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Abstract. A nonlinear Schrödinger equation (NLS) with dispersion averaged
nonlinearity of saturated type is considered. Such a nonlocal NLS is of integro-
differential type and it arises naturally in modeling fiber-optics communication
systems with periodically varying dispersion profile (dispersion management).
The associated constrained variational principle is shown to posses a ground state
solution by constructing a convergent minimizing sequence through the application
of a method similar to the classical concentration compactness principle of Lions.
One of the obstacles in applying this variational approach is that a saturated
nonlocal nonlinearity does not satisfy uniformly the so-called strict sub-additivity
condition. This is overcome by applying a special version of Ekeland’s variational
principle.
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1. Introduction and main results

We consider a nonlocal variational problem related to an averaged nonlinear
Schrödinger equation as it arises in the context of fiber optical communication
systems with periodically varying dispersion (dispersion management). After
application of an averaging approximation, the nonlinearity is averaged over the
dispersive action which leads to a nonlocal problem. For Kerr type nonlinearities,
solitary waves have been constructed in [GT96, AB98, ZGJT01, Kun04, HL12], and
for more general nonlinearities in [CHL17]. The main novelty of this article is that
saturating nonlinearities are allowed, which poses significant problems in proving
the existence of ground state solutions in the nonlocal variational problem. On a
more technical level, we would like to emphasize that we impose weaker than usual
differentiability properties on the energy functional defined below, more precisely,
we do not assume the energy functional to be continuously differentiable.

While in the local case a saturable nonlinearity is often helpful by creating more
favorable conditions for the existence of ground states, e.g. by arresting collapse
in the supercritical regime, in the nonlocal case saturation presents difficulties in
satisfying sub-additvity condition.

From a physics viewpoint, saturated nonlinearities are relevant in modeling
optical waves in nonlinear materials as the Kerr nonlinearity, which is cubic for
low intensities, saturates for large fields and approaches a regime with constant
refraction index. One needs to assume some form of saturation of the nonlinearity
P(u) = p(|u|)u with the most common law being

p(|u|) =
|u|2

1 + σ |u|2
,

where p corresponds to the intensity dependent refraction coefficient. In suchmodels,
the corresponding term in the Hamiltonian functional, which we call nonlinearity
potential, is given by

V(a) =
a2

2σ
−

1
2σ2 log(1 + σa2),

where V ′(a) = P(a). Another natural modification with similar behavior is given by
the nonlinearity potential V(a) = a4/(1 + σa2).We will actually consider a much
broader class of saturated nonlinearity potentials which include the above two as
very special cases, but first we discuss the local saturated NLS.

The presence of solitary waves in local NLS with saturated nonlinearity has been
addressed in several studies, see e.g. Gatz-Herrmann [GH91], Usman-Osman-
Tilley [UOT98] and references therein. Their results show that solitary wave
solutions can be obtained numerically and sometimes analytically using phase space
analysis and one may also observe two-state solitons. In particular, one may observe
the bi-stability phenomenon.

In this paper, we address the question of existence of at least one solitary wave,
for nonlocal NLS, which turns out already a challenging task as we cannot construct
solitons by using phase space analysis as in the local case.

As we employ variational methods, the obtained solitary wave is automatically a
ground state solution. It is anticipated that multiple solitary waves may also exist in
nonlocal case, but one needs to use different methods to address this question.

Saturable nonlinearities have also been considered in the context of coupled local
nonlinear Schrödinger systems, where the existence of stationary solutions was also
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proved by variational and bifurcation techniques, see [dAMP13, JT02, Man16].

The direct application of the approach of [CHL17] to saturating nonlinearities
does not work because of the lack of strict sub-additivity of the energy in this
case. The main idea is to construct a modified minimizing sequence with a uniform
L∞ bound, which prevents the minimizing sequence from reaching the saturation
regime.

The problem we are addressing in the work at hand is related to the existence
of breather-type solutions of the dispersion managed one-dimensional nonlinear
Schrödinger equation

i∂tu = −d(t) ∂2
xu − p(|u|)u, (1)

where the dispersion d(t) = ε−1d0(t/ε) + dav is parametrically modulated. The
constant part of the group velocity dispersion dav, assumed to be nonnegative dav ≥ 0,
denotes the average component (residual dispersion) and d0 its L-periodic mean zero
part, the most basic example being d0 = 1[0,1) − 1[1,2) for L = 2. P(u) = p(|u|)u is
the nonlinear interaction due to the polarizability of the optical fiber.

Let Tr = eir∂2
x be the free Schrödinger evolution in one space dimension and

write u = TD(t/ε )v, with D(t) :=
∫ t

0 d0(r) dr . Then (1) is equivalent to

i∂tv = −dav ∂
2
xv − T−1

D(t/ε )

[
P(TD(t/ε )v)

]
.

In the limit of small ε , and averaging over the fast dispersion action, one obtains an
averaged dispersion managed nonlinear Schrödinger equation1,

i∂τv = −dav ∂
2
xv −

1
L

∫ L

0
T−1
D(r)

[
P(TD(r)v)

]
dr

= −dav ∂
2
xv −

∫
R

T−1
r [P(Trv)] µ(dr),

where µ is the image of the uniform measure on [0, L] under D. In the model
example d0 = 1[0,1) − 1[1,2) from above, the measure µ has a density ψ = 1[0,1] with
respect to Lebesgue measure on R. More generally, under physically reasonable
assumptions, the probability measure µ has compact support and is absolutely
continuous with respect to Lebesgue measure, with density ψ in suitable Lp spaces,
see [HL12, Lemma 1.4] for details.

Standing wave solutions of the averaged DM NLS of the form v(t, x) = e−iωt f (x)
are solutions of the nonlinear and nonlocal eigenvalue equation (Dispersion manage-
ment equation, Gabitov-Turitsyn [GT96])

ω f = −dav f ′′ −
∫
R

T−1
r [P(Tr f )] µ(dr) (2)

The DM equation (2) is of variational type as it can be considered as an Euler-
Lagrange equation for an appropriate variational principle and weak solutions can
be found as stationary points of a suitable energy functional, see (3).

1The solutions of the averaged equation and of the original one turn out to be ε close on the time
scale of order ε−1. It can be shown by developing an appropriate averaging theory similar to [ZGJT01]
but we do not pursue this direction here.
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1.1. The variational problems. We study the existence of minimizers for the
nonlinear and nonlocal variational problems

Edav
λ

:= inf
f ∈Sdav

λ

H( f ), (3)

where

S
dav
λ =

{
u ∈ H1(R;C) : ‖u‖22 = λ

}
for λ > 0, dav > 0,

S0
λ =

{
u ∈ L2(R;C) : ‖u‖22 = λ

}
for λ > 0, dav = 0,

where L2(R;C), respectively H1(R;C) are the standard L2, respectively Sobolev
spaces for complex-valued functions. We will denote the usual inner product on
L2(R;C) by 〈 f , g〉 =

∫
R

f g dx, but consider L2(R;C) as real Hilbert space with the
inner product Re〈·, ·〉, which induces the same topology on L2(R;C). H1(R;C) will
be equipped with the corresponding L2-inner product. We will also use the standard
Lp norms denoted by ‖ · ‖p. The energy functional is given by

H( f ) :=
dav
2
‖ f ′‖22 − N( f ). (4)

for f ∈ H dav , where we set H dav = H1(R;C) if dav > 0 and H0 = L2(R;C) for
convenience. The nonlocal nonlinearity is given by

N( f ) :=
∬
R2

V(|Tr f (x)|) dx ψ(r) dr (5)

for some suitable nonlinear potential V : [0,∞) → [0,∞). Here, the function ψ is
the density of some compactly supported probability measure and will be assumed
to lie in appropriate Lp spaces.

We assume that V satisfies the following assumptions:
(A1) V is continuous on [0,∞) and continuously differentiable on (0,∞) with

V(0) = 0. There exist 2 ≤ γ1 ≤ γ2 < ∞ such that

|V ′(a)| . aγ1−1 + aγ2−1 for all a > 0.

(A2) There exists a continuous function κ : [0,∞) → [2,∞) with κ > 2 on
compact intervals, such that for all a > 0,

V ′(a)a ≥ κ(a)V(a).

(A3) There exists a∗ > 0 such that V(a∗) > 0.

Remark 1.1. Assumption (A2) allows for saturation of the potential V in the
sense that V ′(a)a

V (a) → 2 as a → ∞. This is in contrast to the typically assumed
Ambrosetti-Rabinowitz condition [AR73]

V ′(a)a ≥ κV(a) for all a > 0 (6)

with κ > 2, which fails in the limit a → ∞ for the saturated nonlinearities. In
[CHL17], the Ambrosetti-Rabinowitz condition (6) was crucial in proving strict
sub-additivity of the variational problem.

Under assumptions (A1)–(A3) with appropriate restrictions on γ1, γ2, we can
show that there exists a threshold for the existence of minimizers. Under the
additional assumptions
(A4) dav = 0: There exists ε > 0 such that V(a) > 0 for all 0 < a ≤ ε .
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dav > 0: There exist ε > 0 and 2 < γ0 < 6 such that V(a) & aγ0 for all
0 < a ≤ ε .

on V , minimizers are shown to exist for any λ > 0.
Remark 1.2. If we assume that there exists γ ≥ 2 such that

|V ′(|z + w |) − V ′(|z |)| . (|w | + |z |)γ−2 |w | for all w, z ∈ C, (7)

the nonlinearity N : H dav → R is actually a C1 functional, see Proposition 2.5. We
can work with directional derivatives only though, including the construction of
the modified minimizing sequence, so this assumption is not needed for our main
theorems.
Remark 1.3. If no further restriction is made, we shall assume throughout that
the function ψ is a compactly supported, non-negative, and integrable function.
Moreover, from [HL12, Lemma 1.4] we infer that if the periodic dispersion profile
d0 changes sign finitely many times and

∫ L

0 |d0(s)|1−p ds < ∞ for some p ≥ 1, then
the probability density ψ ∈ Lp and has compact support, so the Lp conditions
on ψ in our existence theorems are very reasonable assumptions in view of the
applications of our results to nonlinear optics.
1.2. Main results.
Theorem 1.4 (Existence of DM solitons for zero average dispersion). Let dav = 0.
Assume V satisfies the conditions (A1)–(A3), with 3 ≤ γ1 ≤ γ2 < 5. Assume further
that ψ ≥ 0 is compactly supported and ψ ∈ L

4
5−γ2
+δ for some δ > 0.

Then there exists a threshold λ0
cr ≥ 0 such that

(1) if 0 < λ < λ0
cr, then E0

λ = 0,
(2) if λ > λ0

cr, then −∞ < E0
λ < 0 and there exists a minimizer u ∈ S0

λ ∩ L∞

of the variational problem (3). This minimizer is a weak solution of the
dispersion management equation

ω f = −
∫
R

T−1
r

[
V ′(|Tr f |) Tr f

|Tr f |

]
ψ dr . (8)

for some Lagrange multiplier ω <
2E0

λ

λ < 0.
If, in addition, assumption (A4) holds, then λ0

cr = 0.
Theorem 1.5 (Existence of DM solitons for positive average dispersion). Let dav > 0.

Assume V satisfies the conditions (A1)–(A3), with 2 ≤ γ1 ≤ γ2 < 10. Assume
further that ψ ≥ 0 is compactly supported, with ψ ∈ Laδ for some δ > 0, where
aδ := max

{
1, 4

10−γ2
+ δ

}
< ∞.

Then there exists a threshold λdav
cr ≥ 0 such that

(1) if 0 < λ < λdav
cr , then Edav

λ = 0 and there exists no minimizer for the
variational problem (3),

(2) if λ > λdav
cr , then −∞ < Edav

λ < 0 and there exists a minimizer u ∈ Sdav
λ

of the variational problem (3). This minimizer is a weak solution of the
dispersion management equation

ω f = −dav f ′′ −
∫
R

T−1
r

[
V ′(|Tr f |) Tr f

|Tr f |

]
ψ dr . (9)

for some Lagrange multiplier ω <
2Edav

λ

λ < 0.
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If, in addition, assumption (A4) holds, then λdav
cr = 0.

The main ingredient in the proof of existence of minimizers of (3) is the
construction of a minimizing sequence which satisfies an additional uniform L∞

bound. This prevents the minimizing sequence from reaching the asymptotic regime,
where strict sub-additivity would fail.

While for positive average dispersion dav > 0, the uniform L∞ bound is readily
provided by the Sobolev embedding H1(R) ↪→ L∞(R), some work has to be done
in the setting of zero average dispersion. More precisely, we will construct a
modified minimizing sequence via Ekeland’s variational principle, which provides
an approximate solution of the DM equation, combined with dispersive estimates on
the gradient of the nonlinearity.

A special case of our main results, obtained by a different method, has been
reported in [HLRZ17].

2. Preparatory and technical remarks

In this section we review some important properties of the nonlinearity N . Most
of these properties are adapted from [CHL17] which the reader may consult for
more complete background. The basic ingredient in most of these estimates is

Lemma 2.1. Let f ∈ L2(R), 2 ≤ q ≤ 6, and ψ ∈ L
4

6−q . Then

‖Tr f ‖Lq (R2,dx ψdr) . ‖ψ‖ 4
6−q
‖ f ‖2. (10)

Proof. The inequality follows from interpolation between the unitary case q = 2
and the Strichartz inequality in one space dimension for q = 6, that is,∬

R2
|Tr f (x)|6 dx dr ≤ 12−

1
2 ‖ f ‖62 .

For more details, see [CHL17, Lemma 2.1]. �

Lemma 2.2 (Lemma 4.7 in [CHL17]).
dav = 0 : If 2 ≤ γ1 ≤ γ2 ≤ 6 and ψ ∈ L

4
6−γ2 then the nonlinear nonlocal functional

N : L2(R) → R given by

L2(R) 3 f 7→ N( f ) =
∬
R2

V(|Tr f |) dx ψdr

is locally Lipshitz continuous on L2 in the sense that

|N( f1) − N( f2)| .
(
1 + ‖ f1‖

γ2−1
2 + ‖ f2‖

γ2−1
2

)
‖ f1 − f2‖2

where the implicit constant depends only on the L
4

6−γ2 norm of ψ.
dav > 0 : If 2 ≤ γ1 ≤ γ2 < ∞ and ψ ∈ L1, then the nonlinear nonlocal functional

N : H1(R) → R given by

H1(R) 3 f 7→ N( f ) =
∬
R2

V(|Tr f |) dx ψdr

is locally Lipschitz continuous in the sense that

|N( f1) − N( f2)| .
(
1 + ‖ f1‖

γ2−2
H1 + ‖ f2‖

γ2−2
H1

)
(‖ f1‖2 + ‖ f2‖2) ‖ f1 − f2‖2.

The directional derivatives of the nonlinearity are given by
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Lemma 2.3. If 2 ≤ γ1 ≤ γ2 ≤ 6 and ψ ∈ L1 ∩ L
4

6−γ2 , respectively if 2 ≤ γ1 ≤ γ2 <
∞ and ψ ∈ L1, then for any f , h ∈ L2(R), respectively f , h ∈ H1(R), the functional
N as above has directional derivative given by

DhN( f ) =
∫
R

Re
〈
V ′(|Tr f |) Tr f

|Tr f |
,Trh

〉
ψdr . (11)

In particular, h 7→ DhN( f ) is real linear and continuous.

Proof. Let f ∈ L2(R) and t , 0. For any h ∈ L2(R) the difference quotient of N is
N( f + th) − N( f )

t
=

1
t

[∬
R2

V(|Tr ( f + th)|) − V(|Tr f |) dx ψdr
]

=
1
t

∬
R2

∫ 1

0

d
ds

V(|Tr ( f + sth)|) ds dx ψdr . (12)

Since V is differentiable, we obtain
d
ds

V(|Tr ( f + sth)|) = V ′(|Tr ( f + sth)|)
t(Tr f Trh + TrhTr f + 2st |Trh|2)

2|Tr ( f + sth)|
and thus

(12) =
∬
R2

∫ 1

0
V ′(|Tr ( f + sth)|)

Tr f Trh + TrhTr f + 2st |Trh|2

2|Tr ( f + sth)|
ds dx ψdr .

Under the assumptions 2 ≤ γ1 ≤ γ2 ≤ 6, respectively 2 ≤ γ1 ≤ γ2 < ∞, on
the nonlinearity, Lebesgue’s dominated convergence theorem, together with the
continuity of V ′, implies that for t → 0,

DhN( f ) =
∬
R2

∫ 1

0
V ′(|Tr f |)

Re (Tr f Trh)
|Tr f |

ds dx ψdr

=

∬
R2

V ′(|Tr f |)
Re (Tr f Trh)
|Tr f |

dx ψdr,

which completes the proof of (11). Linearity of the map h 7→ DhN( f ) is immediate
from (11), to see the continuity observe that by assumption (A1),

|DhN( f )| ≤
∬
R2
|V ′(|Tr f (x)|)| |Trh(x)| dx ψ dr

≤

∬
R2

[
|Tr f (x)|γ1−1 + |Tr f (x)|γ2−1] |Trh(x)| dx ψ dr

For 2 ≤ γ ≤ 6, Hölder’s inequality (with exponents γ
γ−1 and γ), implies the bound∬

R2
|Tr f (x)|γ−1 |Trh(x)| dx ψ dr ≤ ‖Tr f ‖γ−1

Lγ (dx ψdr) ‖Trh‖Lγ (dx ψdr)

. ‖ f ‖γ−1
2 ‖h‖2

by Lemma 2.1. By linearity, this already shows continuity of h 7→ DhN( f ) in the
case dav = 0.

In the case of positive average dispersion, dav > 0, we can use f ∈ H1 and
Cauchy-Schwarz to bound∬
R2
|Tr f (x)|γ−1 |Trh(x)| dx ψ dr ≤ sup

r
‖Tr f ‖γ−2

∞ ‖Tr f ‖L2(dx ψdr) ‖Trh‖L2(dx ψdr)

. ‖ f ‖γ−2
H1 ‖ f ‖2 ‖h‖2,
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for 2 ≤ γ < ∞, since

sup
r ∈R
‖Tr f ‖∞ ≤ sup

r ∈R
‖Tr f ‖H1 = ‖ f ‖H1

by the simple estimate ‖g‖∞ ≤ (‖g‖2‖g′‖2)1/2 ≤ ‖g‖H1 and unitarity of the free
Schrödinger evolution Tr on H1. �

Remark 2.4. In the setting of dav = 0, that is, when working in L2(R), Lemma
2.3 also identifies the unique Riesz representative ∇N( f ) (with respect to the real
inner product Re〈·, ·〉) of the continuous linear functional h 7→ DhN( f ) for fixed
f ∈ L2(R),

Re〈∇N( f ), h〉 = DhN( f ) = Re
〈∫
R

T−1
r

[
V ′(|Tr f |) Tr f

|Tr f |

]
ψ dr, h

〉
,

so

∇N( f ) =
∫
R

T−1
r

[
V ′(|Tr f |) Tr f

|Tr f |

]
ψ dr .

Even though we do not need the following for our main results, we state and prove

Proposition 2.5. Assume that (7) holds in addition to the assumptions of Lemma
2.3, with 2 ≤ γ ≤ 6, respectively, 2 ≤ γ < ∞. Then the functional H : H dav → R,
is of class C1(H dav,R).

Proof. Since f 7→ ‖ f ′‖22 is a C1 functional on H1, and the directional derivatives of
N are real linear, see Lemma 2.3, it suffices to show that f 7→ DhN( f ) is continuous
for each h ∈ H dav . We start by estimating

|DhN( f + g) − DhN( f )|

≤

∬
R2
|Trh|

����V ′(|Tr f + Trg |)
Tr f + Trg
|Tr f + Trg |

− V ′(|Tr f |)
Tr f
|Tr f |

���� dx ψdr .

Observe that by assumption (A1) and inequality (7), for any z,w ∈ C,����V ′(|z + w |) z + w
|z + w |

− V ′(|z |)
z
|z |

����
≤ |V ′(|z + w |) − V ′(|z |)| +

|V ′(|z + w |)|
|z + w |

|w | + |V ′(|z + w |)|
���� z
|z + w |

−
z
|z |

����
= |V ′(|z + w |) − V ′(|z |)| +

|V ′(|z + w |)|
|z + w |

|w | +
|V ′(|z + w |)|
|z + w |

| |z | − |z + w | |

. |w |
[
(|z | + |w |)γ−2 + (|z | + |w |)γ1−2 + (|z | + |w |)γ2−2] .

It follows that |DhN( f + g) − DhN( f )| can be bounded by a sum of terms of the
form ∬

R2
|Trh| |Trg | (|Tr f | + |Trg |)γ−2 dx ψ dr .

Using Hölder’s inequality, with exponents γ, γ, γ
γ−2 , and Lemma 2.1, we obtain the

bound
|DhN( f + g) − DhN( f )|

. ‖h‖2‖g‖2
[
(‖ f ‖2 + ‖g‖2)γ−2 + (‖ f ‖2 + ‖g‖2)γ1−2 + (‖ f ‖2 + ‖g‖2)γ2−2] ,
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as in the proof of Lemma 2.3, which shows that all directional derivatives DhN are
locally Lipshitz for each fixed h ∈ H dav . Therefore, H ∈ C1(H dav ;R) if γ ∈ [2, 6]
for dav = 0. Similarly, one proves the dav > 0 case with γ ≥ 2. �

3. Existence of minimizers

3.1. Strict sub-additivity of the energy. The crucial ingredient in establishing
existence of minimizers is restoring (pre-)compactness of minimizing sequences
modulo the natural symmetries of the problem. In this sectionwe prove sub-additivity
of the ground state energy with respect to λ > 0.

While strict sub-additivity was established under the Ambrosetti-Rabinowitz
condition (6) in [CHL17], in general, it fails in the saturation regime, where
V ′(a)a
V (a) → 2. For any C > 0, we define the quantity

Edav
λ (C) := inf

{
H( f ) : f ∈ Sdav

λ , sup
r ∈suppψ

‖Tr f ‖∞ ≤ C
}
. (13)

The following proposition says that strict sub-additivity still holds in the case of
saturated nonlinearities, at least if minimizing sequences do not reach the saturation
regime:

Proposition 3.1 (Strict sub-additivity). Assume that (A1) and (A2) hold, and that
for any λ > 0 there exists a C > 0 such that

Edav
λ = Edav

λ (C). (14)

Then for any 0 < δ < λ
2 , and λ1, λ2 ≥ δ with λ1 + λ2 ≤ λ, one has

Edav
λ1
+ Edav

λ2
≥

1 −
(
2

κ∗(C)
2 − 2

) (
δ

λ

) κ∗(C)
2

 Edav
λ ,

whenever Edav
λ ≤ 0, where κ∗(C) := inf0<a≤C κ(a) > 2.

Remark 3.2. We will show in Propositions 3.8 and 3.11 that in fact for any λ > 0,
the ground state energy Eλ ≤ 0. Proposition 3.1 implies that

Edav
λ1
+ Edav

λ2
> Edav

λ1+λ2

whenever Edav
λ1+λ2

< 0, i.e. Edav
λ is strictly sub-additive if the ground state energy is

strictly negative.
As shown in [CHL17], the strict sub-additivity of the ground state energy prevents

minimizing sequences from splitting, in particular, minimizing sequences can be
shown to be tight modulo the natural symmetries of the problem (shifts for dav > 0
or shifts and boosts for dav = 0).

Proof of Proposition 3.1. Set

χ(a) := exp
(
−

∫ a

a0

κ(b)
b

db
)

for some 0 < a0 ≤ a. Then χ(a0) = 1, χ′(a) = − κ(a)a χ(a), and therefore

χ(a)V(a) − V(a0) ≥ 0, (15)
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since (χV)′ ≥ 0 by assumption (A2). Setting a0 = sa for some s ∈ (0, 1], we obtain

V(sa) ≤ exp
(
−

∫ a

sa

κ(b)
b

db
)

V(a) = exp
(
−

∫ 1

s

κ(ab)
b

db
)

V(a)

≤ exp
(
− inf
β∈(0,1]

κ(aβ)
∫ 1

s

db
b

)
V(a) = sκ

∗(a)V(a).

Using that, by assumption (A2),

inf
0<b≤a

κ(b) ≥ inf
0<b≤A

κ(b) = κ∗(A) > 2

for any finite A ≥ a > 0, we get

V(sa) ≤ sκ
∗(A)V(a), for all s ∈ (0, 1], 0 < a ≤ A.

At this point the L∞ bound comes into play, which guarantees that we always stay
in a regime where saturation is not reached, that is, κ∗ > 2!

Indeed, since |Tr f (x)| ≤ ‖Tr f ‖∞ ≤ C for almost all r ∈ suppψ, we get for
0 < µ ≤ 1,

N(µ1/2 f ) =
∬
R2

V(µ1/2 |Tr f (x)|) dx ψ(r) dr ≤ µκ
∗(C)/2N( f ),

and thus

Edav
µλ = inf

‖ f ‖22=µλ

(
dav
2
‖ f ′‖22 − N( f )

)
≥ inf
‖g ‖22=λ

(
µ

dav
2
‖g′‖22 − µ

κ∗(C)/2N(g)
)

≥ µκ
∗(C)/2Edav

λ .

As in [CHL17, Proposition 3.3], we can now take λj = µjλ, j = 1, 2, with
µ1 + µ2 ≤ 1, µ1, µ2 ≥

δ
λ . It then follows that

Edav
λ1
+ Edav

λ2
= Edav

µ1λ
+ Edav

µ2λ
≥

(
µ
κ∗(C)/2
1 + µ

κ∗(C)/2
2

)
Edav
λ ,

and, since the function t 7→ (1 + t)κ
∗(C)/2 − 1 − tκ

∗(C)/2 is increasing on [1,∞), we
have

µ
κ∗(C)/2
1 + µ

κ∗(C)/2
2 ≤ 1 −

(
2

κ∗(C)
2 − 2

) (
δ

λ

) κ∗(C)
2

< 1

for δ > 0 and κ∗(C) > 2.
Now, if Edav

λ ≤ 0, the sub-additivity

Edav
λ1
+ Edav

λ2
≥

1 −
(
2

κ∗(C)
2 − 2

) (
δ

λ

) κ∗(C)
2

 Edav
λ ,

follows. �

3.2. Thresholds. It turns out that under the assumptions (A1)–(A3) on the nonlinear
potential V , minimizers for Edav

λ may only exist for large enough λ. This is due to the
fact that minimizing sequences can be shown to be pre-compact modulo translations,
respectively, translations and modulations, if the energy is strictly negative. The
reason for this is sub-additivity: the ground state energy is strictly sub-additive only
if Edav

λ < 0!
This motivates
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Definition 3.3 (Threshold).
λdav

cr := inf{λ > 0 : Edav
λ < 0}.

Assume that Edav
λ ≤ 0 for all λ > 0 and dav ≥ 0 (see Remark 3.2 about the validity

of this assumption). By the sub-additivity of the ground state energy, it immediately
follows that

Edav
λ1
≥ Edav

λ1
+ Edav

λ2
≥ Edav

λ1+λ2
,

where the latter inequality is strict whenever Edav
λ1+λ2

< 0. In particular, the map
0 < λ 7→ Edav

λ is decreasing and strictly decreasing where Edav
λ < 0.

Thus, Edav
λ = 0 if 0 < λ < λdav

cr and Edav
λ < 0 if λ > λdav

cr .

Lemma 3.4. If V satisfies assumptions (A2) and (A3), then λdav
cr < ∞.

Proof. λdav
cr < ∞ if and only if Edav

λ < 0 for some λ > 0. The claim therefore follows
if we can find a suitable trial function with negative energy H, at least for large
enough λ > 0.

Observe that by (A2), we again have the bound (15) on V . Let a∗ > 0 be such
that V(a∗) > 0, which exists by (A3). Then

V(a) ≥ exp
(∫ a

a∗

κ(b)
b

db
)

V(a∗)1[a∗,∞)(a),

where for 0 < a < a∗ we just used the fact that V(a) ≥ 0. Since by (A2),
infb>0 κ(b) ≥ 2, we get the lower bound

V(a) ≥
(

a
a∗

)2
V(a∗)1[a∗,∞)(a). (16)

Consider now centered Gaussian test functions

gσ0(x) = A0 e−
x2
σ0 , σ0 > 0, (17)

where A0 =
(

2λ2

πσ0

)1/4
is chosen such that ‖gσ0 ‖

2
2 = λ. Then ‖g

′
σ0 ‖

2
2 =

λ
σ0

and the
time evolution is given by

Trgσ0(x) = A0

(
σ0
σ(r)

)1/2
e−

x2
σ(r ) , σ(r) = σ0 + 4ir, (18)

thus,

|Trgσ0(x)| = A0

(
σ2

0

σ2
0 + (4r)2

)1/4

e
−

σ0x
2

σ2
0+(4r )

2
.

We therefore have |Trgσ0(x)| ≤ A0 for all x ∈ R and r ∈ R. If |x | ≤ √σ0, we also
have the lower bound

|Trgσ0(x)| ≥ A0

(
σ2

0

σ2
0 + (4r)2

)1/4

e
−

σ2
0

σ2
0+(4r )

2
,

hence choosing R > 0 such that suppψ ⊂ [−R, R], we have
A0
2
≤ |Trgσ0(x)| ≤ A0

for all |x | ≤ √σ0 and all |r | ≤ R, assuming σ0 > 4R.
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Now set σ0 = λ for λ large enough. Then ‖g′λ‖2 = 1 and A0 =
(

2λ
π

)1/4
. It follows

with (16) that∫
R

V(|Trgλ(x)|) dx =
∫
|x | ≤
√
λ

V(|Trgλ(x)|) dx +
∫
|x |>
√
λ

V(|Trgλ(x)|) dx

≥

∫
|x | ≤
√
λ

(
|Trgλ(x)|

a∗

)2
V(a∗)1[a∗,∞)(|Trgλ(x)|) dx

≥ 2
√
λ

(
A0
2a∗

)2
V(a∗)1[a∗,∞)

( A0
2
)
,

so for λ large enough, since A0 ∼ λ
1/4,

N(gλ) =
∬
R2

V(|Trgλ(x)|) dx ψdr & λ

and the energy is bounded by

H(gλ) =
dav
2
‖g′λ‖

2
2 − N(gλ) ≤

dav
2
− Cλ,

for some constant C > 0. Thus, choosing λ > 0 large enough, we can always achieve
H(gλ) < 0, so Edav

λ = inf ‖ f ‖22=λ H( f ) ≤ H(gλ) < 0. �

Lemma 3.5. If V satisfies assumptions (A1), (A2), and (A4), then λdav
cr = 0 for all

dav ≥ 0.

Proof. Let λ > 0. We begin with dav = 0, that is, assume that there exists ε > 0
such that V(a) > 0 for all 0 < a ≤ ε . Let gσ0 be the centered Gaussian (17) with
‖gσ0 ‖

2
2 = λ. Then, by (18),

|Trgσ0(x)| ≤ A0 =

(
2λ2

πσ0

)1/4

(19)

for all x ∈ R and r ∈ R. Choosing σ0 large enough, we can make |Trgσ0(x)| ≤ ε ,
which implies H(gσ0) = −N(gσ0) < 0 by (A4), so Edav

λ < 0. Since λ > 0 was
arbitrary, it follows that λ0

cr = 0.
For dav > 0 assume that there exist ε > 0 and 2 < γ0 < 6 such that V(a) & aγ0

for all 0 < a ≤ ε . We consider the same centered Gaussian gσ0 as above, with σ0 so
large that |Trgσ0(x)| ≤ ε . It follows that

N(gσ0) =

∬
R2

V(|Trgσ0(x)|) dx ψ dr &
∬
R2
|Trgσ0(x)|

γ0 dx ψdr

=

(
π

γ0

)1/2 (
2λ2

π

)γ0/4

σ
2−γ0

4
0

∫
R

ψ(r)[
1 + (4r/σ0)2

] γ0−2
4

dr .

Since ‖g′σ0 ‖
2
2 =

λ
σ0
, the energy of the Gaussian gσ0 is bounded by

H(gσ0) ≤
davλ

2σ0

1 −
C

davλ

(
π

γ0

)1/2 (
2λ2

π

)γ0/4

σ
6−γ0

4
0

∫
R

ψ(r)[
1 + (4r/σ0)2

] γ0−2
4

dr
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for some constant C > 0. In particular, since 2 < γ0 < 6 and∫
R

ψ(r)[
1 + (4r/σ0)2

] γ0−2
4

dr → ‖ψ‖1 > 0

as σ0 → ∞ by Lebesgue’s dominated convergence theorem, we can make σ0
sufficiently large, such that H(gσ0) < 0. As λ > 0 was arbitrary, this yields
λdav

cr = 0. �

The following quantity will be useful in proving the non-existence of minimizers
in the positive average dispersion case for sub-critical 0 < λ < λdav

cr . Fix C > 0 and
define

RC(λ) := sup

{
N(
√
λh)

λ‖h′‖22
: h ∈ H1(R) \ {0}, ‖h‖2 = 1, ‖h′‖2 ≤ C

}
.

Lemma 3.6. Let C > 0. If V satisfies assumption (A2), then

RC(λ) ≥

(
λ

λ0

) 1
2 κ
∗(
√
λC)−1

RC(λ0)

for all λ ≥ λ0 > 0, with κ∗
(√
λC

)
= infa≤√λC κ(a) > 2.

This scaling property immediately implies

Corollary 3.7. Let C > 0 and assume that V obeys assumption (A2). If λdav
cr > 0,

then

RC(λ) <
dav
2

for all 0 < λ < λdav
cr .

Proof. Let λdav
cr > 0, and assume that there exists 0 < λ1 < λdav

cr such that
RC(λ1) ≥

dav
2 . Pick λ2 ∈ (λ1, λ

dav
cr ), then Lemma 3.6 implies

RC(λ2) ≥

(
λ2
λ1

) 1
2 κ
∗(
√
λ2C)−1

RC(λ1) > RC(λ1) ≥
dav
2
,

since κ∗
(√
λC

)
> 2. In particular,

Edav
λ2
= inf
‖g ‖2=1

(
dav
2
λ2‖g

′‖22 − N(
√
λ2g)

)
≤ inf
‖g ‖2=1
‖g′ ‖2≤C

(
dav
2
λ2‖g

′‖22 − N(
√
λ2g)

)
= inf
‖g ‖2=1
‖g′ ‖2≤C

λ2‖g
′‖22

(
dav
2
−

N(
√
λ2g)

λ2‖g′‖
2
2

)
≤ λ2C2 inf

‖g ‖2=1
‖g′ ‖2≤C

(
dav
2
−

N(
√
λ2g)

λ2‖g′‖
2
2

)

= λ2C2 ©«
dav
2
− sup
‖g ‖2=1
‖g′ ‖2≤C

N(
√
λ2g)

λ2‖g′‖
2
2

ª®®¬ = λ2C2
(

dav
2
− RC(λ2)

)
< 0,

in contradiction to λ2 < λdav
cr and the definition of λdav

cr . �

Proof of Lemma 3.6. Let h ∈ H1 \ {0} with ‖h‖2 = 1 and ‖h′‖2 ≤ C, and define
the function

A(s) := s−2N(sh)
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for s > 0. Then

A′(s) = s−3 (sDhN(sh) − 2N(sh)) ,

and by assumption (A2),

sDhN(sh) − 2N(sh) =
∬
R2

[
V ′(|Tr (sh)|)|Tr (sh)| − 2V(|Tr (sh)|)

]
dx ψ dr

≥

∬
R2

[
κ(|Tr (sh)|) − 2

]
V(|Tr (sh)|) dx ψ dr .

Since for any f ∈ H1(R) the simple inequality ‖ f ‖2∞ ≤ ‖ f ‖2‖ f ′‖2 holds, we get

‖Tr (sh)‖∞ = s‖Trh‖∞ ≤ s‖Trh‖1/22 ‖Trh′‖1/22 = s‖h‖1/22 ‖h
′‖

1/2
2 ≤ s

√
C,

where we made use of the fact that Tr commutes with differentiation and is unitary
on L2, as well as the properties of h. It follows that

sDhN(sh) − 2N(sh) ≥
(

inf
a≤s
√
C
κ(a) − 2

)
N(sh)

≥

(
inf

a≤t
√
C
κ(a) − 2

)
N(sh) =

(
κ∗

(
t
√

C
)
− 2

)
N(sh)

for all 0 < s ≤ t, t > 0, and thus the function A satisfies the differential inequality

A′(s) ≥
(
κ∗

(
t
√

C
)
− 2

)
s−1 A(s),

which yields

A(t) ≥
(

t
t0

)κ∗ (t√C)
−2

A(t0)

for any t ≥ t0 > 0. In particular, we have

RC(λ) = sup
‖h ‖2=1
‖h′ ‖2≤C

N(
√
λh)

λ‖h′‖22
≥

(
λ

λ0

) 1
2 κ
∗
(√
λC

)
−1

sup
‖h ‖2=1
‖h′ ‖2≤C

N(
√
λ0h)

λ0‖h′‖22

=

(
λ

λ0

) 1
2 κ
∗
(√
λC

)
−1

RC(λ0)

for all λ ≥ λ0 > 0. �

3.3. Existence of minimizers for zero average dispersion. We start by establish-
ing the existence of minimizers in the singular case dav = 0. Throughout this section,
we assume that (A1), (A2), and (A3) hold with 3 ≤ γ1 ≤ γ2 < 5, and that ψ is
compactly supported with ψ ∈ L

4
5−γ2
+δ for some δ > 0. This Lp condition on ψ

ensures that the Lp condition in [CHL17] holds, in particular, all their multilinear
estimates and splitting estimates continue to hold in our setting.

Proposition 3.8. For any λ > 0, the energy functional H = −N is bounded below
on S0

λ and

−∞ < E0
λ ≤ 0.



SOLITARY WAVES IN NONLOCAL NLS WITH SATURATED NONLINEARITIES 15

Proof. Let λ > 0. Integrating the bound on V ′ in (A1) yields

|V(a)| . aγ1 + aγ2 (20)

and therefore

N( f ) .
∫
R
‖Tr f ‖γ1

γ1 ψdr +
∫
R
‖Tr f ‖γ2

γ2 ψdr . ‖ f ‖γ1
2 + ‖ f ‖γ2

2

by Lemma 2.1. It follows that

E0
λ = inf

‖ f ‖22=λ
H( f ) = − sup

‖ f ‖22=λ

N( f ) & −
(
λ

γ1
2 + λ

γ2
2

)
> −∞.

Since V(a) ≥ 0 for any a > 0, clearly H( f ) = −N( f ) ≤ 0 for any f ∈ S0
λ and

therefore E0
λ ≤ 0. �

The following lemma is a generalization of a result by Kunze [Kun04, Lemma
2.12], and establishes L∞ bounds on the time evolved gradient of H.

Lemma 3.9. Let f ∈ L2(R), 3 ≤ γ1 ≤ γ2 < 5, ψ ∈ L
4

5−γ2
+δ for some δ > 0, and ψ

compactly supported. Then Ts∇H( f ) ∈ L∞(R) and

sup
s∈R
‖Ts∇H( f )‖∞ . ‖ f ‖γ1−1

2 + ‖ f ‖γ2−1
2 , (21)

where the implicit constant depends on ‖ψ‖ 4
5−γ2
+δ .

Proof. We have

‖Ts∇H( f )‖∞ = sup
‖g ‖1=1

|Re 〈Ts∇H( f ), g〉| = sup
‖g ‖1=1

|Re 〈∇H( f ),T−sg〉|

= sup
‖g ‖1=1

����Re
∫
R

〈
V ′(|Tr f |)

Tr f
|Tr f |

,Tr−sg
〉
ψ(r) dr

���� .
Using the basic dispersive estimate for the free Schrödinger evolution, ‖Tsg‖∞ .
|s |−1/2‖g‖1 for all s , 0, we obtain, together with assumption (A1),

‖Ts∇H( f )‖∞ .
∫
R

ψ(r)
|r − s |1/2

∫
R
|V ′(|Tr f |)| dx dr

.

∫
R

ψ(r)
|r − s |1/2

(
‖Tr f ‖γ1−1

γ1−1 + ‖Tr f ‖γ2−1
γ2−1

)
dr . (22)

An application of Hölder’s inequality then yields∫
R

ψ(r)
|r − s |1/2

‖Tr f ‖γ−1
γ−1 dr ≤ ‖| · −s |−1/2ψ‖ p

p−1

(∫
R
‖Tr f ‖p(γ−1)

γ−1 dr
)1/p

.

The pair (γ − 1, p(γ − 1)) is Strichartz admissible if γ − 1 ≥ 2 and 2
p(γ−1) =

1
2 −

1
γ−1 ,

that is, p = 4
γ−3 . Note that p ≥ 1 if γ ≤ 7. In this case,∫

R
‖Tr f ‖p(γ−1)

γ−1 dr . ‖ f ‖p(γ−1)
2

by Strichartz’ inequality, and thus,∫
R

ψ(r)
|r − s |1/2

‖Tr f ‖γ−1
γ−1 dr . ‖| · −s |−1/2ψ‖ 4

7−γ
‖ f ‖γ−1

2 .
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Setting α = 2
7−γ , we see that we have to bound

∫
|r − s |−αψ2α(r) dr uniformly in s.

Let θ > 1 and apply Hölder’s inequality once more to see∫
|r − s |−αψ2α(r) dr ≤

(∫
suppψ

|r − s |−αθ dr
) 1

θ
(∫

ψ(r)
2αθ
θ−1

) θ−1
θ

.

As long as αθ < 1, we have

sup
s∈R

∫
suppψ

|r − s |−αθ dr < ∞

since suppψ is compact. So we need α < 1/θ, which is equivalent to
2αθ
θ − 1

>
2α

1 − α
=

4
5 − γ

.

Since ψ is compactly supported and ψ ∈ L
4

5−γ2
+δ for some δ > 0, we see that, setting

αj =
4

7−γj , there exist θ j > 1 with αjθ j < 1 and 2αjθ j
θ j−1 =

4
5−γj + δ. This shows that

both terms on the right hand side of (22) can be bounded uniformly in s ∈ R. �

Lemma 3.10. Assume that 3 ≤ γ1 ≤ γ2 < 5 and that ψ ∈ L
4

5−γ2
+δ for some δ > 0.

Let (un)n∈N ⊂ L2(R), ‖un‖22 = λ for all n ∈ N, be a minimizing sequence for E0
λ. If

E0
λ < 0, then there exists another minimizing sequence (vn)n∈N ⊂ L2 ∩ L∞(R) with

sup
r ∈R
‖Trvn‖∞ ≤ Cλ.

Proof. Step 1 (Construction of a modified minimizing sequence). Since H
satisfies all the requirements of Ekeland’s variational principle (see Appendix A),
there exists another minimizing sequence (wn)n∈N ⊂ S

0
λ, such that H(wn) ≤ H(un)

for all n ∈ N, ‖wn − un‖2 → 0 as n→∞, and

∇H(wn) −

〈
∇H(wn),

wn

‖wn‖2

〉
wn

‖wn‖2
→ 0 as n→∞ (23)

strongly in L2, where ∇H( f ) = −
∫
R

T−1
r

[
V ′(|Tr f |) Tr f

|Tr f |

]
ψdr, see Remark 2.4.

Write

gn := ∇H(wn) + σn
wn

‖wn‖2
= ∇H(wn) + σn

wn
√
λ
, n ∈ N, (24)

with σn := −
〈
∇H(wn),

wn

‖wn ‖2

〉
. Then gn → 0 strongly in L2 for n→∞ by (23).

By assumption (A2),

−〈∇H(wn),wn〉 = Dwn N(wn) =

∬
R2

V ′(|Trwn |) |Trwn | dx ψ(r) dr

≥ 2N(wn) = −2H(wn)
n→∞
−→ −2E0

λ > 0,

so, picking a subsequence if necessary, we can assume that σn ≥ −
E0
λ√
λ
> 0 for all

n ∈ N. Therefore, σ−1
n is uniformly bounded and σ−1

n gn → 0 as n→∞.
Now define the sequence

vn := −
√
λ
∇H(wn)

‖∇H(wn)‖2
, ‖vn‖

2
2 = λ, n ∈ N.
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We will show that (vn)n∈N ⊂ S0
λ is again a minimizing sequence for H. Indeed,

‖vn − wn‖2 =

√
λ

σn

(1 − σn

‖∇H(wn)‖2

)
∇H(wn) − gn


2

≤
√
λ

����1 − σn

‖∇H(wn)‖2

���� ‖∇H(wn)‖2
σn

+
√
λ
‖gn‖2
σn

.

Since σ−1
n gn → 0 in L2, it remains to show that

σn

‖∇H(wn)‖2
→ 1

as n→∞. But from (24) we have

‖∇H(wn)‖
2
2 = ‖gn‖

2
2 + σ

2
n − 2σnRe

〈
wn

‖wn‖2
, gn

〉
,

so

‖∇H(wn)‖
2
2

σ2
n

= 1 +
‖gn‖

2
2

σ2
n

− 2 Re
〈

wn

‖wn‖2
,
gn

σn

〉
→ 1

as n→∞ since σ−1
n gn → 0 in L2.

Step 2 (L∞ boundedness of the modified minimizing sequence). By Lemma 3.9
and the bound

‖wn‖2‖∇H(wn)‖2 ≥ |Re 〈∇H(wn),wn〉| ≥ −2E0
λ > 0,

we obtain

‖Tsvn‖∞ =

√
λ

‖∇H(wn)‖2
‖Ts∇H(wn)‖∞

.
λ

|E0
λ |

(
‖wn‖

γ1−1
2 + ‖wn‖

γ2−1
2

)
=

(
λ

γ1+1
2 + λ

γ2+1
2

)
/|E0

λ |.

�

We can now turn to the proof of existence of dispersion managed solitons in the
case of zero average/ dispersion.

Proof of Theorem 1.4. We start with 0 < λ < λ0
cr. Since by Proposition 3.8 E0

λ ≤ 0,
the definition of the threshold (Definition 3.3) implies that E0

λ = 0, proving part (i)
of the theorem.

Assume now that λ > λ0
cr. Then, by definition, E0

λ < 0.
Let (vn)n∈N ⊂ S0

λ ∩ L∞(R) be the minimizing sequence constructed in Lemma
3.10, such that ‖Trvn‖∞ ≤ Cλ for some uniform constant Cλ.

By Proposition 3.1, the ground state energy E0
λ is strictly sub-additive along

(vn)n∈N. Once we have strict sub-additivity, the bound (4.7) from [CHL17, Propo-
sition 4.4] again holds. Then one can use this, similarly to the proof of [CHL17,
Proposition 4.6], to show that the sequence (vn)n∈N is tight (that is, |vn(x)|2 dx and
|̂vn(η)|

2 dη are tight in the sense of measures) modulo shifts and boosts, i.e. there
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exist shifts yn and boosts ξn such that

lim
R→∞

sup
n∈N

∫
|x−yn |>R

|vn(x)|2 dx = 0,

lim
L→∞

sup
n∈N

∫
|η−ξn |>L

|̂vn(η)|
2 dη = 0.

Let fn(x) := eiξnxvn(x − yn), n ∈ N, be the shifted and boosted minimizing
sequence. Then by the invariance of H under shifts and boosts, ( fn)n∈N is again a
minimizing sequence with ‖ fn‖22 = ‖vn‖

2
2 = λ. Since | fn(x)| = |vn(x − yn)| and

| f̂n(η)| = |̂vn(η − ξn)|, the sequence ( fn)n∈N is also tight.
Since the sequence ( fn)n∈N is bounded in L2(R), there exists a weakly convergent

subsequence (again denoted ( fn)n∈N) by the weak compactness of the unit ball. Since
this subsequence is also tight, it converges even strongly in L2(R) to some f ∈ L2.
By continuity of the L2 norm and the nonlinearity N under strong L2-convergence,
we have

E0
λ ≤ H( f ) = −N( f ) = lim

n→∞
−N( fn) = E0

λ,

since ( fn)n∈N is minimizing. Thus f is a minimizer of the variational problem (3)
for dav = 0.

The Euler-Lagrange equation of the constrained minimization problem is the
dispersion management equation (8) and it is a standard exercise to show that the
minimizer h found above is a weak solution of the Euler-Lagrange equation,

ω 〈 f , g〉 = −DgN( f ) = −
∫
R

〈
V ′(|Tr f |)

Tr f
|Tr f |

,Trg
〉
ψ dr (25)

for all g ∈ L2(R), see also [CHL17] for more details. In particular, Lemma 3.9
implies that Ts f ∈ L∞(R) for almost all s ∈ suppψ. Inserting g = f as test function
in (25) yields

ω‖ f ‖22 = ωλ = −
∬
R2

V ′(|Tr f (x)|) |Tr f (x)| dx ψ dr

≤ −

∬
R2
κ(|Tr f (x)|)V(|Tr f (x)|) dx ψ dr

≤ −κ∗(Cλ)N( f ) < −2N( f ) = 2E0
λ,

by assumption (A2) and the uniform bound on the minimizer, so ω <
2E0

λ

λ . �

3.4. Existence of minimizers for positive average dispersion. The situation is
much easier in the positive average dispersion case, since the uniform L∞ bound is
directly provided by the simple bound

‖h‖2∞ ≤ ‖h‖2‖h
′‖2 ≤ ‖h‖2H1 (26)

for any h ∈ H1(R), i.e., the Sobolev embedding H1(R) ⊂ L∞(R). We will
assume throughout this section that assumptions (A1), (A2), and (A3) hold with
2 < γ1 ≤ γ2 < 10. We further assume that ψ is compactly supported and ψ ∈ Laδ

for some δ > 0, where aδ := max{1, 4
10−γ2

+ δ}.
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Proposition 3.11. The energy functional H is bounded below on Sdav
λ for any λ > 0

and coercive in ‖ f ′‖, that is,

lim
‖ f ′ ‖→∞

‖ f ‖2=λ

H( f ) = +∞.

Moreover, −∞ < Edav
λ ≤ 0.

Proof. For 2 < γ1 ≤ γ2 ≤ 6 we can, as in Proposition 3.8, estimate the nonlinearity
by

N( f ) . ‖ f ‖γ1
2 + ‖ f ‖γ2

2

In case γj > 6 for some j = 1, 2, we can extract the excess part in the L∞ norm,
estimating ∫

R
‖Tr f ‖γγ ψdr ≤ sup

r ∈R
‖Tr f ‖κ∞

∫
R
‖Tr f ‖γ−κγ−κ ψdr

for some 2 ≤ γ − κ ≤ 6. Using (26),

sup
r ∈R
‖Tr f ‖∞ ≤ (‖ f ‖2‖ f ′‖2)

1/2 ,

where we used the unitarity of Tr on L2 and the fact that Tr commutes with ∂x , this
yields, together with Lemma 2.1,

N( f ) . ‖ f ′‖
κ1
2

2 ‖ f ‖
γ1−

κ1
2

2 + ‖ f ′‖
κ2
2

2 ‖ f ‖
γ2−

κ2
2

2 ,

for suitable (γj − 6)+ ≤ κj ≤ γj − 2, j = 1, 2, and an implicit constant that can be
chosen in such a way that it only depends on the Laδ norm of ψ. It is easy to see
that for given aδ ≥ 1, one can always choose κj < 4. Therefore,

H( f ) ≥
dav
2
‖ f ′‖22 − C

(
‖ f ′‖

κ1
2

2 ‖ f ‖
γ1−

κ1
2

2 + ‖ f ′‖
κ2
2

2 ‖ f ‖
γ2−

κ2
2

2

)
(27)

for some constant C = C(‖ψ‖aδ ). In particular, if ‖ f ‖22 = λ, then H( f ) → ∞ as
‖ f ′‖2 →∞. Moreover,

Edav
λ ≥ inf

t>0

(
dav
2

t2 − C
(
t
κ1
2 λ

1
2 (γ1−

κ1
2 ) + t

κ2
2 λ

1
2 (γ2−

κ2
2 )

))
> −∞.

To prove that Edav
λ ≤ 0 we again calculate the energy of suitable centered

Gaussians (17). Since by (20),

N(gσ0) . ‖ψ‖1 sup
r ∈suppψ

(
‖Trgσ0 ‖

γ1
γ1 + ‖Trgσ0 ‖

γ2
γ2

)
,

where 2 < γ1 ≤ γ2, it is not hard to see that

lim
σ0→∞

H(gσ0) = 0,

which implies E0
λ ≤ 0. �

Proof of Theorem 1.5. Fix 0 < λ < λdav
cr . By definition of the threshold and

Edav
λ ≤ 0, we must then have Edav

λ = 0. Assume now that there exists a minimizer
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f ∈ Sdav
λ with H( f ) = Edav

λ = 0, then

0 = H( f ) =
dav
2
‖ f ′‖22 − N( f ) = ‖ f ′‖22

(
dav
2
−

N( f )
‖ f ′‖22

)

≥ ‖ f ′‖22
©«

dav
2
− sup

‖g ‖2=1
‖g′ ‖2≤λ

−1/2 ‖ f ′ ‖2

N(
√
λg)

λ‖g′‖22

ª®®®¬
= ‖ f ′‖22

(
dav
2
− Rλ−1/2 ‖ f ′ ‖2(λ)

)
.

(28)

Since λ < λdav
cr , Corollary 3.7 implies that RC(λ) <

dav
2 for any C > 0, in particular

for C = λ−1/2‖ f ′‖2, so
dav
2
− Rλ−1/2 ‖ f ′ ‖2(λ) > 0,

which by (28) implies that ‖ f ′‖2 = 0. But as the kernel of ∂x is trivial on H1(R),
we must have f ≡ 0, in contradiction to ‖ f ‖22 = λ, which shows that there cannot
exist a minimizer if we are below the threshold λdav

cr .
Assume now λ > λdav

cr and let (vn)n∈N ⊂ Sdav
λ be a minimizing sequence for Edav

λ .
Since H is coercive on Sdav

λ , the sequence (vn) is bounded. Indeed for ‖vn‖22 = λ,
H(vn) → Edav

λ > −∞, the bound (27) implies that ‖v′n‖2 stays bounded, thus also
‖vn‖H1 is bounded uniformly in n ∈ N.

Together with (26) and the unitarity of Tr on H1, we have
‖Trvn‖∞ ≤ ‖Trvn‖H1 = ‖vn‖H1 ≤ Cλ

for any r ∈ suppψ, and some constant Cλ > 0, and Proposition 3.1 implies that the
ground state energy Edav

λ is strictly sub-additive. Hence arguing as in the proofs of
[CHL17, Propositions 4.3 and 4.5] the minimizing sequence is tight modulo shifts
and tight in Fourier space, that is there exist shifts (yn)n∈N such that for the sequence
wn := vn(· − yn), n ∈ N, we have

lim
R→∞

sup
n∈N

∫
|x |>R

|wn(x)|2 dx = 0,

and there exists a constant K < ∞ such that for any L > 0

sup
n∈N

∫
|η |>L

|ŵn(η)|
2 dη = sup

n∈N

∫
|η |>L

|v̂n(η)|
2 dη ≤

K
L2 .

Since H(wn) = H(vn) for all n ∈ N by translation invariance, (wn)n∈N is
also a minimizing sequence with ‖wn‖

2
2 = ‖vn‖

2
2 = λ, which is bounded in H1,

‖wn‖H1 = ‖vn‖H1 ≤ Cλ. So the weak compactness of the unit ball implies that
there exists a subsequence wnk ⇀ v ∈ H1 weakly in H1 and in L2. By tightness, we
even have strong convergence in L2. It follows that

‖v‖22 = lim
k→∞
‖wnk ‖

2
2 = λ > 0

and together with the weak sequential lower semi-continuity of the H1 norm this
also implies

‖v′‖22 ≤ lim inf
k→∞

‖w′nk ‖
2
2 .
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Finally, since {wnk }k∈N is bounded in H1 and converges in L2, the continuity of the
nonlinearity N with respect to strong L2-convergence (Lemma 2.2) yields

lim
k→∞

N(wnk ) = N(v).

Altogether, we thus have shown that H is weakly lower semi-continuous along
{wnk }, in particular

Edav
λ ≤ H(v) ≤ lim inf

k→∞
H(wnk ) = Edav

λ ,

since {wnk } is minimizing. It follows that f is a minimizer of the variational
problem (3). The rest of the proof is analogous to the zero average dispersion case
dav = 0. �

Appendix A. Ekeland’s variational principle

In this section we briefly derive the following corollary of Ekeland’s variational
principle [Eke74, see also the Appendix in [Cos07]] needed in the construction of
our modified minimizing sequence. Note that we do not require the functional to
be C1, but only that all its directional derivatives exists and depend linearly and
continuously on the direction.

Proposition A.1. Let H be a real Hilbert space and ϕ : H → R a continuous
functional with the property that all directional derivatives exist and the functional
h 7→ Dhϕ( f ) is linear and continuous for all f ∈ H .

Assume that ϕ is bounded from below on Sλ = {u ∈ H : ‖u‖2 = λ}, and
let ( fn)n∈N ⊂ Sλ be a minimizing sequence for ϕ|Sλ . Then there exists another
minimizing sequence (gn)n∈N ⊂ Sλ such that

ϕ(gn) ≤ ϕ( fn), ‖gn − fn‖ → 0

and

|(Dhnϕ|Sλ )(gn)| → 0 as n→∞

for any hn ∈ TgnSλ with supn ‖hn‖ < ∞.

Remark A.2. (i) As will be clear from the proof, linearity of the map h 7→
Dhϕ( f ) is not needed, the only important property is that the one-sided
derivatives from left and right coincide, respectively, that D−hϕ( f ) =
−Dhϕ( f ) for all f ∈ H . Linearity allows us to represent, by reflexivity, the
directional derivative at a given point f in S by a vector ∇ϕ( f ) ∈ H .

(ii) Let u ∈ Sλ. Since by assumption, the map

h 7→ Dhϕ(u)

is linear and continuous, by the Riesz representation theorem there exists a
uniquely determined vector ∇ϕ(u) such that

〈∇ϕ(u), h〉 = Dhϕ(u).

Since Sλ is a sphere in H , we have H = TuSλ ⊕ Ru for all u ∈ Sλ.
Therefore, the projection of ∇ϕ(u) onto TuSλ is given by

∇ϕ(u) −
〈
∇ϕ(u),

u
‖u‖

〉
u
‖u‖

.
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By Proposition A.1, we thus have���〈∇ϕ(gn) − 〈∇ϕ(gn), gn
‖gn ‖
〉

gn
‖gn ‖

, hn
〉��� = ��(Dhnϕ|Sλ )(gn)

��→ 0

as n → ∞ for all hn ∈ TgnSλ with ‖hn‖ ≤ 1 (and therefore also for all
h̃n ∈ TgnSλ ⊕ Rgn = H with ‖ h̃n‖ ≤ 1), so

∇ϕ(gn) − 〈∇ϕ(gn),
gn
‖gn ‖
〉

gn
‖gn ‖
→ 0, n→∞

strongly inH .

Proof. Let c = infSλ ϕ and set εn = max
{ 1
n, ϕ( fn) − c

}
. By Ekeland’s variational

principle there exists a sequence (gn)n∈N ⊂ Sλ such that ϕ(gn) ≤ ϕ( fn) for all
n ∈ N, ‖gn − fn‖ → 0 as n→∞, and

ϕ(gn) < ϕ(u) +
√
εn ‖gn − u‖ for all u , gn. (29)

Now let γ : (−1, 1) → Sλ be a C1 curve with γ(0) = gn and γ′(0) = hn, for some
arbitrary hn ∈ TgnSλ. Then, by means of the continuity of h 7→ Dhϕ( f ) for all
f ∈ H , we have

lim
t→0

ϕ(γ(t)) − ϕ(γ(0))
t

= lim
t→0

ϕ(γ(0) + tγ′(0) + o(t)) − ϕ(γ(0))
t

= lim
t→0

ϕ(γ(0)) + tDγ′(0)+t−1o(t)ϕ(γ(0)) + o(t) − ϕ(γ(0))
t

= lim
t→0

Dγ′(0)+t−1o(t)ϕ(γ(0)) = Dγ′(0)ϕ(γ(0)) = Dhnϕ(gn),

As the curve γ was arbitrary, this implies

(Dhnϕ|Sλ )(gn) = lim
t→0

ϕ(γ(t)) − ϕ(γ(0))
t

.

By (29), for all t > 0 we have

ϕ(γ(t)) − ϕ(γ(0)) > −
√
εn‖γ(0) − γ(t)‖,

and dividing by t > 0 and letting t → 0 yields

(Dhnϕ|Sλ )(gn) = lim
t↓0

ϕ(γ(t)) − ϕ(γ(0))
t

≥ −
√
εn‖γ

′(0)‖ = −
√
εn‖hn‖

Similarly, exchanging t by −t, one obtains

(Dhnϕ|Sλ )(gn) = lim
t↓0

ϕ(γ(−t)) − ϕ(γ(0))
−t

≤
√
εn‖γ

′(0)‖ =
√
εn‖hn‖,

and therefore ��(Dhnϕ|Sλ )(gn)
�� ≤ √εn‖hn‖ → 0 as n→∞.

�
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