

Impact of coolant choice on design and performance of a fast neutron system

R. Stieglitz, S.M. Gonzalez de Vicente, A. Möslang

Vienna, Austria 5 - 7 July 2017

1st Workshop on Challenges for Coolant in Fast Spectrum Systems: Chemistry and Materials

Content

- Environment of fast spectrum applications
- Coolant functions in fast (neutron) spectrum application
 - Thermo-physical aspects
 - Neutron-physical considerations
 - Consequences on licensing frame and time scales
- Example-Fast reactors
 - Impact of coolant choice on reactor design –power conversion options
 - Coolant poising/conditioning/handling
 - Coolant confing structures and material degradation
 - Safety analyses
- Example-Accelerator applications
 - Coolant choice consequence on integral facility design
- Objectives to be met by the workshop
- Vision/Measures for future cross fertilizing exploitation

04/07/2017

Environment of fast spectrum applications

Types of utilization

- fundamental sciences & technologies Accelerator Applications
- nuclear energy conversion Fission & Fusion

Boundary conditions

- volumetric high efficiency (particle yields, fuel utilization, thermal efficiency) Ι.
- improved safety (all three lines: accidental safety/operational safety/disposal) Π.
- enhanced lifetime Ш.

Consequences

- Ι. enlarged coolant/material damage
- dedicated constructive/operational/handling measures П.
- Ш. long extensive licensing procedures demanding
 - data bases
 - ageing/fatigue aspects
 ➡ lifetime management
 - component qualification,
- 04/07/2017 code & standards

Coolant functions in fast (neutron) spectrum applications thermo-physical considerations

3

COOLING FUNCTION FUNDAMENTALS OF KINETICS & ENERGY TRANSFER

Inputs

- heat source type (e.g. charged particles, neutrons, photons)
- coolant (thermophysical properties)

coolant confining material (thermo-physical properties and thermo-mechanical properties)

Design to match functionality equation (wall thickness, flow-configuration...)

Coolant functions in fast (neutron) spectrum applications thermo-physical considerations

u some typical soolants considered in fast spectrum applications (thermo-physical data)

	H ₂ O [300°C, 15MPa]	Li [500°C]	Na [500°C]	Hg [20°C]	Pb [500°C]	Pb ⁴⁵ Bi ⁵⁵ [500°C]	Salt NaCl-KCl- MgCl ₂ [600°C]	He [500°C, 6MPa]	CO ₂ [500°C 2MPa]
ρ [kg/m³]	725	475	857	13534	10724	9660	1800	3.7	13.5
с _р [J/(kgK)]	5475	4169	1262	140	145	145	1004	5190	1170
(ρ· <i>c_p</i>) [MJ/(m ^{3.} K)]	3.97	1.98	1.081	1.895	1.555	1.401	1.807	0.19	0.158
λ [W/(mK)]	0.561	49.7	66.3	8.3	15	11	0.39	0.303	0.056
ν [(m²/s) [.] 10 ⁻⁷]	1.2	7.16	2.6	1.1	1.5	1.1	0.138	0.9	0.25
<i>T_{melt}</i> [°C]	-0.4	180	98	-39	327	126	396	-	-58
T _{boiling} [°C]	334	1317	883	356	1737	1533	2500	-	-78
not desirable		advantageous							

there is not optimal coolant from thermo-physical point of view !!

04/07/2017

Coolant functions in fast (neutron) spectrum applications **Neutron-physical considerations**

5

COOLANT NEUTRONIC FUNCTION > neutron (charged particle) interaction with matter

- high particle fluxes (e.g. charged particles, neutrons, photons)
- high incident particle energies
- dedicated material (fuel/target compositions => secondary reactions)

Design to match functionality equivalence with the second sec

high volumetric power densities

Constraints to coolant

- if possible transparent to incident particles
- ➡ no (or short lived) immobile activation products

- no temporal degradation by neutronic interaction (destruction of coolant chemistry, radiolytic decomposition)
- all safety & economic parameters

.....

Coolant functions in fast (neutron) spectrum applications Neutron-physical considerations

Moderation $\xi \cdot \Sigma_s$

(logarithmic energy decrement per collision ξ , $\xi = 1 + \frac{(A-1)^2}{2A} \ln \left(\frac{A-1}{A+1} \right)$

- hardly moderation in Pb , He
- moderate performance of Na
- design challenges for H₂O

D Nuclear cross-sections (σ_{tot})

- high hydrogen cross section throughout *E*-range
- Large values for *Pb* and *Pb*-alloys in but no
- broad band resoncances as Na
- almost no interference using He
- except for *He* each other coolant poses neutron physics challenges

04/07/2017

Coolant functions in fast (neutron) spectrum applications Neutron-physical considerations

Coolant treatment requires consideration of coolant/functional materials.

- Structure material also affected by nuclei matter interaction
 - nuclear reactions f (E) and time,
 - operational temperature,
 - the design of the component
 - swelling, formation of transmutation products within the material, hardening and a set of other phenomena (all dynamic).
- Additionally, at fluid-structure interface mass transport processes (bi-directional) due to scalar gradients (∇T , ∇c , ∇p)
 - ➡ corrosion, stress-corrosion cracking, embrittlement enforced/assisted by irradiation.
- Nuclear and conventional island interlinked via coolant
- coolant choice affecting nuclear system architecture.

8

Coolant functions in fast (neutron) spectrum applications

Consequences on licensing frame and time scales

Example-Fast reactors

Impact of coolant choice on reactor design -power conversion options

In Gen-IV 4 of 6 reactors fast reactors

- Sodium Fast Reactor (SFR)
- Gas cooled Fast Reactor (GFR)
- □ Lead cooled Fast Reactor (LFR)
- Molten Salt Reactor (MSR)

Selection criteria

- **Sustainability** (fuel utilization/ transmutation/ waste reduction
- Economy (long cycles, life >60y, compactness)
 Safety (increased safety/operational reliability /low probability of core accidents/elimination for off-site emergency response

Proliferation resistance

Example-Fast reactors coolant poisoning/conditioning/handling

Coolant activation

- \square nuclear reaction with $n \Rightarrow$ radioisotope formation
- reuse of Na after 50-60years feasible
- PbBi will be classified waste (almost forever)

isotope	formation channel	<i>T_{1/2}</i> [a]
^{22}Na	$^{23}Na(n,2n)^{22}Na$	2.6
^{24}Na	²³ Na(n,g) ²⁴ Na	1.7 [.] 10 ⁻³
^{205}Pb	²⁰⁴ <i>Pb</i> (<i>n</i> ,g) ²⁰⁵ Pb	1.5 [.] 10 ⁻⁷
^{208}Bi	²⁰⁹ <i>Bi</i> (<i>n</i> ,2n) ²⁰⁸ Bi	3.7 [.] 10 ⁵
^{210}Bi	²⁰⁹ <i>Bi</i> (<i>n</i> , γ) ²¹⁰ Bi	3.6 [.] 10 ⁶
²¹⁰ Po	²¹⁰ <i>Bi</i> (β)→ ²¹⁰ Po	0.38

Transmutation in structures

- \square *n*-energies exceeding E_{th}
 - gas production in structure (fuel)such as H, D, T, He

2 effects

- diffusion of gas into coolant
 - necessitating diffusion barriers or
 - partial pressures on sec./ternary side
- permanent gas formation in structure (damage-He)

13

Example-Fast reactors

Coolant poisoning/conditioning/handling

Operational consequences permanent coolant **conditioning** (physico-chemistry)

- \Box Na: O, H-management via cold, traps, fire, explosion measures in bypass
- \Box He: *H* (but esp. *T*) extraction by coolant purification techniques (getters)
- \Box Pb: active oxigen control to prevent steel corrosion, coolant oxidation \Rightarrow f=(T, t,c_0, u_0 dpa) oxygen sensor development

T[°C]

Example-Fast reactors coolant confining structures and material degradation

□ irradiation causes constraints to material performance.

Physics

- radiation induced growth
- atom segregation in lattice (diffusion controlled)
- radiation induced growth
- $f = (T, dpa, E, dose rate, \sigma, composition, He)$
- radiation damage affects the mech. properties
 - □ hardening & localized deformation,
 - □ fracture behavior
 - embrittlement and
 - irradiation creep

Five evils for radiation damage

in metal based materials (G.Was, 2014):

- \Box radiation hardening & embrittlement (<0.4 T_M , >0.1 dpa)
- phase instabilities from rad.-induced precipitation

(0.3-0.6 T_M, >10 dpa)

- \Box high temp. *He* embrittlement (>0.5 T_{M} , >10 dpa)
- \Box vol. swelling from void formation (0.3-0.6 T_M , >10 dpa)
- □ irradiation creep (<0.45 *T*_{*M*}, >10 dpa) 04/07/2017

15

Example-Fast reactors

coolant confining structures and material degradation

Most relevant for radiation damage He/dpa ratio strongly depending on application

Helium generated in material

Spallation irradiation yields higher strength $\Delta \sigma_{\rm irr}$ than fission reactor irradiations due to He

Does this impact other quantities as well?

Example-Fast reactors coolant confining structures and material degradation

17

YES

sensitivity of He to mech. Properties as fracture toughness (Charpy tests)

□ with *He* additional significant *DBTT* increase

significantly limiting the lower operation temperature

04/07/2017 © Gaganidze et al., J. Nucl. Mater. 417 (2011)93-98

But major deficit lack of experimental data

PROTON ENERGY (MeV)

Major decision criteria:

- Small & separated development risks
- **u** spallation products easy to confine
- nuclear waste foot print
- timely realization

Summary

& Workshop objectives

SUMMARY

- neutronics, thermo-physics and thermo-chemistry of both coolant(s) and its confining structures are strongly interconnected
- validated data, approved modelling means are of key importance to establish code/standards/procedures and to allow for an
- integral enveloping safety assessment

Hard Objectives

- descpription of state-of the art knowledge in your individual expert field
- formulation of fundamental physics based limitations, constraints
- identification of knowledge gaps and means/suggestions/proposals to overcome present deficits (experimental, instruments, modeling, data) 🜩 R&D needs
- **adressing interfaces to adjacent fields** and methods for overarching topics such as safety/design

04/07/2017

Workshop objectives &

Soft Workshop objectives

- interdisciplinary information exchange
- **Cross-fertilization of different communities**
- identification of collaborations (use of infrastructures, common R&D projects,
- development of codes)

Vision on continuation

regular meeting of experts as side meeting to community conferences (Fast reactor conference, ISFNT and accelerator applications

□ Formation of sub-groups necessesary ?

.....