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Methods for Forecasting the Market Penetration of Electric 

Drivetrains in the Passenger Car Market 

Current car technologies will not solve upcoming challenges of mitigating 

greenhouse gas emissions in road transport. Projections of the market penetration 

by alternative drive train technologies are controversial regarding both forecast 

market shares and applied scientific methods. Accepting this latter challenge, we 

provide a (so far missing) overview of methods applied in this field and give 

some recommendations for further work.  

Our focus is to classify the applied methods into a convenient pattern and to 

analyse models from the recent scientific literature which consider the 

electrification of light-duty vehicles. We differentiate the following bottom-up 

approaches: Econometric models with disaggregated data (such as discrete 

choice), and agent-based simulation models. The group of top-down models are 

subdivided into econometric models with aggregated data (e.g. vehicle stock 

data), system dynamics, as well as integrated assessment models with general 

equilibrium models. It becomes obvious that some methods have a stronger 

methodological background whereas others require comprehensive data sets or 

can be combined more flexibly with other methods. Even though there is no 

dominant method, we can identify a trend in the literature towards data-driven 

hybrid approaches, which considers micro and macro aspects influencing the 

market penetration of electric vehicles.  

 

Keywords: market penetration, electric vehicles, modelling, methods, diffusion, 

forecasting, alternative drivetrains 

1 Introduction 

Driven by the fast development of emerging economies, a doubling of the global fleet of 

light-duty vehicles (LDV) and fuel demand by 2050 is expected in business-as-usual 

scenarios (IEA (International Energy Agency), 2016a). When these LDV are still based 

on conventional drivetrain technology, this development is a strong contradiction to the 

current objectives of mitigating greenhouse gas (GHG) emissions in order to limit 



global warming below the two-degree target, i.e. halve global GHG emissions until 

2050 (IPCC, 2014). Currently, the transport sector, as the second largest emitter of the 

main GHG, carbon dioxide (CO2), increases its share significantly compared to the key 

player, the energy sector (IPCC, 2014). Therefore, its responsibility to reverse this trend 

is substantial. However, transport has not yet been in the focus of the political agenda 

(cf. Creutzig et al., 2015). Electric drivetrains (i.e. hybrid electric vehicles (HEV), plug-

in hybrid electric vehicles (PHEV), pure battery electric vehicles (BEV), and fuel-cell 

electric vehicles (FCEV)) – besides the “servitization” of mobility – are considered 

backbones for sustainable transport systems. A successful market penetration of 

(partially) electrified vehicles seems highly probable (IEA (International Energy 

Agency), 2016b).  

A preferably precise market forecast for alternative drivetrains is crucial for 

several decision makers in the automotive and energy industries as well as in politics. 

However, current predictions show diverse results (Kay, Hill, & Newman, 2013) but 

have become a very actively investigated research topic with a multitude of applied 

methods (Jong, Fox, Daly, Pieters, & Smit, 2004). According to most studies, the 

market forecast is (still) associated with unavoidable uncertainties and may in the early 

market phase depend strongly on policy incentives (Lévay, Drossinos, & Thiel, 2017). 

After a market share of around 2%, a distinct market take-off might occur (Golder & 

Tellis, 1997). Hence, at the current market phase the reliability of study results relies on 

many hazards and does not imply any unique solution. Nevertheless, the scientific 

community is in charge of providing suitable methods for generating these forecasts. In 

the following, we therefore give an overview of forecasting methods currently applied 

in this research area by classifying them and highlighting their strengths and 

weaknesses (similar to Anowar, Eluru, & Miranda-Moreno (2014) or Potoglou & 



Kanaroglou (2008)). Our results might be used by researchers to find an appropriate 

method for answering their specific questions or by decision makers to evaluate the 

reliability of applied methods.  

We structured our paper in accordance with the main methodological 

dimensions and start with a short introduction to the main terminology and 

methodological background before dedicating further sections to the specific methods. 

Section 3 gives an overview of current research into bottom-up models such as 

disaggregated econometric models (3.1), and agent-based models (ABM) (3.2). Section 

4 deals with top-down models classified into econometric models (4.1), system 

dynamics (SD) models (4.2), integrated assessment models, and general equilibrium 

models (4.3). Finally, Section 5 presents some hybrid models, which are combinations 

of bottom-up and top-down models. A discussion and a section for conclusions 

complete the paper. 

2 Proposed Classification of Methods 

Methods applied in our research field can be classified by a multitude of dimensions. 

We base our classification on the bottom-up and top-down model dimensions (cf. 

Figure 1), which is a standard approach in the energy field (cf. Herbst, Toro, Reitze, & 

Jochem, 2012). 

 Bottom-up models represent reality by aggregating heterogeneous 

characteristics of technological or socioeconomic activities and processes. They 

are calibrated with disaggregated data and mostly focus on a single economic 

sector. The methods are based on simulations or optimization techniques. 

 Top-down models apply macroeconomic theory, econometric and optimization 

techniques with aggregate economic variables. They rely on historical data of 



consumption, prices, incomes, or factor costs and may consider all main 

economic sectors such as energy, transportation, agriculture, and industry. Some 

top-down models incorporate technology data, thus narrowing the gap to 

bottom-up models. 

 Hybrid models are a combination of bottom-up and top-down models, thus 

representing an example of mixed modeling (Hourcade, Jaccard, Bataille, & 

Ghersi, 2006). 

 
Figure 1: Outline of the considered methodology 

Besides this general modeling differentiation, the availability of data has a 

crucial influence on the choice of methodology. The most apparent influence on the 

modeling technique is the aggregation level of the data. Furthermore, the quality of the 

data is highly relevant. In the transport sector, most data is available only on a monthly 

or annual basis. An exception includes e.g. fuel prices, which are available at least on a 

daily basis. While aggregated data such as vehicle sales are often publicly available, 

detailed data availability is often restricted to commercial users. Especially data on 

customer requirements is costly, highly sensible, and difficult to access. The quality of 



each dataset should be crucially evaluated with respect to data consistency and 

reliability.  

Another significant peculiarity in our field of investigation is the heterogeneity 

of car purchase decisions. Actors in different submarkets have specific objectives: 

Whereas, for company fleet vehicles, a rational decision rule is prevalent for the 

purchase decision (Brand, Cluzel, & Anable, 2017), individual purchase decisions in the 

company car market are diverse. Private customers, who in Germany represent about 

40% of the whole LDV market (Gnann, Plötz, Funke, & Wietschel, 2015), have 

individual preferences and show even aspects of bounded rationality in their decisions, 

which highly rely on (spontaneous) heuristics and cognitive rules of thumb but hardly 

on analytical deliberation (de Haan, Mueller, & Scholz, 2009). Consequently, a simple 

reproduction of the vehicle purchase decision seems to be impossible. 

Nevertheless, pure cost optimizing approaches are sometimes used for giving a 

first approximation of the market potential of an alternative technology (Pfahl, Jochem, 

& Fichtner, 2013). Many car ownership models refer to this input parameter, which is 

often based on the total cost of ownership (TCO) or the life-cycle cost approach. Hence, 

all costs such as taxes, maintenance and investment during the whole life cycle are 

considered and converted into comparable units such as euros per year. These 

comparisons usually rely on assumptions (e.g., for annual mileage, fuel price prognosis 

for several years, etc.) which have a significant impact on results. Cost-optimizing 

approaches are often applied in energy system modeling (Densing, Turton, & Bäuml, 

2012; Grahn et al., 2009; Gül, Kypreos, Turton, & Barreto, 2009; D. McCollum, Yang, 

Yeh, & Ogden, 2012; Pietzcker et al., 2014). 

3 Bottom-up Models 

In our research field, bottom-up models have a long tradition – mainly in econometrics 



(cf. Section 3.1). A more recent development is agent-based modeling (ABM) (cf. 

Section 3.2). Mixed bottom-up models are applied, too (Mock, Hülsebusch, D., 

Ungethüm, J., & Schmid, S.A., 2010; Propfe, Kreyenberg, Wind, & Schmid, 2013; 

Shafiei et al., 2012; Sullivan, Salmeen, & Simon, 2009; Vliet, Vries, Faaij, Turkenburg, 

& Jager, 2010). 

3.1 Econometric Models with Disaggregated Data 

In this section, we focus on methods from applied microeconometrics. 

History 

McFadden (2000) provides an overview of the history of microeconometric analysis of 

choice behaviour by consumers who face discrete economic alternatives. Research 

concerning transportation decisions has been further enriched afterwards by Abou-Zeid 

and Ben-Akiva (2014). Furthermore, discrete choice models were widely applied to 

microeconometric decisions concerning vehicle choice including alternative fuels and 

drivetrain technologies (Achtnicht, Bühler, & Hermeling, 2012; Brownstone, Bunch, & 

Train, 2000; Brownstone & Train, 1998; Bunch, Bradley, Golob, Kitamura, & 

Occhiuzzo, 1993; Dagsvik, Wennemo, Wetterwald, & Aaberge, 2002; Daziano, 2015; 

Daziano & Achtnicht, 2014; Daziano & Bolduc, 2011; Hensher, Beck, & Rose, 2011; 

Horne, Jaccard, & Tiedemann, 2005; Train, 1986). Another recent development is the 

random regret minimization (RRM) model introduced by Chorus, Arentze, & 

Timmermans (2008).  

The economists’ standard microeconometric model, a theory of rational choice, 

has been further developed by integrating psychological factors that are included in 

decision-making (Moshe Ben-Akiva et al., 1999). In psychological theories of the 

choice process, the individual is less organized, more adaptive and imitative. Attitudes 



play a major role (Kahneman & Tversky, 2000). These are determined by affect and 

motivation and influence perceptions that feed into the choice process. Utility 

maximization or, alternatively, regret minimization by individuals is reduced to one of 

many factors in the decision-making environment. Its influence is often constrained by 

context effects, emotion, and errors in perception and judgement (Gärling, 1992; 

Loewenstein, 1996; Svenson, 1979). Heuristic rules seem appropriate to describe 

decision-making processes of humans. The psychological point of view concerning the 

adoption of alternative fuel vehicles has been widely studied during the last years 

(Axsen, TyreeHageman, & Lentz, 2012; Egbue & Long, 2012; Peters, Gutscher, & 

Scholz, 2011; Schuitema, Anable, Skippon, & Kinnear, 2013). 

Main characteristics and assumptions 

According to Ben-Akiva et al. (2002), domains of choice research can be classified by 

(1) Behavioural Choice Analysis, (2) Predictive Choice Models, and (3) Random Utility 

Models. Predictive choice models focus mainly on quantitative modeling in order to use 

relevant results for predictions that are of particular interest in economics, marketing, 

planning, and engineering. According to Ben-Akiva et al. (2002), behavioral choice 

analysis deconstructs the choice process by concentrating on revealing irregularities and 

idiosyncratic features of choice behavior. Modeling of choice behavior by incorporating 

cognitive processes with unobserved or latent elements of choice processes in predictive 

choice models, e.g. attitudes and perceptions within structural equation models, is done 

by hybrid choice models (Abou-Zeid & Ben-Akiva, 2014), hybrid discrete choice 

models (Raveau, Yáñez, & Ortúzar, 2012) or integrated choice and latent variable 

models (Bhat & Dubey, 2014; Vij & Walker, 2016). The main assumption is that there 

is a rationale behind all choices, which can be approximated by utility maximization or, 

alternatively, regret minimization. Due to the applied statistical methods, data 



requirements are substantial. 

Literature  

There is a comprehensive literature on disaggregated econometric models in our 

research field. We therefore focus in Table 1 on more recent models. A problem-

focused introduction is given by Daziano & Achtnicht (2014) and further literature can 

be found in (Al-Alawi & Bradley, 2013).  

  



Table 1: Selected literature on econometric models with disaggregated data  

Authors Jurisdiction Time 

horizon 

Technology Key features 

Plötz et al., 

2014  

Germany - BEV, PHEV 

Consumer-choice modeling is applied focusing on early adopters of 

EVs.  

Lopes et al., 

2014 

Portugal / 

Lisbon  

2020 EV 

A rule-based screening methodology with simple non-compensatory 

rules is developed. Results suggest that, currently, the diffusion of EV 

in Lisbon Metropolitan Area is very restricted. 

Glerum et al., 

2014 
Switzerland - BEV 

A hybrid choice model based on a stated preference survey was 

specified for car purchase decisions which includes a forecasting 

analysis. As a result, they give certain properties of target customers. 

Daziano and 

Achtnicht, 

2014 

Germany - 

HEV, 

LPG/CNG, 

biofuel, BEV, 

FCEV 

Bayes estimates of a multinominal probit model with fully flexible 

substitution patterns are used in order to forecast consumer response to 

ultralow emission vehicles. Stated preference data from a Germany-

wide survey of potential 600 light-duty vehicle buyers are used to 

estimate choice probabilities of different drivetrain alternatives.  

Rezvani et al., 

2015 

US, UK, 

Denmark, 

Germany, 

Belgium, 

Netherlands, 

China 

- BEV, PHEV A literature review is provided. The factors influencing consumer 

intentions to purchase EVs are the focus of this paper.  

Discussion 

In order to classify the econometric-based electric vehicle adoption research of the last 

years, the literature from Table 1 and from Rezvani et al. (2015) are classified according 

to the scheme on domains of choice research by Ben-Akiva et al. (2002). As our study 

tries to identify methods to forecast electric vehicle market shares, we extended the 

framework by integrating (representative) market forecast models into the scheme (cf. 

Figure 2). 



 
(Burgess, King, Harris, & Lewis, 2013; Caperello & Kurani, 2012; Carley, Krause, Lane, & Graham, 2013; Graham-Rowe et al., 2012; Jensen, Cherchi, & Mabit, 2013; Krupa et al., 2014; Lane & Potter, 2007; Lieven, Mühlmeier, Henkel, & Waller, 2011; Lopes et al., 2014; Moons & De Pelsmacker, 2012; Noppers, Keizer, Bolderdijk, & Steg, 2014; Peters & Dütschke, 2014; Skippon & Garwood, 2011; Y. Zhang, Yu, & Zou, 2011) 
Figure 2: Categorization of econometric-based adoption studies of electric vehicles 

based on Ben-Akiva et al. (2002) 

From Figure 2 follows that there are many studies on adoption of electric 

vehicles particularly accounting for psychological factors such as attitudes and 

perceptions. However, there is a lack of adoption studies incorporating these 

psychological factors in order to perform market forecasts.  

Table 2: Advantages and disadvantages of disaggregated econometric models 

ADVANTAGES DISADVANTAGES 

 Market diffusion scenarios based on 

revealed or stated preferences can be 

empirically modeled already at an early 

market stage by applying inferential 

statistics. 

 Market behavior can be explained by 

aggregating the single decisions of 

individuals taken from discrete choice 

models. Therefore, (regional) 

heterogeneities might be taken into account. 

 Desirable combination of theory and 

empirical basis. 

 Snap-shot of preferences at the point of time 

of the survey. Therefore, the method is more 

suitable for short time horizons (which is 

less relevant in the context of the 

deployment of new vehicle technologies).  

 High costs for representative data collection. 

 High quality requirements for survey design 

and representative data collection to assure a 

suitable generalization. 

 

 

Advantages of disaggregated econometric data and models (cf. Table 2) include 

that diffusion of innovations can be modeled already at an early market stage. 



Furthermore, market behavior can be explained as diffusion is represented by an 

aggregation of individual choices. However, the preferences collected during surveys 

only represent snap-shots accompanied by high costs and quality standards for 

collecting representative data. 

3.2 Agent-based Modeling 

Existing reviews of diffusion models such as those presented by Al-Alawi and Bradley 

(2013) or Coffman, Bernstein, and Wee (2015) have revealed an increasing interest in 

the possibilities provided by ABM in this field of research. 

History 

ABM and individual-based simulation have its origin in the late 1940 when 

computational analysis became practicable for research disciplines. Its roots can be 

found in the modeling of cellular automata, as well as in the various fields of artificial 

intelligence (G. N. Gilbert, 2008). ABM is mainly based on its basic components, the 

agents (and their agent theory), the representation of the complexity of the modeled 

system (e.g. interaction topology), and the emerging states after simulation of the model 

and has been developed simultaneously in many research fields ranging from social and 

economic sciences to natural sciences. Consequently, there is no unique definition of 

ABM. 

Main characteristics and assumptions 

The main objective of simulation is describing and subsequently analyzing the (global) 

behavior of dynamic complex systems by means of imitation of real processes or 

systems over a specified period of time. If these simulations represent systems that are 

characterized by decentralized and distributed data as well as asynchronous 



computations (absence of a central control), it is preferable to use an agent-based 

approach. One main advantage of ABM is their (up- and down-) scalability and thus an 

accordingly easy disassembly of the complex system. ABM consists of three main 

components: Agents, an interconnecting structure, and their context. The context 

comprises all necessary external information which is not stored within the agents and is 

not to be confused with the environment outside of the system. It is defined by the 

totality of the agents of the system, their individual characteristics, system rules, 

existing goods, and sensors. Although the definition of agents varies between research 

fields, the main properties of agents are: Individuality and ability to communicate 

(Hewitt, 1977), cognition of their environments, proactivity, and independence 

(Wooldridge & Jennings, 1995). Agents may possess static or changing roles (which 

requires a certain ability to learn) and act charitably, competitively or in a team. The 

interactions of the agents in their particular contexts may lead to a global behavior 

(which may be regularities or patterns) within the model. This emergence allows 

identifying regularities for the modeled complex system.  

With these properties, ABM and its agents are predestined to simulate human 

relations and behavior (Rai & Henry, 2016). These flexibilities in modeling agents 

individually provides a wide range of opportunities to represent distinct behaviors such 

as strategies, bounded rationality or incomplete information (Sycara, 1998). 

Consequently, the data requirement is dependent on the research focus. 

Literature  

Recently, the advantages of ABM have been used widely to forecast the market 

penetration of alternative drivetrains in the passenger car market. One cornerstone for 

these diffusion models was provided by Kiesling, Günther, Stummer, & Wakolbinger, 

(2012). Depending on the objective, simulations run with different time horizons from 



about 10 years (cf. Table 3). Many ABM diffusion models discuss PHEV adoption (Cui 

et al., 2010; Eppstein, Grover, Marshall, & Rizzo, 2011; Stephens, 2010; Sullivan et al., 

2009). Diffusion of BEV and other drivetrains (de Haan et al., 2009; Schwoon, 2006), 

other fuels (e.g. Vliet et al., 2010) or even in combination with charging infrastructure 

(Gnann, 2015) are analyzed. Many ABM focus on a low level of aggregation and on 

local residential diffusion (e.g. Cui et al., 2010) or regions with restricted scope (e.g. 

Knox County (Cui et al., 2010), Boston (Brown, 2013), Michigan (Stephens, 2010), 

Iceland (Shafiei et al., 2012), Germany (Propfe et al., 2013) or Hawaii (Coffman et al., 

2015)). Some ABM are based on the individual parameterization of the agents (e.g. 

budgets, recharging concerns, previously owned cars) and the vehicles (e.g. size, 

performance, and brand) (Mock et al., 2010; Propfe et al., 2013; Shafiei et al., 2012; 

Sullivan et al., 2009). Garcia (2007) uses an individual hedonic demand model 

developed by Boyd et al. (1980). Several ABM included a multitude of external impacts 

on the purchase decision like spatial (Eppstein et al., 2011) and neighborhood (Cui et 

al., 2010) effects, social networks (de Weerdt, Zhang, & Klos, 2012), media influences 

(Eppstein et al., 2011), and infrastructure (Schwoon, 2006). ABM allows integrating 

multiple actors (besides the agent group of adopters) that may influence the market 

penetration. Such actors are e.g. car manufacturers and the government (Garcia, 2007). 

These additional agents equally pursue an objective and have a range of possible actions 

that influence the simulation run. In several of the reviewed ABM, market penetration is 

a secondary aim. Other objectives are e.g., the impact of the new fleet composition on 

the energy system (Cui et al., 2010) and on GHG emissions (Stephens, 2010) or 

determining the effect of car purchase incentives (de Haan et al., 2009). Due to the 

object-based architecture of ABM, they are often applied in hybrid models (e.g. Brown, 

2013; Kieckhäfer, 2013). 



Table 3: Selected literature on agent-based models of adoption 

Authors Jurisdiction 

Time 

horizon 

Technology Key features 

Brown, 2013 

Boston 

metropolitan 

area  

2009-2030 PHEV, BEV 

A mixed logistic regression and an agent-based model are 

combined to simulate social network interactions. Battery 

costs have a relatively small impact on EV diffusion in 

comparison to policy, range, miles per gallon (MPG), and 

vehicle miles traveled. 

Propfe et al., 

2013 

Germany 2010-2030 

FCEV, BEV, 

PHEV, HEV 

The analysis is based on three fleet scenarios within the 

VECTOR21 (vehicle technology scenario model) model. 

Results highlight that EV penetration depends mainly on 

external conditions. 

Shafiei et al., 

2012 
Iceland 2012-2030 EV 

The model is based on a vehicle choice algorithm that 

accounts for social influences and consumers' attractiveness 

for vehicle attributes. The evaluation focuses on the effects of 

fuel and vehicle prices as well as charging concerns. As a 

conclusion, successful adoption of EV needs policy support in 

adverse scenarios. 

Eppstein et al., 

2011 

US  25 years PHEV 

A spatial vehicle consumer choice model is developed which 

explores sensitivities and nonlinear interactions of the vehicle 

purchase decision. The results indicate that PHEV market 

share can be increased by presenting estimates of expected 

lifetime fuel costs to customers. 

Zhang et al., 

2011 

US  
multiple time 

horizons  

alternative fuel 

vehicles, PHEV, 

BEV 

A choice-based conjoint analysis is used to elicit 

heterogeneous consumer preference. As a core result, positive 

word-of-mouth messages lead to a higher willingness to pay 

for alternative fuel vehicles. 

Cui et al., 2010 Knox County,  2011-2020 PHEV 

The analysis is based on a spatial distribution of car ownership 

at local residential household level. The main result highlights 

that neighborhoods with multiple PHEV may require changes 

in distribution grid infrastructure. 

Stephens, 2010 Michigan 2010-2030 PHEV 

This study is based on travel demand and statistical 

information on travel by U.S. drivers and highlights the 

electricity and fuel demand and the resulting GHG emissions. 

Vliet et al., 2010 

11 populations 

of motorists 
20 years 

6 fuels blends 

from 6 feedstocks  

The model is based on heuristics and considers different 

vehicles as well as social attributes. As a result, price is the 

main decision criterion for motorists.  



de Haan et al., 

2009 

Switzerland 

 

- 

fuel-efficient and 

highly inefficient 

cars 

Consumer agents possess price elasticities and behavioral 

options to react to feebates. These systems seem to 

successfully reduce energy consumption and CO2 emissions. 

Stephan and 

Sullivan, 2009 

US  2015-2040 PHEV 

Two types of agents are considered: Vehicle owners and 

hydrogen fuel suppliers. Results show that subsidies are 

critical and sales tax exemptions can help if manufacture 

subsidies are in place. 

Garcia, 2007 US  - PHEV, BEV 

The combination of a consumer behavior model and an ABM 

is applied in order to analyze the impact of manufacturers’ 

product design and vehicle offerings on market development. 

Discussion 

On the one hand, the lack of a commonly acknowledged definition of ABM leads to a 

diversity of models, which makes an objective evaluation challenging. On the one hand, 

this flexibility allows a comprehensive adjustment to the system under evaluation or 

even to extend the model by other methods (hybrid model). The interactions among 

agents and with the environment (including learning) are in the focus of this 

methodology, which allows to represent decision patterns close to reality (cf. Table 4). 

Table 4: Advantages and disadvantages of agent-based modeling 

ADVANTAGES DISADVANTAGES 

 Specific and heterogeneous market behavior 

of different actors can be considered 

(behaviors can be defined discretely and 

may change over time).  

 Modular character of the methodology 

allows combinations with other methods 

into hybrid models. 

 Learning and strategies can be applied. 

 Relationships and interactions of the 

systems’ actors can be modeled precisely. 

 The freedom in modeling leads to less 

transparent methods. 

 Models tend to be incomprehensible, and 

complex computational modeling 

experience is required compared to typical 

formal proofs; there is no standardized 

toolbox, yet. 

 Due to a weak theoretical background it is 

hard to follow all assumptions and further 

model specifications. 

 Data basis is in most models too weak for 

calibrating the behavioral rules of agents. 

4 Top-down Models 

We subdivide the section into econometric models (Section 4.1), system dynamics 

models (Section 4.2), and integrated assessment and general equilibrium models 



(Section 4.3). Mixtures of top-down approaches are not known. 

4.1 Econometric Models with Aggregated Data 

In this section, we focus on methods from applied macroeconometrics. 

History 

Following early econometric work on business cycles, econometric activity unfolded at 

the beginning of the last century (Morgan, 2008) and was institutionalized in the 1930s. 

It aimed “at a unification of the theoretical-quantitative and the empirical-quantitative 

approach to economic problems” (Frisch, 1933, p. 1). Important original contributions 

had been made by, among others, Tinbergen (1937), Haavelmo (1944), and Koopmans 

(1949). Over the years, econometrics has arguably become the dominant method within 

empirical economics.  

Main characteristics and assumptions 

A variety of econometric methodologies has been proposed (cf. Gilbert, 1986; Pagan, 

1987; Hoover, 2005). With a focus on market penetration of electric vehicles, four key 

aspects of aggregate econometrics modeling are highlighted. (1) Forecasting, which is 

a main purpose of most work in econometrics (Intriligator, 1983). (2) Time series, 

which include causal models and ‘sophisticated’ extrapolative models, which are based 

on techniques popularized as the Box-Jenkins approach (Box & Jenkins, 1976). (3) 

Stochastic modeling, which acknowledges the random nature of economic variables 

explicitly in models and relies on statistical inference (Spanos, 1999). (4) Data quality, 

which is always a crucial issue in econometrics (Morgenstern, 1965; Griliches, 1986). 

For multi-country forecasts, three potential problems can be highlighted with 

regards to vehicle-related data: Short available time horizon for alternative drivetrains, 



lack of harmonization of variables’ definitions, and changes over time in the data 

collection method by the statistical agency.  

Literature  

Two lines of application of aggregate econometrics in the car market are considered: 

Car ownership projections and choice of vehicle types. Aggregate econometric models 

have been extensively used to forecast car ownership at the national level (Jong et al., 

2004). Modelers have long been aware of car market saturation and have consequently 

employed nonlinear sigmoid functions to capture how car ownership changes over time. 

Initially, the modeler determines whether a symmetric curve should be applied. The 

former results in the Verhulst growth or logistic (regression) model (Verhulst, 1838). In 

theory, many different asymmetric S-shaped growth curves could be used: A common 

one is the Gompertz growth curve used by e.g., Dargay et al. (2007). In our context of 

diffusion of innovations, the Bass model (Bass, 1969, 2004) is often applied. Relaxation 

of its most restrictive assumptions has led to several variants of the Bass model. Some 

authors even extend the Bass model with disaggregated data (e.g. Higgins et al., 2012). 

The task described in this paper, however, is a different one, as we are not only 

interested in forecasting a particular level of total car stock, but in the different market 

shares by type of car technology. To our knowledge, only few econometric models with 

(a short history of) aggregated data have been accomplished yet in our research field 

(e.g. Ensslen, Ringler, Jochem, & Fichtner, 2014; Jeon, 2010; McManus & Senter, 

2009; Plötz, 2011) (cf. Table 5). McManus & Senter (2009) might be highlighted as a 

convincing application. 

Table 5: Selected literature on econometric models with aggregated data from adoption 



Authors Jurisdiction 

Time 

horizon 

Technology Key features 

Dargay et al., 

2007 

45 countries  2002 – 

2030 

Overall 

vehicle stock 

Gompertz model estimation based on pooled time series and cross-

section data. Projections show that vehicle ownership will increase 

from 800 million in 2002 to over 2 billion in 2030. 

Romilly, Song, 

& Liu, 1998 

Britain 

(England, 

Scotland and 

Wales) 

1990 – 

2025 

Overall 

vehicle stock 

Model estimation based on time series data from 1953-1994 initially 

including seven exogenous determinants of car ownership. Long-range 

forecasts are comparably low (416 vehicles per 1000 citizens in 2025). 

Ensslen et al., 

2014 

Germany 2030 EV The Bass diffusion scenario estimation is based on EV stock data from 

2009 until 2013 and the assumption that there will be 5 million EV on 

German roads by 2030. 

Jeon, 2010  US 2009 – 

2030 

HEV The Norton-Bass model estimation is based on time series data of first 

generation Toyota Prius from 2001 – 2008. Sales forecasts for four 

generations of HEV are projected Fourth generation HEV sales reach 

about 5 million in 2030.  

McManus and 

Senter, 2009  

US 2010 – 

2050 

PHEV Six different PHEV market diffusion models are applied: Bass, 

Generalized Bass, Logistic, Gompertz, Centrone additionally using 

demographic factors, and a rather complex dynamic system model 

accounting for consumer criteria and factors related to consumer 

choice. 

Plötz, 2011 Germany and 

US 

2010 – 

2045 

HEV, PHEV, 

BEV, ICEV 

The Lotka-Volterra model is applied. The results focus on the 

competition between EV and HEV. 

Discussion 

Given our purpose and the initial market conditions at the present time, aggregate 

methods represent a rather unsuitable approach to this task in the current market phase 

with only limited historical data series available (cf. Table 6). Instead, disaggregate 

econometric models analyzing discrete choices might be preferred. However, as 

observed data becomes increasingly available, the aggregate econometrics method is 

expected to become increasingly useful for gaining insights into the prospects of vehicle 

technology market development. For short-term forecasting using monthly data, the 

Box-Jenkins approach may already deliver accurate forecasts. 



Table 6: Advantages and disadvantages of econometric models with aggregated data 

ADVANTAGES DISADVANTAGES 

 Desirable combination of theory and 

empirical basis.  

 The method may be used to precisely 

quantify new (economic) relationships.  

 The method emphasizes testing and 

facilitates the testing of hypotheses. 

 The method relies on the availability of 

extensive high quality data (the lack of 

historical data in our topic results in an 

overreliance on stated preference data and 

disaggregated econometric modeling). 

 Its strength is rather in short time horizons 

(which is less relevant in the context of the 

deployment of new vehicle technology).  

 Regional specialties are hard to consider due 

to lack of data.  

 There is a risk for model misspecification 

and inadequate statistical inferences. 

4.2 System Dynamics Models 

System dynamic (SD) represents an alternative approach to modelling car technologies 

uptake. 

History 

SD started to be developed by Jay W. Forrester in 1956 (Forrester, 1995), five years 

before his seminal work Industrial Dynamics (Forrester, 1961) was published. Although 

initially conceived for solving corporate problems, SD proved to be successful in its 

application to other social and environmental problems, regardless of whether the focus 

was local or global. This was reflected in works such as Urban Dynamics (Forrester, 

1969) and World Dynamics, which introduced the SD model known as WORLD1 

(Forrester, 1973). The global modeling exercise reported in The Limits to Growth 

(Meadows, 1972) perhaps remains the most famous application of the SD approach to 

date. Because of its emphasis on the endogenous point of view and feedback processes 

(Richardson, 2011), SD is regarded as a useful approach to understand complex 

dynamic systems.  

Main characteristics and assumptions 

Mathematically, SD models are sets of ordinary differential equations which can be 



computationally solved as approximations by numerical integration methods such as 

Euler or Runge-Kutta. For applications in the research field of market penetration of 

EV, the following five features of SD models can be highlighted. (1) Dynamic 

modeling, the explicit consideration of the independent variable ‘time’ is crucial in SD 

models. Investigation of the future market penetration of new technologies, preferably 

on a yearly basis, necessarily requires this approach. (2) Explanatory model for 

simulating behavior, is a key aspect in SD models (Bossel, 2007). SD modeling entails 

computer simulation, by which ‘what-if’ questions can be answered as if it were a 

controlled experiment. (3) Feedback process, where an input variable affects the output, 

but this also impacts (feeds back) the input after a time lag. From a consumer 

perspective, it is expected that important feedback loops affect the buying behavior of 

potential adopters, e.g. when they get more acquainted (through time) with new 

technologies by having the chance to use them or through peer effects. The explicit 

incorporation of feedback processes is at the core of SD modeling. (4) Long model time 

horizons, usually longer than 20 years are considered. An underlying premise is that, for 

most systems, the patterns of behavior can be fully visualized only when the appropriate 

(long-term) horizon is considered. (5) Delays, i.e. the existence of significant time lags 

between variables – similar to econometrics – is assumed. The data requirement 

depends on the research question. 

Literature  

SD is versatile as it enables the integration with other approaches. We identify three 

common mixed modeling approaches within the SD framework. Firstly, the embedment 

of discrete choice frameworks (cf. Section 3.1) within SD models for reflecting choice 

behavior is often applied. In this framework, individuals do not interact; thus a diffusion 

framework is often included as complementary, in an attempt to capture interactions. 



Secondly, Bass diffusion frameworks (cf. Section 4.1) are incorporated for simulating 

the diffusion of different vehicle drivetrains (e.g. Sterman, 2000). This example 

contains two stock variables (Potential Adopters and Adopters), connected by a single 

flow variable (Adoption Rate), and illustrates three feedback loops: Two of them are 

negative feedbacks reflecting ‘market saturation’ and the third is positive, reflecting the 

effect of ‘word of mouth’. Thirdly, hybrid models, e.g. combining SD and ABM, have 

been developed. From the perspective of the automobile industry, a combination of 

market chances (SD) and concrete purchases (ABM) indicates an attractive modeling 

approach (see Weikl, 2010; Wansart, 2012; Jensen et al., 2016; Kieckhäfer et al., 2014). 

Table 7 provides an overview of SD studies for the purpose of investigating the market 

penetration of alternative LDV technologies. Ford (1995) provides an influential paper 

in our research field. 

Table 7: Overview of selected SD literature on market penetration of electric vehicles 



Authors Jurisdiction 

Time 

horizon 

Technology Key features 

Ford, 1995; 

Ford, 1999; 

BenDor and 

Ford, 2006 

US 

(California) 
20 years 

CNG, HEV, 

EV 

Drawing from the results of (Bunch et al., 1993), an SD model for 

analyzing a feebate scheme was built. The purchase decision is based 

on a multinomial logit (MNL) framework that includes six main 

attributes. 

Schade, 2005;  

Krail, 2009; 

Fiorello et al., 

2010 

EU27, 

Switzerland, 

Norway 

2050 

HEV, CNG, 

LPG, FFV, 

BEV, FCEV 

ASTRA (ASsessment of TRAnsport Strategies)’s vehicle fleet module 

is affected by population change and disposable income.  

The vehicle fleet models (VFT module) include a discrete choice 

component. The development of technologies and ageing of vehicles is 

considered. There are several feedbacks between and within the 

modules. 

Purwanto, 2013 
57 world 

regions 

2050 

HEV, CNG, 

LPG, BEV, 

FCEV  

The MOVEET (MObility, Vehicle fleet, Energy use and Emissions 

forecast Tool) [former GLADYSTE, based on TREMOVE] model 

consists of four interrelated modules: "Transport Demand", 

"Environmental", "Welfare", and "Fleet". The latter contains a vehicle 

structure by type and technology. A nested logit computes mode 

shares. The shares of vehicles sold depend on GDP, acceleration time, 

fuel and non-fuel costs, and other parameters. 

Struben and 

Sterman, 2008 

US 

(California) 

60 years 

HEV, CNG, 

Biofuels, 

FCEV 

The model considers feedback from consumers' experience as well as 

word-of-mouth, marketing and network effects focusing on alternative 

drive trains. A simulation of learning, technological spillovers, and 

spatial coevolution of fueling infrastructure adds additional feedbacks 

that condition the diffusion process. The choice modeling is based on a 

standard multinomial logit (MNL) framework. 

Meyer, 2009 

Germany, 

Japan 
2035 

HEV, CNG, 

BEV, FCEV 

Partially building on previous work by (Ford, 1999), the author deals 

with the German and Japanese markets. Vehicle aging chains are used 

and ten different utility coefficients are considered. In addition, other 

exogenous factors affect the market share by type of vehicle. 

Walther et al., 

2010 

US 

(California) 

2021 ZEV 

The authors consider four interacting modules: “GHG and ZEV 

regulations”, “Automotive industry”, “Customers”, and “Vehicle stock 

and infrastructure”. Consumer awareness affects the choice of 

powertrain. This is based on an extended Bass model that represents 

the processes of 'word-of-mouth', 'oblivion' and marketing efforts. This 

influences consumers' choice set which, together with the assumed 

preferences, determine the market share of powertrains and segments. 



Keith, 2012 US 2050 

CNG, HEV, 

PHEV, BEV 

A nested multinomial logit (NMNL) model is applied to describe the 

decision-making process. Vehicle choice results from the utility that 

the consumer derives for each platform, as a function of purchase 

price, operating cost, emissions and range. In addition, the concept of 

familiarity with different platforms is employed. 

Shepherd et al., 

2012 

UK 2050 PHEV, BEV 

Building upon the work by (Struben & Sterman, 2008), (Shepherd et 

al., 2012) modeled EV uptake using choice values estimated by 

(Batley, Toner, & Knight, 2004). The main factors considered were 

purchase price, operating costs, maximum speed, fuel availability, 

emissions, and range. 

Pasaoglu et al., 

2016 
EU28 2050 

LPG, CNG, 

Biofuels, 

HEV, PHEV, 

BEV, FCEV 

The model consists of representative market agents. The following 

utility criteria are used to model the purchasing decision on the type of 

powertrain: Environment, performance, reliability, safety, 

convenience, popularity, choice, and cost. Using the idea of 

'willingness to consider' (WtC) a given powertrain, based on Struben 

and Sterman (2008), a user's 'consideration set' is derived. 

Discussion 

SD represents a suitable method to investigate system-wide effects. This appears to be a 

desirable feature when modeling the uptake of electric vehicles, which takes place 

within a complex socio-technical system. By its nature, the method simulates 

relationships at a rather highly aggregated level. However, examples exist of work that 

combines this system-wide aggregate approach with the disaggregate method. This is 

currently a fruitful line of research in the context of car technology market penetration 

(cf. Table 8). 

Table 8: Advantages and disadvantages of system dynamics models 

ADVANTAGES DISADVANTAGES 

 Disequilibrium processes can be modeled 

explicitly. 

 The method supports nonlinear simulation 

over long time horizons. 

 There exist several standardized toolboxes 

for implementing SD approaches. 

 There were considerable improvements with 

regard to transparency; e.g. dimensional 

consistency checks and a high level of 

 Method’s pragmatic approach to analysis of 

historical data (usually without econometric 

methods) mixed with other assumptions 

makes the method subject to criticism.  

 Due to a weak theoretical background it is 

hard to follow all assumptions. 

 



transparency, reproducibility and 

communication (Martinez-Moyano, 2012), 

(Rahmandad & Sterman, 2012).  

4.3 Integrated Assessment and General Equilibrium Models 

Integrated assessment models (IAMs) are widely applied in interdisciplinary 

environmental sciences for global projections in the field of energy and climate change 

(e.g. (IPCC (Intergovernmental Panel on Climate Change), 2014). The macroeconomic 

part of these models might be based on general equilibrium models, which are based on 

economic theory. They use aggregated economic data and are usually focused on the 

impact analysis of policy instruments, changes in technology or other external factors. 

Therefore, only this part of integrated assessment models is of interest here. Today, 

most general equilibrium models also include microeconomic data and are therefore 

seen as bottom-up models or hybrid models (Böhringer & Rutherford, 2008). 

Nevertheless, we keep them in our top-down classification. 

History 

The concept of economic equilibrium lies at the heart of general equilibrium models. 

Not before the 1960s, when computational analysis became common for all research 

disciplines, economic equilibrium models developed from pure mathematical 

calculations with few empirical-based data to empirical-data based models. This was the 

hour of birth of computable general equilibrium (CGE) models (e.g. Harberger, 1962), 

which are widely used today in applied macroeconomics (Shoven & Whalley, 1984). 

More recent developments are Spatial or Dynamic Stochastic General Equilibrium 

Models (DSGE). Recently, DSGE models have been subject to not insubstantial 

criticism (cf. Caiani et al., 2016). Integrated assessment models have a long history in 

environmental sciences and are currently under comprehensive development. For 



vehicle choice modeling, they are being extended by many behavioral features (cf. 

McCollum et al., 2016). 

Main characteristics and assumptions 

CGE models are mainly based on data from the system of national accounts or the 

input-output matrix (Miller & Blair, 2009) and can have microeconomic foundations 

such as technical production limitations (Böhringer, Löschel, & Rutherford, 2004). In 

this way, the models optimize at the macroeconomic level and assume utility-

maximizing and representative individuals, complete markets without external effects 

and public goods, complete information, perfect competition, etc. CGE models often 

examine macroeconomic issues, which today typically have an empirical background 

(Böhringer et al., 2004). By limiting the market outcome to economic equilibrium, their 

results are limited from an empirical perspective – particularly in non-Walrasian market 

situations. However, recent CGE models allow deviation from the equilibrium (e.g. 

Sampson, 2013). Calibrating the model is still a challenge and is mainly based on values 

from the literature or estimated by econometric approaches and confirmed by a 

sensitivity analysis (Boulanger & Bréchet, 2002). If correctly calibrated, CGE models 

are especially suited to determining long-term forecasts.  

Literature  

In the context of market penetration of electric vehicles, only few CGE-based studies 

exist. Most models apply the rather theoretical constant elasticity-of-substitution (CES) 

approach to all drivetrain technologies (e.g. Karplus, Paltsev, & Reilly, 2010), whereas 

also other methodologies are applied, e.g. a hard-linked MNL (cf. Table 9). A 

comprehensive overview of IAM for vehicle choice can be found in McCollum et al. 

(2016). 



Table 9: Overview of literature on market penetration of electric vehicles based on 

general equilibrium models 

Authors Jurisdiction 

Time 

horizon 

Technology Key features 

Schäfer and 

Jacoby, 2006 
US 2030 

Different 

technological 

improvements  

The MARKAL model is linked to the EPPA (emission production 

and policy analysis) model in order to consider also influences from 

the economy. Eight technology improvements for conventional cars 

are considered, including hybridization. 

Schmelzer and 

Miess, 2015 
Austria 2030 EV, PHEV 

A hard-linked MNL model is used for the technology choice of 

households instead of the usual constant-elasticity-of-substitution 

(CES) approach. The authors even consider spatial differences.  

Karplus et al., 

2010 

US and Japan 2100 Biofuels, PHEV 

The alternative technology PHEV is considered as a perfect 

substitute of conventional vehicles in the EPPA model. Biofuels are 

also considered as an alternative to electrification. The choice 

between the perfect substitutes is based on a usual constant-

elasticity-of-substitution (CES) approach. 

Yeh et al., 2008 US 2050 PHEV 

A MARKAL model based on Shay et al. (2006) is applied, and the 

technology decision remains unclear. 

Discussion 

General equilibrium models have a strong theoretical basis from economic theory and 

lead to unique results – especially for long-term scenarios. This comes, however, along 

with some drawbacks such as that the (mostly) simplifying assumptions of user 

behavior might not represent reality of car purchase decisions and disruptive 

innovations are hard to capture (cf. Table 10). 

Table 10: Advantages and disadvantages of integrated assessment and general 

equilibrium models 

ADVANTAGES DISADVANTAGES 

 CGE: Strong theoretical basis.  

 CGE: Comprehensive structural view of the 

economy. 

 IAM/CGE: Consistent scenarios of long time 

horizons possible. 

 CGE: Unique solution. 

 

 IAM: Weak theoretical basis. 

 CGE: Rational expectations assumption 

arguably unrealistic. 

 IAM: Due to a weak theoretical background 

it is hard to follow all assumptions.  

 CGE: Simplifying assumptions required to 

make the model tractable. 

 CGE: Nonlinearities are hard to capture. 



 There is no standardized toolbox available 

yet. 

5 Hybrid Models 

Hybrid models (i.e. models, which use bottom-up and top-down approaches) are more 

and more recommended in academia for analyzing the market share of alternative 

drivetrains in order to consider both, the individual decision, as well as the overriding 

trend in society and the vehicle supply (Brand, Anable, & Tran, 2013; Brand, Tran, & 

Anable, 2012; Jensen et al., 2016; Kieckhäfer et al., 2014; Wansart, 2012; Weikl, 2010). 

Furthermore, these hybrid models are already broadly applied in comprehensive long-

term global models developed by policy consultants: E.g., the data spread sheet models 

Mobility Model (MoMo by the International Energy Agency (IEA)) (Fulton, Cazzola, & 

Cuenot, 2009) and the Roadmap Model (by the International Council on Clean 

Transportation (ICCT)) as well as the system dynamic-based ForFITS model (by United 

Nation Economic Commission for Europe). In addition, in European policy consulting, 

several hybrid models are developed such as ASTRA, POLES, TRANS-TOOLS 

(TOOLS for TRansport Forecasting ANd Scenario testing) and TREMOVE. 

In academia, these hybrid approaches are, however, still underrepresented even though 

new convincing developments are proposed e.g., by Zhang and Vorobeychik (2016), who 

suggested to integrate more machine learning algorithms, which consider both macro-

level and micro-level such as cross-validation, or validate the models with independent 

data, which is not used for model calibration. Application of these methods is based on 

the availability of comprehensive data sets. The current tremendous increase in data 

volumes from transportation will contribute to an improvement of these models. Future 

data is not only based on mobility data, but also comes from other sources such as social 

media (Rand, Herrmann, Schein, & Vodopivec, 2015). This might lead to a more data-

driven approach in our field of investigation.  



6 Discussion 

There is a high variety of methods applied in the literature for forecasting the market 

penetration of electric drivetrains in the passenger car market. There is no dominating 

methodology, but it seems that each method has its advantage in certain fields. 

Nevertheless, we indicate the strength and weakness of each method according to four 

main dimensions (1) main basis (theoretically vs. empirically), (2) transparency and (3) 

flexibility of modelling as well as (4) appropriate time horizon (short-term vs. long-

term) in Figure 3. 

 

Figure 3: Evaluation of modeling approaches according to four dimensions 

The theoretical basis seems to be strong for both CGE and econometric 

approaches, which convince for stable market conditions. However, the strong 

theoretical basis makes some methodological applications more unrealistic (e.g. 

theoretical CGE models). A weak theoretical basis leads on the one hand to less 

transparency of modeling which comes along with a limited reproducibility and on the 

other hand to a high degree of freedom for model developers. Hence, econometric 

modeling convinces strongly with a profound theoretical basis without neglecting 



empirical soundness and high transparency of modeling, but requires a comprehensive 

database.  

Another main dimension, where applied methodologies perform differently is 

the flexibility of modeling, where ABM and SD perform best. However a high 

flexibility is often correlated with a low transparency in modeling. Finally, pure 

econometric approaches are rather focused on short- to mid-term forecasts. For long-

term forecasts, CGE and SD models perform best.  

A combination of pure modeling techniques such as CGE, SD or AGM with 

econometric methods seems to be a promising combination of measuring the empirical 

historical development, using expert insights about the future and using the existing 

theoretical basis of modeling. 

For early market phases, especially disaggregated econometric bottom-up 

models seem to be appropriate to generate an adequate basis for market prognoses. 

However, these econometric models are highly relying on comprehensive data which 

comes along with high costs of data collection. While data collected from user 

acceptance studies can be used for past or present decisions, the stated preferences on 

future decisions should be handled more carefully.  

If disaggregated data is available and a concrete car purchase decision is in the 

core of the specific research question (mainly perspective of the car industry) and the 

focus is on the short- to mid-term development, ABM and econometric based models 

with disaggregated data seem favorable. For long-term forecasts (mainly perspective of 

politics), macroeconomic based models, mainly CGE and SD, seem to be more 

appropriate. Due to the relatively new market development of this technology, a pure 

application of econometric models with aggregated data cannot convince in our research 

area.  



Finally, the market penetration of electric drivetrains depends on the car 

purchase decision of the main three customer sub-groups, i.e. (1) companies buying 

fleet vehicles for their fleets, (2) companies buying company cars for their employees, 

and (3) private persons buying cars for themselves or other family members. All three 

customer groups react differently and even within a group significant differences might 

be observed (de Haan et al., 2009; Gnann et al., 2015; Ketelaer, Kaschub, Jochem, & 

Fichtner, 2014). However, all decision makers consider (at least implicitly) the 

following decision factors: 

 Personal beliefs and attitudes (micro-level), such as innovativeness, 

environmental attitudes, preferences for different makes, vehicle types, etc., 

which can be influenced by macro-level factors such as media or politics, 

 budget and phase of life (micro-level), all decision makers usually have budget 

restrictions, and private customers take their current phases of life into 

consideration (e.g. retirement, etc.), 

 mobility patterns (micro-level), refer mainly to annual mileage, but also to daily 

patterns, which might be restricted by the range of some cars, 

 external factors (macro-level), such as political influences (i.e. incentives), fuel 

prices, availability of fueling stations, etc., 

 other factors (mainly macro-level), which include all other influences. 

Concluding, future models should consider the macro- and micro-levels by all 

five decision factors differentiated by the three sub-groups, fleet vehicles, company 

cars, and private cars. For this, a comprehensive collection of economic, market and 

social data is necessary. 



As there has been no market penetration of a similar technology and the current 

market uptake of electric vehicles is still at a very early stage, it will take time to fully 

validate the model results. Nevertheless, methods from other markets and the increasing 

volume of mobility data provide promising improvements in our research field. 

7 Conclusion 

In this paper, we analyze different methods for forecasting the market penetration of 

electric drivetrains in the passenger car market in order to structure them and highlight 

their strengths and weaknesses. We classify the methods into bottom-up and top-down 

models. For the former, we identify microeconometric models and agent-based 

simulation models, which focus on representing the user decision. Econometric models 

with aggregated data, system dynamics, and integrated assessment models with general 

equilibrium models are classified in the top-down models. As a trend in the literature 

already indicates, hybrid approaches, considering micro and macro aspects seem to be 

most appropriate for analyzing the market penetration of electric drivetrains in the 

passenger car market. This is a consequential conclusion from the finding that not only 

personal beliefs (bottom-up effect) influence our car purchase decision, but also other 

social, economic and political factors (top-down effect). Furthermore, the differentiation 

between the three sub-groups, fleet vehicles, company cars, and private cars combined 

with suitable methods should be included in future models. The current increase in data 

volumes from transportation will contribute to this development. 

The literature in this research field has been gaining momentum in the last years. 

Therefore, we may be far from giving a complete overview of the research field. Our 

argumentation is focused on our research question and may seem inappropriate for other 

fields of application. 



8 References 

Abou-Zeid, M., & Ben-Akiva, M. (2014). Hybrid Choice Models. In S. Hess & A. 

Daly, Handbook of choice modelling. Edward Elgar Publishing. 

Achtnicht, M., Bühler, G., & Hermeling, C. (2012). The impact of fuel availability on 

demand for alternative-fuel vehicles. Transportation Research Part D: 

Transport and Environment, 17(3), 262–269. 

https://doi.org/10.1016/j.trd.2011.12.005 

Al-Alawi, B. M., & Bradley, T. H. (2013). Review of hybrid, plug-in hybrid, and 

electric vehicle market modeling Studies. Renewable and Sustainable Energy 

Reviews, 21, 190–203. https://doi.org/10.1016/j.rser.2012.12.048 

Anowar, S., Eluru, N., & Miranda-Moreno, L. F. (2014). Alternative Modeling 

Approaches Used for Examining Automobile Ownership: A Comprehensive 

Review. Transport Reviews, 34(4), 441–473. 

https://doi.org/10.1080/01441647.2014.915440 

Axsen, J., TyreeHageman, J., & Lentz, A. (2012). Lifestyle practices and pro-

environmental technology. Ecological Economics, 82, 64–74. 

https://doi.org/10.1016/j.ecolecon.2012.07.013 

Bass, F. M. (1969). A New Product Growth for Model Consumer Durables. 

Management Science, 15(5), 215–227. https://doi.org/10.1287/mnsc.15.5.215 

Bass, F. M. (2004). Comments on “A New Product Growth for Model Consumer 

Durables The Bass Model.” Management Science, 50(12_supplement), 1833–

1840. https://doi.org/10.1287/mnsc.1040.0300 

Batley, R. P., Toner, J. P., & Knight, M. J. (2004). A mixed logit model of U.K. 

household demand for alternative-fuel vehicles. International Journal of 

Transport Economics / Rivista Internazionale Di Economia Dei Trasporti, 

31(1), 55–77. 



Ben-Akiva, M., McFadden, D., Gärling, T., Gopinath, D., Walker, J., Bolduc, D., … 

Rao, V. (1999). Extended Framework for Modeling Choice Behavior. Marketing 

Letters, 10(3), 187–203. https://doi.org/10.1023/A:1008046730291 

Ben-Akiva, M., Mcfadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., … 

Munizaga, M. A. (2002). Hybrid Choice Models: Progress and Challenges. 

Marketing Letters, 13(3), 163–175. https://doi.org/10.1023/A:1020254301302 

Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., … 

Munizga, M. (2002). Hybid Choice Models: Progress and Challenges. 

Marketing Letters 13, 163 – 175., 13, 163 – 175. 

BenDor, T., & Ford, A. (2006). Simulating a combination of feebates and scrappage 

incentives to reduce automobile emissions. Energy, 31(8–9), 1197–1214. 

https://doi.org/10.1016/j.energy.2005.05.024 

Bhat, C. R., & Dubey, S. K. (2014). A new estimation approach to integrate latent 

psychological constructs in choice modeling. Transportation Research Part B: 

Methodological, 67, 68–85. https://doi.org/10.1016/j.trb.2014.04.011 

Böhringer, C., Löschel, A., & Rutherford, T. F. (2004). Efficiency Gains from “What” - 

Flexibility in Climate Policy - an Integrated Cge Assessment. SSRN Electronic 

Journal. https://doi.org/10.2139/ssrn.606401 

Böhringer, C., & Rutherford, T. F. (2008). Combining bottom-up and top-down. Energy 

Economics, 30(2), 574–596. https://doi.org/10.1016/j.eneco.2007.03.004 

Bossel, H. (2007). Systems and Models: Complexity, Dynamics, Evolution, 

Sustainability. Norderstedt: Books on Demand. 

Boulanger, P.-M., & Bréchet, T. (2002). Setting concepts into motion: improving 

scientific tools in support of sustainable development decision-making. 



Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control 

(4 edition). Hoboken, N.J: Wiley. 

Boyd, J. H., & Mellman, R. E. (1980). The effect of fuel economy standards on the U.S. 

automotive market: An hedonic demand analysis. Transportation Research Part 

A: General, 14(5–6), 367–378. https://doi.org/10.1016/0191-2607(80)90055-2 

Brand, C., Anable, J., & Tran, M. (2013). Accelerating the transformation to a low 

carbon passenger transport system: The role of car purchase taxes, feebates, road 

taxes and scrappage incentives in the UK. Transportation Research Part A: 

Policy and Practice, 49, 132–148. https://doi.org/10.1016/j.tra.2013.01.010 

Brand, C., Cluzel, C., & Anable, J. (2017). Modeling the uptake of plug-in vehicles in a 

heterogeneous car market using a consumer segmentation approach. 

Transportation Research Part A: Policy and Practice, 97, 121–136. 

https://doi.org/10.1016/j.tra.2017.01.017 

Brand, C., Tran, M., & Anable, J. (2012). The UK transport carbon model: An 

integrated life cycle approach to explore low carbon futures. Energy Policy, 41, 

107–124. https://doi.org/10.1016/j.enpol.2010.08.019 

Brown, M. (2013). Catching the PHEVer: Simulating Electric Vehicle Diffusion with 

an Agent-Based Mixed Logit Model of Vehicle Choice. JASSS, 16(2). 

https://doi.org/10.18564/jasss.2127 

Brownstone, D., Bunch, D. S., & Train, K. (2000). Joint mixed logit models of stated 

and revealed preferences for alternative-fuel vehicles. Transportation Research 

Part B: Methodological, 34(5), 315–338. https://doi.org/10.1016/s0191-

2615(99)00031-4 



Brownstone, D., & Train, K. (1998). Forecasting new product penetration with flexible 

substitution patterns. Journal of Econometrics, 89(1–2), 109–129. 

https://doi.org/10.1016/S0304-4076(98)00057-8 

Bunch, D. S., Bradley, M., Golob, T. F., Kitamura, R., & Occhiuzzo, G. P. (1993). 

Demand for clean-fuel vehicles in California: A discrete-choice stated 

preference pilot project. Transportation Research Part A: Policy and Practice, 

27(3), 237–253. https://doi.org/10.1016/0965-8564(93)90062-P 

Burgess, M., King, N., Harris, M., & Lewis, E. (2013). Electric vehicle drivers’ reported 

interactions with the public: Driving stereotype change? Transportation 

Research Part F: Traffic Psychology and Behaviour, 17, 33–44. 

https://doi.org/10.1016/j.trf.2012.09.003 

Caiani, A., Godin, A., Caverzasi, E., Gallegati, M., Kinsella, S., & Stiglitz, J. E. (2016). 

Agent based-stock flow consistent macroeconomics: Towards a benchmark 

model. Journal of Economic Dynamics and Control, 69, 375–408. 

https://doi.org/10.1016/j.jedc.2016.06.001 

Caperello, N. D., & Kurani, K. S. (2012). Households’ Stories of Their Encounters With 

a Plug-In Hybrid Electric Vehicle. Environment and Behavior, 44(4), 493–508. 

https://doi.org/10.1177/0013916511402057 

Carley, S., Krause, R. M., Lane, B. W., & Graham, J. D. (2013). Intent to purchase a 

plug-in electric vehicle: A survey of early impressions in large US cites. 

Transportation Research Part D: Transport and Environment, 18, 39–45. 

https://doi.org/10.1016/j.trd.2012.09.007 

Chorus, C. G., Arentze, T. A., & Timmermans, H. J. P. (2008). A Random Regret-

Minimization model of travel choice. Transportation Research Part B: 

Methodological, 42(1), 1–18. https://doi.org/10.1016/j.trb.2007.05.004 



Coffman, M., Bernstein, P., & Wee, S. (2015). Factors Affecting EV Adoption: A 

Literature Review and EV Forecast for Hawaii. 

Creutzig, F., Jochem, P., Edelenbosch, O. Y., Mattauch, L., Vuuren, D. P. v., 

McCollum, D., & Minx, J. (2015). Transport: A roadblock to climate change 

mitigation? Science, 350(6263), 911–912. 

https://doi.org/10.1126/science.aac8033 

Cui, X., Liu, C., Kim, H. K., Kao, S.-C., Tuttle, M. A., & Bhaduri, B. L. (2010). A 

multi agent-based framework for simulating household PHEV distribution and 

electric distribution network impact. 

Dagsvik, J. K., Wennemo, T., Wetterwald, D. G., & Aaberge, R. (2002). Potential 

demand for alternative fuel vehicles. Transportation Research Part B: 

Methodological, 36(4), 361–384. https://doi.org/10.1016/S0965-8564(01)00013-

1 

Dargay, J., Gately, D., & Sommer, M. (2007). Vehicle Ownership and Income Growth, 

Worldwide: 1960-2030. The Energy Journal, 28(4), 143–170. 

Daziano, R. A. (2015). Inference on mode preferences, vehicle purchases, and the 

energy paradox using a Bayesian structural choice model. Transportation 

Research Part B: Methodological, 76, 1–26. 

https://doi.org/10.1016/j.trb.2015.02.012 

Daziano, R. A., & Achtnicht, M. (2014). Forecasting Adoption of Ultra-Low-Emission 

Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK 

Simulator. Transportation Science, 48(4), 671–683. 

https://doi.org/10.1287/trsc.2013.0464 



Daziano, R. A., & Bolduc, D. (2011). Incorporating pro-environmental preferences 

towards green automobile technologies through a Bayesian hybrid choice model. 

Transportmetrica, 1–33. https://doi.org/10.1080/18128602.2010.524173 

de Haan, P., Mueller, M. G., & Scholz, R. W. (2009). How much do incentives affect 

car purchase? Agent-based microsimulation of consumer choice of new cars—

Part II: Forecasting effects of feebates based on energy-efficiency. Energy 

Policy, 37(3), 1083–1094. https://doi.org/10.1016/j.enpol.2008.11.003 

de Weerdt, M. M., Zhang, Y., & Klos, T. (2012). Multiagent task allocation in social 

networks. Autonomous Agents and Multi-Agent Systems, 25(1), 46–86. 

https://doi.org/10.1007/s10458-011-9168-3 

Densing, M., Turton, H., & Bäuml, G. (2012). Conditions for the successful deployment 

of electric vehicles – A global energy system perspective. Energy, 47(1), 137–

149. https://doi.org/10.1016/j.energy.2012.09.011 

Egbue, O., & Long, S. (2012). Barriers to widespread adoption of electric vehicles: An 

analysis of consumer attitudes and perceptions. Energy Policy, 48, 717–729. 

https://doi.org/10.1016/j.enpol.2012.06.009 

Ensslen, A., Ringler, P., Jochem, P., & Fichtner, W. (2014). About business model 

specifications of a smart charging manager to integrate electric vehicles into the 

German electricity market. In 4th IAEE European Conference. Rome. 

Eppstein, M. J., Grover, D. K., Marshall, J. S., & Rizzo, D. M. (2011). An agent-based 

model to study market penetration of plug-in hybrid electric vehicles. Energy 

Policy, 39(6), 3789–3802. https://doi.org/10.1016/j.enpol.2011.04.007 

Fiorello, D., Fermi, F., & Bielanska, D. (2010). The ASTRA model for strategic 

assessment of transport policies. System Dynamics Review, 26(3), 283–290. 

https://doi.org/10.1002/sdr.452 



Ford, A. (1995). Simulating the controllability of feebates. System Dynamics Review, 

11(1), 3–29. https://doi.org/10.1002/sdr.4260110103 

Ford, A. (1999). Modeling the Environment: An Introduction To System Dynamics 

Modeling Of Environmental Systems (1st ed.). Island Press. 

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, Mass.: MIT Press. 

Forrester, J. W. (1969). Urban Dynamics. Cambridge, Mass.: MIT Press. 

Forrester, J. W. (1973). World Dynamics (Auflage: 2nd Revised edition). Cambridge, 

Mass: MIT Press. 

Forrester, J. W. (1995). Counterintuitive behavior of social systems. Update of the 

original text appeared in the January, 1971, issue of the Technology Review 

published by the Alumni Association of the Massachusetts Institute of 

Technology. 

Frisch, R. (1933). Editor’s Note. Econometrica, 1(1), 1–4. 

Fulton, L., Cazzola, P., & Cuenot, F. (2009). IEA Mobility Model (MoMo) and its use 

in the ETP 2008. Energy Policy, 37(10), 3758–3768. 

https://doi.org/10.1016/j.enpol.2009.07.065 

Garcia, R. (2007). Modeling vehicle choice behavior using agent-based approach. 

Presented at the Second Workshop on agent-based models of market dynamics 

and consumer behaviour 2007. 

Gärling, T. (1992). The importance of routines for the performance of everyday 

activities. Scandinavian Journal of Psychology, 33(2), 170–177. 

https://doi.org/10.1111/j.1467-9450.1992.tb00896.x 

Gilbert, C. L. (1986). PRACTITIONERS’ CORNER: Professor Hendry’s Econometric 

Methodology. Oxford Bulletin of Economics and Statistics, 48(3), 283–307. 

https://doi.org/10.1111/j.1468-0084.1986.mp48003007.x 



Gilbert, G. N. (2008). Agent-based models. Los Angeles: Sage Publications. 

Glerum, A., Stankovikj, L., Thémans, M., & Bierlaire, M. (2014). Forecasting the 

Demand for Electric Vehicles: Accounting for Attitudes and Perceptions. 

Transportation Science, 48(4), 483–499. https://doi.org/10.1287/trsc.2013.0487 

Gnann, T. (2015). Market Diffusion of Plug-in Electric Vehicles and Their Charging 

Infrastructure. Fraunhofer Verlag. 

Gnann, T., Plötz, P., Funke, S., & Wietschel, M. (2015). What is the market potential of 

plug-in electric vehicles as commercial passenger cars? A case study from 

Germany. Transportation Research Part D: Transport and Environment, 37, 

171–187. https://doi.org/10.1016/j.trd.2015.04.015 

Golder, P. N., & Tellis, G. J. (1997). Will It Ever Fly? Modeling the Takeoff of Really 

New Consumer Durables. Marketing Science, 16(3), 256–270. 

https://doi.org/10.1287/mksc.16.3.256 

Graham-Rowe, E., Gardner, B., Abraham, C., Skippon, S., Dittmar, H., Hutchins, R., & 

Stannard, J. (2012). Mainstream consumers driving plug-in battery-electric and 

plug-in hybrid electric cars: A qualitative analysis of responses and evaluations. 

Transportation Research Part A: Policy and Practice, 46(1), 140–153. 

https://doi.org/10.1016/j.tra.2011.09.008 

Grahn, M., Azar, C., Williander, M. I., Anderson, J. E., Mueller, S. A., & Wallington, 

T. J. (2009). Fuel and Vehicle Technology Choices for Passenger Vehicles in 

Achieving Stringent CO 2 Targets: Connections between Transportation and 

Other Energy Sectors. Environmental Science & Technology, 43(9), 3365–3371. 

https://doi.org/10.1021/es802651r 

Griliches, Z. (1986). Chapter 25 Economic data issues. In Zvi Griliches and Michael D. 

Intriligator (Ed.), Handbook of Econometrics (Vol. Volume 3, pp. 1465–1514). 



Elsevier. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S1573441286030052 

Gül, T., Kypreos, S., Turton, H., & Barreto, L. (2009). An energy-economic scenario 

analysis of alternative fuels for personal transport using the Global Multi-

regional MARKAL model (GMM). Energy, 34(10), 1423–1437. 

https://doi.org/10.1016/j.energy.2009.04.010 

Haavelmo, T. (1944). The Probability Approach in Econometrics. Econometrica, 12, iii-

115. https://doi.org/10.2307/1906935 

Harberger, A. C. (1962). The Incidence of the Corporation Income Tax. Journal of 

Political Economy, 70 (3), 215–240. 

Hensher, D. A., Beck, M. J., & Rose, J. M. (2011). Accounting for Preference and Scale 

Heterogeneity in Establishing Whether it Matters Who is Interviewed to Reveal 

Household Automobile Purchase Preferences. Environmental and Resource 

Economics, 49(1), 1–22. https://doi.org/10.1007/s10640-010-9420-3 

Herbst, A., Toro, F., Reitze, F., & Jochem, E. (2012). Introduction to energy systems 

modelling. Swiss Journal of Economics and Statistics, 148(2), 111–135. 

Hewitt, C. (1977). Viewing control structures as patterns of passing messages. Artificial 

Intelligence, 8(3), 323–364. https://doi.org/10.1016/0004-3702(77)90033-9 

Higgins, A., Paevere, P., Gardner, J., & Quezada, G. (2012). Combining choice 

modelling and multi-criteria analysis for technology diffusion: An application to 

the uptake of electric vehicles. Technological Forecasting and Social Change, 

79(8), 1399–1412. https://doi.org/10.1016/j.techfore.2012.04.008 

Hoover, K. D. (2005). The Methodology of Econometrics (SSRN Scholarly Paper No. 

ID 728683). Rochester, NY: Social Science Research Network. Retrieved from 

http://papers.ssrn.com/abstract=728683 



Horne, M., Jaccard, M., & Tiedemann, K. (2005). Improving behavioral realism in 

hybrid energy-economy models using discrete choice studies of personal 

transportation decisions. Energy Economics, 27(1), 59–77. 

https://doi.org/10.1016/j.eneco.2004.11.003 

Hourcade, J.-C., Jaccard, M., Bataille, C., & Ghersi, F. (2006). Hybrid Modeling: New 

Answers to Old Challenges Introduction to the Special Issue of “The Energy 

Journal.” The Energy Journal, 27, 1–11. 

IEA (International Energy Agency). (2016a). Energy Technology Perspectives 2016. 

Paris, France. Retrieved from http://www.iea.org/bookshop/719-

Energy_Technology_Perspectives_2016 

IEA (International Energy Agency). (2016b). Global EV Outlook 2016. Paris, France. 

Retrieved from 

https://www.iea.org/publications/freepublications/publication/Global_EV_Outlo

ok_2016.pdf 

Intriligator, M. D. (1983). Chapter 3 Economic and econometric models. In Zvi 

Griliches and Michael D. Intriligator (Ed.), Handbook of Econometrics (Vol. 

Volume 1, pp. 181–221). Elsevier. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S1573441283010077 

IPCC (Intergovernmental Panel on Climate Change). (2014). Climate Change 2014, 

synthesis report. Geneva, Switzerland. Retrieved from 

https://www.ipcc.ch/pdf/assessment-

report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf 

Jensen, A. F., Cherchi, E., & Mabit, S. L. (2013). On the stability of preferences and 

attitudes before and after experiencing an electric vehicle. Transportation 



Research Part D: Transport and Environment, 25, 24–32. 

https://doi.org/10.1016/j.trd.2013.07.006 

Jensen, A. F., Cherchi, E., Mabit, S. L., & Ortúzar, J. de D. (2016). Predicting the 

Potential Market for Electric Vehicles. Transportation Science. 

https://doi.org/10.1287/trsc.2015.0659 

Jeon, S. Y. (2010). Hybrid & electric vehicle technology and its market feasibility. 

Cambridge: Massachusetts Institute of Technology. 

Jochem. (2013). Platzhalter. 

Jong, G. D., Fox, J., Daly, A., Pieters, M., & Smit, R. (2004). Comparison of car 

ownership models. Transport Reviews, 24(4), 379–408. 

https://doi.org/10.1080/0144164032000138733 

Kahneman, D., & Tversky, A. (2000). Choices, Values, and Frames. Cambridge 

University Press. 

Karplus, V. J., Paltsev, S., & Reilly, J. M. (2010). Prospects for plug-in hybrid electric 

vehicles in the United States and Japan: A general equilibrium analysis. 

Transportation Research Part A: Policy and Practice, 44(8), 620–641. 

https://doi.org/10.1016/j.tra.2010.04.004 

Kay, D., Hill, N., & Newman, D. (2013). Powering Ahead - The future of low-carbon 

cars and fuels (p. 176). London: UK Pia and RAC Foundation. Retrieved from 

http://www.racfoundation.org/assets/rac_foundation/content/downloadables/pow

ering_ahead-kay_et_al-apr2013.pdf 

Keith, D. R. (2012). Essays on the dynamics of alternative fuel vehicle adoption : 

insights from the market for hybrid-electric vehicles in the United States 

(Thesis). Massachusetts Institute of Technology. Retrieved from 

http://dspace.mit.edu/handle/1721.1/79546 



Ketelaer, T., Kaschub, T., Jochem, P., & Fichtner, W. (2014). The potential of carbon 

dioxide emission reductions in German commercial transport by electric 

vehicles. International Journal of Environmental Science and Technology, 

11(8), 2169–2184. https://doi.org/10.1007/s13762-014-0631-y 

Kieckhäfer, K. (2013). Marktsimulation zur strategischen Planung von 

Produktportfolios: Dargestellt am Beispiel innovativer Antriebe in der 

Automobilindustrie. Wiesbaden: Springer-Verlag. 

Kieckhäfer, K., Volling, T., & Spengler, T. S. (2014). A Hybrid Simulation Approach 

for Estimating the Market Share Evolution of Electric Vehicles. Transportation 

Science, 48(4), 651–670. https://doi.org/10.1287/trsc.2014.0526 

Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2012). Agent-based 

simulation of innovation diffusion: a review. Central European Journal of 

Operations Research, 20(2), 183–230. https://doi.org/10.1007/s10100-011-

0210-y 

Koopmans, T. C. (1949). Identification Problems in Economic Model Construction. 

Econometrica, 17(2), 125–144. https://doi.org/10.2307/1905689 

Krail, M. (2009). System-Based Analysis of Income Distribution Impacts on Mobility 

Behaviour. Baden-Baden: Nomos. 

Krupa, J. S., Rizzo, D. M., Eppstein, M. J., Brad Lanute, D., Gaalema, D. E., Lakkaraju, 

K., & Warrender, C. E. (2014). Analysis of a consumer survey on plug-in hybrid 

electric vehicles. Transportation Research Part A: Policy and Practice, 64, 14–

31. https://doi.org/10.1016/j.tra.2014.02.019 

Lane, B., & Potter, S. (2007). The adoption of cleaner vehicles in the UK: exploring the 

consumer attitude–action gap. Journal of Cleaner Production, 15(11–12), 1085–

1092. https://doi.org/10.1016/j.jclepro.2006.05.026 



Lévay, P. Z., Drossinos, Y., & Thiel, C. (2017). The effect of fiscal incentives on 

market penetration of electric vehicles: A pairwise comparison of total cost of 

ownership. Energy Policy, 105, 524–533. 

https://doi.org/10.1016/j.enpol.2017.02.054 

Lieven, T., Mühlmeier, S., Henkel, S., & Waller, J. F. (2011). Who will buy electric 

cars? An empirical study in Germany. Transportation Research Part D: 

Transport and Environment, 16(3), 236–243. 

https://doi.org/10.1016/j.trd.2010.12.001 

Loewenstein, G. (1996). Out of Control: Visceral Influences on Behavior. 

Organizational Behavior and Human Decision Processes, 65(3), 272–292. 

https://doi.org/10.1006/obhd.1996.0028 

Lopes, M. M., Moura, F., & Martinez, L. M. (2014). A rule-based approach for 

determining the plausible universe of electric vehicle buyers in the Lisbon 

Metropolitan Area. Transportation Research Part A: Policy and Practice, 59, 

22–36. https://doi.org/10.1016/j.tra.2013.09.009 

Martinez-Moyano, I. J. (2012). Documentation for model transparency. System 

Dynamics Review, 28(2), 199–208. https://doi.org/10.1002/sdr.1471 

McCollum, D. L., Wilson, C., Pettifor, H., Ramea, K., Krey, V., Riahi, K., … Fujisawa, 

S. (2016). Improving the behavioral realism of global integrated assessment 

models: An application to consumers’ vehicle choices. Transportation Research 

Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2016.04.003 

McCollum, D., Yang, C., Yeh, S., & Ogden, J. (2012). Deep greenhouse gas reduction 

scenarios for California – Strategic implications from the CA-TIMES energy-

economic systems model. Energy Strategy Reviews, 1(1), 19–32. 

https://doi.org/10.1016/j.esr.2011.12.003 



McFadden, D. (2000). Economic Choices, Nobel Prize Lecture. AM. ECON. REV., 91, 

351. 

McManus, W., & Senter, R. (2009). Market Models for Predicting PHEV Adoption and 

Diffusion (Technical Challenges of Plug-In Hybrid Electric Vehicles and 

Impacts to the U.S. Power System) (p. 32). Ann Arbor: University of Michigan. 

Retrieved from 

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/64436/102399.pdf;sequ

ence=1 

Meadows, D. H. (1972). Limits to Growth. Signet. 

Meyer, G. (2009). Analyse und technisch-ökonomische Bewertung von Gesetzesfolgen 

im Individualverkehr: dargestellt am Beispiel der Automobilindustrie Japans 

und Deutschlands. 

Miller, R. E., & Blair, P. D. (2009). Input-output analysis: foundations and extensions 

(2nd ed.). Englangd: Cambridge University Press. 

Mock, P., Hülsebusch, D., Ungethüm, J., & Schmid, S.A. (2010). Electric vehicles - A 

model based assessment of future market prospects and environmental impacts, 

1(3), 172–185. 

Moons, I., & De Pelsmacker, P. (2012). Emotions as determinants of electric car usage 

intention. Journal of Marketing Management, 28(3–4), 195–237. 

https://doi.org/10.1080/0267257X.2012.659007 

Morgan. (2008). The History of Econometric Ideas (Auflage: Revised.). Cambridge 

England; New York: Cambridge University Press. 

Morgenstern, O. (1965). On Accuracy of Economic Observations (2nd Revised edition 

edition). Princeton, N.J: Princeton University Press. 



Noppers, E. H., Keizer, K., Bolderdijk, J. W., & Steg, L. (2014). The adoption of 

sustainable innovations: Driven by symbolic and environmental motives. Global 

Environmental Change, 25, 52–62. 

https://doi.org/10.1016/j.gloenvcha.2014.01.012 

Pagan, A. (1987). Three Econometric Methodologies: A Critical Appraisal1. Journal of 

Economic Surveys, 1(1–2), 3–23. https://doi.org/10.1111/j.1467-

6419.1987.tb00022.x 

Pasaoglu, G., Harrison, G., Jones, L., Hill, A., Beaudet, A., & Thiel, C. (2016). A 

system dynamics based market agent model simulating future powertrain 

technology transition: Scenarios in the EU light duty vehicle road transport 

sector. Technological Forecasting and Social Change, 104, 133–146. 

https://doi.org/10.1016/j.techfore.2015.11.028 

Peters, A., & Dütschke, E. (2014). How do Consumers Perceive Electric Vehicles? A 

Comparison of German Consumer Groups. Journal of Environmental Policy & 

Planning, 16(3), 359–377. https://doi.org/10.1080/1523908X.2013.879037 

Peters, A., Gutscher, H., & Scholz, R. W. (2011). Psychological determinants of fuel 

consumption of purchased new cars. Transportation Research Part F: Traffic 

Psychology and Behaviour, 14(3), 229–239. 

https://doi.org/10.1016/j.trf.2011.01.003 

Pfahl, S., Jochem, P., & Fichtner, W. (2013). When Will Electric Vehicles Capture the 

German Market? And why? Presented at the Electric Vehicle Symposium 27, 

Barcelona. 

Pietzcker, R. C., Longden, T., Chen, W., Fu, S., Kriegler, E., Kyle, P., & Luderer, G. 

(2014). Long-term transport energy demand and climate policy: Alternative 



visions on transport decarbonization in energy-economy models. Energy, 64, 

95–108. https://doi.org/10.1016/j.energy.2013.08.059 

Plötz, P. (2011). Uncertainty in Diffusion of Competing Technologies and Application 

to Electric Vehicles. Working Paper Sustainability and Innovation, 12, 1–22. 

Plötz, P., Schneider, U., Globisch, J., & Dütschke, E. (2014). Who will buy electric 

vehicles? Identifying early adopters in Germany. Transportation Research Part 

A: Policy and Practice, 67, 96–109. https://doi.org/10.1016/j.tra.2014.06.006 

Potoglou, D., & Kanaroglou, P. S. (2008). Disaggregate Demand Analyses for 

Conventional and Alternative Fueled Automobiles: A Review. International 

Journal of Sustainable Transportation, 2(4), 234–259. 

https://doi.org/10.1080/15568310701230398 

Propfe, B., Kreyenberg, D., Wind, J., & Schmid, S. (2013). Market penetration analysis 

of electric vehicles in the German passenger car market towards 2030. 

International Journal of Hydrogen Energy, 38(13), 5201–5208. 

https://doi.org/10.1016/j.ijhydene.2013.02.049 

Purwanto, A. J. (2013). MOVEET -  MObility, Vehicle fleet, Energy use and Emissions 

forecast Tool. 

Rahmandad, H., & Sterman, J. D. (2012). Reporting guidelines for simulation-based 

research in social sciences. System Dynamics Review, 28(4), 396–411. 

https://doi.org/10.1002/sdr.1481 

Rai, V., & Henry, A. D. (2016). Agent-based modelling of consumer energy choices. 

Nature Climate Change, 6(6), 556–562. https://doi.org/10.1038/nclimate2967 

Rand, W., Herrmann, J., Schein, B., & Vodopivec, N. (2015). An Agent-Based Model 

of Urgent Diffusion in Social Media. Journal of Artificial Societies and Social 

Simulation, 18(2). https://doi.org/10.18564/jasss.2616 



Raveau, S., Yáñez, M. F., & Ortúzar, J. de D. (2012). Practical and empirical 

identifiability of hybrid discrete choice models. Transportation Research Part 

B: Methodological, 46(10), 1374–1383. 

https://doi.org/10.1016/j.trb.2012.06.006 

Rezvani, Z., Jansson, J., & Bodin, J. (2015). Advances in consumer electric vehicle 

adoption research: A review and research agenda. Transportation Research Part 

D: Transport and Environment, 34, 122–136. 

https://doi.org/10.1016/j.trd.2014.10.010 

Richardson, G. P. (2011). Reflections on the foundations of system dynamics: 

Foundations of System Dynamics. System Dynamics Review, 27(3), 219–243. 

https://doi.org/10.1002/sdr.462 

Romilly, P., Song, H., & Liu, X. (1998). Modelling and forecasting car ownership in 

Britain: a cointegration and general to specific approach. Journal of Transport 

Economics and Policy, 165–185. 

Sampson, M. (2013). General Equilibrium with Imperfect Competition. Retrieved from 

http://www.loglinear.com/wp-

content/uploads/2013/09/CournotSeptember06.pdf 

Schade, W. (2005). Strategic Sustainability Analysis: Concept and application for the 

assessment of European Transport Policy (Auflage: 1). Baden-Baden: Nomos. 

Schäfer, A., & Jacoby, H. D. (2006). Vehicle technology under CO2 constraint: a 

general equilibrium analysis. Energy Policy, 34(9), 975–985. 

https://doi.org/10.1016/j.enpol.2004.08.051 

Schmelzer, S., & Miess, M. (2015). The Economic Costs of Electric Vehicles. 

Schuitema, G., Anable, J., Skippon, S., & Kinnear, N. (2013). The role of instrumental, 

hedonic and symbolic attributes in the intention to adopt electric vehicles. 



Transportation Research Part A: Policy and Practice, 48, 39–49. 

https://doi.org/10.1016/j.tra.2012.10.004 

Schwoon, M. (2006). Simulating the adoption of fuel cell vehicles. Journal of 

Evolutionary Economics, 16(4), 435–472. https://doi.org/10.1007/s00191-006-

0026-4 

Shafiei, E., Thorkelsson, H., Ásgeirsson, E. I., Davidsdottir, B., Raberto, M., & 

Stefansson, H. (2012). An agent-based modeling approach to predict the 

evolution of market share of electric vehicles: A case study from Iceland. 

Technological Forecasting and Social Change, 79(9), 1638–1653. 

https://doi.org/10.1016/j.techfore.2012.05.011 

Shay, C. L., DeCarolis, J., Gage, C., Yeh, S., & E.L., W. (2006). EPA U.S. National 

MARKAL Database Documentation. Research Triangle Park, NC.: U.S. 

Environmental Protection Agency. 

Shepherd, S., Bonsall, P., & Harrison, G. (2012). Factors affecting future demand for 

electric vehicles: A model based study. Transport Policy, 20, 62–74. 

https://doi.org/10.1016/j.tranpol.2011.12.006 

Shoven, J. B., & Whalley, J. (1984). Applied General-Equilibrium Models of Taxation 

and International Trade: An Introduction and Survey. Journal of Economic 

Literature, 22(3), 1007–1051. 

Skippon, S., & Garwood, M. (2011). Responses to battery electric vehicles: UK 

consumer attitudes and attributions of symbolic meaning following direct 

experience to reduce psychological distance. Transportation Research Part D: 

Transport and Environment, 16(7), 525–531. 

https://doi.org/10.1016/j.trd.2011.05.005 



Spanos, A. (1999). Probability Theory and Statistical Inference: Econometric Modeling 

with Observational Data. Cambridge, UK; New York, NY, USA: Cambridge 

University Press. 

Stephan, C., & Sullivan, J. (2009). An agent-based hydrogen vehicle/infrastructure 

model. In Proceedings of the 2004 Congress on Evolutionary Computation 

(IEEE Cat. No.04TH8753). Institute of Electrical & Electronics Engineers 

(IEEE). https://doi.org/10.1109/cec.2004.1331110 

Stephens, T. (2010). An Agent-Based Model of Energy Demand and Emissions From 

Plug-In Hybrid Electric Vehicle Use. 

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a 

Complex World. McGraw-Hill/Irwin. 

Struben, J., & Sterman, J. D. (2008). Transition challenges for alternative fuel vehicle 

and transportation systems. Environment and Planning B: Planning and Design. 

Sullivan, J. L., Salmeen, I., & Simon, C. (2009). PHEV marketplace penetration: An 

agent based simulation. 

Svenson, O. (1979). Process descriptions of decision making. Organizational Behavior 

and Human Performance, 23(1), 86–112. https://doi.org/10.1016/0030-

5073(79)90048-5 

Sycara, K. P. (1998). Multiagent systems. AI Magazine, 19(2), 79–92. 

Tinbergen, J. (1937). An econometric approach to business cycle problems. Retrieved 

from http://agris.fao.org/agris-search/search.do?recordID=US201300606041 

Train, K. (1986). Qualitative choice analysis: Theory, econometrics, and an application 

to automobile demand (Vol. 10). Cambridge, Massachusetts. 



Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement. 

Correspondance Mathematique et Physique Publiee par A. Quetelet, 10, 113–

121. 

Vij, A., & Walker, J. L. (2016). How, when and why integrated choice and latent 

variable models are latently useful. Transportation Research Part B: 

Methodological, 90, 192–217. https://doi.org/10.1016/j.trb.2016.04.021 

Vliet, O. van, Vries, B. de, Faaij, A., Turkenburg, W., & Jager, W. (2010). Multi-agent 

simulation of adoption of alternative fuels. Transportation Research Part D: 

Transport and Environment, 15(6), 326–342. 

https://doi.org/10.1016/j.trd.2010.03.006 

Walther, G., Wansart, J., Kieckhäfer, K., Schnieder, E., & Spengler, T. S. (2010). 

Impact assessment in the automotive industry: mandatory market introduction of 

alternative powertrain technologies. System Dynamics Review, 26(3), 239–261. 

https://doi.org/10.1002/sdr.453 

Wansart, J. (2012). Analyse von Strategien der Automobilindustrie zur Reduktion von 

CO2-Flottenemissionen und zur Markteinführung Alternativer Antriebe: Ein . . . 

(2012th ed.). Wiesbaden: Springer Gabler. 

Weikl, R. (2010). Simulationen zur Abschätzung der Marktanteilsentwicklung 

unterschiedlicher Antriebsvarianten am deutschen Fahrzeugmarkt: Ein 

systemdynamisches Modell zur Entschediungsunterstützung in der strategischen 

Marktanalyse (1st ed.). Chemnitz: GUC Gesellschaft f. Unternehmensrechnung 

u. Controlling. 

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. The 

Knowledge Engineering Review, 10(2), 115. 

https://doi.org/10.1017/S0269888900008122 



Yeh, S., Farrell, A., Plevin, R., Sanstad, A., & Weyant, J. (2008). Optimizing U.S. 

Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn 

from a Bottom-Up Model. Environmental Science & Technology, 42(22), 8202–

8210. https://doi.org/10.1021/es8005805 

Zhang, H., & Vorobeychik, Y. (2016). Empirically Grounded Agent-Based Models of 

Innovation Diffusion: A Critical Review. CoRR, abs/1608.08517. Retrieved 

from http://arxiv.org/abs/1608.08517 

Zhang, Y., Yu, Y., & Zou, B. (2011). Analyzing public awareness and acceptance of 

alternative fuel vehicles in China: The case of EV. Energy Policy, 39(11), 7015–

7024. https://doi.org/10.1016/j.enpol.2011.07.055 

 


