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Abstract

We consider the calculation of the master integrals of the three-loop massive banana graph. In the case 
of equal internal masses, the graph is reduced to three master integrals which satisfy an irreducible system 
of three coupled linear differential equations. The solution of the system requires finding a 3 × 3 matrix of 
homogeneous solutions. We show how the maximal cut can be used to determine all entries of this matrix 
in terms of products of elliptic integrals of first and second kind of suitable arguments. All independent 
solutions are found by performing the integration which defines the maximal cut on different contours. 
Once the homogeneous solution is known, the inhomogeneous solution can be obtained by use of Euler’s 
variation of constants.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The study of the mathematical structures that characterize multiloop Feynman integrals has 
played a crucial role for the most recent developments in the computation of higher order radia-
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tive corrections for many processes of direct phenomenological interest at the LHC. The discov-
ery of integration by parts identities [1,2] together with the differential equations method [3–5], 
in particular as extensively applied to compute entire families of massless four-point Feynman 
integrals [6], allowed to successfully deal with large classes of problems that had remained out of 
reach before. One step further has been made with the introduction of the concept of a canonical 
basis [7]. The latter allows to render the computation of multiloop Feynman integrals, which can 
be expressed in terms of multiple polylogarithms [8–10], almost entirely algorithmic. In the last 
years, different methods for the construction of a canonical basis have been proposed, accord-
ing to the specific properties of the differential equations, such as a linear dependence on the 
spacetime dimensions [11] or the dependence on a single kinematic variable [12–14] and con-
crete steps towards algorithms also valid for multi-scale problems have been made in [15–17]. 
The striking simplicity highlighted by the use of canonical bases can be traced back to the rich 
algebraic structures which can be associated to multiple polylogarithms [18–21]. More recently, 
a big effort has been devoted in studying how to possibly extend some of these structures to 
include more complicated Feynman integrals, which cannot be evaluated in terms of multiple 
polylogarithms only. These new mathematical functions start to appear at the two-loop order, in 
particular in the presence of internal massive propagators [22–37].

A way to understand the jump in complexity entailed by these integrals is to look at the details 
of their computation with the differential equations method. From this point of view, Feynman 
integrals which evaluate to multiple polylogarithms are found to satisfy first order linear differ-
ential equations in the external invariants, at least in the limit of even space-time dimensions, 
d = 2 n, n ∈ N.1 What this means is that, it is always possible to write an integral representation 
(by simple quadrature of the equations) for the Laurent coefficients of their series expansion in 
ε = (4 − d)/2. The situation changes completely when we consider graphs that cannot be ex-
pressed in terms of multiple polylogarithms. In this case, the corresponding master integrals are 
found to satisfy irreducible higher-order differential equations even in the limit d = 4, whose 
most famous example is undoubtedly the second-order differential equation satisfied by the two-
loop massive sunrise graph [25].

As it is well known, an integral representation for the solution of a higher-order differential 
equation can be found only if the full set of its homogeneous solutions is known. Unfortunately, 
given a generic higher-order differential equation with rational coefficients, except for a limited 
number of special cases, there is no way to determine the full set of its homogeneous solutions. 
This constituted for a long time a serious problem in the computation of any Feynman integral 
of this type. More recently a new picture started to emerge. We showed in [40] that an integral 
representation for (one of) the homogeneous solutions of the differential equation satisfied by 
any Feynman integral can be obtained by computing its maximal cut. A similar idea was pro-
posed in [41] in the context of the DRA method. The statement is independent on the number of 
space-time dimensions d we are interested in, in the sense that the maximal cut computed in any, 
continuous, number of dimensions d provides an homogeneous solution for its d-dimensional 
differential equation. Specializing to the physically interesting case of d = 4, one obtains at 
once the homogeneous solution of the corresponding 4-dimensional differential equation. It was 
then shown in [42], that the computation of the maximal cut can be simplified by the use of 
the so-called Baikov representation [43]. Moreover, the importance of the unitarity cuts for un-

1 We recall here that the Laurent coefficients of a Feynman integral expanded around d = 4 space-time dimensions 
can be recovered from the corresponding expansion around any even number of dimensions [38]. A way to determine 
whether the differential equations can be decoupled in d = 2n space-time dimensions is described in [39].
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derstanding more general mathematical structures of Feynman integrals has been pointed out 
recently in [44–46], while in [47] it was shown how to use cuts to derive efficiently the differen-
tial equations.

In spite of the increasing effort, until today only a limited number of examples have been 
considered in the literature. Interestingly, all examples considered could always be reduced to 
differential equations of at most degree two, whose homogeneous part could always be solved 
in terms of complete elliptic integrals of first and second kind. Quite in general, for any second-
order differential equation, once one homogeneous solution is known, the second can be obtained 
by a simple quadrature. The same is not true for higher-order equations. Therefore, a very impor-
tant issue, that was not fully investigated in [40], is whether it is possible to obtain all independent 
homogeneous solutions from the computation of the maximal cut only. This becomes crucial if 
one is interested in Feynman integrals which fulfill third- or higher-order differential equations.

In this paper we address this problem and show that the answer to this question is indeed 
affirmative and that all independent homogeneous solutions can be obtained by evaluating the 
maximal cut along different independent contours, which do not cross any branch cut of the in-
tegrand. We notice here that there is a clear correspondence between this simple idea and the 
methods described in [48] to count the number of independent master integrals.2 While this can 
be seen very easily already in the case of the two-loop massive sunrise graph, here we move 
one step forward and consider the first example of a Feynman graph that fulfills an irreducible 
third-order differential equation: the three-loop massive banana graph. This calculation requires 
finding three independent homogeneous solutions, for which we show how to derive integral 
representations from the study of its maximal cut only. We show, moreover, that these integrals 
can be evaluated explicitly in terms of products of elliptic integrals of first and second kind of 
complicated arguments. This result, which is very non-trivial, was expected. In fact, the third-
order differential equation satisfied by this graph has been studied long ago by G.S. Joyce in the 
context of cubic lattice Green functions [49], where it was shown that this equation is a so-called 
symmetric square and its solution can be therefore expressed as products of solutions of a lower 
second-order differential equation. In addition, the occurrence of products of elliptic integrals 
in the expansion around d = 4 of the banana integral was already observed in [50], where the 
graph with external momentum p2 = m2 = 1 was evaluated. Finally, we remind the reader that 
an alternative calculation of this graph has been presented in [51], where it was shown that the 
three-loop banana graph in d = 2 can be written as an elliptic three-logarithm.

The rest of the paper is organized as follows. In Section 2 we reconsider in detail the well 
known case of the two-loop massive sunrise graph, showing how the two independent homoge-
neous solutions of its second-order differential equation can be found by integrating the maximal 
cut over the only two independent contours that one can build without crossing any branch cut 
of the integrand. We switch then to the more interesting case of the three-loop massive banana 
graph in Section 3, where we derive the system of three-coupled differential equations that it 
satisfies. In Section 4 we focus on the system of differential equations around d = 2 space-time 
dimensions, which is known to be equivalent to the corresponding expansion close to d = 4 [38]. 
We compute the maximal cut of the three-loop banana graph in Section 5 and show that by evalu-
ating it along different contours we obtain at once all independent solutions of the homogeneous 
differential equations. In Section 6 we show that the same third-order differential equation is 

2 Indeed, if a Feynman integral is reduced to N master integrals in d dimensions, the latter will satisfy a system 
of N coupled differential equations. A complete solution of the latter would therefore require to find N independent 
homogeneous solutions.
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a symmetric square, we describe its solution as derived in [49] and discuss its equivalence to 
ours. Finally in Section 7 we put everything together and compute the inhomogeneous solution, 
continuing it analytically to the whole phase space. We also provide some appendices where we 
describe some of the technical calculations required in the main text.

Note Added
Right before the completion of this work an interesting paper appeared on the arXiv [52], contain-
ing similar findings to the one presented here. In [52] it is shown, with many explicit examples, 
how to build the full set of independent homogeneous solutions of the differential equations by 
integrating the maximal cut on different regions, for generic values of the space-time dimen-
sions d . This is done efficiently using Baikov representation. While our conclusions are similar, 
in our paper we do not dwell on general methods for an efficient computation of the cut in any 
numbers of dimensions, as we are primarily interested in the calculation of the Laurent coeffi-
cients of the master integrals close to d = 4 and the complexity of this calculation is determined 
entirely by the value of the homogeneous solutions at d = 2n, n ∈ N. Instead, we apply for the 
first time these ideas to solve a system of three coupled differential equations, which require a 
generalization of the methods used for the two-loop massive sunrise graph and other similar ex-
amples. From this point of view, we believe our results are complementary to the ones presented 
in [52].

2. Revisiting the two-loop massive sunrise graph

Before looking in detail at the case of the three-loop massive banana graph, it is useful to re-
consider the better understood case of the two-loop massive sunrise. This will help us to illustrate 
some of the techniques used later for the three-loop banana graph in a simpler environment.

As it is well known, the sunrise graph satisfies a coupled system of two linear differential 
equations [25]; its homogeneous solution is therefore a 2 × 2 matrix, whose entries are linear 
combinations of square-roots and complete elliptic integrals of first and second kind, see for 
example [34]. The entries of this matrix were determined for the first time in [25] by studying 
the imaginary part of the graph. Taking inspiration from this calculation, in [40] we showed that 
the computation of the maximal cut of any family of Feynman integrals naturally generalizes 
the approach of [25] and allows one to determine an integral representation for an homogeneous 
solution of its system of differential equations irrespective of its degree. As argued in [40], if 
an homogeneous solution can be determined in terms of complete elliptic integrals, it is then 
straightforward to find the second solution using the properties of the elliptic integrals. While 
this is very useful, it cannot be straightforwardly extended to more general cases which involve 
higher-order differential equations and are not expected to be solved in terms of elliptic integrals 
only.

The goal of this section is to show how the study of the maximal cut of the sunrise graph pro-
vides at once both independent solutions. While the validity of this claim is somehow obvious, its 
consequences are non-trivial and far-reaching. This remains valid, in fact, for any Feynman inte-
gral and provides therefore an effective method for constructing integral representations for all 
independent homogeneous solutions of the differential equations satisfied by the graph, regard-
less of their complexity. In particular, we will show explicitly how this is done by integrating the 
maximal cut of the sunrise graph along the only two linearly independent integration contours 
which do not cross any singularity of the integrand.
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Let us consider the equal-mass sunrise graph

= S(d;u) =
∫

Ddk1 D
dk2

[k2
1 − m2][k2

2 − m2][(k1 − k2 − p)2 − m2] , (2.1)

where u = p2/m2. The graph in d = 2 space-time dimensions satisfies the following second-
order differential equation[

d2

du2
+

(
1

u
+ 1

u − 1
+ 1

u − 9

)
d

du
+

(
− 1

3u
+ 1

4(u − 1)
+ 1

12(u − 9)

)]
S(u) = 0 ,

(2.2)

where we neglected the inhomogeneous terms which are irrelevant here and we set S(2; u) =
S(u). As it is well known, the maximal cut of the sunrise graph in d = 2 can be written as

Cut (S(u)) =
∮
C

db√
±b (b − 4)

(
b − (

√
u − 1)2

) (
b − (

√
u + 1)2

) =
∮
C

db√±R4(b,u)
,

(2.3)

where we use the notation Cut(S(u)) for the maximal cut of S(u) and we have not fully specified 
neither the integration contour C nor the sign of the argument of the root. We claim that the inte-
gration along any contour C which does not cross any branching point of the integrand produces 
a solution of (2.2). In particular, we will see that there are only two possible independent con-
tours of such type and that by integrating along them we get at once both independent solutions 
of (2.2).

First of all, the square-root has four branching points. By choosing u > 9 we have

0 < 4 < (
√

u − 1)2 < (
√

u + 1)2 . (2.4)

The ordering of the branching points depends on the value of u, but the argument used below 
does not depend on it. Given the four branching points it should be obvious that, depending on 
the sign that we pick in (2.3), there are four possible integration contours which we can draw 
without crossing the branch cuts. If we choose the plus sign, the integrand develops a branch cut 
for 0 < b < 4 and (

√
u − 1)2 < b < (

√
u + 1)2. If we pick the minus sign the branches are for 

−∞ < b < 0, 4 < b < (
√

u − 1)2 and (
√

u + 1)2 < b < +∞. In the first case, i.e. picking a plus 
sign, we can clearly draw the two contours C1 and C2 depicted in Fig. 1a. The third contour, C∞, 
is instead equivalent to the sum of the two, and we will need it later on. In the second case, we 
can draw instead only one single contour, see Fig. 1b, giving a total of three apparently different 
possibilities.

Nevertheless, it is easy to see [25] that two of the three contours are equivalent. Let us consider 
the following integral∮

C∞

db√
R4(b,u)

= 0 , (2.5)

where C∞ is the contour at infinity encircling the four roots (2.4) depicted in Fig. 1a. Clearly the 
integral is zero since the contour does not contain any poles and the integrand goes as 1/b2 when 
b → ∞. On the other hand, with the sign of the root in (2.5), the integrand has two cuts, one for 
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Fig. 1. Left panel: The contours C1, C3 and C∞ . The branches of the integrand for the positive sign in the root in Eq. (2.3)
are drawn in red. Right panel: The contour C2. The branches of the integrand for the negative sign in the root in Eq. (2.3)
are drawn in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

0 < b < 4 and the other for (
√

u − 1)2 < b < (
√

u + 1)2. We can then imagine to shrink C∞ to 
encircle the two branch cuts and we get from (2.5)∮

C∞

db√
R4(b,u)

=
∮
C1

db√
R4(b,u)

+
∮
C3

db√
R4(b,u)

= 0 , (2.6)

which proves that the two integrals are not independent. In this way we are left with two inde-
pendent contour integrals which provide precisely the two independent solutions of (2.2), say C1
and C2. Now, by shrinking C1, C2 and C3 on the corresponding branch cuts one finds an equivalent 
representation as one-dimensional real integrals∮

C1

db√
R4(b,u)

= 2 i

4∫
0

db√−R4(b,u)
,

∮
C2

db√−R4(b,u)
= 2 i

(
√

u−1)2∫
4

db√
R4(b,u)

∮
C3

db√
R4(b,u)

= −2 i

(
√

u+1)2∫
(
√

u−1)2

db√−R4(b,u)
, (2.7)

where the sign of the roots on the right hand side of the formulas is chosen to deal with real 
integrals. Alternatively, the contour C2 can also be sent to infinity providing a second integral 
representation for the integral∮

C2

db√−R4(b,u)
= 2 i

⎛⎜⎝ 0∫
−∞

+
+∞∫

(
√

u+1)2

⎞⎟⎠ db√
R4(b,u)

. (2.8)

We have therefore determined two independent solutions as the integrals over the two indepen-
dent contours, say C1 and C2, which in turn we can written as one-dimensional real integrals as 
follows

J (u) =
4∫

0

db√−R4(b,u)
=

(
√

u+1)2∫
√ 2

db√−R4(b,u)
,

( u−1)
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I (u) =
(
√

u−1)2∫
4

db√
R4(b,u)

=
⎛⎜⎝ 0∫

−∞
+

+∞∫
(
√

u+1)2

⎞⎟⎠ db√
R4(b,u)

. (2.9)

It was shown in [25,34] that these functions are indeed the two independent solutions of (2.2).
Clearly, the analysis we performed is completely general and does not depend on the precise 

position of the branching points (2.4). In fact, given a generic integral of the form

ICa
=

∮
Ca

da√
(a − a1) (a − a2) (a − a3) (a − a4)

=
∮
Ca

da√
R(a, a1, a2, a3, a4)

, (2.10)

where a1, ..., a4 are four distinct roots such that

a1 < a2 < a3 < a4

the same considerations apply and one finds that there are only two independent contours which 
are equivalent to the following one dimensional real integrals

I (a1, a2) =
a2∫

a1

da√−R(a, a1, a2, a3, a4)
=

a4∫
a3

da√−R(a, a1, a2, a3, a4)
,

I (a2, a3) =
a3∫

a2

da√
R(a, a1, a2, a3, a4)

=
⎛⎝ a1∫

−∞
+

+∞∫
a4

⎞⎠ da√
R(a, a1, a2, a3, a4)

. (2.11)

As for the explicit case of the sunrise with equal masses, we chose the sign in the root in order 
to deal with real integrals everywhere.

As a last remark, the integrals in Eqs. (2.11) are nothing but complete elliptic integrals of the 
first kind. To see this, we perform the two standard changes of variables for the two integrals 
respectively

I (a1, a2) −→ t2 = (a4 − a2)(a − a1)

(a2 − a1)(a4 − a)
,

I (a2, a3) −→ t2 = (a1 − a3)(a − a2)

(a3 − a2)(a1 − a)
, (2.12)

and obtain

I (a1, a2) = 2√
(a3 − a1)(a4 − a2)

K (w1) , (2.13)

I (a2, a3) = 2√
(a3 − a1)(a4 − a2)

K (1 − w1) , (2.14)

where

K(w) =
1∫

0

dz√
(1 − z2)(1 − w z2)

with �(w) < 1 , (2.15)

is the elliptic integral of the first kind and

w1 = (a2 − a1)(a4 − a3)

(a3 − a1)(a4 − a2)
. (2.16)
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Indeed, a standard result of the theory of the complete elliptic integrals shows that K(w) and 
K(1 − w) satisfy the same second-order differential equation, of which they constitute the two 
independent solutions.

The analysis carried out in this section might seem somewhat redundant, as the theory of the 
elliptic integrals has been very well understood for a long time. Nevertheless, when considering 
the three-loop banana graph, we will see that many of the ideas and of the results derived here 
can be directly borrowed or trivially extended to more complicated cases. We believe that this 
will render our analysis in this much less trivial case much more transparent.

3. The three-loop massive banana graph

We consider the three-loop two-point integral family defined by

= Ia1,a2,a3,a4,a5,a6,a7,a8,a9

∣∣∣
a5,··· ,a9<0

=
∫

Ddk1 D
dk2D

dk3 (k2
3)−a5(k1 · p)−a6(k2 · p)−a7(k3 · p)−a8(k1 · k2)

−a9

[k2
1 − m2]a1 [k2

2 − m2]a2 [(k1 − k3)2 − m2]a3 [(k2 − k3 − p)2 − m2]a4
, (3.1)

with p2 = s �= 0. Our integration measure is defined as∫
Ddk = (m2)

4−d
2

iπd/2�
(

4−d
2

) ∫
ddk

(2π)d
(3.2)

such that the one-loop tadpole integral reads∫
Ddk

k2 − m2
= 2m2

d − 2
. (3.3)

The family of integrals in (3.1) with a5, ..., a9 < 0 is often referred to as three-loop banana 
graph or three-loop sunrise graph. A first step towards the computation of these integrals is to use 
integration by parts identities to reduce them to a basis of master integrals. In this case, this step 
can be very easily achieved with any of the publicly available reduction codes like, for example, 
Reduze 2 [53]. There is only one sub-topology, the three-loop massive tadpole, which is reduced 
to one single master integral. The top-topology, instead, in the limit of equal internal masses can 
be reduced to three independent master integrals. The choice of the master integrals is of course 
arbitrary. Since massive two-point functions are IR finite, they are best studied in the vicinity of 
d = 2 instead of d = 4, since for d = 2 the scalar amplitude is also UV finite. We define therefore 
ε = (2 − d)/2 and we pick the following basis

I1(ε; s) = (1 + 2ε)(1 + 3ε)(m2)−2I1,1,1,1,0,0,0,0,0 ,

I2(ε; s) = (1 + 2ε)(m2)−1I2,1,1,1,0,0,0,0,0 ,

I3(ε; s) = I2,2,1,1,0,0,0,0,0 , (3.4)

where the normalization factors have been chosen for later convenience. For the three-loop tad-
pole we chose instead the master integral I2,2,2,0,0,0,0,0,0, which in our normalization becomes 
simply

I0(ε;m2) = I2,2,2,0,0,0,0,0,0 = 1 . (3.5)
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The dependence of the master integrals on the momentum transfer p2 = s can be conveniently 
parametrized in terms of the dimensionless variable

x = 4m2

s
. (3.6)

The system of differential equations in x satisfied by I1, I2 and I3 is given by

d

dx

⎛⎝I1(ε;x)

I2(ε;x)

I3(ε;x)

⎞⎠ = B(x)

⎛⎝I1(ε;x)

I2(ε;x)

I3(ε;x)

⎞⎠ + ε D(x)

⎛⎝I1(ε;x)

I2(ε;x)

I3(ε;x)

⎞⎠ +
⎛⎝ 0

0
− 1

2(4x−1)

⎞⎠ , (3.7)

where B(x) and D(x) are 3 × 3 matrices that do not depend on ε,

B(x) =
⎛⎜⎝

1
x

4
x

0
− 1

4(x−1)
1
x

− 2
x−1

3
x

− 3
x−1

1
8(x−1)

− 1
8(4x−1)

1
x−1 − 3

2(4x−1)
1
x

− 6
4x−1 + 3

2(x−1)

⎞⎟⎠ , (3.8)

D(x) =
⎛⎜⎝ 3

x
12
x

0
− 1

x−1
2
x

− 6
x−1

6
x

− 6
x−1

1
2(x−1)

− 1
2(4x−1)

3
x−1 − 9

2(4x−1)
1
x

− 12
4x−1 + 3

x−1

⎞⎟⎠ , (3.9)

and the inhomogeneous term is proportional to the massive tadpole (3.5). We stress once more 
that we study the solution of the differential equations in the vicinity of d = 2 and in our conven-
tions ε = (2 − d)/2.

As it is easy to see, the structure of the system of differential equations is strikingly simple, 
as it is characterized by only four regular singular points x = 0, x = 1/4, x = 1 and x = ±∞, 
which correspond, respectively, to s = ±∞, s = 16 m2, s = 4 m2 and s = 0. The structure of 
the singularities resembles closely that of the simpler two-loop massive sunrise graph, see for 
example [25]. Given the simplicity of the equations, it is particularly interesting to investigate the 
class of functions that are needed for their solution and in which sense these functions generalize 
the ones required for the integration of the two-loop sunrise graph. In the two-loop case, the 
homogeneous system of differential equations admits as solutions complete elliptic integrals of 
the first and second kind. Indeed, as we will see in the next section, the three-loop case can be 
solved in terms of products of complete elliptic integrals of first and second kind.

4. The homogeneous system

Before embarking in the solution of the differential equations, let us first recall which ingredi-
ents are needed to solve a 3 × 3 coupled system, as the one in Eq. (3.7). Since we are interested 
in calculating the solution as a Laurent expansion in ε, the first step consists in solving the ho-
mogeneous system for ε = 0

d

dx

⎛⎝I1H (x)

I2H (x)

I3H (x)

⎞⎠ = B(x)

⎛⎝I1H (x)

I2H (x)

I3H (x)

⎞⎠ , (4.1)

where the suffix H indicates that we are limiting ourselves to its homogeneous piece. The solu-
tion of Eq. (4.1) requires finding a 3 × 3 matrix, say G(x), defined such that

G(x) =
⎛⎝ H1(x) J1(x) I1(x)

H2(x) J2(x) I2(x)

H (x) J (x) I (x)

⎞⎠ → d

dx
G(x) = B(x)G(x) . (4.2)
3 3 3
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The inverse of the matrix G(x) is

G−1(x) = 1

W(x)

⎛⎝ I3J2 − I2J3 I1J3 − I3J1 I2J1 − I1J2
H3I2 − H2I3 H1I3 − H3I1 H2I1 − H1I2
H2J3 − H3J2 H3J1 − H1J3 H1J2 − H2J1

⎞⎠ , (4.3)

where W(x) = det (G(x)) is the Wronksian of the system (4.1). As it is well known W(x) satis-
fies the first order differential equation

d

dx
W(x) = Tr (B(x))W(x) , (4.4)

which is often referred to as Abel’s identity. From the matrix B(x) defined in Eq. (3.8) we get at 
once

d

dx
W(x) = 8x2 − 17x + 6

2x(x − 1)(4x − 1)
W(x) , (4.5)

which admits the very simple solution

W(x) = c1x
3√

(1 − 4x)3(1 − x)
, (4.6)

where we assumed for simplicity to work in the Euclidean region, x < 0. The value of the inte-
gration constant c1 can be determined only once the exact form of the solutions is known.

The simplicity of the Wronskian (4.6) is a general feature and can be easily understood, irre-
spective of the complexity of the matrix G(x), from the fact that it always satisfies a first order 
differential equation (4.4). This has interesting consequences. Quite in general, let us consider 
the homogeneous system Eq. (4.1) and write it in components as

d

dx
fi(s) = Bij (x)fj (x) . (4.7)

Note that we have written the system for a generic set of functions fi(x), since all considerations 
made here can be applied to any other n × n system of differential equations and are not limited 
to the particular set of master integrals Ii(x) chosen above. Let us limit ourselves to the diagonal 
part of the system, which reads

d

dx
fi(x) = Bii(x)fi(x) . (4.8)

It is straightforward to solve these equations by quadrature as

fi(x) = exp

⎛⎝ x∫
x0

dt Bii(t)

⎞⎠ , (4.9)

where x0 is an irrelevant boundary condition. With this we can define a new basis of master 
integrals

fi(x) = exp

⎛⎝ x∫
x0

dt Bii(t)

⎞⎠ f̃i (x) (4.10)

which fulfill a new system of differential equations
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d

dx
f̃i(x) = B̃ij (x) f̃j (x) , (4.11)

whose matrix B̃(x) is now traceless Tr
(
B̃(x)

) = 0 by construction. Due to Abel’s identity (4.4), 
the Wronskian W(x) of the new system becomes now particularly simple

d

dx
W(x) = 0 → W(x) = const . (4.12)

This implies in turn that, irrespective of the complexity of the functions appearing in the solution 
matrix G(x) (4.2), there always exists (at least) one trivial combination of them such that

det (G(x)) = W(x) = const . (4.13)

In the well known case of elliptic integrals, which satisfy second-order differential equations, 
this relation reduces to the so-called Legendre relation.

The determination of the entries of the matrix (4.2) is in general very non-trivial. We will 
show how to do this using the information coming from the maximal cut in the next section, as it 
was first suggested in [40]. Assuming that the matrix G(x) is known, one can define a new basis 
of master integrals Mi⎛⎝I1(x)

I2(x)

I3(x)

⎞⎠ = G(x)

⎛⎝M1(x)

M2(x)

M3(x)

⎞⎠ , (4.14)

which by construction fulfill the system

d

dx

⎛⎝M1(x)

M2(x)

M3(x)

⎞⎠ = ε G−1(x)D(x)G(x)

⎛⎝M1(x)

M2(x)

M3(x)

⎞⎠ + G−1(x)

⎛⎝ 0
0

− 1
2(4x−1)

⎞⎠ . (4.15)

Once the system is in form (4.15), its solution order by order in ε reduces, at least in princi-
ple, to a quadrature. In particular, the matrix G−1(x)D(x)G(x) (combined with the integral over 
the inhomogeneous term in (4.15)) contains all information concerning the class of functions 
needed to iterate the solution at every order in ε. The problem becomes then that of classifying 
these functions and of understanding their analytic and algebraic properties. Indeed, for a general 
problem it will not be possible to solve these integrals in terms of known special functions. In 
our case, nevertheless, we managed to write the matrix G(x) for the three-loop banana graph 
in terms of relatively simple products of elliptic integrals and it would be interesting to investi-
gate whether a generalization of the elliptic polylogarithms introduced to represent the two-loop 
massive sunrise could be used also in this case, as the calculation in [51] seems to imply.

5. The maximal cut and the homogeneous solution

Our goal is now to solve the homogeneous system (4.1) and determine analytically the form 
of the matrix G(x). A 3 × 3 coupled system can always be rephrased as a third-order differential 
equation for any of the master integrals. It is natural to do this for the scalar amplitude I1(ε; s), 
whose third-order homogeneous differential equation in d = 2 space-time dimensions reads[

d3

dx3
+ 3(8x − 5)

2(x − 1)(4x − 1)

d2

dx2
+ 4x2 − 2x + 1

(x − 1)x2(4x − 1)

d

dx
+ 1

x3(4x − 1)

]
IH

1 (x) = 0 .

(5.1)
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The solution of this equation in terms of three linearly independent functions provides the 
first row of the matrix G(x), see Eq. (4.2), while the remaining two rows can by obtained by 
differentiation with respect to x

IH
2 (x) = 1

4

[
x

∂

∂x
− 1

]
I1H (x) , (5.2)

IH
3 (x) = 1

12

[
x2(1 − x)

∂2

∂x2
− (1 + x)x

∂

∂x
+ 1

]
I1H (x). (5.3)

Solving Eq. (5.1) is non-trivial. This differential equation has been studied long ago in the 
context of the calculation of cubic lattice Green functions [49], where it was solved in terms of 
products of two elliptic integrals. In order to re-derive this result we will use the information 
coming from the maximal cut. As it was shown in [40], given a set of master integrals, their 
maximal cut singles out by construction the homogeneous part of the differential equations. We 
use the notation Cut(Ij (x)) for the maximal cut of Ij (ε; s) evaluated in ε = 0 and obtain at once

d

dx

⎛⎝Cut(I1(x))

Cut(I2(x))

Cut(I3(x))

⎞⎠ = B(x)

⎛⎝Cut(I1(x))

Cut(I2(x))

Cut(I3(x))

⎞⎠ , (5.4)

or equivalently[
d3

dx3
+ 3(8x − 5)

2(x − 1)(4x − 1)

d2

dx2
+ 4x2 − 2x + 1

(x − 1)x2(4x − 1)

d

dx
+ 1

x3(4x − 1)

]
Cut(I1(x)) = 0 .

(5.5)

Since Eq. (5.5) admits three independent solutions, and all of them are required in order to 
construct the solution of the system, the really interesting question becomes how one can obtain 
all of them from the maximal cut of I1(x) only. As we showed in Section 2 for the simpler 
case of the two-loop sunrise graph, this can be done by integrating the maximal cut along the 
independent contours that do not cross any branch cuts of the integrand. Let us see how this 
works for the present case.

First of all, given the definition of the banana graph in Eq. (3.1), we note that the scalar 
amplitude in d = 2 dimensions is finite and can be written as an integral over two one-loop 
bubbles

I1(x) =
∫

D2k1D
2k2D

2k3

(k2
1 − m2)((k1 − k3)2 − m2)(k2

2 − m2)((k2 − (k3 + p))2 − m2)

=
∫

D2k3

∫
D2k1

(k2
1 − m2)((k1 − k3)2 − m2)

∫
D2k2

(k2
2 − m2)((k2 − (k3 + p))2 − m2)

(5.6)

In this way, the computation of the maximal cut for the three-loop banana graph can be greatly 
simplified. We start with the massive one-loop bubble in d = 2 dimensions

Bub(q2) =
∫

D2k

(k2 − m2)((k − q)2 − m2)
. (5.7)

Its maximal cut can be easily computed to be, up to an irrelevant overall normalization constant,

Cut(Bub(q2)) = 1√
q2(q2 − 4m2)

. (5.8)
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Using Eq. (5.8) the maximal cut for the banana graph can then be written as

Cut(I1(x)) =
∮
C

D2k3√
k2

3(k2
3 − 4m2)

√
(k3 + p)2

(
(k3 + p)2 − 4m2

) , (5.9)

where we will specify the different choices for the contour C later on. In d = 2 a way to simplify 
this integral is to parametrize the loop momentum and the external one in terms of two massless 
momenta pμ

1 and pμ
2 as follows

pμ = p
μ
1 + p

μ
2 , with p2

1 = p2
2 = 0 and k

μ
3 = a p

μ
1 + bp

μ
2 . (5.10)

With this parametrization we get∮
C

D2k3 = s

2

∮
C′

da db , with k2
3 = a b s and (k3 + p)2 = (a + 1)(b + 1) s

(5.11)

and where C′ represents now a still unspecified two-dimensional contour in the four-dimensional 
complex hyperplane spanned by the variables a, b. In this way the integral becomes, up to a 
multiplicative constant

Cut(I1(x)) = x

∮
C′

da db√
a b (a b − x)

√
(a + 1)(b + 1) ((a + 1)(b + 1) − x)

= x

∮
C′

da db√
R(a, b, x)

, (5.12)

where we used x = 4 m2/s and introduced the polynomial

R(a, b, x) = a b (a b − x)(a + 1)(b + 1) ((a + 1)(b + 1) − x) . (5.13)

Determining explicitly which integration contours provide the independent solutions is a 
mathematically interesting problem, related to the dimension of the so-called cohomology group 
associated to the variety described by the curve R(a, b, c) = 0 . Instead of embarking into com-
plicated mathematical considerations that go beyond the scope of this paper, we can try and see 
what we can say using simple mathematics. Let us consider integral (5.12). If we allow a and 
b to assume complex values, we are effectively integrating on a complex two-dimensional hy-
persurface embedded in the four-dimensional complex space spanned by a and b. There are two 
fundamental questions we should answer. The first is, indeed, which contours provide a solu-
tion of the differential equation (5.1). Once we have determined all possible contours, the second 
question is which ones are linearly independent and provide therefore independent solutions. The 
answer to the first question is quite general, as we claimed in Section 2. Any complex contour 
that does not cross any branch cuts will do the job. The second question, instead, has to do with 
recognizing which of the allowed contours are linearly independent from each other.

It is of course very difficult to picture a two-dimensional surface embedded in a four-
dimensional space. Instead, it is useful to focus on the real two-dimensional plane spanned by 
the real coordinates associated to (a, b). It is trivial to see that the square-root in Eq. (5.12)
has zeros for a = 0, b = 0, a = −1, b = −1, a = x/b and a = x/(b + 1) − 1. We draw these 
sets of points in Fig. 2 as continuous lines of different colors. Similarly to the simpler case of 
the two-loop sunrise studied in Section 2, the square root in Eq. (5.12) can develop a branch 
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Fig. 2. The lines represent the set of points where the argument of the square root in Eq. (5.12) changes sign.

cut every time that one crosses one of these lines. Now it is easy to convince oneself that a 
two-dimensional complex contour that does not cross any branch cuts of the integrand cannot 
cross in particular any of the lines in Fig. 2. We can then imagine to shrink these contours to 
different two-dimensional regions in the real plane bounded by the branches drawn in Fig. 2. 
Integrating the maximal cut (5.12) in any of these regions will provide us with a viable solution 
of (5.1).

Now that we know which contours are allowed, we should determine which ones of them 
are independent and provide us therefore with the independent solutions of (5.1). This analy-
sis is simplified by considering integral (5.12) as an iterated integral over two one-dimensional 
contours in da and db3

Cut(I1(x)) = x

∮
Cb

db

b(b + 1)

∮
Ca

da√
(a − a1) (a − a2) (a − a3) (a − a4)

, (5.14)

where we introduced the abbreviations

a1 = −1 , a2 = x

b + 1
− 1 , a3 = 0 , a4 = x

b
. (5.15)

From Eq. (5.14) we see that the integral in da is an integral over a square root of a quartic polyno-
mial, which defines an elliptic curve. We studied this integral in section 2. That analysis implies 
that for every fixed value of x and b (which in turn determine an ordering of the roots (5.15)) 

3 Notice that the starting integral is symmetric in a and b, so the analysis that follows can be equally well repeated 
inverting the role of the two variables.
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there are two independent contours Ca which correspond to the two periods of the elliptic curve, 
see Eqs (2.11). Without any loss of generality, we assume for the time being 1/2 < x < 1, i.e. 
4 m2 < s < 8 m2. This choice is required for the analysis below, but the result obtained is of 
course independent of it and can be analytically continued to any other value of s.

Given this choice, we start by dividing the (a, b)-plane into five different regions depending 
on the value of the variable b

I : b ∈ (−∞,−1) , II : b ∈ (−1,−x) , III : b ∈ (−x, x − 1) ,

IV : b ∈ (x − 1,0) , V : b ∈ (0,∞) . (5.16)

This is useful since in each region the branching points aj given in Eq. (5.15) are ordered dif-
ferently and it allows us to define real building blocks to construct our solutions. This is done as 
follows. First of all, for each of the regions (5.16), we can define two independent functions from 
the two corresponding contours Ca identified in (2.11), and we get a total of 10 possibilities

f I
1(x) = x

−1∫
−∞

db

−1∫
x/(b+1)−1

da√−R(a, b, x)
, f I

2(x) = x

−1∫
−∞

db

x/b∫
−1

da√
R(a, b, x)

,

(5.17)

f II
1 (x) = x

−x∫
−1

db

x/b∫
−1

da
da√−R(a, b, x)

, f II
2 (x) = x

−x∫
−1

db

0∫
x/b

da√
R(a, b, x)

, (5.18)

f III
1 (x) = x

x−1∫
−x

db

−1∫
x/b

da√−R(a, b, x)
, f III

2 (x) = x

x−1∫
−x

db

0∫
−1

da√
R(a, b, x)

, (5.19)

f IV
1 (x) = x

0∫
x−1

db

−1∫
x/b

da√−R(a, b, x)
, f IV

2 (x) = x

0∫
x−1

db

x/(b+1)−1∫
−1

da√
R(a, b, x)

,

(5.20)

f V
1 (x) = x

∞∫
0

db

x/(b+1)−1∫
−1

da√−R(a, b, x)
, f V

2 (x) = x

∞∫
0

db

0∫
x/(b+1)−1

da√
R(a, b, x)

,

(5.21)

where the sign in the square-root is chosen to deal always with real functions. It is very important 
to realize that these integral representations are not unique. Indeed, as we discussed at length in 
Section 2, there are different equivalent representations for the integrals in da, see (2.11). This 
will turn out to be crucial for the considerations below.

We should notice that many of these functions are related to each other by simple symmetry 
transformations. First of all, the integrand in Eq. (5.12) is symmetric under {a ↔ b} and {a →
−a−1, b → −b−1} (and of course under a combination of the two symmetries). It is immediate 
to see that under {a → −a − 1, b → −b − 1} region I and V and region II and IV are related to 
each other and we find

f I
1(x) = f V

1 (x) , f I
2(x) = f V

2 (x) , f II
1 (x) = f IV

1 (x) , f II
2 (x) = f IV

2 (x) . (5.22)
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The effect of the symmetry under {a ↔ b} is less immediate. Let us take for example f V
1 (x). Us-

ing R(a, b, x) = R(b, a, x), we rename a and b and exchange the order of integration obtaining

f V
1 (x) = x

∞∫
0

da

x/(a+1)−1∫
−1

db√−R(a, b, x)
= x

x−1∫
−1

db

x/(b+1)−1∫
0

da√−R(a, b, x)

= x

−x∫
−1

db

x/(b+1)−1∫
0

da√−R(a, b, x)
+ x

x−1∫
−x

db

x/(b+1)−1∫
0

da√−R(a, b, x)

= f III
1 (x) + f IV

1 (x) , (5.23)

where in the last step we used (5.22). With a similar calculation one can show that

f V
2 (x) = 1

2
f III

2 (x) + f IV
2 (x) , (5.24)

leaving in this way four independent functions, which we can choose to be

f V
1 (x) , f V

2 (x) , f IV
1 (x) , f IV

2 (x) . (5.25)

The four functions (5.25) are not all solutions of the third-order differential equation. We 
should remember, in fact, that a solution is obtained when we integrate Eq. (5.12) in a region of 
the (a, b)-plane bounded by the branch cuts. It is easy to see from Fig. 2 and from the definition of 
the functions (5.20), (5.21) that while f V

1 (x), f V
2 (x) indeed fulfill this requirement, f IV

1 (x) and 
f IV

2 (x) apparently do not. This could constitute a problem since, in order to solve a third-order 
differential equation we need three independent solutions, while this argument seems to suggest 
we can find only two. Indeed, there is a subtlety. To understand it, let us look more closely at 
Fig. 2. There, the integrals corresponding to these four functions are depicted as shaded areas 
of different colors. One should remember that, for any given region in b, different choices of 
integration boundaries in a produce equivalent results, as summarized in (2.11). In particular, 
focusing on regions IV and V, we see immediately that in both cases the integrals corresponding 
to the areas 1 and 3 are actually identical. In the language of the functions defined above, this 
means for example that

f IV
1 (x) = x

0∫
x−1

db

−1∫
x/b

da√−R(a, b, x)
= x

0∫
x−1

db

0∫
x/(b+1)−1

da√−R(a, b, x)
, (5.26)

and the identity follows from Eq. (2.11), which specialized in this case becomes simply

−1∫
x/b

da√−R(a, b, x)
=

0∫
x/(b+1)−1

da√−R(a, b, x)
.

As it is clear from the figure, the second integral representation in (5.26) is now integrated in 
a region bounded by the branch cuts, which means that f IV

1 (x) actually also fulfills our require-
ments and it is therefore a solution of the third-order differential equations. The same cannot be 
said f IV

2 (x), which cannot be rewritten as an integral over a region of plane bounded by branch 
cuts only. The complete set of three independent solutions is therefore given by f V

1 (x), f V
2 (x)

and f IV(x).
1
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Interestingly, if we want to build a viable solution of the equation using the function f IV
2 (x), 

we should consider the combination

f (x) = f II
2 (x) + f III

2 (x) + f IV
2 (x). (5.27)

As this function is defined by integrating in a region delimited by the branch cuts of the root, 
it must be a solution of the third-order differential equation. On the other hand, since we have 
already determined the three independent solutions, it must be possible to write it as a linear 
combination of f V

1 (x), f V
2 (x) and f IV

1 (x). Indeed, using (5.22), (5.23) and (5.24) one finds

f (x) = f III
2 (x) + 2f IV

2 (x) = 2f V
2 (x), (5.28)

showing that the solution is indeed not linearly independent. Of course until now we have not 
proved directly that the functions determined above actually solve the third order differential 
equation. We will do it later on once we have found a more convenient representation for them.

5.1. A basis of unit leading singularity

Before embarking in the explicit evaluation of the integrals above, let us pause to interpret our 
results. In the previous section we have showed that the maximal cut of the three-loop banana 
graph can be evaluated on three independent contours which do not cross branch cuts of the 
integrand and we claimed that the latter provide the three independent solutions of its differential 
equation. This provided us with all ingredients to build the complete homogeneous solutions 
of the original 3 × 3 system (4.1), as a matrix G(x) (4.2). As we showed in Eq. (4.14), the 
matrix G(x) allows us to rotate the original basis of master integrals I1(x), I2(x) and I3(x), 
onto a new basis M1(x), M2(x) and M3(x) which satisfies differential equations almost entirely 
ε-factorized.

The new basis defined in this way, presents a remarkable (but obvious) property. It’s maximal 
cut, computed along the three independent integration contours, is unity (or zero) by definition. 
This can be easily seen as follows. Inverting Eq. (4.14) we have⎛⎝ M1(x)

M2(x)

M3(x)

⎞⎠ = 1

W(x)

⎛⎝ I3J2 − I2J3 I1J3 − I3J1 I2J1 − I1J2
H3I2 − H2I3 H1I3 − H3I1 H2I1 − H1I2
H2J3 − H3J2 H3J1 − H1J3 H1J2 − H2J1

⎞⎠⎛⎝ I1(x)

I2(x)

I3(x)

⎞⎠ .

(5.29)

Now, from the results of the previous section, we can identify

H1(x) = CutC1(I1(x)) = f IV
1 (x) ,

J1(x) = CutC2(I1(x)) = f V
1 (x) ,

I1(x) = CutC3(I1(x)) = f V
2 (x) (5.30)

where we used the notation CutC(Ij (x)) for the maximal cut of Ij (x) computed along the con-
tour C, which gives rise to the integration over the corresponding regions discussed above. The 
remaining functions can be obtained by differentiating the ones above as in (5.2), (5.3), or alter-
natively by computing the maximal cuts of the other two master integrals along the same three 
contours

H2(x) = CutC1(I2(x)) , J2(x) = CutC2(I2(x)) , I2(x) = CutC3(I2(x))

H3(x) = CutC1(I3(x)) , J3(x) = CutC2(I3(x)) , I3(x) = CutC3(I3(x)) . (5.31)
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Using now Eq. (5.29), (5.30), (5.31) we find at once

CutC1(M1(x)) = 1 , CutC2(M1(x)) = 0 , CutC3(M1(x)) = 0 ,

CutC1(M2(x)) = 0 , CutC2(M2(x)) = 1 , CutC3(M2(x)) = 0 ,

CutC1(M3(x)) = 0 , CutC2(M3(x)) = 0 , CutC3(M3(x)) = 1 . (5.32)

This result is important. We can imagine, in fact, to associate to any family of master integrals 
which fulfill a set of n (in our case 3) coupled differential equations, a n ×n matrix whose entries 
are given by the maximal cut of the integrals evaluated along the n independent integration 
contours. For a generic basis of master integrals, this is by definition the matrix G(x) which 
solves the homogeneous system of differential equations. For the rotated basis Mj(x), Eq. (5.32)
shows that remarkably this “matrix of maximal cuts” reduces to the identity matrix.

With this, we can therefore imagine a way to generalize the idea originally presented in [7], 
where it was claimed that master integrals with unit leading singularity are expected to fulfill
canonical differential equations. Suppose we are considering a basis of n master integrals which 
fulfill n coupled differential equations. In this case, a basis which fulfills ε-factorized differential 
equations must have unit leading singularity in the sense above, i.e. the matrix which contains 
as entries the maximal cut of the master integrals evaluated along all independent integration 
contours must be equal to the identity matrix. Indeed, it becomes clear that, from a practical 
point of view, there is no real difference between finding a basis of unit leading singularity and 
actually solving the homogeneous system of differential equations.

5.2. The homogeneous solutions as product of elliptic integrals

We go back now to the explicit form of the homogeneous solution for the three-loop banana 
graph. The analysis above has allowed us to determine the three independent solutions in form of 
two-fold integral representations. We might now ask ourselves if these integrals can be performed 
in terms of known functions. The answer is indeed affirmative.

First of all, in order to proceed, it is useful to perform explicitly the integration in da and 
obtain a one-fold integral representation for the solutions. Using the change of variables given 
in (2.12) on the four function (5.25) and after a bit of algebra we find respectively

f IV
1 (x) = 2x

0∫
x−1

db√
b(b + 1)

√
b(b + 1) + x

K

(
1 − x2

b(b + 1) + x

)
, (5.33)

f V
1 (x) = 2x

∞∫
0

db√
b(b + 1)

√
b(b + 1) + x

K

(
x2

b(b + 1) + x

)
, (5.34)

f V
2 (x) = 2x

∞∫
0

db√
b(b + 1)

√
b(b + 1) + x

K

(
1 − x2

b(b + 1) + x

)
. (5.35)

The integral representations (5.33), (5.34), (5.35) are already more convenient for numerical in-
tegration and analytical manipulations. Nevertheless we can do better and compute the three 
integrals explicitly in terms of products of elliptic integrals of the first kind only. The manipula-
tions are non-trivial and we found easier to show how this is done on the last two integrals, f V

1 (x)

and f V
2 (x). Similar manipulations should be possible also for the first functions, f IV

1 (x), but as 
it will become clear, we will not need to perform them directly. Let us then consider Eqs. (5.33), 
(5.34) and perform the change of variables



334 A. Primo, L. Tancredi / Nuclear Physics B 921 (2017) 316–356
b(b + 1) = y2 ,

∞∫
0

db →
∞∫

0

2y√
1 + 4y2

dy (5.36)

such that the two integrals become

f V
1 (x) = 2x

∞∫
0

dy√
(y2 + x) (y2 + 1/4)

K

(
x2

y2 + x

)
, (5.37)

f V
2 (x) = 2x

∞∫
0

dy√
(y2 + x) (y2 + 1/4)

K

(
y2 + x(1 − x)

y2 + x

)
. (5.38)

Eqs. (5.37), (5.38) can be put in standard form by introducing three parameters α, β and γ
defined such that

(α + β)2 = x , (α − β)2 = x(1 − x) , γ = 1

2
. (5.39)

In general, for a given value of x, four different pairs of solutions exist to these equations, and 
we can choose any of those for what follows. For definiteness, we pick

α =
√

x + √
x(1 − x)

2
, β =

√
x − √

x(1 − x)

2
, (5.40)

where we are assuming 0 < x < 1. For any given pair of solutions, the integrals read

f V
1 (x) = 2x

∞∫
0

dy√
(y2 + (α + β)2)(y2 + γ 2)

K

(
2αβ

y2 + (α + β)2

)
, (5.41)

f V
2 (x) = 2x

∞∫
0

dy√
(y2 + (α + β)2)(y2 + γ 2)

K

(
y2 + (α − β)2

y2 + (α + β)2

)
. (5.42)

Integrals (5.41), (5.42) are now in standard form. In particular, the calculation of (5.42) is dis-
cussed in [54], see Eq. (33) therein. Suitable extensions of the methods described there allow us 
to compute also integral (5.41). The results read

f V
1 (x) = 2xK(k2−)K(k2+) (5.43)

f V
2 (x) = 4x

(
K(k2−)K(1 − k2+) + K(k2+)K(1 − k2−)

)
, (5.44)

where we have defined

k± =
√

(γ + α)2 − β2 ± √
(γ − α)2 − β2

2γ
with k− =

(
α

γ

)
1

k+
= 2α

k+
. (5.45)

It is easy to prove by direct calculation that Eqs. (5.43), (5.44) solve the third order differential 
equation (5.1), for every choice α, β and, in particular, for the choice we made in (5.40). Even 
if the results for the integrals Eqs. (5.41), (5.42) can be found in standard tables of integrals, 
their calculation remains in our opinion not entirely straightforward and we report it therefore 
in Appendix B following closely the methods described in [54].

Even if we have computed only two of the solutions, by direct inspection of Eqs. (5.43), (5.44), 
we can easily identify the three independent solutions of the third-order differential equation (5.1)
as the three functions
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H1(x) = x K
(
k2+

)
K

(
k2−

)
,

J1(x) = x K
(
k2+

)
K

(
1 − k2−

)
,

I1(x) = x K
(
1 − k2+

)
K

(
k2−

)
, (5.46)

with k± given by (5.45) together with (5.39) and x = 4 m2/s. These results allow us to fix com-
pletely the first row of the matrix of solutions (4.2). The other two rows can then be obtained 
by Eqs. (5.2), (5.3). We do not report the results here for brevity, as we will use a different and 
more compact representation later on. We can nevertheless use these solutions to compute the 
Wronskian and find, as expected from Abel’s formula (4.4)

W(x) = − π3x3

512
√

(1 − 4x)3(1 − x)
, (5.47)

where of course the overall normalization constant depends on the explicit normalization choice 
made on Eqs. (5.46). Inspecting our three solutions, it is natural to wonder what would happen 
considering one further combination

K1(x) = x K
(
1 − k2+

)
K

(
1 − k2−

)
. (5.48)

It is simple to prove by direct calculation that also Eq. (5.48) solves the differential equation (5.1). 
Of course, since a third-order differential equation admits only three independent solutions, this 
last solution cannot be linearly independent from the previous three. Indeed, it is easy to check 
numerically (for example using the PSLQ algorithm) that this is true. Since the four functions 
develop imaginary parts for x < 0 or x > 1/4, the exact relation between the solutions depends 
on the value of the variable x and on the convention picked for their analytic continuation. With 
the choice (5.40) and taking 0 < x < 1

4 (s > 16 m2), for which all solutions Eqs. (5.46), (5.48)
are real valued, one finds

K1(x)
∣∣
0<x< 1

4
= 1

3
H1(x)

∣∣
0<x< 1

4
. (5.49)

One last comment is in order. We have computed explicitly two out of the three functions 
that we claimed constitute the three solutions of the third-order differential equation. We have 
been lucky enough to be able to extract from these two functions a representation for all three 
independent solutions of the equation as products of elliptic integrals (5.46). This of course has 
to be considered as an accident. One might wonder what would the calculation of the remaining 
function f IV

1 (x) have produced. Indeed, if it is true that it is also a solution of the equation, and 
if the solutions chosen in (5.46) are really independent, it must be possible to write f IV

1 (x) as 
linear combination of the latter. Instead of performing the integration explicitly, it is simple to 
prove this by use of the PSLQ algorithm. As before, the relation depends on the value of x. The 
function f IV

1 (x) is real-valued for 1/4 < x < 1, while the three solutions (5.46) are real-valued 
for 0 < x < 1/4. Picking then 1/4 < x < 1 and assuming x → x + i 0+, one finds easily the 
following relation

f IV
1 (x) = 4 (H1(x) + iJ1(x) − i I1(x)) , (5.50)

showing that, as expected, also f IV
1 (x) is a solution of the third-order differential equation satis-

fied by the banana graph.
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6. The third-order differential equation as a symmetric square

In the previous section we have showed that different solutions of the third-order differential 
equation (5.1) can be found by integrating the maximal cut of the three-loop massive banana 
graph along independent integration contours. Here we want to elucidate the relation of the so-
lutions found above with an alternative set of solutions found by G.S. Joyce [49]. For simplicity, 
let us rewrite here the third-order homogeneous differential equation satisfied by the three-loop 
banana graph[

d3

dx3
+ 3(8x − 5)

2(x − 1)(4x − 1)

d2

dx2
+ 4x2 − 2x + 1

(x − 1)x2(4x − 1)

d

dx
+ 1

x3(4x − 1)

]
IH

1 (x) = 0 .

(6.1)

This equation has a remarkable property, i.e. it is a so-called symmetric square. Completely in 
general, let L3(x) be a third-order differential operator

L3(x) = d3

d3x
+ c2(x)

d2

d2x
+ c1(x)

d

dx
+ c0(x) . (6.2)

The operator L3(x) is a symmetric square if its three independent solutions can be written as

g1(x) = (f1(x))2 , g2(x) = f1(x)f2(x) , g3(x) = (f2(x))2 (6.3)

where the two functions f1(x) and f2(x) are in turn solutions of a second-order differential 
operator

L2(x) = d2

d2x
+ a1(x)

d

dx
+ a0(x) . (6.4)

We have therefore

L2(x)f1(x) = L2(x)f2(x) = 0 , (6.5)

and correspondingly

L3(x)g1(x) = L3(x)g2(x) = L3(x)g3(x) = 0 . (6.6)

Testing whether a third-order differential operator is a symmetric square and building the 
corresponding second-order differential operator is very simple. Starting from the coefficients of 
L3(x) in (6.2) we can build the following two combinations

α1(x) = 1

3
c2(x) , α0(x) = c1(x) − α′

1(x) − 2α2
1(x)

4
, (6.7)

where α′
1(x) = dα1(x)/dx. Now, if the following relation is satisfied

4α0(x)α1(x) + 2
dα0(x)

dx
= c0(x) , (6.8)

then the differential operator L3(x) in (6.2) is the symmetric square of the corresponding second-
order differential operator

L2(x) = d2

d2x
+ α1(x)

d

dx
+ α0(x) . (6.9)

It is straightforward to check whether our third-order differential equation (5.1) is a symmetric 
square. Starting with
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c2(x) = 3(8x − 5)

2(x − 1)(4x − 1)
, c1(x) = 4x2 − 2x + 1

(x − 1)x2(4x − 1)
, c0(x) = 1

x3(4x − 1)
,

(6.10)

we immediately find the corresponding coefficients

α1 = 8x − 5

2(x − 1)(4x − 1)
, α0 = − 2x − 1

4(x − 1)x2(4x − 1)
, (6.11)

and indeed one can verify that

4α0(x)α1(x) + 2
dα0(x)

dx
= 1

x3(4x − 1)
= c0(x) . (6.12)

This shows that the solutions of the third-order differential equation satisfied by the three-loop 
banana graph (5.1) can be written as symmetric square combinations of the two solutions of the 
following second-order differential equation[

d2

d2x
+ 8x − 5

2(x − 1)(4x − 1)

d

dx
− 2x − 1

4(x − 1)x2(4x − 1)

]
f (x) = 0 , (6.13)

which can be then solved in terms of a class of special functions called Heun functions [49]. 
Interestingly enough, one can show that such Heun functions can be rewritten as a product of 
elliptic integrals of suitable arguments. The result is very non-trivial and we refer to [49] and 
references therein for details. The three solutions found there read

H1(x) = K (ω+)K (ω−) ,

J1(x) = K (ω+)K (1 − ω−) ,

I1(x) = −1

3
K (1 − ω+)K (1 − ω−) , (6.14)

where we defined

ω± = 1

4x

(
2x + (1 − 2x)

√
x − 1

x
±

√
4x − 1

x

)
. (6.15)

Moreover, in [49] it is shown that a relation exists between the elliptic integrals above. If we 
assume x > 1 than the functions (6.14) are explicitly real and the relation reads

K(ω+) =
(√

4 − 4

x
−

√
1 − 1

x

)
K(ω−) . (6.16)

This representation of the solutions is somewhat more compact than what we found above 
in (5.46), but of course the two sets of solutions must be equivalent since they solve the same 
third-order differential equation. Proving by algebraic manipulations that the two set of solutions 
can be written one in terms of the other is non trivial, in particular since the exact relations among 
the two depends on the region in x which we consider. Indeed, every time one crosses a branch-
ing point of the differential equation (5.1), each of the three solutions gets in general mapped to a 
linear combination of the same three functions. To give an example, we consider again the region 
x > 1 where the functions (6.14) are real. The solutions found in (5.46) instead are complex and 
we need a prescription, which we choose for definiteness to be x → x + i0+. By using PSLQ 
one then finds (with virtually arbitrary precision) that the following relations are satisfied
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H1(x) = 2 iH1(x) −J1(x) + 3I1(x) ,

J1(x) = −2 iH1(x) + 3J1(x) − I1(x) ,

I1(x) = −iJ1(x) + i I1(x) , (6.17)

showing that the two sets of solutions are indeed equivalent. The remaining two columns of the 
matrix of solutions G(x) can then be determined differentiating (5.46) as in Eqs. (5.2), (5.3). 
Using these solutions one find for the Wronskian

W(x) = π3x3

64
√

(4x − 1)3(x − 1)
. (6.18)

We obtained in this way two equivalent representations for the entries of the matrix of ho-
mogeneous solutions G(x) defined in (4.2). Still we are not quite done. Since the differential 
equation (5.1) has four singular points x = 0, x = 1/4, x = 1 and x = ∞, its solutions can de-
velop branch cuts crossing any of these points. It is easy to see that the solutions built in this 
section are real for x > 1 but they develop an imaginary part whenever x < 1. Moreover they 
have discontinuities in all other singular points. On the other hand, the solutions found in (5.46)
turn out to be real only for 0 < x < 1/4. In order to properly analytically continue the results for 
every value of x we will need to build other solutions, similar to (6.14) or (5.46), but which are 
real in the remaining regions (−∞, 0), (1/4, 1). Indeed, in every region the solutions can be built 
taking simple linear combinations of (5.46) or (6.14). Many different combinations are possible 
and we refer to Appendix A for details on one possible choice which we found convenient. To 
indicate these different sets of solutions we introduce the notation H(a,b)

k (x), J (a,b)
k (x), I (a,b)

k (x), 
where the superscript indicates that the corresponding solution is real for a < x < b. The corre-
sponding matrix of solutions will then be indicated as G(a,b)(x). We normalize our solutions for 
all values of x in such a way that the corresponding Wronskian W(a,b)(x) is equal to (6.18), up 
to a possible overall factor i which is required when the argument of the square-root becomes 
negative.

7. The inhomogeneous solution

In this section we make use of the homogeneous solutions of the system of differential equa-
tions (3.7), which have been studied in Sections 5–6 and collected in Appendix A, in order to 
build the inhomogeneous solution as a series expansion around d = 2.
The following discussion holds for any of the kinematic regions a < x < b located by the four 
singular points of the differential equations and we will keep giving as understood the superscript 
(a, b).
Both basis of master integrals Ii (x) and Mi(x) are finite in d = 2 and they can be Taylor-
expanded as

Ii (x) =
∞∑

k=0

I(k)
i (x)εk , Mi(x) =

∞∑
k=0

M
(k)
i (x)εk i = 1,2,3. (7.1)

By substituting Eq. (7.1) into (4.15), we obtain a particularly simple set of chained first order 
differential equations for the coefficients M(k)

i (x), which reads

d

dx

⎛⎜⎝M
(0)
1

M
(0)
2

M
(0)
3

⎞⎟⎠ = G−1(x)

⎛⎝ 0
0
1

2(1−4x)

⎞⎠ (7.2)
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and

d

dx

⎛⎜⎝M
(n)
1 (x)

M
(n)
2 (x)

M
(n)
3 (x)

⎞⎟⎠ = ε G−1(x)D(x)G(x)

⎛⎜⎝M
(n−1)
1 (x)

M
(n−1)
2 (x)

M
(n−1)
3 (x)

⎞⎟⎠ , n > 0. (7.3)

From Eq.(7.3) we see that the solution for the master integrals Mi(x) has a manifest iterative 
structure, since each coefficient M(n)

i (x) can be simply written as an integral of the lower order 

terms M(k−1)
i (x), convoluted with the integration kernel G−1(x)D(x)G(x). Together with the 

integration of the lowest order (7.2), this kernel specifies the class of functions required at every 
order in ε.

Once M(n)
i (x) have been determined, the corresponding term of the ε-expansion of the orig-

inal master integrals Ii (x) can be obtained by applying the rotation matrix G(x) back to the 
integrals Mi(x), according to the definition (4.14),⎛⎜⎝I(n)

1 (x)

I(n)
2 (x)

I(n)
3 (x)

⎞⎟⎠ = G(x)

⎛⎜⎝M
(n)
1 (x)

M
(n)
2 (x)

M
(n)
3 (x)

⎞⎟⎠ . (7.4)

In the remaining of this section, we will limit ourselves to the determination of the order zero 
terms I(0)

i (x). The latter, by definition, are not the entire story, as their calculation does not 
require to integrate over the kernel G−1(x)D(x)G(x). While we could extend the methods de-
scribed in this section in order to provide integral representations also for the higher orders, we 
do not find this particularly useful and postpone this problem to later work. A complete solution 
of this problem, in fact, would require to understand and classify the properties of the functions 
defined by repeated integrations over the kernel above.
The differential equations (7.2) can be readily solve solved by quadrature, producing

M
(0)
1 (x) = c

(0)
1 +

x∫
x0

dt
1

1 − 4t
R1(t) ,

M
(0)
2 (x) = c

(0)
2 +

x∫
x0

dt
1

1 − 4t
R2(t) ,

M
(0)
3 (x) = c

(0)
3 +

x∫
x0

dt
1

1 − 4t
R3(t) , (7.5)

where the integration base-point x0 can be arbitrarily chosen and the integration constants c(0)
i

have to be fixed by imposing suitable boundary conditions. The integrands Ri(x) are combina-
tions of products of two homogeneous solutions which originate from the entries of G−1(x) (see 
Eq. (4.3)),

R1(x) = 1

2W(x)
[I2(x)J1(x) − I1(x)J2(x)] ,

R2(x) = 1

2W(x)
[H2(x)I1(t) − H1(x)I2(x)] ,

R3(x) = 1

2W(x)
[H1(x)J2(t) − H2(x)J1(x)] . (7.6)
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Therefore eqs. (7.5) and (7.6) completely specify the inhomogeneous solution at order zero once 
the boundary constants c(0)

i are fixed, for instance by imposing the regularity of the solutions at 
specific kinematic points.

We have already observed that the system (3.7), or equivalently the third order differential 
equation (5.1), has regular singular points at x = 1 and x = ±∞, which correspond, respectively, 
to the pseudo-thresholds s = 4m2 and s = 0 of the equal-mass banana graph. One can show that 
demanding the regularity of I(0)

i (x) at such points is indeed sufficient in order to fix the three 

integration constants c(0)
i . In fact, by imposing regularity directly on the system of differential 

equations, one can determine three independent linear relations, which must be satisfied by the 
master integrals on the pseudo-thresholds. In particular, regularity at x → 1± requires

lim
x→1±

(
I(0)

3 (x) + 2

3
I(0)

2 (x) + 1

12
I(0)

1 (x)

)
= 0 , (7.7)

whereas at x → ±∞ we find

lim
x→±∞

(
I(0)

2 (x) + 1

4
I(0)

1 (x)

)
= 0 , (7.8)

lim
x→±∞

(
I(0)

3 (x) − 1

16
I1(x)(0)

)
= 1

8
. (7.9)

It is worths observing that, since x → ±∞ corresponds to s → 0±, the two conditions (7.8), (7.9)
consistently reproduce the IBPs identities between the three-loop vacuum diagrams to which the 
master integrals are reduced in the zero-momentum limit.

It is particularly convenient to fix explicitly the boundary constants by working in the region 
1 < x < ∞, since the end-points of this region corresponds exactly to the two pseudo-threshold 
where we impose the regularity conditions (7.7)–(7.9). If we specify Eq. (7.5) to the interval 
(1, ∞) and apply the rotation (7.6), we get

I(0)
1 (x) = H

(1,∞)
1 (x)

⎡⎣c
(0)
1 +

x∫
1

dt
1

1 − 4t
R(1,∞)

1 (t)

⎤⎦+

J
(1,∞)
1 (x)

⎡⎣c
(0)
2 +

x∫
1

dt
1

1 − 4t
R(1,∞)

2 (t)

⎤⎦+

I
(1,∞)
1 (x)

⎡⎣c
(0)
3 +

x∫
1

dt
1

1 − 4t
R(1,∞)

3 (t)

⎤⎦ ,

I(0)
2 (x) = H

(1,∞)
2 (x)

⎡⎣c
(0)
1 +

x∫
1

dt
1

1 − 4t
R(1,∞)

1 (t)

⎤⎦+

J
(1,∞)
2 (x)

⎡⎣c
(0)
2 +

x∫
1

dt
1

1 − 4t
R(1,∞)

2 (t)

⎤⎦+

I
(1,∞)
2 (x)

⎡⎣c
(0)
3 +

x∫
dt

1

1 − 4t
R(1,∞)

3 (t)

⎤⎦ ,
1
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I(0)
3 (x) = H

(1,∞)
3 (x)

⎡⎣c
(0)
1 +

x∫
1

dt
1

1 − 4t
R(1,∞)

1 (t)

⎤⎦+

J
(1,∞)
3 (x)

⎡⎣c
(0)
2 +

x∫
1

dt
1

1 − 4t
R(1,∞)

2 (t)

⎤⎦+

I
(1,∞)
3 (x)

⎡⎣c
(0)
3 +

x∫
1

dt
1

1 − 4t
R(1,∞)

3 (t)

⎤⎦ , (7.10)

where we have chosen as integration-base point x0 = 1 and re-introduced the superscript (1, ∞)

for all quantities that require analytic continuation. We remark that, when applied to Eq. (7.10), 
the definition (7.6) of the function R(1,∞)

i (x) must be interpreted in terms of the homogeneous 
solutions G(1,∞)(x), which are defined in (A.4). Due to the choice of the integration base-point, 
in the x → 1+ limit all integrals appearing in the r.h.s of (7.10) vanish and the master integrals 
become

lim
x→1+ I

(0)
i (x) = lim

x→1+

(
c
(0)
1 H

(1,∞)
i (x) + c

(0)
2 J

(1,∞)
i (x) + c

(0)
3 I

(1,∞)
i (x)

)
, i = 1,2,3.

(7.11)

The limiting behaviors of the homogeneous solutions Hi(x), Ji(x), Ii(x) at the two pseudo-
thresholds are discussed in Appendix A and it is easy to verify that, when the expansions at 
x → 1+ (A.15) are plugged into Eq. (7.11), the regularity constraint (7.7) is satisfied by demand-
ing

c
(0)
3 = −3c

(0)
1 . (7.12)

In a similar way, we can impose regularity at x → +∞ by making use of the expansions (A.17). 
Remarkably, due to the presence of logarithmic divergences ln(1/x) in the expansion of the 
homogeneous solutions which must cancel in the expression of the master integrals, Eq. (7.8)
allows us to fix at once c(0)

1 and c(0)
2 , which are given by

c
(0)
1 = 1

3

∞∫
1

dt
1

(1 − 4t)
R(1,∞)

3 (t) = 1

3

1∫
0

dy

y(y − 4)
R(1,∞)

3

(
1

y

)
,

c
(0)
2 = −

∞∫
1

dt

(1 − 4t)
R(1,∞)

2 (t) = −
1∫

0

dy

y(y − 4)
R(1,∞)

2

(
1

y

)
. (7.13)

In the second equalities we have simply performed the change of variable t → 1/y in order to 
map the integration range to 0 < y < 1. As a consistency check, we have verified that these 
values of the integration constants are consistent also with the regularity condition for the third 
master, given by Eq. (7.9).
Although we were not able to determine an analytic expression of the boundary constants, their 
representation as definite integrals (7.13) allows a high-precision numerical evaluation. We get 
for example

c
(0)
1 = −1.2064599496517629858762117245910770452963348722...

c
(0)
2 = +2.5819507507087486799289938331551672385057488393... (7.14)
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Fig. 3. Real (a) and imaginary (b) part of the finite term of the master integrals for the three-loop banana graph. The imag-
inary part is non-vanishing only in the range 0 < x < 1/4, which corresponds to s > 16 m2. The numerical evaluation of 
the result (solid curves) is compared to the values obtained with SecDec 3 (dots).

The representation (7.10) of the master integrals, which is now fully determined, is valid 
for 1 < x < ∞. The expression of I(0)

i in the other kinematic regions (and in particular for 
0 < x < 1/4, s > 16 m2, where the master integrals develop an imaginary part) can be obtained 
by analytic continuation of Eq. (7.10). The details of the analytic continuation are presented 
in Appendix A. As a summary of the results there discussed, let us just stress that the determi-
nation of a set explicitly real solutions G(a,b)(x) in each region and the study of their leading 
behavior in the proximity of the singular points can be used to define, for any value of x, a rep-
resentation of the solutions which involves individually real-valued integrals only and, therefore, 
allows a fast and accurate numerical evaluation. A plot of the numerical results obtained through 
our representation compared against the computer code SecDec 3 [55] is shown in Fig. 3.
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8. Conclusions

In this paper, we dealt with two important issues for the calculation of complicated multiloop 
Feynman integrals. The first, which has recently received a lot of attention, has to do with the 
explicit construction of a full set of homogeneous solutions of the system of couple differen-
tial equations satisfied by a family of Feynman integrals. The second, involves the classes of 
functions that are required for their calculation, beyond the well understood multiple polyloga-
rithms. To address both issues in a non-trivial environment, we considered the calculation of the 
three-loop massive banana graph, which is the simplest graph known to satisfy an irreducible 
third-order differential equation. Complementing the findings reported in [40], we showed that 
all independent homogeneous solutions can be found by evaluating the maximal cut of the graph 
on the independent contours which do not cross any branch cuts of the integrand. We showed 
explicitly that in the case of the three-loop massive banana graph, there are only three possible 
choices of independent contours and that they indeed provide all three independent homogeneous 
solutions of its third-order differential equation. Our findings are in perfect agreement with the 
ones recently presented in [52].

Given the three independent homogeneous solutions as integrals over contours, we showed 
how to evaluate them explicitly in terms of products of complete elliptic integrals. The result, 
which was found long ago with very different methods by Joyce [49], is very interesting for 
two reasons. On the one hand, it is the first known generalization of the two-by-two differential 
equations satisfied, for example, by the two-loop sunrise graph, and which give rise to integrals 
over elliptic integrals. On the other hand, while generalizing the case above, it does not require 
to introduce truly new functions, as the homogeneous solutions can be still written as products 
of elliptic integrals only. While this is known to be an accident of the equal-mass case, it is 
nevertheless a very interesting laboratory to study the functions required to evaluate Feynman 
integrals which fulfill differential equations of order higher than two.

The results described in this paper show that the maximal cut can be used to solve compli-
cated homogeneous differential equations, even when the number of coupled equations is higher 
than two. At variance with the 2 × 2 case, which seems to invariably require complete elliptic 
integrals, 3 × 3 and higher cases might require the introduction and classification of more com-
plicated functions. We look forward to applying this method to increasingly complicated cases 
of relevance for high-energy physics phenomenology.
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Appendix A. Analytic continuation

In this appendix we describe the analytic continuation of the master integrals derived in 
Section 7 to arbitrary values of x = 4 m2/s. We start from the analytic continuation of the ho-
mogeneous solutions by first defining, for each kinematic region a < x < b, a set of real-valued 
homogeneous solutions G(a,b)(x) and then by matching their limiting behaviors in order to link 
them across the singularities of the differential equation. Finally we will apply these results to 
Eq. (7.10) and obtain the analytic continuation of the inhomogeneous solution.

A.1. Homogeneous solutions

In Sections 5–6 we have obtained, through different approaches, two different representation 
of the homogeneous solutions, corresponding to Eq.s (5.46) and (6.14). Although the two repre-
sentations have been shown to be completely equivalent, we decide to work with the latter, since 
it leads to more compact expression. Therefore, we consider homogeneous solutions written in 
terms of products of complete elliptic integrals of with arguments

ω± = 1

4x

(
2x + (1 − 2x)

√
x − 1

x
±

√
4x − 1

x

)
. (A.1)

The solutions (6.14) are explicitly real in the region (1, ∞). In order to define a set of real solu-
tions in the other three regions, (−∞, 0), (0, 1/4) and (1/4, 1), we can make use of well-known 
identities between complete elliptic integrals such as

K

(
1

z

)
= √

z (K (z) − iK (1 − z)) , with z → z + i0+ , (A.2)

which establish linear relations between elliptic integrals with different reality domains. There-
fore, by extending the set of building-blocks of the homogeneous solutions to the elliptic integrals

K (ω±) , K (1 − ω±) , K

(
1

ω±

)
, K

(
1

1 − ω±

)
, K

(
1 − 1

ω±

)
, (A.3)

one can easily obtain, for each region (a, b), a matrix of homogeneous solutions G(a,b)(x) with 
real entries. In the following we list, for each region, one possible choice of real solutions for the 
first master integral, which correspond to the first row of G(a,b)(x). As we have already observed, 
the other two rows can be obtained by applying the differential operators (5.2), (5.3) to the first 
one.

• −∞ < x < 0:

H
(−∞,0)
1 (x) = K (ω+)K (ω−) ,

J
(−∞,0)
1 (x) = 1

2

[
K (ω+)K (1 − ω−) + K (1 − ω+)K (ω−)

]
,

I
(−∞,0)
1 (x) = 1√

1 − ω−
√

1 − ω+
K

(
1

1 − ω+

)
K

(
1

1 − ω−

)
, (A.4)

with Wronskian

W(−∞,0)(x) = π3x3

64
√

(1 − 4x)3(1 − x)
. (A.5)
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• 0 < x < 1/4:

H
(0,1/4)

1 (x) = 1

2

[
K (ω+)K (1 − ω−) + K (1 − ω+)K (ω−)

]
,

J
(0,1/4)

1 (x) = −1

2

[
K (ω+)K (ω−) + K (1 − ω+)K (1 − ω−)

]
,

I
(0,1/4)

1 (x) = K (ω−)

[
K (ω+) + 1√

ω+
K

(
1

ω+

)]
, (A.6)

with Wronskian

W(0,1/4)(x) = π3x3

64
√

(1 − 4x)3(1 − x)
. (A.7)

• 1/4 < x < 1:

H
(1/4,1)

1 (x) = 1

2

[
K (ω+)K (ω−) + K (1 − ω+)K (1 − ω−)

]
,

J
(1/4,1)

1 (x) = 1√
ω+

K (ω−)K

(
1 − 1

ω+

)
,

I
(1/4,1)

1 (x) = − 1√
1 − ω+

√
ω−

K

(
1

1 − ω+

)
K

(
1

ω−

)
, (A.8)

with Wronskian

W(1/4,1)(x) = π3x3

64
√

(4x − 1)3(1 − x)
. (A.9)

• 1 < x < ∞:

H
(1,∞)
1 (x) = K (ω+)K (ω−) ,

J
(1,∞)
1 (x) = K (ω+)K (1 − ω−) ,

I
(1,∞)
1 (x) = −1

3
K (1 − ω+)K (1 − ω−) , (A.10)

with Wronskian

W(1,∞)(x) = π3x3

64
√

(4x − 1)3(x − 1)
. (A.11)

A.2. Analytic continuation of the homogeneous solution

Once real homogeneous solutions G(a,b)(x) have been found in each region (a, b), we must 
match them across the four singular points x = 0, 1/4, 1 and x = ±∞ in order to analyti-
cally continue the homogeneous solutions the whole range −∞ < x < ∞. Given the matrices 
G(a,b)(x) and G(b,c)(x) of real solutions defined in the adjacent intervals (a, b) and (b, c), the 
analytic continuation amounts to define a matching matrix M(b) ,

G(b,c)(x) = G(a,b)(x)M(b) , (A.12)

which allows to continue G(a,b)(x) to the region b < x < c. The matrix M(b) can be obtained by 
assigning a small imaginary part to x → x−i0+ (the sign of which is inherited from the Feynman 
prescription s → s + i0+) and by equating the x → b+ limit of the two sides of (A.12).
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This procedure leads the four matching matrices

M(0) =
⎛⎝ 0 1 −1

2 −3i 3i

−i −1/2 0

⎞⎠ , M(1/4) =
⎛⎝ 0 1 −1

−1 −2i 0
0 −i 0

⎞⎠ ,

M(1) =
⎛⎝ 1 0 −1/3

2i 3 2/3i

i/2 0 i/6

⎞⎠ , M(∞) =
⎛⎝ 1 −i −3

0 −1/3 2i

0 0 −3

⎞⎠ , (A.13)

which, consistently with Eq. (A.12), satisfy

M(0)M(1/4)M(1)M(∞) = 1 . (A.14)

The limits of the homogeneous solutions (A.4)–(A.10) close to the singular points, which have 
been used to obtain (A.13), can be easily calculated with the help of computer algebra system 
such as Mathematica and, therefore, we will not write them down explicitly. As an example, 
we will just list below the leading behavior of the homogeneous solutions (A.10) at the end-points 
of the region (1, ∞), which have been also used in Section 7 in order to fix the boundary constants 
of the inhomogeneous solution.

The limit of G(1,∞)(x) for x → 1+ is

lim
x→1+ H

(1,∞)
1 (x) = K (r+)K (r−) +O

(√
x − 1

)
,

lim
x→1+ J

(1,∞)
1 (x) = K (r+)K (r+) +O

(√
x − 1

)
,

lim
x→1+ I

(1,∞)
1 (x) = − 1

3
K (r+)K (r−) +O

(√
x − 1

)
,

lim
x→1+ H

(1,∞)
2 (x) = 1

26
√

x − 1

(
E (r−)

(
6E (r+) +

(√
3 − 9

)
K (r+)

)
− K (r−)

((
9 + √

3
)

E (r+) − 6K (r+)
))

+O
(√

x − 1
)

,

lim
x→1+ J

(1,∞)
2 (x) = 1

6

((√
3 − 3

)
K (r+)2 − 2

(√
3 − 3

)
K (r+)E (r+) − 6E (r+)2

)
+O

(√
x − 1

)
lim

x→1+ I
(1,∞)
2 (x) = 1

12
√

x − 1
(K (r+) (K (r−) − E (r−)) − K (r−)E (r+))

+ 1

18

((
3 + √

3
)

K (r−)E (r+)

− E (r−)
((√

3 − 3
)

K (r+) + 6E (r+)
))

+O
(√

x − 1
)

,

lim
x→1+ H

(1,∞)
3 (x) = 1

8
√

x − 1
(K (r−)E (r+) + K (r+) (E (r−) − K (r−)))

+ 136
(

K (r−)
(

4
(

3 + √
3
)

E (r+) − 3K (r+)
)

− 4E (r−)
((√

3 − 3
)

K (r+) + 6E (r+)
))

+O
(√

x − 1
)

,
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lim
x→1+ J

(1,∞)
3 (x) = 1

36

((
9 − 4

√
3
)

K (r+)2 + 8
(√

3 − 3
)

K (r+)K (r+) + 24E (r+)2
)

+O
(√

x − 1
)

,

lim
x→1+ I

(1,∞)
3 (x) = 1

24
√

x − 1
(K (r−)E (r+) + K (r+) (E (r−) − K (r−)))

+ 1

108

(
4E (r−)

(
6E (r+) +

(√
3 − 3

)
K (r+)

)
+ K (r−)

(
3K (r+) − 4

(
3 + √

3
)

E (r+)
)) +O

(√
x − 1

)
. (A.15)

where we have defined

r± ≡ lim
x→1+ ω± = 2 ± √

3

4
. (A.16)

The leading behavior of G(1,∞)(x) for x → +∞ is instead

lim
x→+∞H

(1,∞)
1 (x) = π2

4
+O (1/x) ,

lim
x→+∞J

(1,∞)
1 (x) = 3

4
π (4 ln 2 − ln (1/x)) +O (1/x) ,

lim
x→+∞ I

(1,∞)
1 (x) = 1

2
(ln (1/x) − 4 ln 2)2 +O (1/x) ,

lim
x→+∞H

(1,∞)
2 (x) = −π2

16
+O (1/x) ,

lim
x→+∞J

(1,∞)
2 (x) = 3π

16
(1 − 4 ln 2 + ln (1/x)) +O (1/x) ,

lim
x→+∞ I

(1,∞)
2 (x) = 1

16
(4 ln 2 − ln (1/x) − 2)(4 ln (1/x) − ln (1/x)) +O (1/x) ,

lim
x→+∞H

(1,∞)
3 (x) = −π2

64
+O (1/x) ,

lim
x→+∞J

(1,∞)
3 (x) = 3π

128
(−2 ln (1/x) − 3 + 8 ln 2) +O (1/x) ,

lim
x→+∞ I

(1,∞)
3 (x) = x

24
− 1

64
(4 ln 2 − ln (1/x) − 3)(4 ln 2 − ln 2) ln (1/x) +O (1/x) .

(A.17)

A.3. Analytic continuation of the inhomogeneous solution

We are finally in the position to analytically continue the inhomogeneous solutions to arbi-
trary values of x. As it is explicitly shown by Eq. (7.10), the inhomogeneous solution is defined, 
for x > 1, in terms of integrals of the functions R(1,∞)

i (x) which, in turn, depend on the homo-
geneous solutions G(1,∞)(x) and on their Wronskian W(1,∞)(x). Therefore, in order to extend 
the integral representation (7.10) to the other kinematic regions, it is sufficient to analytically 
continue the elements of G(1,∞)(x) appearing in the definition (7.6) of R(1,∞)

i (x), by making 
use of the matching matrices M(b), as prescribed by Eq. (A.12). In this way all imaginary parts 
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(whenever they are present) are made explicit and, as a result, we obtain a representation of the 
solution which involves, for any x, the evaluation real integrals only.

We start by considering the analytic continuation to 1/4 < x < 1. The matching matrix M(1), 
which has been defined in Eq. (A.13), can be used in order to express the homogeneous solutions 
G(1,∞) in terms of the set of real solutions defined in (1/4, 1),

G(1,∞)(x) = G(1/4,1)(x)M(1). (A.18)

In addition, it is easy to see that, with the Feynman prescription x → x − iε, the Wronskian is 
analytically continued for 1/4 < x < 1 as

W(1,∞) = π3x3

64
√

(4x − 1)3(x − 1)
= iπ3x3

64
√

(1 − 4x)3(1 − x)
= iW(1/4,1) . (A.19)

By acting with Eqs. (A.18) and (A.19) on the inhomogeneous solution (A.13), we can write the 
master integrals in region (1/4, 1) in terms of individually real-valued integrals as

I(0)
1 (x) = H

(1/4,1)

1 (x)

⎛⎝c
(0)
1 +

1∫
x

dt

1 − 4t
R(1/4,1)

1 (t)

⎞⎠
+ J

(1/4,1)

1 (x)

⎛⎝c
(0)
2 +

1∫
x

dt

1 − 4t
R(1/4,1)

2 (t)

⎞⎠
+ I

(1/4,1)

1 (x)

⎛⎝c
(0)
3 +

1∫
x

dt

1 − 4t
R(1/4,1)

3 (t)

⎞⎠ ,

I(0)
2 (x) = H

(1/4,1)

2 (x)

⎛⎝c
(0)
1 +

1∫
x

dt

1 − 4t
R(1/4,1)

1 (t)

⎞⎠
+ J

(1/4,1)

2 (x)

⎛⎝c
(0)
2 +

1∫
x

dt

1 − 4t
R(1/4,1)

2 (t)

⎞⎠
+ I

(1/4,1)

2 (x)

⎛⎝c
(0)
3 +

1∫
x

dt

1 − 4t
R(1/4,1)

3 (t)

⎞⎠ ,

I(0)
3 (x) = H

(1/4,1)

3 (x)

⎛⎝c
(0)
1 +

1∫
x

dt

1 − 4t
R(1/4,1)

1 (t)

⎞⎠
+ J

(1/4,1)

3 (x)

⎛⎝c
(0)
2 +

1∫
x

dt

1 − 4t
R(1/4,1)

2 (t)

⎞⎠
+ I

(1/4,1)

3 (x)

⎛⎝c
(0)
3 +

1∫
x

dt

1 − 4t
R(1/4,1)

3 (t)

⎞⎠ , (A.20)

where R(1/4,1)
(x) are combinations of homogeneous solutions defined by
i
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R(1/4,1)

1 (x) = i

4W(1/4,1)(x)

[
2H

(1/4,1)

1 (x)J
(1/4,1)

2 (x) − 2H
(1/4,1)

2 (x)J
(1/4,1)

1 (x)

+ i
(
I

(1/4,1)

2 (x)J
(1/4,1)

1 (x) − I
(1/4,1)

1 (x)J
(1/4,1)

2 (x)
)]

,

R(1/4,1)

2 (x) = − 1

6W(1/4,1)(x)

[
H

(1/4,1)

2 (x)
(
I

(1/4,1)

1 (x) + 4J
(1/4,1)

1 (x)
)

− H
(1/4,1)

1 (x)
(
I

(1/4,1)

2 (x) + 4J
(1/4,1)

2 (x)
)]

,

R(1/4,1)

3 (x) = 3i

4W(1/4,1)(x)

[
2H

(1/4,1)

1 (x)J
(1/4,1)

2 (x) − 2H
(1/4,1)

2 (x)J
(1/4,1)

1 (x)

+ i
(
I

(1/4,1)

1 (x)J
(1/4,1)

2 (x) − I
(1/4,1)

2 (x)J
(1/4,1)

1 (x)
)]

.

(A.21)

We can now continue the solution to 0 < x < 1/4, where the master integrals develop an 
imaginary part. The region (0, 1/4) must be linked to (1, ∞) by passing through region (1/4, 1). 
This means that, according to the definition (A.12), the homogeneous solutions G(1,∞)(x) are 
continued in terms of the real-valued solutions defined for 0 < x < 1/4 as

G(1,∞)(x) = G(0,1/4)(x)M(1/4)M(1) , (A.22)

where M(1/4) and M(1) are the matching matrices given in Eq. (A.13). In this case, Wronskian 
is trivially continued,

W(1,∞) = π3x3

64
√

(4x − 1)3(x − 1)
= π3x3

64
√

(1 − 4x)3(1 − x)
= W(0,1/4) , (A.23)

and by making use of Eqs. (A.22) and (A.23) we can write master integrals in region (0, 1/4) as

I(0)
1 (x) = H

(0,1/4)

1 (x)

⎛⎜⎝b
(0)
1 +

x∫
1/4

dt

1 − 4t
R(0,1/4)

1 (t)

⎞⎟⎠
+ J

(0,1/4)

1 (x)

⎛⎜⎝b
(0)
2 +

x∫
1/4

dt

1 − 4t
R(0,1/4)

2 (t)

⎞⎟⎠
+ I

(0,1/4)

1 (x)

⎛⎜⎝b
(0)
3 +

x∫
1/4

dt

1 − 4t
R(0,1/4)

3 (t)

⎞⎟⎠ ,

I(0)
2 (x) = H

(0,1/4)

2 (x)

⎛⎜⎝b
(0)
1 +

x∫
1/4

dt

1 − 4t
R(0,1/4)

1 (t)

⎞⎟⎠
+ J

(0,1/4)

2 (x)

⎛⎜⎝b
(0)
2 +

x∫
dt

1 − 4t
R(0,1/4)

2 (t)

⎞⎟⎠

1/4
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+ I
(0,1/4)

2 (x)

⎛⎜⎝b
(0)
3 +

x∫
1/4

dt

1 − 4t
R(0,1/4)

3 (t)

⎞⎟⎠ ,

I(0)
3 (x) = H

(0,1/4)

3 (x)

⎛⎜⎝b
(0)
1 +

x∫
1/4

dt

1 − 4t
R(0,1/4)

1 (t)

⎞⎟⎠
+ J

(0,1/4)

3 (x)

⎛⎜⎝b
(0)
2 +

x∫
1/4

d
dt

1 − 4t
R(0,1/4)

2 (t)

⎞⎟⎠
+ I

(0,1/4)

3 (x)

⎛⎜⎝b
(0)
3 +

x∫
1/4

dt

1 − 4t
R(0,1/4)

3 (t)

⎞⎟⎠ , (A.24)

where the integration constants b(0)
i are defined by

b
(0)
i = c

(0)
i +

1∫
1/4

dt

1 − 4t
R(1/4,1)

i (t) , (A.25)

and R(0,1/4)
i (x) are the combinations of homogeneous solutions

R(0,1/4)

1 (x) = 1

4W(0,1/4)(x)

[
H

(0,1/4)

1 (x)
(
I

(0,1/4)

2 (x) + 4J
(0,1/4)

2 (x)
)

− H
(0,1/4)

2 (x)
(
I

(0,1/4)

1 (x) + 4J
(0,1/4)

1 (x)
)

− 2i
(
I

(0,1/4)

2 (x)J
(0,1/4)

1 (x) − I
(0,1/4)

1 (x)J
(0,1/4)

2 (x)
)]

,

R(0,1/4)

2 (x) = 1

6W(0,1/4)(x)

[
4I

(0,1/4)

2 (x)J
(0,1/4)

1 (x) − 4I
(0,1/4)

1 (x)J
(0,1/4)

2 (x)

+ 3i
(
H

(0,1/4)

2 (x)J
(0,1/4)

1 (x) − H
(0,1/4)

1 (x)J
(0,1/4)

2 (x)
)]

,

R(0,1/4)

3 (x) = 3

4W(0,1/4)(x)

[
I

(0,1/4)

1 (x)H
(0,1/4)

2 (x) − I
(0,1/4)

2 (x)H
(0,1/4)

1 (x)

+ 2i
(
I

(0,1/4)

2 (x)J
(0,1/4)

1 (x) − I
(0,1/4)

1 (x)J
(0,1/4)

2 (x)
)]

. (A.26)

Finally, the expression of the master integrals in the Euclidean region x < 0 can be obtained by 
matching the homogeneous solutions at infinity, according to Eq. (A.12),

G(1,∞)(x) = G(−∞,0)(x)
(
M(∞)

)−1
, (A.27)

with the matching matrix M(∞) defined in Eq. (A.13). The Wronskian can be directly continued 
to negative values of x,
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W(1,∞) = π3x3

64
√

(4x − 1)3(x − 1)
= π3x3

64
√

(1 − 4x)3(1 − x)
= W(−∞,0) , (A.28)

and by acting again with (A.27) and (A.28) on Eq. (7.10), we obtain the expression of the master 
integrals in region (−∞, 0),

I(0)
1 (x) = H

(−∞0)
1 (x)

⎛⎜⎝d
(0)
1 +

−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

1 (1/y)

⎞⎟⎠
+ J

(−∞,0)
1 (x)

−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

2 (1/y) + I
(−∞,0)
1 (x)

×
−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

3 (1/y) ,

I(0)
2 (x) = H

(−∞,0)
2 (x)

⎛⎜⎝d
(0)
1 +

−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

1 (1/y)

⎞⎟⎠
+ J

(−∞,0)
2 (x)

−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

2 (1/y) + I
(−∞,0)
2 (x)

×
−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

3 (1/y) ,

I(0)
3 (x) = H

(−∞,0)
3 (x)

⎛⎜⎝d
(0)
1 +

−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

1 (t)

⎞⎟⎠
+ J

(−∞,0)
3 (x)

−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

2 (1/y) + I
(−∞,0)
3 (x)

×
−1/x∫
0

dy

y(1 + 4y)
R(−∞,0)

3 (1/y) , (A.29)

where d(0)
1 is the integration constant

d
(0)
1 = c

(0)
1 +

1∫
0

dy

y(y − 4)
R(1,∞)

1 (1/y) , (A.30)

and R(−∞,0)
i (x) are the combinations of homogeneous solutions

R(−∞,0)
1 (x) = 1

(−∞,0)

[
J

(−∞,0)
1 (x)

(
3H

(−∞,0)
2 (x) + I

(−∞,0)
2 (x)

)

2W (x)
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− J
(−∞,0)
2 (x)

(
3H

(−∞,0)
1 (x) + I

(−∞,0)
1 (x)

)
+ i

(
H

(−∞,0)
1 (x)I

(−∞,0)
2 (x) − H

(−∞,0)
2 (x)I

(−∞,0)
1 (x)

)]
,

R(−∞,0)
2 (x) = 1

6W(−∞,0)(x)

[(
H

(−∞,0)
1 (x)I

(−∞,0)
2 (x) − H

(−∞,0)
2 (x)I

(−∞,0)
1 (x)

)
+ 6i

(
H

(−∞,0)
1 (x)J

(−∞,0)
2 (x) − H

(−∞,0)
2 (x)J

(−∞,0)
1 (x)

)]
,

R(1/4,1)

3 (x) = 1

6W(−∞,0)(x)

[
H

(−∞,0)
2 (x)J

(−∞,0)
1 (x) − H

(−∞,0)
1 (x)J

(−∞,0)
2 (x)

]
.

(A.31)

We stress here that similar results in the region (−∞, 0) could be obtained by matching the 
solutions in x = 0. This point, nevertheless, is more delicate, due to the divergence in the Wron-
skian, i.e. 1/W(x) ∼ 1/x3 as x → 0, and we preferred for this reason to continue passing through 
x = ±∞.

Appendix B. Proof of Eqs. (5.43)–(5.44)

In this appendix we give a brief derivation of Eqs. (5.43)–(5.44). We first reproduce the proof 
of Eq. (5.44), which was first presented in [54] (see Eq. (33) therein), and then we use similar 
arguments to derive Eq. (5.43).
The evaluation of Eq. (5.42) requires the study of the integral

π

∞∫
0

dt√
(t2 + (a + b)2)(t2 + c2)

K

(
t2 + (a − b)2

t2 + (a + b)2

)
. (B.1)

The analytic expression of (B.1) can be obtained by first studying the following auxiliary integral

I1(ω) = 2

π

∞∫
0

dtdz1dz2 K0(az1)K0(bz1)K0 (cz2) cos (tz1) cos ((ω + t)z2) , (B.2)

where K0(x) is the modified Bessel function of the second kind,

K0(x) =
∞∫

0

dt
cos (xt)√

t2 + 1
, (B.3)

which satisfies the identity
∞∫

0

dtK0(at) cos(ωt) = 2

π

1√
a2 + ω2

. (B.4)

Eq. (B.4) allows to trivially perform the integration over z2,

I1(ω) =
∞∫

0

dt
1√

(ω + t)2 + c2

∞∫
0

dz1 K0(az1)K0(bz1) cos (tz1) . (B.5)
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The integral over z1 is now in standard form (see for instance Eq. 2.16.36.2 of [56]) and it can 
be evaluated in terms of an elliptic integral of the first kind,

I1(ω) = π

∞∫
0

dt√
t2 + (a + b)2

√
(ω + t)2 + c2

K

(
t2 + (a − b)2

t2 + (a + b)2

)
, (B.6)

from which we immediately see that Eq. (B.4) corresponds to the value of the auxiliary inte-
gral (B.2) at ω = 0. In order to evaluate I1(0), we go back to Eq. (B.2) we start by performing 
the dt integration , for which we can use the distribution identity

∞∫
0

dt cos (tz1) cos ((ω + t)z2) = π

2
cos(ωz1) (δ(z1 − z2) + cos(ωz1)δ(z1 + z2)) . (B.7)

The term proportional to δ(z1 + z2) in the right-hand-side of Eq. (B.7) has no support in the 
region where I1(ω) is defined, therefore we have

I1(ω) =
∞∫

0

dz1 K0(az1)K0(bz1)K0 (cz2) cos (ωz1) , (B.8)

which, if we set ω = 0, reduces to

I1(0) =
∞∫

0

dz1 K0(az1)K0(bz1)K0 (cz2) . (B.9)

This last integral is connected to the master formula (see Eq. (3.3) of [57])

∞∫
0

dtIμ(at)K0(bt)K0(ct)dt = 1

4c
Wμ(k+)Wμ(k−), (B.10)

where Iμ(z) is the modified Bessel function of the first kind, the function Wμ(k) is related to 
associated Legendre polynomial P μ/2

−1/2,

Wμ(k) =
√

π�
(

1+μ
2

)
(1 − k2)1/4

P
μ/2
−1/2

(
2k2

2
√

1 − k2

)
, (B.11)

and the arguments k± are defined by

k± =
√

(c + a)2 − b2 ± √
(c − a)2 − b2

2c
. (B.12)

The expansion of Eq. (B.10) around μ = 0 allow us to express a set of integrals of three Bessel 
functions as a product of two complete elliptic integrals. In fact, by making use of

Iμ(x) = I0(x) − μK0(x) +O(μ2),

Wμ(k) = 2K(k2) − μπK(1 − k2) +O(μ2), (B.13)

one can easily check that Eq. (B.10) implies
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∞∫
0

dtI0(at)K0(bt)K0(ct)dt = 1

c
K(k2−)K(k2+), (B.14)

∞∫
0

dtK0(at)K0(bt)K0(ct)dt = π

2c

(
K(k2−)K(1 − k2+) + K(k2+)K(1 − k2−)

)
. (B.15)

Thanks to Eq. (B.15) we can finally evaluate I1(0),

I1(0) = π

2c

(
K(k2−)K(1 − k2+) + K(k2+)K(1 − k2−)

)
, (B.16)

which proves Eq. (5.44).
The proof of Eq. (5.44), which requires the evaluation of the integral

∞∫
0

dt√
(t2 + (a + b)2)(t2 + c2)

K

(
2ab

t2 + (a + b)2

)
, (B.17)

proceeds along the same lines. We start from the auxiliary integral

I2(ω) = 2

π

∞∫
0

dtdz1dz2 I0(az1)K0(bz1)K0 (cz2) cos (tz1) cos ((ω + t)z2) , (B.18)

which, by using in order (B.4), becomes

I2(ω) =
∞∫

0

dt
1√

(ω + t)2 + c2

∞∫
0

dz1 I0(az1)K0(bz1) cos (tz1). (B.19)

As in the previous case, the integral over z1 can be evaluated in terms of an elliptic integral of 
the first kind (see for instance Eq. 2.16.36.2 of [56]),

I2(ω) =
∞∫

0

dt√
t2 + (a + b)2

√
(ω + t)2 + c2

K

(
t2 + (a − b)2

t2 + (a + b)2

)
, (B.20)

from which we see that Eq. (B.17) corresponds to I2(0). Therefore, in order to determine the 
value of the auxiliary integral at zero, we first make use of (B.7) in Eq. (B.18) in order to integrate 
over t

I2(ω) =
∞∫

0

dz1 I0(az1)K0(bz1)K0 (cz2) cos (ωz1). (B.21)

and then, after setting ω = 0,

I2(0) =
∞∫

0

dz1 I0(az1)K0(bz1)K0 (cz2) , (B.22)

we make use Eq. (B.14) and obtain

I2(0) = 1

c
K(k2−)K(k2+) , (B.23)

which proves Eq. (5.43).
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