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Abstract We introduce low regularity exponential-type integrators for nonlinear
Schrödinger equations for which first-order convergence only requires the bound-
edness of one additional derivative of the solution. More precisely, we will prove
first-order convergence in Hr for solutions in Hr+1 (with r > d/2) of the derived
schemes. This allows us lower regularity assumptions on the data than for instance
required for classical splittingor exponential integration schemes. For one-dimensional
quadratic Schrödinger equations, we can even prove first-order convergence without
any loss of regularity. Numerical experiments underline the favorable error behav-
ior of the newly introduced exponential-type integrators for low regularity solutions
compared to classical splitting and exponential integration schemes.
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1 Introduction

Semilinear Schrödinger equations, in particular those of type

i∂t u = −�u + μ|u|2pu, p ∈ N (1)

with μ ∈ R are nowadays extensively studied numerically. In this context, split-
ting methods (where the right-hand side is split into the kinetic and nonlinear part,
respectively) as well as exponential integrators (including Lawson-type Runge–Kutta
methods) contribute particularly attractive classes of integration schemes. For an
extensive overview on splitting and exponential integration methods, we refer to
[14,16,18,26], and for their rigorous convergence analysis in the context of semi-
linear Schrödinger equations, we refer to [2,4,6,8,9,11,12,25,31] and the references
therein. However, within the construction of all these numerical methods the stiff part
(i.e., the terms involving the differential operator �) is approximated in one way or
another which generally requires the boundedness of two additional spatial derivatives
of the exact solution. In particular, convergence of a certain order only holds under
sufficient additional regularity assumptions on the solution. In the following, we will
illustrate the local error behavior of classical splitting and exponential integration
methods and the thereby introduced smoothness requirements.
Splitting schemes The Strang splitting for the cubic Schrödinger equation (i.e., p = 1)

un+1/2
− = ei

τ
2�un,

un+1/2
+ = e−iτμ

∣
∣un+1/2

−
∣
∣
2

un+1/2
− ,

un+1 = ei
τ
2�un+1/2

+ ,

where the right-hand side is split into the kinetic T (u) = i�u and nonlinear part
V (u) = −iμ|u|2u is rigorously analyzed in [25]. In particular, its second-order con-
vergence in Hr for solutions in Hr+4 and its first-order convergence in Hr for solutions
in Hr+2 holds for all r ≥ 0, see [25] and [10], respectively. The result follows from the
fact that the local error of the splitting scheme can be expressed through the double
Lie commutator [T, [T, V ]](u) and the Lie commutator [T, V ](u) for second- and
first-order methods, respectively. The latter reads

1

2μ
[T, V ](u) = (∇u · ∇u) u + (∇uu) · ∇u + (u∇u) · ∇u + (

u�u
)

u,

see [25, Section 4.2]. Due to the appearance of �u in the local error, the boundedness
of at least two additional derivatives of the exact solution is required. Based on [25],
fractional error estimates for the Strang splittingwere established in [10]which require
the boundedness of 2+2γ additional derivatives for convergence of order 1+γ , with
0 < γ < 1. Furthermore, in [19] first-order convergence of a filtered Lie splitting
method for Schrödinger equations of type (1) with 1 ≤ 2p < 4/d was shown in
L2(Rd) for solutions in H2(Rd).
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Classical exponential integrators The classical first-order exponential integrator in the
cubic case reads

un+1 = eiτ�un − iμτϕ1(iτ�)
(

|un|2un
)

with ϕ1(z) = ez − 1

z
. (2)

Its construction is based on Duhamel’s formula

u(tn + τ) = eiτ�u(tn) − iμ
∫ τ

0
ei(τ−s)� |u(tn + s)|2p u(tn + s)ds

by applying the approximation

u(tn + s) ≈ u(tn) (3)

in the integral terms and solving the remaining integral over the free Schrödinger
group ei(τ−s)� exactly. Due to the approximation (3), the above scheme introduces a
local error of the form

∂t
(

i |u|2u) = i∂t uu
2 + 2i |u|2∂t u = μ|u|4u − 2|u|2�u + u2�u,

see [16]. Hence, first-order convergence also requires the boundedness of at least two
derivatives of the exact solution due to the appearance of�u and its complex conjugate
counterpart.

The main novelty in this work lies in the development and analysis of a first-order
exponential-type integrator for Schrödinger equations of type (1)

un+1 = eiτ�
[

un − iμτ
(

un
)p+1

(

ϕ1(−2iτ�)
(

un
)p

)]

with ϕ1(z) = ez − 1

z
(4)

which only requires the boundedness of one additional derivative of the exact solution.
The construction is based onDuhamel’s formula looking at the twisted variable v(t) =
e−i t�u(t) and treating the dominant term triggered by u2p in an exact way. This idea
of twisting the variable is widely used in the analysis of partial differential equations in
low regularity spaces (see for instance [3]) and alsowell known in the context of numer-
ical analysis, see [24] for the introduction of Lawson-type Runge–Kutta methods.
However, insteadof approximating the appearing integralswith aRunge–Kuttamethod
(see for instance [20]) we integrate the dominant second-order stiff parts exactly.

A similar approach has been successfully applied to the one-dimensionalKdVequa-
tion, see [17]. However, due to the Burgers-type nonlinearity, additional smoothness
assumptions on the exact solution are necessary. More precisely, first-order conver-
gence in H1 is only guaranteed for solutions in H3 in the KdV setting. The introduced
exponential integrators for nonlinear Schrödinger equations are in contrast first-order
convergent in Hr for solutions in Hr+1 (with r > d/2). Furthermore, we show
that our approach yields methods for quadratic nonlinearities of type u2 and |u|2 in
one dimension which are convergent in Hr for solutions in Hr , i.e., no additional
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smoothness of the solution is required. Such generous convergence results for non-
linear Schrödinger equations are up to our knowledge not yet know in the numerical
analysis literature.

For practical implementation issues, we impose periodic boundary conditions and
refer to [3] for local wellposedness (LWP) results of nonlinear Schrödinger equations
in Hr (Td). Note that in the case of a cubic nonlinearity we obtain LWP for r > 1/2
if d ≤ 3. In the case of a quadratic nonlinearity of type u2 (or u2), LWP can be
pushed down to r > −1/2 on the one-dimensional torus, see [21]. In the following let
r > d/2. We denote by ‖ · ‖r the standard Hr = Hr (Td) Sobolev norm. In particular,
we exploit the well-known bilinear estimate

‖ f g‖r ≤ cr,d‖ f ‖r‖g‖r (5)

which holds for some constant cr,d > 0. Furthermore, we denote by c a generic
constant which may depend on r , d, p and μ.

2 Low Regularity Exponential Integrators

We consider nonlinear Schrödinger equations (NLS) of type

i∂t u(t, x) = −�u(t, x) + μ|u(t, x)|2pu(t, x),

u(0, x) = u0(x), (t, x) ∈ R × T
d , p ∈ N (6)

with μ ∈ R and where we have set � = ∑d
k=1 ∂2xk . Furthermore, we employ the

so-called ϕ1 function defined as

ϕ1(z) = ez − 1

z
.

In the following, we derive exponential-type integrators for Schrödinger equations of
type (6) based on iteratingDuhamel’s formula in the twisted variable v(t) = e−i t�u(t).
Note that the twisted variable satisfies

i∂tv(t) = μe−i t�
[

|ei t�v(t)|2pei t�v(t)
]

, v(0) = v0 (7)

with mild solution given by

v(tn + τ) = v(tn) − iμ
∫ τ

0
e−i(tn+s)�

[

|ei(tn+s)�v(tn + s)|2pei(tn+s)�v(tn + s)
]

ds,

(8)
where tn = nτ . In order to derive our numerical scheme, we proceed as follows. As
ei t� is a linear isometry on Hr for all t ∈ R and the bilinear estimate (5) holds we
obtain that
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‖v(tn + s) − v(tn)‖r ≤ |μ|
∫ s

0
‖v(tn + ξ)‖2p+1

r dξ

≤ s|μ| sup
0≤ξ≤s

‖v(tn + ξ)‖2p+1
r , r > d/2. (9)

In this sense, we have for |s| ≤ τ

v(tn + s) ≈ v(tn) (10)

for a small time step τ .

Remark 2.1 Note that the twisted variable allows the formal expansion

v(tn + s) − v(tn) = O
(

s|v|2pv
)

such that the approximation (10) holds without additional regularity assumptions (see
(9) for the rigorous estimate). The classical exponential integrator (2), in contrast, is
based on the approximation (3) for the original solution u. This approximation error
is small only under additional smoothness assumptions, since

u(tn + s) − u(tn) =
(

eis� − 1
)

u(tn) + O
(

s|u|2pu
)

.

Plugging (10) into (8) yields the approximation

v(tn + τ) ≈ v(tn) − iμ
∫ τ

0
e−i(tn+s)�

[

|ei(tn+s)�v(tn)|2pei(tn+s)�v(tn)
]

ds (11)

which is the basis of our numerical scheme.
Hence, we are left with deriving a numerical approximation to the integral

I τ
p (w, tn) :=

∫ τ

0
e−i(tn+s)�

[

|ei(tn+s)�w|2pei(tn+s)�w
]

ds.

To illustrate the idea, we will first consider the cubic case p = 1 in Sect. 2.1 below. In
Sect. 2.2 we will deal with general nonlinearities p ≥ 1. The special case of quadratic
nonlinearities of type u2 and |u|2, respectively, will be treated in Sect. 4.

2.1 Cubic Nonlinearities p = 1

For notational simplicity, we first illustrate the idea in one dimension. In Sect. 2.1.2
we will give the generalization to arbitrary dimensions d ≥ 1.
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2.1.1 Cubic Nonlinearities p = 1 in Dimension d = 1

Let f ∈ L2(T). Then, we will denote its Fourier expansion by f (x) = ∑

k∈Z f̂keikx .
Furthermore, we define a regularization of ∂−1

x through its action in Fourier space by

(∂−1
x )k :=

{

(ik)−1 if k �= 0
0 if k = 0

, i.e., ∂−1
x f (x) =

∑

k∈Z\{0}
(ik)−1 f̂ke

ikx ,

and, by continuity,

(

ei t∂
2
x − 1

i t∂2x

)

k �=0

= e−i tk2 − 1

−i tk2
,

(

ei t∂
2
x − 1

i t∂2x

)

k=0

= 1. (12)

In the case of a cubic nonlinearity [i.e., p = 1 in (6)] in one spatial dimension, the
integral in (11) can be expressed in terms of the Fourier expansion as follows

I τ
1 (w, tn) =

∫ τ

0
e−i(tn+s)∂2x

[(

e−i(tn+s)∂2x w
)(

ei(tn+s)∂2x w
)2

]

ds

=
∑

�∈Z

∑

k1,k2,k3∈Z
�=−k1+k2+k3

∫ τ

0
ei(tn+s)

[

�2+k21−k22−k23

]

ds ŵk1ŵk2ŵk3e
i�x

=
∑

�∈Z

∑

k1,k2,k3∈Z
�=−k1+k2+k3

ei tn
[

�2+k21−k22−k23

]

ŵk1ŵk2ŵk3e
i�x

∫ τ

0
eis

[

2k21−2k1(k2+k3)+2k2k3
]

ds.

(13)

Naturally, the next step would be the exact integration of the appearing integral

∫ τ

0
eis

[

2k21−2k1(k2+k3)+2k2k3
]

ds. (14)

However, the obtained convolution cannot be converted into the physical space
straightforwardly and therefore only yields a practical scheme in dimension one as the
iteration needs to be carried out fully in Fourier space. In order to obtain an efficient
and practical low regularity implementation, we therefore only

treat the dominant quadratic term 2k21 exactly.

For this purpose, we write the integrand in (14) as

eis
[

2k21−2k1(k2+k3)+2k2k3
]

= e2isk
2
1

(

1 + |β|γ eiβ − 1

|β|γ
)

(15)
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with β = s(−2k1(k2 + k3) + 2k2k3
)

and some 0 ≤ γ ≤ 1. Inserting (15) into (13)
and integrating the first term

∫ τ

0
e2isk

2
1 ds = τϕ1(2iτk

2
1)

yields that

I τ
1 (w, tn) = τ

∑

�∈Z

∑

k1,k2,k3∈Z
�=−k1+k2+k3

ei tn
[

�2+k21−k22−k23

]

ϕ1(2iτk
2
1)ŵk1ŵk2ŵk3e

i�x

+ Rτ
1(w, tn)

= τe−i tn∂2x
[ (

ei tn∂
2
x w

)2 (

ϕ1(−2iτ∂2x )e
−i tn∂2x w

) ]

+ Rτ
1(w, tn),

(16)

where

‖Rτ
1(w, tn)‖2r =

∑

�∈Z
(1 + |�|)2r

∣
∣
∣
∣
∣
∣
∣
∣

∑

k1,k2,k3∈Z
�=−k1+k2+k3

ei tn
[

�2+k21−k22−k23

]
∣
∣2k1(k2 + k3) − 2k2k3

∣
∣γ

ŵk1ŵk2 ŵk3e
i�x

∫ τ

0
e2isk

2
1

⎛

⎝
eis

[

−2k1(k2+k3)+2k2k3
]

− 1

sγ |2k1(k2 + k3) − 2k2k3
∣
∣γ

⎞

⎠ sγ ds

∣
∣
∣
∣
∣
∣

2

.

Since |β|−γ (eiβ − 1) is uniformly bounded for β ∈ R and 0 ≤ γ ≤ 1, the integral in
the above formula is of the order τ 1+γ . This shows that

‖Rτ
1(w, tn)‖2r ≤ cτ 2+2γ

∑

�∈Z
(1 + |�|)2r

⎛

⎜
⎜
⎝

∑

k1,k2,k3∈Z
�=−k1+k2+k3

(|k1k2| + |k1k3| + |k2k3|
)γ |ŵk1 ||ŵk2 ||ŵk3 |

⎞

⎟
⎟
⎠

2

≤ cτ 2+2γ
∑

�∈Z
(1 + |�|)2r

⎛

⎜
⎜
⎝

∑

k1,k2,k3∈Z
�=−k1+k2+k3

(

1 + |k1|
)γ (

1 + |k2|
)γ (

1 + |k3|
)γ |ŵk1 ||ŵk2 ||ŵk3 |

⎞

⎟
⎟
⎠

2

(17)
for some constant c > 0 and 0 ≤ γ ≤ 1.

Next we define the auxiliary function g(x) = ∑

k∈Z ĝkeikx through its Fourier
coefficients

ĝk = (1 + |k|)γ |ŵk | (18)

which allows us to express the bound on the remainder given in (17) as follows

‖Rτ
1(w, tn)‖r ≤ cτ 1+γ ‖g3‖r .
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With the aid of the bilinear estimate (5) we can thus conclude that for r > 1/2

‖Rτ
1(w, tn)‖r ≤ cτ 1+γ ‖g‖3r = cτ 1+γ

(
∑

k∈Z
(1 + |k|)2(r+γ )|ŵk |2

)3/2

,

where we have used the definition of the Fourier coefficients in (18). Hence, we can
conclude the following bound on the remainder

‖Rτ
1(w, tn)‖r ≤ cτ 1+γ ‖w‖3r+γ for 0 ≤ γ ≤ 1, r > 1/2 (19)

for some constant c > 0.
Next, we replace the integral in (11) with vn in place of v(tn) by the term (16)

without remainder Rτ
1 and w = vn . Twisting the solution back again, i.e., setting

un := ei tn∂
2
x vn

yields the following exponential-type integration scheme for the cubic NLS

un+1 = eiτ∂2x

[

un − iτμ(un)2
(

ϕ1(−2iτ∂2x )u
n
)]

. (20)

Next we generalize the above scheme to arbitrary dimensions d ≥ 1.

2.1.2 Cubic Nonlinearities p = 1 in Dimension d ≥ 1

In the following we use the notation

j := ( j1, . . . , jd) ∈ Z
d , j · x := j1x1 + · · · + jd xd .

In the case of a cubic nonlinearity p = 1 in dimension d, the integral in (11) can be
expressed in terms of the Fourier expansion as follows

I τ
1 (w, tn) =

∫ τ

0
e−i(tn+s)�

[(

e−i(tn+s)�w
)(

ei(tn+s)�w
)2

]

ds

=
∑

�∈Zd

∑

j,k,l∈Zd

�=−j+k+l

∫ τ

0
ei(tn+s)

[

�2+j2−k2−l2
]

ds ŵjŵkŵle
i �·x.

Note that we have

�2 + j2 − k2 − l2 = 2j2 − 2j · (k + l) + 2k · l.

In order to obtain an efficient and practical low regularity implementation, we again

treat the dominant quadratic term 2j2 exactly.
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This yields that

I τ
1 (w, tn) =

∑

�∈Zd

∑

j,k,l∈Zd

�=−j+k+l

ei tn
[

�2+j2−k2−l2
]

ŵjŵkŵle
i �·x

∫ τ

0
e2isj2ds + Rτ

1(w, tn)

=
∑

�∈Zd

∑

j,k,l∈Zd

�=−j+k+l

ei tn
[

�2+j2−k2−l2
]

ŵjŵkŵle
i �·xϕ1(2iτ j2) + Rτ

1(w, tn),

(21)
where similarly to above [see (19)] we have that

‖Rτ
1(w, tn)‖r ≤ cτ 1+γ ‖w‖3r+γ for 0 ≤ γ ≤ 1, r > d/2

for some constant c > 0.
Inserting the approximation (21) into (11) and twisting the solution back again, i.e.,

setting

un := ei tn�vn

yields the generalization of the exponential-type integrator (20) to dimensions d ≥ 1

un+1 = eiτ�
[

un − iτμ(un)2
(

ϕ1(−2iτ�)un
)]

.

Next we consider the general case of (6) with p ∈ N.

2.2 Nonlinearities with Integer p

In the case of a general nonlinearity p ∈ N in (6), the integral in (11) can be expressed
in terms of the Fourier expansion as follows

I τ
p (w, tn) =

∫ τ

0
e−i(tn+s)�

[

|ei(tn+s)�w|2pei(tn+s)�w
]

ds.

Similar observations to above (see also [28]) yield the following numerical scheme

vn+1 = vn − iμτe−i tn�
[(

ei tn�vn
)p+1 (

ϕ1(−2iτ�)
(

e−i tn�vn
)p)

]

(22)

which satisfies
vn+1 = vn − iμI τ

p (v
n, tn) − iμRτ

p(v
n, tn), (23)

with
‖Rτ

p(v
n, tn)‖r ≤ cτ 1+γ ‖vn‖2p+1

r+γ for 0 ≤ γ ≤ 1, r > d/2 (24)

for some constant c > 0.
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In the original variable u, the exponential-type integration scheme for the nonlinear
Schrödinger equation (6) reads

un+1 = eiτ�
[

un − iμτ
(

un
)p+1

(

ϕ1(−2iτ�)
(

un
)p

)]

. (25)

In the following section, we give an error analysis for the above scheme.

3 Error Analysis

In this section, we carry out the error analysis of the exponential-type integrator (22).
In the following, we set


τ
t (w) := w − iμτe−i t�

[(

ei t�w
)p+1 (

ϕ1(−2iτ�)
(

e−i t�w
)p )]

such that in particular vk+1 = 
τ
tk (v

k).

Lemma 3.1 (Stability) Let r > d/2 and f, g ∈ Hr . Then, for all t ∈ R we have

‖
τ
t ( f ) − 
τ

t (g)‖r ≤ (1 + τ |μ|L)‖ f − g‖r ,

where L depends on ‖ f ‖r and ‖g‖r .
Proof Note that for all t ∈ R and w ∈ Hr it holds by (12) that

∥
∥ϕ1(2i t�)w

∥
∥
r ≤ c‖w‖r .

Thus, as ei t� is a linear isometry on Hr and Hr is an algebra for r > d/2 we obtain
that

‖
τ
t ( f ) − 
τ

t (g)‖r ≤ ‖ f − g‖r + τ |μ|
∥
∥
∥

(

ei t� f
)p+1 (

ϕ1(−2iτ�)
(

e−i t� f
)p)

−
(

ei t�g
)p+1 (

ϕ1(−2iτ�)
(

e−i t�g
)p) ∥

∥
∥
r

≤ ‖ f − g‖r + τc|μ|‖ f − g‖r
2p
∑

l=0

‖ f ‖2p−l
r ‖g‖lr .

This proves the assertion. 	

Lemma 3.2 (Local error) Let r > d/2 and 0 ≤ γ ≤ 1. Assume that v(tk + t) =
φt (v(tk)) ∈ Hr+γ for 0 ≤ t ≤ τ , where φt denotes the exact flow of (7). Then,

‖φτ (v(tk)) − 
τ
tk (v(tk))‖r ≤ cτ 1+γ ,

where c depends on sup0≤t≤τ ‖φt (v(tk))‖r+γ .
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Proof Note that by (23) we have that


τ
tk (v(tk)) = v(tk) − iμ

∫ τ

0
e−i(tk+s)�

[

|ei(tk+s)�v(tk)|2pei(tk+s)�v(tk)
]

ds

+ iμRτ
p(v(tk), tk).

Furthermore, (8) implies that

φτ (v(tk)) = v(tk) − iμ
∫ τ

0
e−i(tk+s)�

[

|ei(tk+s)�v(tk + s)|2pei(tk+s)�v(tk + s)
]

ds.

Thus as ei t� is a linear isometry on Hr and Hr is an algebra for r > d/2 we obtain
that

‖φτ (v(tk)) − 
τ
tk (v(tk))‖r ≤ |μ| sup

0≤s≤τ

‖v(tk + s)‖2pr
∫ τ

0
‖v(tk + s) − v(tk)‖r ds

+ |μ|‖Rτ
p(v(tk), tk)‖r .

Together with the estimate on the difference v(tk + s) − v(tk) given in (9) and the
estimate on the remainderRτ

p(v, t) given in (24) this yields for r > d/2 and 0 ≤ γ ≤
that

‖φτ (v(tk)) − 
τ
tk (v(tk))‖r ≤ τ 2c|μ|2 sup

0≤s≤τ

‖v(tk + s)‖4p+1
r + τ 1+γ c|μ|‖v(tk)‖2p+1

r+γ

which concludes the stated local error bound. 	

These two lemmata allow us to prove the following convergence bound.

Theorem 3.3 Let r > d/2 and 0 < γ ≤ 1. Assume that the exact solution of (7)
satisfies v(t) ∈ Hr+γ for 0 ≤ t ≤ T . Then, there exists a constant τ0 > 0 such that
for all step sizes 0 < τ ≤ τ0 and tn = nτ ≤ T we have that the global error of (22)
is bounded by

‖v(tn) − vn‖r ≤ cτγ ,

where c depends on sup0≤t≤T ‖v(t)‖r+γ .

Proof The triangle inequality yields that

‖v(tk+1) − vk+1‖r = ‖φτ (v(tk)) − 
τ
tk (v

k)‖r
≤ ‖φτ (v(tk)) − 
τ

tk (v(tk))‖r + ‖
τ
tk (v(tk)) − 
τ

tk (v
k)‖r .

Thus, we obtain with the aid of Lemmata 3.2 and 3.1 that as long as vk ∈ Hr we have
that

‖v(tk+1) − vk+1‖r ≤ cτ 1+γ + (1 + τ |μ|L) ‖v(tk) − vk‖r , (26)
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where c depends on suptk≤t≤tk+1
‖v(t)‖r+γ and L depends on ‖v(tk)‖r as well as on

‖vk‖r . As long as v(tk) ∈ Hr+γ and vk ∈ Hr for 0 ≤ k ≤ n we therefore obtain by
iterating the estimate (26) that

‖v(tn+1) − vn+1‖r ≤ cτ 1+γ + (1 + τ |μ|L) ‖v(tn) − vn‖r
≤ cτ 1+γ + eτ |μ|L (

cτ 1+γ + (1 + τ |μ|L) ‖v(tn−1) − vn−1‖r
)

≤ cnτ 1+γ enτ |μ|L ≤ ctnτ
γ etn |μ|L .

The assertion then follows by induction, respectively, a Lady Windermere’s fan argu-
ment (see, for example [11,15,25]). 	


The above theorem immediately yields a convergence result for the exponential-
type integration scheme (22) approximating the solution of the nonlinear Schrödinger
equation (6).

Corollary 3.4 Let r > d/2 and 0 < γ ≤ 1. Assume that the exact solution of (6)
satisfies u(t) ∈ Hr+γ for 0 ≤ t ≤ T . Then, there exists a constant τ0 > 0 such that
for all step sizes 0 < τ ≤ τ0 and tn = nτ ≤ T we have that the global error of (25)
is bounded by

‖u(tn) − un‖r ≤ cτγ ,

where c depends on sup0≤t≤T ‖u(t)‖r+γ .

Proof As ei t� is a linear isometry on Hr for all t ∈ R we have that

‖u(tn) − un‖r = ‖ei tn�(

v(tn) − vn
)‖r = ‖v(tn) − vn‖r .

Thus, the assertion follows from Theorem 3.3. 	


4 Quadratic Schrödinger Equations in One Space Dimension

In this section, we focus on quadratic nonlinear Schrödinger equations of type (see,
e.g., [1])

i∂t u = −∂2x u + μu2, u(0, x) = u0(x), (t, x) ∈ R × T, μ ∈ R (27)

as well as of type (see, e.g, [21])

i∂t u = −∂2x u + μ|u|2, u(0, x) = u0(x), (t, x) ∈ R × T, μ ∈ R, (28)

which have recently gained a lot of attention in the literature, see for instance [1,3,5,
13,21–23,27,29,32] and the references therein.

Here, the key relations

(k1 + k2)
2 − k21 − k22 = 2k1k2 (29)
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and
(k1 − k2)

2 − k21 + k22 = −2k2(k1 − k2) (30)

allow us to derive first-order exponential-type integrators for Schrödinger equations
of type (27) and (28) without imposing any additional regularity assumptions on the
solution.

4.1 Quadratic Schrödinger Equations of Type (27)

Set v(t) = e−i t∂2x u(t), where u is the solution of the Schrödinger equation (27). Then
the twisted variable v(t) satisfies

i∂tv = μe−i t∂2x
(

ei t∂
2
x v(t)

)2
(31)

which by Duhamel’s formula yields that

v(tn + τ) = v(tn) − iμ
∫ τ

0
e−i(tn+s)∂2x

(

ei(tn+s)∂2x v(tn + s)
)2

ds. (32)

To construct our numerical scheme, we proceed as above. We start from the following
approximation

v(tn + τ) ≈ v(tn) − iμ
∫ τ

0
e−i(tn+s)∂2x

(

ei(tn+s)∂2x v(tn)
)2

ds =: 
τ
tn (v(tn)) (33)

and rewrite the above integral in Fourier space as follows

I τ (w, tn) =
∫ τ

0
e−i(tn+s)∂2x

(

ei(tn+s)∂2x w
)2

ds

=
∫ τ

0
e−i(tn+s)∂2x

[(

ei(tn+s)∂2x
∑

k1

ŵk1e
ik1x

)(

ei(tn+s)∂2x
∑

k2

ŵk2e
ik2x

)]

ds

=
∫ τ

0

∑

k1,k2

ei(tn+s)
[

(k1+k2)2−k21−k22

]

ŵk1ŵk2e
i(k1+k2)xds.

The key relation (29) now shows that

I τ (w, tn) =
∑

k1,k2
k1,k2 �=0

ei tn
[

(k1+k2)2−k21−k22

]
eiτ

[

(k1+k2)2−k21−k22

]

− 1

2ik1k2
ŵk1ŵk2e

i(k1+k2)x

+ 2τŵ0

∑

k1 �=0

ŵk1e
ik1x + τŵ2

0
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= i

2

∑

k1,k2
k1,k2 �=0

ei tn
[

(k1+k2)2−k21−k22

]
eiτ

[

(k1+k2)2−k21−k22

]

− 1

(ik1)(ik2)
ŵk1ŵk2e

i(k1+k2)x

+ 2τŵ0

∑

k1∈Z
ŵk1e

ik1x − τŵ2
0

= i

2
e−i tn∂2x

[

e−iτ∂2x

(

ei(tn+τ)∂2x ∂−1
x w

)2 −
(

ei tn∂
2
x ∂−1

x w
)2 ]

+ 2τŵ0w − τŵ2
0 .

Together with the approximation in (33) this yields the following integration
scheme:

vn+1 = 
τ
tn (v

n)

= (

1 − 2iμτv̂n0
)

vn + iμτ(v̂n0 )
2

+ μ

2
e−i tn∂2x

[

e−iτ∂2x

(

ei(tn+τ)∂2x ∂−1
x vn

)2 −
(

ei tn∂
2
x ∂−1

x vn
)2 ]

.

(34)

In order to obtain an approximation to the original solution u(t) of the quadratic
Schrödinger equation (27) at time tn = nτ , we twist the variable back again, i.e., we
set un := ei tn∂

2
x vn . This yields the following exponential-type integrator

un+1 = (

1 − 2iμτ ûn0
)

eiτ∂2x un + iμτ(ûn0)
2 + μ

2

(

eiτ∂2x ∂−1
x un

)2 − μ

2
eiτ∂2x

(

∂−1
x un

)2
.

(35)

4.2 Quadratic Schrödinger Equations of Type (28)

For the quadratic Schrödinger equation (28), the equation in the twisted variable v(t) =
e−i t∂2x u(t) reads

i∂tv = μe−i t∂2x
∣
∣
∣ei t∂

2
x v(t)

∣
∣
∣

2
.

To construct our numerical scheme, we proceed as above. We start from the following
approximation

v(tn + τ) ≈ v(tn) − iμ
∫ τ

0
e−i(tn+s)∂2x

∣
∣
∣ei(tn+s)∂2x v(tn)

∣
∣
∣

2
ds (36)

and rewrite the above integral in Fourier space as follows

I τ (w, tn) =
∫ τ

0
e−i(tn+s)∂2x

∣
∣
∣ei(tn+s)∂2x w

∣
∣
∣

2
ds

=
∫ τ

0

∑

k1,k2

ei(tn+s)
[

(k1−k2)2−k21+k22

]

ŵk1ŵk2e
i(k1−k2)xds.
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The key relation (30) now shows that

I τ (w, tn) =
∑

k1,k2
k1 �=k2,k2 �=0

ei tn
[

(k1−k2)2−k21+k22

]
eiτ

[

(k1−k2)2−k21+k22

]

− 1

−2ik2(k1 − k2)
ŵk1ŵk2e

i(k1−k2)x

+τŵ0

∑

k1

ŵk1e
ik1x + τ‖w‖2L2

= i

2
∂−1
x e−i(tn+τ)∂2x

[ (

ei(tn+τ)∂2x w
) (

e−i(tn+τ)∂2x ∂−1
x w

) ]

− i

2
∂−1
x e−i tn∂2x

[ (

ei tn∂
2
x w

) (

e−i tn∂2x ∂−1
x w

) ]

+ τŵ0w + τ‖w‖2L2 .

Together with the approximation in (36) this yields (by twisting the variable back
again) the following integration scheme in the original solution u(t) = ei tn∂

2
x v(t)

un+1 =
(

1 − iμτ û
n
0

)

eiτ∂2x un − iμτ‖un‖2L2

+ μ

2
∂−1
x

[ (

eiτ∂2x un
) (

e−iτ∂2x ∂−1
x un

)

− eiτ∂2x

(

un∂−1
x un

) ]

.
(37)

4.3 Error Analysis

In this section, we carry out the error analysis of the exponential-type integrators (35)
and (37). In the following let r > 1/2.

We commence with the quadratic Schrödinger equation of type (27). Let φt denote
the exact flow of (31), i.e., v(t) = φt (v(0)). The following lemma provides a local
error bound of the scheme (34).

Lemma 4.1 Let r > 1/2 and assume that v(tk + t) = φt (v(tk)) ∈ Hr for 0 ≤ t ≤ τ ,
where φt denotes the exact flow of (27). Then

‖φτ (v(tk)) − 
τ
tk (v(tk))‖r ≤ cτ 2,

where c depends on sup0≤t≤τ ‖φt (v(tk))‖r .
Proof As ei t∂

2
x is a linear isometry on Hr for all t ∈ R we obtain by taking the

difference of (32) with the approximation (33) and using the bilinear estimate (5) that

‖φτ (v(tk)) − 
τ
tk (v(tk))‖r ≤ |μ|

∫ τ

0

∥
∥
∥

(

ei(tk+s)∂2x v(tk + s)
)2 −

(

ei(tk+s)∂2x v(tk)
)2 ∥

∥
∥
r
ds

≤ c|μ|τ sup
0≤s≤τ

(

‖ei(tk+s)∂2x (v(tk + s) − v(tk)) ‖r‖ei(tk+s)∂2x (v(tk + s) + v(tk)) ‖r
)

≤ c|μ|τ sup
0≤s≤τ

‖v(tk + s) − v(tk)‖r

≤ c|μ|2τ sup
0≤s≤τ

∫ s

0

∥
∥
∥

(

ei(tk+ξ)∂2x v(tk + ξ)
)2 ∥

∥
∥
r
dξ,

where c depends on sup0≤s≤τ ‖φs(v(tk))‖r . This yields the assertion. 	
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Next we state the stability estimate.

Lemma 4.2 Let r > 1/2 and f, g ∈ Hr . Then, for all t ∈ R we have

‖
τ
t ( f ) − 
τ

t (g)‖r ≤ (1 + τ |μ|L) ‖ f − g‖r ,

where L depends on ‖ f + g‖r .
Proof The assertion follows from the representation of the numerical flow given in
(33) together with the bilinear estimate (5). 	


The above lemmata allow us to prove the following global convergence result.

Theorem 4.3 Let r > 1/2. Assume that the exact solution of (31) satisfies v(t) ∈ Hr

for 0 ≤ t ≤ T . Then, there exists a constant τ0 > 0 such that for all step sizes
0 < τ ≤ τ0 and tn = nτ ≤ T we have that the global error of (34) is bounded by

‖v(tn) − vn‖r ≤ cτ,

where c depends on sup0≤t≤T ‖v(t)‖r .
Proof The proof follows the line of argumentation to the proof of Theorem 3.3 thanks
to the local error bound in Lemma 4.1 and the stability estimate of Lemma 4.2. 	


The above theorem immediately yields first-order convergence of the exponential-
type integrator (35) (in Hr ) without any additional smoothness assumptions on the
exact solution of (27).

Corollary 4.4 Let r > 1/2. Assume that the exact solution of (27) satisfies v(t) ∈ Hr

for 0 ≤ t ≤ T . Then, there exists a constant τ0 > 0 such that for all step sizes
0 < τ ≤ τ0 and tn = nτ ≤ T we have that the global error of (35) is bounded by

‖u(tn) − un‖r ≤ cτ,

where c depends on sup0≤t≤T ‖u(t)‖r .
Proof The bound follows directly from Theorem 4.3 as ei t∂

2
x is a linear isometry on

Hr for all t ∈ R. 	

Similarly to above we obtain the following first-order convergence result for

the exponential-type integrator (37) approximating the solution of the quadratic
Schrödinger equation (28).

Corollary 4.5 Let r > 1/2. Assume that the exact solution of (28) satisfies v(t) ∈ Hr

for 0 ≤ t ≤ T . Then, there exists a constant τ0 > 0 such that for all step sizes
0 < τ ≤ τ0 and tn = nτ ≤ T we have that the global error of (37) is bounded by

‖u(tn) − un‖r ≤ cτ,

where c depends on sup0≤t≤T ‖u(t)‖r .
Proof The proof is similar to that of Corollary 4.4 and will therefore be omitted here.
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5 Numerical Experiments

In this section, we compare the newly developed exponential-type integrator (25)
applied to Schrödinger equations with low regularity solutions in the energy space
with the classical Lie splitting, the classical Strang splitting and the classical first-
order exponential integrator. In the numerical experiments, we use a standard Fourier
pseudospectralmethod for the space discretizationwherewe choose the largest Fourier
mode K = 210 (i.e., the spatial mesh size �x = 0.0061). The numerical experiments
show that the new integrator (25) is preferable over the classical splitting and expo-
nential integration methods for low regularity solutions. In particular, the experiments
indicate that the proposed integrator (25) is convergent of order one even for rough
solutions whereas the classical methods suffer from order reduction.

Although the new integrator (25) was derived for nonlinearities with integer p ≥ 1,
it can be applied to problem (6) with non-integer p as well. Preliminary numerical
results for small non-integer values of p are presented in Sect. 5.3.

5.1 Numerical Experiments for Schrödinger Equations of Type (6)

In this section,we consider nonlinear Schrödinger equations of type (6). The associated
Lie splitting (of classical order one) reads

un+1/2
L = eiτ�unL ,

un+1
L = e−iτμ

∣
∣un+1/2

L

∣
∣
2p

un+1/2
L ,

(38)

and the associated Strang splitting (of classical order two) is given by

un+1/2
− = ei

τ
2�unS,

un+1/2
+ = e−iτμ

∣
∣un+1/2

−
∣
∣
2p

un+1/2
− ,

un+1
S = ei

τ
2�un+1/2

+ .

(39)

Furthermore, the classical first-order exponential integrator (of classical order one) is
defined through

un+1
E = eiτ�unE − iμτϕ1(iτ�)

(

|unE |2punE
)

. (40)

In our numerical experiments, we choose μ = 1 (unless otherwise noted) and set

UK := [u(0, x1), u(0, x2), . . . , u(0, x2K )] = rand(2K , 1) + i rand(2K , 1) ∈ C
2K ,

(41)
where x j = (−1 + j

K )π and rand(2K , 1) return 2K uniformly distributed random
numbers between 0 and 1. We compare the above schemes with the newly derived
exponential-type integrator (25) for initial values
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Fig. 1 Initial values (42) normalized in L2 for two different values of ϑ . Left ϑ = 3
2 . Right ϑ = 5

10-2 10-1

10-4

10-3

10-2

10-2 10-1

10-5

10-4

10-3

10-2

Fig. 2 (cubicNLS) Error in the energy space H1 of the Lie splitting (38) (blue, dotted), Strang splitting (39)
(magenta, solid line), classical exponential integrator (40) (green, dashed) and exponential-type integration
scheme (25) (red, squares). Left picture H3/2 solutions. Right picture H2 solutions. The slope of the
continuous lines is one half and one, respectively (Color figure online)

uKϑ = |∂x,K |−ϑUK ,
(|∂x,K |−ϑ

)

k :=
{ |k|−ϑ if k �= 0,
0 if k = 0

(42)

for different values of ϑ normalized in L2. (For typical initial values, see Fig. 1.) All
experiments are carried out with constant step sizes τ = j

512 for j = 1, . . . , 512.

5.1.1 Cubic Schrödinger Equations

In this section, we consider the classical cubic Schrödinger equation, i.e., p = 1 in
(6). The error at time T = 1 measured in a discrete H1 norm of the exponential-type
integrator (25), the Lie splitting scheme (38), the Strang splitting scheme (39) as well
as the classical exponential integrator (40) for the initial value (42) normalized in L2

is illustrated in Fig. 2 for ϑ = 3/2, respectively, ϑ = 2 and in Fig. 3 for ϑ = 3,
respectively, ϑ = 5. As a reference solution, we take the schemes themselves with a
very small time step size if ϑ �= 5. For ϑ = 5 we take the Strang splitting scheme
(39) with a very small time step size as the reference solution for all schemes. The
experiments show that Strang splitting is second-order convergent for ϑ ≥ 5, and
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Fig. 3 (cubic NLS) Error in the energy space H1 of the Lie splitting (38) (blue, dotted), Strang splitting
(39) (magenta, solid line), classical exponential integrator (40) (green, dashed) and exponential-type inte-
gration scheme (25) (red, squares). Left picture H3 solutions. Right picture H5 solutions. The slope of the
continuous lines is one and two, respectively (Color figure online)

that Lie splitting is first-order convergent for ϑ ≥ 3. These observations are in line
with the convergence proofs from the literature [10,25], see also our discussion in
the introduction. For smaller values of ϑ , both Lie and Strang splitting show a zigzag
behavior, depending onwhether the local errors accumulate or happy error cancelation
occurs. The classical exponential integrator of order one is first-order convergent for
ϑ ≥ 3 as expected (see the discussion in the introduction). For smaller values of
ϑ , the convergence behavior of the exponential integrator gets less regular and order
reduction occurs. On the other hand, the new exponential-type integrator introduced
in this paper is first-order convergent for all ϑ ≥ 2. This behavior is in line with
Theorem 3.3. The integrator even shows first-order convergence and small errors for
ϑ = 3

2 .

5.1.2 Quintic Schrödinger Equations

In this section, we consider the quintic Schrödinger equation, i.e., p = 2 in (6), which
appears for instance as themean field limit of a Boson gaswith three-body interactions,
see [7]. The error at time T = 1 measured in a discrete H1 norm of the exponential-
type integrator (25), the Lie splitting scheme (38), the Strang splitting scheme (39) as
well as the classical exponential integrator (40) for the initial value (42) normalized
in L2 is illustrated in Fig. 4 for ϑ = 3/2, respectively, ϑ = 2 and in Fig. 5 for ϑ = 3,
respectively, ϑ = 5. As a reference solution we take the schemes themselves with a
very small time step size if ϑ �= 5. For ϑ = 5 we take the Strang splitting scheme
(39) with a very small time step size as the reference solution for all schemes. The
outcome of these numerical experiments is almost the same as for the cubic nonlinear
Schrödinger equation. The only notable difference is the exponential-type integrator
for ϑ = 3

2 , where the convergence behavior is now less regular. Note, however, that
the errors are still much smaller compared to the other methods.
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10-4

10-3

Fig. 4 (quintic NLS) Error in the energy space H1 of the Lie splitting (38) (blue, dotted), Strang splitting
(39) (magenta, solid line), classical exponential integrator (40) (green, dashed) and exponential-type inte-
gration scheme (25) (red, squares). Left picture H3/2 solutions.Right picture H2 solutions. Left pictureThe
slope of the continuous lines is one quarter and one, respectively. Right picture The slope of the continuous
lines is one half and one, respectively (Color figure online)
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10-8

10-7
10-6
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10-4

Fig. 5 (quintic NLS) in the energy space H1 of the Lie splitting (38) (blue, dotted), Strang splitting (39)
(magenta, solid line), classical exponential integrator (40) (green, dashed) and exponential-type integra-
tion scheme (25) (red, squares). Left picture H3 solutions. Right picture H5 solutions. The slope of the
continuous lines is one and two, respectively (Color figure online)

5.2 Numerical Experiments for Quadratic Schrödinger Equations

In this section, we consider quadratic Schrödinger equations of type (27). In order to
derive the splitting methods, we split the right-hand side of (27) into the linear and
nonlinear part, respectively. Note that (for sufficiently small t) the exact solution of
the subproblem

iu′(t) = μu(t)2

is given by

u(t) = u(0)

1 + iμtu(0)
.
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Thus, the associated Lie splitting scheme (of classical order one) reads

un+1
L = eiτ∂2x

(
unL

1 + iμτunL

)

(43)

and the associated Strang splitting scheme (of classical order two) is given by

un+1/2
S = ei

τ
2 ∂2x unS

un+1
S = ei

τ
2 ∂2x

(

un+1/2
S

1 + iμτun+1/2
S

)

.
(44)

In Examples 5.1 and 5.2, we compare the above splitting methods as well as the
classical first-order exponential integration scheme

un+1
E = eiτ∂2x unE − iμτϕ1(iτ∂2x )

(

unE
)2 (45)

with the newly derived exponential-type integrator (35) for smooth and non-smooth
solutions, respectively, where we set μ = 1 and integrate up to T = 1. The numerical
experiments in particular indicate that the exponential-type integrator (35) is preferable
over the commonly used splitting methods for low regularity solutions. This is due
to the fact that within this exponential integration scheme all the stiff parts (i.e., the
terms involving the differential operator ∂2x ) are solved exactly.

In Example 5.3 we consider a quadratic Schrödinger equation of type (27) with
a small nonlinearity on a longer time interval T = 10. The numerical experiment
indicates the favorable behavior of the exponential integrator (35) even in the smooth
case. This is due to the fact that its error constant is triggered by the nonlinearity (and
not by the differential operator ∂2x ).

Example 5.1 (Smooth solutions) We choose the smooth initial value

u(0, x) = sin x cos x ∈ C∞(T) (46)

normalized in L2. The error at time T = 1 measured in a discrete L2 norm of the
exponential-type integrator (35), the Lie splitting scheme (43), the Strang splitting
scheme (44) and the classical exponential integrator (45) is illustrated in Fig. 6. As
a reference solution, we take the Strang splitting scheme (44) with a very small time
step size. All the methods show their classical orders of convergence, as expected.

Example 5.2 (Non-smooth solutions) We choose the non-smooth initial value (41)
normalized in L2. The error at time T = 1 measured in a discrete L2 norm of the
exponential-type integrator (35), the Lie splitting scheme (43), the Strang splitting
scheme (44) and the classical exponential integrator (45) is illustrated in Fig. 7. As a
reference solution, we take the schemes themselves with a very small time step size.
For this example, the classical exponential integrator is not convergent. Lie and Strang
splitting suffer from a strong order reduction (down to order one half). Here, the new
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Fig. 6 (quadratic NLS) Error of
the Lie splitting (43) (blue,
dotted), Strang splitting (44)
(magenta, solid line), classical
exponential integrator (45)
(green, dashed) and
exponential-type integration
scheme (35) (red, squares) for a
smooth solution with initial
value (46) and μ = 1. The slope
of the continuous lines is one
and two, respectively (Color
figure online)
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Fig. 7 (quadratic NLS) Error of
the Lie splitting (43) (blue,
dotted), Strang splitting (44)
(magenta, solid line), classical
exponential integrator (45)
(green, dashed) and
exponential-type integration
scheme (35) (red, squares) for a
non-smooth solution with initial
value (41) and μ = 1. The slope
of the continuous lines is one
half and one, respectively (Color
figure online)

10-2 10-1

10-3

10-2

10-1

100

exponential-type integrator is by far the best method. It is first-order convergent, as
predicted by Theorem 4.3.

Example 5.3 (Small nonlinearity) We consider the quadratic Schrödinger equation of
type (27) with small nonlinearity, i.e.,

i∂t u = −∂2x u + μu2, μ = 0.01, T = 10. (47)

The error at time T = 10 measured in a discrete L2 norm of the exponential-type
integrator (35), the Lie splitting scheme (43), the Strang splitting scheme (44) and the
classical exponential integrator (45) for smooth and non-smooth solutions is illustrated
in Fig. 8 left and right, respectively. As a reference solution, we take the Strang splitting
scheme for smooth and the schemes themselves for non-smooth solutions with a very
small time step size. For smooth initial data, all methods show their classical orders
of convergence. The new exponential-type integrator, however, is by far the most
accurate scheme (for the considered range of step sizes). For non-smooth initial data,
the classical exponential integrator does not converge; Lie and Strang splitting suffer
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Fig. 8 (quadratic NLS) Error of the Lie splitting (43) (blue, dotted), Strang splitting (44) (magenta, solid
line), classical exponential integrator (45) (green, dashed) and exponential-type integration scheme (35)
(red, squares) for a small nonlinearity (47).Left pictureSmooth initial value (46). The slopeof the continuous
lines is one and two, respectively. Right picture Non-smooth initial value (41). The slope of the continuous
lines is one half, and one, respectively (Color figure online)
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Fig. 9 Exponent p = 1 (upper row, left) and p = 3
4 (upper row, right), p = 1

2 (lower row, left) and p = 1
4

(lower row, right). Error in the energy space H1 of the Lie splitting (38) (blue, dotted), Strang splitting (39)
(magenta, solid line), classical exponential integrator (40) (green, dashed) and exponential-type integration
scheme (25) (red, dash dotted) with smooth initial value (48). The slope of the continuous and dotted line
is one and two, respectively (Color figure online)
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again from a strong order reduction down to order one half. Only the new exponential-
type integrator is very accurate and first-order convergent, as expected.

5.3 Numerical Experiments for Semilinear Schrödinger Equations with
Non-integer Exponents p

In this section, we numerically investigate the convergence rates in the case of semi-
linear Schrödinger equations of type (6) with non-integer exponents p. In Fig. 9 we
plot the error at time T = 1 measured in a discrete H1 norm of the exponential-type
integrator (25), the Lie splitting scheme (38), the Strang splitting scheme (39) as well
as the classical exponential integrator (40) for different values of p > 0. In all the
simulations, we take the smooth initial value

u(0, x) = sin x ∈ C∞(T) (48)

and μ = 1. Note, however, that the nonlinearity is only smooth for p > 1
2 .

For p = 1, all methods show their classical orders of convergence, as expected. For
smaller values of p, however, the convergence behavior of Strang and Lie splitting
deteriorates. Surprisingly, both exponential integrators retain their first-order conver-
gence down to very small values of p. This is the subject of future research.
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