the model is not extended (blue line)
there is a steep increase in the signal at the boundaries. This can be explained with the
negative amplitude of the gravitational attraction. The abrupt absence of masses causes
the signal to be less negative. An extension of the model leads again to a convergence
of the signal where the signal is decreasing �rst (320 grid points) at the left boundary
and increasing monotonously later (560 grid points and 800 grid points). We choose an
extension of 560 grid points because here the signal is monotonously increasing at both
boundaries which is reasonable as the trend of the Upper Cretaceous layer is to be located
closer to the observation point and it has a relatively high density compared to the Tertiary
layer. Moreover, compared to the extension with 800 grid points the signal does not change
signi�cantly and the computation time is smaller.
The last �gure (�gure 4.5d) shows the gravitational �eld if no Bouguer plate reduction
is applied. Apparently, the modeled signal su�ers from strong boundary e�ects as the
amplitude decreases at the boundaries. An extension of the model with 3200 or more grid
points is necessary to obtain a monotonously increasing signal at both boundaries. In this
case, the size of the model is �ve times larger and subsequently the computation time
increases likewise. The total computation time of a whole joint inversion could then be
larger in the order of hours in the worst case.
Finally, the pseudo-observed data that is used during the inversions is presented by the
black line in �gure 4.5b and 4.5c. The amplitude varies between approximately -4.4 mGal
and 3.5 mGal. Note again that we only consider gravity e�ects relative to the Bouguer
plate. The decreasing trend of the amplitude towards the center of the model is due to
the salt dome whose density is relatively low and due to the inclination of especially the
two uppermost sedimentary layers. The cause of the local maxima at 9.5 km and 11.5 km
are the uplifting high density layers close to the salt dome, particularly the Buntsandstein
layer at the right �ank, and the thin Buntsandstein layer at the top of the salt dome.
Although we do not invert �eld data, an important practical question is whether these
gravity variations could be resolved within actual �eld surveys. The internal precision
of modern gravimeters is of the order of 0.01 mGal (Jacoby and Smilde, 2009). In land
surveys, this is the best achievable precision. In marine surveys, the accuracy would be
about 1 mGal. Thus, the gravity anomalies in our study are principally resolvable. To give
a more detailed discussion commonly applied corrections to the �eld data are presented in
the following based on Jacoby and Smilde (2009). The so-called complete Bouguer anomaly
includes the following four reductions:

1. normal reduction, δдn = 0.8316 + 0.0782 · sin2(ϕ) mGal,
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4. Model, forward modeling and inversion parameters

2. height reduction, δдh = −0.3086 mGal/m,

3. Bouguer plate reduction, δдBP = 0.1117 mGal/m,

4. terrain reduction, δдter ≈ 0.1 mGal.

Here, ϕ denotes the latitude and for the Bouguer plate reduction the Bouguer density
ρBP = 2670 kg/m3 is assumed (Jacoby and Smilde, 2009). These permanent e�ects take
the dependence of the gravity on the latitude, on the height and on the topography into
account. Additionally, time-varying e�ects like tides which are in the order of ±0.15 mGal
have to be considered. It is obvious that all these factors are in a similar order as our target
signal. Thus, the resolvability of geological density variations within actual �eld surveys
depends also on the question how accurately these di�erent e�ects can be corrected.
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Figure 4.5.: (a) True density model, (b) Bouguer plate reduced vertical gravity component
for di�erent extensions in z-direction with an extension in x-direction of ±560
grid points (gp), (c) Bouguer plate reduced vertical gravity component for
di�erent extensions in x-direction with an extension in z-direction of ±100 km
and (d) vertical gravity component for di�erent extensions in x-direction with
an extension in z-direction of ±100 km without Bouguer plate reduction.
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4.3. Inversion parameters

In this section we introduce the inversion parameters. Because there are only few spe-
ci�c parameters for the acoustic FWI, the gravity inversion and the joint inversion we
explain them together. All parameters are summarized in table 4.4 and some of them have
already been explained in the previous chapters. Those parameters which are speci�c
for the acoustic FWI are explained in the upper part of the table, those associated with
the gravity inversion in the middle part of the table and those used in both inversions
in the lower part. During the joint inversion all parameters are needed. As additional
constraint we introduce a lower and upper bound of the P-wave velocity and the den-
sity. This is done to exclude unreasonable values or to restrict the model space, respectively.

In sections 3.1.2 and 2.3 we already mentioned the importance of a multi-stage inversion
to reduce the nonlinearity and the ill-posedness of the acoustic inverse problem. The multi-
stage approach (see table 4.5) consists of three properties. The �rst one is a sequential
low-pass (LP) frequency �ltering from low frequencies to high frequencies. We use a 4th
order Butterworth low-pass �lter with three di�erent cuto� frequencies (3 Hz, 6 Hz and
9 Hz). Note that the frequency spectrum is not cut o� sharply. At the cuto� frequency
the signal is reduced to about 70%, thus higher frequencies are still included to some
extent. The second property is an o�set-dependent inversion. In section 4.2.1 we explained
the complexity of the pressure wave�eld. If all traces are inverted simultaneously the
inversion will fail. Therefore, we �rst invert the data from far o�sets and afterwards the
data from near o�sets. The corner distance of the o�set-dependent trace killing is set to
2000 m because at this point the direct wave, the sedimentary re�ections, the salt dome
re�ections and the refracted and scattered waves meet. In all inversion steps traces within
a range of 160 m from the source are neglected because of their high amplitudes. The third
and �nal property is a single parameter inversion at the beginning. If the seismograms are
�rst roughly �tted by adjusting only the P-wave velocity model, the density model will
su�er less from trade-o� e�ects. At this stage the number of iterations is �xed to three.
The joint inversion work�ow is almost identical to the acoustic FWI work�ow. The only
di�erence is that the weighting parameter γ is set additionally during stages 3 to 8. As
mentioned before two joint inversions are presented in the subsequent chapter (γ = 0.1
and γ = 0.3).
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Table 4.4.: Inversion parameters: speci�c FWI parameters (top), speci�c gravity inversion
parameters (middle), general parameters (bottom), joint inversion parameters
(all).

Low-pass frequency �lter 4th order Butterworth
Low-pass frequency �lter steps 3 Hz

Median gradient smoothing 100 m (8 grid points)
Circular logarithmic source taper 250 m (20 grid points)
Approx. Hessian water level ϵFWI 0.005

Minimum/maximum allowed P-wave velocity 1400/5400 m/s
Approx. Hessian water level ϵGRAV 0.0005
Gravity gradient depth weighting β 0.8

Minimum/maximum allowed density 1600/3000 kg/m3

L-BFGS model and gradient di�erences 10 previous iteratons
Wolfe condition parameter c1 0.0
Wolfe condition parameter c2 0.9

Table 4.5.: Multi-stage work�ow of the acoustic FWI.
Stage Update AC in % LP �lter in Hz O�sets

vp ρ

1 yes no 3 iterations 3 > 2000 m
2 yes no 3 iterations 3 < 2000 m
3 yes yes 1 3 > 2000 m
4 yes yes 1 3 < 2000 m
5 yes yes 1 6 > 2000 m
6 yes yes 1 6 < 2000 m
7 yes yes 1 9 > 2000 m
8 yes yes 1 9 < 2000 m
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5. Inversion results

In this chapter we present the results of the pure acoustic FWI, three gravity inversions
with di�erent initial models (constant, gradient and smoothed) and two joint inversions
with di�erent weighting parameters (γ = 0.1 and γ = 0.3). Finally, we investigate how
the density model is resolved in the joint inversion in comparison to both individual
inversions.

5.1. Acoustic full-waveform inversion

For the reconstruction test with the acoustic FWI a smoothed version of the true model is
used as initial model (see middle row of �gure 5.1). The kinematic background information
is already included to prevent cycle-skipping or trapping in a local minimum, respectively.
The goal of the reconstruction test is consequently the reconstruction of the di�erent
sedimentary layers and the shape of the salt dome. The top row of �gure 5.1 shows the
true model as introduced in the previous chapter. In the lower row the �nal inversion
result after 235 iterations is displayed. The trianlges in the true model mark the receivers
used in the seismograms in �gures 5.3 and 5.4. The asterisks mark the shots displayed in
the same �gures. Moreover, the vertical dashed lines show the cross-sections presented in
�gure 5.5.
First, let us have a look at the �nal inverted P-wave velocity model. All prominent layers
at the left side of the salt dome could clearly be recovered. The two very thin layers (Lower
Cretaceous and Roet 2) can be seen only partially. Their thickness of about 100 m is in
the order of the maximal resolution and thus this observation is not surprising. The same
reason accounts for the poor reconstruction of the very thin salt layer at about 4.5 km
depth. Moreover, as there are no signi�cant re�ections from this layer there are no strong
indications included in the data. The reconstruction of the shape of the salt dome was
successful. The high velocity values at the top of the salt dome are caused by strong
re�ections and scattering e�ects which correspond to high amplitudes in the wave�eld
and in the gradients of the mis�t functional. The preconditioning is obviously not able to
completely reduce these e�ects. The reconstruction at the right side of the salt dome is
comparatively worse. Although most layers are visible the resolution is not as high and
the velocity values are less accurate. Also some artifacts are apparent in the uppermost
layer and at the overhang of the salt dome. These observations correspond to the degree
of seismogram �tting of the modeled data to the pseudo-observed data. The exemplary
seismogram at the left side of the salt dome at 4500 m distance (�gure 5.3) reveals a high
degree of �tting. The exemplary seismogram at the right side of the salt dome at 13600 m
distance (�gure 5.4) shows are comparatively poor �tting. Main reason for the poor �tting
at the right side of the salt dome is that the sedimentary re�ections arrive simultaneously
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5. Inversion results

with the salt dome re�ections and the scattered waves. Hence, the valuable information
about the sedimentary layers included in the re�ections cannot clearly be projected to the
original position in the model.
Next, the reconstruction of the density model is considered. It has to be noted that the
initial density model does not include information about the Buntsandstein layer at the
right �ank of the salt dome as it does in the P-wave velocity model. The reason is the
high density contrast between salt and Buntsandstein. Therefore, the Buntsandstein layer
vanishes in the smoothing process. The re�ectivity of the sedimentary layers could be
recovered similarly to the P-wave velocity. In this case even the thin salt layer at the right
and left side of the salt dome could be reconstructed. However, the contours of the salt
dome are blurred especially in the upper part. Additionally, in the �rst layer a signi�cant
amount of artifacts can be observed. As the pressure �eld is more sensitive to the P-wave
velocity than the density, the density values are sometimes estimated wrongly. For example,
at the �rst layer boundary, at the right �ank of the salt dome and at the Buntsandstein
layer at the left side of the salt dome the density is overestimated. This observation can
be illustrated by looking at the cross-sections in �gure 5.5. The reconstructed P-wave
velocities stay close to the true model. In some cases the P-wave velocity is underestimated
and at the salt dome (distance 10.125 km) the reconstructed velocity oscillates due to
artifacts. In contrast, the reconstructed density is generally more unsteady. Many jumps
can be observed and it is often overestimated at the boundaries. This corresponds to
trade-o� e�ects between the P-wave velocity and the density. In this context it has to be
mentioned that the major part of the structural information included in the �nal density
model is possibly caused by crosstalk from the P-wave velocity gradients. To estimate the
extent of crosstalk a detailed crosstalk study would be necessary.
At last, in �gure 5.2 the evolution of the normalized L2-mis�t is shown. The discrete jumps
correspond to changes of the work�ow stage. The �nal relative L2-mis�t at iteration 235
is approximately 8.7% of the initial mis�t.
In conclusion, the acoustic FWI succesfully reconstructed the prominent layers of the
model and the shape of the salt dome. The very thin layers are only partially visible in the
P-wave velocity model and more clearly in the density model. However, the contours of the
salt dome are a bit blurred in the density model. The absolute values of the reconstructed
P-wave velocity are generally close to the true values whereas the density shows more
oscillations and is overestimated sometimes as a result of trade-o� e�ects. A satisfying
data �t could be achieved for the shots at the left side of the salt dome, the modeled
seismograms for shots at the right side of the salt dome show some deviations from the
pseudo-observed data.
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Figure 5.2.: Evolution of the normalized L2-mis�t during the acoustic FWI.

43



5. Inversion results

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

1

2

3

4

5

6

Receiver number

T
im

e 
in

 s

 

 

Pseudo−observed data
Final data

Figure 5.3.: Seismograms of shot 6 at 4500 m distance with the traces marked in �gure 5.1.
The blue lines correspond to the �nal inverted model after 235 iterations, the
grey lines to the pseudo-observed data.
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5. Inversion results

5.2. Gravity inversion

Three reconstruction tests were performed with the gravity inversion. In each test a
di�erent initial model was used. The results are summarized in �gure 5.6. The top row
shows the initial model, the middle row the �nal model and the lower row the gravity
�eld. Each column represents one independent inversion. In the left column the same
smoothed initial model was used as in the acoustic FWI. The gravity �eld of the initial
model (black line) is already very close to the pseudo-observed data (grey line) and the
�nal gravity �eld after 48 iterations (blue line) �ts the pseudo-observed data perfectly. The
model was updated especially above the salt dome. Some long wavelength updates are
there, but hardly visible in the image.
The characteristic long wavelength update of gravity inversion is demonstrated clearly
in the next inversion (middle column). Here, an initial model with a linear gradient from
1996 kg/m3 to 2605 kg/m3 was used. An update with an approximate wavelength of 10 km
is applied over the whole model. At the position of the salt dome updates with smaller
wavelengths are also visible. Similar to the �rst inversion the �nal model, here after 28
iterations, explains the pseudo-observed data perfectly.
The last inversion is presented in the right column of �gure 5.6. In this case a model with a
constant density was used initially. The density was set to the mean density of the model
with 2360 kg/m3. Thus, the gravity �eld of the inital model is zero because the Bouguer
plate has the same density as the initial model. The �nal model after 53 iterations again
explains the pseudo-observed data perfectly. Moreover, in the �nal model the typical
elliptical shape of the geometrical kernel can be retrieved.
The perfect data �t of all three inversions is also demonstrated by the evolution of the
normalized L2-mis�t (�gure 5.7). First, the fast convergence after only a few iterations of
all inversions is obvious. This is not surprising because the inverse problem is linear with
the chosen parameterization as explained in section 3.2. The �nal L2-mis�ts are: 0.032%
(smoothed initial model), 0.002% (gradual initial model) and 0.001% (constant initial model).

Finally, there are two import conclusions regarding the pure gravity inversion. First, the
ambiguity is obvious. Even though the �nal models di�er signi�cantly the �nal gravity
�eld explains the pseudo-observed data perfectly in all three cases. It has to be mentioned
that these three models are only a few examples of a generally in�nite number of models.
Secondly, the model update is restricted to long wavelenghts and thus the gravity inversion
is not able to reconstruct the layered structure of the model without additional constraints.
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Figure 5.7.: Evolution of the normalized L2-mis�t during the gravity inversions.

5.3. Joint inversion

We performed two di�erent joint inversions with a weighting parameter γ of 0.1 and 0.3.
Experiments showed that inversions with parameters smaller than 0.1 disregard gravity so
that practically a pure acoustic FWI is executed. Higher values than 0.3 prevent a proper
model update so that the joint inversion is terminated quickly.
First, let us have a look at the �nal P-wave velocity model and the seismograms displayed
in �gure 5.8. The triangles and asterisks in the true model (top row) denote the traces and
shots shown in the seismograms (lower row). The middle row shows the �nal inverted
P-wave velocity model after 159 iterations (left column, γ = 0.1) and after 62 iterations
(right column, γ = 0.3). Similar to the pure acoustic FWI the prominent layers could
be reconstructed. However, the resolution is not as high and artifacts are visible in the
uppermost layer and close to the top of the salt dome. The data �t of shot 6 is still satisfying
with a weak weight of gravity (γ = 0.1), but signi�cant residuals are obvious with the
stronger coupling (γ = 0.3). Moreover, it is important to note that the layered structure
was already recovered in both inversions after the �rst two work�ow stages where only
the P-wave velocity model was updated. Afterwards the joint inversion mainly increased
the resolution and decreased the artifacts using only small model updates in each iteration
in the range of 0.5 m/s to 10 m/s. During later iterations the average update was less than
1 m/s in both cases.
The results of the density model reconstruction are shown in �gure 5.9. Again the top row
shows the true model and the middle row the �nal inverted model. The �nal gravity �eld
is presented in the lower row. Obviously, both �nal density models explain the pseudo-
observed gravity �eld almost perfectly and can consequently be regarded as reliable to
some extent. In the �nal density model with the weak coupling the most prominent layers
are recovered. However, the layers at the right side of the salt dome are hardly visible.
In the �nal model with the stronger coupling some layers are indicated at the left side
of the salt dome. Even though the resolution is decreased compared to the pure acoustic
FWI the absolute values are more reliable because trade-o� e�ects could be reduced by
incorporating gravity observations. In �gure 5.10 this becomes apparent. It shows cross-
sections of the density model at the positions marked in �gure 5.9. With a higher weight
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5.3. Joint inversion

of gravity the density values oscillate less. However, a relative weight of 0.3 seems to be
too high because the updates are restricted too much and it might prevent a smooth and
fast convergence of the mis�t functional. The positive e�ect of the joint inversion on the
reduction of trade-o� e�ects can clearly be demonstrated by looking at the Buntsandstein
layer at the left side of the salt dome. In the acoustic FWI the layer boundaries are sharply
visible. However, at the upper boundary the density values exceed 2700 kg/m3 which
is more than 100 kg/m3 too high. At the lower half of the layer the values are mostly
about 50 kg/m3 too low. In contrast, in the joint inversion with γ = 0.3 the layer is more
homogeneous and the density values are overestimated by only 50 kg/m3.
Finally, the evolution of the L2 joint mis�t is shown in �gure 5.11. The top image cor-
responds to the weighting parameter γ = 0.1 and the middle image to the weighting
parameter γ = 0.3. In these images the green line represents the normalized joint mis�t
and the black and the blue line the contribution of the seismic and gravity mis�t, respec-
tively. As in the acoustic FWI the jumps mark changes of the work�ow stage. Generally
the convergence is not as fast as in the pure acoustic and gravity inversion. The reduc-
tion of the seismic mis�t becomes slower with a higher gravity contribution whereas
the reduction of the gravity mis�t becomes faster with a higher gravity contribution.
Especially noticeable is the mis�t evolution from iteration 35 in the case of the high gravity
contribution. The gravity contribution raises due to large steepest descent density updates
in the �rst iteration of a new work�ow stage and decreases quickly afterwards whereas
the seismic mis�t can almost not be reduced during every work�ow stage (iterations 36-40,
41-45, 46-50, 51-55 and 56-62). In addition to the slower convergence behaviour the mis�t
reduction is less e�cient. With a reduction to 50.5% (γ = 0.1) and 66.8% (γ = 0.3) the �nal
seismic mis�t is much higher than in the pure acoustic FWI (8.7%). The reduction of the
gravity mis�t to 0.456% for γ = 0.1 and 0.254% for γ = 0.3 (lower image in �gure 5.11) is
about one order less e�cient compared to the pure gravity inversion which reduced the
mis�t to 0.032%, but still satisfying. The joint mis�t could be reduced to 56.1% (γ = 0.1)
and 84.1% (γ = 0.3).
In conclusion, both joint inversions were able to reconstruct information about the layers
and the salt dome in both the P-wave velocity and the density model, however with less
resolution. The joint inversion with a relatively small gravity contribution (γ = 0.1) was
able to �t both data sets satisfactorily. In contrast, the joint inversion with a higher gravity
contribution (γ = 0.3) was unable to �t the pressure seismograms signi�cantly whereas
the gravity �eld could also be �tted well. A positive feature of both joint inversions is
the increased reliability of the density values. Trade-o� e�ects between P-wave velocity
and density could be decreased at least partially. Concerning the inversion process it is
especially noticeable that only small updates could be applied and that the convergence
speed was decreased compared to both individual inversions. The inverse problem of
gravity is linear and thus a fast convergence is possible. In contrast, the acoustic inverse
problem is nonlinear and a slower convergence can be expected. Another possible problem
could be that only one common step length is used for both the P-wave velocity and
the density update. However, di�erent step lengths combined with individual L-BFGS
optimizations for each parameter class would lead to increased trade-o� e�ects. Even
though the reconstruction of the P-wave velocity model is worse than in the pure acoustic
FWI a similar result could be achieved by performing a pure acoustic FWI with the �nal
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models of the joint inversion as initial model only updating the P-wave velocity model.
With this strategy a reliable P-wave velocity and density model could be determined.
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5.4. Comparison

At last, the �nal density models of the pure acoustic FWI, the gravity inversion and the
joint inversion are compared. Although the joint inversion results with a low contribution
of gravity (γ = 0.1) show a better data �t and model reconstruction we use the results
with the higher weighting (γ = 0.3) for the comparison. In this case the e�ect of the joint
inversion can be identi�ed more clearly. The �nal density models and the �nal gravity
�elds are displayed in �gure 5.12.
The �nal density model of the joint inversion reveals a better reconstruction than achieved
by the gravity inversion. The layered structure of the model is indicated at the left side of
the salt dome whereas no signs of layers are visible in the result of the gravity inversion.
At the same time the gravity �eld can be �tted almost identically well. In short the goal of
an improved resolution and restriction of the ambiguity of the inverse problem of gravity
could be achieved.
The �nal density model of the acoustic FWI shows a very good resolution. All layers
can be identi�ed and the contours of the salt dome are sharpened compared to the initial
model. However, as a result of trade-o� e�ects between P-wave velocity and density the
density values are overestimated sometimes. Obviously the �nal density model does not
explain the pseudo-observed gravity �eld which poses doubts about its reliability. The
acoustic FWI even worsened the data �t compared to the initial model. In comparison, the
joint inversion has less resolution but a higher reliability because the data is �tted almost
perfectly. The attenuating e�ect of the joint inversion on the density update is clearly
illustrated in �gure 5.13 which shows cross-sections of the density model as marked in
�gure 5.12. The blue line corresponds to the acoustic FWI and the red line to the joint
inversion. The blue line oscillates a lot and overcompensates the deviation from the initial
model (black line). In contrast, the red line stays close to the initial model, but often fails
to reconstruct the true model (grey line) satisfactorily. Yet, the tendency of the model
update at the layer boundaries is correct in most cases.
From these results we conclude that a joint inversion can in fact provide bene�ts to the
density reconstruction of the subsurface. A joint acoustic FWI and gravity inversion uses
on the one hand the high resolution obtained by seismic wave propagation and on the
other hand the potential of long wavelength gravity e�ects to reduce trade-o� e�ects
between density and P-wave velocity. The long wavelength information mitigates or
damps the overcompensation of density values during the acoustic FWI.
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6.1. Conclusion

In this thesis, we performed a joint acoustic full-waveform and gravity inversion to improve
density model building. While the seismic FWI is able to build reliable velocity models it
is still very challenging for the density due to trade-o� e�ects and a limited sensitivity
of seismic waves to density variations. In contrast, gravity is sensitive to overall density
variations without su�ering from attenuation e�ects. However, the latent ambiguity and
limited resolution is a major drawback of the gravimetric inverse problem.
For this purpose we implemented a gravity forward modeling, gravity inversion and
joint inversion code into our existing full-waveform inversion code. The gravity forward
modeling is solved by introducing rectangular prisms to the seismic �nite-di�erence grid.
The gravity e�ect of each prism is calculated by Newton’s law of universal gravitation.
Based on an initial guess the velocity and density model is updated in order to minimize
the pressure seismogram residuals and the gravity �eld residuals simultaneously. The
model update is calculated by preconditioned gradients of the joint mis�t functional and
the L-BFGS quasi-Newton method in combination with a Wolfe line search algorithm.
Three di�erent synthetic reconstruction tests were performed with a salt dome structure
which is embedded in sedimentary layers.
The pure acoustic FWI successfully reconstructed the prominent sedimentary layers and
the shape of the salt dome in both the P-wave velocity and the density model. Very thin
layers are visible partially and are better resolved in the �nal density model. While the
P-wave velocity values are generally close to the true values, the density values are often
overestimated at the boundary layers. Trade-o� e�ects can clearly be identi�ed.
Tests with the gravity inversion applied to three di�erent initial models emphasize the
latent ambiguity. Although the �nal models di�er signi�cantly the �nal data �t is almost
perfect in all cases. Moreover, the resolution is limited to very long wavelength. Hence,
there are no signs of sedimentary layers in the �nal models.
Two joint inversions with a di�erent relative weight between the acoustic full-waveform
and the gravity inversion were applied. Both showed that the drawbacks of each individual
inversion can be overcome to some extent. In comparison with the gravity inversion the
joint inversion could resolve structures which were not included in the gravity inversion
results while the pseudo-observed gravitational �eld could be explained similarly well.
Compared to the acoustic FWI the joint inversion lost resolution, yet trade-o� e�ects
could be reduced. Moreover, the �nal density model of the acoustic FWI is unable to �t
the pseudo-observed gravitational �eld which poses doubts about its reliability.
In conclusion, the joint inversion was able to reduce trade-o� e�ects and improved the
reliability of the density model reconstruction. The joint inversion used the high resolution
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of the FWI while the gravity inversion ensured that the density values stayed within a
reasonable range. Although the resolution and the data �t of the seismograms were
reduced compared to the pure FWI the potential of the joint inversion to allow a more
con�dential interpretation of density distributions could clearly be demonstrated.

6.2. Outlook

We achieved promising results with our joint acoustic full-waveform and gravity inversion.
However, these results have to be veri�ed by further synthetic and also �eld data studies.
Especially within �eld data interpretation the application of FWI to derive density models
is challenging because usually the �eld data and the forward modeled data have to be nor-
malized to be comparable and the information about the density is included in the seismic
amplitudes. Moreover, attenuation, anisotropy and noise complicate the interpretation of
seismic amplitudes. In synthetic studies the true model can be designed arbitrarily and the
model can be assumed to continue in the third coordinate direction identical to the 2D
plane. In contrast, in �eld surveys this assumption is in general not justi�ed. Thus, the
gravity code should be extended to 3D for this purpose.
As mentioned before the joint inversion uses the high resolution of the FWI to introduce
layers to the density model whereas the gravity inversion mitigates the trade-o� e�ects
which results in more reliable density values. Yet, it is not clear to which extent the struc-
tures in the density model are caused by crosstalk from the P-wave velocity gradients or by
an actual sensitivity to density variations. Therefore, a sensitivity analysis of the pressure
seismograms to density variations based on Fréchet derivatives could give interesting
insights.
The main drawback of gravity inversion which could be mitigated in this study is the
latent ambiguity. In addition to seismic data �tting further constraints could be used. In
this context for example the following two strategies are possible: Tikhonov regularization
and change of the gravimetric modeling parameterization. Tikhonov regularization is
applied by introducing a least squares model norm to the data mis�t functional which can
be weighted if necessary. For gravity a depth weighted model norm or a minimum support
stabilizing functional could be promising (Zhdanov, 2002). The depth weighting would lead
to a model which is less focussed to the near surface and the minimum support stabilizing
functional would enhance the compactness of the objects. However, the necessity of
additional weighting parameters complicates the application of regularization during the
joint inversion. A more promising approach to further reduce the ambiguity is to change
the gravimetric modeling parameterization. In our case, we used 512,000 model parameters,
i.e. prisms, and only 104 observations. If the subsurfaces would be parameterized using
homogeneous bodies with constant densities instead of a �xed geometry with variable
densities the number of model parameters could be reduced signi�cantly. The inversion
would then shift the bodies or change its shape. Moreover, in this case homogeneous
bodies are achieved which is usually more appropriate in most geological situations.
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A. Appendix

A.1. Computational resources

All inversions were calculated on the InstitutsCluster II (IC2) which is maintained by the
Steinbuch Centre for Computing (SCC). The IC2 was funded by the Deutsche Forschungs-
gemeinschaft (DFG; English: German Research Foundation) and established by di�erent
institutes of the Karlsruhe Institute of Technology (KIT). Table A.1 shows a list of the
used core numbers, the calculation time and the number of iterations of the di�erent
inversions shown in this thesis. As C compiler the Intel C Compiler 16.0 was used and for
the parallelization the Intel Message Passing Interface (MPI) Compiler 5.1.

A.2. Exemplary gradients andmodel update

To get a better idea of how the joint approach works we show some exemplary density
gradients and a density model update in �gure A.1. From the top to the bottom the
normalized gravimetric density gradient, the normalized seismic density gradient, the
normalized joint density gradient before L-BFGS and the unnormalized model update
after L-BFGS are displayed. All images correspond to the joint inversion with γ = 0.3 and
iteration 18. The top three images are shown with a clipped colorbar for demonstrative
reasons. Special attention should be paid to the two layers visible between 2 km and 3 km
depth and at about 4 km depth in the lower three images. Moreover, the superposition of
long wavelength and short wavelength information in the joint gradient and the model
update is notable.

Table A.1.: Computational aspects of the inversions shown in this thesis.
Inversion Number of cores Calculation time Iterations
Acoustic 128 3.87 h 235

Joint (γ = 0.1) 128 3.32 h 159
Joint (γ = 0.3) 128 1.72 h 62

Gravity (initial model: constant) 64 0.17 h 53
Gravity (initial model: smoothed) 64 0.15 h 48
Gravity (initial model: gradient) 64 0.10 h 28
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Figure A.1.: Exemplary gradients and model update of the joint inversion with γ = 0.3 at
iteration 18. The gradients have clipped colorbars for demonstrative reasons
while the model update colorbar shows the whole extent. a) Normalized gravi-
metric density gradient, b) normalized seismic density gradient, c) normalized
joint density gradient before L-BFGS and d) unnormalized model update after
L-BFGS.
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