
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Automatic Integration of Ecore
Functionality into Java Code

Bachelor’s Thesis of

Timur Sağlam

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek

Advisor: M.Sc. Heiko Klare

Second advisor: Dr.-Ing. Michael Langhammer

19. December 2016 – 18. April 2017

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 10 April 2017

. .

(Timur Sağlam)

Abstract

Model-driven software development makes developing software faster and less complex

by providing a higher abstraction layer than source code. However, since model-driven

tools often generate the source code partially or completely from a model, one needs a

suitable model to use model-driven approaches. The Eclipse Modeling Framework o�ers a

meta-metamodel called Ecore, which can be used to create metamodels that can be utilized

for model-driven software development.

With the Eclipse Modeling Framework, it is possible to generate Java code from Ecore

metamodels. This generated code follows speci�c patterns. For example, it distinguishes

between interface and implementation for every type. Many tools rely on these speci�c

patterns of the generated code and therefore can only be used with Java code that contains

these patterns, which usually is code generated from Ecore metamodels.

This thesis introduces an approach for the automatic integration of Ecore functionality

into arbitrary Java code. This approach allows using Ecore-dependent tools on existing

Java code. To accomplish the integration of Ecore functionality into Java code, this thesis

develops a reverse engineering approach for the extraction of Ecore metamodels from Java

code. At its core is a mapping from elements of the implicit Java metamodel to elements

of the Ecore meta-metamodel. This extraction can also be used independently from the

integration of Ecore functionality as a reverse engineering tool.

We provide a validation of our approach by integrating Ecore functionality into two Java

projects and applying a model transformation on those projects, which was previously

only possible with code generated from Ecore metamodels.

i

Zusammenfassung

Modellgetriebene Softwareentwicklung erlaubt schnelleres und vereinfachtes Entwickeln

von Software durch das Bereitstellen einer höheren Abstraktionsebene als Code. Modellge-

triebene Programme generieren Code oft teilweise oder vollständig mithilfe von Modellen.

Aus diesem Grund benötigt man ein geeignetes Modell, um modellgetriebene Prozesse

verwenden zu können. Das Eclipse Modeling Framework bietet das sogenannte Ecore Meta-

metamodell, welches das Erstellen von Metamodellen ermöglicht, die für modellgetriebene

Softwareentwicklung genutzt werden können.

Mithilfe des Eclipse Modeling Frameworks ist es möglich, Java Code zu generieren.

Dieser generierte Code folgt spezi�schen Mustern. Zum Beispiel unterscheidet er für

jede Klasse zwischen Schnittstelle und Implementierung. Viele Programme sind auf diese

spezi�schen Muster angewiesen und können deshalb nur mit Java Code verwendet wer-

den, welcher diese Muster enthält. Das ist üblicherweise Code, der mithilfe eines Ecore

Metamodells generiert wurde.

In dieser Arbeit stellen wir einen Ansatz für die automatische Integration von Ecore

Funktionalität in Java Code vor. Dieser Ansatz ermöglicht die Verwendung von Ecore-

abhängigen Programmen mit existierendem Java Code. Um die Integration von Ecore

Funktionalität zu ermöglichen, entwickelt diese Arbeit einen Ansatz für die Extraktion

von Ecore Metamodellen aus Java Code. In ihrem Zentrum steht eine Abbildung von

Elementen des impliziten Java Metamodells auf Elemente des Ecore Metametamodells.

Diese Extraktion kann unabhängig von der Integration von Ecore Funktionalität als Reverse

Engineering Programm verwendet werden.

Wir erbringen einen Nachweis für die Korrektheit unseres Ansatzes, indem wir Ecore

Funktionalität in zwei Java Projekte integrieren und auf diese dann eine Modelltransfor-

mation anwenden, was zuvor nur auf Code, der aus Ecore Metamodellen generiert wurde,

möglich war.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Ecori�cation of Java Code . 1

1.2. Ecore Metamodel Extraction . 2

1.3. Structure of this Thesis . 3

2. Foundations 5
2.1. Model-Driven Software Development . 5

2.2. Metamodeling . 5

2.3. Reverse Engineering . 6

2.4. Java . 6

2.5. Eclipse . 7

2.6. Eclipse Modeling Framework . 7

2.6.1. Ecore Meta-Metamodel . 8

2.6.2. Ecore Model Code . 9

2.6.3. Ecore Functionality . 10

3. Running Example 13
3.1. Matching Ecore Metamodel . 14

3.2. Code with Integrated Ecore Functionality 15

4. Ecore Metamodel Extraction 17
4.1. Package Structure . 18

4.2. Reference Types . 19

4.2.1. External Types . 19

4.2.2. Enums . 20

4.2.3. Nested Types . 21

4.2.4. Array Types . 22

4.3. Primitive Types . 22

4.4. Methods . 23

4.4.1. Access Methods . 24

4.4.2. Constructors . 24

4.5. Fields . 25

4.6. Specialization and Realization Relations 26

4.7. Custom Exception and Error Classes . 27

v

Contents

4.8. Modi�ers . 28

4.8.1. Access Level Modi�ers . 29

4.8.2. Modi�er Keyword Abstract . 29

4.8.3. Modi�er Keyword Static . 30

4.8.4. Modi�er Keyword Final . 30

4.8.5. Modi�er Keyword Transient . 30

4.9. Generics . 31

4.10. Wildcard Types . 33

4.11. Selective Extraction . 34

4.12. Summary . 35

5. Ecorification of Java Code 37
5.1. Ecore Representation . 38

5.2. Base Concept for Types . 40

5.3. Retaining Specialization and Realization Relations 41

5.3.1. Realization Relations . 42

5.3.2. Specialization Relations . 42

5.4. Method Delegation in the Integration Code 43

5.4.1. Delegating Local Methods . 44

5.4.2. Delegating Inherited Methods . 44

5.4.3. Delegating Ecore Methods . 45

5.5. Removing the Fields of the Origin Code 46

5.6. Changing the Factories . 46

5.7. Replacing Parameterized Constructors 47

6. Prototypical Implementation 51
6.1. Extraction Implementation . 51

6.1.1. Architecture . 52

6.1.2. Intermediate Model . 52

6.1.3. Extraction Table . 54

6.1.4. Con�gurability . 54

6.2. Ecori�cation Implementation . 54

7. Validation 57
7.1. Validating the Ecore Metamodel Extraction 57

7.2. Validating the Ecori�cation of Java Code 59

7.3. Lessons Learned . 61

8. RelatedWork 63

9. Future Work 67

10. Conclusion 69

Bibliography 71

vi

Contents

A. Appendix 75
A.1. Prede�ned EDataTypes . 75

A.2. Ecore Meta-Metamodel Hierarchy . 76

vii

List of Figures

2.1. Ecore Metamodel Views . 8

2.2. Ecore Kernel Class Diagram . 9

2.3. EPackage Structure Class Diagram . 9

2.4. Model Code Example . 10

3.1. Running Example Class Diagram . 13

3.2. Running Example Metamodel . 14

3.3. Integration Example . 15

4.1. Extraction of Package Structures . 19

4.2. Data Type Hierarchy . 20

4.3. Extraction of Nested Types . 21

4.4. Extraction of Methods . 24

4.5. EStructuralFeatures . 25

4.6. Extraction of Fields . 26

4.7. Declaring ETypeParameters . 31

4.8. Referencing an ETypeParameter . 32

4.9. Specifying Generic Arguments . 32

4.10. Extraction of Generics . 33

4.11. Extraction of Wildcard Types . 34

5.1. Depiction of the Ecori�cation Process . 37

5.2. Ecore Representation Example . 39

5.3. Base Concept Class Diagram . 40

5.4. Ecori�cation of Realization Relations . 42

5.5. Ecori�cation of Specialization Relations 43

5.6. Delegation Process in the Integration Code 45

6.1. Extraction Work�ow . 52

6.2. Element Hierarchy Class Diagram . 53

6.3. Data Type Hierarchy Class Diagram . 54

6.4. Ecori�cation Work�ow . 56

7.1. Families Project Class Diagram . 59

7.2. Persons Project Class Diagram . 60

7.3. Extracted Families Metamodel . 60

7.4. Extracted Persons Metamodel . 61

A.2. Ecore Hierarchy Class Diagram . 76

ix

List of Tables

4.1. Ecore Meta-Metamodel to Java Metamodel Mapping 17

4.2. EClass Property Con�guration . 19

4.3. Prede�ned EDataTypes for Primitive Types 23

4.4. Super-Relations in Comparison . 27

4.5. Java Modi�ers . 28

6.1. Extraction Table . 55

7.1. Extracted Ecore Model Elements . 59

A.1. Prede�ned EDataTypes . 75

xi

1. Introduction

Model-driven software development makes developing software faster and less complex by

providing a higher abstraction layer than source code. It is also bene�cial for the software

quality [29]. However, since model-driven tools generate the source code partially or com-

pletely from a model, one needs a suitable model to utilize model-driven approaches. The

Eclipse Modeling Framework o�ers an Essential Meta Object Facility (EMOF) compatible

meta-metamodel called Ecore, which can be used to create metamodels that can be utilized

for model-driven software development [31].

With the Eclipse Modeling Framework it is possible to generate Java code from Ecore

metamodels. This generated code follows speci�c patterns. For example, it distinguishes

between interface and implementation for every type. It also contains additional func-

tionality like an object persistence management mechanism or a model change noti�er

system similar to the observer design pattern (see Chapter 2.4.1 in [31]). Many tools rely

on these speci�c patterns of the generated code and therefore can only be used with Java

code that contains these patterns, which usually is code generated from Ecore metamodels.

Examples of such tools are model transformation languages like QVT [13] or ATL [16],

consistency-preservation approaches like Vitruvius [20, 21], and editor frameworks like

Sirius [36].

These tools, which rely on the Ecore functionality, cannot be used with arbitrary Java

code. It is possible to model arbitrary Java code manually as an Ecore metamodel, generate

the model code from that metamodel and then copy the implementation details into the

model code. After that, the tools can be used with the model code. However, this process is

not only very time-consuming but also API-breaking. A better idea would be to integrate

the previously mentioned Ecore functionality into the existing Java code. This would

allow the use of such tools on the Java code. This thesis introduces an approach for

the automatic integration of Ecore functionality into arbitrary Java code. We call this

approach Ecori�cation of Java code. One reason why there is a need for this approach is

that software systems often are in use for a long time. As a result, many software projects

were developed before model-driven software development techniques. This thesis could

allow the developers of these legacy software systems to switch to model-driven software

development.

1.1. Ecorification of Java Code

The Java code Ecori�cation has the goal to integrate Ecore functionality into Java code

while preserving all of its original functionality. Preserving the original functionality of

the Java code requires retaining the interfaces which are o�ered by the modules of the

code and also retaining all internal functionality of the code. That means the product of the

1

1. Introduction

Java code Ecori�cation is the original code, enriched with the desired Ecore functionality.

This code then can be used with Ecore-dependent tools. At the current time, there are no

existing approaches known to the author that allow the integration of Ecore functionality

into Java code.

The basic idea of the Ecori�cation is to �nd an Ecore representation of the Java code.

This representation is used to integrate its Ecore functionality into the Java code. The

Ecore representation is obtained by creating an Ecore metamodel that represents the Java

code as closely as possible. We use the Eclipse Modeling Framework to generate Ecore

model code from the Ecore metamodel. That generated Ecore model code has similarities

with the original Java code because we speci�cally created the Ecore metamodel as similar

as possible to the Java code. In contrast, the model code also shows some di�erences when

compared to the original Java code, because of the speci�c patterns of Ecore model code

in general. As a result, the model code contains the desired Ecore functionality, which

is its most important feature. We now use the similarities of the original Java code and

the generated model code to interlace both codes. This can be achieved by utilizing the

separation of interface and implementation to mount the original code into the super

relation hierarchy of the model code. The combination of both codes then contains the

implementation details of the original code and the Ecore functionality of the model code.

This way, the Ecori�cation of Java code allows the integration of Ecore functionality.

The Ecori�cation of Java code was prototypically implemented as an Eclipse plug-in and

serves as a proof of concept. The extraction implementation integrates Ecore functionality

into the Java code of Java projects in the Eclipse workspace. The Java code Ecori�cation
was validated through performing a QVTO transformation [13] on Java code, into which

Ecore functionality was integrated through the Ecori�cation of Java code. Because QVTO

transformations cannot be conducted on regular Java code, this validation proofed that

this thesis was able to successfully integrate Ecore functionality into Java code.

1.2. Ecore Metamodel Extraction

Because the Java code Ecori�cation relies on an Ecore representation of the Java code,

there is a need for a reverse engineering process that can automatically generate such

an Ecore representation from any arbitrary Java code. The Eclipse Modeling Framework

does not o�er such a process. There are many existing approaches for reverse engineering

models or metamodels from code. Most of them extract UML models from object-oriented

code. At the current time, there are no approaches known to the author that could extract

Ecore metamodels from object-oriented code.

As a result, this thesis proposes an approach for reverse engineering Ecore metamodels

from Java code. This approach allows generating Ecore metamodels from any arbitrary

Java code. These extracted metamodels can be used to generate model code. At the core

of the approach is a mapping from elements of the implicit Java metamodel to elements

of the Ecore meta-metamodel. The implicit Java metamodel is a metamodel, which the

Java language implicitly de�nes because Java code follows a structure de�ned by the

Java Language Speci�cation [12]. This mapping de�nes how Ecore metamodel elements

are extracted from Java code. We de�ne the mapping for a higher metalevel to allow its

2

1.3. Structure of this Thesis

application to any instances of the metalevel. For example, the mapping from the Java

class to the Ecore metaclass EClass can be applied for any class.

The Ecore meta-metamodel is a simpli�ed subset of UML. Therefore, the Ecore meta-

metamodel is very similar to an UML class diagram (see Chapter 2.3.1 and 2.6.1 in [31]).

However, the Ecore meta-metamodel has also its speci�c characteristics, which makes it

in many ways fundamentally di�erent. Because of this relation to UML, the Ecore meta-

metamodel and the implicit Java metamodel are very similar, but not perfectly identical.

That means there is no perfect mapping between the Ecore meta-metamodel elements and

the implicit Java metamodel. As a result, not all features of Java code can be extracted,

but the number of features that can be extracted allows the extraction of metamodels that

accurately represent the Java code.

While the Ecore metamodel extraction approach was primarily developed for the Java

code Ecori�cation, there are other applications for the Extraction of Ecore metamodels from

Java code. The process of manually creating an Ecore model can be very time-consuming.

It would be bene�cial to be able to generate Ecore metamodels from existing software

projects automatically. This is one example where the Ecore metamodel extraction can

save much time by automating the process of creating an Ecore metamodel for an existing

project.

The Ecore metamodel extraction was implemented as an Eclipse plug-in separately from

the Java code Ecori�cation. While the Ecori�cation was only implemented as a proof of

concept, the extraction implementation covers almost all features of the concept. While

the extraction approach was primarily developed for the Java code Ecori�cation, it can also

be independently used as a reverse engineering tool. The Ecore metamodel extraction was

validated using three indicators: The validity of the extracted metamodel according to EMF,

the ability to generate Ecore model code from the extracted metamodel, and indication

through examined model properties. The examined model properties were compared to

the correlating properties of the Java code used for the extraction. We tested the extraction

for a custom designed test project and two larger, already existing projects. The Java

code Ecori�cation was validated through performing a QVTO transformation [13] on Java

code, into which Ecore functionality was integrated through the Ecori�cation of Java code.

Because QVTO transformations can only be conducted on Ecore-dependent code, this

validation proved that we were able to successfully integrate Ecore functionality into Java

code.

1.3. Structure of this Thesis

Since the Ecore metamodel extraction can be used separately from the Java code Ecori-
�cation, we separate the Ecore metamodel extraction and the Ecori�cation of Java code

throughout this thesis. Additionally, the thesis separates the theoretical concepts from

their prototypical implementations. Chapter 2 introduces the foundations of this thesis.

Next, Chapter 3 de�nes a running example which is used throughout the thesis to illustrate

the di�erent concepts on a simple level. This chapter also gives examples how one can

understand the Ecore metamodel extraction and the Ecori�cation of Java code. Chapter 4

explains the concept of the Ecore metamodel extraction. It introduces the mapping from

3

1. Introduction

elements of the implicit Java metamodel to elements of the Ecore meta-metamodel and

then elucidates how the di�erent features of the Java language are extracted. Then, Chapter

5 explains the concept of the Java code Ecori�cation which uses the Ecore metamodel

extraction to integrate Ecore functionality into Java code. It also discusses the problems

which come with the Ecori�cation and suggests how they can be solved. Next, Chapter 6

covers the implementation of the Ecore metamodel extraction and the Ecori�cation of Java

code. While the Ecore metamodel extraction implementation includes many features of

the concept, the Java code Ecori�cation implementation is more a prototypical proof of

concept. Chapter 7 explains how the concept of this thesis has been validated and what

the di�culties of the validation are. The related work of this thesis and the di�erences

to this approach is outlined in Chapter 8. Chapter 9 gives an overview of the unresolved

problems of this thesis and possible future work. Last, Chapter 10 gives a summary of this

thesis and its concepts.

4

2. Foundations

This chapter introduces the foundations on which this thesis is based on. First, the

term model-driven software development is explained in Section 2.1. Second, the terms

metamodeling, metamodels and meta-metamodel are introduced in 2.2. Third, the process

of reverse engineering is outlined in Section 2.3. Fourth, the programming language Java

is explained in Section 2.4. Then, the software project Eclipse is introduced in Section

2.5. After that, the Eclipse Modeling Framework is outlined in Section 2.6. The Ecore

meta-metamodel is explained in Section 2.6.1, and the Ecore model code is explained in

Section 2.6.2. Last, the term Ecore functionality is de�ned in Section 2.6.3.

2.1. Model-Driven So�ware Development

Model-driven software development is the application of model-driven engineering on soft-

ware development. Its goals are reducing the complexity of developing software through

working on a higher abstraction layer, increasing the development speed through automa-

tion, increasing the reusability, and better maintainability through redundancy avoidance.

Model-driven software development is closely related to the Object Management Group’s

Model-Driven Architecture (MDA).

A model in the context of model-driven software development is an abstract represen-

tation of a system’s structure. While in classic software development models are used

to assist during the development process, model-driven software development makes

models the primary tool for developing software. Model-driven software development

uses models as the central element of the development. For example, models are used to

automatically generate code, while classic software development usually uses models to

generate a projection of the source code [29]

2.2. Metamodeling

Metamodeling is a very important aspect of model-driven software development. Meta-

modeling is used for the construction of domain-speci�c modeling languages, model

validation, model-to-model transformations, code generation and modeling tool integra-

tion. Metamodeling describes the design and use of metamodels.

A metamodel is an abstract description of a model, and therefore the model of a model. It

can be seen as a blueprint for speci�c models. That means that every model is an instance

of a metamodel. Meta-metamodels are models of metamodels. The same description

of metamodels can be used for meta-metamodels, only that meta-metamodels describe

metamodels instead of models. Metamodels are one metalevel above models, and meta-

5

2. Foundations

metamodels are one above metamodels. When talking about metalevels, a metalevel is

always an instance of the metalevel above and describes the metalevel below.

While this layering could go on inde�nitely, the Object Management Group de�nes

four metalevels: Instances, models, metamodels, and meta-metamodels. The Object Man-

agement Group also de�nes an own metamodel: The meta object facility (MOF). There is

no metalevel above the meta object facility. It rather de�nes itself. The Essential MOF or

EMOF is a subset of the meta object facility. It allows the simpli�ed creation of metamod-

els. The uni�ed modeling language (UML), a well-known graphical modeling language

developed by the Object Management Group, is an instance or application of the meta

object facility [29].

2.3. Reverse Engineering

Reverse engineering in the context of software development describes either the process of

extracting source code from binary �les or the process of extracting models from existing

systems. For this work, the second de�nition is relevant. Models are very useful in software

development because they give a more abstract view on the system’s code. They make it

easy to understand complex structures and behavior. This gives the need for methods to

extract models from existing source code [33, 10, 4].

Reverse engineering tries to extract as much information as possible from existing

systems and represent them in a more abstract model. A common example is the reverse

engineering of class diagrams from object-oriented code. An example of the application

of reverse engineering is software maintenance. During software maintenance, reverse

engineering helps to identify and understand the components and relations of a system

[33, 10, 34].

2.4. Java

The Java language is an object-oriented general-purpose programming language. It �rst

appeared in 1995 and was originally developed by James Gosling at Sun Microsystems,

which is now owned by Oracle Corporation. Java code is compiled to Java bytecode,

which is used by the Java Virtual Machine, an abstract computing machine, to run the

Java code platform-independent. The goal of the language is to allow the development of

"secure, high performance, and robust applications on multiple platforms in heterogeneous,

distributed networks" (see Chapter 1.2 in GoslingMcGilton1995). The Java programming

language sets out to be architecture neutral, portable, and dynamically adaptable [1, 11].

The syntax of the Java language is de�ned by the Java Language Speci�cation. The

Java Language Speci�cation refers to its speci�c chapters and sections as paragraphs.

This thesis refers to the Java Language Speci�cation as JLS. Whenever JLS paragraphs

are cited by this thesis, we speci�cally refer to the Java SE 8 Edition of the Java Language

Speci�cation (see [12]).

While the Java language does not explicitly de�ne a model, the Java Language Speci�-

cation can be interpreted as a textual representation of a metamodel. This metamodel is

6

2.5. Eclipse

implicitly de�ned by the language Java. In this thesis, we refer to this metamodel as the

implicit Java metamodel. This implicit Java metamodel is used by the Ecore metamodel

extraction to de�ne a mapping between the Ecore meta-metamodels and the Java language.

2.5. Eclipse

Eclipse is an open source software project which provides a highly integrated tool platform.

The non-pro�t organization Eclipse Foundation leads the development of the Eclipse

project. Eclipse is divided into several projects. The Eclipse Project develops the Eclipse IDE,

an integrated development environment for Java. It contains four subprojects: Equinox,

the Platform, the Java Development Tools and the Plug-in Development Environment. The

Platform and Equinox are the core components of Eclipse and are therefore often confused

with Eclipse itself. The Platform is a framework for developing Integrated Development

Environments, while Equinox provides the component model, on which Eclipse is based.

The Java Development Tools (JDT) is a Java development environment. It can be used to

develop Java programs for Eclipse. Moreover, it is used to develop Eclipse itself. The Java

Development Tools can be divided into three components: The Java Model, the Abstract

Syntax Tree, and the Search Engine (see Chapter 1.1 and 1.2 in [31]).

The Java Model allows representing Java projects in a tree structure. It does not contain

much information about the source code of a project itself but o�ers a fault-tolerant and

lightweight representation of a Java project. The Java model can contain unresolved

information. The Java Abstract Syntax Tree (AST) is a precise tree representation of Java

source code. It is not as lightweight as the Java Model, but o�ers more functionality and

does not contain unresolved information. Its API allows to create, modify and read Java

source code. Moreover, it allows the Eclipse IDE to jump to declarations or to detect the

declaration and all the references to a local variable. The Search Engine allows searching

Java projects in the Eclipse IDE workspace for Java elements. It is possible to set a scope

to search for speci�c elements and search for speci�c patterns inside Java elements (see

[15, 22] and Chapter 1.1 in [31]).

2.6. Eclipse Modeling Framework

Another project is the Eclipse Modeling Project. Its task is the evolution of model-based

development technologies. The core of the Eclipse Modeling Project is the Eclipse Modeling

Framework (EMF), which adds modeling functionality to the Eclipse platform. The Eclipse

Modeling Framework is an open source Java framework for modeling and code generation.

It combines the Java language, XML, and UML in a high-level representation.

At its core, it uses an EMOF compatible meta-metamodel called Ecore (see Chapter 2

and 2.1 in [31]). The Ecore meta-metamodel is further explained in Section 2.6.1. EMF

uses the Ecore meta-metamodel to represent other metamodels. Ecore metamodels can be

created with a graphical EMF editor, annotated Java Code, XMI, an XML schema, UML

and the Ecore API. The Ecore API allows programmatically creating, loading and saving

Ecore metamodels. Eclipse o�ers two views for Ecore models: A diagram view, similar to

7

2. Foundations

a normal class diagram representation and a tree view (see Chapter 2.3.1, 2.3.2, and 2.3.5

in [31]). Both views are depicted in Figure 2.1 for a well-known metamodel example [37].

Figure 2.1.: Two views on an identical Ecore metamodel: The diagram view on the left and

the tree view on the right [37].

2.6.1. Ecore Meta-Metamodel

The Ecore meta-metamodel is explained best with the Ecore kernel (see Figure 2.2). The

Ecore kernel is a simpli�ed subset of the Ecore meta-metamodel. The Ecore kernel de�nes

four types. EClass, EAttribute, EReference, and EDataTypes. The type EClass models

classes as known from the Java language. An EClass has a name as well as any number

of supertypes, EAttributes, and EReferences. Similar to an UML class diagram EAttributes
and EReferences can be used to model �elds. Both types EAttribute and EReference have a

name. However, while the referenced type of an EReference is an EClass, the EAttribute
references an EDataType. EDataTypes model simple types that are not fully modeled as

EClasses. EDataTypes only have a name (see Chapter 2.3.1 and 5.2 in [31]).

In the full Ecore meta-metamodel, EAttribute and EReference both extend the type

EStructuralFeature, while EClass and EDataType extend the type EClassi�er . Both EStruc-
turalFeature and EClassi�er are ENamedElements. ENamedElements and all other elements

of the Ecore meta-metamodel are EObjects (see Chapter 5.3 and 5.5 in [31]). The full Ecore

hierarchy can be seen in Figure A.2.

The Ecore hierarchy depicts many other elements of the Ecore meta-metamodel, for

example, EPackages. EPackages contain EClassi�ers and other EPackages. Every Ecore

metamodel contains a speci�c EPackage as the root element. Therefore, EPackages de�ne

the basic tree structure of Ecore metamodels (see Figure 2.3). While the structural features

of EClasses are modeled as EStructuralFeatures, behavioral features are modeled as EOpera-
tions. EOperations themselves only represent the signatures of the behavioral features. It is

8

2.6. Eclipse Modeling Framework

Figure 2.2.: UML Class Diagram of the Ecore kernel, a simpli�ed subset of the Ecore

meta-metamodel (see Chapter 5.2 in [31]).

possible to annotate an EOperation with its implementation details through EAnnotations.
EOperations are contained by EClasses. As EDataTypes, EOperations are ETypedElements
(see Figure A.2) (see Chapter 5.4 and 5.6 in [31]).

Figure 2.3.: UML Class Diagram of the EPackage Structure, which de�nes the basic tree

structure of Ecore metamodels (see Chapter 5.6 in [31]).

2.6.2. Ecore Model Code

EMF de�nes a mapping from Ecore elements to Java interfaces. This mapping gives the

possibility to generate Java code from an Ecore metamodel. Java code generated from an

Ecore model is called model code. To generate model code, one has to create a Generator
Model. The Generator Model is an Ecore model that is linked to an Ecore metamodel and

contains additional information for the code generation of the metamodel, such as, the

output location of the generated code (see Chapter 2.4 in [31]).

EMF de�nes a set of generator patterns, which are used during the model code genera-

tion. Every EClass is represented in the model code through two Java types: An interface

and an implementation class. When generating model code from an EPackage, the code is

organized into three Java packages. The �rst Java package is named after the EPackage
itself and contains the interfaces that represent the EClasses. The second package is a

9

2. Foundations

subpackage of the �rst package and is named impl. It contains the implementation classes

of the interfaces. The third package is also a subpackage of the �rst package and is named

util. It contains a switch class and an adapter factory. They can be used to attach adapters

to the modeled classes (see Chapter 10 in [31]). Additionally to these types, the Eclipse

Modeling Framework also generates two interfaces and their implementations for the pack-

age: The package and the factory. While the package provides constants and convenient

methods for the metadata of the EPackage, the factory allows creating instances of the

packages implementation classes (see Chapter 10.8 in [31]). EOperations are represented

in the generated model code through method signatures in the interfaces of their con-

taining EClasses and methods in the relating implementation classes. EStructuralFeatures
are represented in the model code through �elds in the implementation classes of their

containing EClasses. Additionally, EMF generates access methods for those �elds, which

are declared in the interfaces and implemented in the implementation classes (see Chapter

10.1, 10.2, and 10.5 in [31]).

When generating model code from a simple EPackage named main containing one EClass
named Person, which contains one EAttribute named name, the model code contains three

Java packages: main, main.impl, and main.util. The EClass is represented through the two

Java types: Person and PersonImpl. These types are depicted in Figure 2.4. The interface

Person declares the signatures of the access methods getName() and setName(). The class

PersonImpl implements those access methods and contains the �eld name and its default

value in another �eld.

Figure 2.4.: Simpli�ed UML Class Diagram of the model code which was generated from

an EPackage named main containing one EClass named Person, which contains

one EAttribute named name.

2.6.3. Ecore Functionality

As mentioned in the introduction (see Chapter 1), the model code generated from Ecore

metamodels has several di�erences compared to arbitrary Java code. For example, it

distinguishes between interface and implementation for every type. That means all

methods are declared in an interface and implemented in a correlating class. While this is

one feature that can be described as Ecore functionality, Ecore model code also contains

additional features (see Chapter 2.4.1 in [31]).

Classes of Ecore model code extend the interface Notifier. This allows the support

of model change noti�cations for every object of the model code. The model change

noti�cation system is similar to the observer design pattern. This system allows, for

example, observing objects to update views or other objects (see Chapter 2.4.2 and 2.5.1

10

2.6. Eclipse Modeling Framework

in [31]). Additionally, classes of the Ecore model code contain the methods eContainer()

and eResource(), which allow access to the containing objects and resources of the class.

This is a part of the EMF persistence API. It is a powerful mechanism for the management

of object persistence which allows saving objects with an XMI serializer (see Chapter

2.4.2 and 2.5.2 in [31]). Another feature is the re�ectivity API. Classes of the Ecore model

code contain the methods eGet, eSet, eIsSet, EUnset. This allows manipulating objects

through a model for generic access (see Chapter 2.4.2 and 2.5.3 in [31]). This thesis refers

to all of these features as Ecore functionality.

11

3. Running Example

This chapter introduces a minimal Java code that is used throughout the thesis as an

example explaining the integration of Ecore functionality into Java code. The simplicity of

the code allows explaining complex processes on a very basic level and makes them easier

to understand.

The code contains a package, three types, a specialization relation, and a realization

relation. This is depicted in an UML class diagram in Figure 3.1. The package is called

company while the types are called Person, Customer, and BusinessPerson. The class

Person contains a private �eld of type String, which is called name and a public access

method for that �eld called getName(). BusinessPerson is an interface which declares

one public method called generateReport. The method takes one parameter of type

java.util.Date which is called day. The class Customer extends the class Person and

implements the interface BusinessPerson. It inherits the method getName() from Person

and implements the method generateReport() from BusinessPerson. Additionally, the

class Customer contains a private �eld of type int, called customerID and a public access

method for that �eld called getCustomerID().

Figure 3.1.: The UML class diagram of the package company, containing the classes Person

and Customer as well as the interface BusinessPerson.

13

3. Running Example

3.1. Matching Ecore Metamodel

As previously explained, we developed an approach for the integration of Ecore function-

ality into ordinary Java code. A fundamental part of this approach is to �nd an Ecore

representation of the Java code. Figure 3.2 shows the tree view of an Ecore metamodel.

The root EPackage of the Ecore metamodel is called default. It contains two EPackages:
datatypes and company. The EPackage company contains three EClasses: Customer, Person,

and BusinessPerson. The EClass Person only contains an EAttribute of type EString, called

name. The EClass BusinessPerson contains one EOperation called generateReport, which

takes one EParameter of type Date called day. The EClass Customer contains two references

to EGeneric Super Types. One references the EClass Person, the other references the EClass
BusinessPerson. It also contains the same method as the EClass BusinessPerson and an

additional EAttribute called customerID, which is of type EInt. The EPackage datatypes
contains another EPackage called java, which contains the EPackage util. The EPackage
util contains one EDataType called Date. This is the type referenced by the EParam-
eters of both methods in Customer and BusinessPerson. It has the instance type name

java.util.Date.

Figure 3.2.: The extracted Ecore metamodel of the running example containing the EClasses
Person, Customer, and BusinessPerson as well as the EDataType Date.

If we now compare Figure 3.1 and Figure 3.2, we can see many similarities: The Java

package company match the EPackage company of the Ecore metamodel, while the Java

types match the EClasses of the Ecore metamodel. The methods called generateReport()

with their parameters match the EOperations with their EParameters, and the �elds match

the EAttributes of the Ecore metamodel. While the Ecore metamodel does not di�erentiate

between specialization and realization relations, its super relations match the super rela-

14

3.2. Code with Integrated Ecore Functionality

tions of the class diagram. However, there are some di�erences between Figure 3.1 and

Figure 3.2. The Ecore metamodel contains the additional packages default, datatypes,

java, and util. The EDataType Date is modeled as an element, while the class diagram

does not contain an element for the type java.util.Date. The class diagram also con-

tains access methods, while the Ecore metamodel does not contain corresponding access

EOperations.
The comparison of Figure 3.1 and Figure 3.2 suggests that it is possible to extract an

Ecore metamodel from Java code by representing the di�erent elements of the implicit

Java metamodel through model elements from the Ecore meta-metamodel. The model

elements have to be arranged in a hierarchical structure that matches the structure of the

implicit Java model.

3.2. Code with Integrated Ecore Functionality

Let us now look at a simpli�ed example for the integration of Ecore functionality into Java

code. Figure 3.3 depicts another UML class diagram. The class diagram contains the class

Person from Figure 3.1. It also contains three other types: PersonWrapper, EPerson, and

EPersonImpl. The interface EPerson and the class EPersonImpl were generated from the

EClass Person from Figure 3.2. That means they are part of the model code of the Ecore

metamodel from Figure 3.2. The class PersonWrapper implements the interface EPerson. It

also has a reference to the class EPersonImpl. That means the class PersonWrapper imple-

ments all Ecore functionality of the interface EPerson and delegates the implementation

of this functionality to the class EPersonImpl. The class Person inherits that functionality

because it extends the class PersonWrapper.

Figure 3.3.: UML class diagram that depicts an example of the integration of Ecore func-

tionality into Java code.

That means �gure 3.3 shows a simpli�ed pattern to integrate Ecore functionality into

Java code while using the model code of an Ecore metamodel, which closely represents

the original Java code. This is the base concept for Ecori�cation process.

15

4. Ecore Metamodel Extraction

Because the Java code Ecori�cation relies on an Ecore metamodel that represents the Java

code, there is a need for a reverse engineering process that can automatically generate

such an Ecore metamodel. This section introduces a reverse-engineering approach for the

extraction of Ecore metamodels from Java code. At the core of the approach is a mapping

from elements of the implicit Java metamodel and elements of the Ecore meta-metamodel.

This mapping de�nes how Ecore metamodel elements are extracted from Java code. We

de�ne the mapping for a higher metalevel to allow its application to any instances of the

metalevel (see Section 2.2). For example, the mapping from the Java class to the Ecore

metaclass EClass can be applied for any class. Table 4.1 gives a tabular view of the mapping

between the Ecore meta-metamodel and the implicit Java metamodel.

Implicit Java Metamodel Ecore Meta-Metamodel

Package EPackage

Type EClassi�er

Class EClass

Interface EClass

Enum EEnum

Enum Constant EEnumLiteral

Field EStructuralFeature

Method EOperation

Method Parameter EParameter

Method Return Type EClassi�er/EGenericType
Throws Clause EClassi�er/EGenericType
Generic Type Parameter ETypeParameter

Generic Type Argument EGenericType

Generic Type Bound EGenericType

Super Type Reference EClass & EGenericType

Table 4.1.: Tabular view of the mapping from elements of the implicit Java metamodel to

elements of the Ecore meta-metamodel. A cursive Ecore element means the

corresponding Java element is represented through a reference to the cursive

Ecore element.

The Ecore meta-metamodel is a simpli�ed subset of UML. Therefore, the Ecore meta-

metamodel is very similar to an UML class diagram (see Chapter 2.3.1 and 2.6.1 in [31]).

However, the Ecore meta-metamodel has also its speci�c characteristics (see Figure 2.1),

which makes it in many ways fundamentally di�erent. Because of this relation to UML, the

17

4. Ecore Metamodel Extraction

Ecore meta-metamodel, and the implicit Java metamodel are very similar, but not perfectly

identical. That means there is no perfect mapping between the Ecore meta-metamodel

elements and the implicit Java metamodel. As a result, not all features of Java code can

be extracted, but the number of features that can be extracted allows the extraction of

metamodels that accurately represent the Java code.

This chapter describes the extracted features of the Java language, their Ecore counter-

parts and how they are extracted. First, the extraction of the package structure is explained

in Section 4.1. Second, the extraction of reference types is outlined in Section 4.2. Third,

Section 4.3 discusses the extraction of primitive types. The extraction of methods and

�elds are explained in Section 4.4 and Section 4.5. Next, Section 4.6, outlines the extraction

of inheritance and realization relations between classes. Section 4.7 explains the problem

with custom exception and error classes. Section 4.8 outlines how modi�ers are treated

during the extraction. The sections 4.9 and 4.10 address the special cases where generic

types or wildcard types are extracted. Next, Section 4.11, covers the selective extraction of

an Ecore model from Java code. Finally, Section 4.12 summarizes the Ecore metamodel

extraction.

4.1. Package Structure

The Java language organizes programs as sets of packages. Packages use a hierarchical

package structure to organize related packages and types (see §7 in the JLS [12]). The

Ecore meta-metamodel encapsulates types in EPackages, which are similar to the Java

packages. EPackages and Java packages also serve a similar purpose conceptually.

In both Ecore and Java, the name of the package does not have to be unique. Java

distinguishes packages through their fully quali�ed name, which is the hierarchical dot-

separated concatenation of their names and the names of their super packages (see §6.7 in

the JLS [12]). In an Ecore Metamodel, uniqueness is guaranteed through a unique Uniform

Resource Identi�er (URI). The URI usually also contains a concatenation of the hierarchical

package names. Additionally, a namespace pre�x is used to de�ne the corresponding

namespace pre�x (see Chapter 5.6 in [31]). Because of these similarities, every Java package

can be extracted directly from the project as an Ecore EPackage. The URI of an extracted

EPackage consists of the project name, from which the package was extracted, and the

fully quali�ed name of the package.

Ecore metamodels require one root EPackage which contains all other EPackages. This

requirement does not exist in the Java language. A Java project can contain multiple

source folders with multiple top level packages. Because of this di�erence, the Java default

package is extracted as root package. As a result, the default EPackage is generated

additionally to the extracted EPackages, when extracting a package structure from Java

code to generate an Ecore metamodel. A second additional EPackage that is generated, is

the data type EPackage. It is required to contain a hierarchy of EDataTypes. This behavior

is explained in 4.2.1. For now, the only important thing is that this data type EPackage is

additionally created to the other EPackages. The data type EPackage is a direct subpackage

of the default EPackage.

18

http://docs.oracle.com/javase/specs/jls/se8/html/jls-7.html#jls-7
http://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.7

4.2. Reference Types

That means every package in a target Java project is extracted as an EPackage. A class

with the package structure main.model, main.view.gui, and main.controller will lead to

the extraction of seven EPackages. Five of them are the counterparts to the Java packages:

main, model, view, controller, and gui. The default package is extracted as the root

package of the Ecore metamodel. The last EPackage is the EPackage datatypes for the

data type hierarchy. This extracted EPackage structure can be seen in Figure 4.1.

Figure 4.1.: The exemplary package structure of an extracted Ecore metamodel.

4.2. Reference Types

The Java language di�erentiates between two kinds of types: primitive types and reference

types. Primitive types are either numeric types or boolean types. Reference types are

either classes, interfaces, or array types (see §4, §4.1, §4.2, and §4.3 in the JLS [12]). This

chapter covers only the extraction of reference types.

The Ecore meta-metamodel has an equivalent to types called EClassi�ers. EClassi�ers
can be EClasses and EDataTypes (see Chapter 5.5 in [31]). An EClass can be seen as the

equivalent of both the class and interface in Java. The two properties abstract and interface

of an EClass enable the di�erentiation between classes, abstract classes, and interfaces (see

Chapter 5.5.1 in [31]). Therefore a class or an interface can be extracted as EClass with the

appropriate property con�guration (see Table 4.2).

Java Type EClass Property Abstract EClass Property Interface

Class false false

Abstract Class true false

Interface true true

Table 4.2.: The EClass property con�guration for the extraction of classes and interfaces.

4.2.1. External Types

We de�ne external types as types, which are referenced in a Java project or code but not

declared in that project or code. Types are referenced by attributes, method parameters,

method return types, throws declarations, inheritance relations, and realization relations.

Examples of such external types are classes like java.util.Date. External types cannot be

19

http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.3

4. Ecore Metamodel Extraction

extracted as EClasses because they are not declared in the Java code that is used to extract

a metamodel. Therefore, these external types have to be treated di�erently during the

extraction.

As previously mentioned, EClassi�ers can be divided into EClasses and EDataTypes (see

Chapter 5.5 in [31]). EDataTypes represent a single piece of data, while EClasses o�er more

functionality than that. An EDataType in the Ecore meta-metamodel models one Java type.

This Java type can either be a reference type or a primitive type (see Chapter 5.5.2 in [31]).

EDataTypes are usually used to reference to Java types that are not modeled as EClasses in

the Ecore meta-metamodel. Therefore the metamodel extraction uses EDataTypes for the

extraction of external types.

Some Java types have correlating prede�ned EDataTypes (see Table A.1). These types

are not added to the Ecore metamodel as model elements. They are simply referenced.

These types can be identi�ed by their fully quali�ed name (see §6.7 in the JLS [12]). All

external types which do not have correlating prede�ned EDataTypes get extracted as

custom EDataType, which is added to the metamodel and then referenced. The name of

the custom EDataType is the name of the external type, while the instance type name of

the EDataType is the full name of the external data type, including the package declaration.

A reference to the external type java.util.Date is extracted as EDataType with the name

"Date" and the instance type name "java.util.Date".

Custom EDataTypes have to be contained in EPackages of the metamodel. Because

EDataTypes whose names are identical cannot be contained in the same EPackage (even if

their instance type names are di�erent), a package hierarchy has to be built for EDataTypes
to avoid name collisions while extracting data types. This hierarchy is not part of the

package hierarchy of the original Java code. An example of such package hierarchy can be

seen in Figure 4.2.

Figure 4.2.: Example for a data type hierarchy in an Ecore metamodel.

4.2.2. Enums

In the Java language, enums are a unique form of classes (see §8.9 in the JLS [12]). The Ecore

counterpart for the enum in the Ecore meta-metamodel is the EEnum. The counterpart

20

http://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.7
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9

4.2. Reference Types

for the enum constants (see §8.9.1 in the JLS [12]) of an enum is the EEnumLiteral. While

an enum in the Java language is seen as a class, the EEnum is not an EClass in the Ecore

meta-metamodel. An EEnum is an EDatatype (see Chapter 5.5.2 in [31]). Because of this,

the functionality of an EEnum is very limited compared to a Java enum. The EEnum is just

a data type, while a Java enum can be treated in many ways like as class: It can have own

methods, attributes, and constructors. Additionally, it can implement interfaces. All this

functionality is not available for an EEnum [31].

Because of these di�erences, an enum can only be partially extracted when mapping

it directly to an EEnum. That means an enum gets extracted as EEnum. The EEnum will

contain EEnumLiterals equivalent to the enum constants of the enum. The EEnum will not

contain the methods of the enum. To extract an enum with its methods, �elds, constructor

and interface relations, a single enum has to be extracted as one EEnum and one EClass.
The EEnum will be extracted the same way it was before: With EEnumLiterals equivalent

to the enum constants of the enum. The EClass contains the features of the enum that

cannot be represented in an EEnum but can be represented in an EClass. It contains the

Ecore counterparts of the methods, �elds, and interface relations, but no EEnumLiterals.
Because an Ecore metamodel cannot contain an EClass and an EEnum with the same name,

a special naming scheme has to be employed to di�erentiate between the EClass and the

EEnum, while distinctively associating the EClass to the EEnum. For example, an enum

called Color could be extracted as EEnum Color and EClass ColorEClass. When choosing

this extraction approach, it is important to avoid name collisions between the EClass and

other EClassi�ers. One way to avoid name collisions is to use an index, which increments

as long as there is a name collision.

4.2.3. Nested Types

The Java language gives the possibility to nest class and interface types (classes, interfaces,

and enumerations) into other class and interface types. A nested type is a type that is

declared in the body of another type (see §8.5 in the JLS [12]). Functionality for nesting

EClassi�ers is not provided by Ecore meta-metamodel. As a result, inner types have no

direct counterpart for the extraction.

Nested types can either be extracted as normal types with a special naming scheme,

or they can be extracted in an additional subpackage named after their outer types (see

Figure 4.3). A third choice would be to not extract nested types at all.

Figure 4.3.: Two extraction options for nested types. Special naming scheme on the left

and additional subpackage on the right.

Extracting a nested type like a normal one with a special naming scheme (for example

OuterTypeInnerType for the type InnerType nested in the type OuterType) can lead to

21

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.5

4. Ecore Metamodel Extraction

name collisions if there already exists an EClassi�er with the combined name. Extracting

nested types in an additional subpackage named after their outer type (optionally with a

special su�x) can lead to package name collisions if there already exists an EPackage with

that name. Name collisions can be avoided through adding special su�xes to the names.

For example, an index that increments as long as there still is a name collision. The main

di�culty with this process is to retain the a�liation between the indexed EClassi�er or

EPackage and the outer type. That means it has to be possible to distinguish the nested,

indexed EClassi�er or EPackage from its similarly named counterpart. This thesis chooses

to extract nested types in an additional subpackage.

4.2.4. Array Types

There is no direct support for arrays provided by the Ecore meta-metamodel. When

manually building an Ecore metamodel, collections are modeled through multiplicities (e.g.

0..*). This is realized in the generated code of a metamodel through EList instances [31].

That means there is no direct counterpart for Arrays when extracting Ecore metamodels

from Java code.

If one wants to use an array in an Ecore metamodel, Eclipse Modeling Lead Ed Merks

proposes to de�ne an EDataType which has the Java syntax for the array as its instance

type name. If one generates code from this metamodel, it is important to specialize the

creation methods for the array data types in the implementation class of the package

factory [25].

This approach is chosen for the extraction of array types. A one-dimensional character

array will be extracted as EDataType with the name "charArray" and the instance type

name "char[]". A three-dimensional String array will be extracted as EDataType with the

name "StringArray3D" and the instance type name "java.lang.String[][][]". The instance

type name of an EClassi�er represents the parameterized Java type that this EClassi�er
represents. See chapter 4.2.1 for the use of EDataTypes in the extraction process.

4.3. Primitive Types

As previously mentioned, the Java language di�erentiates between two kinds of types:

primitive types and reference types (see §4 and §4.1 in the JLS [12]). Primitive types are

either numeric types or boolean types (see §4.2 in the JLS [12]). While reference types

were covered in the previous section, Section 4.2, this section covers primitive types.

The Ecore meta-metamodel itself o�ers prede�ned EDataTypes for the primitive types of

the Java language. These primitive types can be seen in Table 4.3. It also o�ers EDataTypes
for the object variants of the primitive data types and other commonly used classes (see

Chapter 5.8 in [31]). The full list of prede�ned EDataTypes can be seen along with their

Java counterparts in Table A.1. During the extraction, primitive types and their object

variants are identi�ed and then represented through the prede�ned EDataTypes, instead of

creating own EDataTypes (see Section 4.2.1). Primitive types are identi�ed by their speci�c

keywords (see §3.9 in the JLS [12]), while their object variants are identi�ed by their fully

quali�ed name (see §6.7 in the JLS [12]).

22

http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2
http://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.9
http://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.7

4.4. Methods

Java Type Ecore Type

boolean EBoolean

byte EByte

char EChar

double EDouble

�oat EFloat

int EInt

long ELong

short EShort

Table 4.3.: Prede�ned EDataTypes for primitive types and their Java counterparts (see

Chapter 5.8 in [31]).

4.4. Methods

Reference types can declare methods in the Java language. Methods are declarations of

executable code that can be invoked while passing a �xed number of parameters. Methods

consist of a method header and a method body. The body contains the executable code,

while the header declares the name of the method, the return type, the parameters and the

throws clause (see §8.4 in the JLS [12]).

The Ecore meta-metamodel uses EOperations to model the behavioral features of EClasses.
EOperations are contained in an EClass. EOperations contain EParameters, EGeneric Ex-
ceptions, and an EGeneric Return Type. All three reference EClassi�ers (see Chapter 5.4 in

[31]). EOperations are the Ecore counterpart to methods in the Java language. While it

is possible to annotate an EOperation with implementation details, this thesis does not

extract such details from methods. Methods are extracted as method signatures with their

name, their return type, their parameters and their throws clauses (see §8.4 and §9.4 in the

JLS [12]). They are represented as EOperations in the Ecore metamodel.

The return type of a method is a reference to a type (see §8.4.5 in the JLS [12]) and

therefore are extracted as a reference to an EClassi�er . Depending on whether this method

return type references an external type or not, the EOperation return type references an

EClass or EDataType. The method parameters are extracted as EParameters. Like the

method parameters in the Java language (see §8.4.1 in the JLS [12]), EParameters have

a name and a type, which they reference. The type of the EParameter references an

EClassi�er , which is depending on whether the parameter type references an external

type or not, an EClass or EDataType. The throws clauses of methods reference exception

types (see §8.4.6 in the JLS [12]). They are extracted as references to EClassi�ers, which

are, again, either EClasses or EDataTypes.
Figure 4.4 visualizes an EOperation that was extracted from a Java method with the signa-

ture String readLine(String fileName, int lineNumber) throws IOException. The

EOperation contains an EGeneric Return Type which references the EDataType EString, two

EParameters which reference the EDataTypes EString and EInt and an EGeneric Exception
which references the EDataType IOException.

23

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.4
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.5
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.6

4. Ecore Metamodel Extraction

Figure 4.4.: Extraction example for a Java method called readLine(), which has two pa-

rameters, a return type and a throws clause.

4.4.1. Access Methods

Fields are commonly accessed through access methods. Access methods are divided into

accessors, which are used to get the values of �elds and mutators, which are used to set

the values of �elds. Accessors are commonly referred to as getters, while mutators are

commonly referred to as setters [14]. When generating code from an Ecore metamodel,

EMF automatically generates access methods for the �elds generated from the EStruc-
turalFeatures (see Chapter 10.1.2 in [31]). For that reason, access methods should not be

extracted as EOperations when extracting the correlating �elds, because that would lead

to duplicate access methods when generating code from the extracted Ecore metamodel.

The Java language does not di�erentiate between access methods and ordinary methods,

therefore, access methods have to be detected from their method signature. This can be

achieved by checking whether a method signature matches the design patterns for �elds

in the Java Beans Speci�cations (See Chapter 8.3 in [14]). While access methods for simple

�elds and boolean �elds are generated automatically by EMF, access methods for indexed

�elds are not. That means access methods indexed �elds can be extracted as EOperations
because they are not automatically created when generating Java code from an Ecore

metamodel.

Not extracting access methods can lead to problems when they have more than just

the functionality that access methods usually contain. In this case, the access method

generated by EMF from the extracted Ecore metamodel will be di�erent from the original

access method, because the generated access methods contain no additional functionality.

An example for such additional functionality can be as simple as rounding the return value

in an accessor or validation code in a mutator.

4.4.2. Constructors

While constructors play an essential role in the object-oriented Java language (see §8.8

in the JLS [12]), there is no counterpart in the Ecore meta-metamodel. Initial values of

EStructuralFeatures can be declared with default value properties (see Chapter 5.3 in [31]).

Moreover, because the Ecore metamodel is not modeling implementation details, there

is no other use case for constructors. When generating code from an Ecore metamodel,

the generated classes are instantiated with factory classes that only call the parameterless

constructors (see Chapter 10.8 in [31]). The �elds of those generated classes get their

24

http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8

4.5. Fields

initial values with static default value �elds (see Chapter 10.2 and 10.3 in [31]). They also

can be set after the object creation with access methods. As a result, there is no way to

represent constructors in the Ecore meta-metamodel.

Representing constructors in an Ecore metamodel is not possible, but constructors and

especially parameterized constructors are very important for the instantiation of classes.

This di�erence between the Ecore meta-metamodel and the implicit Java metamodel will

lead to problems during the Ecori�cation process.

4.5. Fields

Fields are members of classes and interfaces in the Java language. They declare the variables

of their types. Fields have an identi�er, also called name, to distinguish between the �elds

of a type and a reference to a type (see §8.3 and §9.3 in the JLS [12]).

The Ecore counterpart for �elds in the Java language are EStructuralFeatures. They

are divided into EAttributes and EReferences (see Chapter 5.3 in [31]). This concept is

similar to UML class diagrams, where �elds can either be attributes or references. However,

EAttributes and EReferences are not arbitrary interchangeable. EReferences are used for

EStructuralFeatures that reference EClasses (see Chapter 5.3.2 in [31]), while EAttributes
are used for EStructuralFeatures that reference EDataTypes (see Chapter 5.3.1 in [31]). This

behavior is depicted in Figure 4.5.

Figure 4.5.: Simpli�ed class diagram of the EStructuralFeature architecture (see Chapter

5.3 in [31]).

A Java �eld gets extracted as EReference when the �eld references a type that is part of

the Java code that is used to extract the Ecore metamodel. That means there is an EClass
representing that type. A Java �eld gets extracted as EAttribute when the �eld references an

external type (see Section 4.2.1), which is not part of the Java code (for example classes like

java.util.Date). Figure 4.6 shows an example for the extraction of two �elds. While the

EStructuralFeature date references the EDataType Date, the EStructuralFeature organizer
references the EClass Organizer. Therefore date is an EAttribute and organizer is an

EReference.

25

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.3
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.3

4. Ecore Metamodel Extraction

Figure 4.6.: Extraction example for �elds.

Because �elds store the internal state of a type, it is not always useful to extract �elds.

An alternative option is to extract the access methods of �elds, but not the �elds themselves.

As mentioned as in Section 4.4.1, EMF automatically generates access methods for the

�elds generated from the EStructuralFeatures (see Chapter 10.1.2 in [31]). That means �elds

should not be extracted, when their access methods are extracted and access methods

should not be extracted when their �elds are extracted. For the integration of Ecore

functionality into Java code, it is better to extract the �elds while not extracting the

access methods because the �elds in model code generated from an Ecore metamodel have

additional functionality compared to arbitrary �elds.

4.6. Specialization and Realization Relations

The Java language uses the two powerful concepts specialization and realization. Special-

ization relations allow extending another class, which is called superclass (see §8.1.4 in

the JLS [12]). This concept is also referred to as inheritance. Realization relations allow

implementing an interface, which is called super interface (see §8.1.5 and §9.1.3 in the JLS

[12]). Specialization and realization are often referred to as super-relations.

The Ecore metamodel has a similar concept. As previously explained, the Ecore meta-

metamodel uses EClasses to represent both classes and interfaces from the Java language.

An EClass can have multiple supertypes with the eSuperTypes reference. While there is

the possibility to extend EClasses and implement EClasses that are interfaces, there is

no distinguishing between the specialization and realization relation. There is just the

supertype relation through the eSuperTypes reference (see Chapter 5.2 and 5.5.1 in [31]).

The Ecore meta-metamodel supports multiple inheritance. That means it is possible

for one EClass to extend (and implement) multiple EClasses. While the Java language

allows a type to implement multiple interfaces, inheritance is limited to one superclass

per class. Therefore, multiple inheritance is not needed to represent Java code in an Ecore

metamodel. As described in Section 4.2.2, EEnums are not a special form of EClasses.
EEnums are EDataTypes. Because EDataTypes do not allow specialization or realization

relations, EEnums cannot inherit from EClasses or implement EClasses. This behavior is a

fundamental di�erence to the Java language, where Enums are a special form of classes

and have the ability to both specialization and realization relations.

26

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.4
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.5
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.1.3

4.7. Custom Exception and Error Classes

The di�erences between the use of super-relations in the Java language compared to

the Ecore meta-metamodel are listed in Table 4.4. The table shows whether a type or

EClassi�er can have such a relation to a super type.

Relation Class Interface EClass Enum EEnum

Specialization yes no yes yes no

Realization yes yes yes yes no

Table 4.4.: Specialization and realization relations for the di�erent types of the Java lan-

guage and the di�erent EClassi�ers of the Ecore meta-metamodel.

When extracting super-relations from Java code, classes and interfaces do not lead

to problems. Specialization relations are extracted as super-relation to an EClass and

realization relations are extracted as super-relation to an EClass which is an interface

(see Section 4.2). The extraction of super-relations of an enum is not possible. Enums are

extracted as EEnums which do not have that functionality. As a result, these relations

cannot be represented in an Ecore metamodel, as long as the solution of extracting an

enum as both an EEnum and an EClass is not implemented (see Section 4.2.2).

In an Ecore metamodel, the supertypes of an EClass have to be EClasses within the

metamodel. As explained in Section 4.2.1, external types are not depicted as EClasses. That

means the use of so-called external supertypes is not possible. This functionality is not a

problem in the Java language. For example, it is possible to create a class that inherits from

the project external class java.util.LinkedList of the Java API. This di�erence between

the Ecore meta-metamodel and the Java language is the reason why super-relations to

external supertypes cannot be extracted. These relations are lost during the extraction

and cannot be represented in an Ecore metamodel.

4.7. Custom Exception and Error Classes

In the Java language the class java.lang.Throwable is the superclass of all errors and

exceptions. Extending java.lang.Throwable or a subclass of it allows creating custom

exception and error classes. These custom exception and error classes can be used in

several contexts. One of which is its use in a throws clause of a method (see Section 4.4).

When extracting custom exception and error classes, the specialization relation that

makes them a subclass of java.lang.Throwable, cannot be extracted in most cases because

of the problem with external super types (see Section 4.6). The only case when this

specialization relation can be extracted is when extracting an Ecore metamodel from the

Java API package java.lang. In this case the class java.lang.Throwable would not be

an external type, which would allow extracting the specialization relation. When the

specialization relations of custom exception and error classes are not extracted, but the

exception and error classes themselves are extracted, the extracted metamodel generates

invalid Java code whenever custom exception and error classes are used in a throws clause.

The reason for this is that the custom exception and error classes translate to Java classes

that do not extend java.lang.Throwable. This results in compiler errors in every method

27

4. Ecore Metamodel Extraction

where they are used in a throws clause because the language only allows referencing

subtypes of java.lang.Throwable in throws clauses.

Because of this reason, custom exception and errors classes should not be extracted,

or at least only on demand. When they are not extracted as EClasses, they are generated

as EDataTypes when they are referenced (see Section 4.2.1). That means when custom

exception and errors classes are not extracted, the problem with external super types is

avoided.

4.8. Modifiers

The Java language uses �ve types of modi�ers: Class modi�ers, �eld modi�ers, method

modi�ers, constructor modi�ers and interface modi�ers. While some of them use the

same modi�er keywords, one modi�er keyword can have multiple meanings depending

on which type of modi�er it is (see §8.1.1, §8.3.1, §8.4.3, §8.8.3, and §9.1.1 in the JLS [12]).

A full list of the Java modi�ers and their a�liation with the modi�er types can be seen in

Table 4.5.

Most of the Java modi�er keywords cannot be represented in the Ecore meta-metamodel,

simply because it has no similar counterpart for the speci�c Java modi�er. Those modi�er

keywords, which can be represented, can often only be accordingly represented in a special

context. For example, the keyword final can only be extracted as a �eld modi�er.

This is not a problem for many of the modi�er keywords because the Ecore meta-

metamodel is not meant to model implementation details. An Exception is the EAnnotation
which can be used to attach source code to an EOperation, which is later used during the

model code generation from this Ecore metamodel (see Chapter 5.7.1 in [31]). Therefore all

modi�er keywords that deal with implementation details are not supposed to be extracted.

We only extract modi�er keywords that are relevant for the Ecore metamodel.

Keyword Class Field Method Constructor Interface

public yes yes yes yes yes

protected yes yes yes yes yes

private yes yes yes yes yes

abstract yes no yes no yes

static yes yes yes no yes

�nal yes yes yes no no

synchronized no no yes no no

volatile no yes no no no

transient no yes no no no

native no no yes no no

strictfp yes no yes no yes

Table 4.5.: Java Modi�er Keywords and to which modi�er type they belong.

28

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.3.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.3
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8.3
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.1.1

4.8. Modi�ers

4.8.1. Access Level Modifiers

Access level modi�ers are modi�ers that manage access control. They in�uence the

visibility of the type or member they are assigned to. This prevents from depending on

unnecessary implementation details. The Java access level modi�er keywords are public,

private and protected. As seen in Table 4.5, they are available for every modi�er type

(see §6.6 in the JLS [12]).

There are no actual access level modi�ers in the Ecore meta-metamodel. It also does not

have any similar counterpart, but the Ecore meta-metamodel treats EStructuralFeatures as

Java would treat private �elds and EOperations as Java would treat public methods (see

Chapter 5.3 and 5.3 in [31]). This behavior also translates into the model code: When

generating code from Ecore metamodels, EOperations are created as public methods,

while EStructuralFeatures are generated as private �elds. For these private �elds, accessor

methods are generated (see Chapter 10.2, 10.3, and 10.5 in [31]).

As a consequence, every extracted �eld is represented as private EStructuralFeature,
and every extracted method is represented as public EOperation. This leaves two options

for the extraction: Either the extraction of all methods as EOperations and all �elds as

EStructuralFeature, even if their access level modi�ers will not match the behavior of their

generated counterparts, or restricting the extraction of elements depending on their access

level modi�ers. The second option would mean that only public methods and private �elds

are extracted.

An argument for the second option is the concept behind the Ecore metamodel. As

previously explained, the Ecore meta-metamodel does model implementations details. That

means private methods should not be extracted as EOperations because EOperations are not

meant to model internal methods. The Ecore meta-metamodel does model some internal

state through EStructuralFeatures. However, EStructuralFeatures are not meant to be

accessed externally. Therefore public �elds should not be extracted as EStructuralFeatures
because EStructuralFeatures do not model exposed �elds.

4.8.2. Modifier Keyword Abstract

The modi�er keyword abstract o�ers the possibility to declare abstract classes, interfaces,

and methods. Abstract methods provide a normal method signature, a return type and

throws clause but do not have a method body. That means they do not provide an

implementation. Abstract classes are classes that contain one or more abstract methods.

Every subclass of an abstract class that is not abstract has to provide implementations for

all abstract methods. All interfaces are implicitly abstract without an explicit declaration

with the keyword abstract (see §8.1.1, §8.4.3.1, and §9.1.1.1 in the JLS [12]).

While the Ecore meta-metamodel certainly does have an abstract concept for EClasses,
there are no abstract EOperations in the Ecore meta-metamodel as a counterpart to abstract

methods in the Java language [31]. This means abstract methods can only be extracted

as normal EOperations or cannot be extracted at all. When an abstract method is not

extracted, and the extracted metamodel is used to generate model code, there is neither a

method signature declaration in the interface nor a method in the implementation class

of the model code. That means while the implementing methods of the abstract meth-

29

http://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.6
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.3.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.1.1.1

4. Ecore Metamodel Extraction

ods exist in the generated subclasses, the class itself does not know of their existence.

When extracting an abstract method as a normal EOperation, the EOperation models a

method declaration instead of a method signature declaration. That means when gen-

erating model code from the extracted metamodel, a method signature is declared in

the interface, and this method is then implemented in the implementation class. While

this solution allows calling the method which originally was abstract, this will lead to

an UnsupportedOperationException, as long as the method body of the method in the

implementation class is not modi�ed. While this behavior is not identical to the behavior

of an abstract method, it is the closest one can get to an abstract method in the model

code. Additionally, the methods could be modi�ed to throw a custom exception which

clari�es that this method is representing an abstract method and should not be called. The

custom exception would help to di�erentiate the behavior of these methods from other

unimplemented methods.

For the Ecore representation of the modi�er keyword abstract in the context of types

see Section 4.2.

4.8.3. Modifier Keyword Static

The Java language di�erentiates between static elements and non-static elements using

the modi�er keyword static. That means one can create static �elds and methods, which

do not need object instantiation. Those attributes and methods can be accessed through

the class directly (see §8.3.1.1 and §8.4.3.2 in the JLS [12]). The Ecore meta-metamodel has

not such a static concept. As a result, attributes and methods can only be extracted as

normal (object-oriented) EStructuralFeatures and EOperations or cannot be extracted at all.

4.8.4. Modifier Keyword Final

The keyword final has, like many other modi�er keywords, a di�erent e�ect depending

on the context of its use. When used as a �eld modi�er, the keyword final has the

consequence that the �eld can only be initialized once. Also, it has to be initialized before

or during the initialization of its declaring type (see §8.3.1.2 in the JLS [12]).

EStructuralFeatures in the Ecore meta-metamodel have a property called changeable.
This property determines whether it is possible to set the EStructuralFeature externally.

When generating model code from Ecore metamodels, unchangeable EStructuralFeatures
will not have a mutator method. That means they can only be initialized internally (see

Chapter 5.3, 10.2.7, and 10.3.7 in [31]). While this behavior is not identical to the Java

modi�er keyword final, it is similar enough to argue that final �elds could be extracted

as unchangeable EStructuralFeatures to keep the behavior of the extracted metamodel as

close as possible to the original behavior of the Java code.

4.8.5. Modifier Keyword Transient

EStructuralFeatures contain the property transient. If this property is set, the EStructuralFea-
ture is not part of the persistent state of an EObject. That means it is omitted from the

serialization of the EObject (see Chapter 10.3 in [31]). This property is the counterpart to

30

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.3.1.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.3.2
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.3.1.2

4.9. Generics

the transient keyword of the Java language. The Java transient modi�er has the same

function for �elds: Preventing them from being serialized (see §8.3.1.3 in the JLS [12]).

This means transient �elds can be extracted as transient EStructuralFeatures.

4.9. Generics

Generics are a powerful feature of the Java language that allows programmers to create

own generic type declarations. Classes, interfaces, and methods are considered generic if

they use at least one type variable (see §8.1.2, §9.1.2, and §8.4.4 in the JLS [12]). A type

variable is an unquali�ed identi�er which is introduced by the declaration of a so-called

type parameter (see §4.4 in the JLS [12]). Type variables can be used as normal types, for

example as a �eld, type of a method parameter or method return type. They are limited to

the scope in which they were declared.

The type parameter of a class, interface or method is a generic type that has to be

speci�ed when instantiating or inheriting from a generic class, calling a generic method or

implementing a generic interface. This happens for all type parameters of a generic type

or method through a list of generic type arguments. The generic type arguments denote a

particular parameterization of the generic type (see §4.5 in the JLS [12]). That means they

specify which types are used in the generic type or method. Generic arguments also can

be type variables. Every type parameter has a so-called bound. The bound restricts the

unknown type of the type parameter. The bound is either another type parameter or up to

one class type with any number of interface types. A type parameter without an explicitly

declared bound has the default bound java.lang.Object (see §4.4 in the JLS [12]).

The Ecore meta-metamodel was adapted to support generics when that feature was

added to the Java language. The Ecore counterpart of a type parameter is an instance

of the class ETypeParameter , which can be contained by an EClass or EOperation. A

type parameter bound can be represented through any number of EGeneric Bound Types,
which are EGenericTypes. That means an EGeneric Bound Type in the Ecore metamodel is

either another ETypeParameter or any number of EClassi�ers (see Figure 4.7). When an

ETypeParameter has no EGeneric Bound Type, it is bound to EObject. The ETypeParameters
of an EClassifer have to be speci�ed by EGenericArguments whenever the EClassifer is

referenced.

Figure 4.7.: UML class diagram that depicts how ETypeParameters are declared (see Chapter

21.1.2 in [31]).

EStructuralFeatures, EOperations, and EParameters inherit from the class ETypedElement
the ability to reference an EGenericType. That means they have two type references: eType

31

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.3.1.3
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.2
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.1.2
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.4
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.4
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.5
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.4

4. Ecore Metamodel Extraction

and eGenericType. The eGenericType reference is used instead of the eType whenever an

ETypeParameter should be referenced instead of an EClassi�er . The eGenericType refer-

ence references an EGenericType which references an ETypeParameter with the reference

eTypeParameter (see Figure 4.8).

Figure 4.8.: A class diagram that depicts how an ETypeParameter is referenced from an

ETypedElement (see Chapter 21.1.2 in [31]).

When referencing an EClassi�er that has ETypeParameters, the ETypeParameters have

to be speci�ed by EGenericArguments. EGenericArguments are EGenericTypes that specify

the ETypeParameters and are contained in a mutual EGenericType. As discussed previously,

ETypedElements have a reference to an EGenericType. For other model elements, other

references are available. For example, an EOperation uses its reference eGenericExceptions
for its reference eExceptions, while an EClass uses its reference eGenericSuperTypes for its

reference eSuperTypes. The EGenericType is then used to reference to any number of other

EGenericTypes, which serve as EGeneric Type Arguments (see Chapter 21.1.2 in [31]). This

behavior is depicted in Figure 4.9.

Figure 4.9.: A class diagram that depicts how EGenericArguments are speci�ed (see Chapter

21.1.2 in [31]).

Because of the similarities of generics in the Ecore meta-metamodel and the Java

language, the extraction of Ecore metamodels from generic Java code is conceptually very

simple: A type parameter is extracted as an ETypeParameter , while a type parameter bound

is extracted as the reference eBounds. The referenced types of a bound are extracted as

EGenericTypes, which are referencing either an EClassi�er or an ETypeParameter . Generic

arguments of a reference to a type are extracted as EGenericTypes. They are contained in

the EGenericType of the reference owners Ecore representation. For example, if a Java class

contains an attribute which is parameterized with generic arguments, the ETypeParameters
will be contained in the EGenericType of the EClass that was extracted from the Java class.

32

4.10. Wildcard Types

Figure 4.10 shows an example for the extraction of generics. The EClass Foo is extracted

from a Java class that declares the three type parameters A, B extends A, and C extends

Exception. The class contains two attributes of type List<A> and List<String> and a

method with the signature public A bar(B myB) throws C.

Figure 4.10.: An example metamodel that depicts how generic classes are extracted. The

EClass Foo contains three ETypeParameters, two parameterized EAttributes,
and a parameterized EOperation.

4.10. Wildcard Types

The Java language contains a particular type parameter called wildcard. It is represented by

the question mark character and represents an unknown type. It can be used as a parameter

type, �eld or local variable. It is not used as a type argument for generic methods, generic

classes, or supertypes. A wildcard bound constrains the inheritance of the unknown type.

A wildcard is either unbound, has an upper bound, or a lower bound. If a wildcard type

has an upper bound, the type has to be a subtype of the type referenced by the upper

bound. If a wildcard type has a lower bound, the type has to be a supertype of the type

referenced by the lower bound. Similarly to normal type parameters, an unbound wildcard

has the upper bound java.lang.Object (see §4.5.1 in the JLS [12]).

The Ecore metamodel is capable of representing the use of wildcard types. Wildcard

types are represented, just as EGenericArguments, as EGenericTypes. While normal EGener-
icArguments either reference an EClassi�er through the eClassi�er reference or reference

an ETypeParameter through the eTypeParameter , wildcard types do not use any of these

references. An EGenericType without further references is an unbound generic type. Bound

wildcard types are declared through referencing a bound type through either the reference

eUpperBound or the reference eLowerBound.

Wildcard types are extracted as EGenericTypes. Wildcard bounds are extracted into

the references eUpperBound and eLowerBound. The types referenced by the wildcard

bounds are extracted as EGenericTypes, which are referencing either an EClassi�er or an

ETypeParameter . This extraction is depicted in Figure 4.11. It shows how three �elds

are extracted, which reference the type java.util.List using wildcard types. The �rst

33

http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.5.1

4. Ecore Metamodel Extraction

wildcard type is unbound, the second has a lower bound, and the third has an upper bound.

Figure 4.11.: Example metamodel that depicts how wildcard types are extracted. The

EClass contains three EAttributes which reference a generic EDataType using

wildcard types.

4.11. Selective Extraction

When extracting Ecore metamodels from larger Java projects, it is not always useful to

extract the whole project as one metamodel. If one wants to extract a metamodel from a

submodule of a project, it is crucial to support selective extraction. Selective extraction

means extracting an Ecore metamodel from speci�c packages or types and, moreover,

selecting speci�c members of types.

Selective extraction leads to one problem: When a type references another type, which

is not selected for the extraction, there is no representation to reference to for the Ecore

representation of the �rst type. Consider the following example: A class Alpha has a �eld

of type Beta. When selecting both Alpha and Beta, both get extracted as an EClass while

the �eld gets extracted as EReference which references the EClass Beta. When selecting

only the class Alpha, there is no EClass Beta. That means the EReference has no EClass to

reference.

To avoid this, one has to identify all critical types. Critical types are all types that are

not selected but referenced by another type which is selected. These critical types are

then modeled as EDataTypes, which can be referenced by other EClassi�ers. This means

they are treated like external types (see Section 4.2.1). Because they are now treated like

external types, specialization and realization relations (see Section 4.6) to the EDataType
representation of a critical type are not possible. These external super-relations cannot be

represented in an Ecore metamodel.

34

4.12. Summary

4.12. Summary

The extraction approach proposed by this thesis is based on a mapping between the Ecore

meta-metamodel and the implicit Java metamodel. This mapping is depicted in Table 4.1.

Reference types like classes, abstract classes and interfaces are extracted without prob-

lems. They are modeled as EClasses. Exceptions are custom exception and error classes.

They should not be extracted because their super relation to java.lang.Throwable cannot

be extracted. Extracting them can cause errors during the model code generation because

methods can only reference subtypes of java.lang.Throwable in their throws clauses.

Enums are extracted, but extracting all of their functionality is complicated because an

enum has to be modeled as one EEnum and one EClass to achieve that. One EEnum alone

can only contain enum constants, which are modeled as EEnumLiterals. Nested reference

types cause problems during the extraction. They are modeled as normal types either in a

special EPackage or with a special naming scheme. Although array types have no direct

counterpart in the Ecore metamodel, they are extracted as EDataTypes. Primitive types

and their object variants are extracted without problems because EMF o�ers prede�ned

EDataTypes that can be used to model them.

Methods and �elds are extracted as EOperations and EStructuralFeatures. It is important

to only extract the �elds or their access methods, not both. That would lead to prob-

lems during the model code generation due to the duplicate access method declarations.

Constructors are not extracted because there is no �tting counterpart in the Ecore meta-

metamodel. While they are not needed in Ecore metamodels, this is a problem for the

Ecori�cation. Specialization and realization relations are extracted as long as the referenced

supertypes are not external types. When extracting modi�er keywords, it depends on

the keyword and the context whether they are extracted or not. The modi�er keyword

transient is extracted without problems as the EStructuralFeature property transient. The

modi�er keyword abstract can only be extracted in the context of classes through the

EClass property abstract, while the modi�er keyword final can only be extracted in the

context of �elds through the EStructuralFeature property unchangeable. Access level modi-

�ers are extracted indirectly because methods and �elds are extracted if their access level

modi�ers match the behavior of their generated Ecore counterparts. The modi�er key-

words static, synchronized, volatile, native, and strictfp are not extracted. Generics

and wildcard types are extracted without problems because both are represented in the

Ecore meta-metamodel. While the Ecore metamodel extraction was primarily developed

for the Java code Ecori�cation, it can also be independently used as a reverse engineering

approach.

35

5. Ecorification of Java Code

This chapter explains in detail the concept of the Java code Ecori�cation, which has the goal

to achieve the automatic integration of Ecore functionality into Java code. The Java code

Ecori�cation has the goal to integrate Ecore functionality into Java code while preserving

all of its original functionality. Preserving the original functionality of the Java code

requires retaining the interfaces which are o�ered by the modules of the code and also

retaining all internal functionality of the code. That means the product of the Java code

Ecori�cation is the original code, enriched with the desired Ecore functionality. This code

then can be used with Ecore-dependent tools.

The process of the Ecori�cation of Java code can be split up into four steps: First, gener-

ating an Ecore representation of the original Java code. The Ecore representation consists

of two parts: An Ecore metamodel and its generated model code. Second, generating the

integration code, which will allow interlacing the original Java code and the generated

Ecore model code. Third, adapting the original Java code to allow interlacing the adapted

code and the Ecore model code with the help of the integration code. Fourth and last

combining all three codes into the decorated code, which contains the implementation

details of the original code and the Ecore functionality of the model code. This way, the

Ecori�cation of Java code allows the integration of Ecore functionality. These Steps are

depicted in Figure 5.1.

Figure 5.1.: A simple depiction of the Ecori�cation process, which is divided into four

steps: The Ecore representation creation, the integration code generation, the

adaption of the original Java code and combining the three codes.

Besides the original Java code, we address four di�erent types of source code in the

Ecori�cation process. To avoid confusion between those �ve di�erent types of code, this

thesis introduced the following naming scheme for the Ecori�cation of Java code:

37

5. Ecori�cation of Java Code

• Origin code describes the original Java code, into which Ecore functionality is inte-

grated.

• Ecore code describes the Ecore model code that was generated from the extracted

Ecore metamodel.

• Adapted origin code references the origin code after being edited to allow the integra-

tion of Ecore functionality through the interlacing process.

• Integration code describes the code that is generated to interlace the Ecore code and

the adapted origin code.

• Decorated code is the �nal product of the Ecori�cation of Java code, the Java code

with integrated Ecore functionality.

First, Section 5.1 describes what the Ecore representation is and how it can be generated.

Second, Section 5.2 explains the base concept of the Java code Ecori�cation for types.

Section 5.3 then extends that concept to cover how specialization and realization relations

are retained during the Ecori�cation of Java code. The method delegation of the integration
code is outlined in 5.4. Section 5.5 explains the removal of �elds of the origin code and the

reason behind it. Last, two problems of this approach and their possible solutions will be

outlined: The adaption of the Ecore factories in Section 5.6 and replacing parameterized

constructors in Section 5.7.

5.1. Ecore Representation

The Ecore representation of the origin code is a key part of the Ecori�cation process. It

consists of two parts: An Ecore metamodel and the Ecore code. The Ecore representation

models the origin code and has the goal to replicate it as closely as possible. The Ecore
code is the Ecore model code that was generated from the extracted Ecore metamodel.

Contrary to the origin code, the Ecore representation already contains the desired Ecore

functionality. However, it does not contain the implementation details of the origin code.
For that reason, the Ecore representation has to be interlaced with the origin code.

The Ecore representation is generated with the help of the Ecore metamodel extraction,

which was explained in Chapter 4. The Ecore metamodel extraction generates an Ecore

metamodel from the origin code. The metamodel is then used to generate the Ecore code.
Generating Java code from Ecore metamodels is a fundamental feature of EMF and can be

accomplished programmatically using the Ecore API.

Because the Ecore code was generated from an Ecore metamodel, it matches the EMF

generator patterns (see Chapter 10 in [31]). When generating Ecore model code from an

EPackage, the code is organized into two Java packages. The �rst Java package is named

after the EPackage itself and contains the interfaces that represent the EClasses. The second

package is a subpackage of the �rst package and is named impl. It contains the classes that

implement the interfaces of the �rst package. That means it contains the implementation

of the EClasses (see Chapter 10 in [31]).

38

5.1. Ecore Representation

Additionally to these classes, the Eclipse Modeling Framework also generates two

interfaces and their implementations for the EPackage: The package and the factory. While

the package provides constants and convenient methods for the metadata of the EPackage,
the factory allows creating instances of the packages interfaces (see Chapter 10.8 in [31]).

As a consequence of these EMF generator patterns, the Ecore code of the Ecore repre-

sentation contains two classes and two interfaces per EPackage and one class and one

interface per EClass. In the context of the Ecore metamodel extraction, this means that

every class in the origin code is represented in the Ecore representation by one class and

one interface. While they do not contain the implementation details of the original class,

they do contain the Ecore functionality that is desired for the Ecori�cation of Java code.

Figure 5.2 depicts the Ecore code of the Ecore representation of the running example

(see Chapter 3). The classes Person and Customer are both represented through an Ecore

interface and an implementation class. The interface BusinessPerson in only represented

through an Ecore interface. The supertype hierarchy of the running example is repre-

sented through the realization relations of the interfaces. Both the interface EPerson and

EBusinessPerson extend the interface EObject since they do not have a super interface.

While the methods are declared in the Ecore interfaces, they are implemented in the

implementation classes.

Figure 5.2.: UML class diagram that depicts the Ecore code of the Ecore representation of

the running example (see Chapter 3).

39

5. Ecori�cation of Java Code

5.2. Base Concept for Types

The integration of Ecore functionality into the origin code can be achieved through in-

terlacing the origin code with the Ecore code. As described in Section 5.1, the Ecore code
contains an interface and an implementation class for every class in the origin code. There

are several approaches to integrate the functionality of the Ecore code into the origin code.
For example, classes from the origin code could simply inherit from the correlating

implementation classes of the Ecore code. This would require changing the implementation

classes to keep all functionality of the origin code. Another way would be that classes

from the origin code could implement the correlating interfaces of the Ecore code and then

delegate all unimplemented Ecore functionality to instances of the implementation classes

of the Ecore code. These instances can be created with the factories of the packages. That

would prevent the Ecore code from being edited, but require the origin code to delegate the

Ecore functionality to instances of the implementation classes of the Ecore code.
A third approach is to use wrapper classes to connect the Ecore code and the origin

code. That allows encapsulating the functionality which integrates both types of code into

wrapper classes. That means the classes of the origin code extend wrapper classes, which

implement the Ecore interfaces in the same way the classes of the origin code did in the

previous approach. The wrapper classes delegate all unimplemented Ecore functionality

to instances of the correlating implementation classes of the Ecore code, which they can

create with the factories of the packages. This thesis chooses the last approach. To explain

this approach on a simple level, we now assume the classes of the origin code have neither

specialization realization nor realization relations. That means the origin code is a set of

classes without any super type declarations.

Figure 5.3.: UML class diagram of the base concept: The wrapper class CustomerWrapper

encapsulates the functionality that is needed to connect the class from the

origin code with the Ecore code.

Figure 5.3 depicts an example of this approach. The class CustomerWrapper implements

the Ecore interface ECustomer and delegates functionality to the implementation class

40

5.3. Retaining Specialization and Realization Relations

ECustomerImpl. The class Customer extends the class CustomerWrapper and therefore

inherits its functionality. For every class of the origin code we now create a wrapper class

as seen in Figure 5.3. This wrapper class implements the correlating interface of the Ecore
code. All Ecore functionality is then delegated to the implementation class of the origin
code. The class from the origin code has to be edited to inherit from the wrapper class.

The edited origin code is what we call adapted origin code. These wrapper classes, which

connect the Ecore code and the adapted origin code, form the integration code. Using this

approach, the adapted origin code inherits the Ecore functionality from the wrapper classes

of the integration code. This means that the classes of the adapted origin code can be used

in the same way as the origin code could be used before the Java code Ecori�cation process.

We now have a base concept for the interlacing of classes, which means we can create a

connection between the types of the Ecore code and the classes of the origin code. However,

the Java language has other important types: Interfaces and enums. While it is possible to

interlace interfaces in the origin code with their Ecore counterparts, this thesis does not

yet implement that feature. Interfaces could be interlaced by implementing their Ecore

counterparts. While enums are a special form of classes, they cannot be interlaced the

same way as classes. This thesis does not interlace enums with their Ecore counterparts.

While this could be useful, it is not easy to implement. One problem lies in the role of

EEnums in the Ecore meta-metamodel. As explained in Section 4.2, the functionality of an

EEnum is very limited compared to an enum in the Java language. EEnums cannot have

EOperations or EStructuralFeatures. That means, to create an Ecore representation for an

enum, one would have to extract an EEnum for the enum constants and an EClass for the

other functionality of the enum. When integrating Ecore functionality in an enum, the

enum would have to be interlaced with both the Ecore code counterpart of the EClass and

the EEnum.

5.3. Retaining Specialization and Realization Relations

In Section 5.2 we described the base concept for the Java code Ecori�cation process. For

simplicity, we assumed that the classes of the origin code have neither specialization

relations nor realization relations. This assumption cannot be made for real Java code.

Therefore, we have to consider origin code with types highly interconnected through

specialization and realization relations. That means the Ecori�cation process interferes

with the specialization relations of the origin code.
The previous section also introduced the adaption of the origin code. One part of this

adaption was to edit the classes of the origin code to let them inherit from the correlating

wrapper classes of the integration code. However, to keep the functionality of the origin
code, it is important to retain the interclass relations of the origin code. This section,

therefore, discusses how to retain the original specialization and realization relations while

keeping the origin code interlaced with the integration code and the Ecore code.
If we look at the running example (see Chapter 3), the class Customer extends the class

Person and implements the interface BusinessPerson. In this example, the Ecori�cation
process would overwrite the existing inheritance relation, so that the class Customer would

extend the class CustomerWrapper from the integration code (See Figure 5.3). This shows

41

5. Ecori�cation of Java Code

the need to add additional specialization and realization relations to retain the functionality

of the origin code.

5.3.1. Realization Relations

The adapted origin code adopts realization relations from the origin code without modifying

them. That means the realization relations are not overwritten during the Ecori�cation
process. However, because classes from the adapted origin code can be declared as types

from the Ecore code, the interface from the Ecore code should extend the same interfaces

that the corresponding class from the adapted origin code implements. In the case of the

running example (see Chapter 3), this means that the corresponding Ecore code interface

of the class Customer needs to extend the interface BusinessPerson. This is implemented

in Figure 5.4, where the interface BusinessPerson is implemented by the class Customer

and extended by the interface ECustomer.

Figure 5.4.: UML class diagram of the extended base concept: Realization relations between

classes.

This can also be solved by implementing the base concept of the Ecori�cation (see

Section 5.2) for interfaces. Implementing that base concept for interfaces would result

in the generation of an interface in the Ecore code for every interface in the origin code.
The generated interfaces of the Ecore code are then naturally included in the realization

relations of the Ecore code.

5.3.2. Specialization Relations

As described before, the Ecori�cation process interferes with the specialization relations of

the origin code to allow the integration of the Ecore functionality. More speci�cally, the

classes of the adapted origin code extend the wrapper classes from the integration code.
Therefore, all existing specialization relations of the origin code are overwritten. To retain

the original specialization relations, the wrapper classes of the integration code need to

extend the superclasses of their correlating classes in the origin code.
In the running example (see Chapter 3), the Customer extends the class Person. This

specialization relation is retained in Figure 5.5. The class Customer was changed to extend

42

5.4. Method Delegation in the Integration Code

Figure 5.5.: UML class diagram of the extended base concept: Specialization relations

between classes.

the wrapper class CustomerWrapper. However, it still inherits indirectly from the class

Person because the wrapper class CustomerWrapper extends Person. This way the Ecore

functionality is integrated without removing inherited functionality.

5.4. Method Delegation in the Integration Code

As explained before, the integration code consists of the wrapper classes, which connect

the Ecore code and the adapted origin code. They are the centerpiece of the interlacing

process. The integration code serves two purposes: The �rst one is to retain the inherited

functionality of the origin code in the adapted origin code through adopting the special-

ization relations of the origin code in the correlating wrapper classes. This purpose was

already discussed in Section 5.3. The second purpose is the interlacing of the adapted
origin code and the Ecore code itself. Because the classes of the adapted origin code extend

their correlating wrapper classes, they inherit all functionality of the integration code. The

wrapper classes themselves then obtain the Ecore functionality through implementing the

interfaces of the Ecore code. We previously mentioned that there is the need to delegate

the methods that were declared by the Ecore interface. This section covers in detail how

this delegation of the declared methods works.

The methods of the Ecore interfaces are delegated to the Ecore implementations classes,

which implement the Ecore interfaces as well. Therefore, the wrapper classes need a

reference to an instance of the implementation classes. These instances can be created

through the package factories generated by EMF. For every wrapper class, we divide all

methods that are declared in its Ecore interfaces (locally declared or inherited from a super

43

5. Ecori�cation of Java Code

interface) into three categories: First, the methods that were originally declared in the

origin code counterpart of the interface. We call these methods local methods. An example

of a local method is getCustomerID() in the class Customer of the running example (see

Chapter 3). Second, the methods that were originally declared in the superclass of the

origin code counterpart. For example the method getName() in the class Person of the

running example (see Chapter 3). Third, the Ecore methods, which have no counterpart

in the origin code. For example the method eClass(), which is declared in the interface

EObject. The reason for this categorization is that each of these categories has to be treated

di�erently when implementing the delegation.

5.4.1. Delegating Local Methods

The local methods, which were originally declared in the correlating origin code classes

of the interfaces have to be delegated di�erently depending on whether they are access

methods (see Section 4.4.1) or not. If they are access methods, they have to be delegated

to the Ecore implementation of the interface, because the adapted origin code does not

contain the �elds of the origin code, which should be referenced by the access methods.

This is the case because EMF creates own �elds for all EStructuralFeatures when generating

the Ecore code (see Chapter 10.1.2 in [31]) and all �elds of the origin code are extracted

during the Ecore metamodel extraction as EStructuralFeatures. As a result, the adapted
origin code delegates all �eld access to the access methods of the correlating wrapper

classes of the integration code. This delegation is depicted in Figure 5.6. The interface

ECustomer contains an access method called getCustomerID(). The class CustomerWrapper

implements that method and delegates it to the class ECustomerImpl.

If they are not access methods, these methods are still implemented in the adapted origin
code. That means the classes of the adapted origin code do not need an implementation in

the integration code. As a result, there are two options for the delegation process: The �rst

option is to declare the wrapper classes of the integration code as abstract (see §8.1.1.1 in

the JLS [12]). This means the wrappers do not have to implement the methods of their

Ecore interfaces that are not access methods. The second option is to implement those

and delegate to the correlating implementation of the method in the Ecore implementa-

tion class of the Ecore code. These methods in the Ecore implementation just throw an

UnsupportedOperationException. This provides a dummy implementation of the method

for the wrapper class while the original methods remain unchanged. The second option is

implemented in the example that is depicted in Figure 5.6: The method generateReport()

is implemented in the class Customer, as it was in the origin code. Because the Ecore inter-

face ECustomer declares that method as well, the class CustomerWrapper delegates it to the

class ECustomerImpl. While the �rst option is more elegant, the second implementation

can be useful when utilizing delegation patterns such as the active annotation @delegate

of the Xtend language, which treats all delegated methods the same way.

5.4.2. Delegating Inherited Methods

Methods whose signatures are implicitly declared by the Ecore interfaces of the Ecore code
through inheriting them from their super interfaces are not part of the correlating class

44

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.1.1

5.4. Method Delegation in the Integration Code

Figure 5.6.: UML class diagram of the delegation process of the integration code.

of the origin code. The correlating classes of the origin code inherit them through their

specialization relations. The wrapper classes must not delegate these methods to the Ecore

implementations because they are implemented in the original superclasses. That means

the wrapper classes inherit the implementation of these methods from their super classes,

which were originally the superclasses of the origin code (See Section 5.3).

This behavior is depicted in Figure 5.6. The class Person contains the implementation of

the method getName(). The Ecore interface EPerson declares the signature of that method.

The class CustomerWrapper and therefore also the class Customer inherit the declaration

from the interface EPerson as well as the implementation of the class Person.

5.4.3. Delegating Ecore Methods

Ecore methods, which have no counterpart in the origin code, are created when generating

code from an Ecore metamodel. The signatures of these methods are declared in the

interface EObject. They are a part of all Ecore interfaces of the Ecore code because the root

interface of the Ecore interface hierarchy is the interfaces EObject.

These methods are implemented in the implementation classes of the Ecore code. The

wrapper classes of the origin code delegate these methods to the implementation classes.

As a result, the adapted origin code inherits these Ecore methods and their functionality.

45

5. Ecori�cation of Java Code

This can be seen in Figure 5.6, where the class CustomerWrapper delegates the method

eClass() to the class ECustomerImpl.

5.5. Removing the Fields of the Origin Code

During the Ecori�cation process, the classes of the origin code will be adapted to allow the

integration of Ecore functionality. This turns the origin code into the adapted origin code.
This happens in two steps: First, the superclass declaration will be overwritten. Second,

the �elds of the classes are removed. While the �rst step was already explained in 5.2, the

second step was only mentioned, but not explained. This section explains the removal of

the �elds in detail.

The second step, removing the �elds from the classes is necessary because the Ecore

representation already contains the same �elds and access methods in the implementation

classes of the Ecore code. They are automatically created when generating the Ecore code
from the extracted Ecore metamodel. First, we replace all references to the �elds of the

classes in the origin code by equivalent access methods calls. Then, we remove the �elds

and their access methods. All access method calls of this class now are executed by the

wrapper classes of the integration code. As discussed in Section 5.4, they are then delegated

to the correspondent implementation classes of the Ecore code. As a result of this adaption,

the classes of the adapted origin code will inherit the Ecore functionality from the wrapper

classes of the integration code. Also, while the implementations of the methods remain in

the adapted origin code, the �elds are part of the Ecore code.
There is one problem with this approach: If the access methods of the origin code

contain more functionality than just to get or set a �eld, this functionality is lost during the

Ecori�cation process. The problem lies in the Ecore metamodel extraction. As discussed in

Section 4.4, an access method generated by EMF from the extracted Ecore metamodel will

di�er from the original access method because the generated access methods contain no

additional functionality. As a result, the access methods with the additional functionality

of the origin code will be removed, and all calls to them will be delegated to the basic access

methods of the Ecore code. This could be avoided by implementing a strategy to retain the

code of the access methods.

One strategy that solves that problem is de�ning a custom EAnnotation during then

Ecore metamodel extraction. This annotation then contains the source code of the access

methods in a similar way as the EAnnotation used by EMF to contain the source code of

EOperation bodies. The custom EAnnotation can then be attached to the EStructuralFeatures
that represent the �elds referenced by the access methods. During the Ecori�cation process,

this annotation could be used to add the missing additional functionality to the access

methods.

5.6. Changing the Factories

As mentioned in Section 5.1, EMF creates a package and a factory class for every EPackage
when generating model code from an Ecore metamodel. These factories allow creating

46

5.7. Replacing Parameterized Constructors

instances of the types contained in the package. Every factory consists of an interface

and an implementation class. While it is not necessary to use the factories for the instan-

tiation of the types in the package, EMF highly encourages it (see Chapter 10.8 in [31]).

Additionally, many tools like model transformation languages use these factories

While the previous sections covered the interlacing of the origin code and the Ecore
code with the help of the integration code, the factories are still creating instances of the

implementation classes of the origin code. If we want to use our adapted origin code as we

would normal model code generated from Ecore metamodels, the factories have to create

instances of the classes from the adapted origin code. To achieve that, we have to create

adapted factories. It is important to keep the original factories as well because they are

needed to create instances of the Ecore code implementation classes for the integration code.
As discussed in Section 5.4, the wrapper classes of the integration code delegate certain

methods to the implementation classes of the Ecore code.
To keep the original factories intact, we copy them into a subpackage of the factory

package. While the copies are not being altered, we change the original factories to create

adapted origin code instances. We adapt the methods in the implementation classes of the

factories to return the correlating class of the adapted origin code instead of the Ecore code
implementation class. The method signature of the implementation class and the interface

does not have to be changed because both the classes from the adapted origin code and the

Ecore code implement the interfaces of the Ecore code. For the Ecore code class ECustomer

of the running example (see Chapter 3) the original instantiation method in the factory

class looks like this:

public ECustomer createECustomer() {

ECustomerImpl customer = new ECustomerImpl();

return customer;

}

An instance of the class ECustomerImpl is created and returned. The method declares

the return type ECustomer. This can be easily altered to create an instance of the class

Customer of the adapted origin code by changing one single line in the method body:

public ECustomer createECustomer() {

Customer customer = new Customer();

return customer;

}

While the declared return types stay the same, the actual return type is changed. After

copying the factories and adapting the original ones the decorated code can be used as one

would normal model code. While the interfaces of the adapted factories do not show any

change, internally, classes of the adapted origin code are instantiated.

5.7. Replacing Parameterized Constructors

As mentioned in Section 4.4, The Ecore meta-metamodel does not use constructors or

any equal counterpart. The reason for this is that constructors are not necessary for

47

5. Ecori�cation of Java Code

the Ecore metamodel and automatically generated in the model code. Initial values of

EStructuralFeatures can be declared with default value properties (see Chapter 5.3 in [31]).

The model code generated from Ecore metamodels only uses default constructors to create

the classes that represent the EClasses of the metamodel (see Chapter 10.8 in [31]). Initial

values of �elds are set through static default value �elds in the same classes (see Chapter

10.2 and 10.3 in [31]).

Section 4.4 explained that constructors can only be extracted as normal EOperations or

cannot be extracted at all. Not extracting parameterless constructors causes no problems

because the Ecore factories call the public parameterless constructor of the classes they

create (see Section 5.6). In contrast, extracting parameterized constructors will lead to

problems. For example, if a class only o�ers a parameterized constructor, the instantiation

of this class depends on the constructor parameters. However, because the Ecore interfaces

of the factories do not allow to parameterize the creation methods, these methods can

only create one speci�c instance type of a class with a speci�c set of parameters.

If we look at the factory example of the previous section and assume the class Customer

only o�ers a constructor with two parameters name and customerID, the Customer creation

method createECustomer() of the factory would have to be edited to call this parameter-

ized constructor. However, as a result, the method createECustomer() then only allows

creating one customer with a �xed name and customerID because the factory interface only

de�nes the method signature of createECustomer() without any parameters. For example

a customer with the name "John Doe" and the customerID "17701362" in the following

method:

public ECustomer createECustomer() {

Customer customer = new Customer("John Doe", 17701362);

return customer;

}

Relevant for the Ecori�cation process are the initial values of �elds, which are set with

parameterized constructors.

To solve this problem, classes that depend on the instantiation with parameters need a

parameterless constructor and a special method for the initialization process that depends

on the parameters of the constructor. The availability of a parameterless constructor

can be achieved by manually creating a public parameterless constructor. The method

for the initialization process needs to take the same parameters as the parameterized

constructor and should contain all the parameter dependent code of the parameterized

constructor. This method then can be used by the user after the instance was created with

an Ecore factory method. This solution still allows existing code to use the parameterized

constructors. Additionally, the solution o�ers an initialization method as a workaround

to execute the parameter dependent parts of the parameterized constructors after the

instance was created with the factories. In our previous example, the class Customer would

now have two additional methods:

public Customer() {

// parameter independent code.

}

48

5.7. Replacing Parameterized Constructors

public void initialize(String name, int customerID) {

// parameter dependent code:

this.name = name;

this.customerID = customerID;

}

A parameterless constructor and the method initialize(). The parameterless constructor

gets called by the factory method createECustomer() and the method initialize() can

be called after the object creation.

49

6. Prototypical Implementation

The Java code Ecori�cation concept was implemented in two parts: First, Ecore metamodel

extraction was implemented. Second, the extraction implementation was used to imple-

ment a prototype of the Java code Ecori�cation. The separated implementation allows

using the Ecore metamodel extraction for other purposes than the integration of Ecore

functionality into Java code. While the Ecore metamodel extraction implementation covers

nearly all features of Section 4, the Java code Ecori�cation prototype is only implemented

as proof of concept. The reason for this is the time limit of the thesis. Both the Ecore

metamodel extraction and the Java code Ecori�cation are implemented as Eclipse plug-

ins using the Java Development Tools and the Ecore API. While the Ecore metamodel

extraction was solely implemented with the Java Language, the Java code Ecori�cation was

implemented with the Java Language and Xtend, a programming language for the Java

Virtual Machine. Both together, the Ecore metamodel extraction and Java code Ecori�cation
were implemented in under 3200 lines of code. The code for both the Ecore metamodel

extraction
1

and the Java code Ecori�cation2
is publicly available under the Eclipse Public

License [9]. First, Section 6.1 covers the extraction implementation. Second, Section 6.2

covers the Ecori�cation implementation.

6.1. Extraction Implementation

The extraction implementation is an Eclipse plugin that extracts Ecore metamodels from

Java projects in the Eclipse workspace. It supports the extraction of packages with their

hierarchy, interfaces, classes, enumerations with their enum constants, inheritance and

realization relations, �elds, methods with their parameters, return types and throws clauses,

generic types with their type parameters, generic arguments, and wildcard types.

The extraction implementation uses an internal metamodel called Intermediate Model
during the extraction process. This metamodel extends the model element mapping de�ned

in Chapter 4. First, Section 6.1.1 introduces the general architecture of the extraction

implementation. Second, Section 6.1.2 explains the Intermediate Model in detail. Third,

Section 6.1.3 shows the extended model element mapping that was used in the extraction

implementation. Fourth and last, 6.1.4 explains how the extraction process of the extraction

implementation can be con�gured.

1
github.com/tsaglam/EcoreMetamodelExtraction

2
github.com/tsaglam/JavaCodeEcori�cation

51

https://github.com/tsaglam/EcoreMetamodelExtraction
https://github.com/tsaglam/JavaCodeEcorification

6. Prototypical Implementation

6.1.1. Architecture

The general architecture of the project can be broken down into three modules: The Java

project extractor, the Intermediate Model, and the Ecore metamodel generator. These three

modules encapsulate di�erent steps of the extraction work�ow (see Figure 6.1). The Java

project extractor analyzes a Java project using the JDT API and extracts all the information

the implicit metamodel of the Java code contains. With this information, the extractor

then builds an instance of the Intermediate Model. The Intermediate Model is an internal

metamodel that serves as an interim stage between the Java code and the Ecore metamodel.

The Ecore metamodel generator uses the Ecore API to build an Ecore metamodel from the

Intermediate Model instance. Additionally, the Ecore metamodel generator contains saving

strategies that save the generated Ecore metamodel as an Ecore �le.

Figure 6.1.: The depiction of the Ecore metamodel extraction work�ow. Modules are

rectangular, and products are oval. The project Java project extractor extracts

an Intermediate Model from the Java code, which is then used by the Ecore

metamodel generator to generate an Ecore metamodel. This metamodel can be

saved into an Ecore �le with the help of the saving strategies are a submodule

of the Ecore metamodel generator.

The use of the Intermediate Model as an interim stage during the extraction process has

several bene�ts. First, it allows the separation of the extractor module and the generator

module. As a result, both the Ecore metamodel generator and the Java project extractor are

replaceable. For example replacing the Java project extractor with a di�erent module that

extracts an Intermediate Model from another programming language, allows the extraction

of Ecore metamodels from that programming language. Second, the use of the Intermediate
Model allows to conveniently select which parts of the Java code should be extracted into

the Ecore metamodel.

6.1.2. Intermediate Model

The Intermediate Model is a metamodel that uses a tree structure that contains all extracted

information of a Java project. It tries to stay close to the implicit model of the language Java

and does not re�ect the characteristic properties of the Ecore meta-metamodel. Through

its tree hierarchy, it is possible to deselect subtrees of the Intermediate Model for the

metamodel generation. When an Intermediate Model gets created by the project extractor,

all extracted information is added to the Intermediate Model, no matter if that information

can be represented in an Ecore metamodel or not. That means an Intermediate Model

52

6.1. Extraction Implementation

contains equally as much or more information than an Ecore metamodel generated from

that Intermediate Model. The tree structure of an Intermediate Model instance starts with

an ExtractedPackage as root package, which contains all other model elements. The

Intermediate Model can be divided into two di�erent hierarchies. The element hierarchy

and the datatype hierarchy.

The Intermediate Model representations of packages, classes, interfaces, enumera-

tions, and methods are instances of the class ExtractedElement. As a result, they are

part of the element hierarchy (see �gure 6.2). An ExtractedPackage contains any num-

ber of instances of ExtractedPackage to represent subpackages. It also contains any

number of instances of ExtractedType to represent the interfaces, classes, and enums

of the package. An ExtractedType has instances of the classes ExtractedMethod and

ExtractedField. These are the methods and �elds of the type. An ExtractedEnum addi-

tionally has enum constants, which are instances of the class ExtractedEnum constant.

An ExtractedMethod contains an AccessLevelModifier, a MethodType as well as instances

of the classes ExtractedParameter and ExtractedDataType. The instances of the class

ExtractedParameter represent method parameters, while the instances of the Intermedi-
ate Model class ExtractedDataType represent the method return type and the exception

declarations of the throws clause.

Figure 6.2.: UML class diagram of the element hierarchy, a subset of the Intermediate Model.

The Intermediate Model elements that represent data types, parameters, variables, and

�elds are all part of the data type hierarchy (see Figure 6.3). They are connected through

inheritance. A data type, modeled through the class ExtractedDataType represents a single

data type. An ExtractedVariable is an ExtractedDataType with a variable name, also

called identi�er. A parameter, modeled through the class ExtractedParameter represents

a method parameter. A �eld, modeled through the class ExtractedField, represents a

�eld of a type. Both classes ExtractedParameter and ExtractedField extend the class

ExtractedVariable. One di�erence between a �eld and a variable is that the �eld has an

access level modi�er, represented through the enum AccessLevelModifier. A generic type

parameter is modeled through the class ExtractedTypeParameter. The type parameter

has any number of type parameter bounds. The bounds are represented by a list of

ExtractedDataType instances.

53

6. Prototypical Implementation

Figure 6.3.: UML class diagram of the data type hierarchy, a subset of the Intermediate
Model.

6.1.3. Extraction Table

As explained in Section 6.1.1, Ecore metamodel extraction uses the Intermediate Model
between the extraction of information from the Java code and the generation of the

Ecore metamodel. It uses a mapping from Java elements to Intermediate Model elements

and Intermediate Model elements to Ecore elements. Therefore, the mapping between

the elements of the Ecore meta-metamodel and the implicit Java metamodel (see Table

4.1) can be extended to represent the additional step with the Intermediate Model. This

extended mapping is visualized in the extraction table (see Table 6.1). The left column

of the extraction table contains the Java elements. The right column contains the Ecore

elements which are generated from the extracted features. The middle column contains

the relating elements of the Intermediate Model.

6.1.4. Configurability

The extraction implementation is highly con�gurable. The plugin uses a property �le

to allow the con�guration of the extraction process. It is possible to disable and enable

the extraction of nested types, classes, interfaces, enums, custom exception and error

classes, constructors, methods, and �elds. For �elds and methods, it is also possible to

disable and enable the extraction for speci�c access level modi�ers. The user can also

customize the default package name, the data type package name, and the package su�x

of nested types. When saving an extracted Ecore metamodel, there are �ve di�erent saving

strategies available: Saving into the original project where the metamodel was extracted

from, saving into a copy of the original project, saving into a newly created project, saving

into a speci�c project that already exists, and saving to any speci�ed location.

6.2. Ecorification Implementation

The Java code Ecori�cation is prototypically implemented as an Eclipse plugin. It integrates

Ecore functionality into the Java code of Java projects in the Eclipse workspace. While

54

6.2. Ecori�cation Implementation

Java Metamodel (implicit) Intermediate Model Ecore Meta-Metamodel

Package ExtractedPackage EPackage

Type ExtractedType EClassi�er

Class ExtractedClass EClass

Interface ExtractedInterface EClass

Enum ExtractedEnum EEnum

Enum Constant ExtractedEnumConstant EEnumLiteral

Field ExtractedField EStructuralFeature

Method ExtractedMethod EOperation

Method Parameter ExtractedParameter EParameter

Method Return Type ExtractedDataType EClassi�er/EGenericType
Throws Clause ExtractedDataType EClassi�er/EGenericType
Generic Type Parameter ExtractedTypeParameter ETypeParameter

Generic Type Argument ExtractedDataType EGenericType

Generic Type Bound ExtractedDataType EGenericType

Super Type Reference ExtractedDataType EClass & EGenericType

Table 6.1.: Extraction table for the Ecore meta-metamodel, Intermediate Model, and the

implicit Java metamodel. A cursive Ecore element means the corresponding

Java element is represented through a reference to the cursive Ecore element.

the extraction implementation included most of the features discussed in the concept, the

Ecori�cation implementation is limited to the Ecori�cation of few selected features.

Implemented features are the creation of an Ecore representation (see Section 5.1),

the creation of the integration code (see Section 5.4), and the adaption of the superclass

declarations of the origin code (see Section 5.5). Not implemented are the removal of the

�elds from the adapted origin code (see Section 5.5), the adaption of the Ecore factories (see

Section 5.6) and a solution for the constructor problem (see Section 5.7). The Ecori�cation
implementation serves as proof of concept for the concept for the integration of Ecore

functionality into Java code.

It can be broken down into �ve modules: The extraction implementation, the Generator
Model generator, the Model code generator, the wrapper generator and the inheritance

manipulator. These �ve modules encapsulate di�erent steps of the Ecori�cation work�ow

of the Ecori�cation implementation (see Figure 6.4).

The Ecori�cation work�ow works as follows: First, the extraction implementation

extracts an Ecore metamodel from a Java project. Second, the Generator Model generator

generates an Ecore Generator Model with the help of the Ecore API. The Generator Model
is an Ecore model that contains additional information for the code generation from an

Ecore metamodel (see Chapter 2.4.4 in [31]). This Generator Model is used in the third step

by the Model code generator to generate the model code for the Ecore metamodel, also

using the Ecore API. As a fourth step, the wrapper generator generates the wrapper classes

using Xtend templates and the Eclipse API. The wrappers classes are written in Xtend

and utilize the active annotation @delegate. This active annotation allows the delegation

55

6. Prototypical Implementation

Figure 6.4.: The depiction of the Ecori�cation work�ow with its �ve modules: The Ecore

metamodel extraction, the Generator Model generator, the Model code gener-

ator, the wrapper generator and the inheritance manipulator. Products are

depicted as ovals.

of the methods declared by the Ecore interfaces of the origin code. Additionally to the

wrapper class generation, the necessary Xtend dependencies are added to the project.

Last, the inheritance manipulator uses the Java AST of the Java Development Tools API to

overwrite the superclass declarations of the classes in the origin code to let them inherit

from the wrapper classes.

56

7. Validation

Because of the separation of both the concepts and the implementations of the Ecore meta-

model extraction and Java code Ecori�cation, the validation was also separated. Initially,

the Ecore metamodel extraction was validated by itself. After that, the whole Ecori�cation
was validated, which implicitly validates the Ecore metamodel extraction again because it

is used during the Ecori�cation.

First, Section 7.1 explains how the Ecore metamodel extraction was validated individually.

Second, Section 7.2 describes how the Java code Ecori�cation as a whole was validated.

Last, Section 7.3 discusses the problems that arose during the thesis.

7.1. Validating the Ecore Metamodel Extraction

Because there are, to our knowledge, currently no other approaches for the extraction of

Ecore metamodels from Java code, it is not possible to compare the extraction implementa-

tion with other approaches. As a result, it is hard to validate, whether our result is correct.

However, we used several indicators and several tests to ensure the validity of the Ecore

metamodels that the extraction implementation generates. We employ three indicators for

the validity of the Ecore metamodel extraction:

• Indicator 1: The validity of the extracted metamodel according to EMF. It is possible to

create invalid Ecore metamodels, especially when dynamically creating metamodels

with the Ecore API. For example, the Ecore meta-metamodel is designed to use

EReferences for referring to EClasses and EAttributes for referring to EDataTypes.
But because both EAttributes and EReferences are EStructuralFeatures, the Ecore API

allows using an EAttribute to reference EClasses. This leads to an invalid metamodel

and is not even possible when creating it with the EMF user interface. An Ecore

metamodel is valid according to Indicator 1 if EMF accepts it as valid without

indicating any errors.

• Indicator 2: The Ability to generate Ecore model code from the extracted metamodel.

The requirements on Ecore metamodels for generating valid model code are even

stricter than the requirements for the validity of the metamodel itself. That means

a valid Ecore metamodel can be used to generate invalid Ecore model code. For

example, an EOperation can reference an EClass that does contain any super relation

that resembles the inheritance from java.lang.Throwable or one of its subclasses.

A metamodel with this EOperations is valid according to Indicator 1. However,

when generating model code from that metamodel, it will lead to the generation of

invalid Java code. The reason for this is that a throws clause of a method can only

reference subtypes of java.lang.Throwable. An Ecore metamodel is valid according

57

7. Validation

to Indicator 2 if EMF allows the creation of a Generator Model without indicating

any errors.

• Indicator 3: Indication through examined model properties, which can be compared

to the Java code used for the extraction. This type of validation is often used to

validate UML model reverse engineering approaches [18]. An Ecore metamodel is

valid according to Indicator 3 if the extracted metamodel has the same values for

examined model properties as the relating property of the implicit model of the Java

code. We make the following model comparisons: The number of EClasses compared

to the number of classes, the number of EClasses compared to the number of enums,

the number of EStructuralFeatures per EClass compared to the number of �elds per

class, and the number of EOperations per EClass compared to the number of methods

per class.

Di�erent tests were conducted throughout the duration of this thesis. These tests utilized

the di�erent indicators to test the Ecore metamodel extraction. First, during the develop-

ment of the extraction implementation, automated unit tests were used to test the di�erent

extracted features. These features were validated with Indicator 3. These unit cannot test

whether the features were extracted correctly under all circumstances, they rather tested

the most common behavior.

Second, a Java test project was speci�cally designed to test the extraction implementation.

While this test project does not represent a real software project, it contains all features

of the Java language that are extracted in the Ecore metamodel extraction concept. For

example, it contains a package called modifiers that contains four types: Two classes, one

interface, and one enum. One of the classes is abstract, the other is not. Each of these

types contains methods and �elds for every possible modi�er. This package is designed

to test the extraction of methods and �elds for speci�c modi�ers. This test project is

publicly available
3

under the Eclipse Public License [9]. The Ecore metamodel extracted

from the test project is validated with Indicator 1, Indicator 2 and Indicator 3. Indicator 3

was checked by manually counting the correlating Java elements of the test project. The

extraction of the test project was successfully validated for all three indicators.

Last, two larger well-known projects were used to extract an Ecore metamodel. One is

the Java AST, which a subset of the Java Development Tools (see Section 2.5). The other is

the Apache Commons IO library [26] which o�ers utilities for input/output functionality.

These projects are, opposed to the custom test project, real programs and therefore give

insight into the practical application of the Ecore metamodel extraction. Table 7.1 shows

the dimensions of the Ecore metamodels that were extracted from these projects. It also

shows the size of the three projects in lines of code. These extracted metamodels were

tested on validity with Indicator 1 and Indicator 2. Both indicators suggested the validity

of the Ecore metamodel extraction. Nevertheless, it is important to acknowledge that

the validity of the Ecore metamodel extraction is not guaranteed until further, more

comprehensive testing.

3
github.com/tsaglam/EME-TestProject

58

https://github.com/tsaglam/EME-TestProject

7.2. Validating the Ecori�cation of Java Code

Element Test Project Java AST Commons IO

291 SLOC 33.765 SLOC 9.957 SLOC

EPackages 18 55 29

EClassi�ers 52 326 165

EClasses 29 194 118

EDataTypes 23 132 47

EEnums 2 0 1

EOperations 29 2952 402

EStructuralFeatures 24 440 192

EAttributes 21 258 186

EReferences 3 182 6

Table 7.1.: Extracted Ecore model elements from the custom test project, the Java AST, and

the Apache Commons IO library.

7.2. Validating the Ecorification of Java Code

As previously explained, the Java code Ecori�cation was implemented as a proof of concept.

We validated the Ecori�cation implementation through performing a QVTO transformation

[13] on Java code, into which Ecore functionality was integrated through the Ecori�cation
of Java code. Because QVTO transformations cannot be performed on normal Java code,

this validation proofed that we were able to successfully integrate Ecore functionality into

Java code. Because the adaption of the factories (see Section 5.6) was not yet implemented,

we initiated the QVTO transformation programmatically. Using the QVTO user interface

instead of programmatically initiating the QVTO transformation would have required the

factories to create instances of the adapted origin code instead of the Ecore code.
First, two Java projects were created. The Java projects resemble a well-known example

for metamodels: The "Families to Persons" example [35]. The �rst project, Families
contains three classes: Family, Member, and FamilyContainer (see Figure 7.1). The class

Member represents a family member and has an attribute for the �rst name and a reference

to a family. The class Family represents a family. It has several references to Member: One

father reference, one mother reference, and any number of referenced sons and daughters.

The class Family also contains an attribute for the last name. The class FamilyContainer

simply references any number of Family instances. Additionally, we added one method to

the class Family, which prints the content of the family.

Figure 7.1.: The UML class diagram of the Families project.

59

7. Validation

The second project, Persons contains four classes: Person, Male, Female, and the class

PersonContainer (see Figure 7.2). The class Person has an attribute for the full name of

the person it represents. The classes Male and Female simply inherit from Person. Like the

class FamilyContainer, the class PersonContainer simply serves as a reference container.

It references any number of Person instances.

Figure 7.2.: The UML class diagram of the Persons project.

Second, we used the Java code Ecori�cation to integrate Ecore functionality into the

projects Families and Persons. Each project then contained its decorated code and the

extracted Ecore metamodel, which was generated during the Ecore metamodel extraction.

The two metamodels of the projects Families and Persons can be seen in Figure 7.3 and

Figure 7.4.

Figure 7.3.: The extracted Ecore metamodel of the Families project.

As a third step, we wrote a QVTO transformation, which transforms instances of the

Families metamodel into instances of the Persons metamodel. The QVTO transformation

transforms a FamilyContainer into a PersonContainer by creating Male instances from

the Member instances father and sons, as well as Female instances from the Member instances

60

7.3. Lessons Learned

Figure 7.4.: The extracted Ecore metamodel of the Persons project.

mother and daughters. After the transformation, the full name of the Person corresponds

to the �rst name of the corresponding Member and the last name of the corresponding

Family.

We used this QVTO transformation on a simple FamilyContainer containing one Family.

The Family has the last name "Doe" and references four Member instances: The father "Jon,"

the mother "Claire," the daughter "Alice" and the son "Bob." These roles were referenced

according to Figure 7.1. After the transformation, we received one PersonContainer which

referenced four Person instances: The instances of Female called "Claire Doe" and "Alice

Doe," as well as the instances of Male called "John Doe" and "Bob Doe." Furthermore, we

were able to call the additional print method of the class Family during the transformation.

This method showed the same behavior as it did in the original project. This means its

functionality was retained during the Ecori�cation.

The success of the QVTO transformation indicates that the Java code Ecori�cation
integrated enough Ecore functionality into the projects Families and Persons to allow the

application of an Ecore-dependent tool on arbitrary Java code. As a result, we conclude

that the Java code Ecori�cation prototype accomplished its goal. While this did not validate

the entire Ecori�cation concept with all its features, we proved the basic feasibility of the

Ecori�cation of Java code.

7.3. Lessons Learned

During the validation of the Java code Ecori�cation, we discovered a problem with the

integration code. The implementation classes of the Ecore code extend the static class

Container, which is declared as a nested class in the class MinimalEObjectImpl. This

specialization relation causes the inheritance of crucial functionality, which is needed

when using the classes of the adapted origin code in a situation where an implementation

of the Ecore interfaces is expected. As a result, our wrapper classes of the integration code
need to extend the class Container as well. For the validation, we manually implemented

these relations.

61

7. Validation

Additionally to this �rst problem, we discovered a problem with the Ecori�cation of

�elds. When extracting a �eld of type java.util.List from Java code, it gets generated

in the Ecore code as a �eld of type EList. As a result, the generated accessor method will

return an instance of the type EList. The accessor method in the adapted origin code will

return an instance of type java.util.List. Because of the specialization relations, this is

an occurrence of contravariance, which is not allowed in the language Java. This can be

avoided by implementing the removal of the �elds (see Section 5.5). However, this problem

has to be solved for parameterized access methods, because they are not removed from

the adapted origin code. For the validation, we circumvented that problem by changing

the accessor method declarations in the interfaces of the Ecore code to declare the return

type java.util.List.

62

8. RelatedWork

The Ecore metamodel extraction is a reverse engineering approach that extracts Ecore

metamodels from Java code. While there are, to our knowledge, no other approaches

that have this goal, there are many di�erent approaches to the reverse engineering of

object-oriented code. Because UML is an important tool in software engineering, many of

these approaches try to extract UML models. Whereas some of the approaches describe

general procedures, independent from the programming language and the model type,

others are speci�cally tailored towards individual tools and languages. Because of the

amount of reverse engineering approach, we will only name the most related and the most

common ones.

"MoDisco: A Generic And Extensible Framework For Model Driven Reverse Engineering" [3]

introduces the tool MoDisco, which is an Eclipse plug-in that allows reverse engineering

models from existing applications. As input, it can use Java source code, databases, and

con�guration �les. It utilizes the Java Abstract Syntax Tree of the Eclipse Java Development

Tools (see Section 2.5). All extracted models are instances of the MoDisco metamodel,

which is an Ecore metamodel. The reverse engineering approach of MoDisco is very similar

to the Ecore metamodel extraction approach of this thesis. Both the Ecore metamodel

extraction implementation and MoDisco are based on the same Eclipse tools. However,

there is one big di�erence between MoDisco and the extraction implementation. MoDisco

extracts Ecore models, while the extraction implementation extracts Ecore metamodels.

That means the approach of this thesis is on a higher metalevel (see Section 2.2). As a result,

the extracted metamodels of the extraction implementation approach are on the same

metalevel as the MoDisco metalevel, which describes all models extracted by MoDisco.

"MDA-Based Reverse Engineering of Object Oriented Code" [8] and "Formalizing MDA-
Based Reverse Engineering Processes" [7] describe a reverse engineering approach that

complies with Model Driven Architecture. They combine static and dynamic analysis

in one process that generates MDA models. While this process internally uses EMOF

metamodels, it extracts platform-speci�c UML models. While they use the same extraction

base as the Ecore metamodel extraction, they reverse engineer a di�erent type of model.

UML models have some similarities with Ecore metamodels but serve a di�erent purpose

(see Chapter 2.3.1 and 2.6.1 in [31]).

"Toward the Reverse Engineering of UML Sequence Diagrams for Distributed Java Software"
[2] proposes an approach for the reverse engineering of UML sequence diagrams from Java

code through dynamic analysis. It de�nes its approach using metamodels and consistency

rules. The generated UML sequence diagrams describe operational behavior. As a result,

this approach is fundamentally di�erent from the Ecore metamodel extraction.

"Shimba — an environment for reverse engineering Java software systems" [32] introduces

the reverse engineering environment Shimba. Shimba extracts static software artifacts

and their dependencies from Java Bytecode. With this information, SCED sequence

63

8. Related Work

diagrams are extracted, which correspond to UML sequence diagrams. Additionally,

Shimba allows reverse engineering a complete model of the dynamic behavior. This model

can be represented in state charts. This work has two di�erences compared to the Ecore

metamodel extraction. First, it uses Java Bytecode as extraction base, while the Ecore

metamodel extraction uses Java source code. Second, it extracts behavioral UML models,

which are not closely related with Ecore metamodels.

"Reverse Engineering of Object Oriented Code" [33] describes a unifying framework for

reverse engineering code to various UML models such as object diagrams, class diagrams,

interaction diagrams, state diagrams and package diagrams. These di�erent UML models

are extracted with the same static code analysis framework, which conducts the analysis of

the code with a so-called Object Flow Graph. The Object Flow Graph is a representation of

the program analyzed. This work explains methodology that is applicable on a broad basis.

Some of the problems described in this work are similar to the problems encountered during

the design of the Ecore metamodel extraction approach. The main di�erence between this

work and the Ecore metamodel extraction is the object �ow graph as core data structure

compared to the Intermediate Model. While the Intermediate Model is designed for the

extraction of Ecore metamodels alone, the object �ow graph has to be able to serve for the

extraction of many di�erent UML models.

"Polymetric views - a lightweight visual approach to reverse engineering" [24] presents

the concept of a polymetric view, which is a software visualization technique enriched

with software metrics. It also describes a method which supports and guides software

engineers in the initial phase of the reverse engineering process. Polymetric views are

implemented in the tool CodeCrawler [23]. CodeCrawler relies on the FAMIXMetamodel

[6], which allows to model languages such as C++, Java, Smalltalk, and COBOL. This

approach is very di�erent compared to the Ecore metamodel extraction in many ways.

For example, it allows extracting from many di�erent languages, including Java. More

importantly, it serves more as a tool to guide software engineers in the early phases of a

reverse engineering process of a large software system. As a result, this approach o�ers

views that visualize software, which have signi�cantly less functionality than metamodels.

There are also proprietary tools like Enterprise Architect [28] and Rational Software

Architect Designer [27] that speci�cally support the reverse engineering of UML diagrams.

These tools are widely used in the commercial sector.

At the current time, there are no existing approaches known to the author that allow the

integration of Ecore functionality into Java code. However, there are approaches that,

generally speaking, blur the line between models and code, which is in some ways similar

to the goals of the Java code Ecori�cation.

One of such approaches is Xcore [38, 30]. It is an extended syntax for Ecore, which

allows creating metamodels and their implementations textually. Meta information is

added to the source code to describe the desired metamodel. During the compilation, the

implementation of the metamodel is generated. This allows to remove the separation

between metamodels and code and to combine the advantages of both models and code. In

contrast to this thesis, it does not support the automatic integration of Ecore functionality

into existing Java code.

64

"Projecting UML Class Diagrams from Java Code Models" [17] presents a prototype for

a UML editor using the model representation of Java source code as a single underlying

model. As a result, the code and the UML model are updated if one is changed. The UML

editor is realized as a projection of a Java source code model and therefore does not need

an explicit UML model. The goal of this work is to keep models and code consistent. This

prototype tries to achieve consistency between Java code and UML models during the

development process. The Java code Ecori�cation is a process that is meant to be used

once for an existing program, with the goal to integrate the Ecore functionality. This is

the main di�erence between this thesis and the prototype.

"Reverse Engineering of Object-Oriented Code into Umple using an Incremental and Rule-
Based Approach" [10] presents a reverse engineering approach which adds modeling

information incrementally to code written in C++ or Java while managing the system in

a text format. This modeling information can be interpreted as a UML model. Because

of its incremental process, this modeling information can be automatically changed and

extended alongside the code. This approach is implemented in a tool called Umpli�cator.

The Umple model is compatible with many UML and XMI formats. The concept behind the

Umpli�cator is related to this thesis because of two reasons: First, it is a reverse engineering

process from object-oriented code to UML models. Second, it gets rid of the distinction

between model and code through adding the modeling information incrementally to

code. However, its goal is entirely di�erent, because in this thesis the reverse-engineering

process is a means to an end.

65

9. Future Work

While the Ecore metamodel extraction is conceptually relatively complete and the proto-

type already implements many features, there are still some features that could extend the

extraction. As previously mentioned, we currently extract �elds of type java.util.List

as EStructuralFeature which references the EDataType of EList. When manually creating

such EStructuralFeatures, one usually uses multiplicities. That can be achieved through

creating an EStructuralFeature, which has the type of the generic argument of the list,

and then setting the upper bound of the multiplicity of the EStructuralFeature to minus

one. This could be implemented for the Ecore metamodel extraction. Another prospective

feature is the full extraction of enums. As explained in Section 4.2.2, an enum can only be

partially extracted when representing it in the Ecore metamodel solely as an EEnum. To

extract an enum with its methods, �elds, constructors and realization relations, a single

enum has to be extracted as one EEnum and one EClass. Other features for the Ecore meta-

model extraction include the extraction of Javadoc [5, 19] comments through annotations

and the extraction of the bodies of access methods. JavaDoc comments could be extracted

with a particular kind of EAnnotation, which has the type value EModelElement and key

value documentation. The bodies of access methods could be extracted through custom

EAnnotations to retain the access methods with additional functionality.

Another idea is to use the Ecore metamodel extraction to extract an Ecore metamodel

of the Intermediate Model. The extracted metamodel could then replace the Intermediate
Model in the Ecore metamodel extraction. This bootstrapping would allow for example

model-to-model transformations from and to the Intermediate Model with transformation

languages like QVT [13] or ATL [16]. In the future, the Intermediate Model could be

adapted to �t any object-oriented programming language. As a result, it would be possible

to extract Ecore metamodels from other programming languages through generating an

Intermediate Model from source code of these languages.

The concept for the Ecori�cation is still just a rough prototype and its prototypical imple-

mentation just a proof of concept. For this reason, there is much room for improvements

and new features for the Java code Ecori�cation. Prospective features for the implementa-

tion are the removal of the �elds from the adapted origin code (see Section 5.5), the adaption

of the Ecore factories (see Section 5.6) and a solution for the constructor problem (see

Section 5.7). During the validation, we discovered the problem with the contravariance of

the return types of parameterized accessor methods, which occurs when extracting a �eld

of type java.util.List during the Ecori�cation. This has to be solved in the near future.

67

10. Conclusion

Many tools rely on the patterns of code generated from Ecore metamodels. To enable the

use of these tools on existing Java code, this thesis introduced an approach for the automatic

integration of Ecore functionality into arbitrary Java code. We called this approach

Ecori�cation of Java code. During the integration of Ecore functionality, the Java code

Ecori�cation preserves the original functionality of the Java code and all its interfaces. To

make the Ecori�cation possible, this thesis also introduced a reverse engineering approach,

which extracts Ecore metamodels from Java code. This reverse engineering approach is

called Ecore metamodel extraction.

The Ecori�cation of Java code �rst creates an Ecore representation of the original Java

code, called origin code. The Ecore representation consists out an Ecore metamodel that

represents the Java code as closely as possible and the model code generated from that

Ecore metamodel, which we call Ecore code. The metamodel is created with the Ecore

metamodel extraction, which extracts the metamodel from the origin code. At the core of

the Ecore metamodel extraction is a mapping from elements of the implicit Java metamodel

to elements of the Ecore meta-metamodel. This mapping de�nes how Ecore metamodel

elements are extracted from Java code. The similarities of the origin code and the Ecore
code are then used to interlace them both. This is achieved by utilizing the separation of

interface and implementation of the model code to mount the origin code into the super

relation hierarchy of the Ecore code. For that, the Ecori�cation uses wrapper classes. They

form the integration code. The origin code is adapted to allow extending the wrapper classes

of the integration code. The wrapper classes then are mounted into the hierarchy of the

model code. Finally, all three codes are combined to the decorated code. The decorated code
contains the implementation details of the origin code and the Ecore functionality of the

Ecore code.
The concept of this thesis was implemented in two parts: First, the Ecore metamodel ex-

traction was implemented. Second, the extraction implementation was used to implement

a prototype of the Java code Ecori�cation. While the extraction implementation covers

almost all features of the concept, the Ecori�cation prototype is only implemented as a

proof of concept. Both the Ecori�cation and the extraction were implemented as Eclipse

plug-ins in less than 3200 lines of code combined, using the Java Development Tools (see

Section 2.5) and the Ecore API (see Chapter 14.3 in [31]). While the Ecore metamodel

extraction approach was primarily developed for the Java code Ecori�cation, it can also be

independently used as a reverse engineering tool.

Initially, the Ecore metamodel extraction was separately validated. After that, the whole

Ecori�cation was validated, which implicitly con�rmed the validity of the Ecore metamodel

extraction again because it is a part of the Ecori�cation. To validate the Ecore metamodel

extraction, the extracted Ecore metamodels were examined on validity using three indica-

tors: The validity of the extracted metamodel according to EMF, the ability to generate

69

10. Conclusion

Ecore model code from the extracted metamodel, and indication through examined model

properties. The examined model properties were compared to the correlating properties

of the Java code used for the extraction. We tested the extraction for a custom designed

test project and two larger projects: The Java AST, a subset of the Java Development Tools

(see Section 2.5) and the Apache Commons IO library [26]. The Java code Ecori�cation
was validated through performing a QVTO transformation [13] on Java code, into which

Ecore functionality was integrated through the Ecori�cation of Java code. Because QVTO

transformations cannot be conducted on regular Java code, this validation proved that we

were able to successfully integrate Ecore functionality into Java code.

The successful validation of this thesis indicates that the Ecori�cation implementation

integrated enough Ecore functionality into existing Java projects in order to allow the

application of an Ecore-dependent tool on arbitrary Java code. As a result, we conclude that

the Java code Ecori�cation accomplishes its goal. Hence, this thesis proves the feasibility

of the automatic integration of Ecore functionality into Java code.

70

Bibliography

[1] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language.
4th ed. The Java series. Upper Saddle River, NJ: Addison-Wesley, 2006. isbn: 0-321-

34980-6. doi: 10.1002/9780470693698.ch1. url: http://etf.beastweb.org/index.

php/site/download/Java_Programming.pdf.

[2] Lionel C Briand, Yvan Labiche, and Johanne Leduc. “Toward the Reverse Engineering

of UML Sequence Diagrams for Distributed Java Software”. In: IEEE Transactions
on Software Engineering 32.9 (Sept. 2006), pp. 642–663. doi: 10.1109/tse.2006.96.

url: https://doi.org/10.1109%2Ftse.2006.96.

[3] Hugo Bruneliere et al. “MoDisco: A Generic And Extensible Framework For Model

Driven Reverse Engineering”. In: Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering - ASE ’10. ACM. Association for Computing

Machinery (ACM), 2010, pp. 173–174. doi: 10.1145/1858996.1859032. url: https:

//doi.org/10.1145%2F1858996.1859032.

[4] Gerardo CanforaHarman and Massimiliano Di Penta. “New Frontiers of Reverse

Engineering”. In: 2007 Future of Software Engineering. FOSE ’07. Washington, DC,

USA: IEEE Computer Society, 2007, pp. 326–341. isbn: 0-7695-2829-5. doi: 10.1109/

FOSE.2007.15. url: http://dx.doi.org/10.1109/FOSE.2007.15.

[5] Oracle Corporation. Javdoc. Oracle.com. Version 1.5.0. Feb. 2004. url: http://www.

oracle.com/technetwork/java/javase/documentation/javadoc-137458.html

(visited on 04/09/2017).

[6] Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. FAMIX 2.1—the FAMOOS
information exchange model. 2001.

[7] Liliana Favre. “Formalizing MDA-Based Reverse Engineering Processes”. In: 2008
Sixth International Conference on Software Engineering Research, Management and
Applications. Institute of Electrical and Electronics Engineers (IEEE), 2008. doi:

10.1109/SERA.2008.21. url: https://doi.org/10.1109%2Fsera.2008.21.

[8] Liliana Favre, Liliana Martinez, and Claudia Pereira. “MDA-Based Reverse Engineer-

ing of Object Oriented Code”. In: Enterprise, Business-Process and Information Systems
Modeling: 10th International Workshop, BPMDS 2009, and 14th International Confer-
ence, EMMSAD 2009, held at CAiSE 2009, Amsterdam, The Netherlands, June 8-9, 2009.
Proceedings. Ed. by Terry Halpin et al. Berlin, Heidelberg: Springer Berlin Heidelberg,

2009, pp. 251–263. isbn: 978-3-642-01862-6. doi: 10.1007/978-3-642-01862-6_21.

url: http://dx.doi.org/10.1007/978-3-642-01862-6_21.

[9] Eclipse Foundation. Eclipse Public License. Eclipse.org. Version 1.0. Feb. 2004. url:

https://www.eclipse.org/legal/epl-v10.html (visited on 04/04/2017).

71

http://dx.doi.org/10.1002/9780470693698.ch1
http://etf.beastweb.org/index.php/site/download/Java_Programming.pdf
http://etf.beastweb.org/index.php/site/download/Java_Programming.pdf
http://dx.doi.org/10.1109/tse.2006.96
https://doi.org/10.1109%2Ftse.2006.96
http://dx.doi.org/10.1145/1858996.1859032
https://doi.org/10.1145%2F1858996.1859032
https://doi.org/10.1145%2F1858996.1859032
http://dx.doi.org/10.1109/FOSE.2007.15
http://dx.doi.org/10.1109/FOSE.2007.15
http://dx.doi.org/10.1109/FOSE.2007.15
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html
http://dx.doi.org/10.1109/SERA.2008.21
https://doi.org/10.1109%2Fsera.2008.21
http://dx.doi.org/10.1007/978-3-642-01862-6_21
http://dx.doi.org/10.1007/978-3-642-01862-6_21
https://www.eclipse.org/legal/epl-v10.html

Bibliography

[10] Miguel A. Garzón et al. “Reverse Engineering of Object-oriented Code into Umple

Using an Incremental and Rule-based Approach”. In: Proceedings of 24th Annual
International Conference on Computer Science and Software Engineering. CASCON

’14. Markham, Ontario, Canada: IBM Corp., 2014, pp. 91–105. url: http://dl.acm.

org/citation.cfm?id=2735522.2735534.

[11] James Gosling and Henry McGilton. “The Java Language Environment”. In: Sun
Microsystems Computer Company 2550 (1995). url: http://www.oracle.com/

technetwork/java/langenv-140151.html.

[12] James Gosling et al. The Java Language Speci�cation. Vol. 8. Addison-Wesley Profes-

sional, 2015. url: http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf.

[13] Object Management Group. “Meta Objet Facility (MOF) 2.0 Query/View/Transformation”.

Version 1.3. In: (June 2016). url: http://www.omg.org/spec/QVT/1.3/.

[14] Graham Hamilton. “Java Beans Speci�cation”. In: Sun Microsystems 1.01 (1997).

url: http://www.oracle.com/technetwork/java/javase/documentation/spec-

136004.html.

[15] Ayushman Jain and Stephan Herrmann. How to Train the JDT Dragon. EclipseCon

Talk. Mar. 2012. url: http://www.eclipsecon.org/2012/sites/eclipsecon.org.

2012/files/How%20To%20Train%20the%20JDT%20Dragon%20combined.pdf (visited

on 04/04/2017).

[16] Frédéric Jouault et al. “ATL: A QVT-like Transformation Language”. In: Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems,
Languages, and Applications. OOPSLA ’06. Portland, Oregon, USA: ACM, 2006,

pp. 719–720. isbn: 1-59593-491-X. doi: 10 . 1145 / 1176617 . 1176691. url: http :

//doi.acm.org/10.1145/1176617.1176691.

[17] Heiko Klare, Michael Langhammer, and Max E. Kramer. “Projecting UML Class

Diagrams from Java Code Models”. In: 4th Workshop on View-Based, Aspect-Oriented
and Orthographic Software Modelling : Proceedings, 2 March 2016, Karlsruhe, Germany.
Ed.: C. Atkinson. Institut für Programmstrukturen und Datenorganisation (IPD), 2016,

pp. 11–18. url: https://sdqweb.ipd.kit.edu/publications/pdfs/klare2016a.

pdf.

[18] Ralf Kollmann et al. “A study on the current state of the art in tool-supported

UML-based static reverse engineering”. In: Ninth Working Conference on Reverse
Engineering, 2002. Proceedings. Institute of Electrical and Electronics Engineers

(IEEE), 2002, pp. 22–32. doi: 10.1109/wcre.2002.1173061. url: http://dx.doi.

org/10.1109/WCRE.2002.1173061.

[19] Douglas Kramer. “API Documentation from Source Code Comments: A Case Study

of Javadoc”. In: Proceedings of the 17th Annual International Conference on Computer
Documentation. SIGDOC ’99. New Orleans, Louisiana, USA: ACM, 1999, pp. 147–153.

isbn: 1-58113-072-4. doi: 10.1145/318372.318577. url: http://doi.acm.org/10.

1145/318372.318577.

72

http://dl.acm.org/citation.cfm?id=2735522.2735534
http://dl.acm.org/citation.cfm?id=2735522.2735534
http://www.oracle.com/technetwork/java/langenv-140151.html
http://www.oracle.com/technetwork/java/langenv-140151.html
http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://www.omg.org/spec/QVT/1.3/
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.eclipsecon.org/2012/sites/eclipsecon.org.2012/files/How%20To%20Train%20the%20JDT%20Dragon%20combined.pdf
http://www.eclipsecon.org/2012/sites/eclipsecon.org.2012/files/How%20To%20Train%20the%20JDT%20Dragon%20combined.pdf
http://dx.doi.org/10.1145/1176617.1176691
http://doi.acm.org/10.1145/1176617.1176691
http://doi.acm.org/10.1145/1176617.1176691
https://sdqweb.ipd.kit.edu/publications/pdfs/klare2016a.pdf
https://sdqweb.ipd.kit.edu/publications/pdfs/klare2016a.pdf
http://dx.doi.org/10.1109/wcre.2002.1173061
http://dx.doi.org/10.1109/WCRE.2002.1173061
http://dx.doi.org/10.1109/WCRE.2002.1173061
http://dx.doi.org/10.1145/318372.318577
http://doi.acm.org/10.1145/318372.318577
http://doi.acm.org/10.1145/318372.318577

Bibliography

[20] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-centric engineering

with synchronized heterogeneous models”. In: Proceedings of the 1st Workshop on
View-Based, Aspect-Oriented and Orthographic Software Modelling. VAO ’13. Mont-

pellier, France: ACM, 2013, 5:1–5:6. isbn: 978-1-4503-2070-2. doi: 10.1145/2489861.

2489864. url: http://doi.acm.org/10.1145/2489861.2489864.

[21] Max E. Kramer et al. “Change-Driven Consistency for Component Code, Architec-

tural Models, and Contracts”. In: Proceedings of the 18th International ACM SIGSOFT
Symposium on Component-Based Software Engineering. CBSE ’15. Montréal, QC,

Canada: ACM, 2015, pp. 21–26. isbn: 978-1-4503-3471-6. doi: 10.1145/2737166.

2737177. url: http://doi.acm.org/10.1145/2737166.2737177.

[22] Thomas Kuhn and Oliver Thomann. “Abstract Syntax Tree”. In: Eclipse Corner
Articles 20 (Nov. 2006). url: http://www.eclipse.org/articles/article.php?

file=Article-JavaCodeManipulation_AST/index.html.

[23] Michele Lanza. “CodeCrawler-polymetric views in action”. In: Proceedings of the 19th
IEEE international conference on Automated software engineering. IEEE Computer

Society. Institute of Electrical and Electronics Engineers (IEEE), 2004, pp. 394–395.

doi: 10.1109/ase.2004.1342773. url: https://doi.org/10.1109%2Fase.2004.

1342773.

[24] Michele Lanza and Stéphane Ducasse. “Polymetric views - A lightweight visual

approach to reverse engineering”. In: IEEE Transactions on Software Engineering 29.9

(Sept. 2003), pp. 782–795. doi: 10.1109/TSE.2003.1232284. url: http://dx.doi.

org/10.1109/TSE.2003.1232284.

[25] Ed Merks. Eclipse Forum Entry. www.eclipse.org/forums/index.php/t/209028. July

2009. (Visited on 03/14/2017).

[26] Apache Software Foundation. Commons IO. Apache.org. Version 2.5. Apr. 2016. url:

https://commons.apache.org/proper/commons-io/ (visited on 04/05/2017).

[27] Rational Software. Rational Software Architect Designer. IBM.com. Version 9.5. Sept.

2015. url: https://www- 03.ibm.com/software/products/de/ratsadesigner

(visited on 04/07/2017).

[28] SparxSystems. Enterprise Architect. sparxsystems.com. Version 13 Build 1309. Nov.

2016. url: http://www.sparxsystems.com/products/ea/index.html (visited on

04/07/2017).

[29] Thomas Stahl and Markus Völter. Model Driven Software Development: Technology,
Engineering, Management. Chichester: Wiley, 2006. isbn: 0-470-02570-0; 978-0-470-

02570-3.

[30] Alexandru Ştefănică and Petru Florin Mihancea. “XCORE: Support for developing

program analysis tools”. In: 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE. Institute of Electrical and

Electronics Engineers (IEEE), Feb. 2017, pp. 462–466. doi: 10.1109/saner.2017.

7884654. url: https://doi.org/10.1109%2Fsaner.2017.7884654.

73

http://dx.doi.org/10.1145/2489861.2489864
http://dx.doi.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864
http://dx.doi.org/10.1145/2737166.2737177
http://dx.doi.org/10.1145/2737166.2737177
http://doi.acm.org/10.1145/2737166.2737177
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://dx.doi.org/10.1109/ase.2004.1342773
https://doi.org/10.1109%2Fase.2004.1342773
https://doi.org/10.1109%2Fase.2004.1342773
http://dx.doi.org/10.1109/TSE.2003.1232284
http://dx.doi.org/10.1109/TSE.2003.1232284
http://dx.doi.org/10.1109/TSE.2003.1232284
https://commons.apache.org/proper/commons-io/
https://www-03.ibm.com/software/products/de/ratsadesigner
http://www.sparxsystems.com/products/ea/index.html
http://dx.doi.org/10.1109/saner.2017.7884654
http://dx.doi.org/10.1109/saner.2017.7884654
https://doi.org/10.1109%2Fsaner.2017.7884654

Bibliography

[31] Dave Steinberg, ed. EMF - Eclipse modeling framework. 2nd ed. The eclipse series.

Boston, Mass.: Addison-Wesley, 2009. isbn: 0-321-33188-5; 978-0-321-33188-5.

[32] Tarja Systä, Kai Koskimies, and Hausi Müller. “Shimba — an environment for reverse

engineering Java software systems”. In: Software: Practice and Experience 31.4 (2001),

pp. 371–394.

[33] Paolo Tonella. Reverse Engineering of Object Oriented Code. Springer New York, 2005.

doi: 10.1007/b102522. url: http://dx.doi.org/10.1007/b102522.

[34] Paolo Tonella and Alessandra Potrich. “Reverse engineering of the UML class dia-

gram from C++ code in presence of weakly typed containers”. In: Proceedings IEEE In-
ternational Conference on Software Maintenance. ICSM 2001. Institute of Electrical and

Electronics Engineers (IEEE), 2001, pp. 376–385. doi: 10.1109/icsm.2001.972750.

url: http://dx.doi.org/10.1109/ICSM.2001.972750.

[35] Antonio Vallecillo et al. “Formal Speci�cation and Testing of Model Transforma-

tions”. In: Formal Methods for Model-Driven Engineering. Springer Nature, 2012,

pp. 399–437. doi: 10.1007/978-3-642-30982-3_11. url: https://doi.org/10.

1007%2F978-3-642-30982-3_11.

[36] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. “Sirius: A rapid devel-

opment of DSM graphical editor”. In: Intelligent Engineering Systems (INES), 2014
18th International Conference on. IEEE. 2014, pp. 233–238. url: http://ieeexplore.

ieee.org/abstract/document/6909375/.

[37] Lars Vogel. Eclipse Modeling Framework (EMF) - Tutorial. vogella.com. Version 3.6.

July 2016. url: http://www.vogella.com/tutorials/EclipseEMF/article.html

(visited on 04/04/2017).

[38] Sabine Winetzhammer and Bernhard Westfechtel. “ModGraph meets Xcore: Com-

bining rule-based and procedural behavioral modeling for EMF”. In: Electronic
Communications of the EASST 58 (2013). url: http://dx.doi.org/10.14279/tuj.

eceasst.58.838.

74

http://dx.doi.org/10.1007/b102522
http://dx.doi.org/10.1007/b102522
http://dx.doi.org/10.1109/icsm.2001.972750
http://dx.doi.org/10.1109/ICSM.2001.972750
http://dx.doi.org/10.1007/978-3-642-30982-3_11
https://doi.org/10.1007%2F978-3-642-30982-3_11
https://doi.org/10.1007%2F978-3-642-30982-3_11
http://ieeexplore.ieee.org/abstract/document/6909375/
http://ieeexplore.ieee.org/abstract/document/6909375/
http://www.vogella.com/tutorials/EclipseEMF/article.html
http://dx.doi.org/10.14279/tuj.eceasst.58.838
http://dx.doi.org/10.14279/tuj.eceasst.58.838

A. Appendix

A.1. Predefined EDataTypes

Java Type Ecore Type

boolean EBoolean

byte EByte

char EChar

double EDouble

�oat EFloat

int EInt

long ELong

short EShort

java.lang.Boolean EBooleanObject

java.lang.Byte EByteObject

java.lang.Character ECharacterObject

java.lang.Double EDoubleObject

java.lang.Float EFloatObject

java.lang.Integer EIntegerObject

java.lang.Long ELongObject

java.lang.Short EShortObject

java.lang.String EString

java.lang.Object EJavaObject

java.lang.Class EJavaClass

Table A.1.: Prede�ned EDataTypes and their Java counterparts (see Chapter 5.8 in [31]).

75

A. Appendix

A.2. Ecore Meta-Metamodel Hierarchy

Figure A.2.: UML Class Diagram of the Ecore meta-metamodel hierarchy. It shows the

relations of the Ecore meta-metamodel elements (see Chapter 5 in [31]).

76

	Abstract
	Zusammenfassung
	Introduction
	Ecorification of Java Code
	Ecore Metamodel Extraction
	Structure of this Thesis

	Foundations
	Model-Driven Software Development
	Metamodeling
	Reverse Engineering
	Java
	Eclipse
	Eclipse Modeling Framework
	Ecore Meta-Metamodel
	Ecore Model Code
	Ecore Functionality

	Running Example
	Matching Ecore Metamodel
	Code with Integrated Ecore Functionality

	Ecore Metamodel Extraction
	Package Structure
	Reference Types
	External Types
	Enums
	Nested Types
	Array Types

	Primitive Types
	Methods
	Access Methods
	Constructors

	Fields
	Specialization and Realization Relations
	Custom Exception and Error Classes
	Modifiers
	Access Level Modifiers
	Modifier Keyword Abstract
	Modifier Keyword Static
	Modifier Keyword Final
	Modifier Keyword Transient

	Generics
	Wildcard Types
	Selective Extraction
	Summary

	Ecorification of Java Code
	Ecore Representation
	Base Concept for Types
	Retaining Specialization and Realization Relations
	Realization Relations
	Specialization Relations

	Method Delegation in the Integration Code
	Delegating Local Methods
	Delegating Inherited Methods
	Delegating Ecore Methods

	Removing the Fields of the Origin Code
	Changing the Factories
	Replacing Parameterized Constructors

	Prototypical Implementation
	Extraction Implementation
	Architecture
	Intermediate Model
	Extraction Table
	Configurability

	Ecorification Implementation

	Validation
	Validating the Ecore Metamodel Extraction
	Validating the Ecorification of Java Code
	Lessons Learned

	Related Work
	Future Work
	Conclusion
	Bibliography
	Appendix
	Predefined EDataTypes
	Ecore Meta-Metamodel Hierarchy

