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Abstract We investigate the impact of charge-breaking
minima on the vacuum stability of the NMSSM. We con-
centrate on the case of vanishing A-terms in the sfermion
sector, i.e. the only potentially dangerous sources of charge
breaking are vacuum expectation values of the charged Higgs
fields. We find that, in contrast to Two-Higgs-Doublet Mod-
els like the MSSM, at both tree and loop level there exist
global charge-breaking minima. Consequently, many regions
of parameter space are rendered metastable, which other-
wise would have been considered stable if these charge-
breaking minima were neglected. However, the inclusion of
these new scalar field directions has little impact on otherwise
metastable vacuum configurations.

1 Introduction

At first glance, the discovery of a standard model (SM)-like
Higgs boson with a mass of approximately 125 GeV [1,2]
appears to be a huge success of supersymmetry (SUSY)
and in particular of the minimal supersymmetric standard
model (MSSM). In contrast to other ideas to extend the SM,
SUSY predicts that the Higgs boson should not be signifi-
cantly heavier than the Z -boson if new physics is around the
TeV scale; see e.g. Ref. [3] and the references therein. Other
avenues such as technicolour prefer the natural mass range
for the Higgs to lie at scales well above the measured mass.
On the other hand, closer investigation shows that the situ-
ation is more complicated in the MSSM as the Higgs mass
requires large radiative corrections to be compatible with
experimental data. The main source of these corrections are
the superpartners of the top, the stops. In order to maximise
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their contributions to the Higgs mass, one needs to consider
scenarios in which they are maximally mixed [4–7]. This can
be dangerous because it can lead to the presence of charge-
and colour-breaking vacua whereby the stops receive vac-
uum expectation values (VEVs) [8–11]. Since the tunnelling
rate to these vacua is typically large, this results in tension
between an acceptable Higgs mass and a sufficiently long-
lived electroweak (EW) breaking vacuum. Consequently,
SUSY models which can enhance the Higgs mass at tree
level are especially appealing. The simplest such extension
is to add a scalar singlet, resulting in the next-to-minimal
supersymmetric standard model (NMSSM), yields F-term
contributions, which raise the tree-level Higgs mass [12,13].
This significantly reduces the need for large loop corrections.
As a result, large stop mixing is no longer necessary. There-
fore, the vacuum stability problems of the MSSM are cured
as well as reducing the EW fine-tuning [14–21]. However, the
extended Higgs sector in the NMSSM introduces new cou-
plings which can potentially destabilise the EW vacuum. The
vacuum stability in the NMSSM has been studied in the past
at tree level [22–26], and also with one-loop corrections [27].
Potentially dangerous parameter ranges have been identified
in this work. However, all these studies made the assumption
that charge is conserved at the global minimum of the scalar
potential, i.e. the charged Higgs boson VEVs were neglected.
This was motivated to some extent as it has been shown that
the global minimum of two-Higgs-doublet models, if they
have a minimum with correct electroweak symmetry break-
ing, is always charge conserving at tree level [28–30]. How-
ever, for non-vanishing singlet–doublet interactions this is no
longer the case [31] and one must in principle always take
these VEVs into account. The aim of this letter is to discuss
the impact of charged Higgs VEVs on the vacuum stabil-
ity in the NMSSM. We start in Sect. 2 with a discussion of
the scalar potential, before we show the numerical results in
Sect. 3. We conclude in Sect. 4.
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2 Spontaneous charge breaking in the NMSSM

We consider in the following the NMSSM with a Z3 to for-
bid all dimensionful parameters in the superpotential. The
superpotential reads

WNMSSM = λĤd Ĥu Ŝ + 1

3
κ Ŝ3 + WY , (1)

with the standard Yukawa interactions WY as in the MSSM.
The additional soft-terms in comparison to the MSSM are

−Lsoft ⊃
(
TλHdHuS + 1

3
Tκ S

3 + h.c.

)
+ m2

s |S|2, (2)

where we have used the common parametrisation for the tri-
linear soft termsTλ = Aλλ, Tκ = Aκκ . Note that we assume
in the following that all A-terms in the sfermion sector vanish
or are sufficiently small such that the colour- and/or charge-
breaking minima in the respective field directions cannot be
deep enough to destabilise the scalar potential. After elec-
troweak symmetry breaking, the scalar singlet S obtains a
VEV vS which generates an effective Higgsino mass term
μeff = λvS√

2
.

Using the three minimisation conditions of the potential,
the Higgs sector in the NMSSM is specified at tree level
by six parameters: λ, κ, Aλ, Aκ , μeff , tan β, with the ratio
tan β = vu

vd
of the doublet VEVs.

However, we have so far neglected the possibility that
charged Higgs bosons can acquire VEVs. In order to include
this possibility, one needs to check for the global minimum
of the scalar potential resulting from the following VEVs:

(〈H0
d 〉

〈H−
d 〉

)
= 1√

2

(
vd
vm

)
,

(〈H+
u 〉

〈H0
u 〉

)
= 1√

2

(
vp

vu

)
,

〈S〉 = vS√
2
. (3)

One can reduce this five-dimensional problem via an SU (2)

gauge transformation to eliminate one of the charged Higgs
VEVs. This turns out to be more robust for the numerical
evaluation, but for the current discussion we keep the more
intuitive form with all five VEVs.

The scalar potential of the Higgs sector in the NMSSM
with these five VEVs consists of F-, D- and soft-terms

VFull = VF + VD + Vsoft, with (4)

VF = 1

4

(
λv2

S

(
λ

(
v2
d + v2

m + v2
p + v2

u

)

+ 2κ(vmvp − vdvu)

)

+ λ2(vmvp − vdvu)
2 + κ2v4

S

)
, (5)

VD = 1

32

(
g2

1

(
v2
d + v2

m − v2
p − v2

u

)2

+ g2
2

(
v4
d+v4

m+2v2
d

(
v2
m+v2

p−v2
u

)
+8vdvmvpvu

− 2v2
m

(
v2
p − v2

u

)
+

(
v2
p + v2

u

)2 ))
, (6)

VSoft = 1

2

(
m2

Hd

(
v2
d + v2

m

)
+ m2

Hu

(
v2
p + v2

u

)
+ m2

Sv
2
S

)

+ vS

6

(√
2Tκv2

S + 3
√

2Tλ(vmvp − vdvu)
)

. (7)

In what follows we shall always use the equations which
determine the stationary points with respect to vu , vd and
vS (while simultaneously setting vm = vp = 0) to elimi-
nate the soft SUSY-breaking masses m2

Hu
,m2

Hd
and m2

s from
the potential. In doing so we insist upon the existence of an
appropriate electroweak vacuum through the introduction of
the input parameters μeff , tan β and the electroweak VEV
v. These input parameters only fix the soft SUSY-breaking
masses and retain the same values irrespective of the spe-
cific minimum under consideration. To emphasise, if one
considers a generic minimum of the potential, these input
parameters only enter in the scalar potential as a substitute
for the soft SUSY-breaking masses while the free directions
in field space, vu,d,p,m,S , are varied to determine other min-
ima of the theory. Consequently, all minima which we find
in addition to the desired EW vacuum configuration occur
simultaneously.

Before we continue, we can check if parameter points
exist for which the global minimum of the potential is charge
breaking. In order to do so, we compute

�V = VFull − VFull
∣∣
vm=vp=0. (8)

Together with the relation between Aλ and the charged Higgs
mass mH+

Aλ =
λtβ

(
4m2

H+ − v2
(
g2

2 − 2λ2
)) − 4κμ2

eff

(
t2
β + 1

)

4λμeff

(
t2
β + 1

) ,

(9)

where tβ = tan β, we get in the limit tβ → 1, vm → 01

�V = 1

32
v2
p

(
g2

2

(
2v2

d−2v2+v2
p+2v2

u

)
−16μ2

eff+8λ2v2
S

+ g2
1

(
v2
p − 2v2

d + 2v2
u

)
+ 8m2

H+
)

. (10)

Thus, one can see that in particular for large μeff it is possible
to get very deep charge-breaking (CB) minima below those
which are charge conserving (CC).

1 Again, the choice vm → 0 can always be made using a SU (2) gauge
transformation.
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We now seek to gain some additional insight into the
behaviour of the potential and, in particular, regions where
the CB minima are potentially dangerous. The most promis-
ing directions in field space to discover deep minima are
those in which either the F- or D-terms vanish. Since we
are in general interested in points with sizeable λ couplings
in order to get a large enhancement for the Higgs mass, the
most stabilising effect of the potential can be expected to
come from the F-terms. It is actually not possible to find any
F-flat directions which are charge conserving. However, in
the charge-breaking case the F-terms vanish for

vm = vu, vp = vd , vS = 0. (11)

In this direction in VEV space the value of the potential is

V = 1

8
(v2

d + v2
u)(4m

2
Hd

+ 4m2
Hu

+ g2
2(v2

d + v2
u)), (12)

which can be related in the limit tan β → 1 to the input
parameters

V = 1

8

(
v2
d + v2

u

) (
8Aλμeff + g2

2

(
v2
d + v2

u

)

+ 8μ2
eff

(κ

λ
− 1

)
− 2λ2v2

)
. (13)

Defining xCB =
√

v2
d + v2

u + v2
m + v2

p, we find that new min-
ima develop in the direction vu = vm , vd = vp at the point

xCB
min = ±

√
2
√

−4Aλλμeff + 4μ2
eff(λ − κ) + λ3v2

g2
√

λ
, (14)

at which the value of the potential is

V
(
xCB

min

)
= −

(−4Aλλμeff + 4μ2
eff(λ − κ) + λ3v2

)2

8g2
2λ2

.

(15)

From these expressions one sees that the following condi-
tions characterise the potentially dangerous regions in which
CB minima might develop: (i) large |λ| and |μeff |, (ii) either
opposite signs for λ and κ or |κ/λ| < 1 as well as (iii) oppo-
site signs for Aλ and μeff . Equation (13) has to be combined
with the condition that all Higgs masses are non-tachyonic
at the electroweak vacuum. The condition to have a positive
charged Higgs mass is

0 <
1

4
v2

(
g2

2 − 2λ2
)

+ 2
κ

λ
μ2

eff + 2μeff Aλ, (16)

which for large μ2
eff , prefers λ and κ of same signs and also

either equal signs for Aλ and μeff or small Aλ compared
to μeff . From the positivity condition on the pseudo-scalar
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Fig. 1 Value of the scalar potential in the direction of vanishing F-
terms for three different values of μeff . Here, we have chosen κ = 1

2 λ,
Aλ = 100 as well as λ = −1 (full lines) and λ = −2 (dashed lines)

masses one can further see that opposite signs for Aκ and
μeff are preferable. Therefore, combined with Eq. (13), we
see that CB minima are likely to occur if:

– |λ| and |μeff | are large;
– |κ/λ| < 1 with sign(κ) = sign(λ);
– |Aλ/μeff | < 1;
– sign(Aκ )= −sign(μeff ).

It is important to note that in these regions, the mostly singlet-
like scalar is heavy therefore, the SM-like Higgs is always
the lightest CP-even scalar state.

In Fig. 1, we show the behaviour of the potential in the

direction x =
√

v2
d + v2

u + v2
m + v2

p for different values of
μeff . We see in these examples that the minima are in the
multi-TeV range and move quickly to larger values with
increasing μeff . Thus, it needs to be checked how efficient the
tunnelling to these minima is. In addition, one also needs to
compare the tunnelling to these minima with the tunnelling
to potential CC minima which do not coincide with the elec-
troweak breaking vacuum. One important VEV direction in
this context is the one with

vu = vm = vp = vS = 0, vd ≡ xCC �= 0, (17)

in which the potential is given by

V = v2
d

2

(
Aλμeff+v2

d

16

(
g2

1 +g2
2

)
+μ2

eff

(κ

λ
−1

)
−1

4
λ2v2

)
.

(18)

In this direction, new minima appear at

xCC
min = ±

√
2
√

−4Aλλμeff + 4(λ − κ)μ2
eff + λ3v2

√
(g2

1 + g2
2)λ

, (19)
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Fig. 2 Comparison of the potential in the charge-conserving (dash-
dotted) and charge-breaking direction (full) defined by Eqs. (11) and
(17), respectively. The same parameter choices as in Fig. 1 were made
and we show here the case λ = −1

at which the depth of the potential is

V
(
xCC

min

)
= −

(−4Aλλμeff + 4μ2
eff(λ − κ) + λ3v2

)2

8λ2
(
g2

1 + g2
2

) .

(20)

The second derivatives of the scalar potential in both the CB
and the CC but non-EW cases are given by

∂2VCB/CC

∂x2 |x=xCB/CC = 2μ2
eff

(
1 − κ

λ

)
+ v2λ2

2
− 2Aλμeff ,

(21)

which, given the above conditions on the parameters, always
turns out to be positive, ensuring that the configurations we
consider here indeed correspond to minima of the potential.

Thus, we find that the conditions to develop additional
charge-conserving and charge-breaking minima in addition
to the one with correct EWSB are very similar and both kind
of minima can appear simultaneously for given input values.
Comparing Eqs. (14)–(15) with Eqs. (19)–(20), we find that
the CB minima are deeper than the CC ones by a factor (g2

1 +
g2

2)/g2
2. At the same time, the CB minimum is further away

in field space by a factor
√
g2

1 + g2
2/g2. A one-dimensional

comparison between the behaviour of the potential in this
direction and in the direction defined via Eq. (11) is shown
in Fig. 2.

As a result, we observe in typical regions of parameter
space that CB and CC minima occur at the same time and,
both are usually deeper than the correct electroweak vacuum.
Furthermore, the behaviour indicated in Eqs. (14)–(15) and
(19)–(20) can be seen from Fig. 2 where the CB minimum is

deeper than the non-EW but CC as expected. However, the
latter appears at slightly smaller x values. Consequently, it
is not a priori clear to which minima the electroweak state
would tunnel to more effectively—to the deeper one or the
nearer one—as the field space is highly non-trivial. In these
cases, one needs to calculate the tunnelling rate to the dif-
ferent minima in order to be able to judge if the inclusion of
charged Higgs VEVs yields additional constraints.

In general, the decay rate � per unit volume for a false vac-
uum is given in [32,33] by �/vol. = Ae(−B/h̄) (1 + O(h̄)),
where A is a factor which depends on the eigenvalues of
a functional determinant and B is the bounce action. A is
usually taken to be of order the renormalisation scale and is
less important for the tunnelling rate which is dominated by
the exponent B. In a multi-dimensional space it only makes
sense to calculate B numerically as any approximations, ana-
lytic or otherwise, are simply not accurate enough due to the
huge sensitivity of � on B. Of course, there are also other
directions in VEV space where CB minima might establish.
However, an analytical discussion of all these cases does not
give further insights. We therefore turn directly to the numer-
ical results.

3 Numerical results

As we have seen so far, one can find new vacua in the NMSSM
when including the possibility of spontaneous charge break-
ing. However, it needs to be clarified how important the
study of these minima is. Therefore, we are going to make
a numerical analysis not only of the tree-level potential but
also of the one-loop effective potential with and without the
consideration of charge-breaking VEVs. For doing that, we
use Vevacious [34], for which we have generated model
files with SARAH [35–40]. We also used SARAH to gener-
ate a SPheno module [41,42] for the NMSSM. With this
module we calculate the SUSY and Higgs masses including
NMSSM-specific two-loop corrections [43–45] which are
important in particular for large |λ| [46,47]. Consequently,
the accuracy in the Higgs mass prediction is similar to the
MSSM and we use 3 GeV for the theoretical uncertainty
in the following. The spectrum file generated by SPheno
is passed to HiggsBounds [48,49] and is also used as
input for Vevacious. Vevacious finds all solutions to
the tree-level tadpole equations by using a homotopy con-
tinuation implemented in the code HOM4PS2 [50]. These
extrema are used as the starting points to find the minima
of the one-loop effective potential using minuit [51]. If
it finds deeper minima than the EW one, Vevacious calls
CosmoTransitions [52] to get the tunnelling rate. How-
ever, in the standard Vevacious package, the calculation
for the tunnelling rate is not done for all minima, but only for
the so called ‘panic’ vacuum. This is the one closest to the
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Fig. 3 Stability of the EW vacuum considering the full one-loop effec-
tive potential. Regions shaded in green are stable, indicating that the
desired electroweak breaking minimum is the global minimum. The
yellow and blue regions correspond to metastablity of the desired elec-
troweak breaking minimum. In particular, the blue region contains only
CB minima that are deeper, while the yellow regions contains both CB
and CC minima. The dashed-grey contours show the equivalent of the
blue CB metastable region assuming only a tree-level potential. Finally,
the region between the black solid contours corresponds to an accept-
able Higgs mass, namely mh ∈ [122, 128] GeV. Here we have chosen
λ = −0.68, tan β = 1.02, Aκ = −700 GeV and Aλ = −300 GeV

EW minimum in field space. We have modifiedVevacious
to calculate the tunnelling rate to all minima in order to be
able to compare the different sets of vacua.

We are going to distinguish two cases in the following:
(i) cases in which only CB minima exist which are deeper
than the EW one; (ii) cases in which both deeper CB and CC
minima exist. The results that we show below are particular
points of interest obtained by scans over the parameter space:

− tan β ∈ [1, 4] −Aλ ∈ [−5, 5] TeV,

−λ ∈ [−2, 2] −Aκ ∈ [−5, 5] TeV,

−κ ∈ [−2, 2] −μeff ∈ [−2, 2] TeV.

Also note that in the following numerical examples, we will
minimise the impact of the stop- and sbottom-sector on both
Higgs mass and vacuum stability by assuming negligible tri-
linear couplings.
Charge-breaking minima only. Although it is not reflected
in the analytical example discussed in Sect. 2, there also
exist parameter points for which the EW minimum is
only metastable once the possibility of charge breaking
is included. Without the consideration of charged-Higgs-
VEVs, the wrong impression of a stable EW minimum would
be obtained. An example is shown in Fig. 3 where the blue
region features a global CB minimum while the next-deepest
minimum is the desired EW one. In the green region, the EW
vacuum is stable whereas in the yellow region, other CC min-
ima corresponding to Eq. (17) are also deeper than the desired
EW one. In this figure, no parameter point which predicts

the correct Higgs mass features a stable vacuum once the CB
direction is taken into account. As a side remark we note that
one can also see in this example that loop corrections to the
scalar potential can be important when discussing the vac-
uum stability: if one would not have included charged Higgs
VEVs, the conclusion whether stable regions in agreement
the Higgs mass measurement exist would have changed from
tree to loop level.

When checking all cases which we found in our scans,
there were no points featuring only CB minima deeper than
the desired EW one which turned out to be short-lived on
cosmological time scales. All points had a lifetime which
was many orders of magnitude longer than the lifetime of
the universe. We therefore conclude that such points are phe-
nomenologically viable, albeit significantly less appealing
compared with regions where the vacuum is entirely stable.
Charge-breaking and charge-conserving minima. This part
aims to answer the question whether or not CB minima can
further destabilise already metastable regions of parameter
space, reducing the EW vacuum to be dangerously short-
lived on cosmological time scales. As discussed before, this
is not the case in regions where only CB minima are deeper
than the EW minimum, which is why we turn to regions
where also other CC minima are deeper. Indeed we find many
regions of parameter space where the CB vacuum configu-
ration corresponds to the global minimum, with potential
values up to O(30%) deeper compared to the next deepest
CC minimum, in accordance with the discussion in Sect. 2.
However, as already seen in Fig. 2, other non-EW CC vacua
are nearer to the EW vacuum configuration in field space,
which means that the tunnelling path is reduced compared to
the tunnelling to the global, CB minimum. In practice, it turns
out that this effect is more important than the relative depth of
the minima. Although the global minimum is often CB, we
find that the tunnelling-time to the slightly nearer shallower
CC configuration of Eq. (17) is either shorter or of compa-
rable size in the regions where the lifetime of the vacuum
is comparable to the lifetime of the universe.2 Furthermore,
we find that in those few cases where the tunnelling to the
CB minimum indeed results in a shorter lifetime, the dif-
ferences are typically small. This behaviour is shown Fig. 4.
The background colours depict the ratio of the lifetimes when
considering both CC and CB minima (denoted as τ4−VEV)
versus when considering only CC minima (τ3−VEV). Purple
(τ4−VEV/τ3−VEV 
 1) correspond to regions where the tun-
nelling rate of the EW vacuum is unchanged when also con-
sidering the charged-Higgs VEVs. Deviations from the pur-

2 Note that one cannot generalise the statement that tunnelling to the
nearer minimum is more effective: if we were to always consider the
nearest minimum to the EW one, we would often underestimate the
actual tunnelling rates by several orders of magnitude, as is also reflected
in the numerical example shown in Fig. 4.
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Fig. 4 Ratio of the lifetimes τ4−VEV and τ3−VEV. Here, τ4−VEV and
τ3−VEV are the lifetimes for the most unstable minima of the respective
systems. The regions above the red (both solid and dashed) and grey
lines correspond to at least 99% survival probabilities of the desired
symmetry breaking (DSB) vacuum. The dashed red and solid grey
contours correspond to the most unstable minima of the three and
four VEV systems, respectively. The solid red contour corresponds to
the stability of the panic vacuum (the minimum closest in field space
to the DSB vacuum) in the 3 VEV system. Once again the region
between the black solid contours corresponds to an acceptable Higgs
mass, mh ∈ [122, 128] GeV. Here we use λ = −0.81, tan β = 1.02,
Aκ = −1400 GeV and Aλ = −580 GeV

ple background colour indicate that including the charged-
Higgs direction leads to a more effective tunnelling than only
considering the neutral Higgs directions. Regions above and
to the left of the red dashed and grey lines correspond to
parameter space where the vacuum is sufficiently long-lived
for the 3- and 4-VEV systems, respectively. Here, we have
used a 99% survival probability to calculate these lines. To
emphasise regions in this plane below the dashed red and
grey lines correspond to model points where the EW vac-
uum lifetime is too small such that the probability of the EW
vacuum surviving as long as the age of the universe is below
99%.

Note that we see a slight difference between the grey and
red dashed lines in the upper right part of the figure. This is
where the tunnelling to the CB minimum is more efficient
than the tunnelling to the CC one. The area which the two
lines enclose is, however, very small. Therefore the inclusion
of the charged-Higgs direction in the vacuum stability cal-
culation results in only a tiny strip of parameter space where
the EW vacuum lifetime decreases below the 99% survival
probability threshold. In contrast, other regions of parameter
space (red regions in Fig. 4) show significant changes when
including the charged Higgs direction. However, the charged
Higgs direction does not decrease the EW vacuum lifetime
below the survival probability threshold and is therefore, on
phenomenological grounds, uninteresting. Finally, the red
solid line depicts the instability bound we would arrive at

if we considered only the panic vacuum, i.e. the minimum
nearest to the EW one in field space. It is therefore evident
that a naïve check for the vacuum stability can severely under-
estimate the excluded parameter ranges.

In the parameter space scanned, we find that although the
global minimum of an NMSSM parameter point can feature
a global minimum where the charged Higgs develops a VEV,
it is not necessary to check for this extra field direction as the
constraints on the model parameters remain approximately
unchanged if one ensures that the tunnelling rate to all pos-
sible minima are calculated.

4 Conclusion

We considered the possibility of spontaneous charge break-
ing in the NMSSM via VEVs of the charged Higgs compo-
nents. We found that in contrast to models without singlets it
is possible that charge is broken at the global minimum of the
potential. We could identify two different kinds of parameter
regions. First, regions in which all vacua deeper than the EW
minimum have broken electric charge. These points would
give the wrong impression of a stable EW vacuum if charged
Higgs VEVs were not included in the study. However, in
all examples we found for these scenarios, the lifetime of
the EW vacuum is sufficiently long on cosmological time
scales. The second possibility is that charge-breaking and
-conserving minima beside the EW one are present at the
same time. Here, the charge-breaking minima could be sig-
nificantly deeper than the charge-conserving ones. However,
we found that the parameter regions which are excluded due
to an increased tunnelling rate to these deeper vacuum states
are hardly affected when considering the extra charged Higgs
field direction. Thus, the inclusion of charge-breaking min-
ima does not drastically change the conclusion of a ‘long-
lived’ vacuum to a ‘short-lived’ one. All in all, despite the
presence of deep charge-breaking minima in the NMSSM,
their phenomenological impact is rather limited. However,
we want to stress that the usual practice of checking only
the tunnelling rate to the deeper minimum nearest to the EW
vacuum is insufficient for obtaining reliable bounds on the
NMSSM parameter space.

Acknowledgements M.E.K is supported by the DFG Research Unit
2239 “New Physics at the LHC”. T.O is supported by the SFB-
Transregio TR33 “The Dark Universe”.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2017) 77 :331 Page 7 of 7 331

References

1. ATLAS Collaboration, G. Aad et al., Phys.Lett. B 716 (2012), 1–
29. arXiv:1207.7214

2. CMS, S. Chatrchyan et al. Phys. Lett. B 716, 30–61 (2012).
arXiv:1207.7235

3. S.P. Martin, (1997). arXiv:hep-ph/9709356. [Adv. Ser. Direct. High
Energy Phys.18, 1 (1998)]

4. A. Brignole, Phys. Lett. B 281, 284–294 (1992)
5. P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B 274, 191–

198 (1992)
6. A. Dabelstein, Z. Phys. C 67, 495–512 (1995).

arXiv:hep-ph/9409375
7. D.M. Pierce, J.A. Bagger, K.T. Matchev, R.-J. Zhang, Nucl. Phys.

B 491, 3–67 (1997). arXiv:hep-ph/9606211
8. J.E. Camargo-Molina, B. O’Leary, W. Porod, F. Staub, JHEP 12,

103 (2013). arXiv:1309.7212
9. N. Blinov, D.E. Morrissey, JHEP 03, 106 (2014). arXiv:1310.4174

10. D. Chowdhury, R.M. Godbole, K.A. Mohan, S.K. Vempati, JHEP
02, 110 (2014). arXiv:1310.1932

11. J.E. Camargo-Molina, B. Garbrecht, B. O’Leary, W. Porod, F.
Staub, Phys. Lett. B 737, 156–161 (2014). arXiv:1405.7376

12. U. Ellwanger, C. Hugonie, A.M. Teixeira, Phys. Rept. 496, 1–77
(2010). arXiv:0910.1785

13. U. Ellwanger, C. Hugonie, Mod. Phys. Lett. A 22, 1581–1590
(2007). arXiv:hep-ph/0612133

14. M. Bastero-Gil, C. Hugonie, S. King, D. Roy, S. Vempati, Phys.
Lett. B 489, 359–366 (2000). arXiv:hep-ph/0006198

15. R. Dermisek, J.F. Gunion, Phys. Rev. D 73, 111701 (2006).
arXiv:hep-ph/0510322

16. R. Dermisek, J.F. Gunion, B. McElrath, Phys. Rev. D 76, 051105
(2007). arXiv:hep-ph/0612031

17. R. Dermisek, J.F. Gunion, Phys. Rev. D 76, 095006 (2007).
arXiv:0705.4387

18. U. Ellwanger, G. Espitalier-Noel, C. Hugonie, JHEP 1109, 105
(2011). arXiv:1107.2472

19. G.G. Ross, K. Schmidt-Hoberg, Nucl. Phys. B 862, 710–719
(2012). arXiv:1108.1284

20. G.G. Ross, K. Schmidt-Hoberg, F. Staub, JHEP 1208, 074 (2012).
arXiv:1205.1509

21. A. Kaminska, G.G. Ross, K. Schmidt-Hoberg, JHEP 11, 209
(2013). arXiv:1308.4168

22. U. Ellwanger, M. Rausch de Traubenberg, C.A. Savoy, Nucl. Phys.
B 492, 21–50 (1997). arXiv:hep-ph/9611251

23. U. Ellwanger, C. Hugonie, Phys. Lett. B 457, 299–306 (1999).
arXiv:hep-ph/9902401

24. Y. Kanehata, T. Kobayashi, Y. Konishi, O. Seto, T. Shimomura,
Prog. Theor. Phys. 126, 1051–1076 (2011). arXiv:1103.5109

25. T. Kobayashi, T. Shimomura, T. Takahashi, Phys. Rev. D 86,
015029 (2012). arXiv:1203.4328

26. K. Agashe, Y. Cui, R. Franceschini, JHEP 02, 031 (2013).
arXiv:1209.2115

27. J. Beuria, U. Chattopadhyay, A. Datta, A. Dey , arXiv:1612.06803
(2016)

28. A. Barroso, P.M. Ferreira, R. Santos, Phys. Lett. B 632, 684–687
(2006). arXiv:hep-ph/0507224

29. M. Maniatis, A. von Manteuffel, O. Nachtmann, F. Nagel, Eur.
Phys. J. C 48, 805–823 (2006). arXiv:hep-ph/0605184

30. I.P. Ivanov, Phys. Rev. D75, 035001 (2007). arXiv:hep-ph/0609018
[Erratum: Phys. Rev. D 76,039902(2007)]

31. M. Muhlleitner, M.O.P. Sampaio, R. Santos, J. Wittbrodt 1612,
01309 (2016)

32. S.R. Coleman, Phys. Rev. D15 (1977), 2929–2936. [Erratum: Phys.
Rev.D16,1248(1977)]

33. C.G. Callan Jr., S.R. Coleman, Phys. Rev. D 16, 1762–1768 (1977)
34. J.E. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, Eur.

Phys. J. C 73(10), 2588 (2013). arXiv:1307.1477
35. F. Staub, (2008), 0806.0538
36. F. Staub, Comput. Phys. Commun. 181, 1077–1086 (2010).

arXiv:0909.2863
37. F. Staub, Comput. Phys. Commun. 182, 808–833 (2011).

arXiv:1002.0840
38. F. Staub, Comput. Phys. Commun. 184, 1792–1809 (2013).

arXiv:1207.0906
39. F. Staub, Comput. Phys. Commun. 185, 1773–1790 (2014).

arXiv:1309.7223
40. F. Staub, Adv. High Energy Phys. 2015, 840780 (2015).

arXiv:1503.04200
41. W. Porod, Comput. Phys. Commun. 153, 275–315 (2003).

arXiv:hep-ph/0301101
42. W. Porod, F. Staub, Comput. Phys. Commun. 183, 2458–2469

(2012). arXiv:1104.1573
43. M.D. Goodsell, K. Nickel, F. Staub, Eur. Phys. J. C75(1), 32 (2015).

arXiv:1411.0675
44. M. Goodsell, K. Nickel, F. Staub, Eur. Phys. J. C 75(6), 290 (2015).

arXiv:1503.03098
45. M.D. Goodsell, F. Staub, Eur. Phys. J. C 77, (1), 46 (2017).

arXiv:1604.05335
46. M.D. Goodsell, K. Nickel, F. Staub, Phys. Rev. D 91, 035021

(2015). arXiv:1411.4665
47. F. Staub, P. Athron, U. Ellwanger, R. Gröber, M. Mühlleitner,

P. Slavich, A. Voigt, Comput. Phys. Commun. 202, 113–130
(2016). arXiv:1507.05093

48. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams,
Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169

49. P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Wei-
glein, and K. E. Williams, Eur. Phys. J. C 74(3), 2693 (2014).
arXiv:1311.0055

50. T. Lee, T. Li, C. Tsai, Computing 83(2), 109–133 (2008)
51. F. James, M. Roos, Comput. Phys. Commun. 10, 343–367 (1975)
52. C.L. Wainwright, Comput. Phys. Commun. 183, 2006–2013

(2012). arXiv:1109.4189

123

http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/hep-ph/9709356
http://arxiv.org/abs/hep-ph/9409375
http://arxiv.org/abs/hep-ph/9606211
http://arxiv.org/abs/1309.7212
http://arxiv.org/abs/1310.4174
http://arxiv.org/abs/1310.1932
http://arxiv.org/abs/1405.7376
http://arxiv.org/abs/0910.1785
http://arxiv.org/abs/hep-ph/0612133
http://arxiv.org/abs/hep-ph/0006198
http://arxiv.org/abs/hep-ph/0510322
http://arxiv.org/abs/hep-ph/0612031
http://arxiv.org/abs/0705.4387
http://arxiv.org/abs/1107.2472
http://arxiv.org/abs/1108.1284
http://arxiv.org/abs/1205.1509
http://arxiv.org/abs/1308.4168
http://arxiv.org/abs/hep-ph/9611251
http://arxiv.org/abs/hep-ph/9902401
http://arxiv.org/abs/1103.5109
http://arxiv.org/abs/1203.4328
http://arxiv.org/abs/1209.2115
http://arxiv.org/abs/1612.06803
http://arxiv.org/abs/hep-ph/0507224
http://arxiv.org/abs/hep-ph/0605184
http://arxiv.org/abs/hep-ph/0609018
http://arxiv.org/abs/1307.1477
http://arxiv.org/abs/0909.2863
http://arxiv.org/abs/1002.0840
http://arxiv.org/abs/1207.0906
http://arxiv.org/abs/1309.7223
http://arxiv.org/abs/1503.04200
http://arxiv.org/abs/hep-ph/0301101
http://arxiv.org/abs/1104.1573
http://arxiv.org/abs/1411.0675
http://arxiv.org/abs/1503.03098
http://arxiv.org/abs/1604.05335
http://arxiv.org/abs/1411.4665
http://arxiv.org/abs/1507.05093
http://arxiv.org/abs/0811.4169
http://arxiv.org/abs/1311.0055
http://arxiv.org/abs/1109.4189

	Spontaneous charge breaking in the NMSSM: dangerous or not?
	Abstract 
	1 Introduction
	2 Spontaneous charge breaking in the NMSSM
	3 Numerical results
	4 Conclusion
	Acknowledgements
	References




