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Abstract

Renewables introduce new weather-induced patterns and risks for market participants
active in the energy commodity sector. We present a flexible framework for power spot
prices that is capable of incorporating a weather model for the joint distribution of local
weather conditions. This not only allows us to make use of a long history of local
weather data in the calibration procedure but also makes it possible to assess how
changes in the renewable generation portfolio impact the characteristics of future
wholesale spot prices. Empirical tests demonstrate the model’s capability to reproduce
salient features of market variables. We furthermore show why our model offers unique
benefits for market players compared to existing approaches.



An Electricity Price Modeling Framework

for Renewable-Dominant Markets

Martin Hain∗, Hans Schermeyer†, Marliese Uhrig-Homburg‡, and Wolf Fichtner§

This Version: June 7, 2017

First Draft: January 2015
Preliminary Version

Abstract

Renewables introduce new weather-induced patterns and risks for market par-

ticipants active in the energy commodity sector. We present a flexible framework

for power spot prices that is capable of incorporating a weather model for the joint

distribution of local weather conditions. This not only allows us to make use of

a long history of local weather data in the calibration procedure but also makes

it possible to assess how changes in the renewable generation portfolio impact the

characteristics of future wholesale spot prices. Empirical tests demonstrate the

model’s capability to reproduce salient features of market variables. We further-

more show why our model offers unique benefits for market players compared to

existing approaches.

∗Martin Hain, Chair of Financial Engineering and Derivatives, Karlsruhe Institute of Technology
(KIT), P.O. Box 6980, D-76049 Karlsruhe, Germany, Phone: +49 721 608 48184, Fax: +49 721 608
48190, Email: martin.hain @ kit.edu

†Hans Schermeyer, Institute for Industrial Production (IIP) , Karlsruhe Institute of Technology (KIT),
P.O. Box 6980, D-76049 Karlsruhe, Germany, Phone: +49 721 608 44458, Fax: +49 721 608 44682, Email:
Hans.schermeyer @ kit.edu

‡Marliese Uhrig-Homburg, Chair of Financial Engineering and Derivatives, Karlsruhe Institute of
Technology (KIT), P.O. Box 6980, D-76049 Karlsruhe, Germany, Phone: +49 721 608 48183, Fax: +49
721 608 48190, Email: uhrig @ kit edu.

§Wolf Fichtner, Institute for Industrial Production (IIP) , Karlsruhe Institute of Technology (KIT),
P.O. Box 6980, D-76049 Karlsruhe, Germany, Phone: +49 721 608 44460, Fax: +49 721 608 44682,
Email: wolf.fichtner @ kit.edu

1



1 Introduction

State-of-the-art energy commodity models rely on well-established reduced-form approaches

from the fixed-income literature; yet the transition to a low-carbon economy gives birth

to renewable-dominant electricity markets and weather risk advances to a major risk fac-

tor. Meteorological studies provide concise and reliable information on weather data and

have put forth powerful tools for modeling and understanding weather dynamics. Our

contribution is to combine these insights and develop a new electricity price model that

uses local weather conditions and the spatial distribution of renewable assets to model

dynamics in wholesale electricity prices.

There are two main ingredients in the model. First, we rely on a suitable approach to

model electricity prices. Instead of using reduced-form approaches that refrain from ex-

plicitly modeling fundamental supply and demand factors we take advantage of hybrid

structural models. They allow us to incorporate the drivers of the supply side and conse-

quently permit power prices to directly depend on weather conditions. Second, we model

the temporal as well as spatial distribution of wind speed and solar irradiation, map these

local weather conditions to electricity production, and incorporate the renewable electric-

ity supply in our hybrid structural model. We show that this two-step specification has

clear advantages in times of deep structural changes, which potentially render most parts

of the historical price data obsolete.

The major strength of our stochastic price model is its ability to guide investment de-

cisions, the assessment of hedging strategies, or policy decisions in a rapidly changing

market environment. A natural first application is to study the quantitative impact of

the local distribution of renewable generation capacities on the risk characteristics of

power prices. Such an analysis should not only provide important insights on the poten-

tial future impact of the fast growing amount of renewable generation technology from

a regulatory point of view but might be of interest for many other stakeholders in the

electricity sector from owners of conventional power plants to potential investors in wind

parks or solar farms at different locations.

Generally, stochastic price models allow market participants to calculate risk measures,

to price certain risks and assets, or to deduct reasonable hedging strategies. By now,

power prices require different modeling techniques than other energy commodities such

as crude oil or natural gas for which established reduced-form approaches from the fixed-

income literature have been shown to work quite satisfactory (e.g. Trolle and Schwartz

[2009], Brooks and Prokopczuk [2013], or Hain, Uhrig-Homburg, and Unger [2016]). First,

electricity markets are usually much more local in nature due to the fact that storing the
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commodity is mostly impossible and thus, power has to be produced to match local

demand exactly in every instant. Paired with mostly price-inelastic demand this makes

wholesale prices very sensitive to shocks in fundamentals such as unexpected weather

changes or supply disruptions. These characteristics have prompted researchers to look

into pricing models that consider the interaction of major supply- and demand factors

and wholesale prices (e.g. Barlow [2002] or Coulon and Howison [2009]).

Second, once we add renewables to the equation things become even more complicated.

Electricity generation from wind and solar power is itself highly sensitive to local weather

conditions. Also, and in strong contrast to conventional power plants, the spatial distri-

bution of installed renewable capacity has a considerable impact on the characteristics of

market-wide renewable power production. Compare, for example, a scenario in which all

available renewable capacity is clustered within one single location with a more diversified

scheme. Conditional on the joint distribution of local weather variables production in the

former case is potentially much more volatile. This special “localness”-characteristic of

wind and solar power complicates projections with regard to how wholesale prices react to

capacity additions at different locations. And with renewable generation becoming more

and more economically feasible, its share to total power production will almost surely

continue to rise.

Our flexible approach is able to deal with the above challenges. Given that energy systems

worldwide are entering a phase of transformation our approach may prove its benefits in

a variety of electricity markets around the world. In this paper we detail the implemen-

tations for the German market: Germany has grown to the leader of power generation

out of renewable energy sources among large industrial nations (Bloomberg [2016]), its

electricity market currently represents the one with the largest share of wind and solar

power, and Germany has set very ambitious targets to further cut emissions drastically.

So there is still much change ahead.

First and foremost, our research contributes to the field of electricity price modeling by

proposing a methodology capable of incorporating renewables. While several approaches

incorporate renewables as exogenous variables for modeling wholesale power spot prices

(e.g. Cludius, Hermann, Matthes, and Graichen [2014] or Kallabis, Pape, and Weber

[2016]) studies that explicitly model the stochasticity from renewable generation and in-

corporate it within a power price modeling framework are rather scarce. Keles, Genoese,

Moest, Ortlieb, and Fichtner [2013] use a regression-based approach to incorporate global

wind power generation within a regime-switching model for electricity spot prices. Per-

haps closest to our approach is the residual demand framework by Wagner [2014], which

considers weather-driven demand and both market-wide wind and solar power production.

Since direct modeling of wind and solar power completely ignores the spatial distribution
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and dynamic variations thereof, Wagner’s residual demand framework cannot distinguish

between the potentially different impact of capacity additions at distinct locations. We

therefore choose to model the local constituents forming the market-wide renewable gen-

eration. Intuitively, this can be seen as applying the basic idea behind structural price

models for electricity markets recursively by additionally modeling the driving forces

behind local renewable production which in turn drive wholesale electricity prices - an

approach which we label the “Second-Layer Hybrid Structural model” (SLHS model in

short). A major advantage of our SLHS-modeling appraoch is the disentangling of the var-

ious drivers of wholesale electricity prices (demand, installed capacity, wind speed, solar

irradiation) making it possible to calibrate part of our model to a rich history of weather

data (over 20 years of local hourly weather variables). This is advantageous because there

is only a relatively short history of renewable generation available and the potential im-

pact of changes in the spatial distribution is captured naturally in our case while existing

approaches can at best account for an absolute increase in installed capacity and might

be misleading if the spatial distribution changes once again. Empirical tests furthermore

demonstrate that our methodology is well capable of reproducing salient features in the

time series of renewable production and wholesale day-ahead spot prices in Germany.

Our work is also related to the strand of literature analyzing the impact of renewable

generation on wholesale electricity prices. Early work mostly considers how the average

price level is affected (e.g. Jacobsen and Zvingilaite [2010] or Paraschiv, Erni, and Pietsch

[2014]) whereas in more recent studies additional focus is put on price volatility as well (e.g.

Jonsson, Pinson, and Madsen [2014], Ketterer [2014], or Wozabal, Graf, and Hirschmann

[2016]). All of the above studies rely on historical observations of aggregate renewable

generation and spot prices entirely. However, as pointed out above, we cannot be sure

how an increase of renewable capacity at different locations translates into the volatility of

wholesale electricity prices. Our model could therefore help in fostering the understanding

of this largely unexplored characteristic and may be used as a smart extrapolation tool

to assess such impacts quantitatively.

Finally, our study is linked to the literature dealing with the assessment of site potential

when faced with the difficult decision of choosing an optimal location for new physical

assets. While Ritter, Shen, Cabrera, Odening, and Deckert [2015] and Pieralli, Ritter,

and Odening [2015] outline potential issues with using idealized production curves for

assessing wind power production potential, Grothe and Muesgens [2013] and Ritter and

Deckert [2016] discuss spatial differences of revenues from wind parks. All of the above

studies remain silent with regard to the associated revenue uncertainty of specific sites.

Also, as these studies rely on historical bootstrapping methods they are not well suited

to validate how alterations to the renewable generation portfolio (or other important
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market variables) translate into the risk characteristics of different sites. In contrast, our

methodology could help investors to form a better understanding of potential risks and

returns associated with renewable energy projects without being purely backward-looking.

The structure of this chapter is as follows. Section 2 introduces our general modeling

framework, whereas Section 3 gives details on how our approach allows us to incorporate

a model for the joint distribution of weather variables. Section 4 then looks at other

model components on the demand and supply side while Section 5 discusses possible

model extensions. Section 6 entails an analysis of the model’s capability of reproducing

salient features of important market variables and furthermore contains examples of how

market participants can benefit from using our model. Section 7 concludes.

2 A Residual Demand Approach with Local Infor-

mation

This section entails a detailed discussion of our chosen modeling framework. We briefly

discuss how our model connects with various existing streams of modeling approaches and

then show why and how we seek to introduce local information with regard to weather

conditions and installed capacity into the framework.

2.1 Hybrid Structural Price Modeling

Modeling approaches for electricity prices can broadly be separated into two categories.

On the one side of the spectrum are approaches which heavily borrow from reduced-

form models from equity- or interest-rate markets. Early studies use low-dimensional

stochastic processes to capture patterns such as mean-reversion and seasonality (Lucia

and Schwartz [2002]). In order to capture pronounced price spikes, unmatched in other

commodity markets, Deng [2000], Cartea and Figueroa [2005], Geman and Roncoroni

[2006], Seifert and Uhrig-Homburg [2007] or Hambly, Howison, and Kluge [2009] consider

variations of jump processes. Although these models generally share nice properties such

as closed-form pricing formulas for derivatives, they are often difficult to use in the rapidly

changing electricity markets. For instance, changes in fundamentals (e.g. new large

consumers (demand-side) or producers (new wind capacity)) can render historical price

data completely useless in extreme cases. Also, since power exchanges’ liquidity of option

contracts is usually very thin there is generally no reliable forward-looking information
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with regard to higher-moment price risk to look at in order to re-calibrate a reduced-form

model.1

The other extreme consists of so-called structural production cost models. In these ap-

proaches wholesale market clearing prices result from a cost minimization problem in

which demand must be satisfied under certain side restrictions such as transmission con-

straints (Eydeland and Wolyniec [2003]). The approach requires very detailed information

on technical peculiarities of power plants or environmental constraints of the whole power

market in question. A significant drawback is the fact that such models generally only

make predictions on expected price levels and do not allow inference on higher moment

price risks. This disqualifies them as a viable tool for risk management purposes such as

hedging. Still, the approach reveals how fundamental factors drive market prices and has

therefore served as inspiration for the development of the hybrid structural models.

Hybrid structural models lie somewhere in between the two above categories - basically

resulting from a trade-off between analytical tractability and the degree of granularity

with which specific market characteristics are captured. As opposed to reduced-form ap-

proaches that try to grasp how prices move this model class looks beyond prices and asks

why prices move in the first place (Eydeland and Wolyniec [2003]). Key fundamental fac-

tors driving prices consist of market-wide demand or supply-side variables related to the

cost or availability of generation capacities. For instance, a more volatile demand process

usually results in larger swings in wholesale spot prices. In electricity markets dominated

by renewable generation, such as Norway, Spain, or Germany, weather variables can play

a major role for the characteristics of available power generation over time. The stochas-

ticity of such factors can then be captured by well-established reduced-form modeling

approaches of the financial literature. Existing hybrid models range from slightly altered

reduced-form models (e.g. Eydeland and Wolyniec [2003] or Cartea, Figueroa, and Ge-

man [2009]) to more involved modeling frameworks varying in the number of fundamental

factors considered and the kind of information being used for calibration (e.g. Burger,

Klar, Mueller, and Schindlmayr [2004], Coulon and Howison [2009], Aid, Campi, and

Langrene [2013], Füss, Mahringer, and Prokopczuk [2015], or Ziel and Steinert [2016]).

Nevertheless, studies taking renewable generation into account are still scarce. Keles, Ge-

noese, Moest, Ortlieb, and Fichtner [2013] proposes a methodology to incorporate wind

power and solar generation in reduced-form model whereas Cludius, Hermann, Matthes,

and Graichen [2014] include these as an exogenous variable in a structural model. Wag-

ner [2014] uses a residual demand framework and explicitly models the uncertainty of

solar and wind generation as additional fundamental factors. Note however, that the

1Although future contracts tend to be very liquid in European power markets, they usually carry not
much information with regard to volatility risk.
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above approaches neglect the spatial distribution of the renewable generation portfolio

completely.

As hybrid structural models seem to be best suited to match our purposes we pursue a

residual demand approach similar to Wagner [2014] in which renewable electricity pro-

duction is fed into the system with priority. The basic intuition behind such a model lies

in the fact that conventional generators satisfy the corresponding (inelastic) demand in

hour t which has been adjusted by the uncertain amount of renewable generation ret in

the system.2 Figure 1 shows the relationship between spot prices during peak and offpeak

hours with both demand dt as well as residual demand d̂t = dt − ret. As expected, the

figures show that given a level of raw demand dt there is still considerable variation in

wholesale spot prices st. This variations (along the y-axis) are clearly reduced if we in-

stead consider residual demand d̂t. Also note that for offpeak hours there are many cases

of very low and even negative spot prices whereas demand was not even exceptionally low.

A direct comparison with the residual demand - spot price relationship shows that these

low prices were in fact caused by exceptionally large production levels from renewables.

This shows that in a market with a significant presence of renewables such as Germany

a modeling approach for wholesale electricity prices should account for the stochasticity

from renewables. This leads us to the first building block of the modeling framework.

Model Component 2.1 The model for hourly wholesale day-ahead spot prices st is

st = ft(d̂t) + σt (1)

d̂t = dt − ret (2)

where

ft corresponds to the supply curve function, and

σt is a residual volatility process.

The supply function ft thus maps the current inelastic demand to a respective hourly

day-ahead spot price st. This curve basically results from an auction which orders the

generators according to their bids. Generators offer their generating capacities at marginal

costs and market-wide inleastic residual demand d̂t determines the intersection with the

supply curve and with it the resulting market clearing price. σt is an error term account-

ing for randomness unexplained by the structural modeling framework such as capacity

outages or transmission issues.

2Because the feed-in of wind/solar is basically free of marginal cost, we assume their generation bids
to be accepted on the wholesale market independent from wholesale market prices (which is true, unless
very negative prices occur).
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Figure 1: Empirical relationship between load, residual load, and spot prices

The figure depicts the relationship between load and spot price (top two figures) as well
as between residual load and spot price for peak- and offpeak hours. Data source is the
EEX-transparency plattform and ranges from January 2010 to mid 2014. Peakload
hours correspond to all hours within 8 am to 20 pm whereas offpeak hours correspond
to the remaining ones.

2.2 Localizing Renewable Generation: The Second-Layer Hy-

brid Structural Price Model

Why is localizing the renewable generation important? In a rapidly changing market

environment market participants need to be capable of assessing the impact of capacity

additions at some given location. Existing approaches may run into difficulties if there

has not been any installed renewable capacity at the given location before or a historical

track record of (local) renewable production is not available, which is usually the norm.

Deducing the impact from the historical (aggregate) renewable generation process can

thus be fatally flawed (out-of-sample problem). Alterations to the renewable portfolio

might also introduce difficulties if one tries to calibrate a model that solely considers the

aggregate generation of the renewable technology. Fitting a single stochastic process to the

aggregate wind (solar) power generation then might at least necessitate time-dependent

parameters to accommodate for any changes happening over time (in-sample problem).

To resolve these problems we do not model the aggregate generation of a specific renewable

8



technology directly but rather focus on its local constituents. This results in the following

description of the second main model component:

Model Component 2.2 The model for the hourly renewable generation process ret is

ret =
∑
u∈U

reut (3)

reut =
∑
k∈K

gu,k(yu,kt ) (4)

where

K is the set of different locations covering the market area,

U corresponds to the set of different renewable technologies in the market,

reut is the technology specific aggregated generation,

gu,k is the production curve mapping weather conditions to output (in MWh), and

yu,kt is the location- (k) and technology-specific (u) weather variable.

The approach thus incorporates the modeling of the distribution of local weather condi-

tions and their corresponding mapping gu,k to local and with it market-wide generation

of a certain renewable technology. In other words, we recursively adopt the basic idea

behind hybrid structural modeling approaches on a “deeper” layer of model structure

by asking “what drives the drivers of wholesale market prices?”. We therefore label the

approach “Second-Layer Hybrid Structural model“ (SLSH model). Thus, instead of mod-

eling the resulting process of renewable generation of various technologies directly, we

instead choose to model the underlying drivers of renewable generation, the weather, and

use suitable transformations to map from local weather conditions to aggregate output.

Below we show how to estimate these mapping functions from local weather conditions.

This allows us to incorporate a long history of weather data.

3 Making Weather Data Useful: Modeling Details

and Estimation Strategy

Our model philosophy hinges on the idea of a “smart disentanglement” of major con-

tributors of electricity production from renewable energy sources. These consist of local

weather conditions on the one hand and the amount of local renewable generation tech-

nology on the other hand. Ongoing research in the field of meteorology has broadened

our possibilities to better understand the dynamics of key weather variables. Most im-

portantly, one can resort to publicly available comprehensive databases covering highly
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Figure 2: Market-wide renewable production in Germany

The figure shows market-wide renewable generation for wind power (top) as well as
solar power (bottom) for 2010 - 2014.

detailed weather information. Similarly, information with regard to the geographical lo-

cations of renewable power plants across market areas is usually publicly available with

reasonable temporal frequency as well.

Figure 2 showcases publicly available market-wide renewable production data for solar

(bottom) and wind (top) for the case of the German power market from late 2009 to

2014. Clearly, time series properties are very different for the two technologies considered

which proves us right to model power production from wind and solar separately. It is

also apparent that renewable production has experienced considerable growth over the

last few years indicated by a clear trend in average yearly production volumes. The

question is now why one should refrain from modeling these aggregates directly. First,

one is left with a relatively short period of data to calibrate model parameters. Second,

such a modeling approach is completely blind for any spatial variations in the renewable

generation portfolio, potentially necessitating time-dependent parameters. And third,

one basically skips a large amount of weather data which could otherwise be of use in the

calibration procedure.
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In order to bypass these issues and to make use of weather data with a high spatial

resolution this section showcases our new empirically-driven approach to estimate the

mapping functions gu,k(.) from aggregated production data and corresponding weather

variables.

3.1 Weather Data

Obtaining a time series of wind speed and solar irradiation with a sufficiently high spatial

as well as temporal resolution is usually very difficult. For once, meteorological stations

tend to be situated near airports and thus one is usually left with large gaps in geographical

coverage (Rose and Apt [2015]). We therefore opt for reanalysis data that are based on a

mix of meteorological observations as well as model-based interpolations in space and time

offering a rich history (usually up to several decades) and very high spatial granularity.3

For our analysis we use a historical time series of solar irradiation as well as wind speed at

120 m above ground supplied by Anemos [2016]. The data is generated through downscal-

ing of reanalysis data from the NASA program Modern-Era Retrospective Analysis for

Research and Applications (MERRA) applying the Mesoscale Model MM5 PSU/NCAR

[2016]. It offers a temporal resolution of 10 minutes (spanning from 1990 to 2012) and a

spatial resolution of 20km x 20km.4 For simplicity, we divide the German market area into

a grid of 100 × 100 km areas resulting in K = 38 weather cells (see Figure 3) for which

we compute hourly averages. Our choice of the spatial resolution is mostly motivated by

the fact that we want to limit the computational burden in the estimation and scenario

generation of our weather model later on. The choice of the temporal resolution appears

reasonable, as most other variables of interest (e.g. demand or day-ahead spot prices) are

of hourly frequency as well. Note that our weather grid also entails two offshore regions in

the North Sea as well as the Baltic allowing the incorporation of wind power generation

at offshore sites.

3.2 The Renewable Generation Portfolio and Production Curves

The missing link to incorporate the large panel data set of weather variables into our

modeling framework now lies in the specification and estimation of the production curve

3Although Rose and Apt [2015] have expressed some concerns and demonstrated the presence of a
small bias for reanalysis data in the US we have yet to find any better alternative that allows for such
high granularity, both in the temporal as well as in the spatial dimension.

4A detailed comparison between the model’s irradiation data and measurements from weather stations
is done by Schermeyer, Bertsch, and Fichtner [2014].
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Figure 3: Weather cells of German market area

The figure shows the grid of weather cells that covers the German market area.

functions gu,k(.). One approach is to set these functions exogenously by making use of pro-

duction curves. However, such published relationships usually only hold under idealized

conditions and numerous studies document substantial bias and deviations from empir-

ical production curves published by manufacturers (e.g. Pieralli, Ritter, and Odening

[2015] or Ritter, Shen, Cabrera, Odening, and Deckert [2015]). Furthermore, using such

power curves would furthermore require the consideration of wind direction and angle of

solar irradiation which would add another layer of complexity to our weather modeling

framework.5 As a result, we opt for a more empirically-driven approach by looking at

observable aggregates of renewable generation across several weather cells. We then use

these aggregates to calibrate a representative production curve gu,k(.) for the respective

candidate weather cells by using the times series of suitably weighted local weather con-

ditions as input variables. Before going into the details of how the production curves are

estimated, however, we discuss two key ingredients in our calibration procedure: (1) the

dynamics of the spatial configuration of the renewable generation portfolio and (2) the

time series of observable aggregates of renewable generation:

(1) Capturing developments in the spatial configuration of renewable power plants over

time is an integral part of our modeling approach. EnergyMap [2016] tracks the exact

amount and geographical locations of renewable generation capacities on a monthly basis.

Since there are more than 1.5 million renewable energy plants in Germany (Bundesnet-

zagentur [2015]), we have to simplify this diversity and aggregate the installed capacity.

We allocate the capacity of wind and solar generators to one of our K = 38 weather

5We actually tested a simplified approach using power curves of turbines most often sold and installed
in the German market area. However, as expected we ended up with a substantial positive bias in
generated output when comparing model-implied with observed values.
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Figure 4: Balancing-areas in the German power market

The figure visualizes the separation of the German market area into four distinct
balancing-areas (source: Netzentwicklungsplan [2017]): 50Hertz , TenneT , Amprion,
as well as TransnetBW.

cells according to monthly values from EnergyMap [2016]. To arrive at hourly values

we then linearly interpolate between adjacent monthly values for installed capacity.6 For

simplicity, we furthermore refrain from accounting for any renewable generation located

in Austria as the amount of renewable capacities is very small compared to Germany.7

This results in a multivariate hourly time series of installed wind and solar power from

2010 to 2014 for each of our weather cells.

(2) Ideally, one would like to use a time series of renewable generation for every location

considered to estimate a corresponding production curve. Unfortunately, such data does

not exist for most markets and the German one is no exception in this regard.8 What

we do observe is the aggregate renewable generation for four so-called “balancing-areas”

though. There are four of such areas which, taken together, form the complete German

6Due to the fact that the extraction of geographical locations from EnergyMap [2016] is relatively time
consuming, we started off with a yearly updated dataset for each technology and use linear interpolation
in between adjectent years. This should capture potential rapid growth happening throughout the year
for the most part.

7Note that the German and Austrian power grid actually belong to one market area.

8Note that there are studies making use of proprietary data sets for specific wind parks (e.g. Ritter,
Shen, Cabrera, Odening, and Deckert [2015]). Nevertheless, even if we had access to several such data
sets this would not be sufficient for our purpose as we require information regarding generated power
from wind and solar for each of our weather cells which are unlikely to exist.
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Figure 5: Power curve of exemplary wind turbine

The graph visualizes the dependency of power production and contemporaneous wind
speed for the Enercon E82 wind turbine (capacity 2.05 MW, source: ENERCON
[2017]).

market area and which incorporate all 38 weather cells in our modeling framework. Figure

4 shows these four balancing-areas. Data is provided by EEX [2016] and leads to hourly

wind and power generation for each of these four balancing-areas from 2010 to 2014.9

To finally estimate representative production curves for the renewable power plants we

have to incorporate local weather data. We consequently make use of a panel set of hourly

wind speed and solar irradiation for each of the k ∈ K weather cells for the respective

time frame.10 In order to estimate a representative curve for each balancing area we

have to specify how the set of input variables (weather) is aggregated when held against

the output variable (aggregate renewable production). A straightforward approach could

consist in averaging respective weather variables included.

However, this neglects the fact that the amount of installed renewable generation capacity

of each weather cell contained within the respective balancing-area is not necessarily

identical. The relative contribution to renewable production in a given balancing area

tends to be larger for cells with a larger amount of renewable power plants. Obviously, this

renders the weather conditions of these cells more important, too. Furthermore, the local

amount of installed capacity might change throughout the year and thus result in sudden

changes of renewable production within certain weather cells. To cover the above effects

we assign weights normalized by the overall installed capacity of a certain technology in

9Note that we expect to incur some error by allocating renewable generation assets to the nearest
weather cell in terms of geographical distance as this does not guarantee that it matches with the affiliation
to a respective balancing area.

10Unfortunately, our weather data set ends in 2012. Therefore, we are unable to make use of data with
regard to renewable production and the installed capacity in the years 2013 and 2014 for the estimation
of production curves.

14



a certain balancing-area TRn, n = 1, .., 4 to form representative input variables:

ωu,kt =
capu,kt∑

k∈TRn
capu,kt

capu,kt is the installed capacity (in MW) of technology u in location k at hour t. Using

these weights we compute a representative (balancing-area-specific) weather variable for

hour t in balancing-area TRn:

zu,nt =
∑
k∈TRn

yu,kt ωu,kt

Finally, these variables can be used to estimate the relationship gu,n(.) between balancing-

area related renewable generation reu,nt of technology u and zu,nt .11 Motivated by technol-

ogy specific shapes of production curves indicated by Figure 5, we use a logistic function

for the case of wind and a second-order polynomial for solar12. We then estimate the

respective parameter vector Θu,n of technology u of region n by means of the following

minimization:

min
Θu,n

∑
t∈T

(r̂eu,nt − ĝu,n(zu,nt ,Θu,n))2

where both g(.)u,n as well as ret have been normalized by the sum of total installed

capacity
∑

k∈TRn
capu,kt , resulting in hourly efficiency rates r̂e and ĝ. Using these estimated

production shapes then allows us to infer local production conditional on local weather

conditions and installed capacities.

Figure 6 highlights the estimated production curves for wind and solar of the Tennet

balancing-area, justifying our choice of a logistic and second order polynomial function.13

11For the case of wind speed we additionally account for the fact that measurements are taken from
120 m whereas hub heights of turbines might vary. We therefore extrapolate to the average hub height
of wind turbines in each weather cell by using the power law which is common practice in literature (e.g.
see Brown, Katz, and Murphy [1984]):

y′ = y
( z
h

)α
where y′ (y) corresponds to the wind speed at hubheight z (height of measurement h), and α being the
shear coefficient (α = 0.085).

12Although the power curve of solar is mostly linear in irradiation levels, there is a slight decrease of
efficiency for higher levels of irradiation. Solar-panel efficiency is partly reduced by higher temperatures
which happens to be correlated with overall irradiation levels.

13As expected, the second-order polynomial turns out to be significant and negative for the case of all
solar production curves, resulting in deviations from the otherwise linear relationship for large levels of
solar irradiation.
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Figure 6: Empirical power curves

The two graphs visualize the dependency between the Tennet balancing-areas’ weather
variable zu,nt and renewable generation for wind (left) as well as solar (right). The red
line corresponds to the estimated prower curves.

Figure 7: qq-plots of renewable generation

The two graph depicts qq-plots of observed vs. model-implied renewable generation
for wind (left) and solar (right) in the TenneT balancing-area for 2012.

More details with regard to the parameterization of power curves and estimation results

can be found in Appendix A. As indicated by the qq-plots in Figure 7 our model seems

to be quite capable of capturing the distributional properties of balancing-area specific

generation from wind. However, our methodology somehow fails to capture the very high

peaks in solar production for some balancing-areas. Nevertheless, we obtain correlations

of over 95 % for model-implied and observed renewable production (for each of the four

balancing-areas), giving indication for the soundness of the model.

Overall, our approach to model renewable generation production yields good results in

terms of capturing time series properties of observable aggregates. More importantly, a

separate modeling of the renewable generation portfolio and production curves from local

weather risk makes our approach very flexible. For instance, we can calibrate weather

models to a large history of more than two decades of local weather data. Once calibrated,

we can also easily change the configuration of the renewable generation portfolio in order

to assess its potential impact on market-wide renewable power production and with it on

wholesale electricity spot prices.
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3.3 Modeling Weather Risk

The last section proposed a methodology that is capable of using local weather conditions

as input variables in a framework for market-wide renewble power generation. This effec-

tively enables the researcher to model and calibrate weather risk separately by means of

state-of-the art econometric approaches.

Literature with regard to the modeling of the temporal dimension of wind speed and

solar irradiation primarily makes use of autoregressive approaches and various extensions

of it (e.g. Brown, Katz, and Murphy [1984], Mora-Lopez and Sidrach-De-Cardona [1998],

Caporin and Pres [2012] or Alexandridis and Zapranis [2013]). There are furthermore

studies focusing on the spatial distribution only. For instance, both Papaefthymiou and

Kurowicka [2009] or Hagspiel, Papaemannouil, Schmid, and Andersson [2012] make use

of copulas in order to capture the local dependencies of wind speed at different locations

in Germany. Approaches dealing with both dimensions are less numerous. Morales,

Minguez, and Conejo [2009] and Papavasiliou and Oren [2011] both make use of vector

autoregressive (VAR) models to capture the wind speed dynamics at various locations in

the United States whereas Grothe and Schneiders [2011] combine autoregressive models

with pair-copula constructions (PCC) in a similar setting for German wind speed data. We

follow the latter stream of literature and choose a VAR structure for the joint distribution

of the multivariate times series of wind speed and solar irradiation.14 In what follows, we

give a short overview of the general idea behind the modeling approach. We then look at

stylized statistical features of wind speed and solar irradiation in our data set for Germany

and discuss adjustments in the model specifications necessary to capture weather-specific

characteristics (e.g. time-dependent volatility) for each case.

3.3.1 A General Multivariate Weather Model

Modeling weather data necessitates a description of serial and spatial correlation among

different locations along with univariate peculiarities such as non-normality. In order

to account for seasonal patterns we first remove region-specific trends µu,kt which yields

de-trended data yu,kt := yu,kt − µ
u,k
t . To capture non-normality one undertakes a transfor-

mation by using the empirical distribution function of the de-trended time series resulting

14Although pair-wise copula constructions offer more flexibility to capture heterogeneity and asymme-
tries in dependence structures, their estimation and simulation of scenarios is more demanding from a
computational point of view. As a result, we stick to the simpler VAR structure and leave an incorporation
of copula theory in this regard for further research.
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in approximately normally distributed weather variables ŷu,kt :

ŷu,kt = Φ−1
[
F u,k

[
yu,kt

]]
(5)

where Φ−1 is the inverse cumulative distribution function of a standard normal random

variable, and F u,k corresponds to the (empirical) cumulative distribution function of the

original untransformed (but detrended) time series yu,kt . Note that F u,k should correspond

closely to the distribution function of the “true” data-generating process since we can

resort to a large data set of a long history spanning 23 years of hourly observations.15

Since the transformation preserves the covariance structure of the weather variables (e.g.

see Liu [1986]), we can model their corresponding joint distribution by means of a VAR-

model of order P :

Ŷu
t =

P∑
p=1

ΨpŶu
t−p + Ut

with Ŷu
t corresponding to a vector of observations of ŷu,kt ’s of all regions, Ψp are coefficient

matrices of dimension K × K, and Ut is an error-term following a multivariate normal

distribution with a mean vector of zeros and covariance matrix Σu. The optimal leg-

length P is decided upon by using the AIC, whereas coefficients along with covariance

matrix Σu are estimated by maximum likelihood. Henceforth, we are capable of capturing

both site-specific peculiarities of the marginal distribution but on top of that can use the

normally distributed transformed data to calibrate a VAR-model that allows us to capture

serial and spatial correlation as well.

3.3.2 Peculiarities of Wind Speed and Solar Irradiation Dynamics

As expected, an analysis of weather variables in Germany reveals distinct seasonal pat-

terns. Wind speed exhibits highly non-normal behavior with volatility being larger during

autumn and winter seasons. Skewness and kurtosis varies across the year as well. Fur-

thermore, there is much cross-sectional variation. For instance, wind speed in northern

regions is larger on average and more volatile. To capture these aspects we augment the

general specification by introducing a time-dependent site-specific volatility function σw,kt

used as an additional normalization factor besides the trend-function µw,kt . We further-

15Some studies impose parametric restrictions on the transform (for example, both Brown, Katz, and
Murphy [1984] and Morales, Minguez, and Conejo [2009] use the Weibull distribution for wind speed).
However, since we have access to a long history of data it makes more sense to directly make use of
the observed empirical distribution function offering more flexibility in terms of capturing site-specific
peculiarities. This also allows us to capture potential seasonality in higher moments by making the
empirical distribution function time-dependent.
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more allow the empirical distribution function Fw,k
t to vary across seasons in order to

account for time-variation in skewness and kurtosis.

Solar irradiation is behaving quite differently. First, seasonal patterns are much more

pronounced: There is no sunshine throughout the night. Furthermore, average solar

irradiation levels are ten times as high during summer season. Cross-sectional differences

are much smaller if compared to the case of wind though. The absence of sunshine during

night complicates the modeling of hourly irradiation levels by means of a VAR approach.

Cloud formations have a considerable impact on the the resulting solar irradiation and

one is incapable of observing these during night time. Consequently, we are blind for any

uncertainty that might affect the weather variables during the early morning hours. We

therefore deviate from Morales, Minguez, and Conejo [2009] and loosely follow Wagner

[2014] by instead modeling the daily maximum irradiation level ỹs,kt and capture any

intraday variation by means of a deterministic pattern function.

An inspection of qq-plots as well as autocorrelation- and crosscorrelation-functions reveals

that the augmented modeling approaches are successful at explaining the dynamics of the

considered weather variables. More details with regard to stylized characteristics of our

weather data, model specifications, and goodness-of-fit tests can be found in Appendix B.

4 Conventional Supply and Demand Factors

4.1 Supply Function

A key ingredient for the model framework is how current market conditions such as

demand, renewable generation, and production costs from conventional generation assets

are translated into the market clearing spot price in the day-ahead market. In language

of our model framework, this essentially means what kind of structure we impose on

the supply function ft in (1). Existing modeling attempts for ft range from relatively

simple approaches (e.g. Barlow [2002], Burger, Klar, Mueller, and Schindlmayr [2004],

and Wagner [2014]) to more involved dynamic frameworks which also account for shifts

in the supply function due to variations in different fuel prices (e.g. Coulon and Howison

[2009], Coulon, Powell, and Sircar [2013]). Since the former approaches have been shown

to work quite well and our primary goal lies in a quantitative assessment of weather risks

which are mostly unrelated to global fuel prices we follow this stream of literature. ft(.)

is therefore captured by means of a time-dependent deterministic function.

As can be seen in Figure 1 spot prices are non-linear in residual demand as such as they

drop disproportionally if d̂t is low enough and vice versa. The relationships also seem to
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be slightly different when one compares peak to offpeak hours. Apart from this, we are

unable to detect other notable seasonal patterns. To capture this behavior, we use the

following parametric specification:

ft(x) = h(x, ct(x))

h(x, ct(x)) =


smin, x ≤ xmin

min (smax,max (smin, ct(x))) , x ∈ (xmin, xmax)

smax, x ≥ xmax

ct(x) captures possible variations in the supply curves’ shape due to peak and offpeak

hours:

ct(x) =

α0 + α1
1

(x−xmin)
+ α2

1
(xmax−x)

+ α3x, t ∈ T peak

β0 + β1
1

(x−xmin)
+ β2

1
(xmax−x)

+ β3x, t ∈ T offpeak
(6)

where Tpeak and Toffpeak correspond to the set of time indices of peak and offpeak hours.

Both the minimum and maximum wholesale price smin and smax as well as the minimum

and maximum residual load values xmin and xmax are specified exogenously.16 The second

and third term in both equations of (6) essentially capture the non-linear behavior for

very low and high levels of residual demand d̂t Note that we deviate from the parametric

structure proposed by Wagner [2014]. In his specification spot prices can basically only

spike during peak hours or turn significantly negative (up to -3000 EUR/MWh) during

offpeak hours. Although this might work well in-sample, we regard such an assumption as

too restrictive if the model is used out-of-sample.17 We therefore opt for the above more

flexible specification. Model parameters Θ = (α0, α1, α2, α3, β0, β1, β2, β3) are estimated

by minimizing the sum of squared residuals between observed spot prices and model prices

ft(d̂t,Θ) for 2012-2014 from EEX [2016].18

Figure 8 shows our estimate for peak and offpeak hours whereas Table 1 provides infor-

mation on parameter estimates. We observe slight differences in shape for the different

16The possible range for prices is set by the EEX (-3000 as well as 3000 EUR/MWh). The residual load
boundaries xmin and xmax are taken from Wagner [2014] and amount to 10 GW and 85 GW. Basically,
the minimum value can be interpreted as the lowest load the grid can handle without endangering system
stability while xmax corresponds to the total amount of conventional installed capacity. Note that the
EEX recently changed the minimum price to -500 EUR/MWh.

17For example, an analysis of alterations to the renewable generation portfolio might change weather-
induced patterns considerably and thus even render negative prices during peak hours more likely.

18Unfortunately, there was a gap in hourly demand data from 2009 to mid 2012 on EEX [2016].
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Figure 8: Supply curves for peak and offpeak hours

The figure shows the estimated supply curves for peak (black) and offpeak hours (red).

Table 1: Parameter estimates of supply curves

A. Peak α0 α1 α2 α3

-5.9380 -87.7721 388.3926 0.8544
(3.0837) (37.7970)∗ (46.6999)∗∗∗ (0.0679)∗∗∗

B. Offpeak β0 β1 β2 β3

-6.8700 -203.4332 478.0203 0.8035
(0.9795)∗∗∗ (9.4439)∗∗∗ (63.2105)∗∗∗ (0.0469)∗∗∗

The table shows parameter estimates and standard errors (in parantheses) for the supply
curve functions in peak hours (Panel A) as well as for offpeak hours (Panel B). Estimates
are obatined by non-linear least-squares (least-squares) for wind power (solar power). ***,
**, and * denotes statistical significance at the 0.1% , 1%, and 5% level.

time frames. It seems that in contrast to earlier studies differences between peak and

offpeak hours have decreased considerably (e.g. Burger, Klar, Mueller, and Schindlmayr

[2004]).

Since our model does not account for all fundamental factors (e.g. power plant outages)

or other aspects (e.g. market psychology) an inspection of the residual process σt :=

f(d̂t) − st seems warranted. Very similar to Burger, Klar, Mueller, and Schindlmayr

[2004] we find that this process is mostly unrelated to fundamentals such as weather

variables or demand.19 In order to make use of the model in risk management applications

such as hedging or Value-at-Risk calculations it makes sense to capture this additional

uncertainty as well. For instance, if weather-related risk such as wind power generation at

19All time series correlations are below 20 percent (in absolute terms).
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a specific location is to be hedged with spot price derivatives, neglecting this additional

(independent) source of risk would potentially bias hedging efficiencies. We therefore

follow the rather practical approach by Burger, Klar, Mueller, and Schindlmayr [2004] and

model the residuals σt by means of a parsimonious time series model. The inspection of

the σt reveals both serial correlation at various lags as well as heteroscedasticity prompting

us to choose an ARIMA process with GARCH noise.20

4.2 Demand

Demand can be seen as the major driver of price changes. It exhibits pronounced seasonal

patterns on a yearly, weekly, as well as intra-daily basis.21 Modeling demand has been

investigated in numerous studies (e.g. Weron [2006], Burger, Klar, Mueller, and Schindl-

mayr [2004], Coulon and Howison [2009], or Wagner [2014]) and is quite well understood.

It has been shown that besides the need for a flexible trend function in order to capture

the pronounced seasonality patterns demand also requires to capture serial dependencies

justifying the use of ARIMA-type modeling approaches. We once again follow Burger,

Klar, Mueller, and Schindlmayr [2004] and use an ARIMA-type model to capture autocor-

relation and a deterministic trend function with dummies for hours, weekends, holidays

and months based on hourly demand data from EEX [2016]. As in the aforementioned

studies, the model does a good job at capturing the characteristics of temperature-driven

market-wide demand.

5 Discussion of Model Extensions

Our parsimonious structural modeling framework obviously carries its limitations. We

will therefore shortly look at its most severe drawbacks, how one could approach these,

and in which cases these might be of minor importance.

Obviously, the deterministic supply function could be modeled in a more involved fashion.

Variations in the shape of the curve are primarily caused by two factors: (1) power plant

availability and (2) power generation costs. Unexpected technical issues can result in

sudden shutdowns of conventional generation assets resulting in potential changes in the

shape of the supply curve. Note that such impacts might be very different conditional on

which kind of asset is affected by the outage. For instance, an outage of a large nuclear

20A more detailed discussion of the model for the residual volatility process σt can be found in
Appendix C.

21Please refer to Appendix D for a more detailed discussion of the modeling details and statistical
properties of market-wide demand in Germany.
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baseload plant with low marginal costs usually results in a shift of the whole curve to the

left, affecting the price formation for all hours within a day. In contrast, an outage of a

flexible smaller natural gas power plant is more likely to make the supply curve steeper in

the right part of the supply function, thereby having a stronger impact on prices during

peak hours. Given detailed data on “default rates” of the generation fleet of conventional

assets one could model the aggregate plant availability over time and construct the supply

function based on available assets at a given point in time. This would then render the

supply function stochastic.

As power plant owners usually offer to produce electricity for prices close to their marginal

costs, fuel prices are another potentially important driver of time variation in the supply

function. Note that different parts of the supply function are driven by different fuel

costs as well. At the moment, we capture any variation, unexplained by our choice of

fundamental factors, by a residual volatility process σt. Given the fact that this process is

assumed to be stationary our model lacks any long-term risks such as permanent changes

in fuel prices. A geopolitical event (e.g. trade-war, military conflict,..) could then shift

part of the supply function up- or downwards and result in a long-term average price

shift. In a similar way, fluctuating CO2 emission prices could have an impact on the

supply function as well.22

The above extensions necessitate a lot of highly detailed data on the conventional gen-

eration portfolio which might not always be available. Also, although long-term risks in

terms of changes in fuel prices are not captured, the residual volatility component should

at least be capable of covering short-term deviations attributable to outages to some

extent. We therefore regard the limitations primarily relevant for market participants

concerned with long-term prospects of market dynamics. An ad-hoc approach to accom-

modate for a current permanent shift in the supply function could be partly captured by

an additional parameter in the Model Component 1:

st = ft(d̂t) + σt + δ

If permanent, such a shock should be reflected in traded forward-looking instruments.

As a result, δ could then be estimated by means of long-maturity electricity futures,

somewhat similar to the practice of yield curve fitting for spot-price models of the fixed-

income literature. The price of such a contract is its expected value under the risk neutral

22As CO2 emissions vary across electricity generation technologies, the impact of changes in CO2 prices
is not the same for different parts of the supply function.
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measure:

f et = EQ
t

[∑
t∈T

st

]

= EQ
t

[∑
t∈T

ft(d̂t) + σt + δ

]

= EQ
t

[∑
t∈T

ft(d̂t)

]
+ δ̂

The second equality follows from the fact that the residual volatility process
∑

t∈T σt is

zero in expectation and independent from other sources of considered risk factors. Using a

calibrated version of the model could in turn be used to match observed futures prices by

adjusting δ̂ =
∑

t∈T δ accordingly. Nevertheless, care has to be taken in the estimation of

δ. First, futures contracts incorporate risk premia which need to be estimated beforehand

(e.g. based on historical fundamental data and quotes on futures). Second, one has to

make sure that the shift in average prices is not attributable to forward-looking changes

in fundamentals on the demand- or supply-side.

Other overlooked aspects in the model are wind direction and variations in irradiation

angle. The direction a physical asset faces can have a considerable impact on the resulting

power production both for wind as well as for solar. For wind power this is much less of

a concern. This is due to the fact that so-called horizontal axis turbines, which represent

the vast majority of commercial assets nowadays, can quickly adjust their rotor blades to

variations in wind direction.23

In contrast, the majority of commercial solar power plants are unable to adjust their

orientation towards incoming irradiation which changes throughout the day. Therefore,

a solar power plant’s individual configuration influences the resulting power generation.

An extension of our model could incorporate information about each asset’s configuration

within a weather cell. This could be captured by adjusting the local capacity weights when

estimating the balancing-area-specific production curve gs,nt (see Section 3.2) according

to the respective local orientations of solar power plants and be of help to capture local

renewable generation dynamics more realistically.24 Furthermore, this would allow market

participants to consider an additional strategic layer in their decisions making process.

23Wind direction can become important for the detailed analysis of the power production profile of a
specific wind park though (e.g. the exact placement of turbines next to each other and/or the considera-
tion of obstacles such as hills). Given the spatial granularity of our weather model (weather cells of 100
km × 100 km size) such a level of detail is beyond the scope of this study.

24We actually attribute some of the unexplained variation by our solar production curves (see Section
3.2 Figure 6) to the neglection of solar panel orientation.
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6 Empirical Analysis

Using the calibrated SLMS model we now address its performance in terms of reproducing

wholesale power price dynamics. We then look into how our model can be applied in

practice and in which cases it provides unique benefits for different stakeholders in the

electricity sector.

In the following analysis, we make use of simulations to compare statistical properties such

as observed and model-implied moments or quantiles. We found N = 1000 simulation

scenarios to be reasonably robust in terms of the sampling error. To obtain one trajectory

of wholesale power prices we have to simulate all state variables: (1) weather variables;

(2) market-wide demand; (3) residual volatility. Our analysis also entails assessments of

specific time frames in isolation (e.g. a specific month). If not stated otherwise, we create

simulation scenarios in these cases by conditioning all state variables to equal their mean

values at the beginning of the month.

6.1 Explaining Wholesale Power Prices

To underline the soundness of the proposed modeling framework we now shed light on its

capability of reproducing salient statistical features of wholesale spot prices in the German

electricity market. We start with a visual inspection of historical as well as simulated day-

ahead spot prices. Figure 9 is an exemplary plot of st from October to December 2012. It

can be seen that the stylized features of observed day-ahead prices seem to be captured

quite well. For instance, negative price spikes tend to occur more frequently during winter

holidays when the demand from large industrial consumers is missing.

Next, we look at qq-plots of model-implied and observed spot prices. As a benchmark, we

choose a standard reduced-form price model for electricity price dynamics used in Benth,

Biegler-König, and Kiesel [2013] and calibrate it to the same time series of wholesale

spot prices used for the SLSH model. The model features a flexible trend function, a

mean-reversion component, as well as a spike process to capture heavy tails in the em-

pirical distribution.25 Since reduced-form approaches are calibrated to the observed price

distribution directly they serve well as a benchmark for our modeling framework. Figure

10 highlights the qq-plots between the observed price distribution and the corresponding

modeling approaches. Both seem to be capable of capturing the majority of the empirical

distribution although the extreme tails are not captured perfectly. This demonstrates

that the SLMS model can compete with existing reduced-form approaches.

25Please refer to Appendix E for a description of model specification and calibration.
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Figure 9: Observed vs. simulated price trajectories

The figure depicts observed (top) and simulated (bottom) day ahead spot prices for
late 2012.

Next we have a look at how the model fares with capturing key properties of price volatil-

ity. Volatility is a key factor for important managerial decisions or risk management ap-

plications. For example, the scheduling of electricity production of highly flexible power

plants is a complex path-dependent dynamic optimization problem. The asset derives

much of its value from price volatility. Consequently, the decision to ramp up such an

asset should then be based on the most relevant observable state variables influencing fu-

ture volatility. As a result, we require a model in which the dependence between volatility

and other variables of interest is captured accordingly.

To demonstrate the SLSH model’s capability in this regard we look at the relationship

between residual demand d̂t and price volatility. To set the corresponding variables into

perspective, we calculate a daily average values for both variables of interest and inspect

the relationship visually (see Figure 11).26 Although, the pattern is not captured perfectly,

the model correctly predicts higher volatility levels for higher residual demand levels.

Additionally, we also observe a slight reversal of this effect for very low levels of residual

demand both for historical data as well as model-implied. This pattern can be attributed

to the fact that for very low and high levels of residual demand d̂t the supply function

is relatively steep (see Figure 8), potentially causing larger price swings. Note that this

26We actually depict splines fitted to the empirically observed relationships to facilitate the presenta-
tion.
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Figure 10: qq-plot between observed and simulated day-ahead prices

The figure shows qq-plots between observed and simulated spot prices using the
reduced-form approach (top) as well as using the SLSH model (bottom).

effect is present in other electricity markets as well (e.g. see Eydeland and Wolyniec

[2003]) and called “inverse leverage effect”.

Finally, we test the model’s capability to describe the joint distribution of the modeled

(aggregate) drivers and the wholesale spot prices - a property that becomes very important

for hedging practices. For instance, the owner of a wind park might be interested in using

price-based derivative instruments (e.g. electricity futures) to reduce the volatility of

his future cashflows. In order to make an assessment of the potential of such strategies

he necessitates a model that correctly predicts the relationship between prices and wind

power production. Table 2 depicts the time series correlations of renewable generation

from solar, wind, demand, and residual demand with spot prices. As can be seen, the

model-implied correlations are very close to what we actually observe.27 For instance, the

link between residual demand and spot prices is stronger than for the case of raw demand

and wind seems to have a stronger impact on spot prices than solar.

6.2 Managing Market Risks with the SLSH Model

Market participants in modern power markets are facing increasingly complex weather-

dependent uncertainties. This section highlights how the SLSH model can help to better

understand the associated risks.

27We are well aware that correlations can be misleading for non-linear relationships. Nevertheless, the
similarity of both empirical and model-implied moments is striking.

27



25 30 35 40 45 50 55 60

5
10

15
20

avg. daily residual demand (GW)

av
g.

 d
ai

ly
 p

ric
e 

vo
la

til
ity

 (
in

 %
)

Residual demand vs. price volatility

Figure 11: Relationship between residual demand and price volatility

The figure shows the relationship between average daily residual demand d̂t and aver-
age daily price volatility for historical data (blue line) and model-implied (red line).

6.2.1 Setup of Risk Analysis

We take take the renewable portfolio configuration from the start of 2013 as our base

scneario and hold the installed capacity constant at first. Note that this differs from

Section 6.1 where we reflect on our calibrated model’s capability of reproducing the ob-

served electricity spot prices. This results in 31 (36) GW of installed wind (solar) power.

We make use of simulations to deduce corresponding measures of interest and set the

number of scenarios to N = 1000. One trajectory of wholesale power prices necessitates

the simulation of all state variables: (1) weather variables; (2) market-wide demand; (3)

residual volatility. In some cases, we analyze different time frames (e.g. months or years)

in isolation. If not stated otherwise, we then compute the correpsonding measure by con-

ditioning the state variables to equal their mean values at the beginning of the respective

time interval.

6.2.2 The Impact of Renewable Generation

As outlined in Section 3 the renewable generation portfolio is in constant change. Market

participants need to understand how capacity additions impact their current commercial

operations. This subsection will showcase two examples of important market players and

how these might be affected.
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model data

ρst,rewt -0.30 -0.37
ρst,rest -0.04 -0.04
ρst,dt 0.65 0.66
ρst,d̂t 0.82 0.85

Table 2: Correlations between spot prices and fundamental factors

This table compares correlations of several fundamental factors (demand dt, residual demand d̂t,

wind generation rewt , as well as solar generation rest ) with wholesale spot prices st for the model (left

column) as well as the historical data (right column) during 2012-2014.

Our first example consists of a merchant power plant which is not tied to any customer

needs or long-term power purchase agreements. If one abstracts from technical restrictions

as well as other fixed costs a conventional power plant can be seen as a strip of call options

written on wholesale spot prices. A stylized profit margin of such a physical asset is given

as follows:

rvppT (c) =
∑
t∈T

max (st − c)+ (7)

where T corresponds to the set of all hours within the respective time interval and c

to the variable cost required to produce the equivalent of 1 MWh of electricity. The

variable costs are determined by the type of power plant considered.28 We focus on

flexible peaking power plants that usually burn natural gas in order to produce electricity.

Using a corresponding efficiency rate and fuel costs results in variable costs c of about

60 EUR/MWh.29 Given the fact that c is almost twice the price of average spot prices

demonstrates that such an asset can thus be can basically be regarded as a strip of deep

out-of-the money call option contracts.

In order to value the basket of option contracts one needs to calculate their expected value

under the pricing measure Q:

vt0(c) = EQ
t0 [rvppT (c)] (8)

28In order for Eq.(7) to hold the power plant needs to be flexible enough such that it can be switched
on and off with very short notice. Since coal and lignite power plants often times require several hours
or even days to ramp up and down we focus on more flexible gas power plants for this example.

29Efficiency rates of such physical assets usually range between about 20 - 30 % (see Eydeland and
Wolyniec [2003]), thus for every MWh of electricity one necessitates the equivalent of 3 to 5 MWh of
naturals gas. Prices of natural gas in Europe have not changed much during the last 5 years and averaged
at about 20 EUR/MWh which is why we assume them to be constant for our analysis
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Figure 12: Peaking power plant

The left graph shows values of vt0 of the peaking power plant as well as the average
spot price for different months over the year, in which both time series have been
normalized by their maximum value. The right graph shows the percentage reduction
in the peaking plant’s value in different scenarios over the year.

We ignore risk premia and compute the above expectation under the physical measure

P. Given the absence of a closed-form solution for (8) we resort to simulations. Option

values are heavily driven by higher order price risks and our SLSM model allows us to

price these risks accordingly.

The left graph of Figure 12 shows vt0 as well as the average electricity price level for all

months during a year. Clearly, there are seasonal patterns in both cases. The average

price level is larger during winter season due to higher demand levels (see Section 4.2)

and lower supply in terms of solar power production (see Section 3.3.1). However, in

contrast to the average price level, the value of the peaking power plant rises tenfold

during winter season. This aspect can be explained by the non-linear shape of the supply

function ft. During winter, the intersection of supply and demand is much more likely to

take place in the steeper part of ft (see Section 4.1, Figure 8). The chances of positive

price spikes therefore increases disproportionally. This increase of (positive) jump risk

then has a very large impact on the on the value of the portfolio of deep out-of-the

money call option contracts (the peaking plant value vt0).
30 This explains the much

30In relation to the price of futures contracts (“average price level”) or prices of at-the-money options,
out-of-the money options prices increase disproportionally in value if jump risk increases which makes
sense, since large jumps are usually the only events that causes these contracts to end up in-the-money.
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larger discrepancies between values of vt0 during winter and summer season compared to

average prices levels.31

Now suppose there is new wind or solar power capacity added to the supply-side. Given

the heterogeneity in dependencies of local weather variables as well as the non-linearity

of local production curves gu,k, it is a non-trivial task to quantify how such capacity

additions influence aggregate renewable generation. Existing approaches (Wagner [2014])

can at best account for a proportional growth of renewable capacities at all locations

such that the relative contribution of all local constituents remains exactly the same. Of

course, this is highly unrealistic. Our approach on the other hand captures these local

aspects. We make use of this asepct in the following example.

To outline the varying impact of new renewable capacity additions we consider two sce-

narios in which a total amount of roughly 4 GW is installed (wind and solar power).

This corresponds to realistic amounts of yearly changes in renewable generation capaci-

ties (BMWi [2016]). We then end up with 3300 MW of new wind power and 650 MW

of solar power capacities and consider two schemes to allocate those across the K = 38

weather cells. The first one corresponds to an equally distributed scheme where each

location is allocated an equal amount of wind power (Scenario Diversified). For the sec-

ond scenario we assume that all wind power is clustered in a single northern location of

Germany (Scenario Clustered).

Using our SLSH model, we assess changes in the peaking plant value due to changes in

the renewable generation portfolio. We find that in both cases, price volatility rises but as

can be seen from Table 3 there is a considerable negative impact on the value of the power

plant ranging from -12 to -15 percent (on a yearly average). The reason for this is the

fact that in both scenarios, the probability of higher price states is decreased and with it

the profit margin of the peaking plant. The right graph in Figure 12 again visualizes the

impact on the the monthly values of the physical asset. As can be seen, the influence is felt

the most during winter season. More importantly however, there is a difference between

the two scenarios. Due to the fact that Scenario B situates new wind power capacities in

northern more windy regions there is an even larger discount on the value of our basket of

out-of-the-money options compared to the equally weighted capacity addition case. For

the yearly value of an average sized peaking power plant (e.g. 500 MW) this results in a

economically sizable difference in value of 500 MW × (0.38-0.36) EUR/MWh × 8760 h

31Note that some existing structural models (e.g. Wagner [2014]) would have allowed to make a similar
assessment. Keep in mind though, that we make use of a much longer time series of weather data,
whereas, for example, Wagner [2014] is restricted to the few years of renewable production data currently
available. This lack of data might result in less reliable parameter estimates for the market-wide renewable
processes.
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base scenario A scenario B

vt0(c = 60) 0.43 0.38 0.36
% increase - - 12% -15%

Table 3: Valuation of peaking power plant under different scenarios

This table summarizes values and relative changes of a stylized natural gas-fired power plant (1

MW ) under 3 different scenarios. The base scenario corresponds to the current market environment

whereas scenario A and B correspond to an equally weighted expansion and a clustered expansion

respectively. The second line is the relative change in the respective scenario compared to the base

case.

≈ 50,000 EUR. This shows that changes in the spatial distribution of the wind power

generation portfolio have an economically important impact on conventional physical

assets. Most importantly, this impact could not have been analyzed quantitatively by the

help of existing reduced-form (e.g. Benth, Biegler-König, and Kiesel [2013]) or structural

models (e.g. Wagner [2014]).

Interestingly, changes in the spatial distribution for solar power seem to matter much less

compared to wind power. In unreported results we find that the impact of new solar

capacity additions is extremely similar for both scenarios. This also holds if we artificially

consider a larger amount of solar power.

Next, we look at the risk electricity suppliers face. In most electricity markets the majority

of consumers enter some kind of load-serving contract in which the exact quantity of

power is left unspecified while a fixed price for every consumed unit is set ex-ante. While

very appealing for risk-averse consumers, this can potentially result in very risky non-

linear exposures for the other party. These so-called Load-Serving Entities (LSEs) usually

manage a large portfolio of such customers. A simplified version of the associated revenue

stream arising from such a commitment is given as follows:

rvlseT (p) =
∑
t∈T

q̂t(p− st) (9)

where q̂t corresponds to the consumer-specific demand in hour t and p is the contracted

fixed price charged from the LSE for every quantity of electricity consumed. For electricity

markets, quantity and price variables are usually positively related, resulting in non-linear

payoff patterns. As q̂t is not traded in the marketplace, contracts of this type are rather

difficult to hedge.32 To visualize the problem, we now look at a simplified yearly load-

32In other commodity markets, the supplying company can at least build buffer stocks by storing an
adequate amount of the underlying good physically. Unfortunately, electricity is non-storable making the
problem even more difficult.
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Figure 13: Load-serving contract

The left graph shows the (hourly) payoff from the load-serving contract (q̂t(p − st))
relative to the prevailing spot price st. The red vertical line corresponds to the con-
tracted price p. The right graph shows the correlation between spot prices st and
market-wide demand dt for every month of the year.

serving contract for the German power market using our calibrated price model. For

simplicity, we ignore the idiosyncratic part of the consumer demand and furthermore

assume it to be perfectly correlated with market-wide power demand dt. We furthermore

set the fixed price p such that the contract has a value of zero at initiation (EQ
t0rv

lse
T (p) = 0).

Given the concave payoff structure of the load-serving contract, the fixed price is larger

than the average electricity spot price (EQ
t0st < p = 39.2 EUR/MWh).

The left graph in Figure 13 shows the relationship between hourly payoffs and the spot

price in the load-serving contract. The non-linear pattern is clearly visible: Consumers

tend to ask less for lower price states and ask for more in higher price states.33

Before analyzing the impact of potential changes in the renewable generation portfolio,

it is insightful to shed some light on how renewables affect the LSE’s business. The right

graph in Figure 13 shows the monthly correlations of spot prices st and market-wide

demand dt (which is perfectly correlated with the above custmer demand q̂t).
34 As can be

33Although not central to our analysis, this demonstrates the hedging dilemma the LSE faces. A linear
hedge using futures contracts will consequently not be capable of completely protecting the company from
adverse payoffs in high- and low price states. Unfortunately, non-linear instruments, such as options, are
not liquid. As a result, LSEs usually adjust the fixed price to compensate for the unhedgable risks they
bear.

34To arrive at a representative correlation coefficient, we take the average correlation across N = 1000
simulated scenarios of a month.
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seen, there is a pronounced seasonal pattern with a significant drop of dependencies arising

throughout the summer months. This shows how the increasing presence of renewables

introduces new sources of risks into wholesale market prices. As shown in Section 3.3 solar

irradiation is at extremely low levels during the winter season making wind power a much

more important contributor to market-wide power generation. During summer, solar

power production rises about ten-fold whereas wind production drops by about 30 - 50

percent. Overall, aggregated market-wide renewable generation is much higher and more

volatile during summer. As a result, the link between market-wide demand dt and the

resulting spot price st is decreased. This has important implications for the LSE. First, if

the dependencies between spot prices and the uncertain quantity variable change so does

the amount of the non-linear exposure in the payoff function, potentially even decreasing

the risk of extreme losses for the LSE. On the other hand, a weaker link between wholesale

prices and demand means that the hedging efficiency of electricity futures is lower during

some periods during the year.35 LSEs are consequently more and more affected by the

growing share of weather-dependent electricity production.

Suppose now, it is publicly known that new renewable capacities are added to the gener-

ation portfolio next year (as was the case for the peaking plant example). The consumer

now wants to re-assess whether the fixed price p he is charged is still “fair” in this re-

gard. To do so he can compute p such that Et0rvlseT (p) = 0 holds. The fixed price under

scenario A (diversified wind power expansion) is larger than under scenario B (clustered

wind power expansion). We obtain p ≈ 38 EUR/MWh for Scenario Diversified and only

p ≈ 37.5 EUR/MWh for Scenario Clustered. So, if one is not charged accordingly this

can easily result in large discrepancies in the resulting electricity costs. Even for just a

medium-sized commercial business (e.g. 150 MW per hour) the difference is economically

significant (150 MW × (38-37.5) EUR/MWh × 8760 h = 657,000.00 EUR) and is much

larger than for the case of the power plant outlined in the last section as well.

Overall, the above two examples demonstrate the impact of the steady increasing amount

of renewables on commercial activities of market participants. It is shown that even if

one is not directly invested in local renewable production assets it can be important to

incorporate the spatial distribution of renewable generation capacities within a power

price model.

35Although the perspective is slightly different, we analyze seasonal patterns in hedging efficiencies in
more detail for the case of renewable power producers in Chapter 4.
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7 Conclusion

The intermittent nature of renewable electricity production has changed the landscape

of many liberalized power markets. New weather related risks arise for the stakeholders.

Aggregate (market-wide) renewable production is itself determined by the sum of local

(renewable) production facilities across a given market area. As local output is highly

sensitive to local weather conditions, the spatial distribution of installed renewable gener-

ation capacities is therefore a potentially interesting characteristic that should be captured

by a meaningful risk management tool. We propose a flexible modeling framework for

wholesale power prices capable of incorporating the local aspect of renewables for the

case of the German power market. We recursively adopt the basic idea behind hybrid

structural models by not only looking at the drivers of wholesale prices (e.g. temperature-

driven demand, aggregate solar or wind production,..) but also at the (local) drivers of

renewable production itself.

In a nutshell, we disentangle the modeling of weather conditions, the mapping to (local)

renewable production, and the amount of (local) installed capacity. This is advantageous

since it allows us to calibrate part of our model to a rich history of weather data instead

of having to rely on the (relatively) short time frame of renewable production. Our results

show that the SLSM-model is well capable of reproducing the statistical properties in the

time series of renewable production and wholesale power prices and can consequently be

regarded as a valid tool for risk management purposes.

We furthermore outline how market participants can make use of our flexible modeling

framework. It is shown that changes in the renewable generation portfolio have a con-

siderable impact on the commercial business activities of market participants such as

power plant owners as well as suppliers. More importantly, and in contrast to existing

approaches, the SLSM-model is capable of quantifying the distinct impact of changes in

the renewable generation portfolio on wholesale market prices. This makes it clear that

market participants, facing the challenges in renewable-dominant power markets, require

a modeling approach like ours.

Given the fact our model captures local risks it lends itself well to manage production

risks of renewable energy projects. Local weather conditions across distant locations can

be very different (see Appendix B). Consequently, we also expect a similar degree of

heterogeneity for local renewable production. A methodology that is only capable of

capturing the aggregate market-wide renewable generation is thus insufficient to assess

idiosyncratic production risks of specific locations. For instance, investors might want to

weight risk and reward for new renewable energy projects. Also, to manage production
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risks, producers might be interested in the potential of risk transfer by the use of derivative

instruments whose payoff is often times tied to market-wide aggregate variables, such as

wholesale spot prices or weather-related indices. A meaningful assessment consequently

necessitates a model which incorporates the joint distribution of local weather conditions

and important market variables such as spot prices. The SLSH model is a suitable tool

to address these challenges.
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Cartea, Álvaro, M. G. Figueroa, and Héylette Geman, 2009, Modelling Electricity Prices with Forward

Looking Capacity Constraints, Applied Mathematical Finance 16, 103–122.

Cludius, J., H. Hermann, F. Matthes, and V. Graichen, 2014, The Merit Order Effect of Wind and

Photovoltaic Electricity Generation in Germany 2008-2016: Estimation and Distributional

Implications, Energy Economics 44, 302–313.

Coulon, M. and S. Howison, 2009, Stochastic Behaviour of the Electricity Bid Stack: From

Fundamental Drivers to Power Price, Journal of Energy Markets 2, 29–69.

Coulon, M., W. Powell, and R. Sircar, 2013, A Model for Hedging Load and Price Risk in the Texas

Electricity Market, Energy Economics 40, 976–988.

Deng, Shijie, 2000, Stochastic Model of Energy Commodity Prices and Their Applications:

Mean-Reversion with Jumps and Spikes, Working Paper.

EEX, 2016, EEX-Transparency, https: // www. eex-transparency. com/ .

ENERCON, 2017, E-82 E2, http: // www. enercon. de/ en/ products/ ep-2/ e-82/ .

EnergyMap, 2016, EEG-Anlagenregister, http: // www. energymap. info/ .

Eydeland, A. and K. Wolyniec, 2003, Energy and Power Risk Management: New Developments in

Modeling, Pricing, and Hedging. (Wiley Finance).

Füss, Roland, Steffen Mahringer, and Marcel Prokopczuk, 2015, Electricity Derivatives Pricing with

Forward-Looking Information, Journal of Economics and Control 58, 34–57.

Geman, Heylette and A. Roncoroni, 2006, Understanding the Fine Structure of Electricity Prices, The

Journal of Business 79, 1225–1261.

Grothe, O. and F. Muesgens, 2013, The Influence of Spatial Effects on Wind Power Revenues under

Direct Marketing Rules, Energy Policy 58, 237–247.

Grothe, Oliver and Julius Schneiders, 2011, Spatial Dependence in Wind and Optimal Wind Power

Allocation: A Copula-Based Analysis, Energy Policy 39, 4742–4754.

Hagspiel, S., A. Papaemannouil, M. Schmid, and G. Andersson, 2012, Copula-Based Modeling of

Stochastic Wind Power in Europe and Implications for the Swiss Power Grid, Applied Energy 96,

33–44.

Hain, Martin, Marliese Uhrig-Homburg, and Nils Unger, 2016, Risk Factors and Their Associated Risk

Premia: An Empirical Analysis of the Crude Oil Market, Working Paper.

37



Hambly, Ben, S. Howison, and T. Kluge, 2009, Modelling Spikes and Pricing Swing Options in

Electricity Markets, Quantitative Finance 9, 937–949.

Jacobsen, HK and Erika Zvingilaite, 2010, Reducing the Market Impact of Large Shares of Intermittent

Energy in Denmark, Energy Policy 38, 3403–3413.

Jonsson, Tryggvi, Pierre Pinson, and Henrik Madsen, 2014, On the Market Impact of Wind Energy

Forecasts, Energy Economics 32, 313–320.

Kallabis, Thomas, Christian Pape, and Christoph Weber, 2016, The Plunge in German Electricity

Futures Prices - Analysis Using a Parsimonious Fundamental Model, Energy Policy 95, 280–290.

Keles, D., M. Genoese, D. Moest, S. Ortlieb, and W. Fichtner, 2013, A Combined Modeling Approach

for Wind Power Feed-In and Electricity Spot Prices, Energy Policy 59, 213–225.

Ketterer, J. C., 2014, The Impact of Wind Power Generation on the Electricity Price in Germany,

Energy Economics 44, 270–280.

Liu, P-L. D. Kiuregian, 1986, Multivariate Distribution Models with Prescribed Marginals and

Covariances, Probab Eng Mech 1986, 105–112.

Lucia, JJ and ES. Schwartz, 2002, Electricity Prices and Power Derivatives: Evidence from the Nordic

Power Exchange, Review of Derivatives Research 5, 5–50.

Meyer-Brandis, Thilo and Peter Tankov, 2008, Multi-Factor Jump-Diffusion Models of Electricity

Prices, International Journal of Theoretical and Applied Finance 11, 503–528.

Mora-Lopez, LL. and M. Sidrach-De-Cardona, 1998, Multiplicative Arma Models to Generate Hourly

Series of Global Irradiation, Solar Energy 63, 283–291.

Morales, J.M:, R. Minguez, and A.J. Conejo, 2009, A Methodology to Generate Statistically Dependent

Wind Speed Scenarios, Applied Energy 87, 843–855.

Netzentwicklungsplan, 2017, Netzentwicklungsplan, https: // www. netzentwicklungsplan. de/ de .

Papaefthymiou, G. and D. Kurowicka, 2009, Using Copulas for Modeling Stochastic Dependence in

Power System Uncertainty Analysis, IEEE Transactions on Power Systems 24, 40–49.

Papavasiliou, A. and S.S. Oren, 2011, Multiarea Stochastic Unit Commitment for High Wind

Penetration in a Transmission Constrained Network, Operations Research 61, 578–592.

Paraschiv, Florentina, David Erni, and Ralf Pietsch, 2014, The Impact of Renewable Energies on EEX

Day-Ahead Electricity Prices, Energy Policy 73, 196–210.

Pieralli, S., M. Ritter, and M. Odening, 2015, Efficiency of Wind Power Production and Its

Determinants, Energy 90, 429–438.

PSU/NCAR, 2016, MM5 Community Model Homepage: MM5 Modeling System Overview,

Pennsylvania State University/National Center for Atmospheric Research

www. mmm. ucar. edu/ mm5/ overwiew. html .

38



Ritter, M. and L. Deckert, 2016, Site Assessment, Turbine Selection, and Local Feed-In Tariffs through

the Wind Energy Index, Applied Energy.

Ritter, M., Z. Shen, B. L. Cabrera, M. Odening, and L. Deckert, 2015, Designing an Index for

Assessing Wind Energy Potential, Renewable Energy 83, 416–424.

Rose, S. and J. Apt, 2015, What Can Reanalysis Data Tell Us about Wind Power?, Renewable Energy

83, 963–969.

Schermeyer, Hans, Valentin Bertsch, and Wolf Fichtner, 2014, Validation and Utilization of Numerical

Weather Model Data in Energy Systems Analysis of Decentralized Electricity Production, 7th

International Scientific Conference on Energy and Climate Change 137–146.

Seifert, J. and M. Uhrig-Homburg, 2007, Modelling Jumps in Electricity Prices: Theory and Empirical

Evidence, Review of Derivatives Research 10, 59–85.

Trolle, AB. and ES Schwartz, 2009, Unspanned Stochastic Volatility and the Pricing of Commodity

Derivatives, The Review of Financial Studies 22, 4423–4461.

Wagner, A., 2014, Residual Demand Modeling and Application to Electricity Pricing, The Energy

Journal 35.

Weron, R., 2006, Modeling and Forecasting Electricity Loads and Prices. (Wiley Finance).

Wozabal, David, Christoph Graf, and David Hirschmann, 2016, The Effect of Intermittent Renewables

on the Electricity Price Variance, OR Spectrum 38, 687–709.

Ziel, F. and R. Steinert, 2016, Electricity Price Forecasting Using Sale and Purchase Curves: The

X-Model, Energy Economics 59, 435–454.

[]Supplementary Appendix for Chapter 3

A Estimation of Production Curves

Given observed patterns regarding dependencies between renewable power production and

its corresponding weather variable we choose a 3-parameter logistic function for wind and

a second-order polynomial for solar:

gw,k(yw,kt ) =
γk0

1 + e−γ
k
1 (yw,k

t −γk2 )

gs,k(ys,kt ) = πk0 + πk1y
s,k
t + πk2(ys,kt )2

Parameters are obtained by non-linear least squares (least-squares) for wind power (solar

power). Table 4 shows estimated coefficients along with standard errors.
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Table 4: Parameter estimates of power curves

A. Wind power 50Hertz TenneT Amprion TransnetBW

γk0 0.8026 0.5483 0.8829 0.9769
(0.0051)∗∗∗ (0.0034)∗∗∗ (0.0068)∗∗∗ (0.0100)∗∗∗

γk1 0.4499 0.4254 0.4171 0.4352
(0.0025)∗∗∗ (0.0020)∗∗∗ (0.0029)∗∗∗ (0.0038)∗∗∗

γk2 10.4716 10.5792 9.7561 10.1843
(0.0326)∗∗∗ (0.0324)∗∗∗ (0.0425)∗∗∗ (0.0553)∗∗∗

B. Solar power

πk0 2.4× 10−3 1.98× 10−4 1.82× 10−3 1.20× 10−3

(3.6× 10−4)∗∗∗ (3.05× 10−4)∗∗∗ (3.71× 10−4)∗∗∗ (4.53× 10−4)∗∗

πk1 4.35× 10−4 4.69× 10−4 6.42× 10−6 5.72× 10−4

(4.3× 10−6)∗∗∗ (3.49× 10−6)∗∗∗ (4.22× 10−6)∗∗∗ (4.89× 10−6)∗∗∗

πk2 −0.53× 10−8 −1.09× 10−7 −1.65× 10−7 −1.31× 10−7

(6.4× 10−9)∗∗∗ (5.03× 10−9)∗∗∗ (6.1× 10−9)∗∗∗ (6.72× 10−9)∗∗∗

The table shows parameter estimates and standard errors (in parantheses) for production
curves of wind power (Panel A) as well as for solar power (Panel B) in all four balancing-
areas. Estimates are obatined by non-linear least-squares (least-squares) for wind power
(solar power). Note that parameter estimates are very small for the case of solar due to the
fact that the weather variable (solar irradiation) takes relatively large values (between 0 and
1000) compared to wind speed (between 0 and 20). *** (**) denotes statistical significance
at the 0.1% (1%) level.
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Figure 14: Wind speed time series in southern Germany in 2000-2005

The figure depicts hourly wind speed for the years 2000-2005 (top) and for a week
in June, 2002 (bottom) in a weather cell located in the southern part of Germany
(Baden-Wuerttembuerg).

B Empirical Analysis of Weather Models

B.1 Wind speed dynamics

Figure 14 visualizes the hourly wind speed in the southern part of Germany for 2005-2008

as well as for a week in June 2002. Clearly, wind speed is highly volatile and can change

dramatically just within a few hours. Its levels also tend to be lower during summer than

winter.36 On top of that, volatility tends to be a lot higher during autumn and winter

months. In a similar fashion, higher moments such as skewness and excess kurtosis also

vary and seem to rise during autumn and winter season. For most locations, the wind

speed distributions’ shape thus seems to exhibit considerable seasonality. Wind speed

furthermore exhibits considerable evidence for non-Gaussian behavior with a positive

skewness and significant positive autocorrelation (see Figure 15). Unsurprisingly, these

characteristics are not homogeneous across locations. Figure 16 depicts the time series

36We also observe a weak day- and night pattern.
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Figure 15: Wind speed distribution and autocorrelation function

The left graph shows the histogram of wind speed in a weather cell located in southern
Germany (Baden-Wuerttemberg) along with the density of a normal distribution with
identical mean and standard deviation (red dotted line). The right graph depicts the
corresponding autocorrelation function.

of wind speed at two different weather cells and clearly demonstrates that although key

characteristics such as trends in level and volatility prevail, differences do exist.

In addition to the general specification outlined in Section 3.3.1, we therefore incorporate

a time-dependent and location-specific volatility function σw,kt and distribution function

Fw,k
t to capture seasonal time-variation in the symmetry of the distribution. This is

achieved by normalizing the wind speed times series both by its trend as well as by its

(seasonal) standard deviation:

yw,kt = (yw,kt − µw,kt )
(
σw,kt

)−1

where σw,kt is estimated on a monthly basis. We then group yt
w,k by quarters and estimate

a corresponding distribution function. Since skewness and kurtosis are highly sensitive to

outliers we choose a quarterly time frame to increase the number of observations in each

case.

Dependencies between regions also vary and are largely determined by distance. For

instance, exemplary adjacent regions located in the of south Germany (state of Baden-

Wuerttemberg) exhibit a correlation of over 90 % (after removing trends in levels and

volatility) while the relationship to a third region situated in the north-eastern part of

Germany is much lower (30 and 40 percent respectively).
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Figure 16: Time series of wind speed at different locations

The figure shows time series of wind speed for a weather cell in southern Germany
(top) as well as for a weather cell located in the North Sea (bottom) for the years
2000-2005.

To demonstrate the overall fit of our modeling approach we compare empirical and (model-

implied) simulated values. Figure 17 shows the trajectory of wind speed for a region in

north-western Germany over the years 2000-2004 along with its simulated correspondent

indicating that the approach seems to be capable of reproducing the prominent statistical

characteristics. This can also be seen by inspecting qq-plots of simulated vs. observed

wind speed values (Figure 18). The model-implied autocorrelation functions also come

very close to their observed counterparts (Figure 19). This is also apparent by having a

look at model residuals which mostly void of any significant autocorrelation (Figure 20).

Similarly, the modeling approach does a good job at capturing the cross-sectional depen-

dencies between locations. We obtain a close fit to the observed crosscorrelation function

(Figure 19) and model residuals show hardly any evidence of dependencies across loca-

tions (Figure 22). Overall, this results suggest that our approach is capable of capturing

both locations-specific characteristics and cross-sectional dependencies.
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Figure 17: Observed vs. simulated wind speed

The figure shows observed (top) as well as simulated (bottom) wind speed for a weather
cell located in southern Germany.
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Figure 18: qq-plots of simulated vs. observed wind speed

The figure depicts qq-plots of simulated (x-axis) vs. observed (y-axis) wind speed of 9
random locations throughout the German market area.
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Figure 19: ACFs of observed and simulated wind speed

The figure visualizes the actual (blue) as well as the simulated (red) autocorrelation
function of de-trended and transformed wind speed ŷwt for 9 randomly selected locations
throughout Germany.
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Figure 20: ACFs wind speed and model residuals

The top 3 graphs visualize the actual (blue) as well as the simulated (red) autocorrela-
tion function of de-trended and transformed wind speed ŷwt for 3 exemplary locations in
Germany. The bottom 3 graphs show the autocorrelation function of the corresponding
model residuals with 5% confidence bounds.
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Figure 21: CCFs of observed and simulated wind speed

The figure visualizes the actual (blue) as well as the simulated (red) crosscorrelation
function of de-trended and transformed wind speed ŷwt for 9 pairs of randomly selected
locations throughout Germany.

48



−20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

cc
f

−20 −10 0 10 20

0.
00

0.
10

0.
20

0.
30

Lag

cc
f

−20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

cc
f

−20 −10 0 10 20

0.
00

0.
10

0.
20

0.
30

Lag

cc
f

−20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

cc
f

−20 −10 0 10 20

0.
00

0.
10

0.
20

0.
30

Lag

cc
f

Figure 22: CCFs of wind speed and model residuals

The top 3 graphs visualize the actual (blue) as well as the simulated (red) cross-
correlation function of de-trended and transformed wind speed ŷwt between 3 pairs
of exemplary locations in Germany. The bottom 3 graphs show the crosscorrelation
function of the corresponding model residuals with 5% confidence bounds.
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Figure 23: intraday pattern and yearly cycle of solar irradiation

The top two graphs show the pronounced seasonality in the solar irradiation dynamics
within a day (top left) as well as across seasons (top right). The weather cell is located
in southern Germany (Baden-Wuerttemberg).

B.2 Solar Irradiation Dynamics

Solar irradiation shows a very pronounced intraday pattern (see left graph in Figure 23)

due to the fact that there is no sunshine during night time. This pattern gradually changes

throughout the year, that is, the sun rises earlier and sets later in the evening during the

summer months. However, the peak is happening at noon regardless of the current season.

The absolute level of daily peaks also changes seasonally indicated by the right graph in

Figure 23. Apart from the above deterministic day- and night pattern, cloud formations

can lead to unexpected drops in irradiation levels. Figure 24 shows hourly irradiation in

the southern part of Germany for a week in April. Sudden strong decreases thus regularly

happen. However, we noticed that most of the time, days tend to be either sunny or

rather cloudy overall. Thus, consecutive extreme drops and rises throughout the same

day are rather rare.

Cloud formations thus have a considerable impact on the resulting levels of solar irradi-

ation and one is incapable of observing these during night time. Consequently, we are

blind for any larger cloud formations that have been built up in the hours just before sun-

rise and which heavily affect the weather variables during the early morning hours. We

therefore adjust the general methodology and loosely follow Wagner [2014]. Motivated by

the fact that extreme intraday volatility is rather uncommon for our data set, we model
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Figure 24: stochastic variation of solar irradiation

The figure shows a typical pattern of the variation of solar irradiation within a
month (April, 2000). The weather cell is located in southern Germany (Baden-
Wuerttemberg).

the daily maximum irradiation level ỹs,kt and capture any variation throughout the day by

means of a deterministic pattern function. To formalize the notion of the daily maximum

irradiation level, we introduce the day count function that maps all hours in the data set

of length T to its respective day of the year

d : [0, T ] 7→ N0

d thus takes values between 1 and 36537 depending on which day a respective hour t

belongs to. The daily maximum process of local hourly solar irradiation levels then reads

as follows:

ỹs,kj = max
t:dt=j

(
ys,kt

)
, j = 1, .., dT (10)

To account for seasonal variations over the year we de-trend the data (ys,kj := ys,kj −µ
s,k
j ).

The resulting process shows serial and spatial correlation as well as non-normality. The

latter issue can be dealt with the transformation-approach outlined in Section 3.3.1 to

arrive at an approximately normally distributed time series that preserves the original

covariance structure as usual. The resulting multivariate time series of (daily) maxima

of solar irradiation is then once again captured by means of a VAR model as usual. We

37For simplicity, we map the 29th of February in leap years to the 28th of February.
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furthermore assume solar irradiation and wind speed to be independent from each other

since time series correlations of the corresponding de-trended weather variables are smaller

than 25 % (in absolute terms) and cluster near 0.

To capture (local) intraday-variations we make use of a deterministic time-dependent and

site-specific function δkj mapping the daily maximum to hourly values as follows:

ys,kt = δkdt(t, y
s,k
dt

)

with δkj (t, x) = x

24∑
k=1

αk1(k-th hour of the day)

where δkj is estimated for every day of the year and every weather cell separately.

We find that, similarly to the case of wind speed, our modeling approach seems to be

capable of reproducing the salient features of solar irradiation (see Figure 25, Figure 26,

Figure 27, Figure 28, and Figure 29 respectively).

C Modeling Residual Volatility σt

We consider various model specifications to model the residual volatility process σt = st − ft(d̂t).
After experimenting with different lags and specifications we found a SARIMA(2, 0, 2) ×
(1, 0, 1)24 model to be the superior one (in terms of AIC). Likewise Gaussian GARCH

noise was incapable of capturing the tails of the distribution appropriately causing us to

instead opt for student-t distributed error terms.

The formal description of the model for the residual volatility process σt thus reads as

follows:

φ(B)Φ(B24)σt = θ(B)Θ(B24)εt (11)

εt = ηtςt

ς2
t = ω0 + ω1ε

2
t−1 + ω2ς

2
t−1, ωi ∈ R+, i = 0, 1, 2

where ω0 ≥ 0, ω1 > 0, ω2 > 0, ω1 + ω2 < 1, φ(z) = 1 − φ1z − φ2z
2, Φ(z) = 1 − Φ1(z),

θ(z) = 1− θ1(z)− θ2z
2, Θ(z) = 1−Θ1(z), φ1, φ2,Φ1, θ1, θ2,Θ1 ∈ R, B corresponds to the

backshift operator (Bjxt = xt−j), and ηt is student-t distributed random variable with υ

degrees of freedom. We can write (11) explicitly

σt = φ1σt−1 + φ2σt−2 + Φ1σt−24 − Φ1 (φ1σt−25 + φ2σt−26)

+ εt − θ1εt−1 − θ2εt−1 −Θ1εt−24 + Θ1 (θ1εt−25 + θ2εt−26)
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Table 5: Parameter estimates of the residual volatility model

A. SARIMA φ1 φ2 Φ1 θ1 θ2 Θ1

1.6939 -0.7023 0.9485 -0.7934 -0.1085 -0.8519
(0.0141)∗∗∗ (0.0131)∗∗∗ (0.0021)∗∗∗ (0.0158)∗∗∗ (0.0092)∗∗∗ (0.0040)∗∗∗

B. GARCH ω0 ω1 ω2 υ

4.6680 0.4820 0.2836 3.5048
(0.2307)∗∗∗ (0.0261)∗∗∗ (0.0192)∗∗∗ (0.0998)∗∗∗

The table shows parameter estimates and standard errors (in parantheses) for SARIMA(2, 0, 2)
× (1, 0, 1)24-GARCH(1,1) model. Estimates are obatined by maximum likelihood. ***, **, and
* denotes statistical significance at the 0.1% , 1%, and 5% level.

making it more clear how lagged and contemporaneous values are related to each other.

The model is estimated by maximum likelihood and results are shown in Table 5.

D Market-Wide Demand in Germany

As expected, demand in Germany exhibits pronounced seasonal patterns. Figure 30 shows

the hourly time series of demand for Germany from late 2012 until 2014 revealing several

salient patterns and features. First, demand tends to be considerably higher during winter

seasons, which can mainly be attributed to an increased demand for electrical light. Also

note that sharp drops in consumption levels for winter holidays (24th of December until

about the 4-6th of January) caused by the seasonal shutdown of major production facilities

in the car manufacturing business as well as of steel mills and aluminum smelters.

The left graph of Figure 31 offers a more detailed look at the weekly seasonality. Demand

usually peaks in the first half of the week and drops considerably on the weekend with

Sunday generally having the lowest demand levels overall. The intraday variation of

electricity consumption is very large with changes of almost 60 % during the day (see

right graph of Figure 31). Consumption usually rises significantly in the morning hours

when people get up and prepare for work and peaks during lunch time and later in the

evening (rush hour).

Following Burger, Klar, Mueller, and Schindlmayr [2004] we model demand with a flexible

trend function paired with a SARIMA(2, 0, 2) × (1, 0, 1)24 component. This results in the
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Table 6: Parameter estimates of the demand model

φ̂1 φ̂2 Φ̂1 θ̂1 θ̂2 Θ̂1

0.6997 0.0975 -0.2345 0.4634 0.1237 0.3682
(0.0689)∗∗∗ (0.0584)∗∗∗ (0.0719)∗∗∗ (0.0686)∗∗∗ (0.0224)∗∗∗ (0.0691)∗∗∗

The table shows parameter estimates and standard errors (in parantheses) for
SARIMA(2, 0, 2) × (1, 0, 1)24 model. Estimates are obtained by maximum like-
lihood. ***, **, and * denotes statistical significance at the 0.1% , 1%, and 5%
level.

following formal model specification:

dt = µdt + ψt

φ̂(B)Φ̂(B24)ψt = θ̂(B)Θ̂(B24)εt

where µdt corresponds to the trend-function with dummy-variables for hourly-, weekly-

, monthly-, and holiday-patterns, φ̂(z) = 1 − φ̂1z − φ̂2z
2, Φ̂(z) = 1 − Φ̂1(z), θ̂(z) =

1 − θ̂1(z) − θ̂2z
2, Θ̂(z) = 1 − Θ̂1(z), φ̂1, φ̂2, Φ̂1, θ̂1, θ̂2, Θ̂1 ∈ R, B corresponds to the

backshift operator (Bjxt = xt−j), and εt is a normally distributed random variable. The

model is estimated by maximum likelihood and results can be found in Table 6.

E Reduced-Form Model Specification and Calibra-

tion

Given the occurrence of negative prices for the case of electricity, arithmetic spot price

models have gained wide acceptance during recent years. We follow Benth, Kallsen, and

Meyer-Brandis [2007], Meyer-Brandis and Tankov [2008], and Benth, Biegler-König, and

Kiesel [2013] and model hourly day-ahead spot prices by means of a multi-factor spike

model specified as follows:

st = µst + xt + yt (12)

dxt = −κxxtdt+ σxdwt, κx, σx ∈ R+

dyt = −κyytdt+ dnt, κy ∈ R+

where µst corresponds to the deterministic seasonality function which accounts for trends

over the year, weekday- and holiday-effects, as well as for the pronounced intraday-
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Table 7: Parameter estimates of the reduced-form power price model

κx σx κy λ p β1 β2

0.1711 9.8826 0.4364 0.0081 0.5231 0.0266 0.0172

The table shows parameter estimates for the reduced-form power
price model given by (12).

pattern. xt is a standard Vasicek mean-reversion process capturing “normal” price vari-

ations whereas yt is a spike process to account for rare price spikes. dwt is a standard

brownian motion and dnt a compound Poisson process with constant jump intensity λ

and double-exponentially distributed jump sizes zt, i.e. exponentially distributed negative

as well as positive jumps with density:

fz(x) = pβ1e
−β1x1x<0 + (1− p)β2e

−β2x1x>0, p, β1, β2 ∈ R+

where β1, β2 > 0 and p ∈ [0, 1]. β1 (β2) controls the shape of the positive (negative)

jump size distribution whereas p determines the fraction of positive and negative spikes

respectively.

The calibration of the above model specification necessitates the identification of latent

state variables xt and yt as well as model parameters governing the Gaussian and non-

Gaussian mean-reversion process. Following Cartea and Figueroa [2005], Benth, Kallsen,

and Meyer-Brandis [2007], and Bieger-König [2013] we identify spikes by a recursive fil-

tering algorithm which simultaneously estimates the trend function µst as well as the time

series of yt. Given the values of yt and µst we can infer the time series of the gaussian

mean-reversion process xt. Model parameters can then be estimated by means of standard

econometric techniques.

Figure 32 shows the time series of filtered state variables whereas Table 7 summarize the

parameter estimates. The distribution of xt exhibits skewness and excess kurtosis close

to zero. The filtering algorithm thus works quite well in identifying heavy tailed price

movements allowing the disentanglement of both processes and estimation of parameter

values afterwards. We find an hourly spike intensity of 0.8 percent which corresponds to

roughly 70 spikes annually on average. Furthermore, negative as well as positive spikes are

almost equally likely p ≈ 0.5 but negative ones are of larger magnitude (−58 EUR/MWh

vs. +37 EUR/MWh on average). This stands in contrast to studies using data before

2010. For instance, Bieger-König [2013] finds that positive spikes are slightly larger and

almost 3 times as frequent. An effect which we attribute to the growing presence of

renewable generation.
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Figure 25: qq-plots of simulated vs. observed solar irradiation

This figure shows qq-plots of randomly selected weather cells of solar irradiation levels.
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Figure 26: ACFs of observed and simulated solar irradiation

The figure visualizes the actual (blue) as well as the simulated (red) autocorrelation
function of de-trended and transformed daily maximum of solar irradiation ŷs,kt for 9
randomly selected locations throughout Germany.
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Figure 27: ACFs of solar irradiation and model residuals

The top 3 graphs visualize the actual (blue) as well as the simulated (red) autocorre-
lation function of de-trended and transformed daily maximum of solar irradiation ŷs,kt
for 3 exemplary locations in Germany. The bottom 3 graphs show the autocorrelation
function of the corresponding model residuals with 5% confidence bounds.

58



−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

−10 −5 0 5 10

0.
0

0.
4

0.
8

lag

cc
f

Figure 28: CCFs of observed and simulated solar irradiation

The figure visualizes the actual (blue) as well as the simulated (red) crosscorrelation
function of de-trended and transformed daily maximum of solar irradiation ŷs,kt for 9
randomly selected pairs of locations throughout Germany.
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Figure 29: CCFs of solar irradiation and model residuals

The top 3 graphs visualize the actual (blue) as well as the simulated (red) crosscor-
relation function of de-trended and transformed daily maximum of solar irradiation
ŷs,kt between 3 pairs of exemplary locations in Germany. The bottom 3 graphs show
the crosscorrelation function of the corresponding model residuals with 5% confidence
bounds.
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Figure 30: Yearly electricity demand variation

The Figure exhibits the hourly times series of (expected) load in the day-ahead market
from 16.10.2012 to 31.12.2014.
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Figure 31: Weekly and intraday pattern of electricity demand

The left graph shows a detailed view of (expected) load in March 2013 whereas the right
graph depicts the timeseries of load for the 4th of March, 2013.
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Figure 32: Filtered state variables

The top graph shows the filtered Non-Gaussian process whereas the bottom
graph depicts the Gaussian counterpart.
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