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Abstract: Sustainable forest management should avoid disturbance and volatilization of the soil
carbon (C) and nitrogen (N) stocks both under present and projected future climate. Earlier studies
have shown that thinning of European beech forests induces a strong initial perturbation of the soil
C and N cycles in shallow Rendzic Leptosol, which consists of lower soil N retention and strongly
enhanced gaseous losses observed over several years. Persistence of these effects could decrease
soil organic matter (SOM) levels and associated soil functions such as erosion protection, nutrient
retention, and fertility. Therefore, we resampled untreated control and thinned stands a decade after
thinning at sites representing both typical present day and projected future climatic conditions for
European beech forests. We determined soil organic C and total N stocks, as well as δ13C and δ15N as
integrators of changes in soil C and N cycles. Thinning did not alter these parameters at any of the
sampled sites, indicating that initial effects on soil C and N cycles constitute short-term perturbations.
Consequently, thinning may be considered a sustainable beech forest management strategy with
regard to the maintenance of soil organic C and total N stocks both under present and future climate.

Keywords: thinning; calcareous soil; soil N cycling; soil C cycling; soil carbon and nitrogen stocks;
soil C and N losses; soil N retention

1. Introduction

Under sustainable forest management carbon (C) released from wood combustion would have
also been released during decomposition of old trees with subsequent re-fixation due to natural or
anthropogenically induced rejuvenation [1–3]. Therefore, C neutrality is frequently assumed for the
use of wood for both energy production as an alternative for fossil fuels and production of industrial
goods (timber). However, a holistic view of forest management on greenhouse gas balance and key
soil functions of managed forests also needs to consider the effects of silvicultural measures on soil
organic carbon (SOC) and total nitrogen (TN) stocks.

On average, soils contain more than two-thirds of the total C and N stored in forests ecosystems [4].
In many forests, C and N inputs into the soil are exceeding the respective outputs so that SOM tends to
accumulate [5]. This accrual is generally assumed to favor soil functions such as fertility, nutrient and
water retention, and erosion protection [6,7]. The latter aspect is of particular importance in European
beech forests stocking on calcareous soils (i.e., on steep slopes with karst hydrology) because the
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geologic, geomorphologic, and pedologic conditions favor erosion, landslides, and nutrient leaching
through the fissured underlying bedrock [8,9].

The net change in SOM levels depends on the fine balance between C and N inputs and outputs.
Furthermore, this balance is also influenced by the chemical quality of the compounds (labile or stable
C and N), site conditions (climate), and soil properties (clay content, soil moisture, pH, nutrient status),
which may exert a strong effect on, for example, the physical protection of organic matter [10–12].
Most of these factors are directly or indirectly influenced by forest management. Hence, silvicultural
management may alter SOC and TN stocks by changing C and N inputs, microclimate, and SOM
mineralization with subsequent emissions of carbon dioxide (CO2) and N gases such as dinitrogen
and the environmentally relevant gases nitric oxide (NO) and nitrous oxide (N2O) [13–16]. However,
recent literature indicates that both for hardwood and conifer forests thinning effects may remain
restricted to the forest floor and only rarely occur in the mineral soil [17–21]. The long-term effects of
thinning of beech stands on SOC and TN stocks in Rendzic Leptosols have not yet been addressed,
despite that these soils with their very high SOC and TN concentrations are thought to be particularly
vulnerable to disturbance, in particular in a changing climate where warming might promote C and N
mineralization [22].

The extent of forest management effects on plant biomass, physicochemical soil properties,
and microclimate depends on the techniques being applied and the amount of tree biomass removed
(e.g., single tree harvests, thinning, clearcutting, artificial gap formation), the length of the rotation
period, and the harvest methods (e.g., sawlog harvesting, heavy mobile harvesters) [21,23,24]. Thinning
is a common management strategy in European beech forests [9,25] and has been reported to show
positive effects on tree radial growth [26,27]. For example, in a temperate beech forest in Southern
Germany, thinning was found to enhance growth, N uptake, and N contents of beech trees [28].
However, thinning also reduces litterfall and forest floor C stocks [10]. Besides effects on growth, forest
management such as thinning may have the potential to increase resistance to climate-change-induced
threats [8]. European beech stands have been identified to respond sensitively to increased frequencies
of summer droughts in a changing climate [8,29,30], to nutrient shortage as a consequence of
drought [31], and to a rapid increase of water supply after a period of drought [32]. In this context,
thinning decreases inter-tree competition for water and nutrients and, thereby, may increase the
resistance to drought stress [33]. Consequently, thinning has been proposed as a measure to increase
resilience of beech forests to climate change stresses [8,31].

The gaps opened in the canopy may affect soil C and N biogeochemistry mainly through two
mechanisms. First, they increase the amount of solar radiation and precipitation reaching the forest
floor, transiently increasing soil temperature and soil water availability and thus C and N mineralization.
Second, the partially removed plant sink for water and N increases the availability of these resources to
free living soil microorganisms and, hence, can also promote C and N mineralization [34].

In the Tuttlingen experimental beech forests in Southern Germany, extensive research on
short-term effects of thinning on soil C and N biogeochemistry was performed in the years 1999–2005
at sites with different microclimates. These typical European beech forests are stocking on shallow
Rendzic Leptosol with SOC concentrations in mineral topsoil being as high as ca. 10%. In these
forests, even thinning of the stand by removal of ca. 70% of the trees strongly increased soil
temperature and moisture [25]. This resulted in a doubling of soil respiration in the first year
after thinning, a significantly decreased soil C:N ratio, and a tendency toward decreased SOC
concentrations [15,25,35]. The combination of the decreased competition of trees for N, increased
soil temperature and moisture, and more narrow C:N ratio increased N mineralization as well as
nitrification and denitrification, but decreased microbial N retention capacity. This resulted in huge soil
nitrous oxide and dinitrogen emissions, estimated in the range of 21–94 Kg N2 ha−1 year−1 in the first
2 years after thinning [14,15,25,35]. The onset of rapid growth of understorey vegetation by natural
regeneration appeared to partly dampen these initial effects in the years 4–6 after thinning [15,25,35].
Nonetheless, the observed thinning effects on biogeochemical C and N turnover rates suggested
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a thinning−induced decline of SOC and TN stocks on longer time spans, which has not yet been
addressed in beech forest ecosystems in Central Europe.

In the present study, we therefore resampled all sites of the Tuttlingen experimental beech forest
which were part of the earlier thinning experiments 9 to 12 years ago. We quantified SOC and TN
stocks at untreated control and thinned plots. We also determined soil and leaf litter δ15N and δ13C
to use them as integrators and indicators of changes of soil C and N dynamics. Specifically, δ 13C can
serve as a fingerprint of C mineralization [36], while δ15N is strongly influenced by the magnitude
of soil N turnover processes, with faster N turnover and higher gaseous losses resulting in a higher
δ15N value in soil [37]. The goal of this study was to elucidate whether thinning leads to long-term
changes of soil C and N stocks in the widely spread beech forest ecosystems occurring on calcareous
soil, and facilitate a synthesis of both short-term and long-term effects of forest management practices
on C and N biogeochemistry both under present and projected future climate. Thus, we provide a basis
for the assessment of the sustainability of thinning of beech forests with regard to the maintenance of
key soil functions.

2. Materials and Methods

2.1. Site Characteristics and Experimental Design

The Tuttlingen experimental beech forests are located in Southern Germany on slopes of different
exposure of the Swabian Jura, a low mountain range consisting of Jurassic limestone (longitude 8◦45′ E;
latitude 47◦59′ N). At the studied forests, beech (Fagus sylvatica L.) contributes more than 90% to
the basal area of adult trees. The average age of the stand is 80–90 years. The soil profiles are
classified as Rendzic Leptosols, according to the International Union of Soil Sciences Working Group,
World Reference Base (WRB) for Soil Resources (2007), derived from limestone and are characterized
by a shallow Ah-C profile with only ca. 10 cm of clayey, C-rich mineral soil, underlaid by weathered
limestone bedrock or periglacial layers consisting mainly of stones. The soil profiles facing to northeast
(NE) and northwest (NW) contain 15% rocks (>60 mm diameter) in the uppermost layer (0–10 cm
depth), while the ones facing to the southwest (SW) contain a significantly higher amount of 20% to
45% on a volumetric basis [38]. The sites are located at an altitude between 760 and 820 m above sea
level. Mean annual temperature measured at a climate station of the DWD (Deutscher Wetterdienst)
is 6.6 ◦C and average annual precipitation amounts to 856 mm (1961–1990). Further details on site,
soil properties, and climatic conditions can be found in previous studies [25,38,39].

The present study was conducted at three forest sites on slopes with different microclimates due
different exposures (NE, SW, NW). The distance between the sites was less than 1 km. The northeast
and NW sites are characterized by a cool and wet microclimate, which has been considered to be a
suitable model climate for present day conditions of many beech forests in Central Europe [31,38].
In contrast, the site at SW exposure has on annual average ca. 1 ◦C higher topsoil and air temperatures,
has less water availability than stands of NE and NW exposure, and is much more prone to summer
droughts [31,38]. Thus, the SW site exhibits a climate which was considered to be a model climate
for the next decades in the first half of the 21st century [31]. All sites consist of slopes with similar
steepness (23–30◦ inclination). The understorey vegetation was classified as Hordelymo-Fagetum on
the NE and as Carici-Fagetum at the SW aspect [28,38,40–42].

2.2. Experimental Design and Soil Sampling

At each site (NE, SW, NW), triplicated unmanaged control (C) and heavily thinned (T) plots of
ca. 1 ha size are available. Thinning took place in March 1999 for the NE and SW sites, while for the NW
site thinning was performed in March 2003. Mean basal area of C stands was 25 m2 ha−1 and was evenly
reduced at T plots to 10 m2 ha−1 by means of heavy shelterwood felling. Thinning significantly reduced
the leaf area index (LAI) in the first year from 5.16 to 1.68 and from 5.12 to 2.12 under NE and SW
exposure, respectively [43]. Furthermore, thinning increased radiation at the forest floor at both south



Forests 2017, 8, 167 4 of 15

and north exposure but to a higher extent at S than at N aspect. As a consequence, the thinned plots
experienced consistently higher daily mean temperature of surface air and soil compared to the untreated
control plots [44]. One year after thinning, vegetation density of other than beech natural regeneration
increased in the understorey by approx. 25% on the NE and approx. 8% in the SW aspect [40–42,45].

Soil sampling was conducted in March 2012 (i.e., 9–12 years after thinning). For each site
(NW, NE, and SW) three replicated C and T plots were sampled (18 plots in total). We applied the
stratified random soil sampling strategy employed by Saiz et al. [46] for ecosystems with heterogeneous
woody covers. This approach consists of taking soil samples in a stratified manner with respect to tree
canopies. Within each plot, two subplots of 4 × 4 m size were randomly chosen, one under closed
canopy and the other one in a canopy gap. Due to the absence of canopy gaps at C plots, both subplots
were established under closed canopy. At each subplot, samples were taken at five different locations.
After removing the organic layer, mineral soil samples were taken from two depth intervals, i.e.,
0–5 cm and 5–10 cm, using a soil core of 4.5 cm diameter. Leaf litter was quantitatively collected by
using a 40 × 40-cm frame at eight randomly selected spots within each plot. All samples were placed
into pre-labelled zip-lock plastic bags.

The soil under investigation is shallow and has a high stone content, which complicates calculation
of SOC and TN stocks based on determined soil concentrations. In order to determine area related soil
mass (<2 mm grain size) corrected for stone content, pits of 20 × 20 cm area were dug at 20 randomly
selected spots at every site (NE, NW, SW). First, the soil from 0–5 cm depth was quantitatively harvested
and split into stones and finer grained soil. In a second step, the pit was extended to 10 cm depth so
that the proportion of stones to finer grained soil could also be determined in this depth. Subsamples of
soil were dried for calculation of the area-specific dry soil masses (without stones) at 0–5 and 5–10 cm
depth. This soil mass was used for calculation of SOC and TN stocks by multiplication with the SOC
and TN soil concentrations of the respective layer. Similarly, for calculation of SOC and TN stocks in
leaf litter, the respective concentrations were multiplied with areal dry leaf litter mass.

2.3. Soil Analyses

Soil samples were dried in the oven at 45 ◦C until constant weight, then stones and coarse
organic material (branches, leaves, and roots) were removed by hand. An aliquot of these samples
was then oven dried at 105 ◦C for four hours to determine the moisture content remaining in the
samples, which allowed for the calculation of soil bulk density (SBD) using the procedure described
in [47]. Calculation of SBD included fractions >2 mm. Subsequently, samples were dry-sieved to
2 mm and pooled at the subplot level according to the two different depths sampled. Sub-samples
for determination of soil organic C and N content and 15N and 13C isotope natural abundance were
powdered in a ball mill (MM200, Retsch, Haan, Germany) and had the soil carbonates removed
prior to C analysis by acid fumigation [48,49]. Analyses of N content and 15N natural abundance was
conducted with separate, unfumigated samples. Leaf litter samples were equally dried and their total
dry weight was determined for the sampled area before a representative subsample was milled [35].
Soil and leaf litter analyses were conducted using a Costech Elemental Analyzer (Costech International
S.p.A., Milano, Italy) fitted with a zero-blank auto-sampler coupled via a ConFloIII to a Thermo
Finnigan Delta V Plus isotope ratio mass spectrometer (Thermo Scientific, Waltham, MA, USA) [50].
Precisions (S.D.) on internal standards for elemental C and N abundances and their stable isotopic
compositions were better than 0.2% and 0.06h, respectively.

2.4. Statistics

The Kolmogorov-Smirnov test was used to determine the distribution of the data set. As normal
distribution could not be achieved by common transformations, the non-parametric Wilcoxon Signed
Rank test was used to identify significant effects of thinning, depth, and exposure on C and N stocks,
δ15N and δ13C values, and C/N ratios. Differences were considered significant at p < 0.05. All statistical
analyses were performed using SPSS 22.0 (IBM software, Armonk, NY, USA).
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Table 1. Soil properties, soil organic carbon (SOC) and total nitrogen (TN) stocks in leaf litter and mineral soil of the investigated sites as affected by exposure and
soil depth.

Soil Leaf Litter

Depth
(cm)

Bulk
Density

(gr cm−3)

Soil Mass
(t dry soil

ha−1)

SOC Stock
(t SOC
ha−1)

SOC
Concentration (gr
C Kg dry soil−1)

TN Stocks
(t N ha−1)

TN Concentration
(gr N Kg dry

soil−1)

Litter
Mass

(t ha−1)

SOC
Stocks

(t C ha−1)

SOC Concentration
(gr C Kg dry

mass−1)

TN Stocks
(t N ha−1)

TN Concentration
(gr N Kg dry soil−1)

NE 0–5 0.82 ± 0.03 311.3 ±1 8.7 25.4 ± 2.3 81.83 ± 7.50 1.90 ± 0.20 6.03 ± 0.60
15.5 ± 0.8 6.6 ± 0.4 423.7 ± 2.3 0.30 ± 0.02 17.69 ± 0.40NE 5–10 0.96 ± 0.04 264.5 ± 29.1 16.5 ± 2.4 62.3 ± 9.00 1.30 ± 0.20 4.97 ± 0.70

NW 0–5 0.82 ± 0.03 328.2 ± 13.1 26.8 ± 0.5 81.37 ± 1.60 1.90 ± 0.05 5.91 ± 0.20
16.0 ± 0.8 6.8 ± 0.4 423.4 ± 4.9 0.30 ± 0.02 17.05 ± 0.60NW 5–10 0.89 ± 0.04 279.0 ± 16.7 18.5 ± 0.9 66.36 ± 3.10 1.60 ± 0.20 5.80 ± 0.90

SW 0–5 0.68 ± 0.03 265.1 ± 13.2 32.9 ± 3 124.13 ± 11.00 1.90 ± 0.10 7.34 ± 0.40
11.6 ± 1.2 5.0 ± 0.5 433.6 ± 2.7 0.20 ± 0.02 13.68 ± 0.60SW 5–10 0.90 ± 0.05 185.6 ± 14.8 15.6 ± 0.4 84.00 ± 1.90 1.20 ± 0.08 6.67 ± 0.40

Uncertainty is given as the standard error of the mean. Note that soil mass contains only finer grained soil (<2 mm) and no stones. Data from unthinned control plots and thinned plots
were merged in this table. NE, northeast; NW, northwest; SW, southwest.
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3. Results

Soil areal mass decreased with depth and was larger at the stone-rich N-exposed sites than at
S-exposure, but did not differ between NE and NW exposures (Table 1). SBD increased with depth.
It was rather low due to the high SOM contents, with values ranging from 0.68 to 0.96 across the sites.
SBD at 0–5 cm depth interval did not differ between the NE and NW aspect, but were smaller at the
SW aspect (Table 1). Leaf litter C stocks were significantly smaller at south compared to north exposure
(Tables 1 and 2). However, SOC and TN stocks in leaf litter were about one order of magnitude smaller
than in mineral soil (0–10 cm) (Table 1). Between 50% and 63% of SOC stocks were allocated to 0–5 cm
depth, 27% to 37% to 5–10 cm depth, and 9% to 15% to the leaf litter layer. These patterns were
comparable to TN stocks, with 48% to 59% being allocated to 0–5 cm depth, 37% to 45% to 5–10 cm
depth, and 4% to 8% to the leaf litter layer. TN stocks in mineral soil did not differ between sites with
north and south exposure (Table 2).

Table 2. p-values as gained from the non-parametric Wilcoxon Signed Rank test to identify the effect of
exposure (SW vs. NW/NE) on SOC and TN stocks as well as C/N ratio and δ15N and δ13C.

Depth (cm) SOC Stocks TN Stocks C/N Ratio δ15N δ13C

Soil
0–5 0.093 0.541 0.041↑ 0.875 0.603
5–10 0.878 0.959 0.388 0.456 0.209

Leaf litter 0.028↓ 0.028↓ 0.028↑ 0.072 0.027↑

p-values of significant effects (<0.05) are given in bold. Arrows indicate the effect of warmer microclimate
(e.g., an increased C:N ratio or a decreased leaf litter SOC stock at south compared to north exposure).

Effects of Forest Management

There were not significant differences in SOC and TN concentrations between untreated control
and thinned plots, neither in mineral soil nor in leaf litter layers, at all three sites (Figure 1). Thinning
also did not affect SOC:TN ratios, with the exception of decreased C:N ratios in 5–10 cm depth at
thinned plots of NW exposure (NWT) compared to control plots of NW exposure (NWC) (Figure 1).
Also, with regard to SOC and TN stocks, we did not find significant effects of thinning at any of the
three sites, neither in leaf litter, nor in 0–5 and 5–10 cm depth intervals (Figure 2, Table 3). Similarly, we
did not observe significant differences in these parameters between closed and open canopy subplots
within the thinned plots at any of the sites.

Forests 2017, 8, 167    6 of 15 

 

3. Results 

Soil areal mass decreased with depth and was larger at the stone‐rich N‐exposed sites than at 

S‐exposure, but did not differ between NE and NW exposures (Table 1). SBD increased with depth. 

It was rather low due to the high SOM contents, with values ranging from 0.68 to 0.96 across the sites. 

SBD at 0–5 cm depth interval did not differ between the NE and NW aspect, but were smaller at the 

SW  aspect  (Table  1).  Leaf  litter C  stocks were  significantly  smaller  at  south  compared  to  north 

exposure  (Tables  1  and  2). However,  SOC  and TN  stocks  in  leaf  litter were  about  one  order  of 

magnitude smaller  than  in mineral soil  (0–10 cm) (Table 1). Between 50% and 63% of SOC stocks 

were allocated to 0–5 cm depth, 27% to 37% to 5–10 cm depth, and 9% to 15% to the leaf litter layer. 

These patterns were comparable to TN stocks, with 48% to 59% being allocated to 0–5 cm depth, 37% 

to 45% to 5–10 cm depth, and 4% to 8% to the leaf litter layer. TN stocks in mineral soil did not differ 

between sites with north and south exposure (Table 2). 

Table 2. p‐values as gained from the non‐parametric Wilcoxon Signed Rank test to identify the effect 

of exposure (SW vs. NW/NE) on SOC and TN stocks as well as C/N ratio and δ15N and δ13C. 

  Depth (cm)  SOC Stocks TN Stocks C/N Ratio δ15N  δ13C 

Soil 
0–5  0.093  0.541  0.041↑ 0.875  0.603 

5–10  0.878  0.959  0.388  0.456  0.209 

Leaf litter    0.028↓ 0.028↓ 0.028↑ 0.072  0.027↑ 

p‐values  of  significant  effects  (<0.05)  are  given  in  bold.  Arrows  indicate  the  effect  of  warmer 

microclimate (e.g., an increased C:N ratio or a decreased leaf litter SOC stock at south compared to 

north exposure). 

Effects of Forest Management 

There were not significant differences in SOC and TN concentrations between untreated control 

and thinned plots, neither in mineral soil nor in leaf litter layers, at all three sites (Figure 1). Thinning 

also did not affect SOC:TN ratios, with the exception of decreased C:N ratios  in 5–10 cm depth at 

thinned plots of NW exposure (NWT) compared to control plots of NW exposure (NWC) (Figure 1). 

Also, with regard to SOC and TN stocks, we did not find significant effects of thinning at any of the 

three sites, neither in leaf litter, nor in 0–5 and 5–10 cm depth intervals (Figure 2, Table 3). Similarly, 

we did not observe  significant differences  in  these parameters between  closed  and open  canopy 

subplots within the thinned plots at any of the sites. 

 

Figure 1. Effects of  forest management  (straight  line: control; dotted  line:  thinned) on soil organic 

carbon  concentrations  (upper panels)  and  total nitrogen  concentrations  (middle panels)  and C:N 

ratios (lower panels) at sites with different exposures (NE, NW, SW). 

5-10 cm

0-5 cm

litter

0 100 200 300 400 500

NWNE

 Control   Thinning

C/N ratio

TN concentrations (gr N Kg dry soil-1)

NWNE

 

NE NW

SOC concentrations (gr C Kg dry soil-1)

5-10 cm

0-5 cm

litter

0 100 200 300 400 500

SW

SW

 

 

SW

5-10 cm

0-5 cm

litter

0 100 200 300 400 500

 

 

5-10 cm

0-5 cm

litter

0 3 6 9 12 15 18

 

5-10 cm

0-5 cm

litter

0 3 6 9 12 15 18

 

 

5-10 cm

0-5 cm

litter

0 3 6 9 12 15 18

 

 

5-10 cm

0-5 cm

litter

8 12 16 20 24 28 32

 

5-10 cm

0-5 cm

litter

8 12 16 20 24 28 32

 

 

5-10 cm

0-5 cm

litter

8 12 16 20 24 28 32

 

 

Figure 1. Effects of forest management (straight line: control; dotted line: thinned) on soil organic
carbon concentrations (upper panels) and total nitrogen concentrations (middle panels) and C:N ratios
(lower panels) at sites with different exposures (NE, NW, SW).
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Figure 2. SOC and TN stocks in mineral soil (a,b) and leaf litter (c,d). Uncertainty is given as the
standard error of the mean of three replicated plots. Grey area of stacked columns: mineral soil 0–5 cm;
white area of stacked columns: mineral soil 5–10 cm depth. NW, NE, SW: exposure of experimental
sites; C: Control, T: Thinning. There were no significant thinning effects on the displayed parameters.

The patterns of δ15N in mineral soil and leaf litter resembled those observed for total soil N and
organic C stocks with clear effects of depth and no effects of forest management (Figure 3). Mean
δ15N values in mineral soil ranged from −1.83h to 0.26h in 0–5 cm and −1.56h to 1.6h in 5–10 cm
depth interval. 15N was more depleted in leaf litter than in mineral soil, with δ15N values of −5.8h to
−4.2h. Similar to 15N, 13C was more depleted in leaf litter than in mineral soil with δ13C values of
−29.8h to −28.5h, while mean δ13C values in mineral soil ranged from −27.5h to −26.4h in 0–5 cm
and −26.4h to −25.9h in 5–10 cm depth interval. The only significant effect of thinning was lower
δ13C values for the 0–5 cm depth interval at the NE site (Figure 3 and Table 3).
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Figure 3. δ13C (upper panels) and δ15N (lower panels) in soil and leaf litter. Black line: control;
dotted line: thinning. Asterisks indicate significant differences between control and thinned plots at a
given depth.
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Table 3. p-values gained from the non-parametric Wilcoxon Signed Rank test to identify the effect of thinning and depth on SOC and TN stocks, C:N ratio, and δ15N
and δ13C in different soil layers and site exposure.

SOC Stocks TN Stocks C/N Ratio δ15N δ13C

Thinning Depth Thinning Depth Thinning Depth Thinning Depth Thinning Depth

NE Soil
0–5 0.068 0.005↓ 0.144 0.005↓ 0.753

0.005
0.917 0.002↑ 0.028↓ 0.002↑5–10 0.144 0.068 0.345 0.753 0.345

Litter 0.593 1.000 1.000 0.285 0.414

NW Soil
0–5 0.345 0.002↓ 0.753 0.034↓ 0.833

0.084
0.293 0.034↑ 0.173 0.002↑5–10 0.116 0.6 0.028↓ 0.753 0.116

Litter 1.000 1.000 0.109 0.109 0.180

SW Soil
0–5 0.463 0.003↓ 0.173 0.002↓ 0.917

0.182
0.345 0.005↑ 0.345 0.023↑5–10 0.249 0.345 0.173 0.249 0.753

Litter 0.285 0.593 1.000 0.180 1.000

p-values of significant effects (<0.05) are given in bold. Arrows indicate the direction of significant effects.
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4. Discussion

4.1. Forest Management Affects Soil C Turnover and Soil C Stocks in the Short, but Not in the Long Run

The general magnitude of SOC stocks down to 1 m depth reported by Jobbágy and Jackson [51] for
temperate deciduous forests and by Meier et al. [52] for beech forests in Germany across a precipitation
gradient amounts to 174 t C ha−1, i.e., much larger values than found for the shallow soils of this study.
Here, we have observed an average value of ca. 45 t SOC ha−1, which was, however, allocated only
to the 0–10 cm profile. Despite the shallow soil with its high gravel content, this is—due to the high
SOC concentrations—a comparably high value. For example, Guckland [53] estimated C stocks in the
0–10 cm profile in temperate deciduous forests to be between 29 and 37 t C ha−1. Further SOC may
be allocated to deeper karst fissures present at some spots in the limestone at our sites, which was,
however, not addressed in this study due to inaccessibility.

Changes in SOC stocks follow disturbance-induced alterations in the balance of C input
and output [10]. It has been reported that soils with high SOC concentrations such as the
soil under investigation may respond to disturbance with particularly fast C loss [22]. In the
investigated forest ecosystem, soil respiration increased in the first year after thinning on average
by ca. 10 mg C m−2 h−1 [15]. Considering microbial respiration contributing ca. 50% to soil respiration
and a reduction of root respiration of ca. 50% after thinning, the increase of microbial respiration
due to thinning may be estimated at ca. 20 mg C m−2 h−1 and, thus, would amount to an increase
in gross C output of more than 1.7 t C ha−1 year−1. Together with decreased C inputs after logging,
this could trigger a theoretical decline of the ecosystem SOC stocks at a magnitude of roughly a few
tens of t C ha−1 in a decade. Estimating our ability to detect such a change above the uncertainty of
quantified SOC stocks (i.e., ca. 0.4–2 t C ha−1, Figure 2) indicates that such a persistent and significant
loss of SOC due to thinning would have been detectable in this study after ca. 10 years.

Here, however, we report that heavy thinning in temperate beech forests established on shallow
calcareous soil, i.e., the reduction of the basal area from 20–28 to 10 m−2 ha−1, generally did
not affect SOC stocks 10 years after logging. This might be explained by the comparably rapid
growth of understorey vegetation with high C input into the soil already few years after thinning.
Furthermore, the development of understorey vegetation also reduced the differences in soil moisture
and temperature between control and thinned plots (i.e., the most important drivers of the initial C
mineralization flush after thinning) [15,25,35].

Studies addressing the relationships between δ13C and SOC dynamics in pure C3 ecosystems
indicate that soil δ13C depth profiles may have the potential to serve as indicators of
disturbance-induced changes in SOC dynamics [36,54], i.e., that soil δ13C may be greatly influenced
by kinetic fractionation processes of SOC turnover (e.g., [55]). The latter study found that 15 years
after a clear cut δ13C in some soil layers increased while SOC concentrations decreased. The authors
interpreted this observation to be the consequence of increased mineralization while C inputs had
decreased. In our study, we found at NE a significant decrease in δ13C at 0–5 cm depth. Consequently,
this finding would be indicative of increased SOC storage, which was, however, not detected in SOC
concentrations and stocks. Furthermore, soil δ13C values may also be greatly influenced by the specific
characteristics of the forest canopy. The latter may exert a strong effect on the δ13C values of the
precursor biomass and the degree to which respired CO2 is reutilized during photosynthesis [56].
Several studies have shown that δ13C values of plant biomass are heavily influenced by light intensity,
humidity, accumulation of ground-level CO2, and recycling of soil carbon [57,58]. Therefore, in view
of the confounding effects δ13C to reflect SOC dynamics in pure C3 ecosystems and considering that a
significant effect was only visible at one out of three sites, interpretation of these findings should be
treated with care. Overall, the observation of slightly decreased or unchanged soil δ13C at thinned
plots rather supports the notion that thinning did not significantly reduce SOC stocks.

Earlier studies on forest management did not address beech forests stocking on Rendzic Leptosols
and reported partially conflicting effects on SOC stocks. Generally, tree removal always constitutes a
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net loss of C from the forest ecosystem [10]. In a review article on forest management effects on SOC
stocks [18], it was concluded that with a SOC reduction of ca. 8% the forest floor is more vulnerable to
harvest than the mineral soil, where generally no effects were detected. Another review article [21]
reached the same conclusion based on a case study [20] in a temperate beech chronosequence in France
stocking on Luvisols. The present study shows that also for Rendzic Leptosols with their high SOC
concentrations, thinning of European beech does not significantly alter SOC stocks at a timescale of ca.
one decade after logging.

4.2. Forest Management Affects Soil N Turnover and Soil N Stocks in the Short, but Not in the Long Run

Thinning may have the potential to promote soil microbial N cycling and associated N losses along
hydrological and gaseous pathways. This is the result of microclimate-mediated mechanisms described
above for SOC dynamics, as well as reduced competition for N by trees. For the ecosystems under
investigation, the main initial effect observed in the first years after thinning was increased nitrification
and soil nitrate concentrations, both in the forest floor and mineral soil [25,35]. This was promoted
not only by reduced tree competition and increased soil moisture and temperature, but also by a
narrowing soil C:N ratio at thinned plots, resulting in increased soil mineral N concentrations [25,35].
As a consequence, gaseous N losses were reported to increase substantially after thinning [14,35] despite
low atmospheric N deposition of <10 kg N ha−1 year−1 [59] into the forests. Total gaseous N losses in
the first two years at thinned plots had been estimated to be in the range of 21–94 kg N ha−1 year−1

(i.e., from several fold up to one order of magnitude larger compared to control stands) [14]. Hence,
these losses—given that they persisted over time—may have significantly affected total soil N stocks
of roughly 3–4 t ha−1 (Figure 2). However, our data do not show significant differences in soil N stocks
9–12 years after thinning at all exposures, (i.e., for both typical present and projected future climate
conditions of many beech forests in Central Europe). The mean TN stocks in our study for the 0–10 cm
soil profile was 3.3 t N ha−1, i.e., a larger value compared to those reported by [60] (around 2 t N ha−1).
Another study [61] found stocks between 2 and 3 t N ha−1 in a German beech stand and no effects of
gap formation 8 years after logging.

The δ15N signature of total soil nitrogen has often been used as an indicator of the N cycle
status and patterns [12,62]. Enhanced N turnover and in particular gaseous N loss processes such
as denitrification show the largest fractionation factors. Hence, enhanced N cycling and increased
gaseous N losses thus results in a 15N enrichment in total soil N [37]. A persistent perturbation of
the soil N cycle after thinning with increased N losses over more than a decade might thus increase
soil δ15N. Consequently, the finding of unchanged δ15N in leaf litter and mineral soils of adjacent
controls and thinned plots indicates that these initial thinning effects on N turnover and losses were
only short-term and quickly declined over time.

4.3. Synthesis of Short-Term and Long-Term Thinning Effects: Microclimate, Understorey Vegetation,
and Carbon–Nitrogen Interaction

Earlier studies showed intense thinning effects on soil C and N turnover with accelerated losses
in the first two years after logging and attenuated effects in the years 4–6 [14,15,25,35]. In this study,
we show that thinning had not altered C and N stocks and soil δ15N after more than a decade,
thus indicating a lack of persistent change in C and N cycling patterns. These findings raise questions
on the mechanisms which cause (1) the very strong initial effects and (2) their fast decline. The initial
effects of thinning on soil C and N biogeochemistry appeared to be jointly triggered by the removal
of the plant C and N sink and the altered microclimate (Figure 4). Logging reduced C input and
competition for N by the vegetation, both resulting in a C and N mineralization flush promoted
by higher soil temperature and moisture [25,35]. The loss of soil C also resulted in a more narrow
C:N ratio, which impaired soil microbial N retention, thereby increasing soil inorganic N levels and
promoting gaseous N losses. In sum, it was the removal of the plant C and N sink, the microclimatic
effects, and carbon-nitrogen interactions which triggered the strong initial perturbation of soil C and
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N biogeochemistry (Figure 4). Since all these effects depend on the presence or absence of trees
competing for N, providing C input into soil and shading the forest floor, the fast development
of understorey vegetation at thinned plots [45] may account for declining effects in the years 4–6.
Understorey vegetation had developed to >3 m height at the SW site and >4 m height at the NE site in
the year 2004 [15] (i.e., 5 years after thinning). Consequently, microclimatic differences disappeared
between control and thinned plots, and C input into soil and soil C:N ratio as well as competition for
N and microbial N retention increased already ca. 4–5 years after thinning [35] (Figure 4). This fast
development of understorey might have dampened undesired thinning effects on soil C and N turnover
and loss (Figure 4).
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5. Conclusions

Feedback of understorey development on C and N cycling, mediated by plant physiology, C and N
interactions, and microclimate make thinning a sustainable forest management practice with regard to
the maintenance of soil C and N stocks and associated key soil functions. Since we observed these
feedback loops under both N and S exposure, i.e., under model climate for present and future at
typical European beech forests [31,38], thinning may continue to be a recommended forest practice
in coming decades from a soil ecological perspective. In a changing climate, it could even have the
potential to mitigate nutrient shortage effects of summer droughts due to reduced competition for
nutrients [31]. However, under extreme summer droughts in a changing climate, thinning could also
result in decreased soil water availability and impaired water status of beech, thereby impairing growth
and development of the trees [9]. Consequently, the intensity of projected extreme drought events in a
changing climate needs to be considered when recommending thinning as a suitable management
practice in the 21st century.

Acknowledgments: Funding of this work by the German Science Foundation/Deutsche Forschungsgemeinschaft
(DFG) under contract number DA 1217/2-1 is gratefully acknowledged. We acknowledge support by Deutsche
Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology. We thank Rudolf



Forests 2017, 8, 167 12 of 15

Meier and Vitomira Erac for technical assistance and the Centre of Stable Isotopes of IMK-IFU for providing
analytical capacities. The determination of soil C and N stocks and isotope signatures was part of the project study
“soil ecology” of University of Freiburg, Germany, and we wish to thank the participating students Marie Zippelius,
Laura Danzeisen, Vera Baumert, Felix Rinderle, Marilen Havert, Mirko Maelicke, and Lena Kahne for conducting
sampling and sample processing.

Author Contributions: M.D. and H.R. conceived and designed the experiments; J.T. and M.D performed the
experiments; J.T., G.S. and M.D. analyzed the data; J.T., G.S. and M.D. contributed reagents/materials/analysis
tools; J.T. and M.D. wrote the paper with contributions of all authors.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Zanchi, G.; Pena, N.; Bird, N. Is woody bioenergy carbon neutral? A comparative assessment of emissions
from consumption of woody bioenergy and fossil fuel. GCB Bioenerg. 2012, 4, 761–772. [CrossRef]

2. Tsunetsugu, Y.; Tonosaki, M. Quantitative estimation of carbon removal effects due to wood utilization up
to 2050 in Japan: Effects from carbon storage and substitution of fossil fuels by harvested wood products.
J. Wood Sci. 2006, 56, 339–344. [CrossRef]

3. Lineback, N.; Dellinger, T.; Shienvold, L.; Witcher, B.; Reynolds, A.; Brown, L. Industrial greenhouse gas
emissions: Does CO2 from combustion of biomass residue for energy really matter? Clim. Res. 1999, 13,
221–229. [CrossRef]

4. Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux
of global forest ecosystems. Science 1994, 263, 185–190. [CrossRef] [PubMed]

5. Gundersen, P.; Schmidt, I.K.; Raulund-Rasmussen, K. Leaching of nitrate from temperate forests—Effects of
air pollution and forest management. Environ. Rev. 2006, 14, 1–57. [CrossRef]

6. Gregorich, E.; Greer, K.; Anderson, D.; Liang, B. Carbon distribution and losses: Erosion and deposition
effects. Soil Tillage Res. 1998, 47, 291–302. [CrossRef]

7. Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [CrossRef]
8. Rennenberg, H.; Dannenmann, M.; Gessler, A.; Kreuzwieser, J.; Simon, J.; Papen, H. Nitrogen balance

in forest soils: Nutritional limitation of plants under climate change stresses. Plant Biol. 2009, 11, 4–23.
[CrossRef] [PubMed]

9. Simon, J.; Dannenmann, M.; Pena, R.; Gessler, A.; Rennenberg, H. Nitrogen nutrition of beech forests in
a changing climate: Importance of plant-soil-microbe water, carbon, and nitrogen interactions. Plant Soil
Marschner Rev. 2017. submitted.

10. Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.;
Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137,
253–268. [CrossRef]

11. Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.;
Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem
property. Nature 2011, 478, 49–56. [CrossRef] [PubMed]

12. Saiz, G.; Wandera, F.M.; Pelster, D.E.; Ngetich, W.; Okalebo, J.R.; Rufino, M.C.; Butterbach-Bahl, K. Long-term
assessment of soil and water conservation measures (Fanya-juu terraces) on soil organic matter in South
Eastern Kenya. Geoderma 2016, 274, 1–9. [CrossRef]

13. Johnson, M.G.; Levine, E.R.; Kern, J.S. Soil organic matter: Distribution, genesis, and management to reduce
greenhouse gas emissions. Water Air Soil Pollut. 1995, 82, 593–615. [CrossRef]

14. Dannenmann, M.; Butterbach-Bahl, K.; Gasche, R.; Willibald, G.; Papen, H. Dinitrogen emissions and the
N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biol. Biochem.
2008, 40, 2317–2323. [CrossRef]

15. Dannenmann, M.; Gasche, R.; Ledebuhr, A.; Holst, T.; Mayer, H.; Papen, H. The effect of forest management
on trace gas exchange at the pedosphere-atmosphere interface in beech (Fagus sylvatica L.) forests stocking
on calcareous soils. Eur. J. For. Res. 2007, 126, 331–346. [CrossRef]

http://dx.doi.org/10.1111/j.1757-1707.2011.01149.x
http://dx.doi.org/10.1007/s10086-009-1107-4
http://dx.doi.org/10.3354/cr013221
http://dx.doi.org/10.1126/science.263.5144.185
http://www.ncbi.nlm.nih.gov/pubmed/17839174
http://dx.doi.org/10.1139/a05-015
http://dx.doi.org/10.1016/S0167-1987(98)00117-2
http://dx.doi.org/10.3390/su7055875
http://dx.doi.org/10.1111/j.1438-8677.2009.00241.x
http://www.ncbi.nlm.nih.gov/pubmed/19778364
http://dx.doi.org/10.1016/j.geoderma.2006.09.003
http://dx.doi.org/10.1038/nature10386
http://www.ncbi.nlm.nih.gov/pubmed/21979045
http://dx.doi.org/10.1016/j.geoderma.2016.03.022
http://dx.doi.org/10.1007/BF00479414
http://dx.doi.org/10.1016/j.soilbio.2008.05.009
http://dx.doi.org/10.1007/s10342-006-0153-3


Forests 2017, 8, 167 13 of 15

16. Medinets, S.; Skiba, U.; Rennenberg, H.; Butterbach-Bahl, K. A review of soil NO transformation: Associated
processes and possible physiological significance on organisms. Soil Biol. Biochem. 2015, 80, 92–117.
[CrossRef]

17. Powers, M.D.; Kolka, R.K.; Bradford, J.B.; Palik, B.J.; Fraver, S.; Jurgensen, M.F. Carbon stocks across a
chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands. Ecol. Appl. 2012, 22, 1297–1307.
[CrossRef] [PubMed]

18. Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate
forests. For. Ecol. Manag. 2010, 259, 857–866. [CrossRef]

19. Herold, N.; Schöning, I.; Michalzik, B.; Trumbore, S.; Schrumpf, M. Controls on soil carbon storage and
turnover in German landscapes. Biogeochemistry 2014, 119, 435–451. [CrossRef]

20. Hedde, M.; Aubert, M.; Decaëns, T.; Bureau, F. Dynamics of soil carbon in a beechwood chronosequence
forest. For. Ecol. Manag. 2008, 255, 193–202. [CrossRef]

21. Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta analysis.
For. Ecol. Manag. 2001, 140, 227–238. [CrossRef]

22. Wiesmeier, M.; Schad, P.; von Lützow, M.; Poeplau, C.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.;
Schilling, B.; Kögel-Knabner, I. Quantification of functional soil organic carbon pools for major soil units and
land uses in southeast Germany (Bavaria). Agric. Ecosyst. Environ. 2014, 185, 208–220. [CrossRef]

23. Johnson, D.; Knoepp, J.; Swank, W.; Shan, J.; Morris, L.; Van Lear, D.; Kapeluck, P. Effects of forest
management on soil carbon: Results of some long-term resampling studies. Environ. Pollut. 2002, 116,
S201–S208. [CrossRef]

24. Wall, A. Effect of removal of logging residue on nutrient leaching and nutrient pools in the soil after
clearcutting in a Norway spruce stand. For. Ecol. Manag. 2008, 256, 1372–1383. [CrossRef]

25. Dannenmann, M.; Gasche, R.; Ledebuhr, A.; Papen, H. Effects of forest management on soil N cycling in
beech forests stocking on calcareous soils. Plant Soil 2006, 287, 279–300. [CrossRef]

26. Boncina, A.; Kadunc, A.; Robic, D. Effects of selective thinning on growth and development of beech
(Fagus sylvatica L.) forest stands in south-eastern Slovenia. Ann. For. Sci. 2007, 64, 44–57. [CrossRef]

27. Van der Maaten, E. Thinning prolongs growth duration of European beech (Fagus sylvatica L.) across a valley
in southwestern Germany. For. Ecol. Manag. 2013, 306, 135–141. [CrossRef]

28. Fotelli, M.N.; Rienks, M.; Rennenberg, H.; Geßler, A. Climate and forest management affect 15N-uptake,
N balance and biomass of European beech seedlings. Trees Struct. Funct. 2004, 18, 157–166. [CrossRef]

29. Le Goff, N.; Ottorini, J.-M. Thinning and climate effects on growth of beech (Fagus sylvatica L.) in experimental
stands. For. Ecol. Manag. 1993, 62, 1–14. [CrossRef]

30. Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate change
may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2012, 3, 203–207.
[CrossRef]

31. Dannenmann, M.; Bimüller, C.; Gschwendtner, S.; Leberecht, M.; Tejedor, J.; Bilela, S.; Gasche, R.;
Hanewinkel, M.; Baltensweiler, A.; Kögel-Knabner, I.; et al. Climate change impairs nitrogen cycling
in European beech forests. PLoS ONE 2016, 11, e0158823. [CrossRef] [PubMed]

32. Cermak, J.; Matyssek, R.; Kucera, J. Rapid response of large, drought-stressed beech trees to irrigation.
Tree Physiol. 1993, 12, 281–290. [CrossRef] [PubMed]

33. Misson, L.; Vincke, C.; Devillez, F. Frequency responses of radial growth series after different thinning
intensities in Norway spruce (Picea abies (L.) Karst.) stands. For. Ecol. Manag. 2003, 177, 51–63. [CrossRef]

34. Ma, S.; Concilio, A.; Oakley, B.; North, M.; Chen, J. Spatial variability in microclimate in a mixed-conifer
forest before and after thinning and burning treatments. For. Ecol. Manag. 2010, 259, 904–915. [CrossRef]

35. Dannenmann, M.; Gasche, R.; Papen, H. Nitrogen turnover and N2O production in the forest floor of beech
stands as influenced by forest management. J. Plant Nutr. Soil Sci. 2007, 170, 134–144. [CrossRef]

36. Poage, M.A.; Feng, X. A theoretical analysis of steady state δ13C profiles of soil organic matter.
Glob. Biogeochem. Cycles 2004, 18. [CrossRef]

37. Bedard-Haughn, A.; van Groenigen, J.W.; van Kessel, C. Tracing 15N through landscapes: Potential uses and
precautions. J. Hydrol. 2003, 272, 175–190. [CrossRef]

http://dx.doi.org/10.1016/j.soilbio.2014.09.025
http://dx.doi.org/10.1890/11-0411.1
http://www.ncbi.nlm.nih.gov/pubmed/22827136
http://dx.doi.org/10.1016/j.foreco.2009.12.009
http://dx.doi.org/10.1007/s10533-014-9978-x
http://dx.doi.org/10.1016/j.foreco.2007.09.004
http://dx.doi.org/10.1016/S0378-1127(00)00282-6
http://dx.doi.org/10.1016/j.agee.2013.12.028
http://dx.doi.org/10.1016/S0269-7491(01)00252-4
http://dx.doi.org/10.1016/j.foreco.2008.06.044
http://dx.doi.org/10.1007/s11104-006-9077-4
http://dx.doi.org/10.1051/forest:2006087
http://dx.doi.org/10.1016/j.foreco.2013.06.030
http://dx.doi.org/10.1007/s00468-003-0289-4
http://dx.doi.org/10.1016/0378-1127(93)90038-O
http://dx.doi.org/10.1038/nclimate1687
http://dx.doi.org/10.1371/journal.pone.0158823
http://www.ncbi.nlm.nih.gov/pubmed/27410969
http://dx.doi.org/10.1093/treephys/12.3.281
http://www.ncbi.nlm.nih.gov/pubmed/14969918
http://dx.doi.org/10.1016/S0378-1127(02)00324-9
http://dx.doi.org/10.1016/j.foreco.2009.11.030
http://dx.doi.org/10.1002/jpln.200620644
http://dx.doi.org/10.1029/2003GB002195
http://dx.doi.org/10.1016/S0022-1694(02)00263-9


Forests 2017, 8, 167 14 of 15

38. Geßler, A.; Jung, K.; Gasche, R.; Papen, H.; Heidenfelder, A.; Börner, E.; Metzler, B.; Augustin, S.;
Hildebrand, E.; Rennenberg, H. Climate and forest management influence nitrogen balance of European
beech forests: Microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots.
Eur. J. For. Res. 2005, 124, 95–111. [CrossRef]

39. Bimüller, C.; Dannenmann, M.; Tejedor, J.; von Lützow, M.; Buegger, F.; Meier, R.; Haug, S.; Schroll, R.;
Kögel-Knabner, I. Prolonged summer droughts retard soil N processing and stabilization in organo-mineral
fractions. Soil Biol. Biochem. 2014, 68, 241–251. [CrossRef]

40. Gessler, A.; Schrempp, S.; Matzarakis, A.; Mayer, H.; Rennenberg, H.; Adams, M.A. Radiation modifies the
effect of water availability on the carbon isotope composition of beech (Fagus sylvatica). New Phytol. 2001,
150, 653–664. [CrossRef]

41. Fotelli, M.N.; Nahm, M.; Heidenfelder, A.; Papen, H.; Rennenberg, H.; Geßler, A. Soluble nonprotein
nitrogen compounds indicate changes in the nitrogen status of beech seedlings due to climate and thinning.
New Phytol. 2002, 154, 85–97. [CrossRef]

42. Keitel, C.; Adams, M.A.; Holst, T.; Matzarakis, A.; Mayer, H.; Rennenberg, H.; Gessler, A. Carbon and oxygen
isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal
conductance of European beech (Fagus sylvatica L.). Plant Cell Environ. 2003, 26, 1157–1168. [CrossRef]

43. Nahm, M.; Holst, T.; Matzarakis, A.; Mayer, H.; Rennenberg, H.; Geßler, A. Soluble N compound profiles
and concentrations in European beech (Fagus sylvatica L.) are influenced by local climate and thinning. Eur. J.
For. Res. 2005, 125, 1–14. [CrossRef]

44. Holst, T.; Mayer, H.; Schindler, D. Microclimate within beech stands–Part II: Thermal conditions. Eur. J.
For. Res. 2004, 123, 13–28. [CrossRef]

45. Fotelli, M.N.; Rennenberg, H.; Holst, T.; Mayer, H.; Gessler, A. Carbon isotope composition of various tissues
of beech (Fagus sylvatica) regeneration is indicative of recent environmental conditions within the forest
understorey. New Phytol. 2003, 159, 229–244. [CrossRef]

46. Saiz, G.; Bird, M.I.; Domingues, T.; Schrodt, F.; Schwarz, M.; Feldpausch, T.R.; Veenendaal, E.; Djagbletey, G.;
Hien, F.; Compaore, H.; et al. Variation in soil carbon stocks and their determinants across a precipitation
gradient in West Africa. Glob. Chang. Biol. 2012, 18, 1670–1683. [CrossRef]

47. Saiz, G.; Albrecht, A. Methods for smallholder quantification of soil carbon stocks and stock changes.
In Measurement Methods Standard Assessment of Agricultural Mitigation Potential And Livelihoods;
Rosenstock, T.S., Rufino, M.C., Butterbach-Bahl, K., Wollenberg, E., Richards, M., Eds.; Springer: New York,
NY, USA, 2016.

48. Walthert, L.; Graf, U.; Kammer, A.; Luster, J.; Pezzotta, D.; Zimmermann, S.; Hagedorn, F. Determination of
organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with
HCl. J. Plant Nutr. Soil Sci. 2010, 173, 207–216. [CrossRef]

49. Harris, D.; Horwáth, W.R.; van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic
carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 2001, 65, 1853. [CrossRef]

50. Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D.E.; Tao, H.; Sippel, S.; Tao, Y.; et al.
Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale. Biogeosciences
2015, 12, 4831–4840. [CrossRef]

51. Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and
vegetation. Ecol. Appl. 2000, 10, 423–436. [CrossRef]

52. Meier, I.C.; Leuschner, C. Variation of soil and biomass carbon pools in beech forests across a precipitation
gradient. Glob. Chang. Biol. 2010, 16, 1035–1045. [CrossRef]

53. Guckland, A.; Jacob, M.; Flessa, H.; Thomas, F.M.; Leuschner, C. Acidity, nutrient stocks, and
organic-matter content in soils of a temperate deciduous forest with different abundance of European
beech (Fagus sylvatica L.). J. Plant Nutr. Soil Sci. 2009, 172, 500–511. [CrossRef]

54. De Clercq, T.; Heiling, M.; Dercon, G.; Resch, C.; Aigner, M.; Mayer, L.; Mao, Y.; Elsen, A.; Steier, P.; Leifeld, J.;
et al. Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes.
Soil Biol. Biochem. 2015, 88, 29–38. [CrossRef]

55. Diochon, A.; Kellman, L. Natural abundance measurements of 13C indicate increased deep soil carbon
mineralization after forest disturbance. Geophys. Res. Lett. 2008, 35, 1–5. [CrossRef]

56. Van der Merwe, N.J.; Medina, E. Photosynthesis and 13C:12C ratios in Amazonian rain forests.
Geochim. Cosmochim. Acta 1989, 53, 1091–1094. [CrossRef]

http://dx.doi.org/10.1007/s10342-005-0055-9
http://dx.doi.org/10.1016/j.soilbio.2013.10.003
http://dx.doi.org/10.1046/j.1469-8137.2001.00136.x
http://dx.doi.org/10.1046/j.1469-8137.2002.00365.x
http://dx.doi.org/10.1046/j.1365-3040.2003.01040.x
http://dx.doi.org/10.1007/s10342-005-0103-5
http://dx.doi.org/10.1007/s10342-004-0019-5
http://dx.doi.org/10.1046/j.1469-8137.2003.00782.x
http://dx.doi.org/10.1111/j.1365-2486.2012.02657.x
http://dx.doi.org/10.1002/jpln.200900158
http://dx.doi.org/10.2136/sssaj2001.1853
http://dx.doi.org/10.5194/bg-12-4831-2015
http://dx.doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
http://dx.doi.org/10.1111/j.1365-2486.2009.02074.x
http://dx.doi.org/10.1002/jpln.200800072
http://dx.doi.org/10.1016/j.soilbio.2015.05.011
http://dx.doi.org/10.1029/2008GL034795
http://dx.doi.org/10.1016/0016-7037(89)90213-5


Forests 2017, 8, 167 15 of 15

57. Medina, E.; Minchin, P. Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia 1980, 45,
377–378. [CrossRef] [PubMed]

58. Ometto, J.P.H.B.; Ehleringer, J.R.; Domingues, T.F.; Berry, J.A.; Ishida, F.Y.; Mazzi, E.; Higuchi, N.;
Flanagan, L.B.; Nardoto, G.B.; Martinelli, L.A. The stable carbon and nitrogen isotopic composition of
vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 2006, 79, 251–274. [CrossRef]

59. Rennenberg, H.; Dannenmann, M. Nitrogen nutrition of trees in temperate forests-the significance of nitrogen
availability in the pedosphere and atmosphere. Forests 2015, 6, 2820–2835. [CrossRef]

60. Cremer, M.; Kern, N.V.; Prietzel, J. Soil organic carbon and nitrogen stocks under pure and mixed stands of
European beech, Douglas fir and Norway spruce. For. Ecol. Manag. 2016, 367, 30–40. [CrossRef]

61. Bauhus, J.; Vor, T.; Bartsch, N.; Cowling, A. The effects of gaps and liming on forest floor decomposition and
soil C and N dynamics in a Fagus sylvatica forest. Can. J. For. Res. 2004, 34, 509–518. [CrossRef]

62. Stevenson, B.A.; Parfitt, R.L.; Schipper, L.A.; Baisden, W.T.; Mudge, P. Relationship between soil δ15N, C/N
and N losses across land uses in New Zealand. Agric. Ecosyst. Environ. 2010, 139, 736–741. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00540209
http://www.ncbi.nlm.nih.gov/pubmed/28309567
http://dx.doi.org/10.1007/s10533-006-9008-8
http://dx.doi.org/10.3390/f6082820
http://dx.doi.org/10.1016/j.foreco.2016.02.020
http://dx.doi.org/10.1139/x03-218
http://dx.doi.org/10.1016/j.agee.2010.10.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Site Characteristics and Experimental Design 
	Experimental Design and Soil Sampling 
	Soil Analyses 
	Statistics 

	Results 
	Discussion 
	Forest Management Affects Soil C Turnover and Soil C Stocks in the Short, but Not in the Long Run 
	Forest Management Affects Soil N Turnover and Soil N Stocks in the Short, but Not in the Long Run 
	Synthesis of Short-Term and Long-Term Thinning Effects: Microclimate, Understorey Vegetation, and Carbon–Nitrogen Interaction 

	Conclusions 

