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Abstract
Diboson production allows to study the interactions between electroweak bosons in the form
of triple gauge couplings. A deviation of these interactions from the Standard Model can be
parametrized by anomalous couplings in the framework of Effective Field Theory.
In this thesis, additional jet radiation in WZ and WH production is studied. The observable
xjet is introduced to distinguish jet-dominated events from those with two hard vector bosons.
Using this observable, phase space regions sensitive to anomalous triple gauge couplings
are identified and a dynamical jet veto is proposed to enhance the sensitivity of anomalous
coupling searches. Compared to a traditional fixed-pT jet veto, the dynamical veto avoids
logarithms of the veto scale and includes, as a by-product, more relevant phase space. This
increases the statistics and therefore improves the sensitivity in anomalous coupling searches.
For an accurate description of high-pT diboson events higher-order corrections are necessary.
In this work, the LoopSim method is used to compute corrections at n̄NLO in the strong
coupling, which is an approximation to the full next-to-next-to-leading order calculation.
These analyses use the flexible Monte Carlo program VBFNLO interfaced to LoopSim. As part
of this thesis, a parallel version of VBFNLO is implemented, which provides a step forward in
the usability and speed of VBFNLO especially for complex processes by making better use of
modern computing infrastructure.

Zusammenfassung
Die Produktion von Vektorbosonpaaren ermöglicht die Untersuchung der Wechselwirkung
zwischen drei elektroschwachen Eichbosonen. Eine Abweichung dieser Kopplung von der Vor-
hersage des Standardmodells kann durch anomale Kopplungen im Formalismus von Effektiver
Feldtheorie beschrieben werden.
In dieser Arbeit wird die zusätzliche Abstrahlung von Jets in WZ und WH Produktion
untersucht. Hierfür wird die Observable xjet eingeführt, um Events, die von Jet Abstrahlung
dominiert werden, von solchen zu trennen, die zwei hochenergetische Vektorbosonen bein-
halten. Mit dieser Observablen können Phasenraumbereiche identifiziert werden, die sensitiv
sind auf anomale Kopplungen zwischen Eichbosonen. Zudem wird ein dynamisches Jet Veto
vorgeschlagen, um die Sensitivität von Suchen nach anomalen Kopplungen zu erhöhen. Ein
traditionelles Veto mit einer festen Skala führt zu logarithmisch wachsenden Termen, die durch
ein dynamisches Veto vermieden werden können. Das dynamische Veto erlaubt weiterhin die
Einbeziehung eines größeren Phasenraumbereichs. Dies verbessert die Statistik und damit die
Empfindlichkeit von Suchen nach anomalen Kopplungen.
Für eine genaue Beschreibung der Events mit Vektorbosonpaaren mit hohen Transversalimpul-
sen sind Korrekturen höherer Ordnung notwendig. Im Rahmen dieser Arbeit wird die LoopSim
Methode verwendet, um Korrekturen in n̄NLO in der starken Kopplung zu berechnen. Dies
ist eine Näherung der Korrekturen in nächst-zu-nächst-zu-führender Ordnung und besonders
geeignet für hohe Transversalimpulse.
Diese Analysen nutzen das flexible Monte Carlo Programm VBFNLO in Verbindung mit Loop-
Sim. In dieser Arbeit wird eine parallelisierte Implementierung von VBFNLO entwickelt, die
insbesondere für komplexe Prozesse die numerische Integration und Laufzeit verbessert und
moderne Rechencluster effizienter nutzt.
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CHAPTER 1
Introduction

The nature of matter, its fundamental building blocks and their interactions have fascinated
scientists already in ancient times. Modern particle physics is using high energy colliders to
study elementary particles and their interactions. Currently, the Large Hadron Collider (LHC)
at CERN in Geneva is pushing the energy and intensity frontier. In 2012, ATLAS and CMS,
the two general-purpose experiments at LHC, discovered a scalar particle [1, 2], which within
the current experimental accuracy has all properties of the Standard Model Higgs boson. The
Standard Model (SM) contains Quantum Chromodynamics (QCD) [3–6], which describes
the strong interaction between quarks and gluons, as well as the Glashow-Weinberg-Salam
(GWS) theory of the electroweak interaction [7–10]. Through the Higgs mechanism [11–13] the
electroweak symmetry is spontaneously broken and masses are generated. It also predicts a
scalar particle, the Higgs boson, which was the last undiscovered elementary particle contained
in the SM.

The SM continues to prove very successful in describing a wide range of particle physics
experiments. It is tested to high precision for example in the measurement of the anomalous
magnetic moment (g − 2) of electron and muon. These are both computed and measured to a
few parts in a billion and trillion respectively [14, 15]. There is currently a tension of 3 – 4
standard deviations for (g − 2) of the muon [16] which might be a hint of physics beyond the
SM.

In the search for new particles, hadron colliders are often considered discovery machines, since
they have the highest reach in energy of all laboratory experiments. The LHC follows this
path and surpasses the previously highest collision energies at the Tevatron by a factor of
seven. Even at these high energies, until today, no particle outside of the SM was discovered.
A broad range of searches are considered simultaneously. They can be roughly categorized as
direct searches and precision measurements/indirect searches. Direct searches aim to measure
the decay particles of a new resonance or a process that does not exist in the SM. Several
search channels for particles beyond the SM showed a temporary excess over the expected
background, like the 750 GeV resonance in photon pairs [17–20] or diboson pairs with an
invariant mass of 2 TeV [21]. Searches for resonances typically look for bumps on top of a
smooth background. This kind of analysis was for example used for the Higgs discovery in the
decays to two photons [22, 23] or four leptons [24, 25]. In these channels the mass resolution
is good enough to observe a peak coming from the Higgs boson resonance.

The other kind of searches for New Physics are precision measurements. Here, a SM process is
studied with high precision with the aim to uncover small deviations from the prediction that
could arise from New Physics models. Many precision measurements are performed at lepton
colliders, where the background contributions are smaller. Despite the tremendous complexity,
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Figure 1.1: Representative diagrams for WZ production. This process allows to measure the WWZ
triple gauge coupling by studying the kinematics of the events.

the LHC can provide high precision measurements for many processes down to the percent
level, thanks to the significant effort of the experimental and theoretical communities.

One of the processes that experienced a drastic improvement in precision at the LHC is
the production of two vector bosons. Example diagrams for WZ production, which will be
studied in the following, are shown in Fig. 1.1. Leptonic decays can be used to tag events
and discriminate against the background. When considering semi-leptonic decays, where one
vector boson decays to hadrons and the other to leptons, a balance can be reached between
background reduction via leptonic tags and larger branching ratios of the vector bosons to
hadrons which improves the statistics. Diboson production is the process class with the
highest cross section that gives access to triple gauge couplings, like in the diagram on the
right of Fig. 1.1. These can be studied by measuring kinematical distributions of the final
state. Especially sensitive are the region of large transverse momenta or decay angles, which
carry information about the boson helicity.

Deviations in triple gauge couplings from the SM prediction can be described by anomalous
couplings in the framework of Effective Field Theories (EFT). EFT is a general framework to
model the low-energy effect of a theory at a high energy scale using operators with dimensionful
couplings. There is a plethora of New Physics models. They often introduce new particles at
a high energy scale to satisfy current experimental bounds. This separation of scales allows to
apply EFT techniques for the low energy description.

Diboson production can set limits on anomalous coupling operators by studying events with
high transverse momentum. These types of events benefit significantly from increases in the
center of mass energy and luminosity, such that sizable improvements were achieved in LHC
run 2 and more are expected for future LHC upgrades.

The theoretical description of these events needs to match at least the experimental precision
to be able to detect deviations. This makes the calculation of higher order corrections in
perturbation theory mandatory. The next-to-leading order (NLO) revolution, which made
corrections available for many processes, reduced uncertainties typically down to the 10%
level. Even higher order corrections are needed to match the experimental program and
provide an accurate prediction for high-energy events. While results of full NNLO calculations
are becoming available for a subset of processes, these calculations are technically extremely
challenging and out of reach for some process classes, like the production of three massive
vector bosons. LoopSim [26] is a general approach to approximate NNLO corrections by
combining NLO calculations of processes for several final state jet multiplicities. This resulting
prediction is called n̄NLO. The accuracy of LoopSim can be assessed by comparing the n̄NLO
calculation to existing NNLO calculations and then applying LoopSim to processes where the
full calculation does not exist.
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The LoopSim method in combination with the flexible Monte Carlo program VBFNLO [27–29]
allows to calculate observables for diboson production at high precision. Leptonic decays and
off-shell effects are included. Furthermore, VBFNLO allows to calculate effects of anomalous
couplings and experimental selection cuts and custom observables can be implemented.

Diboson events with high transverse momenta are often accompanied by additional jets. These
can reduce the sensitivity to anomalous coupling effects and lead to large corrections. In
this thesis additional jets in WZ and WH production are studied and a measure of the jet
activity is introduced. Using this analysis, events with additional radiation can be suppressed
to improve anomalous coupling searches. Higher order corrections are required for an accurate
description of additional radiation. Since these corrections can be of comparable size as the
impact of anomalous couplings, their interplay is of interest.

This thesis is organized as follows: In Chapter 2 the theoretical foundations will be introduced,
including the Standard Model, fixed order calculations and LoopSim (Section 2.4). Chapter 3
will discuss anomalous couplings using the EFT formalism and their application to triple gauge
couplings in diboson production. The current experimental and theoretical state of diboson
production is reviewed in Chapter 4. The calculation is implemented in VBFNLO, which is
introduced in Chapter 5 including the technical modifications like improved statistics in tails
(Section 5.2) and a new random number generator used for the parallelization of the Monte
Carlo integration (Sections 5.3 and 5.4). The calculation is used to study the phenomenology
of WH and WZ production in Chapter 6. The focus is on improving the sensitivity to
anomalous couplings by better understanding additional jet radiation. A dynamical jet veto
is introduced and studied including LoopSim corrections.





CHAPTER 2
Theoretical Foundations

Predictions for processes at particle collider experiments can be calculated using quantum
field theory. Section 2.1 will introduce the Standard Model (SM) of particle physics and
in Section 2.2 the calculation of cross sections at hadron colliders will be discussed. These
calculations are performed to a fixed order in perturbation theory, which is described in
Section 2.3. The LoopSim method, introduced in Section 2.4, is used to approximate higher
order corrections.

2.1. The Standard Model of Particle Physics
The SM describes our current knowledge of elementary particles and their interactions. As all
quantum field theories, it is defined by its field content and symmetries.

The interactions are determined by gauge symmetries. The gauge symmetry group of the SM
is

SU(3)C × SU(2)L × U(1)Y . (2.1)

The group SU(3)C corresponds to Quantum Chromodynamics (QCD) [3–6], which describes
the strong interaction between quarks and gluons, governed by the coupling constant αs. QCD
shows confinement, which means that all color-charged particles form color singlet bound
states. The QCD coupling αs depends on the renormalization scale µR, which should be the
typical energy scale of the process [30, 31]:

µ2
R

∂αs
∂µ2

R

= β (αs) , (2.2)

β(αs) = −α2
s

(
b0 + b1αs + b2α

2
s + . . .

)
, (2.3)

b0 = 11CA − 4TRnf
12π = 33− 2nf

12π . (2.4)

The running depends on the constants CA and TR given by the gauge group and the number
of active quark flavors nf . At high energies the QCD coupling constant becomes small
(asymptotic freedom) and allows to calculate amplitudes in perturbation theory, which will
be considered in Section 2.3. For small energies αs grows and in a perturbative description
diverges around ΛQCD ≈ 0.2 GeV [31]. Therefore, for small energies the resulting physics has
to be described non-perturbatively.

The group SU(2)L × U(1)Y describes the electroweak interaction as given by the Glashow-
Weinberg-Salam (GWS) theory [7–10]. The electromagnetic force is mediated by the photon,
the weak force is mediated by the W and Z bosons.
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Figure 2.1: The particle content and interactions of the SM are shown in a simplified graph. The
focus of this thesis is on the interaction of the W and Z boson. For the production of WZ pairs, higher
order corrections in QCD (bold line) will be considered. Inspired by [32]

.

The fermion fields in the SM are quarks and leptons. Quarks are charged under SU(3)C and
form hadrons, like the proton, while leptons do not interact under the strong interaction.
There are right- and left-handed fields. Right-handed fields are singlets under SU(2)L, while
the left-handed fields are in a doublet.

The fermion fields are thereforeu
d


L

, uR, dR,

νe
e


L

, eR, νR . (2.5)

For each field, there are three generations: u → c, t, d → s, b, e → µ, τ , νe → νµ, ντ . A
simplified visualization of the field content and interactions can be seen in Fig. 2.1.

The coupling of the fermion fields to the electroweak gauge fields is given by the Lagrangian
density

Lfermion =
∑
j

Ψji /DΨj , (2.6)

where j sums over all right- and left-handed fermion fields Ψj and Dµ is the covariant derivative

Dµ = ∂µ − ig′Bµ
Y

2 − igW
a
µT

a . (2.7)
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Bµ and W a
µ are the gauge fields of U(1)Y and SU(2)L with couplings g′ and g respectively.

The generators of SU(2)L are T a = σa

2 with the Pauli matrices σa for the doublet fields. The
corresponding terms for right-handed fields have T a = 0.

The kinetic terms for the gauge fields are

LEW = −1
4W

a
µνW

aµν − 1
4BµνB

µν , (2.8)

with the field strength tensors

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν , (2.9)

Ba
µν = ∂µB

a
ν − ∂νBa

µ . (2.10)

Spontaneous Symmetry Breaking

A direct mass term for the gauge bosons would violate the gauge symmetry. Instead, the
Higgs mechanism is used to generate masses for the W and Z bosons.

The Higgs Lagrangian with the Higgs doublet Φ is

LH = (DµΦ)† (DµΦ)− V (Φ) , (2.11)

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
. (2.12)

The Higgs potential leads to spontaneous symmetry breaking if λ > 0 and µ2 < 0. In this case
the potential has a Mexican hat shape and the minimum of the potential is at a non-vanishing
field value, called the vacuum expectation value,

v =

√
−µ2

2λ . (2.13)

While the potential has SU(2)L × U(1)Y symmetry, the selection of the ground state sponta-
neously breaks the symmetry. The field Φ can be expanded around vacuum expectation value
and three of its degrees of freedom can be absorbed by a gauge transformation, such that

Φ = 1√
2

 0
v + h

 . (2.14)

The kinetic term for the Higgs boson then generates interactions between gauge bosons and
the Higgs as well as masses for the gauge bosons:

(DµΦ)† (DµΦ) = (v + h)2
(
g2

4 W
†
µW

µ + g2

8 cos2 θW
ZµZ

µ

)
+ . . . . (2.15)

The charge and mass eigenstates of the gauge bosons are

W±µ = 1√
2

(
W 1
µ ∓ iW 2

µ

)
,

Zµ = 1√
g2 + g′2

(
gW 3

µ − g′Bµ
)
,

Aµ = 1√
g2 + g′2

(
g′W 3

µ + gBµ
)
.

(2.16)



8 Chapter 2. Theoretical Foundations

The definition of Zµ, Aµ is a rotation of W 3
µ , Bµ by the angle

cos θW = g√
g2 + g′2

. (2.17)

Gauge Boson Interactions

Expanding the kinetic terms of the gauge bosons leads to gauge boson self-interactions with
triple and quartic couplings. Considering only the WWZ interaction, the terms are

−1
4BµνB

µν − 1
4W

a
µνW

a µν =− ie cot θW
[
(∂µW ν − ∂νWµ)W †µZν

− (∂µW ν† − ∂νWµ†)WµZν

+ WµW ν†(∂µZν − ∂νZµ)
]

+ . . . .

(2.18)

A comprehensive review of the SM and its interactions can be found in e.g. [33, 34].

2.2. Colliders and Cross Sections
Processes involving elementary particles can be studied at colliders. The motivation to use
particle colliders is to maximize the center of mass energy of the collision. The high center of
mass energy is needed to produce heavy new states and study the high-energy behavior of
processes. A high rate is needed to see rare processes.

There are different types of colliders, depending on which particles are brought into collision.
The main ones use electrons or protons and their antiparticles. Colliders are typically either
linear or circular. Circular colliders allow the reuse of the collided particles, but lead to
synchrotron radiation due to the bending of the particle beam. The power loss due to
synchrotron radiation is

∆E ∝ γ4

R
, (2.19)

with γ the Lorentz boost of the accelerated particles and R the ring radius. At a given energy,
heavy particles (protons) are less boosted than light ones (electrons) and thus experience less
power loss due to synchrotron radiation. This allows to accelerate them to higher energies.
The LHC is a proton-proton collider running currently at

√
s = 13 TeV, while in the same

ring the Large Electron–Positron Collider (LEP) accelerated electrons and positrons only up
to
√
s = 209 GeV.

2.2.1. Hadronic Cross Sections

The experiments at the LHC record final states of collisions. A measurement then refers to
the number of events that pass certain selection criteria. The rate Ṅ , with which a given
process occurs, can be split into a process dependent and a machine dependent part:

Ṅ = σL . (2.20)

σ is the cross section and L the luminosity. The cross section can be calculated from theory.
It depends on the selected final state particles. After including the detector acceptance and
analysis cuts, it is called fiducial cross section. The luminosity does not depend on the
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processes, but only on machine parameters. For a collider with Nb bunches in both beams
which revolve with frequency f and contain N particles each that are spatially distributed in
a Gaussian profile of width σx, σy the luminosity is

L = N2fNb

4πσxσy
. (2.21)

To get a number of events instead of a rate, the integrated luminosity is used,

Lint =
∫
Ldt. (2.22)

The LHC has a design luminosity of L = 1 · 1034 cm−2s−1. In 2016 it delivered an integrated
luminosity of Lint = 41 fb−1 [35].

Parton Distribution Functions

At the LHC the colliding particles are protons, which are not elementary, but QCD bound
states. At the LHC energies, their constituents are resolved, such that the hard process is a
collision including quarks and gluons. The mapping between protons and their partons is
determined by non-perturbative QCD and can not be calculated using perturbation theory.
It is parametrized by Parton Distribution Functions (PDF). These are probability density
functions fi(x,Q2) that depend on the type of parton i, the momentum fraction of the proton
which the parton carries, x, and the energy scale Q2.

The hadronic cross section can then be factorized as

σpp→fin =
∑
i,j

∫
dx1dx2 fi(x1, Q

2) fj(x2, Q
2) σij→fin . (2.23)

The indices i and j refer to the partons: g, u, d, . . . . The PDFs are parametrized and fitted
to measurements by different groups [36–38].

The hard cross section can be calculated from the underlying quantum field theory as

σ =
∫

dΦn
1
2ŝ |M|

2 . (2.24)

Here, 1
2ŝ is the flux factor, dΦn is the phase space integration and |M|2 the matrix element

describing the initial-final transition averaged over the initial state spins and summed over
the final state spins.

2.3. Fixed Order Calculations
Since exact solutions to the SM are not known for general processes, the usual approach
to calculate amplitudes is the use of perturbation theory. In this approach one splits the
Lagrangian into a free theory, for which freely propagating particles are the solution, and
interactions between these particles, which are perturbations described by small coupling
constants. Quantities like cross sections can be expanded as a series in the couplings and
each order of this expansion can be calculated individually. The first non-vanishing term is
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q

q

V

g

Figure 2.2: LO and NLO amplitudes for single vector boson production in a qq collision. At NLO
there is either an additional loop (center) or an additional emission (right).

LO

NLO

virtual real emission

Figure 2.3: Visualization of squared amplitudes at LO (top) and NLO (bottom). Virtual corrections
appear as interference with the Born amplitude and real corrections as a square of the amplitude with
one additional emission.

called leading order (LO). The next term is next-to-leading order (NLO) and so forth (NNLO,
N3LO, . . . ).

The amplitude is calculated using the Feynman diagram approach. Here the series expansion
is visible in the number of couplings in the diagram. The LO amplitude is also called Born
amplitude. Often, like in diboson production, the LO amplitude is described by a tree-level
diagram. But there are also processes where the LO amplitude has a loop, for instance Higgs
production via gluon-fusion.

At NLO there are two different types of higher order corrections: real emission and virtual
corrections. Real emission corrections have one additional external particle compared to the
LO process, while virtual corrections add an additional loop.

For the minimal example of single vector boson production the contributing diagrams are
shown in Fig. 2.2. At the amplitude level, there is a triangle loop (vertex correction) for the
virtual corrections and an additional emission from one of the quark legs for the real emission.
The cross section is calculated as an integral over the squared amplitude, which is visualized
in Fig. 2.3. For a NLO calculation, terms with up to one additional factor of αs are considered.
At this order, the one-loop amplitude enters as the interference with the Born amplitude,
while the real emission amplitude appears squared.
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When calculating these corrections, divergences appear in the calculation. Special treatment
of these divergences is needed, such that all physical observables have finite results.

The divergences can be categorized in two regions. UV divergences correspond to large
momenta in loops and can be regularized using for example dimensional regularization and
can then be absorbed in parameters of the theory using renormalization. Furthermore, there
are divergences for small momenta in loops and for soft or collinear emissions in real emission
amplitudes. These are called IR divergences and can be understood as the on-shell limit of
an intermediate massless propagator. If a massless quark emits a gluon, the corresponding
amplitude contains a quark propagator, such that the squared amplitude will be

|M| ∝ 1
p2
emitter

∝ 1
pg · pq

∝ 1
EqEg(1− cos θ) , (2.25)

where pq, pg (Eq, Eg) are the momenta (energies) of the final quark and gluon and θ the angle
between them. In the last term, the divergent kinematical configurations can be extracted.
The term diverges if the emission is soft (Eg → 0) or collinear (θ → 0).

These IR divergences can also be regularized using dimensional regularization. In total cross
sections the regularized divergences can be canceled analytically. This cancellation always
works for IR safe observables as stated by the Kinoshita-Lee-Nauenberg (KLN) theorem [39, 40].

When calculating differential cross sections, the cancellation can in general not be performed
analytically. Instead, a numerical procedure is used. The most common approach is to use
a subtraction scheme. To accomplish this, a term is constructed with the same divergence
structure as the real emission. In contrast to the real emission, in the subtraction term the
divergent phase space of the additional emissions can be integrated analytically. Thus it can
be added back to the virtual corrections. For a process with n particles at LO and n+ 1 in
the real emission the contributions to the NLO cross section are:

σNLO = σB +
∫
n
dσV +

∫
n+1

dσR

= σB +
∫
n

(
dσV +

∫
1
dσA

)
+
∫
n+1

(dσR − dσA) .
(2.26)

This construction is possible, due to the factorization of the IR divergences, which means that
a (n+ 1) configuration in the soft or collinear limit can be written as a product of the (n)
particle amplitude multiplied with a universal (process independent) divergent factor.

Different realizations of the subtraction algorithm exist. In the Monte Carlo program VBFNLO,
which is used for the numerical calculations in this thesis, the Catani-Seymour dipole subtrac-
tion [41, 42] is applied. The idea is that the divergences are given by the Born process with an
additional splitting attached. This splitting is described using dipole terms. When integrating
out the emitted particle a third particle has to be involved, such that momentum is conserved
while keeping all particles on their mass shell. This additional particle is called spectator.

2.4. LoopSim
The LoopSim method was introduced in the paper “Giant QCD K-factors beyond NLO” [26].
The goal is to describe processes, which receive sizeable corrections at higher order due to
additional emissions. While LoopSim can be applied at different orders, the most common
case is to approximate NNLO corrections of a process X, by combining the NLO calculations
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(abbreviated as X@NLO) with the NLO corrections to the process with an additional jet
(X+j@NLO). The resulting description by LoopSim is called X@n̄NLO. For this combination,
a method is needed to merge samples of different multiplicities without double counting
contributions. The main idea is to use unitarity, such that the fully inclusive NLO cross
section is preserved and the sample with additional emissions only modifies distributions
and fiducial cross sections, but not the fully inclusive cross section. LoopSim works purely
numerically on the level of events.

2.4.1. Matching and Merging

In recent years many algorithms with similar aims as LoopSim were developed. They all
use common building blocks. Most of them aim at combining fixed order calculations of
different jet multiplicities with parton showers. Fixed order calculations are an expansion
in the coupling up to a fixed power in the coupling and, thus, a fixed number of additional
emissions. A parton shower gives a description of many emissions, for which the leading
logarithmic terms of QCD are considered. When both are combined, double counting has
to be avoided by adjusting the phase space filled by the parton shower and the fixed order
calculation, while loosing neither the fixed-order accuracy nor the leading-log accuracy. This
procedure is called matching.

Fixed order calculations for different jet multiplicities can be combined to give a better
description of events with multiple emissions. This combination is called merging. It was first
applied to LO calculations, but can be extended to include higher order corrections. LoopSim
is a parton-level merging procedure. It uses fixed order calculations of different multiplicities
to produce a combined sample. In contrast to many other recent merging methods, LoopSim
is not connected to a parton shower and can work directly with parton-level Monte Carlo
programs.

VBFNLO itself is a parton level generator and does not include a parton shower or match-
ing/merging. Nevertheless, it can be interfaced to other Monte Carlo programs, which
implement matching and merging. The interface of fixed-order amplitudes to parton shower
Monte Carlo programs is standardized in Binoth-Les-Houches-Accord (BLHA) [43, 44] as a
collaborative effort of many Monte Carlo program authors. Using this interface VBFNLO was
used in combination with Herwig to investigate parton shower effects on vector boson fusion
processes [45]. Using this interface also NLO merging can be performed in Herwig using a new
NLO merging scheme [46] available in Herwig 7.1. An overview of the Monte Carlo programs,
merging schemes and their recent developments can be found e.g. in [47].

2.4.2. Contributions to Higher Order Corrections

The cross section definition in Eq. (2.24) can be written more explicitly for a perturbation
theory approach:

σ =
∑
k

∫
dΦk

1
2ŝ

∣∣∣∣∣∑
l

M(l)
k

∣∣∣∣∣
2

. (2.27)

k is the number of final state particles. For each k the phase space dΦk has a different number
of dimensions and there is a sum over the number of additional loops l which contribute to
the amplitudesM(l)

k .

The different contributions to a fixed order calculation can be visualized by starting with
a Born process, to which additional emissions (legs) or loops are added, which is shown
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Figure 2.4: Contributions to fixed order calculations visualized as a dependence on additional legs or
loops.

in Fig. 2.4. The leading order cross section for a process X is σ(0)
0 . The lower index counts

the additional legs (k) and the upper index the additional loops (l). The σ(l)
k correspond to

a power series in αs of the squared amplitude and contain loop diagrams and interferences
between different numbers of loops. σ(l)

k then has an additional factor αk+l
s compared to the

process σ(0)
0 .

Following this notation, higher order cross sections can be written as

σNLO = σ
(0)
0 + σ

(0)
1 + σ

(1)
0 , (2.28)

σNNLO = σ
(0)
0 + σ

(0)
1 + σ

(1)
0 + σ

(0)
2 + σ

(1)
1 + σ

(2)
0 . (2.29)

One can also consider the processes X + j, i.e. the process with an additional jet. Its cross
sections are given by

σj,LO = σ
(0)
1 , (2.30)

σj,NLO = σ
(0)
1 + σ

(0)
2 + σ

(1)
1 . (2.31)

LoopSim, for a description at n̄NLO, includes additional emissions beyond NLO. The inputs
are σNLO and σj,NLO, which are both part of σNNLO. They can be calculated using a NLO
Monte Carlo implementation for the processes X and X + j, e.g. WZ and WZj. To combine
them, one has to remove the double-counted σ(0)

1 contribution, which is done by explicitly
dropping the Born contributions from the X + j sample. Compared to the full NNLO
calculation the σ(2)

0 term is missing. The IR divergent terms are known, since they have to
cancel against σ(1)

1 and σ
(0)
2 . By looping the last two terms, an approximation of σ(2)

0 can
be obtained that is correct up to IR-finite corrections. These corrections are expected to
scale as α2

sσ
(0)
0 and are the only difference between the LoopSim description at n̄NLO and a

full NNLO calculation. Additional emission in diboson production and similar processes is
enhanced for high transverse momenta in the form

O
(
αs ln2 pTjet/mV

)
. (2.32)

The terms are known as Sudakov logarithms [48, 49] and correspond to soft vector boson
emission from hard jets. These contributions grow for large jet momenta and are dominant in
the tails of distributions. For scales below the vector boson masses, the logarithms of Eq. (2.32)
are small and the LoopSim description should not be used.
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Figure 2.5: The LoopSim algorithm is schematically shown. An input event is assigned an emission
sequence and then non-Born particles are looped. In this depiction a 2→ 2 Born processes is assumed
and an event with two additional emissions processed. This graphic is taken from [26].

2.4.3. LoopSim Algorithm

A detailed discussion of the LoopSim algorithm can be found in [26, 50]. This section is a
summary of the work presented there and uses the notation and visualizations of [26].

The LoopSim algorithm is applied to event samples on an event-by-event basis. Given a
sample with additional emissions, it generates looped events with fewer emissions down to the
Born configuration. The total weight of all generated events before cuts is chosen to sum to
zero, such that looped events do not contribute to the fully inclusive cross section. Due to this
conservation of the cross section, the method is also referred to as “unitarizing” events with
additional emissions. Once a certain final state is required or cuts are applied, the application
of the LoopSim algorithm will lead to modified fiducial cross sections. In distributions, events
can be moved to other values or outside of the accepted region. This leads to non-vanishing
corrections which, for observables sensitive to additional radiation, correspond to approximate
NNLO corrections.

The input event is passed from a Monte Carlo program, in our case VBFNLO. The event format
only records the list of final state particles and momenta as well as the weight. Details of the
interface to VBFNLO are discussed in Section 5.6.

The steps of the LoopSim algorithm as depicted in Fig. 2.5 are:

• Get an input event from the fixed order Monte Carlo program (a),

• Assign an emission sequence (b),

• Identify the Born particles (c),

• Loop non-Born particles and generate 1- and 2-loop events (d-f).

Looping is the prescription to find for each real emission event a proxy event for the virtual
corrections. This generated event is assigned the same weight with a relative negative sign to
cancel the divergences in the real emission. The concrete algorithm will be introduced in the
following.
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Recombining particles

The parton level input event is received from the parton level Monte Carlo program by
LoopSim. The goal of the first step is to find soft or collinear emissions, for which canceling
terms are needed. To this end, the particles are clustered.

This leads to an emission sequence, where particles with small separation are connected. With
this construction collinear and soft emissions will be clustered to their emitters, such that
the arising IR divergences can be extracted. On the clustered state the Born configuration
is selected. These particles will not be looped, since they are part of the selection of the
underlying analysis and not part of the additional radiation.

The idea is to reverse parton-shower like splittings and the method is inspired by the CKKW pro-
cedure [51]. The C/A algorithm [52, 53] is used to cluster particles. It is usually used as a
jet clustering algorithm and clusters particles, by considering pairwise distances in the plane
of rapidity and azimuthal angle ∆R2

ij = (yi − yj)2 + (φi − φj)2. Starting with the smallest
distance pairs of particles are recombined into one until the minimal separation reaches a
fixed limit RLS. In this recombination the particle with higher pT is considered to be the
emitter and the emission history is recorded.

The Born particles are selected from the emission history using the kT-algorithm hardness
measure

hij = min
(
pT

2
i , pT

2
j

)
∆R2

ij/R
2
LS . (2.33)

To do so, the clustering history is traversed, following the harder parton until a final state
particle is reached and marked as belonging to the Born process. This is repeated until b
Born particles are identified. This emission sequence contains the leading emissions which
contribute to logarithmic enhancements in the real emission. For non-enhanced (wide-angle,
hard) emissions, the assigned emission sequence has less physical meaning. For these events
the final effect is smaller and, as shown by the original LoopSim authors, does not significantly
contribute to relevant observables.

Generating Looped events

Looped events are generated by making final state particles virtual. To accomplish this, these
particles are recombined with their respective emitters according to the reconstructed emission
sequence. The recombination procedure has to be infrared and collinear safe (IR-safe) to ensure
the correct cancellation of the divergences. There are many potential recombination methods.
LoopSim uses a method similar to the p̃-kinematics of Catani-Seymour. The momentum of
the combined particle is redistributed such that the resulting particles are on-shell and have
the same transverse momentum and rapidity. For the splitting from a final state particle this
corresponds to adding the momenta and rescaling the sum to restore the mass of the emitter.

Formally the generation of looped events is given by the operator U bl . From the input event,
simulated looped events with one or more loops will be generated. The operator U bl acts on an
event En with n particles and returns events with with l loops generated by LoopSim for a
Born processes with b particles. The example shown in Fig. 2.5 starts with E4 and applies
U b=2
l=1 . Looping means to apply all U bl with 0 ≥ l ≥ n− b, such that the looped events have a

final state multiplicity between b and n.

The LoopSim procedure is defined by the construction of the U bl operator. The maximum
number of loops that can be generated on an event is given by

v = n− (b+ ns), (2.34)
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where n is the number of particles in the event, b the number of born particles and ns the
number of non-born emitters (intermediate particles).

The operator is defined in the extreme cases as

U b0 = 1, U bl (En) = 0 for l > v . (2.35)

To generate all looped diagrams, all possible numbers of loops are generated:

U b∀ =
v∑
l=0

U bl . (2.36)

With a NLO input, there are events corresponding to the virtual corrections, the real emission
and subtraction terms. The real emission and subtraction terms are passed as a block, to
be able to sum their contribution to distributions before calculating the variance. For the
generation of looped events, all input events including the real emission and subtraction events
are treated individually, but the block structure is conserved for later analysis.

Each input event has an associated weight wn from the fixed order calculation. The weight of
the generated events with l additional loops is equal to the original weight wn up to the sign:

wn−l = (−1)l wn. (2.37)

This sign is necessary to cancel the appearing divergences. The cancellation also requires to
keep the absolute value of the original weight. The total weight of all events generated by U b∀
is ∑

l=0

(
v

l

)
(−1)l wn = 0 . (2.38)

This ensures that the total cross section is not modified when the looped events are added.
For inclusive observables, which are not sensitive to additional radiation, the looped events
sum to 0. For observables that depend on the additional radiation the events with alternating
signs will move contributions from one phase space point to another and thus induce shape
changes in histograms.

The effect of the U bl operator on some topologies is visualized by the following diagrams that
are taken from [26]:

U b=2
l=1


1

2

 = −

1

2

−

1

2

, (2.39)

U b=2
l=2


1

2

 =

1

2

, (2.40)
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U b=2
l=2


1

2

 =
1

2

+
1

2

+
1

2

, (2.41)

U b=2
l=2


1

2

 =

1

2

. (2.42)

Generating one loop on an event with 4 particles and 2 Born particles is shown in Eq. (2.39).
For a n̄NLO calculation of a process with 2 Born particles, all potential loops of the 4 particle
event would have to be considered, such that the relevant operator is

U2
∀ = U2

0 + U2
1 + U2

2 . (2.43)

Therefore, in additional to Eq. (2.39) also Eq. (2.40) and the original event are needed to get
all possible looped combinations:

U2
∀


1

2

 =

1

2

−

1

2

−

1

2

+

1

2

.

(2.44)

Depending on the number of available and requested loops, all potential combination have to
be generated as shown in Eq. (2.41) for two loops and three emissions. The recombination
follows the emission sequence, such that emissions which stem from a certain particle are
looped back to it as shown in Eq. (2.42).

The looping procedure is agnostic to the flavor of the considered particle. This is mostly based
on the fact that VBFNLO, like many parton level Monte Carlo programs, assumes summation
over the available flavors and by default does not generate specific flavor combinations. The
LoopSim method can also be applied to non-QCD final state particles. For massive particles
the redistribution and hardness measure of the clustering step has to be adjusted. For this
thesis, all events that would lead to looped W or Z bosons are dropped by explicitly requiring
all electroweak particles to be in the final event. These types of diagrams could be used
to simulate electroweak loops. The total cross section gets a non-vanishing contribution by
always including the real emission but dropping events, where the looping algorithm would
remove electroweak bosons.
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Calculating n̄NLO corrections

Using the U bl operator, samples with simulated loops can be defined. Starting with LO
descriptions of a process X with b final state particles and the LO calculation of X + j, the
NLO corrections to X are approximated as

X@n̄LO = X@LO + U b∀(X + j@LO) . (2.45)

A similar description can be used to combine NLO events into a n̄NLO sample:

X@n̄NLO = X@NLO + U1
∀,1(X + j@NLOonly) . (2.46)

Starting with NLO samples, the exact one-loop amplitudes are used, such that the LoopSim
operator has to be adjusted. From the X + j@NLO sample the Born contributions are
neglected, since they appear as the real emission of X@NLO. The combination of virtual
corrections and real emission is called X + j@NLOonly. Denoting events by the number
of final state particles n and the number of exact loops calculated l as En,l, this sample
has contributions from the virtual corrections to En−1,1 and from the real emission to En,0.
Applying U b∀ to En,0 will generate an approximation of En−1,1 that should be replaced by the
exact calculation. For En−2 type events, generated loops from both En and En−1 states are
needed to cover all potentially appearing divergences. To summarize, this leads to

U b∀,1(En,0) = U b∀(En,0)− U b∀
(
U b1 (En,0)

)
, (2.47)

U b∀,1(En−1,1) = U b∀(En−1,1) . (2.48)

This construction can be extended in two ways. Combining two NNLO samples would give a
prediction at n̄NNLO. On the other hand more than two NLO samples can be combined.
With NLO calculations of process X, X + j and X + 2j a precision of n̄n̄NLO is possible.

Uncertainties

The radius RLS, used in the recombination step, can be varied to generate an uncertainty
estimate due to the clustering procedure. This will highlight which observables are sensitive to
LoopSim corrections and additional emissions. In general for electroweak observables (trans-
verse momenta of leptons or electroweak bosons) the sensitivity is small and significantly below
the renormalization scale dependence while for jet observables (transverse momenta, invariant
masses or distances between jets) the RLS dependence can exceed the scale dependence.

The scale dependence of the n̄NLO result overestimates the NNLO scale dependence since
the cancellations that lead to a reduction of the scale dependence needs the full virtual
corrections. The size of the scale dependence is thus close to the original NLO scale band for
most observables.

For this thesis, the LoopSim implementation as published in [54] is used with modifications to
include bin smearing as discussed in Section 5.2.2. The analysis uses the LoopSim internal
analysis tools that are based on FastJet [55].
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Anomalous Couplings
Anomalous couplings (AC) parametrize deviations from couplings between particles predicted
by the SM. In Section 3.1 the concept of Effective Field Theory (EFT) will be introduced.
One application of this framework is to extend the SM to include anomalous couplings, which
is presented in Section 3.2. The couplings of electroweak bosons are then investigated in
Section 3.3. EFTs are only valid in a specific combination of phase space and parameters.
The limits of their validity are discussed in Section 3.4. The range of validity can also be
studied by comparing interference terms and squared terms as in Section 3.5. Finally, the
dependence on the choice of basis (Section 3.6) and the restoration of unitarity (Section 3.7)
will be discussed.

3.1. Effective Field Theory
A field theory is defined by symmetry groups and a set of fields, which are the available
degrees of freedom and are related to its matter content.

When looking for physics beyond the SM, new elementary particles are included by introducing
new fields within a theory. The masses of these particles are often constructed to be heavier
than the masses of SM particles to avoid exclusion by current experimental searches.

Therefore, one can distinguish two different energy scales:

Λobservable energy scale, at which the observable is measured, for the LHC this is typically
around the electroweak scale, O(100 GeV),

ΛNew Physics scale of a New Physics model, which is of the order of the mass scale of New
Physics particles, O(TeV).

If these scales are sufficiently different, observables at the low scale are well approximated by
neglecting contributions from New Physics. This is called decoupling and its applicability is
stated in the decoupling theorem [56–59]. Depending on the New Physics model, there can
be non-decoupling effects. An example, where non-decoupling affects an EFT description in
Higgs physics is given in [60].

A more general concept is the separation of scales and appears in a wide variety of areas
of physics. Dimensionful quantities, like new energy scales, can appear in predictions for
dimensionless quantities, like corrections to observables, only in the form of ratios. The ratio
of a New Physics model prediction ONP to the corresponding SM prediction OSM can be
written as a function of the ratio of scales:

ONP
OSM

= f

(
Λobservable

ΛNew Physics

)
. (3.1)
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Figure 3.1: The interaction of four fermions in β decay or the decay of a muon, is described by
the exchange of a weak boson. In the low energy limit, this exchange can be expressed in terms of a
dimension-6 operator. This formulation is called Fermi Theory.

If the scales are well separated, the ratio is small and allows to expand f in a series. Corrections
due to new New Physics can therefore be expressed as a power series of the ratio of the
observable scale and the new mass scale.

The EFT approach can be used in two ways:

top-down Start with a theory at a high scale and derive the effects at a low scale by integrating
out the heavy degrees of freedom.

bottom-up Start with a low scale theory and add all higher-dimension terms that can appear
in a top-down approach.

The bottom-up approach is used, when deviations from the SM should be described in a
model-independent way, since the full theory is not yet known. At the low energy scale, the
high energy effects are described by operators that only consist of low energy fields and obey
the symmetries of the low energy theory. They have an energy dimension larger than four,
which is compensated by dimensionful couplings. The Lagrangian can be written as

LEFT =
D∑
d

∑
i

fi
ΛdO

(d)
i . (3.2)

The prefactors fi are called Wilson coefficients. The EFT is an expansion in powers of Λ
that is cut at a dimension D. In this power series, a priori there is no distinction between
the scale Λ and Wilson coefficient fi. The scaling of an operator is given by the dimensionful
combination

Fi = fi
Λd . (3.3)

In the following the shorthand Fi will refer to the dimensionful coupling and, as an abbreviation,
in figures the units will be assumed to be TeV−2 and not explicitly stated.

3.1.1. Fermi Theory

The concept of EFT can be illustrated using the example of Fermi Theory. Fermi Theory was
developed in 1934 [61, 62] to model β decay. It uses the previously introduced neutrino and a
four-fermion vertex, as shown on the left in Fig. 3.1. This description applies to β decays of
nuclei as well as muon decay.
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The coupling of this vertex has dimensions of E−2. This vertex is non-renormalizable, which
means that for each order in perturbation theory one has to introduce a growing number of
counterterms. In general in a (3+1)-dimensional theory all operators in the Lagrangian with
dimension larger than 4 and, therefore, couplings with negative energy dimension will show
this behavior.

Following the discovery of neutral currents [63], in 1983, the W and Z bosons were discovered
at LEP [64, 65]. Using the electroweak theory, β decay can be modeled with a weak boson as
force carrier between two fermion lines, as shown on the right in Fig. 3.1, in contrast to an
elementary interaction between four fermions.

The four-fermion interaction corresponds to the operator

GF√
2

(
ψi(1− γ5)γµψj

) (
ψk(1− γ5)γµψl

)
, (3.4)

while using the SM the amplitude is(
ψi

ig√
2

(1− γ5)
2 γµψj

) −gµν
p2 −m2

W

(
ψk

ig√
2

(1− γ5)
2 γνψl

)
. (3.5)

If the invariant mass carried by this W boson is smaller than its on-shell mass, p2 � m2, one
can expand the W boson propagator in p2

m2
W

1
p2 −m2

W

= − 1
m2
W

+O

(
p2

m2
W

)
. (3.6)

By matching the Fermi theory to the expanded electroweak theory, one finds

GF =
√

2 g2

8m2
W

. (3.7)

Also the next-to-leading term can be studied, which grows as p2

m2
W
. This term allows to

estimate the area of validity for the Fermi theory. As soon as the W boson is close to on-shell
the expansion breaks down and the full electroweak theory is needed. At the muon mass,
corrections are only of order m2

µ/m2
W ≈ 10−6.

The four-fermion vertex is a dimension-6 term and as such also of interest to bottom-up
approaches. Analogously as the GWS theory, which contains W and Z bosons as high-energy
extension for the Fermi theory, a new theory containing a W ′ or Z ′ boson can be constructed,
which generates a new four-fermion interaction at current experimentally reachable scales.

3.1.2. Modern Applications of Top-Down Effective Field Theories

A recently active area using the top-down approach is the calculation of higher order corrections.
When diagrams contain loops with heavy particles, these can be “integrated out” and reduced
to tree-level diagrams.

A typical example is the production of a Higgs boson at the LHC. The leading production
channel is gluon fusion, which is shown on the left in Fig. 3.2. This process contains one loop
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Figure 3.2: Diagrams for gluon fusion production of a Higgs boson. On the left the one-loop diagram
with a top-quark loop is shown. Using EFT this amplitude can be expanded in the ratio mh/mt, which
results in an effective ggh vertex.

already at leading order, which increases the difficulty to calculate higher order corrections.
The partonic cross section reads [66–68]

σ = GFα
2
s

288
√

2π
|A(τ)|2m2

hδ(ŝ−m2
h) , (3.8)

A(τ) = 3
2τ [1 + (1− τ)f(τ)] , (3.9)

f(τ) =

arcsin2 1/
√
τ , for τ ≥ 1

1
2

[
ln 1+

√
1−τ

1−
√

1−τ − iπ
]2
, for τ < 1

, (3.10)

τ = 4m2
t

m2
h

. (3.11)

To simplify calculations based on this amplitude, one can use an EFT. The scale of the process
is given by the Higgs boson mass mh, which in the amplitude appears as a ratio with the top
quark mass mt. Since mt > mh, the cross section can be expanded for large values of τ :

A(τ) = 1 +O
(1
τ

)
. (3.12)

The leading term in this expansion gives a constant amplitude, which is independent of the
heavy quark mass. This term corresponds to an effective ggH vertex, which is given by a
dimension 5 operator connecting two gluons with the Higgs boson

Oggh = αs
12π

√√
2GF GaµνGaµνh . (3.13)

The corresponding diagram is shown on the right in Fig. 3.2. Since the leading order
corresponds to a tree-level diagram, one can calculate NLO corrections easier and extend
higher order corrections to N3LO with dedicated calculations [69]. Calculating the coefficients
of EFT operators in the low-energy theory in terms of parameters of the high-energy theory
is called matching. Besides reducing the loop order, the EFT also removes the massive
propagators and leaves only massless propagators for the QCD corrections, which simplifies
the calculation of the amplitudes even further.

3.2. The Standard Model as an Effective Field Theory
Many New Physics models predict particles at scales above the electroweak scale. Therefore,
one can consider the SM to be a low energy limit of a yet unknown, UV-complete, theory at a
higher scale. In this scheme, the existing SM Lagrangian, with operators of dimension 4, is
only the leading term in an EFT expansion.
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We expect that a new theory at high energy scales also respects the SM symmetry SU(2)L ×
U(1)Y . Most models for physics beyond the SM start with a certain set of symmetries at a
high scale, of which the SM symmetry group is a subgroup. When moving to a lower scale,
the symmetry of the new model is broken to the SM group. Therefore, it should be possible
to describe such a new physics model using an EFT in terms of the SM fields and symmetries.

If the SM is extended in a bottom-up approach, there are terms for d = 5 and above. Only
SM fields are used and all terms need to be invariant under the SM gauge symmetries. The
building blocks to construct gauge invariant operators are

• Higgs field Φ,

• fermion fields Ψ,

• (covariant) derivative ∂µ, Dµ and

• field strength tensors Gµν ,Wµν , Bµν .

The only d = 5 term, called the Weinberg operator [70], corresponds to a Majorana mass for
the neutrino: (

E
c
LΦ̃∗

) (
Φ̃†EL

)
, (3.14)

where EL = (νe, eL)T is the left-handed lepton doublet and Φ̃ = iσ2Φ.

Once lepton number conservation is required, the lowest allowed energy dimension is d = 6.
Higher orders would be d = 7, which only exists if B−L violation is allowed and d = 8, which
adds a significant number of new operators. The total number of independent operators at
d = 8 and above was only recently systematically studied in [71].

In general the dimension-6 operators can be grouped into several categories:

• fermionic operators, connecting four fermion fields,

• mixed operators, connecting bosonic and fermionic fields and

• bosonic operators, connecting only bosonic fields.

As will be discussed in Section 3.6, it is possible to relate different operators by equations
of motion. Writing down all possible operators leads to groups that have redundancies. An
initial complete basis with 80 operators of dimension 6 was introduced by Buchmüller and
Wyler in [72] and updated to a minimal basis of 59 flavor-universal operators in [73], which is
now called the Warsaw basis. This approach is also referred to as Standard Model Effective
Field Theory (SMEFT). Many of the operators containing fermions can be constraint from
electroweak precision data or flavor physics. Recently ideas were published to also consider
fermionic operators at the LHC [74, 75]. We study anomalous couplings in the gauge boson
sector and will focus on purely bosonic operators.

There are alternative approaches to expand the SM using an EFT. The non-linear EFT
approach [76–78] uses a Higgs boson that is not in a doublet representation and has a different
EFT expansion parameter. This is useful if the underlying UV-complete theory is assumed to
have a different mechanism of electroweak symmetry breaking or a composite Higgs boson.

3.3. Anomalous Couplings in the Gauge Boson Sector
In the SM, the WWH interaction is described in the Lagrangian as introduced in Section 2.1.
The Feynman rule for this WWH vertex is igmW g

µν .
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An example dimension 6 operator which leads to a modification of the WWH vertex is

OW = (DµΦ)† Ŵµν (DνΦ) . (3.15)

It can be added to the SM Lagrangian as

L = LSM + fW
Λ2 OW . (3.16)

This operator introduces an additional WWH interaction term with the corresponding
Feynman rule

−1
2 i
fW
Λ2 gmW

(
−gµν (ph · p− + ph · p+) + pνhp

µ
− + pµhp

ν
+
)
, (3.17)

where ph is the momentum of the Higgs boson and p± the momenta of the W± attached to
the WWH vertex.

Comparing the Feynman rule induced by OW to the SM expression, there is an additional mo-
mentum dependence, that scales as p2/Λ2, where p2 is a quadratic dependence on combinations
of momenta. This scaling is a consequence of the dimension-6 operator, which introduces a
dimensionful coupling. The phenomenological consequences of this scaling will be discussed in
Section 3.5.

Dimension 6 operators can, in addition to terms which increase with the energy, also introduce
terms which scale as v2/Λ2. These will lead to a constant (and small) rescaling of SM terms
and can be partially absorbed in the renormalization of SM parameters, see Section 3.6 for
more details. Another effect of the p2 dependence is the violation of unitarity at large scales,
which will be discussed in Section 3.7.

We will use the OW operator as a typical representative for anomalous couplings. It affects
V V H vertices as well as WWZ which allows to use it both in the study of WH associated
production as well as in WZ production. Using diboson production, this operator was already
restricted by LEP data. The global fit in [79] gives for the coupling fW/Λ2 a 90% CL interval
of [−5.6, 9.6] TeV−2. Very recently a 95% CL limit of [−2.0, 5.7] TeV−2 was presented by the
CMS experiment [80] using only semileptonic decays in WZ production.

3.3.1. The HISZ Basis

The basis used in VBFNLO and for this thesis was introduced in [81] and updated in [82]. For
the field strength tensors this notation includes the coupling constants:

Ŵµν = igW a
µνT

a ,

B̂µν = ig′Bµν .
(3.18)
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In this basis the C and P conserving operators leading to gauge field interactions are

OW = (DµΦ)†Ŵµν(DνΦ) ,
OB = (DµΦ)†B̂µν(DνΦ) ,

OWWW = Tr
[
ŴµνŴ

νρŴµ
ρ

]
,

OWW = Φ†ŴµνŴ
µνΦ ,

OBB = Φ†B̂µνB̂µνΦ ,

OΦ,1 = (DµΦ)†ΦΦ†(DµΦ) ,

ODW = Tr
([
Dµ, Ŵνρ

] [
Dµ, Ŵ νρ

])
,

OBW = Φ†B̂µνŴµνΦ .

(3.19)

The operators OΦ,1,ODW and OBW contribute to gauge boson two-point functions at tree-level
and are therefore constrained by electroweak precision data. Since these limits are strict these
operators will not be considered for triple gauge coupling modifications. To study the WWZ
vertex only OW ,OB and OWWW have to be considered.

3.3.2. Mass Basis

Earlier parametrizations of AC effects are formulated in the mass basis after electroweak
symmetry breaking. This formalism was first introduced in [83] and used for the study of
interactions between weak bosons at LEP and the Tevatron in e.g. [84, 85]. A more recent
review is available in [86].

A subset of the terms in the mass basis that contribute to triple gauge couplings are

L = igV1

(
W †µνW

µV ν −W †µVνWµν
)

+ iκVW
†
µWνV

µν , (3.20)

where V is γ or Z. The HISZ basis induces terms in the mass basis with the relations [87]

gZ1 = 1 + fW
m2
Z

2Λ2 (3.21)

κZ = 1 +
(
fW − s2

θ(fB + fW − 2fWB)
) m2

Z

2Λ2 (3.22)

κγ = 1 + (fB + fW − 2fWB) m
2
Z

2Λ2 (3.23)

The downside of this formulation is that it is based on the mass basis after electroweak
symmetry breaking and gauge symmetry is not preserved for a general choice of coupling
values. On the other hand, in the SMEFT approach gauge connections between terms and
correlations between different contributions to observables are enforced by the construction of
the theory.

The translations given in Eq. (3.21) highlight these correlations, since the combination
fB + fW − 2fWB appears in both κZ and κγ . For a current overview of these translations
and limits in both formulations see also the review [88]. For the most general couplings in
the gauge boson sector dimension 8 operators have to be included. Using only dimension 6
operators, there are no neutral triple gauge couplings and a very limited number of quartic
gauge couplings. Both of these contributions appear in operators of dimension 8. Dimension 8
operators are predominantly studied in vector boson scattering [89] and triple vector boson
production [90].



26 Chapter 3. Anomalous Couplings

3.4. Validity of Effective Field Theories

EFTs are based on an expansion in the ratio of scales Λobservable/ΛNew Physics. The EFT is only
applicable if this expansion parameter is small, which means that the full theory is well
described by a truncated series. In terms of the scales, this assumes, that the observed scales
are smaller than the New Physics scales and that there are no resonances at or below the
observed scale. In a top-down approach, one can calculate additional terms of the expansion
and check the convergence of the series and, thereby determine, whether only including the
leading elements of the series leads to a valid descriptions.

In a bottom-up approach it is more difficult to estimate the validity-limit, since there are two
elements to the expansion, which are both not fixed a priori:

• New Physics scale ΛNew Physics and

• couplings fi.

The actually relevant ratio in the expansion is fiΛobservable/ΛNew Physics and should be significantly
below 1. The couplings fi depend on the New Physics model. Unitarity of scattering
amplitudes gives upper limits on these couplings. On the other hand couplings can be small.
In the SM there is a significant range of coupling sizes (strong and weak interaction). Thus,
different coupling values are also expected in models of physics beyond the SM. A detailed
discussion of EFT power counting in weakly and strongly coupled theories is given in [91].

For a fixed scale Λobservable, the convergence of the EFT expansion can be improved by either
smaller couplings or larger scales ΛNew Physics. Improving the expansion therefore directly
corresponds to smaller New Physics effects. Typical experimental analyses are most sensitive
to large deviations which appear for high invariant masses, where the EFT effect is enhanced.
This phase space region is also close to where the EFT expansion breaks down. Thus, a
consistent description close to the validity limit is needed. Potential solutions will be described
in Section 3.7.

3.5. Interference and Squared Terms

For amplitudes like diboson production, the SM is the leading term in the EFT expansion
at Λ0. The next relevant terms appearing are at Λ−2 (dimension 6) and Λ−4 (dimension 8).
Measurements use cross sections, which are proportional to |M|2. Considering the terms in
the squared amplitude one finds [92]

M =MSM +Md=6
AC︸ ︷︷ ︸

1/Λ2

+Md=8
AC︸ ︷︷ ︸

1/Λ4

+O(Λ−6) , (3.24)

|M|2 = |MSM|2︸ ︷︷ ︸
1/Λ0

+ 2 ReM∗SMMd=6
AC︸ ︷︷ ︸

1/Λ2

+
∣∣∣Md=6

AC

∣∣∣2︸ ︷︷ ︸
1/Λ4

+ 2 ReM∗SMMd=8
AC︸ ︷︷ ︸

1/Λ4

+
∣∣∣Md=8

AC

∣∣∣2︸ ︷︷ ︸
1/Λ8

+O(Λ−6) .

(3.25)



3.5. Interference and Squared Terms 27

Ordering the contributions to the squared amplitude in Eq. (3.25) in powers of Λ gives:

Λ0 : |MSM|2 , (3.26)
Λ−2 : 2 ReM∗SMMd=6

AC , (3.27)

Λ−4 :
∣∣∣Md=6

AC

∣∣∣2 + 2 ReM∗SMMd=8
AC . (3.28)

The leading AC contribution is the interference of dimension 6 operators with the SM
amplitude, while the squared dimension 6 amplitude appears at the same order as the
dimension 8 interference term with the SM. In a conservative approach, the Λ−4 contributions
should not be used to extract limits without also studying dimension 8 operators simultaneously.
The Λ−4 terms also introduce a dependence on the basis, as will be discussed in Section 3.6.

For the study of dimension 6 operators, we will include both terms, the interference and
the squared term, in the following. When calculating predictions to observables, one could
consider both the interference and the squared term separately. If the calculation is based on
amplitudes and not on squared amplitudes (as in VBFNLO), the separation might require more
complex modifications. Also including only the interference term might lead to momentum
configurations where a negative interference term is larger than the SM contributions. This can
generate negative differential cross sections, which break traditional unweighting techniques.

In that case one can instead study the dependence of the resulting prediction on the coupling.
For any observable, the interference term shows a linear dependence on the AC value, while the
squared term has a quadratic dependence. This way both the interference and the quadratic
contributions can be extracted by fitting a quadratic polynomial to a series of three different
AC values. This fit can then be used to extrapolate to arbitrary coupling values.

There might be new physics models, where the EFT expansion is dominated by the
∣∣∣Md=6

AC

∣∣∣2
term. This can happen if the SM amplitude is accidentally small. The SM is known to have
cancellations of different contributions to an amplitude in many processes. One of the drastic
cancellations is the radiation zero in Wγ production. In this process, the LO amplitude
vanishes exactly for a certain momentum configuration. At higher orders, this cancellation is
smeared out, but a clear reduction is still experimentally visible in this phase space region.

The suppression of the interference term could also appear only for certain helicity combinations.
If the anomalous coupling favors helicity combinations that are small in the SM, the overall
amplitude might be dominated by the helicity combinations favored by the New Physics model.
This scenario is often considered in vector boson scattering, where the SM cross section mostly
contains transverse polarization, while anomalous coupling operators can favor longitudinal
polarizations. One more example where the interference of dimension 6 operators with the
SM is suppressed is discussed in [93]. It is shown that for certain operators containing fermion
fields, amplitudes for helicity combinations arise, which do not contribute in the SM.

Another reason for a suppressed interference term could be, that the New Physics interaction
is strongly coupled, such that the weak coupling that describes gauge boson interactions in the
SM is small compared to the strong coupling appearing in the New Physics model. Depending
on the value of the coupling, a perturbative approach might not be applicable and different
formulations are needed.
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Figure 3.3: Higgs pT for WH associated production at NLO QCD is shown for the SM (black) and
the OW operator with different coupling values. Here and in the following plots the units are implicit:
FW = 10 stands for FW = fW/Λ2 = 10 TeV−2.

Example of anomalous coupling effect on distributions

The typical effect of AC on observables can be seen in Fig. 3.3. The size of the effect depends
on the scale of the observable, here the transverse momentum of the Higgs boson. At small
scales, the effect is minuscule and typically on the order of a percent. It grows with the pT
and the sign of the effect depends on the sign of the anomalous couplings. In this region,
the relevant term is the interferenceMSMM∗AC, which is proportional to fW p2/Λ2. For larger
momentum values the |MAC|2 term becomes dominant. It is proportional to f2

W p4/Λ4. These
terms being competitive means that p2 = Λ2/fW , which, depending on the coupling, is the
phase space region where the EFT becomes invalid.

3.6. Choice of Basis
The choice of dimension 6 operators is not unique. One can transform one operator into a
set of different operators using several methods. The first is equations of motion, which are
differential equations for the fields in the Lagrangian. The field definition can also be modified
to absorb terms into renormalization constants. Another method is to use integration by parts.
This uses the property that a total derivative in the Lagrangian does not change the described
physics. Therefore, integration by parts can be used to move a derivative from one term to
another. Combining these two methods allows to transform operators into linear combinations
of each other. In both methods, additional higher order contributions that would correspond
to dimension 8 terms are neglected.

For the most common bases there are prescriptions on how to translate operator coefficients, for
example in [94]. Only the leading term O(f/Λ2) is unique in these translations, but corrections
appear at O(f2/Λ4). Also the translation to the mass basis (κγ , κZ , gZ1 ) is formally only valid
to order 1/Λ2.



3.7. Unitarity 29

Furthermore, when transforming experimental bounds on EFT operators, the transformations
mostly assume that only the linear term is considered. Thus, including the |Md=6

AC |2 term in
calculations or when extracting limits makes them depend on the choice of basis for the EFT.

There is a multitude of bases used in the literature. Not all utilized bases are complete and
minimal. Besides the HISZ basis, popular bases are the Warsaw basis [73], the SILH basis [95]
and the mass basis [86]. A review of several bases and their use can be found in [96]. The choice
of basis is also relevant for higher order corrections to the couplings induced by dimension 6
operators. Work towards these corrections in the form of RGE running is presented in [97].

3.7. Unitarity
EFTs in general lead to a violation of unitarity, when applied to regimes, where the expansion
of the EFT is not valid. For the production of gauge boson pairs, this happens for example
in the phase space region with a high invariant mass of the gauge boson pair. One of the
motivations when building the LHC was that without the Higgs boson, W boson scattering
would violate unitarity around the TeV scale, such that the LHC would have to either find a
Higgs boson, or some other kind of non-SM gauge boson interaction.

To set limits on anomalous couplings in an experiment, one should not compare to an obviously
unphysical prediction. Instead one should modify the theory prediction, such that it does not
violate unitarity, i.e. unitarize the cross section. There is no unique procedure to do this.

There are several unitarization methods used in the literature that fit in one these groups:

• Form Factor,

• Cut-off at a fixed scale,

• K-matrix, T-matrix.

Form Factor

In the Form Factor approach, each anomalous coupling vertex is multiplied by a phase space
dependent factor. In this thesis, a form factor is used of the form

F(µ) =
(

1 + µ2

Λ2
FF

)-n

. (3.29)

The form factor introduces two new parameters: The form factor scale ΛFF and the exponent n.
µ is the scale of the process. For diboson production, mVV is used. Another common choice
for the scale is

√
ŝ, the total invariant mass of the collision.

The form factor is constructed to have little to no effect for momenta below the unitarity limit,
especially at the production threshold, which is dominant for inclusive production. At large
invariant masses, the form factor should suppress the unphysical growth of the amplitude with
a factor m−2n

VV . In between these two phase space regions, the expression in Eq. (3.29) provides
a smooth transition. The analytical expression is inspired by the nucleon form factor [98]

GE(Q2) = 1(
1 + Q2

0.71 GeV2

)2 . (3.30)

The form factor exponent n can be chosen depending on the operator used, such that the
leading ŝ dependence of the operator is canceled by the form factor. For dimension-6 operators
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this leads to n = 1 and for dimension-8 operators n = 2. The scale ΛFF determines at which
scale the form factor leads to a sizable suppression. It should therefore be sufficiently large.
An upper bound can be set by the unitarity requirement.

The form factor tool [99] is published along with VBFNLO. It calculates, for a given set of
operator couplings, the maximum allowed form factor scale, such that unitarity is preserved.
To accomplish this, the 0th partial wave of the 2→ 2 scattering of vector bosons is analyzed
and for each amplitude the limit |Re(ai)| < 1

2 considered.

Using this procedure, once a general expression for the form factor is chosen, the form factor
approach can be used without additional free parameters. For the analysis presented later,
a form factor with ΛFF = 2 TeV and n = 1 is used. The form factor scale is kept constant
to simplify comparisons. Since the scale is well above most of the scales shown in plots, the
effect of the form factor on observables is negligible.

Alternative formulations of the form factor are possible. For example in [100] the form factor

F =

 1 mV V < ΛF(
ΛF
mV V

)4
mV V > ΛF

(3.31)

is used.

Cut-off

The cut-off method, also called “event clipping”, removes all anomalous coupling contributions
above a certain fixed energy [91]. It can be understood as the extreme limit of a form
factor, which has no suppression at all below the form factor scale, but maximum suppression
(restoring the SM prediction) above the form factor scale. It can be written as:

Fcut = θ(Λ2
C − s) (3.32)

K-Matrix and T-Matrix

The idea of the K-matrix approach [101] is to project a unitarity-violating amplitude back
on the Argand-circle. The projection uses angular-momentum eigenamplitudes, that are
transformed as

A′i = Ai
1− iAi

. (3.33)

The leading behavior in s of this construction can also be reproduced using a complex form
factor [102, 103]

F(s) =
(

1− i s
2

Λ4
FF

)-1

. (3.34)

A recent extension of the K-matrix approach is the T-matrix formalism [104].
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Diboson Production

Diboson production is actively investigated both in experimental analyses and theoretical
calculations. An overview of the existing measurements and recent developments is given
in Section 4.1. The theoretical description and previous works leading up to and during this
thesis are discussed in Section 4.2.

4.1. Experimental Status
Diboson production is measured at several collider experiments. The first observation of pair
production of massive bosons was at LEP in e+e− →W+W−. In this process the existence
of triple gauge couplings was confirmed [105]. The production of W+W− and Z boson pairs
was used to set limits on anomalous triple gauge couplings. An overview of the diboson
measurements at LEP and resulting limits can be found in [106]. The Tevatron measured
diboson production in multiple channels, including WZ production in fully leptonic [107–110]
and semileptonic decays [111–113].

4.1.1. LHC Experiments

The LHC led to measurements of many processes in proton collisions. An overview is shown
in Fig. 4.1, where the large range of cross sections from elastic and inelastic pp interactions
down to vector bosons scattering is visualized. The total cross section of the diboson
processes (center) is of the same order of magnitude as top pair production or Higgs boson
production. When decays are considered and analysis cuts are applied, these cross sections
reduce significantly such that many of them are statistically limited.

There is an ongoing program to measure the production of boson pairs by both the ATLAS and
CMS collaborations. A selection of diboson measurements by ATLAS is shown in Fig. 4.2. For
WZ production, there are measurements in several decay channels of the electroweak bosons.
Each of the final state bosons can decay either to leptons or hadrons. The decay channel is
labeled depending on how many of the two final state vector bosons decay hadronically. For
zero, one or two bosons decaying hadronically, it is called fully leptonic, semileptonic and
fully hadronic, respectively. The fully leptonic decays are studied in [115–120]. They have
only minor background from other processes, but at the same time have a smaller branching
ratio than the (semi-) hadronic channel and are therefore limited by statistics in the high-pT
region. Semi-leptonic decays are studied in [80, 121–125]. In these channels uncertainties
arise due to the large background from single vector boson production in association with jets
and top production, where the jets can be miss-identified to originate from a vector boson
decay. The larger branching ratio of the weak bosons to hadron leads to a larger rate and,
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Figure 4.1: Overview of measured SM processes at ATLAS, from [114].
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in combination with modern subjet analysis techniques, the semileptonic channels are very
competitive compared to the fully leptonic decay channels.

Diboson production is also of interest for searches of new heavy resonances, since e.g. a W ′
boson can be detected through its decay to vector boson pairs [126–131]. Limits on masses of
these resonances are currently around 2 TeV [131].

4.1.2. Anomalous Couplings

Many of the previously cited measurements of diboson production also give limits on anomalous
couplings. Since individual processes are only sensitive to a subset of operators, one has to
combine many analyses to set a limit on a complete operator basis.

Several groups [79, 132–134] publish global fits using the published measurements. The
differences between those fits in general are the used datasets and the choice of basis for the fit.
The fit results for the allowed range of operator couplings are compatible within a factor of
two, such that the qualitative behavior and results found here do not depend on the detailed
limits considered. The analyses presented in this thesis mostly use numerical values inspired
by the limits presented in [79].

One of the most recent and strictest limits on anomalous couplings in WZ production can be
found in [80], where the lνqq final state is studied. A boosted vector boson (pT > 200 GeV)
decaying to a “fat jet” is considered and additional jet radiation above 80 GeV is vetoed.
Additional angular and separation cuts are used to ensure a “back-to-back” configuration of
the two vector bosons.

The LHC continues to run and upgrades to the detectors are planned. Thus, both systematic
and statistical uncertainties will improve further and even more precise measurements and
more stringent limits are to be expected in the future.

4.2. Theoretical Status
The recent history of phenomenology in theoretical particle physics is dominated by the
NLO revolution. NLO calculations were automated and are now readily available for many
processes [135]. Besides the automated calculations of a lot of basic processes, also challenging
processes were calculated at NLO and used for phenomenological analyses, for example diboson
production in QCD with two additional jets [136–140]. In the past few years these efforts
were extended and NNLO calculations of many relevant LHC processes were published.

Beyond fixed order calculations there are many improvements to parton showers and soft
QCD, which improve the quality of predictions for processes at hadron colliders. Most recent
results include NNLO QCD corrections matched to a parton shower, e.g. in Drell-Yan lepton
pair production [141, 142]. An overview of general purpose Monte Carlo programs can be
found in [143].

4.2.1. Diboson Production

A review of calculations of diboson processes can be found in [144]. WZ production was first
calculated in [145] and used to study anomalous couplings in [146]. WHj production at NLO
QCD was also studied in [147, 148].

Recently, differential NNLO QCD calculations of all diboson production processes were
presented, including most recently WZ production [149, 150]. This is based on the calculation
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of the two-loop amplitudes for two massive bosons [151, 152] which led to the calculation of all
diboson processes at NNLO in the MATRIX framework [153–158]. Sizeable corrections come
from the gg initial state, which is enhanced by up to 100% at two loops and was investigated
e.g. in [159–164].

Also NLO electroweak corrections are known [165–170]. An important effect are Sudakov
logarithms [48, 49]. They appear, since the real radiation of massive bosons can be identified
and is treated as a different process and therefore does not cancel logarithmic term as in the
massless case. Their shape at NLO is [165]

α

2π log2
(
p2
TV
M2
V

)
. (4.1)

These logarithms can reach more than 20% in the tails of distributions. Another aspect
of electroweak corrections is the photon induced production of vector boson pairs, which
dominates the electroweak corrections for WZ production in the study in [165].

4.2.2. Previous LoopSim Analyses

LoopSim was published in [26, 50], where Z production with an additional jet (Zj) was
studied. It was found that dijet type events with the radiation of a soft Z boson lead
to sizeable enhancements. In Zj production the NLO K-factor of HT,jets, the sum of the
transverse momenta of all jets, grows up to a factor of 100 at HT,jets = 1.5 TeV. The LoopSim
approximation of the NLO corrections is able to reproduce this. Combining Z + {1, 2} jets
at NLO gives n̄NLO corrections to Zj production, which shows K-factors around 2 for most
observables. For this study LoopSim was interfaced to MCFM [171, 172].

LoopSim was interfaced to VBFNLO to study different diboson production processes: WZ [173],
WW [174] and ZZ production [175]. In this thesis, the interface introduced in these publications
is used. A representative result for LoopSim corrections can be seen in Fig. 4.3. It shows the
pT of the hardest lepton in W+W− production at LO, NLO and n̄NLO. The corrections at
n̄NLO reach around 25% for high-pT events. The n̄NLO result is outside of the NLO scale
band. A jet veto (right) reduces the higher order corrections and renders them negative.
It also reduces the scale dependence. Similar observables and jet vetoes will be studied in
Chapter 6.
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Figure 4.3: VBFNLO interfaced with LoopSim shows sizable corrections on top of NLO for WW
production. A jet veto leads to negative corrections. From [174].





CHAPTER 5
Implementation in VBFNLO

VBFNLO is a fully flexible parton-level Monte Carlo program with a focus on hadron collider
processes involving electroweak bosons, including diboson and triboson production as well as
vector boson fusion and scattering. Many of these processes are also available in combination
with additional jets. Leptonic decays and full off-shell effects are included. Cross sections
including NLO QCD corrections are calculated efficiently and anomalous triple and quartic
gauge couplings are implemented for many processes. VBFNLO is currently released in Version
3.0.0beta4 [176], which corresponds to the code version used for this thesis. It is a collaborative
effort with many authors and several published versions [27–29].

This chapter will introduce the structure of VBFNLO in Section 5.1. Methods to improve
convergence and numerical stability of the Monte Carlo integration will be discussed in Sec-
tion 5.2. Changes to the core VBFNLO code as part of this thesis include the introduction of
a new random number generator that is described in Section 5.3 and the implementation
of parallelization using MPI, which is covered in Section 5.4. Section 5.5 covers the testing
and validation procedure for these changes. Finally, Section 5.6 will introduce the interface
between VBFNLO and LoopSim.

5.1. Structure of VBFNLO

The goal of the VBFNLO program is to provide predictions for differential distributions of
observables at the LHC including NLO QCD corrections. To this end, Monte Carlo integration
(Section 5.1.1) is used to integrate the phase space numerically.

The main routine of VBFNLO has the following parts:

1. initialize the program,
2. read input files for masses, couplings, integration settings, cuts,
3. calculate dependent physical quantities like branching ratios,
4. initialize phase space mapping and amplitude for the given process,
5. calculate cross section,
6. output cross section and histograms.

The program calculates the different contributions to the cross section separately:

• born amplitude,
• virtual corrections,
• real emission.
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Depending on the process, each of these contributions can be again split using different
phase space mappings or different types of amplitudes. For the virtual corrections a typical
differentiation is using the maximum number of external legs on the loop to integrate amplitudes
of different numerical complexity individually.

For each of these contributions a Monte Carlo integration is started that integrates the cross
section by calculating the amplitude at many phase space points. For a certain phase space
point the procedure is

1. get random numbers from a VEGAS-driven random number generator,
2. calculate momenta from the random numbers using optimized phase space mapping,
3. apply cuts to momenta, skip to next point if not within cuts,
4. calculate amplitude,
5. add this phase space point to histograms,
6. output event (if needed).

The most complex part is the calculation of the amplitude. All other aspects around it are
designed to efficiently calculate the cross section. For this purpose the phase space generator
is optimized to give a good approximation of the amplitude and phase space points which do
not pass the cuts are discarded early.

5.1.1. Monte Carlo Integration

The main part of VBFNLO is the numerical integration of the cross section. The integration of
each contribution is performed using Monte Carlo integration. Monte Carlo integration is
a technique to numerically solve an integral by calculating the integrand at random points
within the integration space. A review of Monte Carlo methods is given in [177].

Starting with a cross section as defined in Eq. (2.24), the numerical integration can be written
as

σ =
∫

dΦn
1
ŝ
|M(pi)|2 =

∫
dr1
ŝ

∣∣∣∣dΦn

dr

∣∣∣∣ |M(pi(r))|2 (5.1)

Monte Carlo−−−−−−−→ σ = 1
N

N∑
k=1
|M(pi(rk))|2 ωPS . (5.2)

The integration measure dΦn stands for the n-dimensional Lorentz-invariant phase space. The
amplitudeM is a function of the four-momenta pi in this phase space. The integration is
rewritten in terms of an integration over the n-vector r, which parametrizes the momenta.
This parametrization is called the phase space generator and is constructed to approximate
the integrand and reduce the variance of the integrand. Monte Carlo integration then rewrites
the integral as a sum over N random phase space points. Each phase space point corresponds
to n random numbers r, which are translated to momenta pi(r). The weight ωPS contains the
Jacobian of the phase space mapping

∣∣∣dΦn
dr

∣∣∣ as well as the appropriate normalization factors.

The technical problem of the integration can therefore be stated as

I = 1
N

N∑
i=1

f(ri), (5.3)
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where f is a function that incorporates the matrix element as well as phase space factors and
reweighting factors.

After rescaling, the integration space is assumed to be a d-dimensional unit cube. The
mapping between this cube and values of physical momenta in the amplitude is discussed in
Section 5.1.2.

Monte Carlo integration is the most appropriate solution for high-dimensional integrals, which
can not be solved analytically. It performs better than methods based on regular grids.
Iteratively applying 1D integration techniques using grids leads to an integration error which
scales as N−2/d. For an overview of methods for numerical integration see e.g. [178, 179].
Monte Carlo integration scales as 1√

N
or to be precise

δMC = 1√
N(N − 1)

√√√√√ N∑
i=1

f(ri)2 − 1
N

(
N∑
i=1

f(ri)
)2

(5.4)

This formally outperforms grid-based integration methods for d ≥ 5 and clearly for the use
case in VBFNLO with d = 12 and N = 226. A more detailed discussion of the derivation and
how to combine Monte Carlo error estimates from multiple runs can be found in [180].

5.1.1.1. Importance Sampling with VEGAS

There are two approaches to improve the convergence of Monte Carlo integration further,
which both aim at reducing the variance of the integrand. One option is to favor the regions
with the largest contribution to the integral, importance sampling, the other one to prefer the
region with the largest variance, stratified sampling. The generation of integration points is
then no longer uniform in the unit cube, but the density is adjusted to minimize the Monte
Carlo error, Eq. (5.4).

For importance sampling, the nonuniform distribution of random points is generated by
constructing an estimator function g(x) which is designed to estimate the integrand f(x),
while at the same time being invertible and thus usable for sampling. There are different
techniques to construct this estimator. VBFNLO uses Monaco, which was implemented in [181]
and is based on VEGAS [182, 183]. The idea of VEGAS is to use importance sampling with
an estimator that is a product of 1D estimators:

g(x) = g1(x1) · g2(x2) · · · gd(xd) (5.5)

This factorization assumes that the integrand also approximately factorizes. Non-factorizable
contributions will reduce the agreement between integrand and estimator and thus the efficiency
of the integration. The functions gi, also called grids, are constructed as step-functions with
a fixed number of steps (48 by default) in the unit interval. The values of the steps are
determined by collecting the values of the integrand in histograms for each of the random
numbers used.

The integration is performed in iterations. During each iteration the integrand value is
recorded in histograms. At the end of the iteration the recorded histograms are used as the
new baseline for the gi. To improve numerical stability the adjustment is damped, such that
instabilities of individual iterations have less effect.
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Figure 5.1: Order of generation and mapping of random numbers to kinematical variables for
WZjj production.

If the factorization in Eq. (5.5) is correct for the integrand, this leads to a very efficient
integration. For real-world integrands this factorization in general only works approximately
and there can also be features that are not picked up by the histograms. Typical examples
where the VEGAS factorization assumption fails are correlations between variables, like in the
integrand

(
(r1 − r2)2 +m2)−1. A collection of alternative algorithms for multi-dimensional

integration can be found in the popular package CUBA [184].

5.1.2. Phase Space Generation

Each of the contributions to the cross section (born, virtual corrections and real emission) can
be split up into different “phase space mappings” to optimize the integration efficiency and
runtime. For example in Wγ production, the photon can either be emitted from the initial
state quark line, the W or a decay lepton of the W . The last case leads to a significantly
different phase space, where photon, lepton and neutrino correspond to an on-shell W boson.
Using different phase space mappings, multiple momentum combinations, including potential
resonances, can be described and efficiently integrated.

For WZ+jets production only one phase space mapping is used. The order in which the
kinematical variables are generated is visualized in Fig. 5.1. The mapping is annotated on an
example Feynman diagram, while the mapping tries to be general and not diagram specific.
First, the invariant mass ŝ of the intermediate W ∗ boson is generated, then the angles for its
decay to two bosons. For those again the invariant mass and angles for the decay to leptons are
assigned. In the end, the jet radiation is described using rapidities relative to a center-of-mass
rapidity as well as transverse momenta. The list of kinematical variables and their mapping
to random numbers is given in Table 5.1. The angular distributions are assumed to be flat,
while for the boson masses Breit-Wigner distributions are used. For the invariant mass of the
diboson system (ŝ) a combination of a Breit-Wigner distribution with very large width and a
flat background is used. For the jet transverse momenta the assumed distribution is

r ≤ 0.2 : (0, pTmin), pT ∼ r,
r > 0.2 : (pTmin,

√
s), pT ∼ 1/r .

(5.6)

Here pTmin = max {10GeV, pTj,cut} is used, where pTj,cut is the minimal jet pT required by
the analysis. Below this transverse momentum value, jets are assumed to not be resolved and
therefore need fewer events to be well-modeled.

The choice of mapping distributions is important to have an efficient integration. The difference
between the distributions assumed here and the actual scaling of the matrix elements will
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Random Number ID kinematic variable

1 ŝ

2 θ(V ∗ → V V )
3 ϕ(V ∗ → V V )
4 m∗W

5 θ(V1 → ll)
6 ϕ(V1 → ll)
7 m∗Z

8 θ(V2 → ll)
9 ϕ(V2 → ll)
10 ηj1

11 pTj1

12 yCM

13 ηj2

14 pTj2

15 φj2 − φj1
non-vegas φj1

Table 5.1: Mapping of random numbers to kinematic variables for the example of WZjj production.

be compensated by VEGAS. This compensation has a limited range. In many cases the
distributions to use can not be easily derived from first principles. For example in the high-
energy tails of jets, the expected pT dependence is pT−4 due to the scaling of the propagator.
Interferences between amplitudes can lead to terms with a different power and for high
invariant masses there is an additional suppression from the PDFs.

5.1.3. Amplitudes

The amplitudes are calculated using the effective current approach and the spinor-helicity
amplitude method [185] as implemented in the HELAS subroutines [186] and also implemented
in MadGraph [187]. The calculation of the QCD part of the amplitude, including higher order
corrections, can be factorized from the EW part of the calculation to a certain extent.

In the code, this factorization is implemented by computing leptonic tensors, which contain
the possible combinations of electroweak particles that can be attached to the QCD part of
the diagram. For WH production there is only one such combination, which corresponds
to the virtual W boson that decays into the W and H boson, which both decay further. In
WZ production, besides the virtual W , also the two bosons can be attached directly to the
initial quark line. Also for these cases leptonic tensors are precomputed. The electroweak
part of the calculation also contains other contributions like non-resonant V → 4l decays with
bosonic radiation off one of the lepton lines. This factorization is shown with some example
contributions in Fig. 5.2.
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Figure 5.2: The effective current approach allows to factorize the QCD and EW contributions. Using
the example of WZ production, the top row lists exemplary born, real emission and virtual corrections
QCD amplitudes that can appear in the production of an off-shell vector current. The bottom row
shows potential contributions to this current, which include the SM triple gauge coupling, anomalous
triple gauge couplings and also other, non-resonant contributions with the same four-lepton final state.

Within this framework, anomalous couplings can be integrated into the leptonic tensors
without any modification to the QCD calculation. This allows, for example, verification of the
QCD and AC calculation separately. Precomputing and storing the electroweak tensors for
repeated use is a significant advantage. It speeds up the calculation and avoids redundancies in
the code. The QCD corrections are calculated using the building blocks for one-loop diagrams
presented in [188].

5.2. Improving Numerical Stability
To get numerically stable results for the high-pT tails of distributions, we use two methods.
First the number of phase space points in the tails is increased compared to what VEGAS
would do based on their contribution to the total cross section. The other technique uses bin
smearing for the histograms.

5.2.1. Enhancing Tails

The idea is to favor high-pT events in the phase space integration more than their contribution
to the total cross section would suggest. To achieve this, the statistics in tails of distributions
are increased by integrating dσ · w(pi) instead of dσ, where w(pi) is a reweighting function.
For the LoopSim based plots in this thesis w(pi) = H4

T was used to bias the Monte Carlo
towards the high-HT region. Here HT is the scalar sum of the transverse momenta:

HT = pTZ + pTW +
∑
jets

pTi . (5.7)

In this general approach, the reweighting function w(pi) can be chosen arbitrarily. The error
on the integrated cross section will grow, since the importance sampling is now biased away
from the region with the largest contribution to the cross section. The reweighting function
has to be infrared safe to ensure that the cancellations between real emission and subtraction
terms remain intact.
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More generally this procedure can be used to get a flat relative error in a certain distribution.
To achieve this, the reweighting function has to be chosen as the inverse of the corresponding
distribution.

5.2.2. Bin Smearing in VBFNLO and LoopSim

For the NLO calculation, a subtraction scheme is used to cancel the real emission singularities.
Since the subtraction terms and the real emission appear in phase spaces with a different
dimension, observables can have slightly different numerical value for both event types, even
when they are IR-safe. If the observable value is close to a bin boundary in a histogram, it can
occur that the real emission and subtraction terms end up in different bins. The cancellation
then no longer works and the histogram bin values get significant shifts which also increase
their Monte Carlo integration error. The resulting histograms then can show neighboring bins
with large positive/negative spikes.

This issue arises not only for NLO subtraction, but also for “looped” events with LoopSim,
where the original event and its looped counterpart can contribute to different observable
values.

Bin Smearing Approaches

The general idea of bin smearing is to record events in more than one bin, especially when they
are close to a bin boundary. This smoothes out the bin boundary and restores the cancellation
between contributions that are close.

Smearing also appears in experiments, where the uncertainty of a measurement leads to entries
appearing in a certain distribution around the true value.

The prescription on how to smear bins is not unique. To record the weight of an event
in a histogram using smearing, instead of only using the histogram bin at the calculated
observable value x0, a function f(x− x0) is used that defines the contribution of an event to
the surrounding observable values x. The weight entering a certain bin is then the integral
over this function in the range of the bin.

Potential smearing functions are:

fnosmearing(x) = δ(x− x0) , (5.8)

flinear(x) =
{ 1
D , if |x− x0| < D

2 ,

0, otherwise,
(5.9)

fquadratic(x) =
{
− 4
D2 |x− x0|+ 2

D , if |x− x0| < D
2 ,

0, otherwise,
(5.10)

fgaussian(x) = 1√
2πD2

e−
(x−x0)2

2D2 . (5.11)

The naming of the linear and quadratic smearing functions refers to their integrated form,
which is responsible for how the weight in a bin scales with the distance to its border. All non-
trivial smearing functions have some parametrization for the width D of the smearing. This
distance should typically be on the order of the bin size. The choice of the smearing function
should reflect the distribution of values. For many measurements, a Gaussian distribution is
assumed. For a Monte Carlo implementation one of the more basic functions is preferable.
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They are faster to run than the exponential and also ensure that only a maximum of two bins
get contributions from an event, assuming the smearing width D is less than the bin width.

Bin Smearing in VBFNLO

VBFNLO provides linear smearing in its internal histogram routine. Events at an observable
value of x0 that have a distance of less than D/2 from the next bin boundary xbin are recorded
with a reduced weight of w′ = w ·

(
1
2 + |xbin−x0|

D

)
and with the remaining weight of w′′ = w−w′

in the neighboring bin.

Starting with version 3.0 linear bin smearing is enabled by default (via the SMEARING variable)
and uses a smearing width D (SMEAR_VALUE) of 10% of the bin width. For the plots in this
thesis a smearing value of 40% was used to generate smoother distributions of jet observables.

Bin Smearing in LoopSim

The published LoopSim library does not have bin smearing implemented. For this thesis linear
smearing was implemented in LoopSim and used for all plots with a smearing width of 20% of
the bin width.

The use of bin smearing is very valuable to produce smooth distributions in fixed order
calculations, but it has potential downsides. If the smearing width is larger than the bin
width, narrow features of the distribution can get smeared out and vanish. Also the smearing
can introduce a shift in steep distribution. For the comparison between different theoretical
predictions and to data, it is important to ensure that the same smearing procedure is used.

5.3. Random Number Generator

As discussed in Section 5.1.1 the main part of VBFNLO is Monte Carlo Integration, which is
based on the idea that the matrix element is evaluated at random phase space points. True
randomness, for example from a measurement, can only be generated slowly and while useable,
it is not needed for numerical integration. Pseudo random numbers, that are generated by
an algorithm, are faster to generate and can have “sufficient randomness” for Monte Carlo
integration.

Criteria for a pseudo random number generator (RNG) include:

• quality of random numbers

– no (relevant) correlations, also for high-dimensional phase spaces

– long period N, such that at most
√
N numbers are used

– uniformity

• ease of implementation/seeding

• speed

Different methods exist to give quantitative measures of the “quality” of random numbers. A
popular choice is TestU01 [189], which is a collection of statistical tests for random number
generators. This includes BigCrush as the state-of-the-art test used by many authors to assess
the quality and behavior of their RNGs.
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5.3.1. Choice of Random Number Generator

VBFNLO versions before 3.0 provide a choice of two random number generators:

• RANMAR, by Marsaglia and Zaman [190], internally also called MZ and

• Sobol Sequences [191] based on the Implementation in [192], a Quasi random number
generator, discussed in Section 5.3.2.

To parallelize the implementation, a random number generator is needed, which can be used
for a fast generation of parallel random number streams. This requirement leads to the
inclusion of two new RNG choices:

• xoroshiro128+ [193, 194],

• the random_number function as provided by the compiler.

The latter is implemented in GNU Fortran 7 and newer using xorshift1024 [195], while versions
4.8 to 6 are based on the KISS-RNG [196].

The default RNG in VBFNLO is RANMAR. A runtime comparison of the different RNGs can
be found in Section 5.4.4.

The xoroshiro128+ random number generator

For parallel environments, xoroshiro128+ is now recommended in VBFNLO. xoroshiro128+ is
based on the family of xorshift generators [195]. A seed given by the user is used to compute
an internal state. For xoroshiro128+ the state consists of 2 integers of 64 bit. On these an
iteration step is run, which evolves the state and generates a stream of output values. The
state of 128 bits is minimal compared to the achieved period length of the output of 2128 − 1.
In comparison, RANMAR stores its state in 97 floats of 64 bits and has a more involved
initialization and iteration step, while providing less randomness “quality” based on the
modern tests mentioned before. The iteration step of xoroshiro128+ consists only of three
bitshifts, four XOR operations and one addition and is therefore very efficient. For the
implementation, the original C-code [194] was used and extended to integrate it with the
existing code, especially for seeding and randomness output in blocks.

Besides being significantly faster, xoroshiro128+ also allows to produce multiple independent
streams of random numbers starting from a common seed. After seeding the state, it is possible
to jump ahead in the random number sequence in steps of 264, such that 264 independent
streams can be generated. This feature will be used for parallel integration to have multiple
random number streams from a common seed.

5.3.2. Quasi Random Numbers

An alternative choice for Monte Carlo integration is to use quasi random numbers. In contrast
to pseudo random numbers they do not try to mimic randomness, but show a strict structure
and aim at providing a homogeneous coverage of the integration region. It can be shown that
the error of the numerical integration using quasi random numbers scales as 1

N , compared to
1√
N

for pseudo random numbers.

In VBFNLO it is possible to use Sobol sequences, which are quasi random numbers that are
commonly used for high-dimensional integration since they provide multi-dimensional equi-
distribution. In practice, the convergence of the integration is not significantly improved
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when using Sobol sequences compared to pseudo random numbers. The convergence of quasi
random Monte Carlo integration is widely studied. As shown in [197] the convergence depends
on the integrand. For smooth (low-variance) functions quasi-random numbers are favored,
while for non-smooth functions their advantages are less clear.

Furthermore, for small integration errors in a realistic calculation, it is best to use some
parallelization, either via MPI or by starting multiple runs with different seeds for a pseudo
random generator and combining their results. VBFNLO currently does not support seeding of
quasi random numbers.

5.4. Parallelization
Modern computers have processors with many cores – from typical desktop machines with
4 cores to highly energy-efficient cluster machines with more than 100 cores. On computing
clusters often more than 1000 cores can be used simultaneously. The implementation should
thus try to make use of these available resources and run on multiple cores. A single run can
be sped up by distributing its workload on multiple CPU cores.

Most of the VBFNLO runtime is spent in the Monte Carlo integration and in particular in the
evaluation of the integrand. Monte Carlo integration is essentially the calculation of a sum.
Since the elements of the sum are independent, this is trivially parallelizable, by calculating
all summands individually and then combining them in a final sum. As part of this thesis,
the numerical integration within VBFNLO was reimplemented to make use of multiple cores.

5.4.1. Message Passing Interface

There are many different frameworks that make parallelizing numerical code easier. The most
common ones are OpenMP [198, 199] and Message Passing Interface (MPI). OpenMP by
design is limited to one physical machine and only makes use of the cores of that machine.
The MPI specifications were first published in 1994 [200] and since then extended several
times leading to the current standard [201]. MPI can, in most implementations, run on
several machines and combine their cores, which allows scaling to complete computing clusters.
The implementations differ, since OpenMP handles the communication implicitly and uses
decorators on loops that then spawn threads to work on subparts of the algorithm. In MPI
the communication has to be implemented explicitly. This makes the code more verbose
and at the same time highlights at which stages of the computation there is communication
between the individual processes. For a codebase that was not designed with parallelization in
mind this explicit implementation can make shared state and performance bottlenecks more
obvious.

Due to the greatest potential when running on more than one machine, MPI was chosen
for the parallelization in VBFNLO. For a discussion of alternatives see Section 5.4.3. Usually
cluster operators provide an MPI installation that is configured to make the best use of
the existing infrastructure of that cluster, like choosing the fastest communication backend
(Shared Memory, Ethernet, Infiniband, . . . ) or adjusting communication strategies to the
performance characteristics and topology of the cluster.

5.4.2. Parallelizing VEGAS

VBFNLO uses the VEGAS algorithm as presented in Section 5.1.1. VEGAS uses importance
sampling and adds some complexity over a naive Monte Carlo integration. The summation of
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the Monte Carlo integration no longer consists of uncorrelated summands. The introduction
of the grid for importance sampling as well as adapting the grid adds dependencies between
phase space points and amplitudes at previous points.

Nevertheless VEGAS is easily parallelizable. It is ordered in iterations and information
exchange can be reduced to the steps between iterations. The inner-most loop of VEGAS
within one iteration is a simple Monte Carlo sum, where a function (the matrix element)
is evaluated at a set of (pseudo) random phase space points and cumulated. During this
summation, the weights are recorded in a binned histogram that is used to generate optimized
grids to improve the importance sampling. This overhead data needs to be shared between
parallel running jobs. It is possible to limit the data exchange to the steps between VEGAS
iterations, such that for the majority of the calculation time no data transfer is needed.
Furthermore, the total data exchange is only a few kilobytes and the transfer time was
measured to be negligible even for very fast runs. A more involved parallelized version
of VEGAS is presented in [202], where also different approaches to the parallelization are
discussed.

5.4.3. Design of the Implementation

The goal of the implementation was to have parallelization as an option in the main VBFNLO
code. Support for MPI should be optional, such that users can compile and use VBFNLO with
or without a MPI library. To improve maintainability the changes should be minimal and as
backward compatible as possible. There should be no changes to input and output as far as
possible. For validation runs with and without MPI should lead to identical results.

Using these conditions a parallel implementation of VBFNLO was designed and implemented
as part of this thesis. For the configure step, a flag --enable-MPI was added. This triggers
#ifdef statements in the code, which switch between the newly added MPI and non-MPI
versions of some code sections. The initialization and interfacing of the random number
generators was adjusted to support both cases and for the histogram and cross sections the
data structures were adapted to be more easily passable between different parallel workers.
As a side effect the memory usage of the histograms was optimized and some duplications
removed.

The overall idea is that each MPI worker process runs independently. This means that each
MPI worker runs the full initialisation phase, reads the input files and calculates the physical
parameters as needed. There is one master process. The difference to the other workers is, that
this master outputs the results to the screen and other output files, while the other workers
are mostly silent. For the parallel code sections, each worker determines which subrange of the
phase space points they are supposed to cover. For this the worker ID and the total number
of workers is used to split the total number of points equally between all workers.

After the computation, the results (cross section, histograms, grids) are exchanged, such
that each worker has the same result that corresponds to the full statistics computed by all
workers. Since only summarized data, like histograms and binned random number information
of VEGAS is exchanged, the amount of data is fairly small (kilobytes) and has negligible
overhead compared to the runtime of a typical calculation. For histograms and the cross
section, the Monte Carlo error estimate of Eq. (5.4) is used. Each process calculates ∑i f(ri)
and ∑i f(ri)2 for their subset of points and the resulting sums are combined at the end of
each iteration to cover the full statistics.
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For the communication, mostly the command MPI_ALLREDUCE is used. With this command,
both the combination (summing) of subresults as well as the distribution of the final result are
covered by one call to the MPI library and the summation can be distributed over multiple
machines for highly-parallel runs.

Most MPI commands are split up in a separate Fortran90 module vbfnlo_mpi, that can
be found with the published source code in [176]. Besides this new module only the main
integration loop contains MPI specific code. The benefits of parallelization are thereby
independent of the process or custom extensions to VBFNLO like new processes, phase space
changes or additional histograms.

Identical results for non-MPI and MPI with different number of workers

To validate the parallel version, the implementation is designed to lead to numerically identical
results for runs without MPI and with MPI for different numbers of workers. To achieve
this with the RANMAR generator, the random numbers used are chosen to be the same
in each configuration. If multiple workers run, they all generate the full set of random
numbers necessary and only use their assigned subset. This guarantees that the state of the
pseudo random number generator (PRNG) is identical to a non-MPI run. There are potential
numerical differences appearing due to the different order of the summation. Effects of the
numerical differences between different runs are only at the order of the machine accuracy.
When runs with more than one iteration are used those differences grow significantly, since
the importance sampling gets a different numerical input, which leads to significantly different
phase space points and thereby results for the amplitude.

This dependence on the order of summation is well-studied. Starting with Kahan summa-
tion [203] several techniques were developed, as can be seen in the review [204]. Those require
access to all summands and would thus increase the memory/network usage and reduce
performance, compared to the naive summation implemented here.

With the xoroshiro128+ RNG the performance is optimized and only the minimal necessary
number of random numbers is generated. Therefore, multiple runs will use different random
numbers than a single long run. The agreement of different RNGs was verified independently
of the parallelization.

Limitations

There are multiple implementations of the MPI specifications. For this thesis, OpenMPI [205]
in combination with GFortran was used, although the code adheres to the MPI standard
and is expected to work with other MPI libraries and compilers. Additional validation of the
numerical results is needed for new library/compiler combinations.

The phase space points are split evenly over the available worker processes. This assumes that
the speed of the workers is approximately equal. For heterogeneous clusters the work should
be split up according to the worker speed. A more advanced task distribution algorithm
could also deal with workers failing or dynamically changing the number of cores during the
integration.

Parallelization is disabled for runs requesting event output, since for that case multiple
processes writing to the same file would need to be handled. This would require some kind of
file locking, making the process IO-limited and thus reducing the performance to that of a
single core. Alternatively, separate outputs for each job could be created and combined in a
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post-integration step. The recommended procedure to get event output is to first run with
disabled event output but high statistics to generate an optimized grid. Then this grid can be
used for multiple runs with different seeds to efficiently generate events.

Alternatives

Even without the MPI implementation, VBFNLO can be run on multiple cores. For this, usually
first a long run with many VEGAS iterations is used to generate an optimized integration
grid file. Then several jobs with different random seeds are started using this optimized grid
and only one iteration. This is the preferred process for cases in which MPI can not be used.
The advantage of MPI is that also the grid generation can be parallelized and a separate step
to combine the output of several runs is not needed.

For a given process there is a certain lower limit to the number of phase space points. Below
this limit the phase space is not appropriately filled and thus the integration result is not
trustworthy and often does not converge towards to correct result. For complex processes
with a large number of final state particles this limit can be so high that for a run on a single
core the total runtime becomes unpractical. In these cases, the MPI implementation allows to
use the total statistics of all workers to fill the phase space and combines the results at each
iteration to improve the integration grid and produce a reliable result.

For the edge case, where the integration statistics are just sufficient to fill the complete phase
space, there are ideas on how to combine runs, when only a small number of them have
unstable results. For this, outliers are detected and removed. Nevertheless, these methods are
less stable than the correctly parallelized VEGAS integration.

Other Monte Carlo Generators also consider to or already provide parallelized implementations.
MCFM [171, 172] was parallelized [206] using OpenMP and is shown to scale up to O(100)
cores using an Intel Phi processor. For Whizard [207, 208] an implementation using MPI
is planned as part of VAMP [209]. An implementation of HELAS routines on GPUs was
demonstrated [210].

5.4.4. Runtime Improvements to VEGAS and RNGs

Timings are taken to measure the contribution of VEGAS and the random number generator
to the total runtime of VBFNLO and to assess the scaling with the number of cores. For an
example, the total run for process 100 (VBF-H) with 222 points at LO takes 73 s. Those
are split between amplitude (49 s), phase space (20 s) and VEGAS/RNG (4 s). For more
complicated processes in general the amplitude will become even more dominant. In the
parallelized version, the VEGAS/RNG phase grows substantially and could be a bottleneck.

In the VEGAS implementation a significant performance improvement was achieved. VEGAS
calculates the bin in its optimized grid to map uniform random numbers to the desired
distributions. This mapping was computed twice: uniform → weighted and after the amplitude
weighted → uniform. The back transformation was implemented as a linear search in an array
and thus very inefficient. By replacing the back transformation with a lookup of the cached
information of the first transformation the runtime of VEGAS was improved by a factor 4.

A first naive MPI implementation was designed to split up the phase space points such, that
the random numbers used for a parallel run were identical to the run on a single core. This
makes validation easier, since the numerical output is then independent of the number of cores
used. On the other hand, the RANMAR random number generator does not allow to “skip”
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RNG Runtime / s

RANMAR 31
Sobol 16
builtin/KISS 30
xoroshiro128+ 22

Table 5.2: Comparison of the random number generator runtime for 226 points. For this comparison
the calculation of matrix elements and phase space weight are disabled. For a discussion of these
RNGs, see Section 5.3.

Number of cores Runtime / min
naive MPI improved MPI

1 230 217
15 25 17

Table 5.3: Comparison of the total runtime of 228 points in process 100 (VBF-H) at LO with the
naive MPI implementation and a version including the improvements discussed in this section. Ideal
scaling of the 1-core result would lead to 15 min runtime. The improved version is able to close the
gap to ideal scaling from 40% to 20% and speeds up the single-core execution by about 5%.

blocks of random numbers, such that each process had to calculate the full random number
space, while it only uses a fraction.

For many cores the runtime can be improved by only generating as many random numbers as
are actually used and using a faster random number generator. Table 5.2 shows a comparison
of the runtime of the RNGs available in VBFNLO as introduced in Section 5.3.1. xoroshiro128+
is implemented as a fast RNG to speed up the MPI runs. The fastest generator is the quasi
random Sobol sequence. The total runtime of VEGAS and the RNG is 40% slower when using
RANMAR compared to xoroshiro128+.

Combining the improvements to VEGAS and the RNG discussed here, the total runtime of
both a single core and especially a highly-parallel run are significantly improved as shown
in Table 5.3.

Scaling results

Ideally, the runtime should decrease as the inverse of the number of cores used. This
corresponds to a linear increase with the number of cores n of the speedup

Sn = T1
Tn

, (5.12)

where T1 is the runtime on one core and Tn the runtime of the same setup with the same
number of phase space points using n processes in parallel.

In a real implementation, there is a finite amount of overhead that can not be parallelized. This
includes initialization and input/output as well as communication/synchronization between
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Figure 5.3: Speedup as defined in Eq. (5.12) over the number of cores. As a comparison a dashed
line shows the ideal scaling. This ideal case is reached for a small number of parallel processes. Up to
16 cores still reasonable runtime improvements are observed, while the performance decreases once
hyper-threading is used above 16 cores.

the processes. The resulting scaling then is described by Amdahl’s Law [211]:

Soverall = 1
(1− p) + p

s

, where (5.13)

• Soverall: resulting speedup of the complete program

• s: speedup of parallel part of the code

• p: fraction of execution time spent in the parallel code section

In the implementation in VBFNLO the overhead for additional cores should be minimal, since
communication and synchronization happens only once for each iteration and the amount of
exchanged data is small.

Before the numerical integration, there is an initialization phase, that each process runs
independently. It consists of reading input files, setting up the run environment for the
integration and also calculating some physical variables, like branching ratios. This typically
takes about 2 – 3 seconds due to numerical integration of decay phase spaces for the branching
ratios. The output of the final results, which takes less than a second, is also not parallelized.
The overhead can be extracted by reducing the number of points for the main integration
step and was measured to be on the order of 3 seconds, depending on the IO latency.

To test the scaling, the runtime is recorded for different numbers of parallel processes used by
MPI. This test is performed on an Intel Xeon E5-2630v3 processor, which has 16 physical
cores and using hyper-threading offers 32 logical cores to the operating system. Using one core
of this processor gives a runtime of 69 hours for 232 phase space points in VBF Higgs boson
production and 32 hours for 227 points in WZj production. The speedup for these processes
is shown in Fig. 5.3. Different physical processes are used to investigate, whether the scaling
depends on the complexity of the amplitude. The runtime is reduced with nearly optimal
linear scaling up to around 6 cores. Beyond this value, a suppression compared to optimal
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scaling arises that is, depending on the process and setup, about 30% for 16 parallel processes.
Hyper-threading is known to give little improvement for CPU-bound tasks and has a strong
dependence on the specific workload. This can be seen with a flat or even decreasing speedup
above 16 processes due to multiple processes competing for the available cores and caches.

The different physical processes show overall similar scaling behavior. The speedup is best for
the processes with the most time intensive amplitudes (WZj). This is expected, since the
relative contribution of the parallelization overhead is smaller.

5.4.5. Potential Improvements

There are several aspects in which the performance of the code could potentially be improved.
Currently, one phase space point is generated and then passed through the whole program,
from phase space and cuts to amplitudes and histograms. Instead, one could generate a longer
list of random numbers and have the different code blocks work on them in bunches. This
would allow to make use of the growing hardware support for Single-Instruction-Multiple-Data
(SIMD). The AVX2 instruction set of the current processor generation in the best case can
perform 8 simultaneous floating point operations. Working on bunches would also improve
cache locality. For loop amplitudes the code in general is larger than the CPU cache and
therefore is most likely limited by memory access speed. A smaller amount of context switches
of the CPU between random number generation, phase space and amplitude can reduce the
number of memory accesses and associated runtime.

Investigation of the non-optimal scaling in Fig. 5.3 showed that this is mostly due to the
different runtime of the individual processes. While all subprocesses work on the same number
of phase space points, they show runtime differences of up to 50% already below the hyper-
threading bound. This is potentially due to the configuration of CPU scheduler and processor
performance settings like Intel’s Turbo Boost. The MPI implementation could be improved by
choosing the number of phase space points handled by a given worker more dynamically and
adapt it to their runtime. For running on heterogeneous clusters this is even more relevant.
The naive equi-distribution of phase space points limits the runtime to the runtime of the
slowest machine.

Loop scheduling in parallel computing is an active topic in the computer science community
and there are many suggested algorithms available that behave significantly better than the
now implemented naive Chunk Self-Scheduling. Popular choices are discussed and evaluated
in e.g. [212, 213].

5.5. Testing and Validation
To make sure that new changes to the code do not have unexpected side-effects, there is a
list of regress tests. A regress test is a set of input files that represent a scenario to run.
VBFNLO 3.0 has 168 regress tests, which correspond to the different processes implemented
in VBFNLO as well as some variations on the input files, like using anomalous couplings or
resonances of New Physics models.

The regress tests are run automatically on each commit during the development of the code.
The output is compared to the manually validated output of a previous run. During the initial
development of a new process the code is compared to an independent second calculation or
(if available) existing calculations in the literature. Once a section of the code is validated all
new changes can be validated against older runs, thus leading to a chain of validations. To
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Significance, relDiff, Diff, Differr
2.89 sigma = +0.866 % (5.42e-04 +- 1.87e-04 fb) 422_ZZhadWM
2.80 sigma = -0.095 % (-8.92e+02 +- 3.19e+02 fb) 1640_WMJ
2.71 sigma = +0.341 % (4.77e-04 +- 1.76e-04 fb) 230_WmZjj
2.40 sigma = +0.908 % (3.81e+03 +- 1.59e+03 fb) 3130_QCDWPjj
2.27 sigma = -2.593 % (-1.68e-01 +- 7.41e-02 fb) 3230_QCDWMZjj
[...]
0.02 sigma = -0.004 % (-7.45e-06 +- 4.12e-04 fb) 430_WpWW_RS
0.02 sigma = +0.005 % (9.25e-05 +- 5.54e-03 fb) 4330_GFZZ
0.01 sigma = -0.002 % (-6.54e-08 +- 6.09e-06 fb) 2102_HAjj_mu
0.01 sigma = -0.007 % (-1.63e-05 +- 1.74e-03 fb) 111_Hjjj_AA
0.01 sigma = -0.003 % (-8.45e-05 +- 1.37e-02 fb) 222_WPZhadjj

Listing 5.1: For validation all existing example input files are run and compared to previous
output. This shows the difference ordered by the significance (relative difference/statistical uncertainty)
together with the relative difference, the absolute difference and the Monte Carlo error propagated to
the difference. The most and least significant deviations are shown as an example for the comparison
of the previous VBFNLO version to the modified random numbers/VEGAS in VBFNLO 3.0.

save time, the tests are usually run only with a small number of points (210) for the Monte
Carlo integration. In this low statistics case, the output is checked to be numerically identical
to the saved result. The Monte Carlo error for this low number of points is typically of the
same magnitude as the result and therefore not trustworthy.

For the majority of changes, like adding new processes, modifications to result output or
additional settings, the numerical results of other processes should not change at all, such that
checking a few phase space points is sufficient. On the other hand, sometimes the numerical
result changes, due to a different generation or usage of random numbers or a modification
of some part of the calculation. In that case, a high statistics run is needed, such that
the agreement of the new output with the saved result can be tested within the statistical
integration errors.

As part of the MPI implementation (Section 5.4.1) the quantity of generated random numbers
was reduced to the minimum needed to improve performance. This changed the generated
phase space points and thus the output of the numerical integration. Based on this change
the validation process is demonstrated.

To check the correctness of the changed random number generator and VEGAS setup, all
regress tests are run with the full integration statistics and compared against the last validated
version. For each comparison the significance of the difference is calculated as

σ = |Inew − Iref|√
δ2
new + δ2

ref

, (5.14)

where Inew (ref) and δnew (ref) are the cross section and Monte Carlo error of the new (reference)
run.

Listing 5.1 shows an excerpt of the numerical output for this comparison sorted by the
significance. The most significant difference in this example is 2.9σ and is found for process 422,
which is triple vector boson production of ZZW with one Z boson decaying hadronically. The
significance of this deviation can be assessed by considering all deviations statistically.
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Figure 5.4: Significance of the change in total cross section when compared to reference runs. The
number of runs is shown binned by the significance of the difference as stated in Eq. (5.14). The
reference runs are identical for all plots and based on the VBFNLO 2.7.1 release, while the new runs use
VBFNLO 3.0 beta 3 with different options. The top plot uses standard compilation and runtime. The
one on the bottom left is compiled with MPI support and uses parallel runs and the one on the bottom
right is compiled with ifort, leading to different numerical optimizations and output. For comparison
the expected distribution (Gaussian of width 1) is overlaid.

Figure 5.4 shows a histogram of all comparisons binned by the significance of the difference
between new and reference runs. Three different setups for the compilation are shown:

• without MPI and runs on a single core,

• with MPI and parallel runs,

• using Intel Fortran Compiler, which uses different numerical optimizations.

For all three configurations, the differences follow a Gaussian distribution. Investigating the
distribution allows to check for several potential problems. If a single process was broken, this
would be visible as an outlier. The maximal observed deviation for all configurations is close
to 3σ. With a sample size of 164 processes, approximately one process with a difference of 3σ
is expected in each comparison.
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There is no overall bias to smaller or larger cross section values. This could happen if the
phase space is not appropriately filled. Problems due to numerical instabilities or integration
step would increase the reported error and increase the difference to the reference runs.

5.6. Interface to Loopsim
Section 2.4 introduced the LoopSim method. This section will discuss the technical steps to
interface VBFNLO to the LoopSim program. This discussion is based on previous work that
interfaced and studied VBFNLO in combination with Loopsim in WZ [173], WW [174] and
ZZ production [175]. While most of the discussion is generic, for process specific sections
the example process will be WZ@n̄NLO. This is constructed by combining the VBFNLO
implementation for WZ@NLO [214] and WZj@NLO [215, 216]. The LoopSim code is used
in version 1.0.0 as published at [54].

VBFNLO provides event output for LO calculations in the HepMC [217] and LHE [218] formats.
These formats are standardized to improve compatibility between Monte Carlo programs of
different authors, detector simulation and analysis tools.

To interface with LoopSim the LHE output is extended to NLO calculations. At NLO there
are multiple connected events in the real emission. For a given real emission phase space point
multiple subtraction terms are generated. To get meaningful results on the variance and thus
integration error of observables, one has to ensure that the real emission and subtraction
events are always processed together and numerical cancellations can occur before the weight
is used to calculate the variance. LoopSim uses an additional header, that enumerates the
subtraction terms. Excerpts of example events can be found in Appendix A. The LHE event
format also asks for color structures of events. VBFNLO does not calculate the color structures
separately and since LoopSim does not use this information, the corresponding fields can be
neglected. The same holds of the particle id of partons. For final states, VBFNLO sums over
the possible flavors and LoopSim does not use the flavor information, such that a dummy
flavor can be used.

To generate the input events for LoopSim a very inclusive selection in the generation cuts is
needed to fill the IR divergent phase space. This reduces the relative statistics of the high-pT
tail, such that a balance between very inclusive and computationally feasible needs to be
found. This issue can be improved by reweighting as discussed in Section 5.2.1 The overall
increase in statistics as well as the more complex analysis increase the runtime of VBFNLO
interfaced to LoopSim compared to stand-alone VBFNLO by about a factor of 8.

Overall the majority of the cross section typically comes from the X@NLO sample, while
in tails the X + j@NLO becomes relevant. This becomes visible in Fig. 5.5, where the
contributions of the individual samples to the pTZ distribution of WZ@n̄NLO using inclusive
cuts are shown. The real emission of the WZj@NLO sample dominates the integration error
in the tail. This is visible as statistical fluctuations in Fig. 5.5. The virtual corrections of
WZj are negative in the tail and overall have little contribution to the cross section. For
observables sensitive to additional radiation, the WZj events can become dominant.

Already at generation level, the renormalization scale has to be chosen in a way that both, the
unmodified X@NLO and the looped X+ j@NLO sample, use the same scale. This can be done
by either using a fixed scale or the identical IR-safe dynamical scale in both samples. This
ensures that observables that get contributions from both samples are calculated consistently.
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Figure 5.5: Contribution of the four individually integrated contributions to the WZ@n̄NLO cross
section. Virtual corrections and real emission of WZ@NLO are used directly, while for WZj@NLO the
LoopSim algorithm is applied first. The WZ@NLO contributions are dominant close to the production
threshold. In the high-pT region, the WZj@NLO sample gains influence. The fluctuations are due to
the limited statistics in the tails.



CHAPTER 6
Phenomenological Analysis

In this chapter the implementation discussed in Chapter 5 will be used to analyse jets in
diboson production and improve the study of triple gauge couplings. The setup of the numerical
calculation is introduced in Section 6.1 and the role of jets in WZ and WH production is
discussed in Section 6.2 with a focus on the anomalous couplings search region. This discussion
is published in [219]. Based on this, in Section 6.3 observables are discussed that allow to
describe diboson events with additional jets and find topologies that are sensitive to anomalous
couplings. These observables are used to construct a dynamical jet veto in Section 6.4 that
improves anomalous coupling searches. Finally, corrections at n̄NLO QCD for WZ production
using the LoopSim method are calculated in Section 6.5. The effect of these corrections on
anomalous couplings, the observables introduced in Section 6.3 and the application of the
dynamical jet veto on the merged sample are investigated. This analysis is published in [92].

6.1. Calculational Setup
For the following analysis VBFNLO [27–29] is used in the published version 3.0.0beta4 [176]. The
WH/WHj implementation and associated tests are documented in [220]. WZ production
was implemented in VBFNLO at NLO QCD in [214] and WZj production in [215]. AC in
WZ(j) production were implemented and studied in [221].

We neglect effects from non-diagonal CKM entries. In [220] they were shown to be less than
1% in WH production and thus negligible compared to the scale dependence which in the
same configuration is 7-14%, depending on the process. The 5-flavour scheme is used, which
means that b quarks are included and considered massless in all parts of the calculation. The
strong coupling αs is treated using MS renormalization. Its value and running are taken from
the corresponding PDF set.

The following values for physical constants are used if not explicitly stated otherwise. Where
applicable, they follow the defaults in VBFNLO and are based on recent global fits.

GF = 1.16637 · 10−5 GeV−2 , mtop = 172.4 GeV , sin θW = 0.222646 ,
mW = 80.3980 GeV , ΓW = 2.098 GeV , BR(W→ lν) = 10.84% ,

mZ = 91.1876 GeV , ΓZ = 2.508 GeV . BR(Z→ l̄l) = 3.35% ,

mh = 126 GeV , Γh = 4.277 MeV .

(6.1)

For the electroweak parameters, GF ,mW ,mZ are used as inputs and sin θW, e and α determined
using the LO relations of the SM. This ensures a consistent treatment throughout the
calculation, which is LO in the electroweak coupling. The decay width of the weak bosons
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are based on LO relations and thereby match the included LO decay amplitudes, while for
the Higgs decay width known higher order results are included. For a detailed discussion on
possible combinations of electroweak input parameters and their treatment see the VBFNLO
manual [28].

If not stated otherwise, for all LO calculations the PDF set CTEQ6L1 and for NLO calculations
CT10 is used [37, 38]. Jets are clustered using the anti-kt algorithm [222] with a radius of
R = 0.4. The analysis in Section 6.3 uses a center of mass energy of 14 TeV, while Section 6.5
uses 13 TeV as used in run 2 of the LHC.

For WZ and WH production in the following sections inclusive cuts refer to the following list
of selections. They are chosen to represent a simplified version of the experimental analyses of
diboson production.

pTl > 20 GeV, pTj > 30 GeV, /pT > 30 GeV,
|ηj | < 4.5, |ηl| < 2.5, Rl(l,j) > 0.4,
mll > 15 GeV, Rll > 0.4 .

(6.2)

The mll cut refers to same-flavor-opposite-sign leptons that come from the Z boson decay. For
both the W and Z boson, leptonic decays are assumed to different flavors: W → eνe, Z → µµ.
Other flavor combinations add a combinatorial factor 4 to the cross section. Same-flavor
decays increase the complexity of the reconstruction to find the correct lepton pair for the Z
boson.

For boosted cuts the additional condition is

pTZ/H > 200 GeV. (6.3)

For anomalous couplings a form factor as introduced in Eq. (3.29) is used with n = 1 and
ΛFF = 2 TeV. The suppression due to the form factor is small in the kinematical ranges studied
here, i.e. less than 10% for mV V ≤ 500 TeV. The plots shown are in general comparable to
such without form factor.

6.2. Jets in Diboson Production
We study diboson production to learn more about the interactions between electroweak bosons.
Additional jet radiation can reduce the sensitivity to AC, as was shown in e.g. [221, 223].
Therefore, it is important to understand the properties of additional radiation and how to
correctly treat it to restore maximal AC sensitivity. To do this WHj production and WZj
production are considered at NLO QCD.

WH and WZ production share several diagram topologies. A selection of contributing
diagrams is shown in Fig. 6.1. At LO in WH production the Higgs has to be attached to the
W boson. These diagrams also exist in WZ production, with a WWZ triple gauge coupling.
WZ production can, in addition, have both bosons attached to the quark line. These diagrams
not only complicate the calculation (one additional propagator for loop diagrams) but also
significantly contribute to the cross section. WH production has additional contributions at
NLO, where the Higgs couples to a gluon via a quark loop. This type was shown in [220]
to contribute to WH production with less than 3%. For WZ production the same topology
exists, but has an even smaller relative contribution.
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Figure 6.1: Example Feynman diagrams for WHj and WZj production. The top two diagrams
exist identically for WZj production and contain a triple gauge coupling vertex. On the bottom left
a coupling of the Higgs to a gluon via an effective top loop is shown. On the right the Z boson is
coupled to the quark line.

To increase the sensitivity to anomalous couplings and reduce backgrounds, typical analyses
focus on the boosted phase space region, where one of the vector bosons has large transverse
momentum. Without loss of generality we will consider only a boosted Higgs inWH production
and a boosted Z boson in WZ production. We will focus on the W+ channel. Similar results
follow if the other boson is boosted or a W− is studied.

Events with a high-pT vector boson have a large probability of additional jet radiation. Cross
sections for WZ and WZj production at LO and NLO are shown in Table 6.1 with the cuts
given in Eq. (6.2). For the boosted region and additional cut pTZ/H > 200 GeV is applied. As
renormalization and factorization scale HT,parton as defined in Eq. (6.21) is used. For each
configuration and order, the jet multiplicity is investigated, where a jet is required to have a
pT larger than 30 GeV and is clustered with a radius of R = 0.4.

WZ production has no jets at leading order and can have up to one resolved jet at NLO.
At NLO, WZj production has either one or two resolved jets. The NLO cross sections
in Table 6.1 are split by the number of resolved jets. The contribution to WZ@NLO with
one resolved jet is equivalent to WZj production at LO. The corresponding number is given
twice, depending on whether VBFNLO was run in NLO mode for WZ or LO mode for WZj.
Different implementations of the amplitude and different phase space setups are used, such
that numerical differences appear. These differences are larger than the reported Monte Carlo
integration error. This could be due to the combination of several runs which leads to an
underestimation of the final error.

For inclusive cuts the cross section decreases when additional jets are required since the
power of αs increases. For example at

√
s = 8 TeV for WZ production with {0, 1, 2} jets

the cross sections are {8.4, 4.8, 2.1} fb. This is no longer the case for boosted cuts, where
the corresponding cross sections are {0.21, 0.37, 0.27} fb. Here additional jets are favored to
balance the boosted vector boson.
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√
s = 8 TeV inclusive boosted

W+Z W+Zj W+Z W+Zj

Njets LO NLO LO NLO LO NLO LO NLO

0 8.48 10.40 0.214 0.188
1 4.84 4.87 4.20 0.369 0.373 0.226
2 2.12 0.271
√
s = 14 TeV inclusive boosted

W+Z W+Zj W+Z W+Zj

Njets LO NLO LO NLO LO NLO LO NLO

0 14.00 16.74 0.492 0.397
1 11.28 11.31 8.39 1.242 1.248 0.554
2 6.22 1.094

Table 6.1: Cross sections split up by jet multiplicity for WZ and WZj production at a center of
mass energy of 8 TeV and 14 TeV. The cross sections are given in fb and have integration errors smaller
than 3 · 10−3 fb for the total cross section. Already for inclusive, but especially for boosted cuts a large
fraction of events has additional jets in the final state and higher order corrections favor additional
jets. This table is also published in [219].

√
s = 8 TeV inclusive boosted

W+H W+Hj W+H W+Hj

Njets LO NLO LO NLO LO NLO LO NLO

0 24.85 24.81 1.716 1.467
1 8.180 8.365 7.461 0.854 0.889 0.724
2 2.351 0.318
√
s = 14 TeV inclusive boosted

W+H W+Hj W+H W+Hj

Njets LO NLO LO NLO LO NLO LO NLO

0 47.08 44.12 4.103 3.188
1 19.72 20.16 16.12 2.648 2.690 1.889
2 7.16 1.243

Table 6.2: Cross section for W+H and W+Hj production are given as in Table 6.1. As in WZ
production, going to higher invariant mass or boosted cuts increases jet activity. Overall there is less
jet radiation than in WZ production. This table is also published in [219].
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Figure 6.2: The dominant momentum configurations for diboson + jet production are shown when
one boson is required to have large transverse momentum. The boosted boson recoils either against the
other weak boson (right) or against a jet (left).

For the inclusive cuts at NLO, both for WZ and WZj production about 40% of the events
have an additional resolved emission. With boosted cuts, this grows to about 70%. These
numbers depend significantly on the chosen cuts. The number of resolved jets in general grows
when smaller jets and smaller transverse momenta of the jets are considered. Nevertheless, for
typical analysis cuts, many or even most events will come with additional resolved radiation.
Therefore, higher order corrections with additional emissions have to be included to give a
good description of these processes.

Table 6.2 shows cross section values for the same cuts applied to WH production. The
qualitative behavior is the same as inWZ production, but the amount of additional jet activity
is smaller than in the WZ case. Events with additional resolved emission at

√
s = 14 TeV

increase for WH and WHj production from 30% for inclusive only to around 40% for boosted
cuts. The difference between WH and WZ production can be understood by considering
the involved kinematical configurations. Requiring one vector boson with high transverse
momentum in diboson production can lead to two classes of momentum distribution shown in
Fig. 6.2. The boosted vector boson recoils either against the other vector boson or against a
jet.

For very large momenta, the recoil against the jet is enhanced, since the second boson can
be soft in comparison to the scale of the event. The emission of a soft vector boson is
logarithmically enhanced. For massless vector bosons (like the photon) this enhancement is
an infrared singularity. The vector boson mass regularizes the divergence, but still leaves a
term ∝ log(m2

V/pT
2
jet). These types of emissions can be considered electroweak corrections to

the V j production processes. This enhancement appears only for diagrams where the soft
vector boson is attached to a quark. Since these diagrams do not exist for WH production,
the enhancement does not occur.

For anomalous coupling searches, a large invariant mass at the triple gauge vertex is needed.
The enhancement of AC compared to the SM is typically proportional to ŝ as discussed in
Section 3.3. The diboson pair has a large invariant mass when one boson has a high-pT and
recoils against the other boson. On the other hand, a soft boson leads to a small invariant
mass and negligible AC effects. Therefore, the kinematical regime, where the recoil happens
against a jet should be suppressed in analyses.
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6.3. Distinguishing Dibosons from V+jet Production

To separate diboson production with soft jet radiation from single vector boson + jet events
with an additional soft vector boson, we will introduce a parametrization of the final state
kinematics. The goal is to construct an observable which can parametrize the amount of jet
activity in an event and has separation power for phase space regions sensitive to anomalous
couplings. This analysis was published in [219].

6.3.1. Kinematical Variables

A final state is defined by the particles and their momenta. Kinematical properties are
described using observables that are a function of these momenta. Different constructions of
these functions are possible. There are different conditions on the definition of observables
depending on their use.

From experiments:

• Measurable: using only measurable quantities of detectable particles

• Small systematics: use well-understood quantities as input

• Theory-independent: little dependence on details of theoretical/simulation input

• Stable: little or well-known dependence on cuts and analysis input

From theory:

• Well-defined: use only objects present in the theoretical calculation

• IR safe: Independent of IR details, stable under NLO and PS calculation

• Easy to calculate: Reduce complexity to reduce runtime and errors

• Parton level: Allow reasonable description already at parton level

Some constructions show a tension between those requirements. For example a jet definition in
an experimental analysis will mostly be based on hadronic energy depositions in a calorimeter,
while a parton-level Monte Carlo program will use individual partons to define it. Therefore,
for predictions it is important to be aware which calculations are applicable for which analysis.
In the case of jets, modern jet algorithms can be based on either calorimeter towers or partons.

A comprehensive review of kinematical variables can be found in [30]. For a single particle,
the starting point for any description is the four-momentum pµ.

The momentum can be written as

~p =


px

py

pz

 =


pT cosφ
pT sinφ
pT sinh η

 , |~p| = pT cosh η . (6.4)
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Useful objects to describe a particle four-momentum p are

transverse momentum, pT =
√
p2
x + p2

y , (6.5)

azimuthal angle, φ = arccos px
pT

, (6.6)

polar angle, θ = arccos pz√
p2
x + p2

y + p2
z

, (6.7)

rapidity, y = 1
2 ln

(
E + pz
E − pz

)
= arctanh

(
pz
E

)
, (6.8)

pseudorapidity, η = − ln tan θ2 , (6.9)

invariant mass, m2 = p2 . (6.10)

Rapidity and pseudorapidity are identical for massless particles or in the limit of small mass
compared to pT. For non-vanishing mass there are differences as

y = η − 1
2 cos θ

(
m

pT

)2
+ O

(
m4
)
. (6.11)

Pseudorapidity does not depend on the mass, and directly translates to an angle relative to
the beam axis. Rapidity, on the other hand, has the property, that a longitudinal boost with
velocity β leads to a constant shift

y′ = y − tanh−1 β . (6.12)

Therefore the shape of the rapidity distribution stays invariant. Two objects with rapidity
difference ∆y = y1 − y2 in the lab frame will have the same ∆y in any longitudinal boosted
frame, like the center of mass frame of the hard partonic interaction.

At the LHC the center of mass frame of the proton collisions is identical to the laboratory
frame of the detector. However, the relevant frame is the center of mass of the colliding
partons and since the two partons in general carry different momentum fractions, this frame
will be longitudinally boosted. If a neutrino is part of the final state or not all particles are
within the detector acceptance, not all momenta can be measured and therefore the center of
mass frame of the parton collision can not be reconstructed. Therefore properties depending
on the correct longitudinal boost are usually not applicable for analysis and boost-invariant
observables like ∆y used instead.

Inherently boost invariant are observables which only depend on the transverse momentum.
Besides transverse momentum, commonly used observables are

transverse mass, mT =
√
m2 + p2

T =
√
E2 − p2

z =
√

(E − pz) · (E + pz) , (6.13)

transverse energy, ET = E√
1 + p2

z

p2
T

= E · |pT|
|~p|

. (6.14)

The transverse energy in this definition is not invariant under longitudinal boosts. The
definitions for transverse mass mT and transverse energy ET are identical in the limit of small
masses as well as for large transverse momenta. Within this limit they are both identical to
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their massless version and equal pT. For massive particles transverse mass and energy differ.
Especially for a fixed rapidity and mass

lim
pT→0

mT = m, (6.15)

lim
pT→0

ET = 0 . (6.16)

In the literature the distinction between transverse mass and transverse energy is sometimes
not strict and might not follow the definitions given here. The definitions here are for example
implemented in FastJet [55, 224] and programs based on it.

For pairs of particles, interesting values are

invariant mass, m =
√

(p1 + p2)2 , (6.17)

R separation, R =
√

∆φ2 + ∆y2 . (6.18)

All single-particle definitions can also be computed for multi-particle systems by using the
four-momentum sum of the individual momenta. For reconstructed particles, the reconstructed
four-momentum is used to define those quantities. For example for the leptonic decay of a
Z boson, the four-momentum of the Z boson can be calculated from the momenta of the
decay leptons pl and pl̄ as pZ = pl + pl̄. Other observables are then based on the reconstructed
momentum pZ , like

ET,Z = ET (pZ) = ET (pl + pl̄) . (6.19)

An exception to this convention is the shorthand

ET,jets =
∑
jets

ET,i (6.20)

which for events with a variable number of jets refers to the scalar sum of the transverse
energies of all resolved jets.

A common problem is to find an energy scale corresponding to a complete event or a subset
of particles. Such a scale can be used as a dynamical renormalization scale or to categorize
events in types. The basic idea to obtain this scale is to sum up all individual particle scales
or the relevant subsets. This involves several choices. For electroweak particles one can either
use the final decay particles or the reconstructed bosons. Jets can be either included as
reconstructed jets or at the parton level. For each individual particle there are multiple choices
for a scale, for example its energy, transverse momentum, transverse mass or transverse energy
as introduced in Eqs. (6.13) and (6.14). Potential constructions include:

HT,parton = 1
2

 ∑
partons

pT,i +
∑
W,Z

√
p2
T,i +m2

i

 , (6.21)

HT,squared = 1
2

√ ∑
partons

p2
T,i +

∑
W,Z

(
p2
T,i +m2

i

)
, (6.22)

ET = ET,jets + ET,W + ET,Z . (6.23)
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6.3.2. Lepton Separation Cut Rll

Sometimes a lepton separation cut is introduced to suppress background. This means that
the distance between each lepton pair, as defined in Eq. (6.18), needs to be bigger than Rll,
which is typically on the order of 0.4.

This type of cut is unsuitable for analyses that investigate high-pT bosons. For a boosted
particle with invariant mass mZ that decays to two massless (or relativistic) particles, by
using Eq. (6.4) one finds

m2 = 2p1 · p2 = 2 (E1E2 − ~p1 · ~p2)
= 2(pT1pT2 cosh η1 cosh η2−

pT1pT2 (cosφ1 cosφ2 + sinφ1 sinφ2 + sinh η1 sinh η2))
= 2pT1pT2 (cosh(η1 − η2)− cos(φ1 − φ2))

≈ 2pT1pT2

(
1 + 1

2∆η2 − 1 + 1
2∆φ2

)
= pT1pT2∆R2

≈ 1
4pT

2
Z∆R2 ,

(6.24)

where pZ is the momentum of the decaying particle in the lab frame and pTZ its transverse
momentum. p1, p2 are the momenta of the decay products and ∆η,∆φ,∆R the separation of
the decay products.

In the first approximation step, the separation of the two particles is assumed to be small,
such that cos and cosh can be expanded. This approximation is valid if the decaying particle
is boosted, such that the decay momenta in the particles rest frame will also be boosted and
their separation is reduced in the lab frame. This approximation depends on the decay angle.
Decays perpendicular to pTZ will be boosted closely together, while decays aligned with the
Z boson momentum that end up in opposite hemisphere will still be widely separated. In this
limit the decay particles will each carry approximately half of the transverse momentum of
the decaying particle, pT1 ≈ pT2 ≈ 1

2pTZ, which is used in the last step.

Since the vector bosons are mostly produced on-shell, a cut in Rll corresponds to a cut in
pT with a dependence on the decay angle. This angular dependence is also correlated to the
helicity of the Z boson. In combination with AC contributions, which depend on the vector
boson helicities, the Rll cut might lead to non-trivial effects.

For the Z boson mass and a cut Rll > 0.4, Eq. (6.24) corresponds to pT < 450 GeV. For
transverse momenta above 450 GeV the cross section is reduced, since only certain angular
configurations of the decay will pass the cuts.

For many modern analyses this problem does not appear. There Rll is not used, but isolated
muons and electrons are identified not only based on distance, but also on the energy of
the particles. This allows to identify leptons with a high invariant mass even when they are
boosted and have a small distance in R.
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6.3.3. Defining xjet

Using the knowledge about kinematical variables and their features, we can describe additional
jet radiation in WZ production. The starting point to define xjet is the three particle final
state WZj. The analysis is later extended to decaying particles and multiple jets.

This three particle final state can be described by using the particles’ 4-momenta. We assume
all particles to be close to their on-shell mass.

Considering only the momenta in the transverse plane, there are 6 degrees of freedom for three
particles: ~pTW, ~pTZ and ~pTj. We can reduce these 6 parameters to only 2 relevant ones to
describe the event shape: Momentum conservation requires that the vector sum of these three
transverse momenta vanishes, removing 2 parameters. One parameter describes azimuthal
rotations of the complete systems, which is a symmetry of the collision and thus does not
affect the physical description. Another parameter can be extracted which rescales all involved
momenta. This parameter corresponds to the scale ŝ of the event and does not affect the
shape.

There are several choices for the remaining two parameters. These could be angles or mass
ratios. For this thesis a new set of observables was constructed:

xjet = ET,jets
ET,jets + ET,W + ET,Z

, (6.25)

xW = ET,W
ET,jets + ET,W + ET,Z

, (6.26)

xZ = ET,Z
ET,jets + ET,W + ET,Z

. (6.27)

By construction they obey

xjet + xW + xZ = 1, (6.28)
0 ≤ xi < 0.5. (6.29)

The last condition only holds for high pT and for events with only one jet. Then xi is maximal
if the i particle recoils against both of the other particles, such that pTi = pTj + pTk and for
high transverse momenta ETi ≈ ETj + ETk, which leads to xi = 0.5. In phase space regions
where the masses contribute significantly, this limit might not hold. Also for events with more
than one jet, like real emission contributions at NLO, xjet can exceed 0.5 as shown in the
next section. The sum rule of Eq. (6.28) allows to choose any two of these three observables
interchangeably. In this thesis we use the xjet, xZ combination for 2D analyses. The results
can be directly translated to any other pair of the xi.

Besides the definition using ET, one can construct similar definitions using other measures for
the energy scale of the particles, like pT or mT. These choices are discussed in Section 6.3.4.
In Section 6.3 xjet is used based on mT and in Section 6.5 using ET.

With leptonic decays of the vector bosons, the original boson four-momentum is used for
the xjet definition. For application in experiments due to the neutrino in the final state,
some reconstruction step is needed using ET,miss. This is directly applicable for the pT based
definition of xjet, but not for ET or mT. An alternative would be to use the final state objects
(jets and leptons) directly to define a ratio that favors “leptonic” events.
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Figure 6.3: The Dalitz plot is used to describe a three-body final state. The events are shown in a
2D plot defined by the invariant mass of two pairs of final state particles. This plot is taken from [30].

6.3.4. Describing Jet Radiation in Diboson Production using xjet

The goal is to describe a three-body final state. There are many physical processes with three
final state particles and a famous historic example is the study of K meson decays (then called
τ mesons). Dalitz [225] described the three-body decay of K mesons by considering a 2D plot
of kinematical variables.

A modern version of a Dalitz plot is shown in Fig. 6.3. It uses the invariant mass of two pairs
of final state particles: m12 and m23. The sum m2

12 +m2
23 +m2

13 is determined by the masses
of initial and final state particles and is therefore constant. Like in the xjet definition, one
can choose any two of these three variables. The Dalitz plot for massless final state particles
would be a triangle, while the finite masses impose kinematical limits that shrink the triangle
from the edges to the grayed area shown in Fig. 6.3. This kind of plot visualizes intermediate
resonances in the decay chain which enhance the rate in a certain invariant mass region. The
Dalitz plot is based on the fixed mass of the decaying particle. In the diboson+jet process the
total invariant mass is not fixed, such that ratios are more suitable to describe the kinematical
configurations than absolute mass scales. The xjet, xW, xZ set of variables together with the
sum relation in Eq. (6.28) allows to produce Dalitz-like 2D distribution for diboson production
with an additional jet.

The double differential distribution of WZj and WHj production in xjet and xZ (xH) is
shown in Fig. 6.4 at LO. The mT based definition for xjet is used together with the cuts given
in Eq. (6.33) and a center-of-mass energy of 14 TeV. The overall shape is a triangle based on
the sum rules given in Eq. (6.28). In the xjet-xZ plane there is an upper limit on both axes
of 0.5 and the lower bound stems from 0.5 ≥ xW = 1 − xjet − xZ ⇒ xZ ≥ 0.5 − xjet. These
bounds are similar to those of the Dalitz plot, where a three-body phase space is visualized in
a 2D plane and kinematical constraints lead to limits to the allowed region in this plane.
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Figure 6.4: W+Zj (left) and W+Hj (right)) production at LO are shown as double differential in
xjet and xZ or xH. The upper plots use inclusive cuts, while the lower row additionally requires the Z
boson (Higgs boson) to have pT > 200 GeV. These plots are also published in [219].

With inclusive cuts there is only one significant region at low xjet. This is because in the
inclusive case the transverse momentum is smaller than the mass. The mass contribution to mT
then leads to heavy objects (W,Z,H) dominating over the light object (jet). Also the upper
limit of 0.5 is overshot for WH production. The limit of xH is given by mh/(mh+mW ) ≈ 0.6 if
the transverse momenta are small. Already with inclusive cuts WZj production has larger
contributions for large xjet values than WHj production, due to the preference for additional
jet radiation.

For a boosted Z boson (or Higgs boson), the pT contribution to mT becomes dominant. This
is shown in the bottom row of Fig. 6.4, where the triangle shape is more visible. For WZj
production there are two sizable contributions to the cross section. One is again for small xjet
values and large xZ, but another appears at large xjet and large xZ. Since the boosted cut
requires the Z boson to have high transverse momentum, this corresponds to the two regions
where the Z boson recoils either against a jet (large xjet, small xW) or against the W boson
(large xW, small xjet). For WHj production the triangle shape is also visible, but the jet
recoil region is nearly completely missing. The reason for this is that in WH production the
Higgs boson is always attached to the W boson. The intermediate virtual W boson restricts
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Figure 6.5: The same observables are shown as in Fig. 6.4 but including NLO QCD corrections
(instead of LO). The real radiation increases the overall jet activity and leads to larger xjet values. Two
jets in the final state can lead to xjet > 0.5. These plots are also published in [219].

the WH final state mostly to a J = 1 partial wave. Also it does not allow for enhancements
due to soft radiation of one of them from a quark, like in WZ production.

The same process and cut combinations that are shown in Fig. 6.4 at LO are presented
in Fig. 6.5 including NLO corrections. The overall picture is similar, but shows certain
differences, due to additional radiation in the real emission, which increases xjet. Furthermore,
there are two jet events for which xjet can be larger than 0.5. In the extreme case xjet → 1.0,
these are dijet topologies where both vector bosons are soft emissions from two hard jets that
recoil against each other. In the fixed order NLO calculation real emission and subtraction
terms contribute. Using the p̃ kinematics introduced in Section 2.3, subtraction terms and
the real emission have slightly different momentum values. Especially at the borders of the
allowed xjet − xZ space, one can have a real emission event above 0.5 and the corresponding
subtraction term below 0.5. These steps can be seen in the boosted case for WZj production.
Histogram bins directly below xZ = 0.5 have a cross section smaller than the surrounding
bins.
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Parton Shower Effects

Parton Showers are constructed to correctly describe low-pT jets and emissions in the soft
and collinear region. The effects of a parton shower on the xjet variable family were studied
by Jonas Nuber as part of his Bachelor thesis [226].

The xjet, xH distribution for WHj production at NLO QCD is shown in Fig. 6.6, where the pT
based definition is used. In the top plot the fixed order calculation is shown, for which around
xi = 0.5 artifacts appear which correspond to real emission and subtraction terms contributing
to different bins. For one parton final states only the region xjet < 0.5 is reachable, while for
two partons also xjet > 0.5 is accessible. At NLO the real emission can fill the full xjet-xZ
space, while all subtraction terms are restricted to xjet < 0.5. Thereby real emission and
subtraction terms can end up in different bins, such that the subtraction terms lead to a “dip”
just below 0.5 while the corresponding excess is above 0.5.

The result of a parton shower matched to the NLO calculation (using MC@NLO) is shown
in the lower plot of Fig. 6.6. The edges of the fixed order calculation are smeared out and a
continuous behavior of the xjet and xH observables is found. The overall behavior of the xi
variable is unchanged, and the two kinematical regions are clearly distinguishable also after a
parton shower.

Therefore, the pT based definition can be used without appearance of artifacts at the boundaries
once parton showers are used. More details and examples on the use of parton showers with
the xjet variable can be found in [226].

Alternative xjet definitions

The xjet definition in Eq. (6.25) can be modified by using either ET,mT or pT. In the high-pT
region, those choices are identical, but have different behavior for low-pT objects.

The most direct approach would be to use a pT based definition, since the motivation for
the xjet construction comes from a description of the event shape in the transverse plane.
As visible in Fig. 6.6, using the pT definition leads to discontinuities around xZ = 0.5 and
xjet = 0.5 for a fixed-order NLO calculation.

These discontinuities from subtraction terms have less effect when mT or ET are used, both of
which get contributions from the mass. The drawback of mT is that for small pT it is dominated
by the mass, such that for inclusive cuts, events end up close to the values determined by the
mass and xjet does not have much discriminating power between the diboson and V + j type
kinematical configurations.

Therefore for a fixed order analysis, ET is the preferred definition for xjet. It provides some
smearing around the kinematical boundaries for large xjet values and at the same time has
differentiating power in the low-pT region.

Observables that do not depend on the details of soft or collinear emissions are called IR-safe.
xjet is IR-safe, since it is constructed out of IR-safe objects (ET, pT or mT). It is nevertheless
sensitive to additional radiation and artifacts of the fixed order calculation become visible
especially in the transition between the one jet and two jet region. Instead of using jets it is
also possible to use partons in the xjet definition. This makes the veto less dependent on the
specific choice of jet clustering parameters, but is disfavored since it prevents a direct IR-safe
extension beyond a parton-level simulation.
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Figure 6.6: The xjet, xH distribution using pT is shown for WHj at NLO using Herwig 7 interfaced
to MadGraph5 aMC@NLO. The pT definition of xjet (top) leads to artifacts at the boundaries close
to xi = 0.5. Applying a parton shower (bottom) smears out those artifacts and overall leads to less
numerical instabilities at these edges. Theses plots are taken from [226].
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Figure 6.7: The xjet-xZ (xH) double differential distribution is shown as in Fig. 6.5, but for anomalous
couplings of fW /Λ2 = −10 TeV−2. The boosted cuts are applied. These plots are also published
in [219].

6.3.5. Applying xjet to Anomalous Couplings

The goal of the xjet observable introduced in Section 6.3.3 is to improve sensitivity in searches
for anomalous couplings and understand the effect of additional jet radiation. To achieve this,
the effect of anomalous couplings on the previously introduced distributions is investigated.

The xjet-xZ distribution is shown for an anomalous coupling value of fW /Λ2 = −10 TeV−2

in Fig. 6.7. As in the SM case, shown in Fig. 6.5, there are still two contributing regions visible
for WZj production. The overall shape is comparable to the SM case, since it is limited by
kinematical constraints. The relative contribution of the two identified regions is significantly
changed. Including modified triple gauge couplings, the region at large xjet has a smaller
relative contribution to the cross section than the region of small xjet values.

Since the most significant differentiation between the kinematical configurations comes from
the xjet variable, the cross section distribution in this variable is shown in Fig. 6.8. The
SM value shows the double peak for xjet in WZj production that was already visible in the
2D plot. In addition, different coupling values for the anomalous coupling are shown. For
xjet around 0.5 there is nearly no change due to AC, while for small xjet values a strong
dependence on the AC value can be seen that reaches a factor two enhancement. For small
anomalous coupling values the leading contribution is from the interference given in Eq. (3.24)
and depends on the coupling sign. A positive sign leads to destructive, a negative one to
constructive interference. For couplings around 10 TeV−2 the squared term becomes dominant,
such that the destructive interference is no longer apparent. The interference effects will be
more visible in pT distributions, which will be discussed in Section 6.4.3.

For WHj the double peak in the SM is less pronounced. Nevertheless, anomalous couplings
favor small xjet values and the ratio σAC/σSM grows towards small xjet values. This confirms
that xjet can be used as a discriminator in searches for anomalous couplings.
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Figure 6.8: The xjet dependence of the WZj and WHj production cross section is shown for the
SM and different coupling values of the operator OW . For the SM prediction a band is given that
corresponds to the variation of the scale µ = µF = µR by a factor of 2. The anomalous couplings are
given dimensionless and an AC scale Λ = 1 TeV is assumed. These plots are also published in [219].

6.4. Jet Veto
To increase sensitivity to AC, additional jet radiation should be suppressed. In this way the
phase space region where the leading vector boson recoils against another vector boson can
be enhanced and the potential recoil against a jet reduced, as introduced in Fig. 6.2. The
suppression of additional radiation is called a jet veto. This veto depends significantly on the
jet definition (pT, R, algorithm), but there are further choices that will be discussed in the
following.

6.4.1. Fixed Jet Veto

The standard way to veto jets is based on a fixed pT value [227]. Jets are reconstructed with
a certain jet algorithm and clustering parameters. An event is rejected if it has additional
radiation above the threshold pTveto, which is typically on the order of 30 to 50 GeV. This
procedure is equivalent to first grouping events in jet bins and then considering only the lowest
bin. These jet bins correspond to the njet value shown in Table 6.1.

The fixed jet veto has drawbacks. In calculations of cross sections, the introduction of the
veto scale leads to logarithms of the form αs ln2(µ2/pT

2
veto). Here, µ is a process dependent

scale. In the tails of distributions, like mV V , which show the largest sensitivity to anomalous
couplings, the difference between pTveto and mV V will be large, such that the logarithmic
corrections due to the veto become important. The logarithmic growth can, for example, be
seen as a widening of scale bands in distributions. Similar results were obtained for a fixed
veto in combination with LoopSim in [173, 174].

The arising logs can compensate the additional coupling factor and thereby delay the conver-
gence of the perturbative series. This effect is known and can be cured by resumming the
appearing logarithms to all orders [228–230]. A recent example includes the N3LL resumma-
tion for a jet veto in W+W− production [231]. Depending on the process the resummation
can be improved by imposing a veto not on the pT, but on beam thrust Tcm [232]. Without
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resummation, the jet veto dependency dominates the renormalization scale dependence at
large invariant masses.

Additionally, the jet veto leads to an apparent reduction of the scale dependence. This behavior
has been studied e.g. in [233, 234] for the NNLO corrections to Higgs boson production. As
discussed there, one can construct a better uncertainty estimate than the naive scale variation,
by projecting the scale dependence of the inclusive process on the vetoed cross section. Using
these elaborate techniques, reliable predictions using fixed jet vetoes can be obtained.

Besides the theoretical downsides of a fixed jet veto, there is also phenomenological motivation
to consider an alternative. A typical event of interest for an AC search has a diboson invariant
mass of 1 TeV. As discussed in Section 6.2, these high-energy events are often accompanied
by QCD radiation. At these high invariant diboson masses, jets up several hundred GeV are
still soft in comparison to the scale of the event and should be allowed. A low fixed jet veto
therefore removes a significant fraction of diboson events where the additional radiation is soft
relative to the electroweak bosons, but hard in absolute terms of the veto. This removed phase
space reduces the cross section in the tails which are already statistically limited. Typical
events with mWZ > 1 TeV will have a peak of jet radiation at a pT of 50 to 100 GeV. Keeping
a certain amount of this additional radiation improves the statistical uncertainty and thus the
sensitivity in this phase space region.

6.4.2. Dynamical Jet Veto
A fixed jet veto introduces a jet veto scale, which induces logarithms of scale ratios. This can
be avoided by adjusting the veto based on the kinematical scales present in the event. We call
this a dynamical jet veto. As discussed in Section 6.3.1, the energy scale of an event is not
uniquely identified. The choice of scale determines the effect of a constructed dynamical jet
veto and how it affects other observables.

A dynamical jet veto rejects all jets above a threshold which scales with the energy in the
event. Stated as a cut, this corresponds to

pTjet < C (pTW + pTZ) . (6.30)

Instead of the average pT, other constructions like the maximum/minimum pT of a certain
particle class could be used or ET, mT, etc. The factor C can be adjusted to make the
veto more or less restrictive. In this veto construction, C = 0 forbids any jet activity and
corresponds to a fixed jet veto where the veto scale is identical to the jet resolution scale.
C →∞ removes the jet veto and allows all additional radiation, including dijet events with
soft vector bosons.

Instead of using only scalar values to determine the jet veto, one can use more information
about the structure of the event. In a study of electroweak Sudakov logarithm at high
transverse momenta [235], the following dynamical veto is introduced:∣∣∣∣∣∑

i

~li,T + ~pT,miss

∣∣∣∣∣ < ρ

(∑
i

∣∣∣~li,T ∣∣∣+ |~pT,miss|
)
. (6.31)

By comparing the vector sum of pT to the scalar sum, an estimate is generated to find out,
whether the vectors are “back-to-back”. When the vector sum has large absolute value, the
vectors all point in a similar direction. For a small vector sum, there are cancellations which
hint towards a “back-to-back” configuration. In [235] ρ = 0.3 has been chosen for the analysis.
However, the distribution in ρ is continuously rising such that there is no obvious cut value.
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Figure 6.9: The Higgs boson transverse momentum is shown for the full sample (left) and with the
jet veto of xjet < 0.2 (right). The top row shows W+H production at NLO, the bottom row W+Hj
production, where at least one jet passes the cuts. Both are calculated at NLO QCD. These plots are
also published in [219].

6.4.3. Jet Veto based on xjet

We want to use a veto based on the xjet observable. xjet is a measure of the jet activity in an
event and is able to discriminate between recoils against a jet or against another electroweak
boson. Since it is a ratio of transverse energies, it does not introduce a new scale and thus
is not expected to generate large logarithmic corrections. Logarithmic enhancements are
expected on the order of ln(xjet) = O(1).

Based on the xjet distribution shown in Fig. 6.8, a jet veto is introduced as requiring

xjet < 0.2 . (6.32)

Depending on the analysis, the value of the cut has to be optimized. This value is well below
0.5 and thus not affected by higher order corrections and fixed-order artifacts, which appear
for large xjet values.

Figure 6.9 shows the effect of the jet veto on pT distributions for WH production for both
the SM and different AC values. In pTH the interference region and destructive interference
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for positive coupling signs are clearly visible. For the shown coupling values, the destructive
interference reaches its maximum at pTH between 200 GeV and 300 GeV. For larger pT values,
the squared term dominates and there is no more dependence on the sign and the anomalous
coupling effect increases. The xjet veto is applied both to WH production and to WHj
production, both computed at NLO QCD. In the first case it is applied to additional radiation
from higher order corrections and in the second case the leading order already has one jet,
such that the veto is applied to events with either one or two jets. Applying the veto leads to a
small improvement of the ratio σAC/σSM. As shown in previous distributions inWH production,
there is only a small amount of additional hard radiation. This is also visible in the only
minuscule reduction of the cross section when the veto is applied.

In contrast toWH production, additional jet radiation has a greater impact onWZ production.
Figure 6.10 shows the transverse momentum distributions for the W and Z boson in WZ(j)
production. The jet veto improves the sensitivity to anomalous couplings. For example in
WZ production for pTZ at 500 GeV the ratio σAC/σSM increases from 1.6 to 3 due to the veto.
In WZj production (Figs. 6.10c and 6.10d) there is even more jet radiation, such that σAC/σSM

in the pTZ tail is around 1.3 without the veto and can be improved to more than 2 in the
vetoed sample.

The interplay of kinematical limits and AC sensitive regions is visible in pTW in Figs. 6.10e
and 6.10f. For boosted cuts as given in Eq. (6.3), the Z boson is required to have pT > 200 GeV.
Then, the other particles in the event have to collectively provide a recoil of this amount. In
the region of low W boson transverse momenta an additional high-pT jet is required such
that overall there is little AC sensitivity, as can be seen in Fig. 6.10e. Only for larger pTW
values the AC effects appear. On the other hand, the jet veto removes the region of low pTW
since it cuts away hard jets that could recoil. The veto reduces the absolute cross section
significantly, but keeps most of the excess due to AC. For example at pTW = 250 GeV the
excess of AC over SM is 1 · 10−3 fb/GeV both for the complete and the vetoed selection, while
the SM cross section is reduced from 3.4 · 10−3 fb/GeV to 1.7 · 10−3 fb/GeV. The relative
contribution of anomalous couplings σAC/σSM for fW = −5.6 TeV−2 improves for pTW from 1.3
to 1.5 at 250 GeV and from 1.7 to 2.8 at 500 GeV. Similarly for the transverse momentum
values in pTZ, the increase is from 1.1 to 1.5 and from 1.3 to 2.4, respectively.

The scale band remains narrow for the vetoed sample. It does not show the characteristic
widening of a fixed jet veto. Nevertheless, the scale band is expected to underestimate higher
corrections in the same way as discussed in Section 6.4.1 for the fixed jet veto.



6.4. Jet Veto 77

10−3

10−2

d
σ
/d

p T
Z

/
fb

/G
eV

SM, µ = 2±1µ0

fW = −5.6

fW = −3

fW = +7

fW = +10

200 250 300 350 400 450 500
pTZ / GeV

0

1

2

σ
A
C
/σ

S
M

(a) pTZ , W+Z, boosted

10−3

10−2

d
σ
/d

p T
Z

/
fb

/G
eV

SM, µ = 2±1µ0

fW = −5.6

fW = −3

fW = +7

fW = +10

200 250 300 350 400 450 500
pTZ / GeV

0

1

2

σ
A
C
/σ

S
M

(b) pTZ , W+Z, boosted, with jet veto

10−3

10−2

d
σ
/d

p T
Z

/
fb

/G
eV

SM, µ = 2±1µ0

fW = −5.6

fW = −3

fW = +7

fW = +10

200 250 300 350 400 450 500
pTZ / GeV

0

1

2

σ
A
C
/σ

S
M

(c) pTZ , W+Zj, boosted

10−4

10−3

d
σ
/d

p T
Z

/
fb

/G
eV

SM, µ = 2±1µ0

fW = −5.6

fW = −3

fW = +7

fW = +10

200 250 300 350 400 450 500
pTZ / GeV

0

1

2

σ
A
C
/σ

S
M

(d) pTZ , W+Zj, boosted, with jet veto

0.001

0.002

0.003

0.004

0.005

0.006

0.007

d
σ
/d

p T
W

/
fb

/G
eV

SM, µ = 2±1µ0

fW = −5.6

fW = −3

fW = +7

fW = +10

100 150 200 250 300 350 400 450 500
pTW / GeV

0

1

2

σ
A
C
/σ

S
M

(e) pTW , W+Zj, boosted

0.0005

0.0010

0.0015

0.0020

0.0025

d
σ
/d

p T
W

/
fb

/G
eV

SM, µ = 2±1µ0

fW = −5.6

fW = −3

fW = +7

fW = +10

100 150 200 250 300 350 400 450 500
pTW / GeV

0

1

2

σ
A
C
/σ

S
M

(f) pTW , W+Zj, boosted, with jet veto

Figure 6.10: The transverse momenta of the Z and W boson in WZ and WZj production are shown
for the inclusive sample (left) and with the jet veto (right). These plots are also published in [219].
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6.5. Anomalous Couplings and n̄NLO QCD in WZ Production
Additional radiation and its treatment are relevant for anomalous coupling studies in WZ
production. This makes higher order corrections to jet emission relevant and LoopSim
corrections at n̄NLO provide an improved prediction in the relevant phase space region. This
allows to study corrections to the xjet observable and anomalous couplings. This analysis and
the plots shown in this section were published in [92].

6.5.1. Numerical Setup

For this analysis, the input values are used as defined in Section 6.1. The cuts are modified
slightly compared to Eq. (6.2):

pTl > 15 GeV, pTj > 30 GeV, /pT > 30 GeV,
|yj | < 4.5, |ηl| < 2.5, Rlj > 0.4,

120 GeV > mll > 60 GeV.
(6.33)

The Rll cut is removed as argued in Section 6.3.2 and the other cuts updated to the values
used by the most recent experimental analyses. The center of mass energy is 13 TeV and
NNPDF23 [36] is used as parton distribution function. The renormalization and factorization
scale is chosen to be µ0 = HT as given in Eq. (6.21). The theoretical uncertainty band is
constructed by a variation of both scales by a factor of 2: µR = µF = {0.5, 2}µ0.

6.5.2. WZ production at n̄NLO QCD

First results for WZ production at n̄NLO QCD were presented in [173]. As shown there, the
corrections at n̄NLO can be sizable and depend on the selected phase space region.

Corrections are on the order of 25% for distributions of typical inclusive observables. For
example, the pT of the hardest lepton in the event (called pTl,max in the following), is enhanced
by 25% at 300 GeV, as can be seen in Fig. 6.11 on the left.

Observables that are sensitive to the number of final state jets and thus enhanced by extra
radiation can get more sizeable corrections. For example, HT,jets at 1 TeV gets a five-fold
increase as visible in Fig. 6.11 on the right. In general, the scale variation at NLO does not
cover the n̄NLO result. Relying on scale variation as an estimate for higher order corrections
is not always sufficient. In WZ production at n̄NLO new topologies appear, which are not
present at NLO. Most notably this includes dijet production with two soft vector bosons.
Adding radiation beyond n̄NLO does not lead to new topologies and should therefore give
smaller corrections.

6.5.3. n̄NLO QCD Corrections with Anomalous Couplings

LoopSim is independent of the specifics of the electroweak part of the calculation and can
therefore also be applied to processes involving anomalous couplings. The full amplitude,
including theM∗SMMAC and |MAC|2 terms, is passed along to LoopSim. The two terms can
be disentangled by separating the linear and squared dependence on the AC coupling value.

The relative contribution to the cross section of these two terms can be observed by choosing
the coupling sign such that the interference is destructive. The |MAC|2 term always interferes
constructively and cancels the destructive interference once its size becomes competitive.
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Figure 6.11: For WZ production two representative distributions are shown. For this and the
following plots, cross sections at NLO in QCD are dashed, while n̄NLO QCD is shown as solid lines.
n̄NLO effects range from 25% or below as seen on the left for the pT of the hardest lepton (pTl,max) to
a five-fold increase in the tail of HT,jets. The scale variation by a factor of two is given as a band for
NLO (green) and n̄NLO (blue). In general, the NLO scale variation band does not cover the n̄NLO
prediction. At n̄NLO there is an additional parameter (RLS) in the LoopSim clustering procedure that
can approximate uncertainties in the LoopSim procedure. The variation of this parameter is shown as
an orange band. The dependence is small for most observables and phase space regions and is only
relevant for observables that are particularly sensitive to extra radiation. A large dependence on RLS
would hint towards relevant contributions from the finite piece of the virtual corrections. From [92].

The interference as shown in Fig. 6.12 is dominant around 150 GeV. The squared term
dominates starting at around 300 GeV. This scale is where

f

Λ2 · pT
2 ≈ 1 . (6.34)

For fW/Λ2 = 10 TeV−2 this happens at pT ≈ 300 GeV.

Comparing Figs. 6.11 and 6.12, one can see that the effect of anomalous couplings is of a
comparable size and appears in a similar phase space region as the n̄NLO corrections. This is
shown in Fig. 6.13 where both the SM at n̄NLO and AC with NLO corrections are shown.
Therefore NLO QCD might be insufficient to put limits on AC. A SM description beyond
NLO is necessary.

VBFNLO interfaced to LoopSim can be used to compute AC cross sections at n̄NLO QCD
accuracy. QCD corrections do not factorize from AC and can thus lead to non-trivial changes
to AC limits derived in experiments. Figure 6.14 shows the n̄NLO/NLO K-factor for several
values of anomalous couplings and the SM. In the high-pT region, where LoopSim is a good
approximation, the K-factor varies between 1.1 and 1.3 depending on the anomalous coupling
value. Due to this dependence, a factorization of QCD corrections and AC contributions is
not accurate and the full QCD+AC amplitude has to be calculated.
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Figure 6.12: The pT of the hardest lepton in WZ production at NLO QCD is shown for the SM
(black) and the OW operator with different couplings (colored) as a typical representative of AC at
different momentum scales. The AC contribution grows with the momentum and leads to most sizeable
differences in the tail of this distribution. At 1 TeV (right) the difference to the SM can be a factor of
5. At small pTl,max values (left), the contribution of the interference term is visible. From [92].
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Figure 6.13: Combining Figs. 6.11 and 6.12, the pT of the hardest lepton is shown for the SM at
n̄NLO (solid black) and for AC at NLO (colored dashed) on the left. The right shows the same
distribution, but normalized to the SM NLO prediction to better visualize the ratios of the individual
lines. Both n̄NLO and AC can lead to deviations from the SM on the order of 25% in this observable
and phase space region. The AC prediction is shown at n̄NLO QCD as solid colored lines. From [92].
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Figure 6.14: For the SM and several AC coupling values, the K-factor n̄NLO/NLO is shown for the
observable pTl,max. This K-factor depends significantly on the AC value and reaches values between
1.1 and 1.3 for pTl,max = 600 GeV. Fluctuations visible in this plot are due to the numerical Monte
Carlo integration. From [92].

6.5.4. Dynamical Jet Veto

To improve the sensitivity to AC, also at n̄NLO, the dynamical jet veto introduced in
Section 6.3.3 can be used. For this analysis xjet as defined in Eq. (6.25) based on ET is used:

xjet = ET,jets
ET,jets + ET,W + ET,Z

, where ET = E
| ~pT|
|~p|

. (6.35)

At n̄NLO there are events with 0, 1 and 2 partons/jets. LoopSim moves events between all
three of these configurations depending on the momentum configuration, such that we expect
the xjet observables to receive corrections at n̄NLO.

The distribution in xjet at NLO and n̄NLO is shown in Fig. 6.15 for the SM and AC. The
n̄NLO corrections are non-flat as a function of xjet and rise to 1.3 at xjet = 0.4. As discussed
in Section 6.3, the region above xjet = 0.5 can only be reached by dijet events. In addition to
the previous study, the LoopSim description also fills the xjet = 0 bin with events without
resolved jets.

AC increase the cross section at small xjet values, while they align with the SM prediction
for large xjet values. Introducing a cut xjet < 0.2 removes most of the jet-recoil type events
that are not sensitive to anomalous couplings and at the same time removes the phase space
region with the largest n̄NLO corrections. The n̄NLO sample allows to study jet vetoes on a
combination of 0-, 1- and 2-jet events, which gives a more complete picture on the increases
in sensitivity than only considering the 0-jet or 1-jet process at NLO.

In Fig. 6.16, a veto based on xjet is applied to improve the sensitivity to anomalous couplings.
This veto cuts away jet dominated events and reduces the n̄NLO corrections. Compared to
the +25% corrections in the inclusive case, for xjet < 0.2 (left) the n̄NLO corrections are even
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Figure 6.15: For WZ production at NLO, xjet is shown, as given in Eq. (6.35), for inclusive cuts (left)
and boosted cuts (right). For boosted cuts pTZ > 200 GeV is required. Especially in the boosted region
the division in two regions is visible. Events have two recoiling vector bosons for small xjet values, while
for xjet ≈ 0.5 the boosted vector boson recoils against a jet. The latter configuration is less sensitive to
AC, such that to increase the sensitivity a cut, xjet < 0.2 to 0.3, can be introduced. From [92].

negative (-10%), while for xjet < 0.4 (right) n̄NLO falls nearly on top of NLO. In general,
vetoing resolved jet emissions will result in a decrease of higher order corrections, which
explicitly generate resolved emissions.

The veto also reduces the scale dependence. This is a known artifact of jet vetoed cross
sections and shows that scale variation is, in this case, not a suitable approximation of the
theoretical uncertainties. A more elaborate construction of an uncertainty estimate was
discussed in Section 6.4.1.

To compare the deviations due to anomalous couplings to the potential experimental reach, an
estimate of the statistical uncertainty is shown. For this, an integrated luminosity of 300 fb−1

is assumed and a factor 4 multiplied to the cross section to cover all lepton flavor combinations
in the decays. The correct factor is not exactly 4, since in final states like µ+νµµ

+µ− the
Z boson can be reconstructed from two potential combinations of muons, which will lead
to some reconstruction uncertainty. The shown band is only a rough and rather optimistic
estimate of the experimental accuracy, since there are also systematic uncertainties and many
of the technical intricacies of a real analysis are neglected here.

For pTl,max the n̄NLO corrections both in size and shape depend significantly on the AC
value as shown in Fig. 6.14. Therefore, approximating QCD corrections to AC predictions by
rescaling them with a constant K-factor derived from the SM is insufficient.

In Fig. 6.17 the differential K-factor for xjet is shown, which does not depend on the AC value.
Therefore one could try to factorize AC and n̄NLO corrections and, for example, apply a
K-factor derived for the SM to AC predictions by binning it in xjet. Nevertheless, the best
overall description would be a NNLO calculation including anomalous couplings.
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Figure 6.16: The cross section differential in pTl,max is shown for several anomalous coupling values
at NLO and n̄NLO normalized to the SM prediction at NLO. A dynamical jet veto of xjet < 0.2 (left)
and xjet < 0.4 (right) is applied. Scale variation bands are given at NLO (green) and n̄NLO (blue) as
well as the RLS dependence in orange. As a rough comparison to the potential experimental reach, the
statistical uncertainty is shown as a gray band. From [92].

0.0 0.1 0.2 0.3 0.4 0.5
xjet

1.0

1.5

nN
LO

/N
LO

µ = 2±1µ0 (nNLO)
RLS = {0.5, 1.5}
FW = +10
FW = -3
FW = -5
SM (NLO)
SM (nNLO)

Figure 6.17: The ratio of n̄NLO over NLO is shown for xjet for the SM and several AC values. The
K-factor depends on the value of xjet but is independent of the used AC value. From [92].





CHAPTER 7
Summary and Conclusion

In this thesis, diboson production at the LHC based on the example ofWZ andWH production
is discussed. While predictions are commonly based on NLO calculations, this thesis uses
n̄NLO corrections to distributions using the LoopSim approach in combination with VBFNLO.
These corrections are especially relevant for events with high transverse momentum where the
corrections can be large and outside the NLO scale variation band.

Anomalous couplings using an Effective Field Theory approach are a useful tool to parametrize
general deviations from the SM. Diboson production is an interesting channel to study triple
gauge couplings and allows to set competitive limits compared to global fits. However, Effective
Field Theories have a limited range of validity and current limits push them to the edge of
their applicability, such that detailed understanding of anomalous coupling effects is necessary.

To improve the sensitivity of anomalous coupling searches, events with hard jet radiation
should be removed. This thesis introduces a description of the transverse event shape of the
WZj final state using newly constructed variables xjet, xZ and xW to better understand QCD
radiation patterns. xjet is defined as the relative contribution of the jet transverse energy to
the sum of transverse energies of jet, W and Z boson:

xjet = ET,jets
ET,jets + ET,W + ET,Z

. (7.1)

xZ and xW are constructed similarly. The dependence of the cross section on a pair of these
variables, xjet and xZ, can be visualized in a Dalitz-like 2D plot and allows to distinguish
between jet and electroweak dominated event topologies. In WZ production a large fraction
of events has a hard jet recoiling against a boosted vector boson. In contrast, the contribution
of this topology is smaller in WH production. There the W and Higgs boson are produced via
an intermediate W boson, while in WZ production both bosons can be connected to a quark
line, which leads to logarithmic enhancements of the vector boson emission from a hard jet.

Additional jet radiation is often removed using a fixed-pT jet veto. In this thesis, a dynamical
jet veto based on xjet is introduced and studied in WZ and WH production. The dynamical
jet veto is theoretically better behaved than a fixed veto and scales with energy in the event.
It thereby includes more phase space for jet emissions in highly boosted events. Especially for
WZ production the veto improves the sensitivity to anomalous couplings. Using this veto,
one can also study the interference region of anomalous couplings with the SM. This region
can be competitive in a high-luminosity scenario at the LHC.

Higher order corrections at n̄NLO and anomalous coupling effects are of a comparable size in
the anomalous coupling search region. Therefore, a combined analysis is necessary. Since both
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corrections grow with increasing transverse momentum, not-included higher order corrections
might be mistaken for anomalous couplings. Higher order corrections depend on the anomalous
coupling value, such that for general observables, like transverse momenta, corrections to
the SM can not be extrapolated to anomalous coupling predictions. However, corrections to
the xjet variable show negligible dependence on the anomalous coupling value, such that xjet
might also be of interest when mapping higher order corrections from the SM to scenarios
beyond the SM.

In addition, parallelization using MPI was implemented in VBFNLO to improve the runtime of
the cross section calculation for complex processes and improve the convergence and phase
space coverage for these cases. The implementation was validated against the previous code
version and shows good scaling with the number of cores. Using MPI the calculation can in
principle scale to running a single job on a complete cluster, although for parallel calculations
on a heterogeneous cluster additional work is needed. As part of the implementation new
choices for the random number generator were introduced and the VEGAS implementation
optimized, which improves the runtime also for non-parallel calculations.

The recent achievements in NNLO calculations as well as in merging multiple fixed order
calculations and matching them to parton showers will improve the precision of predictions for
LHC cross sections. At the same time, the LHC experiments are able to measure distributions
in diboson production at higher energies while also increasing the sensitivity to interference
effect at smaller energies. This combination makes the LHC an invaluable tool to set limits
on and potentially discover New Physics in triple gauge couplings.

Future analyses of diboson production could go beyond NNLO in the description of diboson
events by including the existing NLO calculations of V V jj production or matching to a parton
shower, which improves the description of xjet. Further studies could also consider corrections
to the semileptonic decays and their sensitivity to anomalous couplings. Another aspect is
the study of decay angles which give insight into vector boson helicities and are particularly
sensitive to New Physics.



Appendix

A. LoopSim events
LoopSim is interfaced to VBFNLO using LHE files. This interface is introduced in Section 5.6.
Additional information in the form of comments is passed along to signal which events
correspond to virtual corrections or the real emission. In the real emission an index connects
the subtraction terms which belong to a certain event and have to be treated together to
ensure a correct error estimate in distributions. For WZj production example outputs are
shown for the virtual corrections in Listing 7.1 and the real corrections in Listing 7.2.
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<LesHouchesEvents version="1.0">
<!--
File generated with VBFNLO - parton level MC program (LO)
-->
<init>

2212 2212 7.000000E+03 7.000000E+03 0 0 21200 21200
2 1↪→

2.785467E-02 2.126556E-03 0.000000E+00 640
</init>
<event>

9 640 -7.929671E-03 8.375747E+01 7.556254E-03 1.185817E-01
81 -1 0 0 0 0 0.000000000000000E+00 0.000000000000000E+00

1.759863609218195E+02 1.759863609218195E+02 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

81 -1 0 0 0 0 0.000000000000000E+00 0.000000000000000E+00
-1.689720569845746E+02 1.689720569845746E+02 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

81 1 0 0 0 0 -4.658829641120308E+01 1.303163355277379E+02
-1.203272434380624E+01 1.389158130775978E+02 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

24 0 0 0 0 0 -1.116535864138272E+01 -2.503071915152502E+01
-1.999210739784107E+01 4.599421054477074E+01 3.105770291886808E+01 0.0E+00
0.0E+00

↪→

↪→

23 0 0 0 0 0 5.775365505258581E+01 -1.052856163762128E+02
3.903913567889218E+01 1.600483942840255E+02 9.834067678579302E+01 0.0E+00
0.0E+00

↪→

↪→

-11 1 0 0 0 0 3.160780453972312E+00 -2.207466387926429E+01
-2.188446633859767E+01 3.124437846054748E+01 0.000000000000000E+00 0.0E+00
0.0E+00

↪→

↪→

12 1 0 0 0 0 -1.432613909535504E+01 -2.956055272260727E+00
1.892358940756601E+00 1.474983208422325E+01 0.000000000000000E+00 0.0E+00
0.0E+00

↪→

↪→

-11 1 0 0 0 0 1.689471131390520E+01 -1.789126305482286E+01
-3.190880237294856E+01 4.029516389038458E+01 0.000000000000000E+00 0.0E+00
0.0E+00

↪→

↪→

11 1 0 0 0 0 4.085894373868061E+01 -8.739435332138999E+01
7.094793805184074E+01 1.197532303936409E+02 0.000000000000000E+00 0.0E+00
0.0E+00

↪→

↪→

# virt 0 1
</event>
<event>
[...]

</event>
[...]

Listing 7.1: Example output for LHE events of virtual corrections with additional LoopSim annotation.
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[...]
<event>

10 640 1.312752E-03 1.047735E+02 7.556254E-03 1.146925E-01
81 -1 0 0 0 0 0.000000000000000E+00 0.000000000000000E+00

1.028208124435631E+02 1.028208124435631E+02 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

81 -1 0 0 0 0 0.000000000000000E+00 0.000000000000000E+00
-2.009333226847219E+03 2.009333226847219E+03 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

81 1 0 0 0 0 -1.331871562018235E+01 -1.564577471007879E+01
-4.272971623498581E+02 4.277908874722447E+02 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

81 1 0 0 0 0 3.642659451635352E+01 1.125965643240243E+02
-1.360228939633365E+03 1.365367222142725E+03 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

24 0 0 0 0 0 1.892243464211417E+01 -4.076712454409633E+01
-1.919798467911598E+01 1.680535181098962E+02 1.607899417158756E+02 0.0E+00
0.0E+00

↪→

↪→

[...]
11 1 0 0 0 0 -1.340869002367992E+01 -7.482983087600350E+01

-8.405486681574227E+01 1.133336542801587E+02 0.000000000000000E+00 0.0E+00
0.0E+00

↪→

↪→

# real 0 1
</event>
<event>

10 640 -8.240591E-07 1.047735E+02 7.556254E-03 1.146925E-01
81 -1 0 0 0 0 0.000000000000000E+00 0.000000000000000E+00

1.013918940402587E+02 1.013918940402587E+02 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

81 -1 0 0 0 0 0.000000000000000E+00 0.000000000000000E+00
-2.009333226847219E+03 2.009333226847219E+03 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

81 1 0 0 0 0 2.310787889617117E+01 9.695078961394546E+01
-1.788955020386528E+03 1.791729191211666E+03 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

81 1 0 0 0 0 0.000000000000000E+00 0.000000000000000E+00
0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00 0.0E+00
9.0E+00

↪→

↪→

24 0 0 0 0 0 1.892243464211417E+01 -4.076712454409633E+01
-1.919798467911598E+01 1.680535181098962E+02 1.607899417158756E+02 0.0E+00
0.0E+00

↪→

↪→

[...]
11 1 0 0 0 0 -1.340869002367992E+01 -7.482983087600350E+01

-8.405486681574227E+01 1.133336542801587E+02 0.000000000000000E+00 0.0E+00
0.0E+00

↪→

↪→

# real 1 1
</event>
<event>
[...]

# real 2 1
</event>
[...]

<event>
[...]

# real 10 1
</event>

Listing 7.2: Example output for LHE events of real emission and subtraction events with additional
LoopSim annotation. For subtraction terms the additional emission is listed with zero momentum and
redistributed according to the prescription by Catani and Seymour Section 2.3.
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