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Abstract  

One third of population aged over 65 experience falls each year. Falls are major cause 

of middle to severe injuries becoming an enormous burden for the healthcare system. 

Timely accurate assessment of the fall risk in a widely accepted and non-stigmatized 

manner has the ability to provide crucial changes in the fall prevention strategies, thus 

possibly reducing the number of fallers, as well as their fall rate. Current clinical evalua-

tion of the fall risk is time consuming and subjective, whereas assessments in non-am-

bulatory settings are obtrusive or focused on singular periodical aspects of human 

movement.  

The focus of this thesis is on investigation and definition of novel concepts targeting 

assessment of inter-limb coordination, gait and sit-to-stand transitions by means of in-

ertial and environmental wrist-attached sensors. Time- and frequency-domain 

hand-crafted features were used for deriving support vector machine based models de-

scribing one’s physical performance in terms of an objective (quantitative) fall risk as-

sessment in noisy perturbation-prone home settings.  

An exploratory study on 28 elderly participants in a controlled setting was conducted for 

observational purposes. On top of that, a large cross-sectional study on a cohort of 180 

participants with a six months follow-up phase was performed for the validation of de-

veloped models.  

The results have yielded a novel acute fall risk predictor. Additionally, the importance of 

an environmental context for understanding of one’s motor performance was pre-

sented. An innovative real-time algorithm for fusion of a multi-sensor approach and 

movement-based filters was proposed and influence of the hand-side-dependence on 

its performance was investigated. Validation of developed models for all three domains 

against the ground truth has shown clinically relevant accuracy comparable, or even par-

tially better than obtrusive state-of-the-art. 

The study overcomes limitations of clinical tests and shows a reliable application of wrist 

bands in terms of both, highly acute and conventional six-months based fall risk assess-

ment. Moreover, it reveals wrist as a potential assessment source in the geriatric popu-

lation.       





 

 

Kurzfassung   

Jedes Jahr stürzt rund ein Drittel der über 65 Jährigen. Stürze sind die Hauptursache für 

mittlere bis schwere Verletzungen und damit eine enorme Belastung für das Gesund-

heitssystem. Eine zeitlich akkurate Sturzrisikobewertung in einer breit akzeptierten und 

nicht-stigmatisierenden Art und Weise kann zu signifikanten Veränderungen in der Stra-

tegie der Sturzprävention führen und damit dazu beitragen, die Anzahl der stürzenden 

Personen, sowie die Sturzrate zu reduzieren.  

Die gegenwärtige klinische Evaluierung des Sturzrisikos ist zeitaufwendig und subjektiv. 

Folglich sind Bewertungen in stationärem Umfeld obstruktiv, oder fokussieren sich aus-

schließlich  auf einmalige, periodische Merkmale der menschlichen Bewegung. Der Fo-

kus dieser Arbeit liegt in der Erforschung und Definition neuer Konzepte zur Beurteilung 

der Koordination der Extremitäten, der Art des Gehens und der Aufstehvorgänge an-

hand von Signalen von am Handgelenk getragener Inertial- und Umgebungssensorik. 

Merkmale im Zeit- und Frequenzraum wurden händisch entwickelt, um daraus Support 

Vector Maschine -Modelle abzuleiten. Die Modelle beschreiben die physikalische Leis-

tungsfähigkeit einer Person in Form einer objektiven (quantitativen) Sturzrisikobewer-

tung in einem störungsanfälligen häuslichen Umfeld.  

Für erste Untersuchungszwecke wurde eine Forschungsstudie mit 28 älteren Teilneh-

mern in einem kontrollierten Umfeld durchgeführt. Darauf aufsetzend wurde eine große 

Querschnittsstudie mit einer Kohorte von 180 Probanden durchgeführt. Eine sich der 

Messwoche anschließende sechsmonatige Nachverfolgungsphase wurde zur Validie-

rung der Modelle in die Studie inkludiert. Die Ergebnisse haben einen neuen Prädiktor 

für akutes Sturzrisiko hervorgebracht. Zusätzlich konnte aufgezeigt werden, dass die 

Kenntnis der Umgebungsbedingungen relevant sind, um die menschlichen Bewegungen 

richtig bewerten zu können.  

Ein innovativer Echtzeitalgorithmus wurde entwickelt, in dem Multi-Sensor-Ansätze fu-

sioniert, sowie auf Bewegung basierende Filter integriert sind. Die Einflüsse der Hand-

Abhängigkeit auf die Leistungsfähigkeit des Algorithmus konnten im Rahmen dieser Ar-

beit untersucht werden. Die Validierung der entwickelten Modelle in allen drei Domä-

nen gegen die Grundwahrheit zeigt eine klinisch relevante Genauigkeit oder zumindest 

teilweise bessere Ergebnisse gegenüber dem Stand der Technik.  

Die Studie zeigt die Möglichkeit auf, Einschränkungen klinischer Tests zu bewältigen, so-

wie in Armbändern integrierte Sensorik sowohl für eine akute, wie auch eine konventi-

onelle Sechsmontasbewertung des Sturzrisikos verlässlich anzuwenden.  
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1 Introduction 

1.1 Motivation  

Back then, somewhere in 2004, Cuba was a beautiful country and Fidel 

Castro was only 78. He had just finished with one of his several hours 

long speeches when going down the staircase from the stage he missed 

one stair, fell forwards and broke his knee and arm. Just recently, former 

70 years old USA president George H. W. Bush, has fallen again and 

stayed hospitalized this time despite his fair condition. A fall can fairly 

end fatally. In 2013, a 71 year old co-founder of the political party “Die 

Linken”, Lothar Bisky, died after a fall in his own house. These promi-

nent examples around the world, just few of countless of them, are tar-

geting the core motivation of the thesis – falls: occurrence, source and 

finally, measures to predict them.   

What do these three famous politicians have in common? They are care-

fully guarded by numerous security agents, their medical conditions are 

probably cautiously monitored by geriatricians but yet they all managed 

to injure themselves and caused additional costs for already overloaded 

healthcare systems. A moment of negligence together with slight inco-

ordination of limbs or infinitesimally small perturbations in kinematics 

have led to the loss of balance and finally to a fall. A combination of lat-

terly mentioned motor parameters or their solely influence on one’s 

physical performance is critical to understand, in order to predict these 

situations.  

Above mentioned gentlemen, despite their active lifestyle, can be classi-

fied as elderly. Falls in this vulnerable geriatric population are everyday 

life. Real life has shown that one in every three adults aged over 65 falls 

each year (Tinetti, 1988) and fall risk increases with age (Masud, 2001). 

Falls are major cause for moderate to severe injuries with almost 10% 

of them calling for a hospitalization and immediate medical attention. 
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Furthermore, they are the fifth leading cause of death right after cardio-

vascular diseases, cancer, stroke and respiratory diseases (Dean-

drea, 2010).  

The given figures are even more astounding when considering the cur-

rent population and trends that it follows. At the moment, 21.7% of pop-

ulation in Germany is aged over 65, whereas this trend of aging will con-

tinue moving forward significantly so the predictions for 2050 estimate 

32.7% of population aged over 65 (DESA, 2013). For comparison, in 

1950 only 9.6% of population was over this threshold.  

From the economical perspective, each fall that ends with a hospitaliza-

tion costs the healthcare system € 32000 on average (Stevens, 2006). 

Additionally to these direct costs, the burden that falls, i.e. fractures, and 

corresponding rehabilitation period cause not only to affected persons 

but also to their families and surroundings should be taken into consid-

eration. Only for the geriatric population total healthcare costs in Ger-

many in 2007 were € 117.5 billion (or 47.9% of total healthcare costs) 

(Federal Office of Statistics, 2007). Although the solely fall-related fig-

ures for Germany were not publicly available, these costs in USA in 2013 

account for € 30.6 billion (CDC, 2015). 

One half of all falls are recurrent (Tinetti, 2003), which is besides the 

injury and long-term mobility constraints terrifying for the affected peo-

ple. Falls, especially recurrent ones, can additionally lead to reduced 

physical activity and consequently fear of falling (Hausdorff, 2001). Loss 

of self-confidence in own capabilities and fear of falling further cause 

depression and social isolation (Biderman, 2002). Health-related qual-

ity of life suffers significantly in these cases as well. 

The enormous figures shown above, huge social influence and wide 

spread of these worryingly devastating events are more than needed for 

a motivation for a research work on this topic. Solutions for fall preven-

tion exist and only a small piece of a puzzle is still missing. Namely, the 

number of fallers (people that have fallen), as well as the fall rate can be 

reduced significantly by applying different fall prevention strategies 
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(such as strength and balance trainings, drug modifications or environ-

ment corrections). The crucial step is the timely correct identifications 

of subjects at increased risk of falling. Developed clinical fall screening 

tools are rarely used spontaneously in hospitals and are rather just part 

of a bigger assessment process, so information about one’s risk of falling 

is mostly hidden till the point of time when it is already too late. The 

need for clinically relevant assessment of the fall risk calls for an objec-

tive continuous evaluation of one’s physical performance in personal 

home setting and in a highly unobtrusive non-stigmatized manner (i.e. 

at the wrist).         

1.2 Research questions 

Motivation summed up in the last paragraph of chapter 1.1 leads to 

three crucial research questions that will be answered within this thesis. 

When formulating these questions, state-of-the-art findings were taken 

into consideration in addition to desired user-motivated outcomes. By 

fusion of latter mentioned methods, it is possible to focus on highly rel-

evant research results, without losing the focus of the user experience, 

a subjective matter that indeed enables real-life applications and suita-

ble reliable use of the proposed novel approach.    

The research questions in the thesis deal with concepts, implementation 

and validation of models for assessment of the fall risk in geriatric pop-

ulation during activities of daily living (ADL). Recent clinical findings 

about the fall risk from the epidemiological and observational studies 

(such as epidemiological study of Rapp, 2012) identified most signifi-

cant fall risk factors in daily life. Many further studies (please refer to 

chapter 2 for more details) confirmed these findings in the controlled 

laboratory environment, but without actual translation into the home 

setting, particularly due to lack of algorithm robustness or inappropri-

ate and inadequate system configuration.      

The thesis creates and implements concepts for quantitative assessment 

of inter-limb coordination, gait and sit-to-stand transitions (STST) in 
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non-ambulatory settings and in terms of fall risk assessment (FRA) by 

using a synchronized multi-sensor approach. Thus, the first research 

question tangents existing approaches for assessment of these domains 

by challenging them in terms of the number of sensor nodes and their 

positions. More precisely, focus of the first step is on finding novel ro-

bust methods targeting these three research domains that could main-

tain high reliability and precision but with significantly reduced infor-

mation flow (i.e. sensor reduction) and in the marginal performance (i.e. 

assessment of non-recurrent movements in ADL, such as STST, at the 

wrist).  

The second question broadens the current perspective of assessment of 

one’s physical performance by means of inertial sensors. It addresses 

the environmental context as an added value to the solely assessment of 

motor functioning and examines the advantages, as well as possible lim-

itations of such approach. Investigation of possible limitations is crucial 

to understand also the possible further applications of environmental 

sensors in wearables for clinically relevant use cases, since current re-

search mostly neglected this opportunity.   

Finally, the third question focuses on fusion of the extracted quantitative 

information into models that could reliably identify subjects at risk of 

falling. The process includes an iterative selection of the best quantita-

tive parameters for each of the three mentioned domains, investigation 

of the best combination of these parameters and finally finding the 

means that would relate selected parameters to the ground truth for 

each subject. The thesis addresses habitual, commonly defined, groups 

in the FRA (please refer to chapter 3 for more information), but it also 

broadens the spectrum to acute FRA, i.e. identification of distinguished 

subjects at high risk of falling (acute fallers). This enables on-the-spot 

comparison of different groups, and it can further potentially offer clini-

cians additional tool for addressing this acute problem.             
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1.3 Research approach 

In the thesis, an abductive iterative research approach devoted to expla-

nation of incomplete hypothesis in terms of quantitative measures was 

applied. Namely, since existing theory about one’s physical performance 

in terms of the FRA reaches either to conventional clinically-based 

methods or methods relying on assessment of logical and meaningful 

points (e.g. centre of mass), there is a gap to acceptance of unconfirmed 

methods for this use case. Furthermore, it is not clear whether the same 

or similar approaches could be used in the proposed non-stigmatized 

manner.  

Thus, the set hypotheses based on the conventional findings (explained 

in the chapter 1.2) were firstly confirmed in a cross-sectional explora-

tory study within the controlled environment (explained in the chapter 

3). This step ensured an iterative evaluation and adaptation of methods 

that are mathematically described throughout the chapter 5. It is not an 

intention of this step to serve as a reference compilation of the FRA tech-

niques, however an intensive effort has been made to include a compre-

hensive overview of possible methods for novel assessment of motor 

performance and their positioning among state-of-the-art findings. 

Identified methods, i.e. quantitative parameters (features), were further 

validated on a large-scale data sets. For these purposes another inde-

pendent cross-sectional study on a large geriatric cohort (chapter 3) 

was performed. Validation of extracted features for defined groups, as 

well as definition of comprehensive models in terms of FRA was con-

ducted (chapter 6).   

Experimental results are discussed in the chapter 7. The discussion is 

focused on the limitation of implemented methods and applied efforts 

in overcoming the constraints of the proposed system design (models). 

Performance evaluation measures which affect the usability of the sys-

tem such as robustness and uniqueness are elaborated here as well. Sci-

entific contribution and conclusion are given in chapters 8 and 9, re-

spectively.        





 

 

2 Related work 

2.1 Falls in the elderly population 

Falls in the elderly population appear as a dominant hazard due to their 

high incidence and susceptibility to injuries, especially increased with 

age and frailty. They are a leading cause for disabilities in older adults, 

despite the fact that up to 40% of them could have been prevented 

(Sherrington, 2008). As previously mentioned, one in every three adults 

aged over 65 falls each years. In the literature, people that have fallen 

are often referred to as fallers (Prudham, 1981). Even more concerning 

than the number of fallers is the fall rate, i.e. number of falls per year. 

Namely, half of these fallers above 65, fall more than once per year (also 

called recurrent fallers) (Blake, 1988 and Graafmans, 1996). Further-

more, persons in residential care and nursing homes fall two to three 

times more often than community-dwelling older adults 

(Luukinen, 1994 and Milat, 2011). An overview of fall rates (number of 

falls per 100.000 population) for 5-years intervals can be seen in the 

Figure 1. 

Source: Australian Institute of Health and Welfare, 2011
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Figure 1 Fall rates in the elderly population 
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The definition of falls and their clinical relevance is a topic of many on-

going debates and varies throughout the literature. A general consensus 

about a definition of a fall is highly important as many studies fail to 

specify an operational definition, leaving room for interpretation to 

study participants and thus directly influencing the gold standard for 

the faller identification. Older people tend to describe a fall as a loss of 

balance, whereas health care professionals generally refer to events 

leading to injuries and ill health (Zecevic, 2006). In this thesis, a fall was 

defined as a non-intentional unexpected event in which one’s body 

comes to rest on the ground, floor or lower level including events oc-

curred by tripping over an obstacle or slipping due to various environ-

mental conditions (indoor, as well as outdoor) (Hauer, 2006).  

Devastating economical (rising costs in a continuously aging society), 

physical (middle to severe injuries such as hip fracture, bruises or head 

injuries) and physiological consequences (social isolation, depression, 

decline in physical activity) of falls were already addressed in the chap-

ter 1.1. Falls-related injuries account for 40% of all injury deaths. Fall 

mortality rates vary depending on the country, age and sex (e.g. in USA 

they are 36.8 per 100.000 population aged above 65). In the Figure 2 the 

mortality rates are shown in a 5-years interval for men and women. The 

projected boost fall-related problems listed in this paragraph is ex-

pected to rise up to 100% by 2030 (Kannus, 2007). 
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Figure 2 Fall mortality rates in the elderly population 
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2.2 Fall risk factors 

Terrifying current and forecasted fall-related consequences have initi-

ated numerous epidemiological studies in the past 50 years towards 

identification of most relevant risk factors for falls. More than 400 vari-

ous risk factors were found, which in a complex interaction trigger a fall. 

Diversity of these factors and their interactions illustrate very well the 

multifactorial challenge for prevention of falls. Classification of risk fac-

tors differ, but two major directions can be formed. First classifies the 

risk factors into four categories: biological, behavioural, environmental 

and socioeconomic. Second direction is simpler and splits the risk fac-

tors in only two categories: intrinsic and extrinsic. The second classifi-

cation will be further addressed in this chapter.  

2.2.1 Intrinsic risk factors 

Intrinsic risk factors are individual person-related factors that reflect 

one’s physical performance, such as age, sex, balance and gait disturb-

ances, muscle weakness, chronic diseases, cognitive disorders etc. With 

increasing age, the mentioned risk factors are accordingly getting more 

influential. Especially sensitive are the sense organs causing visual (e.g. 

by glaucoma or cataract) and hearing impairment (e.g. by natural aging 

loss) (Walther, 2008). Furthermore, adaptability of the eye to different 

luminance ratios and its accommodation capacity are decreasing leav-

ing the vision out of focus (Pierobon, 2013). Cognitive perception disor-

ders (e.g. dementia), as well as psychological diseases (e.g. fear of falling 

and depression) lead to increased fall risk. For example, a fall-induced 

fracture due to cognitive perception disorder is associated with 1.5 to 3 

times increased risk (Shaw, 2002).    

The balance, which is important for a stable body position and thus pre-

vention of falls, is diminishing with age, mainly due to a reduction in a 

musculature and limited joint mobility. Therefore, degradation of the 

muscles and muscle pain results in decreased mobility and increased 

risk of falling (Moreland, 2004). This further leads to limited joint mo-
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bility, which additionally emphasized with joint diseases, such as arthri-

tis, rheumatism and osteoarthritis, cause joint stiffness 

(Pierobon, 2013). These factors cause morbidly altered gait and gait dis-

turbances that are reflected throughout decrease in quantitative gait 

factors. Various changes in quantitative gait factors associated with in-

creased fall risk were found (such as gait speed, swing phase time vari-

ability, stride length variability) (Verghese, 2009). Not just quality of 

daily life gait, but also its amount predicts falls in older adults. For ex-

ample, it has been found that fallers walk significantly less in daily life, 

as well as duration of their gait bouts is shorter (Schooten, 2015). 

Chronic diseases, such as Parkinson’s disease (PD), diabetes mellitus, 

hypertension, multiple sclerosis and incontinence increase risk of fall-

ing. However, the most significant fall risk factor is PD, causing 6.6 times 

higher risk of falling in comparison to persons without PD (Dean-

drea, 2010). Another important risk factors are dizziness and syncope, 

having direct and extent influence on the balance (Walther, 2008). Cor-

onary heart disease, functional disorders, postural hypotension, aorta 

stasis and insulin therapy can also lead due to the loss of consciousness 

to increased fall risk (Lipsitz, 1986). For example, postural hypotension 

that occurs due to rapid blood pressure reduction during a standing up 

process (e.g. rising from a chair) can lead to dizziness or even loss of 

consciousness. Postural hypotension is characteristic for persons with 

PD or diabetes (Rubenstein, 1996).   

2.2.2 Extrinsic risk factors 

Extrinsic risk factors are related to presence of various environmental 

hazards, intake of different medications and fall-prone activities or 

movements (e.g. sport and alcohol consummation). According to (Ru-

benstein, 1996), on average 41% of falls of the community-dwelling 

older adults belong to environmental factors. Hence, 16% of recorded 

falls occur due to environmental hazards in elderly population in nurs-
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ing homes. These alarmingly high occurrences show that causes and fre-

quencies of environmental (situational) falls should be further investi-

gated.  

A study on 414 community-dwelling older adults has shown that 56% 

of falls happen outside the home (in the garden, street, footpath or 

shops) (Lord, 2007). The second most common fall site was the level 

ground in different rooms of the household. In these cases, tripping over 

a carpet, on a slippery floor or on the object lying on the ground can be 

the cause of a fall (Figure 3). A large study on 1088 participants over 71 

years was investigating location of falls (Gill, 2000). The most frequent 

falls with 21.9% happened outside home, followed by the living room 

and bedroom with 13.3% and 13.2%, respectively. Uneven ground like 

gravel, earthy ground with stones and roots or cobblestone pavement, 

as well as slippery ground due to rain, snow or ice increase the risk of 

falling outside home enormously. Contrary to the spontaneous assump-

tion that in autumn and winter due to foliage, snow or ice an increased 

risk of falling would be present, a study from (Stalenhoef, 2002) has 

shown no significant difference between the fall rate in autumn/winter 

and spring/summer periods.   

26%
56%

3%6%

6%

3%

Standing up from the chair

Outside the house

Flat ground

Shower/bathroom

Standing up from the bed

Stair climbing 

Source: Lord, 2007
 

Figure 3 Location of falls in community-dwelling older adults 
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Different physical activities can lead to falls. Although stair climbing 

does not contribute to the falls in a large scale (only 10% of falls oc-

curred at stairs), consequences due to these falls are very often fatal 

(Tinetti, 1995). A greater danger of falling is while walking downstairs 

than going upstairs (Handsaker, 2014). Getting out of the bed or stand-

ing up from a chair are threats to elderly population as well 

(Lord, 2007). More precisely, postural transfers are responsible for 41% 

of falls in the residents of nursing home (more than walking accounted 

for 36% of falls) (Rapp, 2012). 

Another important risk of falling is the influence of medications, which 

due to various side effects, such as dizziness, increased postural hypo-

tension or sedative effects, increase the fall risk. Especially good associ-

ation has been found between fall risk and medications that target cen-

tral nervous systems (such as sedatives, anti-epileptics, antidepressants 

and antipsychotics) (Deandrea, 2010). However, in a case of anti-epilep-

tics it is difficult to determine which falls are caused by disease and 

which by medications. In addition, a weak correlation between cardio-

vascular medications and increased risk of falling has been found.          

2.3 Fall prevention strategies 

Once the risk factors have been identified, preventive measures can be 

taken in order to avoid a fall. A meta-analysis of fall prevention strate-

gies performed in 159 different studies on 79.193 participants have 

shown a possible reduction of falls up to 40% (Gillespie, 2012). The pre-

vention measures, that can significantly reduce not just the number of 

fallers, but also fall rates, are most often various training programs tar-

geting balance (such as Tai Chi) and motor skills (e.g. by walking, group 

exercises or exercises at home). The most effective interventions are in-

dividually-designed training programs combining simultaneously, bal-

ance and strength trainings. 
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Since intake of medications can increase risk of falling, their dosage, in-

dications, duration of ingestion and side effects should be regularly re-

viewed and alternatives, as well as individually-designed modifications 

should be recommended, when necessary (Becker, 2011). To identify 

individual medications’ indications and side effects, a list of potential in-

adequate drugs for elderly population (PRISCUS list) together with al-

ternatives was proposed (Holt, 2010). Nevertheless, some medications 

can reduce the risk of falling (e.g. deficiency of vitamin D can be signifi-

cantly reduced by using its supplements and thus decrease the fall risk) 

(Gillespie, 2012).  

Many falls occur because a potential source of danger has been over-

looked. Therefore, visual impairments should be addressed as 

well (e.g. the removal of cataract by means of a surgical operation or ad-

justment of spectacles increasing the spatial perception) (Lord, 2007). 

Already a small modifications of footwear (e.g. using appropriate ortho-

paedic shoes) can reduce the risk of falling significantly (Balzer, 2012). 

Falls due to environmental hazards could be avoided by applying appro-

priate preventive measures, such as elimination of tripping obstacles, 

usage of non-slip carpets, sufficient lighting in individual rooms, partic-

ularly in corridors and on the stairs (Rubenstein, 1996).  

2.4 Fall risk assessment 

Main prerequisite for fall prevention strategies is an objective and reli-

able FRA to target the intervention. Objective assessment of the fall risk 

can imply crucial changes in the diverse number of fall prevention strat-

egies, thus considerably reducing the number of fallers, as well as the 

fall rate. Current state-of-the-art solutions offer no widely acceptable so-

lution. The FRA can be split into clinical (ambulatory) assessment and 

evaluation of the fall risk in ADL (non-ambulatory settings). In the fol-

lowing two sub-chapters these two approaches and latest achievements 

in the literature will be shown in details.  
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2.4.1 Ambulatory assessment 

The FRA in a clinical setting is still considered to be the gold standard. 

These fall risk screenings are often part of larger examination and do 

not happen on a regular basis. Most common assessment for elderly 

above 65 years comprises of investigation of history of falls in the last 

12 months, fear of falling and gait and balance disorders 

(Schooten, 2015). This solely questionnaire-based approach is above 

everything subjective, meaning susceptible to individual interpretation 

of falls, as well as influenced by fear of white coat in clinic and recalling 

of falls. Moreover, most often it investigates mainly intrinsic fall risk fac-

tors. Nevertheless, this subjective screening method can trigger further 

investigations towards FRA. 

In case of a positive fall risk evaluation (especially in case of at least one 

fall in the last 12 months), an additional mobility screening, as an objec-

tive FRA test, should be conducted. These FRA tests comprises either of 

series of different tools (e.g. Psychological Profile Approach (PPA) 

(Lord, 2003) or Short Physical Performance Battery (Guralnik, 1994)), 

or of simple gait and balance tests (e.g. Timed-Up-And-Go (TUG) test 

(Shumway, 2000), Berg Balance Scale (Muir, 2008), Tinetti Balance Test 

(Raiche, 2000) or 5-times-sit-to-stand test (Whitney, 2005)).  

The tests show numerous limitations, such as lack of cost-effectiveness, 

high time consumption for both, patients and professionals, or focus on 

singular aspects (e.g. time) of highly complex movements. Moreover, the 

tests have low capacity for adaption to persons with wide spectrum of 

physical performance, as well as they have poor to moderate (<75%) fall 

risk predictive values, especially for people at relatively good health 

(Hamacher, 2011).   

2.4.2 Assessment in activities of daily living 

Previously mentioned limitations of ambulatory FRA, motivated by the 

latest advantages in signal processing and sensor technology, have led 

to applications of wearable sensor-based devices in FRA. Several studies 



Related work 

15 

were performed by integrating wearable devices with inertial sensors 

in functional tests to enhance their precision (Najafi, 2002 and 

Weiss, 2010). For example, waist-attached accelerometers were used to 

detect start and end points of the STST, eliminating the observer’s re-

sponse time (Najafi, 2002). The progress in sensor technology also in-

duced translation of FRA from clinical to person’s home setting 

(non-ambulatory environment). Therefore, recent studies have tried to 

perform objective and reliable FRA in a non-ambulatory environment 

by using unobtrusive systems containing inertial sensors 

(Rispens, 2015, Schooten, 2012, Ihlen, 2015 and Brodie, 2015).  

Nowadays, wearable devices based on microelectromechanical systems 

(MEMS) measuring inertia (acceleration or angular rate) can be worn 

unobtrusively during ADL over longer periods of time, allowing reliable 

and clinically relevant assessment of fall risk. Moreover, advanced ap-

plications of MEMS (e.g. accelerometer or gyroscope) revealed differ-

ences in movement patterns between fallers and non-fallers during gait 

and sit-to-stand movements, which are invisible to human observer. 

Continuous assessment of walking quality and quantity throughout 

three or more days by waist-worn devices showed differences between 

fallers and non-fallers (Weiss, 2014). Similar findings were confirmed 

also for inertial sensors attached at the sternum (Brodie, 2015). Looking 

only at the macro perspective of the gait behavior acquired with a wear-

ables attached at the lower back, a clear difference between fallers and 

non-fallers can be seen (Del Din, 2015). One study have addressed STST 

detected by waist-worn MEMS in ADL (Iluz, 2015), showing that fea-

tures extracted from the multiple transitions recorded during daily liv-

ing apparently reflect changes associated with aging and fall risk.    

The MEMS have not only enabled continuous assessment of macro per-

spective of movement patterns in ADL, but they have also offered tools 

for capturing small perturbations in human kinematics. An application 

of a waist-attached sensor for investigation of local dynamic stability in 

over-ground walking has revealed more unstable gait patterns for par-

ticipants at higher risk of falling (Schooten, 2012). Captured significant 
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differences in small perturbations in human kinematics, have led to 

findings that phase-dependent local dynamic stability in daily life walk-

ing can identify people at increased risk of falling (Ihlen, 2015).  

Furthermore, these results were improved by combining sensor-based 

assessment with questionnaires (Schooten, 2014 and Rispens, 2015). 

However, sensor nodes in latter mentioned studies were mostly target-

ing different aspects of the gait in ADL. The focus on gait is justifiable, 

since gait parameters have been shown to be meaningful fall predictors 

(such as gait speed (Stone, 2015), step rate variability (Rispens, 2015) 

or local dynamic stability), but 41% of falls during postural transfer in 

elderly in nursing homes (Rapp, 2012) strongly suggest that more stud-

ies should address this problem in non-ambulatory environments. It is 

also reasonable to focus on singular periodical aspects of human move-

ment (such as gait), since it is easier to distinguish them from other ac-

tivities than non-recurrent movements (such as STST).  

In addition, a sensor positioned close to one’s center of mass (at lower 

back or even waist) captures more meaningful movement which is in 

direct connection with balance than sensor located at the wrist (at the 

extreme point of the body influenced by random movement). The MEMS 

at the wrist are affected by movements performed during the upper 

limb activities when the center of mass is in approximately motionless 

position (e.g. during sedentary activities such as standing, sitting or ly-

ing). Therefore, wrist bands, as the most unobtrusive and widely ac-

cepted devices for activity monitoring, have not been yet validated in 

terms of FRA in non-ambulatory environments. Moreover, this challeng-

ing position has shown low performance for activity classification (Man-

nini, 2013). However, analysis of the data acquired with wrist bands 

may reveal important information about physical performance in el-

derly during ADL that could have not been observed in clinical settings 

(e.g. different transfer strategies or walking patterns). 
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2.5 Overview of state-of-the-art limitations 

Fall prevention strategies can reduce the number of fallers, as well as 

the fall rate. The main missing prerequisite for fall prevention strategies 

is an objective, reliable and cost-effective FRA. The FRA in a clinical set-

ting is still considered to be the gold standard, but it is often time con-

suming, subjective, focused on singular aspects of highly complex daily 

life activities and unable to adopt to one’s individual needs and physical 

performance. The latest advantages in sensor technologies have enabled 

continuous objective FRA in non-ambulatory environments by means of 

tiny MEMS integrated into wearables attached to human body. Initial 

sensor-based approaches are prevailingly focused on periodical move-

ment patterns (e.g. gait) and use sensor positions close to one’s center 

of mass (e.g. sternum or lower back). These choices are stigmatized and 

obtrusive for wearing sensor nodes during longer time intervals (one or 

more weeks). Further, they do not take into consideration the environ-

mental context for the FRA (e.g. extrinsic risk factors) nor groups at high 

risk of falling (acute fallers).      

The figures in fall-related injuries, their risk factors and limitations of 

state-of-the-art elaborated in previous subchapters and briefly listed in 

the paragraph above are main motivational aspects of this thesis. There-

fore, the focus of this thesis was set on establishment of a reliable acute 

and habitual FRA in an unobtrusive setting (at home) and in highly 

non-stigmatized manner (at the wrist) based on quantitative assess-

ment of three domains of human movement targeting both, recurrent 

and non-recurrent patterns: gait, inter-limb coordination and 

sit-to-stand transitions.        



 

 

3 Clinical studies 

3.1 Data acquisition 

Data acquisition in this thesis was implemented in two basic steps. 

Firstly, a small pilot study designed as an exploratory cross-sectional 

study in a controlled environment was performed for the algorithm de-

velopment purposes. More precisely, the data from this study was used 

for the iterative process of implementation of algorithms for inter-limb 

coordination, gait and sit-to-stand transition assessment. Since main fo-

cus of the thesis lies on the ADL, it was important to authentically simu-

late real-life situations already in the early stage of the process and 

adopt algorithms accordingly. Therefore, a true value of this video-rec-

orded study was clearly visible.  

Secondly, developed algorithms were validated in terms of acute and 

6-months based FRA on a large cross-sectional study conducted in the 

participants’ home environment. Focus was set on a clinically relevant 

number of participants, continuous long-term monitoring during all 

kinds of activities and conditions, as well as on acquisition of reliable 

reference and data protection. Exact fitting of data acquisition steps in 

the overall work progress can be seen in the Figure 4. 

 

Figure 4 Procedure for implementation of reliable FRA on the wrist 
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3.1.1 Designing the pilot study 

For the algorithm development purposes, as well as for the validation 

purposes, an exploratory cross-sectional pilot study in cooperation with 

the Clinic for Geriatric Rehabilitation at Robert-Bosch-Hospital, 

Stuttgart was designed and performed. In the pilot study 28 participants 

(23 females, 5 males) between 65 and 95 years with a wide range of 

physical performance (median habitual gait speed 0.88 m/s; range 

0.25 m/s to 1.76 m/s) were recruited. Acquisition of participants’ an-

thropometric measures in the pilot study was limited to age and side of 

the dominant hand.    

The main focus of the study was simulation of home activities in a con-

trolled environment (i.e. ambulatory setting). To enable a validation on 

both, structured and unstructured data, the study was split into a super-

vised and unsupervised part. The ground plan of the study environment 

is shown in the Figure 5. In the supervised part of the protocol partici-

pants were explicitly instructed what to do, while in the unsupervised 

part no spoken instructions were given and participants could move 

freely within the setting – guided by six written notes with general in-

structions to keep the unsupervised part of the measurement protocol 

in certain limits.  

The supervised part of the protocol included walking on a straight line 

of the total length of eight meters with different paces: normal, slow and 

fast. Due to the wide range of the physical performance of participants, 

they interpreted the instructed pace in their own words. In case the par-

ticipant was using a walking aid for walking in daily life, he or she was 

using it in the pilot study as well. Further, participants were instructed 

to perform five different sit-to-stand transitions: from the bed, from the 

chairs with and without armrests by using hands and without using 

hands. If possible, the participants had to climb up and down on four 

stairs, first with the dominant hand on the handrail and then with a 

non-dominant hand on the handrail.     
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Figure 5 Ground plan of the pilot study 

The unsupervised part of the protocol included execution of activities in 

self-interpretation that are characteristic for normal daily life routine 

(sit-to-stand transitions from the chair with and without armrests, as 

well as from the armchair and chair at the table, walking, lying, reading, 

cooking activities, carrying objects to specific place, searching for plate 

and bowl in the kitchen cupboards and writing a letter). An example of 

a written instruction used in the study is given by following steps: 

 Walk from the sofa to the kitchen  locate a bottle of water and 

a glass  poor the water in the glass. 

In this instruction, no strictly defined way was given, participant could 

chose pace and timing arbitrarily and searching for the glass and bottle 

in the kitchen additionally increased the variability of movement. Im-

portant to note for later thesis development, each participant performed 

eight different sit-to-stand transitions within this study (from the bed, 

from the armchair, from the chair with and without armrests by using 

and without using hands, instructed and not instructed transition) in-

cluding supervised and unsupervised part of the protocol. The im-

portance of the unsupervised part of the protocol is in the possibility of 

testing the developed algorithms in approximately similar setting as in 
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daily life but with advantage of having a partially controlled environ-

ment, which enable detail error analysis via video recordings.   

3.1.1.1 Utilised hardware 

The participants were wearing four sensor nodes, on both wrists and 

hips (i.e. on both side of the body). This approach allows detail analysis 

of the developed algorithms from perspective of both, dominant and 

non-dominant hand. Data was wirelessly transferred from the sensor 

node to a phone using Bluetooth Low Energy (BLE). Each sensor node 

comprises of 3-axial accelerometer, gyroscope and magnetometer with 

additional environmental sensors (pressure, temperature, humidity and 

luminance). Measurement ranges for the sensors were: ± 4 g, ± 500 °/s, 

± 1000 µT, 300 - 1100 hPa, -40 - 85 °C, 0 - 100 %RH and 0 - 188000 Lux, 

respectively for sensor order mentioned in the latter sentence. The sen-

sor resolution was set to 16 bit, whereas the sampling frequency was set 

to 100 Hz (with σ = 1 Hz). 

3.1.1.2 Ground truth 

The whole study protocol was monitored with two video cameras Sam-

sung HMX-Q10TP with a video resolution SD 576/50p. The cameras 

were installed on diametrically opposite sides in respect to the moni-

tored participants and were moved by trained supervisors when needed 

in order to capture movement of all parts of the body equipped with the 

sensors and register every single step, as well as sit-to-stand transition. 

It is also important to emphasize the importance of the data protection, 

so no participants were recorded above the shoulders and all data (in-

cluding raw and processed sensor data, anthropometric measures and 

videos) was stored under randomly generated 3-digit pseudo identifi-

cation number.         

Acquired videos were used as a supplement for the detail error analysis 

as well as for video analysis of the sit-to-stand transitions and video la-

belling of activities and steps by using an in-house tool implemented in 

LabVIEW (Figure 6). Start and end of all sit-to-stand transitions and gait 

phases were labelled in the videos with a marker, which was then saved 
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as a part of the data stream with the same sampling frequency as the 

input sensor signal (frame rate of the recorded videos was up-sampled 

to the sampling frequency of the inertial signals). This enabled synchro-

nous comparison of video labels and sensor data, which yielded a better 

understanding of the motor performance during particular movements. 

The sit-to-stand transition was defined from the perspective of the 

body’s centre of mass, where beginning is depicted with the start of the 

flexion phase and end is depicted with the end of stabilization phase. In 

case when a walking phase continues directly on the transition (i.e. ab-

sence of the stabilization phase is present), first heel strike is marker of 

the end of the transition. Different types of transitions performed in the 

supervised and unsupervised study parts were labelled accordingly 

based on the video observations. Although, focus of the thesis is on de-

tection of sit-to-stand transitions from the wrist perspective, ground 

truth could not be generated in the corresponding fashion, since con-

ventional postural transition definitions predominantly relate either to 

the participant’s centre of mass (located around the fifth vertebrae in 

the lumbar spine) or to the upper part of the body.  

Gait phase was defined as a block of three or more consecutive steps 

starting with a heel strike of the first step and ending with a heel strike 

of the last step of the corresponding gait phase. Last step of the corre-

sponding gait phase was defined when a time difference (brake) be-

tween consecutive steps is longer than three seconds. In addition, aver-

age gait speed for each gait phase was calculated. The gait speed was 

used for labelling the phases into slow (0.0-0.6 m/s), normal (0.6-

1.2 m/s) and fast walking (above 1.2 m/s). Stair climbing was not de-

fined as walking, whereas turning was included in walking phases. 
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Figure 6 Comparison of the signals with the body movement in the video 

3.1.2 Designing the FRA study 

A cross-sectional FRA study that included in total 508 adults aged be-

tween 50 and 85 years was performed. In order to deliver consistent 

results with current literature findings (Schooten, 2015 and Rispens, 

2015), the work in this thesis addressed only population aged above 65 

years. The study was approved by the Ethical Committee of the Medical 

Faculty at the University Hospital of Tuebingen, Germany. The partici-

pants were recruited by a geriatric rehabilitation clinic at Rob-

ert-Bosch-Hospital and a health insurance company Bosch-Health-In-

surance in Germany. All participants gave written informed consent ac-

cording to the Declaration of Helsinki. In addition to the participant’s 

age, exclusion criteria for participation in the study were impaired cog-

nition (>10 points on the Short-Orientation-Memory-Concentration test 

(Katzman, 1983)), inability to walk and terminal diseases. Furthermore, 

13 participants aged over 65 revoke their participation in the study, 26 

participants had to be excluded due to complete sensor malfunction, 

while 2 participants haven’t returned any fall diaries back. Therefore, in 

total 180 participants satisfying defined participation conditions were 

included in the further analysis in this thesis.     
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3.1.2.1 Data acquisition protocol 

The data acquisition was performed from March 2015 till April 2016, 

including all seasons and weather conditions. Sensor data of physical ac-

tivity from each participant was recorded for one week (seven consecu-

tive days) during participant’s daily living activities. The participants 

were wearing two sensor nodes attached at the wrist and ipsilateral hip. 

The date of the first day of the measurement week was manually noted 

by the trained supervisor. While wearing the sensor system, the partic-

ipants were instructed to normally proceed with their daily obligations, 

so the recordings in extreme cases also included the vacation trips (e.g. 

skiing, camping, road trip) or flights. One week of data recording was 

chosen, since it reflects the person’s behaviour during working hours (in 

case the participant is employed) as well as during leisure time (week-

ends). On the first day of measurement the participants could arbitrarily 

choose on which side the sensors were worn (dominant or non-domi-

nant side) and continue wearing them there until the end of measure-

ment. The sensors were attached in the morning and they were worn 

during normal daily routine. The sensors’ batteries were charged over-

night. The sensors were not waterproof so the participants were in-

structed not to wear them during the contact with water. Data corre-

sponding to measurement over one day was stored in one file to ease 

the offline processing. During the measurement week the participants 

were further instructed to note for each day the times when they were 

wearing the sensor nodes.  

On the first day of a measurement week the participant’s characteristics 

were collected by a trained supervisor in the participant’s home envi-

ronment. Descriptive parameters included age, height, body mass, occu-

pation and side of the dominant hand. A large number of participants in 

the study, orientation on the user satisfaction, as well as the different 

non-ambulatory settings in which the clinical test should have been per-

formed influenced radically the choice of the tests that were imple-

mented in the study. Both, trained supervisors and participants, have 

limited amount of time and patience thus the selected tests had to be 

low time consuming but still worthwhile for the defined purposes. For 
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example, the Berg Balance Scale which has been shown as an excellent 

tool for the fall risk assessment (Muir, 2008) could not be used since its 

duration of approximately 20 minutes per participant would result in 

the end with more than 300 additional hours of assessment. Addition-

ally, some of the clinically relevant tests could not be implemented due 

to the limitations of the non-ambulatory environment (e.g. 10-meter 

walk test) or sensitivity of the questions and low user-friendly feedback 

from the previous studies (e.g. Geriatric Depression Scale, GDS).  

As a result of discussion with clinicians, the following tests were chosen 

with the best trade-off between time consumption and clinical rele-

vance: 

 Short-Orientation-Memory-Concentration (SOMC) test;  

 Habitual gait speed;  

 Number of chair rises during 30 seconds. 

The habitual gait speed was measured on a pathway no shorter than 3.5 

meters. Walking pathway was variable due to various conditions in the 

participant’s home environment (e.g. obstacles, small apartments). In 

cases when a participant used a walking aid for normal walking, the ha-

bitual gait speed was also assessed by walking with the corresponding 

walking aid. SOMC test was used for assessment of cognition. The pre-

requisites of the study were proper usage of the sensor system inde-

pendently from the supervisor’s presence and regular fulfilment of the 

fall diaries, which required certain level of cognitive functionality. The 

30-seconds chair rise test was performed either from the chair with 

chair handles or without. Moreover, the participants could arbitrarily 

use their hands for support while standing up, which was then further 

noted.  

Additionally, the participants answered a fall risk assessment question-

naire (FRAQ), investigating 18 most relevant fall risk factors identified 

in (Deandrea, 2010). The investigated factors together with their clinical 

significance on the fall risk are listed in the table below (Table 1). Risk 

factors were assessed with yes-no questions, except history of falls in 

the last 12 months and number of prescribed medications. History of 
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falls was graded with 0 for no reported falls, with 1 for one to two re-

ported falls and with 2 for more than two reported falls. For more than 

two prescribed medications the answer was graded with 1, otherwise 

with 0. Other factors depending on their presence were graded either 

with 0 or 1. Total score of the FRAQ was defined as the sum score of the 

answers. Furthermore, anthropometric measures and FRAQ were used 

to determine the Fall Risk Assessment Tool (FRAT-up) score. This score 

for the FRA was previously developed and validated in (Catellani, 2015). 

Both measures, FRAQ and FRAT-up score, were used for further com-

parison with the study results.  

Table 1 Investigated fall risk factors 

Feature Statistical significance2 95% CI1 
Living situation 0.44 1.33 (1.21-1.45) 
History of falls 0.04 3.46 (2.85-4.22) 

Fear of falling <0.01 2.51 (1.78-3.54) 

Gait problems <0.01 2.16 (1.47-3.19) 
Number of medications 0.38 1.06 (1.04-1.08) 

Urinary incontinence 0.10 1.67 (1.45-1.92) 
Pain 0.80 1.60 (1.44-1.78) 

Physical activity limitations 0.01 1.20 (1.04-1.38) 
Physical disability <0.01 2.42 (1.80-3.26) 
Diabetes Mellitus <0.01 2.04 (1.41-2.95) 

Parkinson’s Disease 0.50 1.57 (1.42-1.73) 
History of stroke 0.17 1.28 (1.09-1.50) 

Dizziness 0.56 2.84 (1.77-4.58) 
Depression 0.52 1.79 (1.51-2.13) 

Visual impairment 0.21 2.28 (1.90-2.75) 
Hearing impairment <0.01 1.86 (1.45-2.38) 

195% CI = 95% Confidence Interval; 2Significant for p < 0.05 

Starting with the first day of the measurement week, all participants 

filled out a fall diary for one year. Each day was marked either with 1 (in 

case of fall) or 0 (in case of no fall). Additionally, they were instructed to 

fill out a fall report consisting of the most important facts about the fall:  

 Place of the fall (inside – outside); 

 Activity directly before the fall; 

 Triggers for the fall; 

 Standing up after fall (yes/no; alone/only with help); 

 Consequences of the fall. 
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The fall was defined as an activity where a person non-intentionally has 

fallen in the direction of the gravitation force, including situations where 

a person hits the wall or any other object (e.g. chair, stairs handle). A 

simplified analysis of the reported fall triggers was performed, which 

yielded two main groups of fallers. In case a person reported a fall dur-

ing a fall-prone activity (sport activities, hiking) or during atypical activ-

ity for ADL (in the sea, under influence of alcoholic or other beverages 

that influence the balance), such person was not classified as a faller (de-

spite the reported fall). Falls that were caused by different medical con-

ditions (loss of balance, dizziness, blood pressure, problems with the 

cardiovascular system), during transitions (sit-to-stand, as well as 

stand-to-sit), walking (outdoor and indoor, including stairs up and stairs 

down), as well as falls caused by various different environmental condi-

tions (slippery floor, in the bath, on the ice and other different terrain 

conditions) classified the person reporting the fall as a faller. In case a 

person has reported a fall caused by fall triggers from both groups (e.g. 

fall during bike ride due to the dizziness), the corresponding person was 

classified as a faller (i.e. more relevant fall trigger has a higher priority).  

The fall diaries and reports were used as the reference method for split-

ting the participants into two groups: fallers (participants reporting one 

or more falls in the follow-up phase) and non-fallers (participants re-

porting no falls in the analysed period). Furthermore, the split was per-

formed for two different durations of the follow-up phase: one month 

and six months. Participants classified as fallers based only on the first 

month of the follow-up phase were classified as acute fallers. Due to a 

slow recruitment process an acceptable number of participants re-

quired for the first reliable reference was available only after six months 

from the start of the study (for acute fall risk assessment) or almost after 

a year (for six months follow-up phase which is conventional in the lit-

erature for the clinical fall risk assessment), previously defined FRAQ 

and FRAT-up scores were used for preliminary analysis in the mean-

time. A timeline depicting points of investigation of each clinical meas-

ure is shown in the Figure 7.  
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Figure 7 Explained fall risk assessment’s milestones 

3.1.2.2 Utilised hardware  

Both sensor nodes attached at the participant had equal characteristics.  

Physical dimensions of the sensor nodes were 56 mm width, 46 mm 

length and 15 mm height (Figure 8). Sensor nodes consisted of inertial 

3-axes sensors (accelerometer BMA280, gyroscope BMG160 and mag-

netometer BMC055), environmental sensor BME280 consisting of the 

pressure, temperature and humidity sensor and luminance sensor 

MAX44009. All sensors were produced by Bosch Sensortec GmbH, Reut-

lingen, Germany. Measurement range of each sensor is an important ba-

sis for further signal processing, but due to little previous experience 

with the wrist-worn devices, as well as further development of the pro-

ject-related tasks and applications, the measurement ranges of the iner-

tial sensors were changed two times within the study. Each time the 

measurement ranges were changed motivated by the fact that inertial 

sensors were getting to often into saturation due to the particular move-

ment events. From participants satisfying the defined exclusion criteria 

and study conditions, 95 participants had the measurement ranges of 

the sensors set to ± 4 g, ± 500 °/s and ± 1000 µT. For 23 participants the 

measurement ranges were set to ± 4 g, ± 1000 °/s and ± 1000 µT, while 

for the last 62 participants the measurement ranges were set to ± 8 g, 
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± 2000 °/s and ± 1000 µT for the accelerometer, gyroscope and magne-

tometer, respectively. Measurement range of the environmental sensors 

was consistent throughout the whole study as follows: 

300-1100 hPa, -40-85 °C, 0-100 %RH and 0-188000 Lux for the pres-

sure, temperature, relative humidity and light sensor, respectively. Bit 

resolution of the accelerometer sensor was set to 14 bit, while gyro-

scope and magnetometer sensors had a 16 bit resolution. The resolution 

of the pressure sensor was 1 Pa, temperature 0.01 °C, humidity 

0.01 %RH and light 1 Lux.  

 

Figure 8 Wrist-worn sensor node used in the study together with the phone for data acquisition 

The inertial data was sampled with 100 Hz, as this is the sampling fre-

quency that by Nyquist-Shannon theorem should be able to cover 99% 

frequency components of the human daily movement (Karanto-

nis, 2006). The environmental data was sampled with 1 Hz and later on 

in the preparation phase interpolated linearly to 100 Hz to ease the data 

analysis.     

The energy friendly processing of the acquired sensor data was enabled 

via EFM32GG395 microcontroller based on the ARM Cortex-M3 high 

performance platform. Whole process was supported with the real-time 

operating system. The sensor nodes were supplied with a rechargeable 

lithium battery (170 mAh) which lasts for approximately eight hours of 



Data acquisition 

30 

continuous data acquisition. The sensor nodes were extended with an-

other battery for the last 85 study participants, which enabled in case of 

the proper use 14 to 15 hours of continuous recording.  

Since the sensor nodes did not have external flash for storage of bigger 

data volumes, two different approaches of data acquisition were imple-

mented in the study. In the first revision, the sampled data was trans-

mitted wirelessly as a package via a BLE connection to an Android phone 

(LG G2 mini, LG Electronics, Seoul, South Korea) attached to a belt 

around the waist. BLE packages are limited to 20 bytes and thus, the in-

ertial data was sent in separate packages from the environmental data. 

Each package contained, additionally to the sampled data, the internal 

counter value at the time point when the data was sampled. The internal 

counter had to be limited to 22-bit due to the size of the BLE package, 

thus causing overflows every 1.16 hours. Arrival time of each BLE pack-

age was noted. Moreover, every minute the phone was sending a pack-

age to the sensor and it was waiting for its response. The round trip of 

that package between the phone and sensor was used later for the syn-

chronization purposes. Two major effects were crucial for a decision to 

change the data acquisition protocol: data loss and phone time resets 

(see 3.1.2.3 and 3.1.2.4 for more details). The change to the second sen-

sor system revision happened simultaneously with the second change 

of the measurement range of the inertial sensors.    

In the second sensor system revision, the sampled data was stored on a 

micro SD card (SanDisk, 16 GB) integrated into the housing. This revi-

sion enabled a storage of data without losing any information. However, 

since the sensor nodes were not equipped with the real-time clock 

(RTC), a problem of distinguishing between the particular days of meas-

urement was introduced. 

The data corresponding to one day of measurement was stored in one 

file with a predefined filename structure: 

 BXXXX_YYYY_MM_DD_sensorPosition_sensor.type. (1) 
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Here, XXXX depicted a randomly four-digit generated pseudo ID as-

signed to each participant, YYYY was the year of measurement, MM is 

the month, DD is the day, sensorPosition noted where the sensor node 

was attached (wrist or waist) and sensor depicted either 9DOF for iner-

tial sensors or ENV for environmental sensors. The file type where the 

data was saved corresponded to the sensor revision – a comma sepa-

rated value file for the sensor revision with the smart phone or a text file 

for the sensor revision with the SD card. The particular days for the sen-

sor system revision with SD card were determined based on the detec-

tion of charging of the sensor nodes, i.e. each time the sensor node was 

put to charge a new file on the SD card was generated. In order that this 

principle works, the main assumption is that participants were explic-

itly following the given instructions (i.e. sensor nodes were put to 

charge in the evening and taken from charging in the morning). Devia-

tions from these instructions brought additional noise in the evaluation 

of the measurement data that was not able to be solved successfully 

within the scope of this study.    

3.1.2.3 Data loss 

Data loss was detected when the time difference between two consecu-

tive BLE packages ti and ti+1 in an arbitrarily chosen moment i ∈ N0 

(where i depicts ascending order of the BLE package within the meas-

urement week) satisfied the following relation:   

 Sii Ttt *5.11   
(2) 

where TS is the defined sampling period. Data loss was detected on a 

monotonously increasing time vector built from the mapping of the 

phone and sensor times. This approach allows to overcome the problem 

with counter overflow, as well as data loss over longer periods of time 

where whole counter cycles might have been lost (for example due to 

the BLE connection loss). Data loss happens when an obstacle appears 

between the sensor node and the acquisition unit (phone). An obstacle 

could be either part of the participants’ environment or human body. 
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Although, one can only speculate what is the total influence of data loss 

on the final results of the study, their influence has been minimized with 

introduction of a valid flag. The valid flag denotes the parts of the signal 

that could be used for further processing. Three crucial conditions de-

fine the valid intervals of the signal: 

 An interval between two consecutively acquired BLE packages 

is shorter than 250 milliseconds; 

 An interval defined with a window size of one second has less 

than 30% data loss in total; 

 An interval satisfying the two conditions above is longer than 10 

seconds. 

Additionally, the days with total data loss higher than 80% were ex-

cluded from further processing. The thresholds defined for the validity 

of data were set empirically based on the discussion between signal pro-

cessing experts. 

3.1.2.4 Phone time resets 

The approach with mapping of the inertial counter of the sensor node 

with phone times showed also one weakness. Namely, the Data Privacy 

Concept V1.0 defines the data acquisition units without the possible 

connection to the Internet (i.e. without the GSM card). In cases when a 

back button of the phone was pressed continuously for 20 or more sec-

onds, the time of the phone is reset to the last time setup. The absence 

of the Internet connection does not allow a phone to resynchronise, thus 

influencing the data acquisition that follows after the time reset.  

The time resets in the acquired data were identified when a file name 

with the date earlier than the date of the sensor delivery to the study 

participants was detected. This affected in total 36 participants, whose 

acquired data was sorted by manually analysing and comparing the 

times when the participants were wearing the sensor nodes, phone 

time, as well as the counter values of both, inertial and environmental 

BLE packages.    
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3.1.2.5 Actual wearing times 

Additional problem that influenced both sensor system revisions was 

the total actual time of wearing the sensor nodes. This occurrence can 

be either user- or system-influenced. Although, the participants were in-

structed to wear the sensor nodes during all daily life activities, except 

during the contact with water, from the various unknown reasons the 

sensor nodes were not continuously worn. System-influenced not wear-

ing times were the consequence of improper sensor node charging. 

Namely, when the participants would let the sensor system to charge 

overnight, if the charging is not detected by the system, the data would 

be acquired also throughout the whole night. Not wearing times during 

the night were discarded by the implemented algorithms with detection 

of simple trigger events (i.e. sudden or periodical change in the acceler-

ation signal), but these events during the day should not be disregarded 

since they may have direct influence on the one’s performance (e.g. du-

ration of sleep or sitting phases with dominant inactivity periods).   

3.2 Data processing framework 

Whole process of processing and analysing the data was implemented 

in MATLAB R2013b due to its user-friendly graphical interface, valuable 

API support in statistics and signal processing as well as matrix-orien-

tated multi-thread programming. Acquisition and preprocessing of such 

large sets of acquired data could be a subject of different unexpected er-

rors since they are performed by error-prone environment. Further-

more, analysis even when done in vectorized manner, on a dataset like 

the FRA study could take multiple days. These two factors implied a 

strong motivation for the development of a unique script that would 

handle structured data sets by having a reasonable contingency of ac-

tions in case of an error or boundary conditions.  

Moreover, a lot of focus was set on reasonably time-efficient import of 

acquired data as well as on export of extracted features. Taking into ac-

count the time consumption for each step of the framework develop-

ment, it was possible to reduce the import of acquired data from two 
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minutes to below 10 seconds for 126.7 MB of data (corresponding to 

eight hours of recording).  

Since acquired data was saved as either CSV- or binary-files, its prepro-

cessing was the most time consuming process. Therefore, it was im-

portant to limit this process to a minimal number of repetitions per par-

ticipant and in further analysis use MAT-files that are based on the bi-

nary streams, which enables significantly faster import/export of data 

into MATLAB. The developed master script goes through all acquired 

data files, creates monotonously increasing time vectors, interpolates 

linearly the missing data (defined in 3.1.2.3), defines the validation flag, 

calibrates and scales acceleration and gyroscope data by using the BST 

Fusion library and finally derives the Euler angles from the quaternions. 

The preprocessed data is then stored in MAT-format for further analy-

sis. In the following steps, only a uniquely processed data was accessed, 

without taking into consideration different measurement ranges, data 

loss or other effects mentioned in 3.1.1.     

3.3 Analysis of participants characteristics 

Participants’ measures were analysed only for the FRA study, on which 

developed algorithms were validated. Collected participants’ character-

istics for this study are shown in the table below. The participants were 

split into four defined groups: non-fallers and fallers based on the 

6-months FRA, as well as non-fallers and fallers based on the acute FRA 

(corresponding to one month follow-up phase) (Table 2). All measures 

in the table are shown as the mean value with the corresponding stand-

ard deviation. Additionally, a p-value derived from the Wil-

coxon-Mann-Whitney test was applied in order to test the difference be-

tween each measure for 6-months based and acute FRA. 

In total 180 participants were included in the acute FRA. If all reported 

(prospective) falls are taken into consideration, the analysis would yield 

18 acute fallers and 162 non-fallers, whereas by the definition of a rele-

vant fall in chapter 3.1.2.1 the ratio changes to 14 acute fallers (7.8%) 
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and 166 non-fallers. Four participants were reclassified because they 

reported falls during skiing, football and work in the garden. From the 

selected 14 acute fallers, seven have been identified as recurrent fallers 

in the 6-months follow-up phase (4.2 ± 2.6 falls per recurrent acute 

faller), whereas other seven reported only one fall (i.e. in the first month 

of the follow-up phase). Interestingly to note, the prospective number of 

falls was significantly higher (p < 0.01) than the retrospective ones indi-

cating obvious problems in the fall-recalling. The prospective number of 

falls was also the only anthropometric measure that indicated the sig-

nificant difference between the acute fallers and non-fallers or more 

precisely, acute fallers have reported more than six times more prospec-

tive falls than non-fallers in the following six months, whereas there was 

no significant difference in the fall history (p = 0.17). Moreover, acute 

fallers have reported significantly more falls than 6-months based fall-

ers as well (p < 0.01). Traditional clinical tests conducted in the FRA 

study could not significantly distinguish acute fallers from non-fallers 

although the values were indicating in the previous findings in the liter-

ature (p = 0.17, p = 0.83 and p 0.33 for SOMC, habitual gait speed and 

30-seconds chair rise test, respectively).  

Within defined groups, ratio of female participants in the analysis is 

slightly higher but still negligibly different. Another inconsistency is the 

allocation of the sensor system on the dominant and non-dominant side 

during the measurement week. No further differences were found in the 

collected anthropometric measures for acute FRA (Table 2). To con-

clude, acute fallers are definitely a distinct group of participants with 

emphasized differences in the number of falls although they have shown 

some association with recurrent fallers known also in the available lit-

erature. Thus, a clear objective parameters that could reflect their motor 

performance in the ADL is definitely worth investigating and will be ad-

dressed in this work throughout the methods described in the following 

chapters.    

For the 6-months based FRA in total 145 participants were analysed. 

Thereof, 98 (67.6%) participants have reported no prospective falls in 
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the 6-months long follow-up phase, whereas 47 (32.4%) participants re-

ported one or more falls. When applying the definition of a fall (3.1.2.1), 

12 participants were reordered to the group of non-fallers (i.e. only 35 

participants or 24.4% were identified as fallers). Furthermore, 14 par-

ticipants (9.7% of the total number of participants or 40.0% of fallers) 

reported two or more falls in this phase (3.8 ± 2.3 falls with maximum 

of 10 falls). 

Again, no significant difference was found in any of the collected anthro-

pometric measures, as well as in the performed clinical tests (Table 2). 

Prospective falls were significantly higher for fallers than for non-fallers 

(p < 0.01). Moreover, as for the acute FRA the number of prospective 

falls was significantly higher than the number of reported retrospective 

falls (p < 0.01). Additionally, the 30-seconds chair rise test have yielded 

significantly higher results (p < 0.01) for this group of fallers as for the 

acute fallers (11.9 ± 3.0 and 13.5 ± 3.7 for acute and 6-months based 

fallers, respectively).            

The alternative reference measures, FRAT-up and FRAQ, have shown 

good linear correlation (Pearson’s r = 0.77, p < 0.01) for 6-months based 

FRA. The references have shown even slightly better correlation for fall-

ers than for non-fallers (r = 0.84 and r = 0.74 with p < 0.001 for fallers 

and non-fallers, respectively). On the other hand, the same measures 

have shown moderate correlation for acute FRA (Pearson’s r = 0.60, 

p < 0.01). Acute fallers were represented again with considerably better 

correlation of these measures than non-fallers (r = 0.71 and r = 0.58 

with p < 0.01 for acute fallers and non-fallers, respectively). The statis-

tical tests have not shown any significant difference between these two 

measures for any of the defined groups, although both values were 

higher for the participants at risk of falling. 

In addition to visualize the distribution of participants in different 

groups a figure below is presented (Figure 9). The figure does not in-

clude the participants that were excluded willingly from the study or 

that had to be excluded due to total sensor malfunction during the meas-

urement week. Additionally, it has to be noted that a significant number 
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of participants were not included in the analysis because they were 

younger than 65 years, but could be interesting in the future work 

where the focus can be on identifying the fall risk either during the 

fall-prone activities (as sport) or in the population between 50 and 65 

years old that due to various medical conditions affecting motor perfor-

mance are at higher risk of falling. 

Total number of 
participants: 508 

After applied 
exclusion criteria1: 

221

Participants with 
1 or more 

returned fall 
diaries: 180

Fallers: 
14  

Non-
fallers: 

166

Recurrent 
fallers: 7

Fallers: 
35 

Non-
fallers: 

110

Recurrent 
fallers: 14Participants with 

6 or more 
returned fall 
diaries: 145

After reduction 
for study 

conditions2: 180

35 fallers

14 acute fallers

7 recurrent 
fallers

14 recurrent 
fallers

47 participants reported falls

1Age, cognition, terminal disease, inability to walk
2Revoked participation, sensor malfunction, no diaries returned  

Figure 9 Distribution of participants in defined groups 

      



 

 

Table 2 Participants’ characteristics 

 Acute FRA 6-months FRA 

Characteristic All Non-fallers Acute fallers p-values All Non-fallers Fallers p-values 

N 180 166 14 - 145 110 35 - 
Female, [%] 57.5 56.8 61.1 - 61.5 55.1 65.9 - 

Sensor worn on 
dominant hand, [%] 

49.4 48.7 55.6  - 46.9 44.9 51.1 - 

Age, [years] 73.2±5.7 73.1±5.7 73.5±5.0 0.78 72.6±5.5 72.7±5.8 72.4±5.0 0.96 
Height, [cm] 169.3±8.7 169.6±8.8 166.4±8.0 0.44 169.0±8.9 169.7±9.2 167.6±8.3 0.65 
Weight, [kg] 73.7±13.8 73.7±14.0 73.9±11.9 0.83 73.6±14.4 73.4±13.7 73.8±15.9 0.91 

1BMI, [kg/m2] 25.6±3.9 25.5±3.9 26.6±3.3 0.44 25.6±4.1 25.4±4.0 26.1±4.2 0.91 
2SOMC [0-28] 3.0±3.2 2.8±3.1 4.7±3.7 0.17 2.9±3.1 2.7±3.0 3.2±3.2 0.96 

Habitual gait speed, 
[m/s] 

1.1±0.2 1.1±0.2 1.0±0.3 0.83 1.1±0.2 1.1±0.2 1.1±0.2 0.65 

30 sec chair rise 
test, [n] 

13.2±3.4 13.3±3.4 11.9±3.0 0.33 13.4±3.5 13.4±3.4 13.5±3.7 0.65 

3FRAQ 3.5±2.7 3.4±2.5 4.3±3.5 0.63 3.4±2.4 3.3±2.4 3.5±2.6 0.96 
4FRAT-up 0.3±0.1 0.3±0.1 0.3±0.1 0.38 0.3±0.1 0.3±0.1 0.3±0.1 0.72 

Retrospective falls 0.3±0.5 0.3±0.4 0.5±0.5 0.17 0.3±0.4 0.2±0.4 0.3±0.5 0.65 
Prospective falls 0.8±1.8 0.5±1.5 3.3±2.6 <0.01 0.8±1.9 0.3±1.7 2.1±2.0 <0.01 

1BMI = Body Mass Index; 2SOMC = Short-Orientation-Memory-Concentration test; 3FRAQ = Fall Risk Assessment Questionnaire; 
4Fall Risk Assessment Tool 



 

 

4 Preprocessing framework 

Data acquired in clinical studies described in the chapter 3 was, in addi-

tion to conventional processing techniques (chapter 3.2), submitted to 

the process of wrist and waist sensor synchronization needed for the 

clock-precise inter-limb coordination assessment. A novel approach for 

clock synchronization of physically distant sensor nodes that cannot 

communicate with each other was described in this chapter. The sensor 

synchronization together with the video analysis of STST and transfer 

techniques (particularly from the wrist perspective) performed in the 

pilot study (chapter 3.1.1) compose a preprocessing framework for the 

algorithm development. The importance of these two steps is providing 

a solid evidence-based basis for algorithm development for STST detec-

tion in ADL, as well as support in a synchronized enhanced sensor-based 

approach for inter-limb coordination.    

4.1 Clock synchronization of physically distant 
sensors 

4.1.1 Implementation 

In both studies, pilot and FRA, the human movement in terms of the FRA 

was observed with two physically distant sensor nodes, attached on the 

waist and wrist. As it was previously mentioned, the sensor nodes were 

not equipped with RTC or any other conventional method for data syn-

chronization so alternative ways for precise clock synchronization of 

waist and wrist sensor data, especially acquired with sensor system re-

vision equipped with the SD card, had to be found. The revision with SD 

card was even more critical since acquisition of data from utilised sen-

sor nodes was started independently, whereas in the revision with a 

phone the start of acquisition was triggered by a start BLE package. 

More precisely, in the revision with SD card not even the starting mo-
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ment for both sensor nodes was unique. End points in all revisions dif-

fered since they were depending on the sensor batteries’ duration. In 

the thesis, the precise clock synchronization of waist and wrist data sets 

is critical for the inter-limb coordination assessment where a time delay 

between characteristic points in the arm swings and heel strikes was 

measured. 

A method for synchronization of physically distant sensor nodes that 

cannot communicate with each other, nor with other devices or net-

works, was suggested in previous studies (O’Connor, 2013). The sensors 

were synchronized based on the correlation of the magnitude of the 

magnetometer signal, since the magnetic field within specific radius can 

be approximated as a constant. Although this method can be used for 

synchronization of sensor nodes that are distant up to one kilometre, in 

the environments with strong magnetic disturbances (e.g. caused by 

widely present electrical devices) the signal to noise ratio is significantly 

lower.  
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Figure 10 The 3-D plots of the magnetometer data acquired during eight hours of ADL  
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The effects of magnetic disturbances on the body-worn sensor nodes 

equipped with the magnetometer sensors can be seen in the Figure 10. 

The figure shows a three-dimensional plot of the three-axis magnetom-

eter signals acquired at the waist and wrist during eight hours of con-

tinuous recording. In an ideal case the centre of these two signals should 

be in the centre of the coordinate system, while the signal samples 

should depict the sphere with constant radius, equal to the strength of 

the magnetic field (which varies between 25 and 70 µT depending on 

the geographical position). Moreover, the centre of each sphere is not 

just displaced in space with respect to the centre of the coordination 

system but they are also displaced with respect to each other indicating 

different sensor offsets due to different intensities of magnetic disturb-

ances. Additional problem that was identified was high variability of the 

magnetometer magnitude caused by the sensor movement (e.g. in this 

particular use case when the sensors were attached on the body), as it 

can be seen in the figure below (Figure 11). Worth mentioning, despite 

temperature compensation of the magnetometer signal, its performance 

was dissatisfying for precise clock synchronization.  
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Data acquired from the waist magnetometer sensor during normal daily activities
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Data acquired from the wrist magnetometer sensor during normal daily activities
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Figure 11 Variability of the magnitude of the magnetometer signal within a day of recording 

Therefore, a strong motivation for an alternative approach for precise 

clock synchronization of two (or even more as in the case of the pilot 

study) physically distant sensor nodes attached at the human body was 
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identified. Pressure signals were considered for this purpose for multi-

ple reasons. Firstly, pressure signals were temperature-compensated 

yielding small or no offset even during long-term measurements (e.g. 

during whole day of measurement). Secondly, the sensor placement 

spots on the human body were from the vertical perspective relatively 

close (up to one meter) and more importantly fixed so the offset in the 

pressure signals can be easily removed. Lastly, pressure signal was not 

affected by the human movement except in cases when a higher vertical 

differentiation was present, but even then the change was observed syn-

chronously in all sensor nodes.  

The proposed method can be split in the following six steps: 

1. Two temperature-compensated pressure signals 𝑝1,𝑟𝑎𝑤 and 

𝑝2,𝑟𝑎𝑤  are acquired from two sensor nodes with a sampling fre-

quency of 1 Hz and then later on up-sampled, as it is currently 

done in both data collection studies described in chapter 3.1. Al-

ternatively, they can be immediately acquired with a sampling 

frequency up to 100 Hz allowing signal alignment with resolu-

tion up to 10 milliseconds. The method is limited to body-worn 

sensors (human or animal) or in more general case on the de-

vices that are with full body volume in the similar working (envi-

ronmental) conditions. This means, all the sensor nodes 

equipped with the pressure sensors should be placed in the same 

room or in the environment with maximal vertical distance be-

tween sensor nodes (systems) of 10 meters. Additional specifica-

tion is set here on the minimum time of the data acquisition. For 

the reliable sensor node synchronization the acquisition of the 

pressure signals should be no shorter than five minutes (equal to 

300 samples at sampling frequency of 1 Hz or 30000 samples at 

sampling frequency of 100 Hz). Temperature-compensated pres-

sure signals 𝑝𝑖,𝑟𝑎𝑤  contain measured pressure component 𝑝𝑖,𝑖𝑑𝑒𝑎𝑙  

multiplied by the sensor sensitivity 𝑆𝑖  (for simplification in fur-
ther text taken as 𝑆𝑖 = 1), sensor offset 𝑝𝑖,𝑜𝑓𝑓𝑠𝑒𝑡  and noise 𝑛𝑖: 

 ioffsetiidealiirawi nppSp  ,,, , (3) 
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2. The acquired pressure signals should be up-sampled (interpo-

lated) to the same sampling frequency of 100 Hz. This step also 

resolves a problem of possible data loss that can occur in cases of 

wireless data transmission or due to other sensor node errors. 

For the up-sampling process a linear interpolation was proposed 

although other methods can be used as well (e.g. polynomial in-

terpolation or nearest neighbour method). 

3. Since the air pressure changes with the height, to enable synchro-

nization of the sensor nodes at different heights, the offset and 

influence of white (Gaussian) noise were removed (i.e. reduced) 

from (3) by the following equation: 

    Nkippp krawikrawikmeasuredi ,...2,1,2,1,,,,,,,  , (4) 

where N is the signal block length in samples, index i depicts par-
ticular pressure signal, while 𝑝𝑖,𝑟𝑎𝑤̅̅ ̅̅ ̅̅ ̅ is the mean raw pressure 

value within defined signal block. 

4. The cross-correlation signal Acorr[n] between the two discrete 

pressure signals is calculated as a function of delay:  

      





m

measuredmeasured nmpmpnAcorr ,2,1 . (5) 

5. The delay (time displacement) L between these two signal is de-

fined as a global maximum of the cross-correlation signal 

Acorr[n]: 

   nAcorrL max . (6) 

6. Signals are aligned with respect to each other for the derived sig-

nal delay L. 

The improvement that the proposed method delivers is visible in the 

figure below (Figure 12). The figure shows the cross-correlation signal 

of two magnetometer signals (blue line) and two pressure signals (red 

line) acquired during eight hours of continuous recording of daily life 

routine of an elderly person. The sensor nodes were attached on the 

wrist and waist. The significance in the global maximum of the 

cross-correlated pressure signals with respect to the global maximum 

of the cross-correlated magnetometer signals is clearly visible.  
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Figure 12 Cross-correlation based on the magnetometer and pressure signals  

In comparison to other synchronization methods, the proposed method 

enables cheaper systems (no need for complex network synchroniza-

tion or energy-consuming RTC), which is crucial especially for the wear-

ables market. In addition to that it allows accurate synchronization 

(with resolution up to 10 milliseconds) which does not depend on the 

movement of the sensor (i.e. body where the sensor is attached) and 

magnetic disturbances. Moreover, to the best of the author’s knowledge, 

this is the first method which uses pressure sensors for the clock syn-

chronization. The method is suitable for both, real time synchronization 

(with a delay of minimum needed signal length) as well as for the offline 

synchronization of different sensor signals acquired with two or more 

physically distant sensor nodes. 

4.1.2 Possible use cases  

The proposed method is an important feature for the inter-limb coordi-

nation assessment where outputs of two physically distant sensor nodes 
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(one at the waist and one at the wrist) had to be synchronized in order 

to enable precise and reliable estimation of the time delays between arm 

swings and corresponding heel strikes. Furthermore, the method can be 

also used in numerous other medical and sport applications where the 

need for synchronous sensor approach is needed. Tracking of one’s 

physical activity with multiple different sensors in ADL is one example. 

Often a disease progression (e.g. for neurodegenerative diseases) 

should be reliably monitored during longer time periods in order to de-

termine effects of various drug treatments or apply additional interven-

tions (Holford, 2006 & Ilg, 2009). Clinical assessments that currently 

rely on wireless network synchronization or synchronization over BLE 

(Mancini, 2016) are affected with disturbances in wireless connection, 

high network costs or complicated system configurations. Therefore the 

proposed method seems like a reasonable alternative choice.  

Another intrinsic properties of wireless sensor networks such as limited 

resources of energy, storage, computational power and bandwidth com-

bined with potentially high density of sensor nodes emphasize the ad-

vantages of the proposed approach above traditional synchronization 

methods. Synchronized sensor approach can also be potentially applied 

in studies on animal behaviour and movement. For example, an applica-

tion for monitoring wildlife passages as suggested in (Gar-

cia-Sanchez, 2010) could be further improved with the proposed ap-

proach since it can significantly prologue the sensor life time. Accurate 

time synchronization of the sensor nodes that assumes continuously 

connected nodes, as in the example of the wild rat movement observa-

tion (Landsiedel, 2006), can be easily improved with this method since 

no physical connection nor equal active time of all sensor nodes in-

cluded in the network is needed. As already mentioned before, the ap-

plication of this method can be further extended in the heavy industry 

and transportation where a lot of extrinsic disturbances are present. 

Even the conditions with high temperature changes are applicable since 

the pressure signals are temperature-compensated.    
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4.2 Video analysis 

To support the idea of the implementation of the transition detection 

algorithm based on the wrist-acquired movement signals, a video anal-

ysis of the transitions recorded in the pilot study explained in 3.1.1 was 

performed. From the whole pilot study, 72 transitions (one third of all 

performed transitions) were randomly selected and analysed inde-

pendently by the author of this text and another blind peer reviewer. 

Randomly selected transitions covered 12 different participants, from 

which seven were classified as non-fallers and five were classified as 

fallers. Recorded videos were analysed by using an in-house tool imple-

mented in LabVIEW, which enables video frame-wise analysis. Results 

from both reviewers were compared and the differences were discussed 

in the meeting that followed the next day in order to meet the final de-

cision.   

All eight different types of transitions performed in the pilot study were 

analysed. For each transition five different parameters were analysed: 

 Existence of the hand movement prior to the transition; 

 Existence of the hand movement posterior to the transition; 

 Usage of hands for support during transition; 

 Existence of the rotation in the wrist during transition; 

 Duration of the rotation in the wrist. 

Although there is still no general consensus about the definition of STST, 

particularly in the unsupervised non-ambulatory environment, clini-

cally every STST can be split into four main phases (Schenkman, 1990):  

 Flexion (leaning forward); 

 Momentum-transfer (seat-off); 

 Extension (returning to upright position); 

 Stabilization phase. 

The transitions described by this definition are rather rare in the home 

environment, mainly because they are often followed by a walking 

phase. As suggested in (Iluz, 2015), most common transitions in normal 
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daily routine are sit-to-walk (STW) transitions, where walking contin-

ues directly after the extension phase, skipping the stabilization phase. 

In these cases the initialization of the first step takes place at the same 

time when centre of mass reaches the highest vertical point in the tran-

sition during extension. This movement requires very good coupling of 

both, upper and lower limbs. Weaker inter-limb coordination is charac-

teristic for the elderly population at high risk of falling (Pozaic, 2015), 

thus these STW transitions are interesting for investigation in terms of 

FRA. The hereby exposed conventional definition of STST was used in 

the video analysis.   

Transition duration (i.e. its starting and ending points) were defined 

from the perspective of one’s centre of mass as explained in 3.1.1.2. Ex-

istence of the hand movement prior and posterior to the transition was 

graded positively when a movement unrelated to the corresponding 

transition happened within two seconds before the start of the flexion 

or after the end of the stabilization phase (i.e. with the first heel strike 

for STW). The results of the video analysis have shown that prior hand 

movements happened in 26.4% of transitions whereas posterior hand 

movements were present in 76.4% of transitions. In 22.2% of transi-

tions both, prior and posterior hand movements were present. Prior 

hand movements mostly included repositioning of the body for the 

transfer or taking a swing for standing up, while posterior hand move-

ments included broad spectrum of different activities (e.g. reaching for 

something, random arm swings, holding the balance, carrying or holding 

something in hands, starting directly to walk etc.). The analysis showed 

that fallers contributed to results for prior hand movements signifi-

cantly more (p < 0.01) than non-fallers (i.e. prior hand movement was 

detected in 40.0% of performed transitions by fallers versus 16.7% by 

non-fallers). This suggests that triggers for prior hand movements 

should be looked for in the root causes for increased risk of falling. Con-

trary to prior hand movement, posterior hand movement did not reveal 

any significant difference between the groups. Fallers performed poste-

rior hand movements in 80.0% of transitions, whereas non-fallers in 
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73.8%. Nevertheless, the exact reason for this behaviour remains un-

clear within the scope of this thesis, but it is definitely worth investigat-

ing in a prospective study.    
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Figure 13 Occurrence of the specific empirically observed movement patterns in transitions 

Despite the fact that participants in the study were explicitly instructed 

to use their hands for support during the transition in only two cases 

(25.0% of all transitions), video revealed that hands were used as a sup-

port during standing up in 86.1% of transitions. Participants were sup-

porting themselves using armrests, thigh, chair, table or their personal 

walking aid (walking stick, walker or crutches). Fallers used their hands 

for support more frequent than non-fallers (90.0% versus 83.3%), 

which correlates with the previous findings in the literature regarding 

severe lower limb weakness and correspondingly adopted transfer 

techniques (Dolecka, 2015). Use of hands for support while standing up, 

especially in a population at higher risk of falling, indicates the need for 

further analysis of the standardized clinical test for fall risk assessment, 

such as 5-times-sit-to-stand (Buatois, 2008). Although this test shows 

good discrimination abilities in terms of the fall risk, it disregards the 

influence of the upper limbs in the overall performance.  

During the transition, a rotation in the wrist that follows the movement 

of the centre of mass was present in 55.6% of cases. The rotation in the 

wrist was detected when the relative change around one of the axes of 
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the local coordination system of the wrist sensor exceeded 80°. Moreo-

ver, this rotation occurred around AP or VT body axis. Often a combina-

tion of these two rotations occurred. Further analysis has shown that 

from the temporal perspective, rotation in the wrist covers on average 

81.3% of the actual corresponding transition (Figure 13).  

Although fallers performed significantly slower transitions than the 

non-fallers (p < 0.01), which corresponds to previous literature findings 

(Zijlstra, 2014), no difference was found in the ration between duration 

wrist rotation and total transition (p = 0.67) for these two groups (Fig-

ure 14). These findings strongly support the thesis of possible imple-

mentation of the algorithm for the detection of sit-to-stand transition on 

the wrist, despite the distance from the centre of mass. Moreover, even 

slower transitions characteristic for the population at high risk of falling 

are well covered with a rotation in the wrist, thus enabling a reliable 

estimation. 
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Figure 14 Ratio of the wrist rotation while standing up relative to the total STST duration



 

 

5 Algorithm development 

The main focus of the thesis is algorithm development for assessment of 

the three main motor aspects of human movement: gait, inter-limb co-

ordination and postural transfer. Postural stability, although very im-

portant for one’s physical performance, and following that, for the as-

sessment of risk of falling, was out of scope in the thesis. Multiple rea-

sons justify this decision: prevailing number of falls happens during gait 

and transfer (Rapp, 2012) for which a good inter-limb coordination is 

necessary, clinical test that assess only gait can acceptably discriminate 

fallers from non-fallers (Barry, 2014), whereas assessment of balance 

(i.e. posture stability) far away from the centre of mass (at the wrist) has 

very little logical sense when focusing on the clinically relevant inter-

pretations of results.  

The following chapter describes different approaches for gait, inter-limb 

coordination and transfer assessment: from perspective of one sensor 

or by using the combination of sensors. While inter-limb coordination 

was assessed by combination of different time-series features targeting 

pace and asymmetry of one’s movement, gait analysis was assessed by 

various non-linear measures (chapter 5.2). Inter-limb coordination as-

sessment, divided into lower-limb and upper- to lower-limb coordina-

tion is described in the chapter 5.1. Additionally, enormous focus was 

given to analysis of the sit-to-stand movements. The transfer movement 

requires good coupling of both, upper and lower limbs, thus perfectly 

reflecting the inter-limb coordination assessment. The sit-to-stand tran-

sition assessment can be divided into sit-to-stand transition detection 

(5.3.1) and quantitative assessment of this movement (5.3.2). Most im-

portantly, it is focused only on the wrist-attached sensor. Quantitative 

assessment of transitions was firstly addressed with the method that 

was translated directly from the waist-attached sensor (5.3.1.1) esti-

mating their duration as a good fall predictor. Lastly, the assessment 

was improved with numerous features (5.3.2.1 and 5.3.2.2), including 
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the novel approach based on the amount of the applied support while 

standing up (5.3.2.3). Summary of these steps can be seen in Figure 15. 

At the end of this chapter, models based on the support vector machine 

incorporating extracted time and frequency domain features were de-

rived (chapter 5.4). The models were describing the non-linear relation-

ship between acute fallers and non-fallers, as well as between 6-months 

based fallers and non-fallers.   

 

Figure 15 General approach in the algorithm development process 

5.1 Inter-limb coordination assessment  

The algorithm for the inter-limb coordination assessment comprises of 

the lower-limb and upper- to lower-limb coordination assessment. 

Lower-limb coordination assessment was performed only with the 

waist-attached sensor node, while upper- to lower-limb coordination 

was performed with the whole sensor system (waist and wrist sensor 

nodes). The flowchart of this algorithm is shown in the figure (Figure 

16). In the first step the preprocessed synchronized wrist and waist ac-

quired data is taken through the step and arm swing detectors after 

which the bout selection process started. Only selected gait bouts were 

used for the coordination assessment. As the final result, five features 

(step time variability, swing phase time variability, inter-limb coordina-

tion index, ipsilateral coordination index and contralateral coordination 

index) were chosen for the quantitative assessment of the inter-limb co-

ordination.  



 

 

 

 

Figure 16 Inter-limb coordination assessment flowchart



 

 

5.1.1 Step detection 

Step detection topic has been of interest for researchers and engineers 

for many years. Despite that, an optimal solution for the elderly popula-

tion with a wide range of physical performance, as in the FRA study, has 

not been found yet. The most common trade-off is between the compu-

tational power (crucial for embedded systems) and adaptability (crucial 

for the elderly population). Furthermore, detection of steps using only a 

wrist-worn devices has shown in previous studies a poor consistence 

with the results from the waist in both, laboratory controlled environ-

ment and free-living conditions (Tudor-Locke, 2015). For the clinically 

relevant results that could lead to meaningful interpretation of the en-

closed results, a reliable step detector has to be developed.   

An analysis of three different algorithms (Pan-Tomkins, template 

matching method and peak detection based on combined dual-axial sig-

nals) in (Pan, 1985) has shown that peak detection algorithm provides 

the best performance and it can be easily written in the fixed-point 

arithmetic. Nevertheless, fluctuations in the signal can still yield with 

false detected steps, while self-adaptability is limited making recogni-

tion of variable walking intensities characteristic for the elderly popula-

tion difficult. Thus, the need for a step detector with higher adaptability 

is still well expressed.  

Step detector used in this study was implemented by using the Euclid-

ean norm of the three-axial acceleration signal. To increase its adapta-

bility, detection of steps was based on the consecutive detection of local 

maxima and minima points within defined time frame of the signal. Lo-

cal maxima was detected when the signal was above the 50% of the sig-

nal dynamics, while local minima was detected in the time frame when 

the signal is below 50% of the signal dynamics (depicted with corre-

sponding envelopes). The local maximum for the waist-worn device de-

picts the moment in the gait cycle that corresponds to the heel strike. 

This basic algorithm’s principle was taken from (Pasolini, 2007). Since 

a single step can be characterized by several close peaks, there is a 
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mechanism that bans maxima for a certain time after maximum was 

found. The ban time is derived by the maximum step frequency that 

could be detected. Maximum step frequency was set empirically to 3 Hz, 

which enables detection of 3 steps/s for the waist-worn sensor or, tak-

ing into account average step length of 0.8 m, maximum detectable gait 

speed of 2.4 m/s (Peel, 2012). Additionally, derived minimum and max-

imum envelope of the whole signal were weighted by the delta-factor. 

For optimization purposes, the update of the envelope was empirically 

set to the decreased frequency of the input signal for factor four. The 

delta-factor defines the minimum needed distance between detected lo-

cal maxima and minima after which they are considered as a part of the 

step. Since delta factor is dynamically shaping the amplitude of the sig-

nal envelope, it assures additional high adaptability to different gait in-

tensities, as well as it increases algorithm’s precision. 

 

Figure 17 Step detection principle 

Furthermore, high performance of the implemented step detector is 

based upon the definition of a walking flag (in addition to the validation 

flag defined in the chapter 3.1.2.3). Walking flag is set once the step de-

tector’s algorithm has detected three or more consecutive steps within 
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defined maximum time frame. Steps are defined as consecutive if the 

maximum time frame between them is lower than maximum allowed 

step duration set empirically to two second. As support for the definition 

of this constant, findings in (Hollman, 2011) can be used where it has 

been shown that average step duration in elderly population is 1.7 sec-

onds for men and 1.9 seconds for women. Flow of the step detection al-

gorithm explained in this paragraph can be followed also in the picture 

above (Figure 17). Whole processing in the step detector was based on 

the sliding window (sample-based processing), thus for the high perfor-

mance it was implemented in C++ and then further used as a MEX-file in 

the MATLAB framework (3.2).  

5.1.2 Gait bouts 

A gait bout is defined as the time between start and end of walking. Start 

of walking is depicted with a rising edge on the walking flag (i.e. with at 

least three consecutively detected steps), while end of walking is de-

picted with a falling edge on the walking flag (i.e. no steps detected for 

maximum step duration time).  

Walking in a non-ambulatory environment is often intersected by dif-

ferent other activities (e.g. standing or posture transfer). Previous study 

focused on analysis of human gait bout length in the daily life activities 

have shown that 60% of all gait bouts lasted 30 seconds or less (Oren-

durff, 2008). More precisely, 40% of all walking bouts were less than 12 

steps in a row, and 75% were below 40 steps in a row. Eight weeks of 

remote monitoring of elderly adults has shown that step time variability 

follows a log-normal distribution, while its mode is significantly lower 

in non-fallers than in fallers (Brodie, 2015). Although, 50% of exposure 

to walk-related falls resulted from gait bouts shorter than 13.1 seconds, 

dropping the threshold for a gait bouts below six steps increases false 

positive errors. Proposal by (Brodie, 2015) was on analysis of gait qual-

ity on gait bouts of at least eight consecutive steps, offering a steady bal-

ance between number of gait bouts and low false positive error. Unfor-

tunately, general consensus about the gait bout length despite these 
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findings has not been met yet. In studies from the Dutch group 

(Schooten, 2015) gait bouts longer than 10 seconds for analysis of the 

gait quality in terms of the fall risk assessment were used. On the other 

hand, research group in (Punt, 2015) analysed gait bouts above 30 sec-

onds, whereas (Ihlen, 2015) focused on those above 60 seconds. 

Motivated by the fact of prevailing small number of gait bouts longer 

than 30 seconds for elderly population, especially for those at risk of 

falling, further analysis of the inter-limb coordination was performed on 

gait bouts with length between 10 and 100 seconds. Upper threshold for 

the length of the gait bouts was defined in order to make the comparison 

between different lengths more consistent as proposed in (Bro-

die, 2015).  

When analysing gait bouts from the ADL, one has to take into account a 

possible influence of different living conditions (house versus apart-

ment), different walks indoors (uphill, downhill), as well as variability 

of different weather conditions (sun, rain, snow). For now, all these gait 

bouts were analysed equally.  

5.1.3 Local to absolute orientation (Euler angles) 

Inertial sensors (accelerometer, gyroscope and magnetometer) used in 

this study provide raw data in three perpendicular axes of their local 

coordination system. A 4-D vector of the inertial sensor data can be de-

scribed as: 

  ZYXs  0 , (7) 

  ZYXa aaas 0 , (8) 

for the gyroscope and accelerometer data, respectively. In order to de-

termine the absolute orientation of attached sensor nodes in the Earth’s 

geodetic system, a transformation of raw acceleration data using 

well-known Euler angles was implemented. Namely, the relative change 

of the geodetic coordination system to the sensor system in a moment ∆t 
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can be described as the quaternion product of the normalised sensor 

system and gyroscope vector (Madgwick, 2011): 

 sqq ttt  00 2

1
 (9) 

where 𝑞𝑡0 is an initial guess of the quaternion vector [𝑞1
𝑞2 𝑞3 𝑞4]. 

An error of estimation corrected by the step-size µ is calculated based 

on the gradient-descent algorithm as: 

 
f

f
sqq ttt




 00 2

1
 (10) 

where ∇𝑓 is a change of the object function f defined as quaternion prod-

uct of the initial normalized guess �̂�𝑡0, global orientation of the sensor  �̂� 

and normalized measured acceleration values 𝑠𝑎: 

 asqdqf  ˆˆ*ˆ . (11) 

The change of the object function is defined with its Jacobian  
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via quaternions: 
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Finally, solving (10) with (13), the change of the quaternion values 

based on the inertial sensor data can be described with: 

 
fJ
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. (14) 

Furthermore, Euler angles (yaw ψ, pitch θ and roll φ) are then derived 

from quaternions as (Madgwick, 2012): 
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. (15) 

The Euler angles describe the orientation of the sensor’s local system in 

relation to the geodetic coordination system. Interpretation of these an-

gles is shown in the figure below. The yaw angle describes the orienta-

tion around the vertical global axis (X axis), roll is the angle around the 

horizontal axis (Y axis), while pitch angle is the angle from the XY plane.  

The relation between geodetic coordination system and local system 

values measured by the attached sensor system is described with a 

Yaw-Pitch-Roll angle rotation matrix MYPR defined by standard conven-

tion’s (“x-convention”) rotation order: 

 




00

1

tYPRt aMa , 
(16) 

where 𝑎𝑡0́  is one sensor sample at moment t0, 𝑎𝑡0  is the corresponding 

sample in the geodetic coordination system and 𝑀𝑌𝑃𝑅
−1 is the inverse of 

the rotation matrix. MYPR is defined as: 
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Although the extended derivation of quaternion from the inertial sen-

sors is described also using the magnetometer sensor, only the simpli-

fied version with acceleration and gyroscope was used since empirically 

(chapter 4.1) it has been shown that magnetometer sensor is influenced 

significantly by the magnetic disturbances in the non-ambulatory envi-

ronment of participants (e.g. from the mobile phone) and thus applica-

tion without it can imply more consistent results than the application 

with it. 
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5.1.4 Gait speed estimation 

Once the acceleration in global coordination system was calculated, it 

was possible to focus on determination of the real horizontal gait speed 

of the monitored participant. Only the horizontal acceleration was ex-

tracted for these purposes. The raw accelerometer output can be mod-

elled as at: 

 adgt naaa   (18) 

where ag is the gravitational vector, ad is the acceleration disturbance 

and na is the white (Gaussian) noise of the accelerometer. In order to 

remove tilt (ag) from the acceleration signal, a following filter proposed 

in (Moe-Nilssen, 2002) was applied: 

 
))(cos(arcsin

,

a

at

filtt
x

xa
a k

k


  (19) 

where xa is horizontal acceleration signal defined for N number of sam-

ples as: 

 𝑥𝑎 = [𝑎𝑡0 …𝑎𝑡𝑘 …𝑎𝑡𝑁]. (20) 

The 𝑎𝑡𝑘  depicts the sample of the horizontal acceleration in moment k, 

while 𝑎𝑡𝑘,𝑓𝑖𝑙𝑡
  is filtered sample in the same corresponding moment. Sub-

tractor 𝑥𝑎̅̅ ̅ in (18) is a mean value of the horizontal acceleration for the 

defined sliding window of length N. Additionally, to reduce the influence 

of the high frequency noise components in na, the signal was further fil-

tered with a low pass FIR filter with a rectangular impulse response (i.e. 

moving average filter) defined as: 
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where M was empirically set to 51, defining a 50th order FIR filter.  

Filtered acceleration signal was then integrated on the full length (∆𝑡𝑥) 

of the gait bout deriving the velocity signal xv as: 
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Fusion filter

Moving average

High pass filter

 

Figure 18 Frequency response of the applied filters 

The frequency and phase response of the applied filters can be seen in 

the Figure 18. Their effects to the integrated acceleration signal com-

pensated for the tilt and noise can be seen in the Figure 19. Since only 

gait bouts with duration between 10 and 100 seconds were used for the 

analysis of the inter-limb coordination, short possible brakes between 

particular steps in the gait bouts can, despite the applied filters, still in-

duce significant signal drift during the integration process. Therefore, 

each point which corresponds to the moment in the gait cycle when a 

foot is on the ground (i.e. stance phase) was initialized to the gait veloc-

ity equals to 0 m/s. Furthermore, only the maximum relative change of 

velocity to this point in the following swing phase was noted. The ana-

lysed gait bouts were then approximated linearly with gait velocity 

which is equal to the mean value of calculated gait velocities for each 
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step in the integration process. Possible alternative to this solution of 

estimating the gait velocity from the acceleration signal could have been 

application of linear Kalman filter, which has shown good performance 

in previous studies (Grewal, 2001), but due to the higher computational 

power needed and questionable correction of the initialization error 

this approach has not been used nor validated.     
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Figure 19 Horizontal gait speed derived from gait bouts performed at different paces 

Previous systematic review of the gait velocity values for long term care 

residents, which are at higher risk of falling, has shown that mean gait 

velocity in clinical setting is 0.58 m/s (Kuys, 2014), as well as it is signif-

icantly lower than in community-dwelling older adults (Peel, 2012). 

Moreover, slow gait velocities have also been related to the higher risk 

of institutionalization and mortality. Thus, only gait bouts with mean 

gait velocity within corresponding bout between 0.6 m/s and 1.2 m/s 

were taken into further consideration.   

5.1.5 Lower-limb coordination assessment 

Gait cycle of human walking can be split into stance and swing phase, 

where swing phase starts with toe-off and ends with a heel strike. Since 

left and right swing phases (thus also swing times) are biomechanically 

independent, swing phase time variability (SPV) provides a measure of 

temporal left-right asymmetry (Yogev, 2007). Furthermore, and espe-
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cially for walking while dual tasking, difference between swing time var-

iability and step time variability is thus bigger since the stance time is 

increasing. From another side, step time variability (STV) is a feature 

that has been shown a remarkable performance in distinguishing be-

tween fallers and non-fallers in numerous studies (Toebes, 2012). Its 

value has been intriguing researchers also in ADL, where the most im-

portant undefined question is the minimum number of steps of a gait 

bout needed for reliable and clinically relevant assessment of step time 

variability. 

Following this, lower-limb coordination was assessed with both fea-

tures, STV and SPV. Step time is the time difference between two con-

secutively detected heel strikes. STV is defined as the variance of the 

step time duration tSTV within each gait bout with equation: 
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where 𝑡𝑆𝑇𝑉  is the mean step duration within particular gait bout and N 

is the number of detected steps in this bout. Heel strikes were detected 

from the acceleration signal acquired from the waist attached sensor by 

using the previously described step detector.                    

Swing time is defined as the time between the moment when the whole 

foot hits the ground (i.e. flat foot phase) and the moment when opposite 

leg does the heel strike. In normal human gait, swing time takes around 

60% of total gait cycle, while for the elderly population this ratio is re-

duced (Plotnik, 2013). SPV is then defined as the variance of the swing 

phase duration tSPV for each particular foot with the following equation: 
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(24) 

where  𝑡𝑆𝑃𝑉  is the mean swing phase duration of particular gait bout and 

N is the number of detected steps in this bout. For detecting the swing 

phase in the gait cycle, the step detector was further extended so it 

meets the performance shown in the figure below (Figure 20). Once the 
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heel strike is detected, the step detector searches for the first local min-

imum in the AP acceleration signal, which depicts the moment when the 

whole foot is on the ground. This local minimum should happen within 

defined time interval from the heel strike (empirically set to 0.2 s) and 

it should be below the 50% of the value of the amplitude of the corre-

sponding step. 

This point in the signal depicts the start of the stance phase for one foot 

and start of the swing phase for another foot. End of the swing phase is 

depicted with the next detected heel strike. Moment between the heel 

strike and flat foot is moment of double support, more precisely moment 

when both feet are on the ground. In case when the next heel strike did 

not happen (end of gait bout) or was not detected (due to different in-

terferences), the corresponding swing phase is not taken into calcula-

tion nor further analysis.  
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Figure 20 Swing phase detection from the waist-worn sensor node 

Critical point in the reliable estimation of the swing phase duration is in 

correct determination of the AP acceleration. This was enabled through-

out the determination of absolute orientation of the waist sensor in 

space by using the approach explained in 5.1.3. 



Inter-limb coordination assessment 

64 

It is important to emphasize that both features, STV and SPV, were cal-

culated on all steps within one defined gait bout independently on 

whether this was a left or right step. Moreover, these features were ex-

tracted from the acceleration signal acquired at the waist since in terms 

of the inter-limb coordination this place of attachment reflects the real 

movement significantly better than the one at the wrist (Tu-

dor-Locke, 2015).   

5.1.6 Upper to lower-limb coordination assessment 

Although, STV and especially SPV features have shown good perfor-

mance in assessment of temporal step-to-step variations (i.e. coordina-

tion), there are two major problems identified in the literature. First 

problem is inability to distinguish between left and right foot perfor-

mance, which can be especially interesting in patients with Parkinson’s 

disease or post stroke population where one side of the body can be sig-

nificantly altered in comparison to another and thus disregarded (or 

more precisely diminished) in the final evaluation. Second problem is in 

not taking the arm performance into consideration, which can also be 

influenced by different clinical conditions (e.g. tremor).  

In order to overcome these two problems, an upper to lower-limb coor-

dination assessment based on three different features was proposed. 

The features were as follows: inter-limb coordination index (IC), ipsilat-

eral coordination index (YC), and contralateral coordination index (CC). 

IC was defined as the mean time delay between the highest points in the 

arm swing (tarm_swing) and corresponding heel strikes (theel_strike) within 

one selected walking bout. In other words, the time delays were taken 

between highest backward arm swing and heel strike from the ipsilat-

eral foot, as well as between highest forward arm swing and heel strike 

from the contralateral foot. Heel strikes were extracted from the 

waist-worn acceleration sensor, while arm swings were extracted from 

the wrist-worn acceleration sensor. Same principle that was used for 

detection of heel strikes was also used for detection of the characteristic 

points in the arm swings, with difference that for the arm swing only the 
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anterior-posterior acceleration axis was used. Forward arm swings 

were depicted with local maxima, while backward arm swings were de-

picted with local minima in the anterior-posterior acceleration signal.  

In other words, IC can be defined with the following equation: 
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In this equation, nk depicts the noise in the measurement caused by 

faulty arm or heel strike detection, as well as deviations in the sensor 

synchronization. One can assume the Gaussian (normal) distribution of 

this noise with the mean value equal to zero and variance NS. Taking into 

consideration this distribution of possible time delays between upper 

and lower extremities, as it has been also shown in (Stephenson, 2009), 

one could also redefine equation (25) to the mean absolute time delay 

between the heel strike and corresponding arm swing, disregarding the 

fact of variations in consecutive order. Moreover, IC as well as other two 

indexes could be defined over the median values but in that case an in-

fluence of possible extreme values on the final result would have been 

reduced. Since the calculation of these indexes is already done on the 

walking bouts longer than 10 seconds, a certain degree of variability 

necessary for analysis of the coordination is still maintained by this 

choice.   

YC was defined as the mean time delay between the highest points in the 

backward arm swings (tarm_bwd) and the heel strikes of the ipsilateral foot 

(theel_strike). Following this definition and taking into consideration the as-

sumption in (24), YC can be defined with the following equation:   
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CC was defined as the mean time delay between the highest points in the 

forward arm swings (tarm_fwd) and the heel strikes of the contralateral 

foot (theel_strike). CC can be defined with the following equation: 
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Calculation of CC and YC enables independent assessment of both sides 

of the body with only two sensor nodes. This can be especially important 

for stroke or PD patients, where one side can be more affected then an-

other. Since these groups of examinees are already identified as high 

risk groups in terms of the FRA, the implementation of the above defined 

indexes is reasonable.  

Critical point in the calculation of these two indexes is a reliable detec-

tion of left and right step. In previous solutions with multi-sensor sys-

tems, it was possible simply to use the corresponding ankle- or hip-at-

tached sensor to distinguish between the consecutive heel strikes. In a 

system with only two sensors (one at the hip and one at the wrist), an-

other solution was needed. Translation from the local coordination sys-

tem of the sensor to the global coordination system helped in terms that 

it was possible to determine on which hip the sensor node was worn by 

only analysing the anterior-posterior acceleration axis or more pre-

cisely, its signature while being still (Figure 21). Dormancy phase was 

chosen here since it is the daily movement with the pattern that can be 

detected with highest reliability. In respect to the signature of this accel-

eration axis, if its values are predominantly positive (>90% of total num-

ber of samples within analysed signal block), the algorithm classified at-

tachment of the sensor node on the right hip, while for the predomi-

nantly negative values it was classified on the left hip. Special case was 

when the examinees turn the sensor node upside-down, which was pos-

sible in extreme situation due to insufficiently robust system design. 

These cases were corrected by analysis of the superior-inferior acceler-

ation axis, where the anterior-posterior axis was reflected over abscissa.  

Once having the correct orientation of the sensor node, as well as relia-

ble determination of the side of the body where the sensor node has 

been worn, it is possible to distinguish between left and right steps 

based on the gyroscope signal. Namely, information about the side of the 

body where the sensor node was worn reveals the movement of this hip. 
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Parallel observation of the videos and signals acquired in the pilot study 

has revealed the rotation in the hip that happens directly before the heel 

strike.  

 

Figure 21 AP acceleration signal at left and right hip after correction 

From the physiological perspective, this rotation in the hip happens af-

ter the toe-off phase and it is extended throughout the whole swing 

phase (Schultz, 2005 & Loudon, 2008). In the early swing phase, by nor-

mal gait, the hip extends to 10° and then flexes due to contraction of the 

iliopsoas muscle 20° with lateral rotation. In the mid-swing phase the 

hip flexes to 30°, while in the late swing phase hip flexes 25-30°. This 

characteristic movement is visible in the angular velocity around me-

dial-lateral axis in the gyroscope signal (Figure 22). Lateral rotation of 

the hip is significantly dominant in the signal on the side where the sen-

sor node was worn. By finding the local maxima in this rotation, it is fur-

ther possible to classify the next heel strike as the heel strike of the ipsi-

lateral foot. Logically, next consecutive heel strike is then classified as 

the heel strike of the contralateral foot. These three sequences are part 

of the gait cycle so from the algorithm point of view they have to happen 

within the three seconds time window.  
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Figure 22 Hip rotation preceding the ipsilateral heel strike 

This approach for distinguishing between left and right heel strike 

opens two questions. First is related to the design of the sensor system, 

where the waist-attached sensor is during the day slipping from the hip 

to pelvis (point opposite to the L5). In this case lateral rotations of both 

hips have similar interpretation in the gyroscope signal. Another ques-

tion is in terms of the frailty of the elderly population. As it has been 

shown in numerous previous studies, frailty or more precisely 

lower-limb weakness is well correlated with the age, as well as with the 

fall risk. Moreover, this influences directly the hip rotation which is then 

reflected in the amplitude (i.e. angular velocity) during lateral rotation. 

Another special case that also fits in this group are examinees with walk-

ing aid like walking frame, where hip rotation is reduced due to absence 

of the arm swing (hands are tight to the walking aid). 

In the figure below (Figure 23) it can be easily seen the variability of this 

hip rotation during walking in examinees from the pilot study. Each sig-

nal represent one step from another examinee, while the black line rep-

resent the mean value. The middle point (at two seconds) is the maxi-

mum lateral rotation of the hip. These two open questions were re-

solved by a trade-off solution. A threshold value for minimum necessary 
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lateral hip rotation was derived from the pilot study as the mean value 

of the examinees investigated within this study. Steps performed with 

smaller hip rotation were in the calculus of the CC and YC indexes rather 

ignored, since reliable recognition between left and right step was not 

possible. This approach introduced the trade-off between reliability of 

the detection of left and right step and smaller total number of analysed 

steps in the frail elderly population where hip rotation is not so domi-

nant while walking.  
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Figure 23 Hip rotation while taking the ipsilateral step (gyroscope signal) 

Additional point important for all three indexes was an absence of the 

arm swing while walking or reduced arm swing due to the environmen-

tal factors. Although in scope of this thesis it was not enabled and further 

investigated the reduced arm swing due to different medical conditions 

(e.g. PD, stroke) and environmental factors (e.g. hands in the pocket, 

hands carrying something or holding for something), it is important to 

emphasize the difference between these two cases. Although in short 

terms (following few minutes or even seconds) both, medical conditions 

and absence of arm swings, could be significant for the FRA (i.e. can in-

fluence the gait so there is a similar change in index values), the medical 

history is dominantly more important in the long terms (for acute FRA, 
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as well as for 6-months based FRA) (Deandrea, 2010). The issue of ab-

sence of the arm swing, or more precisely the cases where no arm swing 

points in the wrist-attached acceleration sensor could be found for the 

corresponding heel strikes, was addressed by empirically defining the 

maximum time window in which the events should be detected.      

5.2 Gait analysis in terms of the FRA on the wrist 

The gait analysis from the perspective of the wrist, despite the widely 

present step counters (e.g. FitBit, iWatch), in the scientific community is 

still taken very critically. One of the problems here is also an issue ad-

dressed in this thesis in the chapter 5.1 regarding the upper- to 

lower-limb coordination. Additionally, an excessive occurrence of false 

positives for the wrist attached sensors is present in relation to the 

waist-worn devices (Tudor-Locker, 2015). Reliable step detection for 

further gait analysis is even more critical when one would like to derive 

clinically relevant information from it, as for example in the FRA. Thus, 

a need for robust gait features is emphasized as an issue in this chapter. 

Numerous features were addressed throughout this work but due to 

poor performance from most of them, only the best feature is elaborated 

in the following chapter. The feature assesses small perturbations in hu-

man kinematics by means of estimation of local dynamic stability.   

5.2.1 Local dynamic stability 

The Lyapunov exponent (λL) has shown in numerous previous studies 

an astonishing good performance for the gait analysis in terms of the 

FRA (Schooten, 2013, Rispens, 2015 and Ihlen, 2015). Generally, it is ap-

plied on the time series or discrete time signals where the unpredicta-

bility of the signal trajectories as a function of time is highly emphasized. 

What is interesting to observe in the signals of particularly human 

movement is with which speed, or more precisely how fast, do the clos-

est trajectories or next points, so called nearest neighbours, that are at 

least in the time of one time period distant from each other move from 

or towards each other (i.e. to which quantity they converge or diverge). 
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In these terms, the Lyapunov exponent is a measure of the exponential 

divergence of the dynamic system. The fact that the trajectories in the 

time infinitesimally drift from each other is typical for cyclical periodical 

time series. The mean exponential value of this drifting of the trajecto-

ries describes the dynamical system (in the mathematical chaos theory 

defined with 𝑍(𝑡)) and it is defined as Lyapunov exponent as 

  0ZetZ t   , where δZ0 is the trajectory’s initial separation. Number of 

Lyapunov exponents is equal to the number of the state spaces in which 

the trajectories are constructed, but the final measure of the dynamic 

system is the maximal Lyapunov exponent (MLE).  

The MLE was estimated in the literature either with the method pro-

posed by (Rosenstein, 2013) or with the method proposed by 

(Wolf, 1985). Although the recent insights have suggested that the 

method by Wolf might be more suitable for data series influenced by 

noise as in daily-life accelerometry, the findings in (Schooten, 2013) 

have determined a high correlation between both estimation methods, 

with tendency of slightly better association of the Wolf’s algorithm with 

the prospective falls. For the purposes of this thesis, only one implemen-

tation, the one from Rosenstein was used. Therefore, the Lyapunov ex-

ponent λL is defined with: 
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For this purpose a state space should be constructed with a time delay 

constant θ and dimension Δ. The state space from a time series x(t) is 

then defined as: 

   )1((),...,(),()( txtxtxtX . (29) 

The time delay constant θ is derived as the argument of the first mini-

mum of the mean mutual-information from the time series x(t) as de-

fined in (Fraser, 1986). Time delay that shows the highest independence 



Gait analysis in terms of the FRA on the wrist 

72 

between x(t) and x(t + θ) is chosen. This approach allows by the trans-

formation of the time series in the higher dimensional space the highest 

probability for finding the right nearest neighbour. 

In (28) d0(t) is defined as the minimum Euclidean distance between two 

signal samples (X(t) and 𝑋(�̃�)) that are in the time series at least one 

time period Δt distant: )
~

()(min)( ~0 tXtXtd
t

 . Furthermore, di(t) is the 

distance between the same points after i  discrete steps, more precisely 

di(t) defines the time distance between the two trajectories.  

The number of state space dimensions was determined with the method 

false nearest neighbours proposed in (Hegger, 1999), which for each 

discrete step i finds the nearest neighbours on the trajectory distinct at 

least for one period Δt. For the chosen nearest neighbours the distance 

di(t) is evaluated with a probability for the right nearest neighbour also 

in the next higher dimension. The number of state space dimension that 

has the highest percentage of the correct nearest neighbours is chosen 

for as dimension Δ. 
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Figure 24 Percentage of correctly detected NN in relation to the number of state spaces 

Lyapunov exponent was calculated only for the gait bouts with the du-

ration between 10 and 100 seconds. This was chosen due to the sugges-

tion in the literature, where a minimum number of steps or gait bout 

length for reliable gait analysis was analysed (Brodie, 2015). The choice 

was also consistent with the selection of gait bouts for the inter-limb co-

ordination assessment (5.1). Additionally, although irrelevant for the 

importance of the results, the gait bout selection reduces significantly 
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the computational time of the algorithm. Gait bouts were determined 

based on the acceleration data acquired with the wrist-worn sensor 

node and by applying the arm swing detector defined in chapter 5.1.1. 

In addition to that, only the first 500 samples of each gait phase were 

analysed for determination of the time delay constant in order to reduce 

the computational time. These 500 samples cover approximately first 

five seconds of each gait bout (on average 4-6 steps), which anyways 

does not change a lot in the calculation since further steps in this case 

contain redundant information (Figure 25). The number of the state 

space dimensions (Δ) needed for signal reconstruction was firstly deter-

mined on the data from the pilot study and then only the Δ with the best 

performance was chosen. As it is seen in figure above (Figure 24), as 

well as in the Figure 25, four to six dimensions determine with the high-

est probability the correct nearest neighbour (i.e. the percentage of false 

nearest neighbours converges). This optimization has additionally im-

proved the calculation time of the algorithm for the data from the FRA 

study.  

 

Figure 25 Parameter determination for estimation of MLE 
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There are three possible solutions for values of the MLE that will be sep-

arately addressed here. The negative Lyapunov exponent means that 

the trajectory attracts to a stable fixed point or stable periodic orbit. 

Such systems exhibit asymptotic stability, therefore a good example for 

them would be a critically damped oscillator that steers towards its 

equilibrium. For λ = 0 the trajectory is a neutral fixed point. An example 

would be two identical simple harmonic oscillators but with different 

amplitudes whose phase reconstruction is a pair of concentric circles. 

The human movement streams to the small positive values of the Lya-

punov exponent (0 < λ < 2), which describes an unstable and chaotic 

system. Nearby points for these systems in the state space will diverge 

to any arbitrary separation.          

5.3 Sit-to-stand transition  

As described in (Rapp, 2012), transitions were quantitatively one of the 

major factors (triggers) for falls in the elderly population. Moreover, 

analysis of reported falls in the FRA study has further supported this 

conclusions. The thesis addresses this issue with two major blocks: 

sit-to-stand transitions (STST) detection and their quantitative assess-

ment. Detection of the STST, a non-recurrent and highly variable move-

ment in ADL, has shown relatively good performance on the waist 

(Zijlstra, 2012), as well as on the sternum (Zhang, 2012). Detection of 

STST in ADL with a wrist-attached sensor has not been yet successfully 

described in the literature. Thus, the first step in this direction was an 

attempt of transferring the algorithms developed for the waist-attached 

sensor to the wrist (5.3.1.1). This approach, although it has shown many 

disadvantages of the wrist, has also set the path for further develop-

ment. In the second step key component of the algorithm development 

was the detailed video analysis of the STST, which identified most im-

portant points from the wrist perspective (described in the chapter 

5.3.1.2). Added value for the STST detection algorithm was also found in 

the environmental context. Finally, quantitative assessment was per-

formed with both, time- and frequency-domain based features (5.3.2).        
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5.3.1 Sit-to-stand transition detection 

5.3.1.1 Waist to wrist algorithm transfer 

In case of a direct transfer of current findings from the waist to the wrist 

sensor, a STST duration has been shown as a good quantitative fall pre-

dictor (Najafi, 2002). Therefore, first attempt was focused on the princi-

ples of estimation of the STST duration from the acceleration signal from 

both, wrist- and waist-worn devices. This does not include automatic 

segmentation of the signal (i.e. detection of STST in ADL), but rather only 

their quantitative assessment. Moreover, this approach was used to val-

idate the possibility of a currently strong fall risk predictor in the new 

environment. Result of this approach enabled better steering of the fur-

ther algorithm development for the non-recurrent movements in ADL 

and emphasize the need of diverse solutions for their evaluation.  

For these purposes, a sample-based method for the estimation of the 

STST duration was proposed for both, wrist and waist acquired acceler-

ation data. The method was based on the signal vector magnitude de-

rived from the acceleration signal. In this way, an issue regarding the 

initial orientation of the sensor node immediately prior to the transition 

was overcomed (resultant vector has the same amplitude value, inde-

pendently on the sensor orientation). Empirical evidence has shown 

that the STST from the waist sensor are depicted in a signal vector mag-

nitude with a movement pattern that can be mathematically described 

with a biorthogonal wavelet with Nr = 1 and Nd = 3, where Nr is the order 

of the scaling function used for reconstruction and Nd is the order of the 

function used for decomposition (Figure 26). 

Although the wavelets have already shown good performance in the ac-

tivity classification, as well as good robustness, in above defined ap-

proach a simple sample-based method with empirically defined adop-

tive thresholds was given precedence. In the parallel analysis of the 

waist-acquired signals and recorded video from the pilot study, it has 

been noted that first local maximum depicts the seat-off moment, while 

local minimum depicts the moment when the one’s centre of mass 

reaches vertically highest point (i.e. end of the leaning backward phase). 
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From this point of view, the STST movement pattern was described with 

three basic parameters as shown in the figure below (Figure 26): 

 Minimum amplitude range; 

 Defined time span between local extrema;  

 Relative position of local extrema. 
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Figure 26 Transition pattern and its key points used for duration estimation 

The proposed algorithm can be split into three major blocks (Figure 27): 

 Detectable sit-to-stand transition phases; 

 Extrema update; 

 Parameter check. 

First block is conceived as the finite state machine (FSM), which from 

the concept fits perfectly for the continuous signal evaluation. The start 

state is detection of the local maximum (i.e. seat-off moment), followed 

by the defined time span tWAITFORMIN, which corresponds to the leaning 

backwards phase. This variable is defined within two thresholds: 

 0.25 𝑠 <  𝑡𝑊𝐴𝐼𝑇𝐹𝑂𝑅𝑀𝐼𝑁 < 2 𝑠. (30) 

Assuming the plausibility between detected STST interval (local ex-

trema) and its residual, STST duration can be estimated as a double span 
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between respective local extrema (tMAXTOMIN). This approach was previ-

ously introduced in (Bidargaddi, 2007). Thus, the two defined thresh-

olds enable detection of STST, whose duration spans in the interval 

from 0.5 to four seconds. As shown in the literature, the defined interval 

covers most of the STST performed by elderly. In the leaning backwards 

phase, once the local minimum is detected, one’s centre of mass is in the 

highest point and final, stabilization phase starts. Extrema update block 

enables interruption of the FSM algorithm by the newly detected local 

extremum, fitting these characteristic points to their best fit. Once both 

characteristic points are found, a blocking time tBLOCK for the next STST 

is set to action. This time is supported by logical conclusion that the next 

STST cannot happen in the following two seconds. By implementation 

of this blocking phase, posterior STST movements (present in more than 

four-fifths of all transitions performed by elderly as shown in the video 

analysis in 4.2) are filtered decreasing the FP rate of extrema detection. 

The parameter check block proves the above defined three parameters.  

The time span between finally confirmed local extrema is then updated 

and defined as tMAXTOMIN. The total STST duration was estimated as de-

scribed in the literature, as well as with a best-fit linear relationship be-

tween the extrema span and total transition duration. The relationship 

was further described with linear, binomial, exponential and polynomial 

(third order) equations. The parameters for these equations were found 

based on the least square error method performed on the training data 

set and validated on an unseen data set. Both data sets were defined by 

the 10-fold cross validation method and mean absolute error of estima-

tion was used for comparison of the results. The data sets had a corre-

sponding reference values derived from the tagged videos and they 

were split separately on waist and wrist estimated values. Since the im-

provement of estimated STST durations was negligible in comparison to 

the conventionally proposed linear approach, they are not shown in the 

thesis. Nevertheless, performance of the proposed algorithm for both, 

waist and wrist sensor estimates, was tested and these findings were 

the basis for the next step in development of the STST transition detec-

tion algorithm for solely wrist-attached sensor nodes.



 

 

      

 

 

Figure 27 STST duration estimation algorithm based on the extrema detection



 

 

5.3.1.2 Wrist perspective 

The analysis of STST in the previous chapter was not directly focused on 

their detection, but rather only on their quantitative evaluation, more 

precisely, on evaluation and validation of possibility of implementing 

the best fall risk predictor (STST duration) for the wrist-attached sen-

sors. Next step steers into different direction in the algorithm develop-

ment and proposes a method for STST detection, but with a clearer fo-

cus – optimisation of the approach only for wrist-attached sensors and 

based on the findings from the detailed video analysis described in 4.2. 

While many previous studies have focused on the detection and assess-

ment of the particular phases in order to reliably assess the performed 

transitions, the proposed method focuses on detection of particular trig-

ger events (such as rotation of the wrist above a predefined threshold), 

as well as periodical or motionless situations after these events. There 

are multiple reasons justifying this approach. Movements of the hand 

prior to the transition can be described as chaotic movements contrarily 

to the body’s centre of mass which is prevailing motionless during sit-

ting or standing. From pure perspective of the STST, this means that 

there is not much connection between initial conditions (start of the 

transitions) and the outcomes (end of transitions). More precisely, STST 

can be seen as dynamic systems with widely diverging outcomes, ren-

dering a robust detection fairly difficult in general. 

The focus on dominant trigger events sets more emphasize on the algo-

rithm’s precision reducing possible false positives. The trade-off in this 

solution is loss in the algorithm’s sensitivity, but since adults performed 

on average 50 or more STST during the day (Dall, 2010), this should not 

be a critical point. The Figure 28 shows an acceleration signal during 

eight hours of recording with a wrist- and waist-worn acceleration sen-

sor. This example illustrates well the need for more robust algorithms 

(e.g. via trigger events) for the wrist since sitting, standing and lying 

movements are overlapped with significantly more (Spearman’s 

r = 0.05, p < 0.001) chaotically signals (i.e. presence of significantly 

higher signal variability is obvious from the figure) compared against 
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the acceleration signals acquired with the waist-attached devices in pre-

vious studies (Zhang, 2012). As support for this hypothesis, the findings 

from previous study can be added (Ermes, 2008), where detection of es-

pecially sitting and standing classes has shown poor results for the 

wrist-attached sensor.  
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Figure 28 Typical movement patterns recorded with acceleration sensors 

Moreover, as shown in the video analysis, the end of transition is domi-

nantly affected with additional chaotic movements of the hands that do 

not necessary belong to the corresponding STST. Thus, focus on the pe-

riodical movements (i.e. walking) or dormancy phase (i.e. motionless 

situations), which is due to the relatively stable movement pattern triv-

ial to detect on the wrist and which precedes or follows STST especially 

in the ADL (Kerr, 2007), can result in higher algorithm precision. Having 

maximized number of true positives events for the quantitative assess-

ment is in the proposed method taken as a preferable solution in com-

parison to a solution with a high sensitivity rate.  

Algorithm development was performed throughout three iterations: 

 Trigger-based algorithm development based on the acceleration 

signal;  

 Added values of other inertial (gyroscope, magnetometer) and 

environmental sensors (pressure, light);  

 Hyper-parameter optimization.  
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The trigger-based part consists of a detection of the dormancy phase 

prior to the transition, detection of the rotation in the wrist together 

with the attached standing position within defined time frame and fi-

nally finding one of three possible end conditions of each STST (dor-

mancy phase, gait bout or activity over predefined activity-count-based 

threshold). The main algorithm blocks and their representation in the 

time-series acceleration signal can be seen in the Figure 29.  

 

Figure 29 Implications of different detector on the acceleration signal of the STST 

Acceleration signal was filtered with a low-pass Butterworth filter 50th 

order with a cut-off frequency at 20 Hz. This filtration has eliminated 

high frequency components that could have been misinterpreted as trig-

ger events (i.e. rotation in the wrist). Moreover, the Butterworth filter 

has a maximally flat frequency response in the pass band, thus filtering 

the high frequency components but letting the rest of the signal go 

through without attenuation (i.e. preserving the realistic recorded hu-

man movement).  

On such filtered acceleration signal an algorithm for local to global 

transformation of the axis as described in 5.1.3 was applied. Represen-

tation of the acceleration signal in the global coordination system was 

used for determination on which side of the body the wrist-sensor was 

worn. In contrary to the chapter 5.3.1.1, this time the side determination 

was done only on the wrist-based signals during walking by calculating 

the area under the curve for anterior-posterior acceleration axis. 
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Following the side determination, a dormancy detector was applied. 

This detector locates in the ADL a motionless situation with total dura-

tion of two seconds or more. From a macro perspective it works as a 

band-pass filter on the whole movement signal. The implementation is 

supported with findings in the chapter 4.2, as well as with a hypothesis 

that arises from these findings. Namely, right before the STST a charac-

teristic motionless session is visible (in this case empirically set to min-

imally two seconds). The dormancy detector operates on the first deri-

vation of the signal vector magnitude of the acceleration signal. This ap-

proach overcomes artefacts in the acceleration sensor described in 

chapter 3.1.1, as well as it evaluates the total movement of the wrist. The 

dormancy phase is detected once the derived signal is continuously 

within defined lower and upper limits described with parameters C1 and 

C2, respectively. The minimum duration of the dormancy phase is de-

picted with parameter C3. 

Once the dormancy phase is detected a search for a trigger event is acti-

vated. At the same time end of the dormancy phase is depicted as begin-

ning of possible STST. Search for the trigger event is performed in the 

following four seconds with a rotation detector. Rotation detector is 

based on the detection of rotation around superior-inferior φX, ante-

rior-posterior φY sensor axis or they summation (  22

YX   ). The total 

rotation φT should satisfy the following condition: 

   4

22
:,, CTYXYXT    (31) 

where C4 is the parameter defining minimally needed rotation within 

defined time window with corresponding length C5 for making the trig-

ger event fulfilled. At the same time, φX and φY are defined in the ran-

domly selected point k with the following two equations, respectively: 
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where (𝑎𝑋,𝑘 𝑎𝑌,𝑘 𝑎𝑍,𝑘) is a three-dimensional representation of the 

acceleration signal acquired from the wrist-attached sensor at the ran-

dom point k. The orientation of the sensor axes is shown in the figure 

(Figure 29). Positive X axis shows in the direction of the shoulder, posi-

tive Y axis shows in the anterior-posterior direction, while positive Z 

axis shows in the medial-lateral direction. The calculated angle rotations 

describe the two most common wrist rotations during the STST identi-

fied in the video analysis (chapter 4.2).  

The condition in (31) unlocks the second trigger event for the STST. The 

second trigger analyses the rest of the signal in the four second time 

window from the end of the dormancy phase and it determines whether 

the person is standing upright. Detection of the standing class with the 

acceleration sensor at lower back (Zijlstra, 2012), as well as at the ster-

num (Spain, 2012) has shown good performance in previous studies. 

Standing detection on the wrist is rather a challenging work since posi-

tion of the hand for this sedentary class can be identical to sitting or even 

lying (e.g. while holding something in the hand in the upright position). 

The algorithm checks the inferior-superior axis, or more precisely the 

position of the hand in the Y-Z two-dimensional space, which fits to the 

situations when the hand is firmly attached to the body with additional 

allowed deviations. Standing detector is defined with an additional pa-

rameter C6, defining the mean standing angle in the analysed time win-

dow (angle between the gravity vector and hand). From the macro per-

spective it can be also understood as the band-pass filter, removing the 

situations when the hands after rotation are not in the defined interval.   

In order to analyse only the meaningful parts of the signal, or more pre-

cisely to define start and end of the STST for detection, the last step of 

the proposed algorithm defines three possible end conditions. For this 

purpose a step detector described in chapter 5.1.1 and above described 
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dormancy and rotation detectors were applied. If a dormancy phase is 

detected within four seconds from the trigger event, the corresponding 

transition is defined as sit-to-stand passive (STSP). In case when a walk-

ing phase is detected within the same time window, in the first detected 

arm swing the highest point which depicts the highest backward or for-

ward arm swing defines the end of transition. Such transitions were 

classified as sit-to-walk (STW). If both conditions remain unfulfilled, the 

end of the transition is by default defined with a random activity follow-

ing the transition and is assumed to last four seconds from the first trig-

ger event. Such transitions were classified as sit-to-stand active (STSA). 

All eight different types of transitions together with their corresponding 

phases performed within the pilot study (chapter 3.1.1), as well as all 

transitions detected in the FRA study (chapter 3.1.2), were classified 

into these three groups (Figure 30). With definition of end conditions 

for the STST, the first iteration of the algorithm development for detec-

tion of transitions was concluded.  

 

Figure 30 Transition phases depicted for the different types of transitions 
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Second iteration of the algorithm was further performed with a goal to 

increase its precision, also at a cost of lower sensitivity when needed. 

For that purpose a possible added value of other available inertial and 

environmental sensors was investigated. Previous studies have shown 

improved performance with the gyroscope (Najafi, 2002) and pressure 

sensors (Masse 2016), but not for the wrist-attached sensor nodes. The 

gyroscope has better signal-to-noise ratio and zero offset rate, but from 

another side has a high demand for the energy consumption in compar-

ison to the accelerometer, as well as emphasized non-linear effects on 

the drift and sensitivity throughout temperature changes. When its ap-

plication on a device on the wrist should be considered, with high de-

mands for significant energy consumption optimization, gyroscope will 

certainly not be the first choice. The pressure sensors (or similar sen-

sors for measurement of the altitude) are robust to the environmental 

noise (e.g. temperature changes), but one can argue whether there is 

any noticeable height change during the STST from the wrist perspec-

tive.  

To make this clearer, acceleration and pressure signal acquired in the 

pilot study are shown in the figure below (Figure 31). The signals are 

showing different types of activities of daily living including eight STST. 

Each STST is labelled in the figure with a black rectangular signal. Rela-

tive changes in the pressure signal during these events are not signifi-

cantly different from various other events during ADL, as well as they fit 

almost perfectly with the sensor’s output noise and offset drift. Interest-

ing, and specific only for the wrist-attached sensor, are the situations 

like reaching for something in comparison with the STST where the rel-

ative change in the pressure signal is even higher. After a careful recon-

sideration of elaborated disadvantages, the possible reasonable utiliza-

tion of the pressure sensors as an added value in the detection of STST 

in ADL with a wrist-worn sensor device, as in the current 

state-of-the-art applications, is clearly not possible.                            
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Figure 31 Disadvantage of the pressure sensor for the STST detection at wrist 

The next hypothesis that arises considers the application of the light 

sensor (luminance) for improvement of the algorithm’s precision. Three 

postulates are critical for this hypothesis: 

 STST are in most cases performed in a closed setting (apartment, 

house, hospital, nursing home etc.); 

 During each particular STST a constant source of light in the ex-

aminee’s physically nearest environment can be assumed; 

 The inclination angle between the source of light and light sensor 

changes during the STST. 

The first postulate is based on the observation of behavioural patterns 

of elderly, more precisely on prevailingly sedentary life-style of the el-

derly population (Thibaud, 2012). Most recent findings have also shown 

that such a behaviour becomes even more present also in the young gen-

erations (Verburgh, 2013), but in the thesis these groups are out of the 

scope. This postulate is excluding transitions performed outside (e.g. in 



Algorithm development 

87 

the park, during sport activities or simply next to the window under di-

rect contact from the sun). Second postulate has a strong basis in the 

total average duration of the STST. As most STST are performed within 

three seconds time window, or in the frail population within five sec-

onds (Zijlstra, 2012), one can reliably conclude that the source of light 

in the setting defined with the first postulate will in most cases stay con-

stant during the whole transition duration.  

Third and the last postulate is supported with the findings in the video 

analysis (chapter 4.2). Since dominant rotation in the wrist happens in 

more than 50% of STST performed in ADL and since these rotations are 

mostly around anterior-posterior and superior-inferior axes, the angle 

between the constant source of light and the light sensor (receptor) at-

tached on the sensor node changes significantly. By the cosine law, light 

at the measurement plane (photodiode of the light sensor) is propor-

tional to the cosine of the angle at which the light incidents (ω): 

 cos
2r

I
E V . (34) 

With rotation in the wrist, the angle between the source and receptor is 

getting bigger, thus reducing the total luminance (E) measured by the 

device. Luminance is a measure of visible energy falling upon the recep-

tor and additionally depends on the square root of the distance between 

the receptor and light source. Due to the characteristic configuration of 

the sensor node, a small test was performed in order to investigate in-

fluence of the sum of extrinsic factors (inclination angle, light source dis-

tance, as well as plastic lid and housing itself) on the luminance detec-

tion.  

The test was performed in a dark room where the sensor node used in 

the pilot and FRA study was exposed to the same source of light 

(Iv = constant) under different distances (0.02, 0.08, 0.24, 0.42, 0.62 m) 

and different inclination angles (-90°, -45°, 0°, 45°, 90°). The test have 

shown logarithmic association between the luminance measured by the 

light sensor and distance between the source and receptor (Figure 32). 

Furthermore, the inclination angle has shown the same relationship. 



Sit-to-stand transition 

88 

These findings support the hypothesis where a significant changes in 

the luminance can be detected only as a result of wrist rotation during 

standing up under given conditions independently on the distance from 

the light source (with assumption that the light source is at the distance 

bigger than 2 cm from the wrist). However, the integration of the recep-

tor in the sensor node itself and influence of the housing and transpar-

ent plastic lid on the reflection of the incoming light should also not be 

disregarded.       
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Figure 32 Association of inclination angle, distance and illumination 

The relative change in the luminance measured by the light sensor was 

shown to be significant during transition movements in the pilot study 

as well (Figure 33), especially in comparison to other sensors such as 

gyroscope and pressure (Figure 31). The changes can be thus easily ob-

served in the signal by analysing its first derivation. Minimum relative 

change in the defined time window needed for confirmation of detection 

of the STST is in the algorithm defined with the parameter C7 as:  
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Figure 33 Changes in the luminance while standing up 

The proposed approach does not work in cases when the sensor node 

(i.e. light sensor) is covered (e.g. with clothes, in the pocket or bag), as 

well as in the situations with reduced or no light (e.g. at night). Different 

intensities in the light source were addressed in the pre-study in a con-

trolled setting, while for the purposes of the thesis an empirically de-

fined value for the described parameter C7 was chosen.  

5.3.2 Sit-to-stand transition assessment 

Quantitative STST assessment was performed by implementation of dif-

ferent features in the feature extraction process. All parts of the 

three-axis acceleration signal that were classified as STST with defined 

start and end point were used for their quantitative evaluation. An opti-

mized feature extraction process allows significant dimensionality re-

duction (i.e. transformation of the existing signal into a higher dimen-

sional space) (Zhu, 2001) and easier interpretation of the results for 

both, clinicians and engineers. The most significant sit-to-stand feature 

for distinguishing between fallers and non-fallers is its duration 

(Najafi, 2002), but as previously described (5.3.1.1), this feature shows 

a rather poor or limited performance for a wrist-attached sensor node 

due to the difficulties in correct determination of start and end points of 

transitions and therefore arisen loss of either flexion or stabilization 

phase parts. Moreover, the author of this text to the best of his 

knowledge could not identify other features in the literature that were 
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used for reliable assessment of the STST detected on the wrist in terms 

of FRA. This fact is important because the wrist is far from the centre of 

mass, thus a different behaviour during the transitions is captured with 

the sensors compared to sensors attached at the lower back or sternum. 

Furthermore, since the wrist-attached sensor is far from the centre of 

mass the movement it records is susceptible to different influences that 

do not need to have any contact points with one’s balance and conse-

quently with clinical relevance for the FRA.  

5.3.2.1 Time domain 

Following these statements, as part of this thesis 12 time domain fea-

tures for quantitative assessment of the STST from the wrist data sets 

were introduced. All features were calculated for each particular STST 

by using only the three-axial acceleration signal. Time domain features 

were: peak value, root mean square (RMS), jerk, standard deviation 

(SD), median value, time to first arm swing (TTFS), amplitude of the first 

arm swing (AFS) and the amount of oscillation (AO). All time domain 

features, except the AO feature, were derived from the validated filtered 

signals. The AO feature was derived from the unfiltered signal since the 

oscillation spectrum is depicted with frequency components higher 

than the cut-off frequency of the applied filter. Peak value and amount 

of oscillation features were calculated for each particular acceleration 

axis, while all other time domain features were calculated only on the 

signal vector magnitude of the acceleration.  

The peak value was calculated for all three axes of the acceleration sig-

nal as the maximum value during whole duration of the corresponding 

STST. It is commonly present at the seat-off moment and reflects the en-

ergy that a participant invests for pushing himself from the chair. More-

over, for the peak value at the lower back a good correlation with the 

sit-to-stand transition time has been shown (Weiss, 2011), therefore 

suggesting it also as a potential fall predictor worth investigating within 

the scope of this thesis. 

The jerk 𝑗𝑘⃗⃗⃗   is defined as the mean change of acceleration between two 

consecutive samples k and k-1 as 𝑗𝑘⃗⃗⃗  = 𝑎 𝑘 − 𝑎 𝑘−1. Main advantage of this 
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feature is easy cancelation of the gravitational component and therefore 

insensitivity on the sensor node orientation. Namely, since each accel-

eration sample can be decomposed as the sum of the current accelera-

tion 𝑎𝑘
′⃗⃗⃗⃗  and gravitational component 𝑔𝑘⃗⃗⃗⃗  as 𝑎𝑘⃗⃗⃗⃗ = 𝑎𝑘

′⃗⃗⃗⃗ + 𝑔𝑘⃗⃗⃗⃗ . Since gravita-

tional vector has constant intensity and direction on one spot on the 

Earth (i.e. 𝑔𝑘⃗⃗⃗⃗ = 𝑔𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), the jerk value shows the change in acceleration 

independently on the current orientation of the hand. This feature has 

already shown some promising results for activity classification in pre-

vious studies (Hamalainen, 2011) and it has outperformed the tradi-

tional approach with the acceleration components. For each particular 

transition a mean value of the jerk was derived as a feature. 

The RMS feature is defined on the whole transition as the square root of 

the arithmetic mean of the squares of the values with equation:  
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where N is the number of samples for each particular transition i, and 

𝑎𝑆𝑉𝑀,𝑘 is the value of the signal vector magnitude at point k. Same ap-

proach was used for the SD and median features. While SD feature 

shows a deviation of the signal during the transition, median feature di-

minishes possible extreme values (e.g. sudden hand movements while 

standing up).  

The TTFS feature corresponds to the feature time to walk introduced in 

(Kerr, 2007). Namely, it has been shown that fallers due to hesitation in 

the gait initiation need more time to perform the first step after the tran-

sition than non-fallers. This feature can also reveal the problem of freez-

ing of gait characteristic for the patients with Parkinson’s Disease (PD), 

where problems with gait initiation occurs also in the narrow or 

crowded places. The PD is also an important fall risk predictor (i.e. PD 

patients are at higher risk of falling, especially in the later stage (Dean-

drea, 2010)), but since the FRA study has very limited number of partic-

ipants with PD, this problem was not addressed separately. The TTFS 

was defined as the time between the end of the rotation and first peak 
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in the anterior-posterior acceleration that depicts either highest back-

wards or forwards arm swing. First arm swing is in that case also first 

step in the gait bout, meaning that this feature was defined only for the 

STW transitions. In addition to this feature the AFS feature was intro-

duced. This feature depicts the amplitude of the first detected arm 

swing. 

The AO feature was derived as the variance of the change of the acceler-

ation (jerk) independently for each acceleration axis. In other words, 

this feature for the particular transition i can be defined with the follow-

ing equation: 
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where the mean jerk for this transition with length N depicting the num-

ber of samples is defined as: 
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The AO feature is a novel proposed feature that combines two major 

previously described characteristics: independence on the sensor orien-

tation and variability of the acceleration signal during the STST. With a 

measure of variability this feature also shows a complexity of the signal 

in the time domain. Therefore, higher values of this feature would reflect 

weakness in upper and lower limbs which further yields higher risk of 

falling, as previously shown in the literature (Lord, 2003). 

5.3.2.2 Frequency domain 

The frequency domain features were implemented on the sequence of 

the Fourier coefficients representing the amplitude and phase of each 

sample at the corresponding frequency. The frequency representation 

of the time series x was derived by implementing the Discrete Fourier 

Transform (DFT): 𝑋(𝑘) = 𝐹(𝑥[𝑛]). The DFT was calculated in N = 512 

points (Fourier coefficients) by using the Fast Fourier Transform (FFT) 

algorithm. The following eight features were derived: entropy, energy, 

fundamental frequency (FF), index of harmonicity (IH), energy of the 
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applied support in the oscillation spectrum (AS) and ratio between en-

ergy in the spectrum limited with minimum oscillation frequency and 

energy in the oscillation spectrum. All features except the latter two 

were calculated on the filtered signal for each particular axis inde-

pendently.  

The entropy H(X) of the signal X(k) with continuous probability density 

function (PDF) pX(x) is defined as (Shannon, 1948): 
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or in case of the discrete signal it can be rewritten to: 
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where p(xk) is the probability of occurrence of the discrete value xk in 

the signal X. The probability p(xk) was approximated by the difference 

of the spectrum component and the mean value 𝑝(𝑥𝑘) ≅ |𝑥[𝑘] − �̅�|. 

The energy in the frequency spectrum was calculated as the squared 

sum of the harmonics lower or equal to the cut-off frequency of the 

low-pass filter applied in chapter 5.3.1.2 and higher than 𝑓 =
2𝜋

𝑁
 Hz. Un-

like the dominant frequency that is often used for quantifying the peri-

odical movements like walking, for quantitative assessment of the STST, 

a FF was applied as a feature. FF is defined as the smallest frequency in 

the power spectrum having a peak (Riva, 2013).  

The IH feature for the i-th transition was calculated as the ratio of the 

power of the fundamental harmonic P0 and sum of the power of the fol-

lowing five (oscillating) harmonics as: 
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The feature quantifies the contribution of the fundamental frequency of 

the transition pattern to the signal power relatively to the higher har-

monics (Riva, 2013).  
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5.3.2.3 Novel feature 

In addition to the currently available and implemented features, a novel 

feature for the assessment of the transition performance was proposed. 

The feature quantifies the energy of the applied support in the oscilla-

tion spectrum (AS) for the quantitative assessment of the STST. Elderly 

people often use hands for support while standing up as shown in the 

previous studies (Dolecka, 2015 & Mazza, 2004), as well as in the video 

analysis of the STST (chapter 4.2). This was a motivation for energy es-

timation in the frequency spectrum (7-40 Hz) of the human physiologi-

cal tremor (oscillation spectrum). Despite the debate regarding the right 

bandwidth of the oscillation spectrum, a definition from 

(Mayston, 2001) was used for the proposed feature since it covers high 

frequency components of one’s hand movement. The hypothesis is that 

people at higher risk of falling will have less energy in the oscillation 

spectrum, and since, due to the lower and upper limb weakness they ap-

ply less force for support during standing up activities. Moreover, weak-

ness in the upper and lower limbs has been shown as a good fall risk 

predictor (Stephenson, 2009), thus assessing it throughout this feature 

can also show significant differences between fallers and non-fallers.  

Signal energy ES for a time signal x(t) is defined as its integral: 
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or rewritten for a discrete signal x[n] as the sum of all signal compo-

nents: 
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By applying the Parseval’s theorem on the equation (43), the signal en-

ergy defined in the frequency spectrum can be derived as:  
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The equation (44) applied only on the defined oscillation spectrum 

could then be used for calculation of the AS feature for each particular 

transition i as a function of oscillation spectrum frequency components: 
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where FS is the sampling frequency and oscillation spectrum is defined 

on the interval [𝑓𝐿 𝑓𝐻]. 

Further investigation of the above defined hypothesis was performed 

with additional feature, ratio between the energy in the pre-oscillation 

spectrum (0-7 Hz) and energy in the oscillation spectrum (i.e. AS fea-

ture). Using (44), this feature can be defined as: 
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This feature should reveal the smoothness of the movement while 

standing up. The hypothesis is that in the non-fallers group the smooth-

ness of the movement will be higher, thus this feature will tend to higher 

values. In other words, for a perfectly smooth postural transfer that can 

be described with sine function with frequency spectrum equal to δ(f), 

f < fL, this feature would be indefinite. This hypothesis is supported also 

with the lower and upper limb weakness basis.  

5.4 Statistical analysis 

5.4.1 Feature analysis 

Statistical analysis of the extracted features was performed in MATLAB 

R2013b. For each participant all validated parts of the acquired signals 

were submitted to the feature extraction process. For the quantitative 

assessment of the inter-limb coordination and gait, walking bouts satis-

fying the inclusion criteria defined in 5.1 were submitted to the feature 

extraction process, whereas for the sit-to-stand transition assessment 
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all parts of the acquired signals identified as transitions using the algo-

rithm described in 5.3.1.2 were used. Once the corresponding features 

were extracted, a mean value (µ) as well as 95% confidence interval 

(95% CI) were calculated for each feature. The mean was used since it 

considers the influence of extreme values that might have occurred by 

gait bouts or transitions in a fall-prone environment.  

The one sample Kolmogorov-Smirnov test was used to test the distribu-

tion of the values for each extracted features. Due to the non-parametric 

distribution of the features, a Wilcoxon-Mann-Whitney test was applied 

to analyse the differences between the defined groups (for acute FRA 

between acute fallers and non-fallers, whereas for the 6-months based 

FRA between corresponding fallers and non-fallers). The likelihood of 

the statistical type I error was addressed by using the Benja-

mini-Hochberg correction for multiple comparison. Intra-class correla-

tion coefficient (ICC) was used for testing the reliability of implemented 

features throughout the measured week (i.e. test-retest reliability of im-

plemented measures between the days). 

As a novel approach for the sit-to-stand transitions (wrist-based assess-

ment) the extracted features were additionally separately tested for the 

participants that wore sensors on their dominant and non-dominant 

hand. This analysis tests the side-dependence of the fall risk assessment 

at the wrist, as well as the solely performance (i.e. robustness) of the 

proposed algorithm.  

Important to add, a hyper-parameter optimization (C1-C6) for the 

sit-to-stand detection algorithm was performed by using the robust, but 

time consuming grid-search method. Hyper-parameter optimization 

can be seen as a formal outer loop in the learning process (i.e. prior to 

the feature extraction and classification steps), where the main problem 

is to optimize the function (algorithm) over a graph-structured configu-

ration space (in terms of the algorithm’s precision). Although some pre-

vious studies have suggested other optimization methods (such as ran-

dom search), in which the fitness function is not costly to evaluate, a 
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grid-search method applied in the sequential model-based optimization 

performs well.  

5.4.2 Classification 

Classification of the participants in the FRA study was performed using 

the machine learning approach. The approach applied on clinically rele-

vant number of participants allows development of the robust models 

for the FRA based on the extracted features. Basically, machine learning 

in the literature is defined as a method for data analysis that automates 

building of the analytical models in an iterative learning process from 

provided large amount of data without knowing at the beginning of the 

process where exactly to look at. This iterative aspect of the proposed 

approach enables independent adaption of the model to data which is of 

essential importance in the field of activity monitoring of elderly popu-

lation where a high variability of extracted features is present.   

There are four machine learning methods: unsupervised, supervised, 

semi-supervised and reinforcement learning. Supervised and unsuper-

vised learning methods are the most common approaches currently 

used in the literature. While unsupervised learning is used against data 

that has no reference labels (i.e. the model is not told the right answer), 

supervised learning is focused on the labelled data. In other words, the 

difference in these two methods is in their causal structure, i.e. in unsu-

pervised learning all outputs are assumed to be caused by a set of latent 

variables, while in supervised learning one set of variables (inputs) is 

assumed to be the cause of another set of variables (outputs). Since in 

the terms of the FRA an actual reference (labels) for each participant are 

well-known as described in chapter 3.1.1, supervised learning method 

seems as an reasonable choice. Nevertheless, unsupervised learning 

could theoretically be able to yield different clusters and find possible 

different meaningful connections between extracted features in order 

to distinguish between two defined groups, but this is currently out of 

scope in this thesis. Moreover, main benefit of the unsupervised learn-

ing, fast adaption to more complex structures with deep hierarchies, 
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does less sense for building a model on finite small number of features 

as in the case of inter-limb coordination assessment and assessment of 

the sit-to-stand transitions in terms of the FRA.  

In case of a supervised machine learning methods a four main issues 

while training a model should be addressed: complexity and amount of 

training data, dimensionality of the input space, noise in the output var-

iables and trade-off between the bias and variance. Furthermore, the al-

gorithms can be divided into two main categories: classification and re-

gression algorithms. While regression algorithms (e.g. linear regres-

sion) are used for continuous variables, the classification algorithms 

(e.g. support vector machine, decision trees, Naïve Bayes) are used for 

categorical variables, where the data can be separated into specific clus-

ters. Again here, the classification algorithms seems as a reasonable 

choice for the FRA since the final goal of the study is to develop a model 

able to distinguish between two clusters of elderly population – fallers 

and non-fallers, based on the extracted feature sets. 

When talking about the choice of the optimal classification algorithm, 

multiple choices might be possible. In respect to the dimensionality of 

the input space (i.e. number of available features), as well as the com-

plexity of the training data (i.e. margin functions that describe them), 

support vector machine (SVM) was chosen for classification of partici-

pants. The basic idea of the SVM is in finding an optimal hyperplane (or 

in case of only two dimensional space an optimal line) that separates 

two clusters of data.  

Between two clusters of data lots of possible solutions for the hyper-

plane are possible. SVM can find the optimal hyperplane by using the 

optimization techniques (Lagrange multipliers) and maximizing the 

margin around the separating hyperplanes. Any hyperplane can be writ-

ten as: 

 0 bxw


 (47) 
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where 
−𝑏

‖�⃗⃗� ‖
 is its offset. The linearly separable data can be bounded with 

two hyperplanes �⃗⃗� ∗ 𝑥 = 𝑐 and �⃗⃗� ∗ 𝑥 = −𝑐, 𝑐 > 0, where the distance 

between them can be expressed as 
2𝑐

‖�⃗⃗� ‖
. This description for the defined 

hyperplanes can be further rewritten for each point i as �⃗⃗� ∗ 𝑥𝑖⃗⃗⃗  + 𝑏 ≥ 𝑐, 

for 𝑦𝑖 = 1 and �⃗⃗� ∗ 𝑥𝑖⃗⃗⃗  + 𝑏 ≤ −𝑐, for 𝑦𝑖 = −1. More precisely, each point 

has to satisfy the relation: 

 1)(  bxwy ii


, where Ni 1 . (48) 

Contrary to the linear regression or Naïve Bayes, where all points influ-

ence the optimal margin between two clusters, in the SVM only the so 

called difficult points (close to the decision boundary) influence the 

margin optimization process. Points that lie close to this decision 

boundary are called support vectors. This means that movement of the 

support vectors will shift the decision boundary while movement of 

other points far away from the margin will not influence the boundary. 

Thus, support vectors are defined as points in the space of the training 

set that change the position of the margin.  

The goal of the whole learning process is to maximize the margin, or 

more precisely, maximize the distance 
2𝑐

‖�⃗⃗� ‖
 between the two defined hy-

perplanes that linearly separate two data clusters. In order to do so, ‖�⃗⃗� ‖  

should be minimized by solving a quadratic programming problem. 

Namely, this mathematical optimization problem is used for minimizing 

quadratic functions of two or more variables which are linearly con-

strained. More precisely, a minimum of f(x) should be found such that 

g(x) = 0 where these two functions are defined as: 
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The constrained optimization problem of these two functions can be 

solved by using the Lagrange multiplier method. In this case, Lagrangian 

L(x, λ) is defined as:       
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and its partial derivatives should be equal to zero (i.e. ∇𝑥,𝜆𝐿(𝑥, 𝜆) = 0). 

By applying (49) and (50) into (51) the formulation of Lagrangian be-

comes as follows: 
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or further rewritten as: 
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The prerequisite on the partial derivatives yields the following: 
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Non-linear separation

Linear separation

 

Figure 34 Two-dimensional projection of STST features 
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The task for training the data is to maximize the function 𝑓(𝜆1, 𝜆2, … 𝜆𝑛) 

defined by: 

  
i i j

jijiin xxf 
2

1
),...( 1  (56) 

as subject to the equations given in (54) and (55). The given solution fits 

for linearly separable data, but as previously mentioned, the sit-to-stand 

and inter-limb features, as well as gait features are difficult to separate 

linearly for the given classes. An example of this problem can be seen 

clearly in the figure above (Figure 34), where a two dimensional projec-

tion of the sit-to-stand features for 145 participants in the 6-months 

based FRA analysis is shown. The training set in this case is not linearly 

separable, however an imaginary non-linear function could separate 

these two classes. Thus the idea is to simply map the existing data into 

a higher dimensional space by using functions whose exact definition is 

not even necessary. This approach is called the kernel trick. 

Namely, the dot product of xi and xj that should be optimized in equa-

tion (56) can be then replaced with a dot product of function ϕ that 

maps initial dataset into higher dimensional space. The kernel function 

is defined as 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝛷(𝑥𝑖) ∗ 𝛷(𝑥𝑗). Applying the kernel trick for op-

timisation in the equation (56) yields following: 
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The most popular kernel function in the SVM classification method is 

radial basis function (RBF) kernel. The function its popularity mostly 

owns to its wide robustness in separating linearly not separable data. 

The RBK kernel function is defined as: 

 )exp(),(
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The parameter γ defines how far the influence of a single training sam-

ple can reach. Standard choice for this parameter is the inverse of a 

standard deviation of samples depicted as support vector or in other 
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words 𝛾 =
1

2𝜎2
. The B parameter makes a trade-off between the misclas-

sification of the training data and simplicity of the decision surface. The 

low value of this parameter would mean a smooth decision surface, 

while high value would classify correctly as much training data as pos-

sible giving the model freedom to select more data samples as support 

vectors. Selection of this parameter can thus easily lead to overfitting by 

making the decision surface to sensible. An example of a RBF kernel with 

conventional parameters (B = 1) derived from (58) would look like: 
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Nevertheless, for purposes of this study, parameters γ and B were varied 

throughout the training process and optimised values for the SVM 

model were used. Furthermore, for the non-linear separation of data, a 

function 𝐶(𝑦, 𝑦′) that penalizes the deviation between the real class y 

and estimated class 𝑦′ = 𝑒(𝑥) can be defined. Empirical risk 𝑅(𝑒) is the 

decision strategy used in SVM that minimizes the total loss so that the 

data on the wrong side of the margin have their output values propor-

tional to the distance from the margin. The optimization problem of the 

empirical risk 𝑅(𝑒) = ∑𝐶(𝑦, 𝑒(𝑥)) is then given with equation:    

 )(minarg eRe
Ee


 . (61) 

The classifier defined with a RBF kernel function in (60), optimization 

problem of the dataset mapped in the multidimensional space in (56) 

and penalization function in (61) were used for the non-linear classifi-

cation of the study participants based on the features extracted only 

from the wrist (sit-to-stand and gait features) and features extracted 

from the combination of the waist and wrist attached sensor nodes (in-

ter-limb coordination features).  

The issue while training a model addressed in the further paragraphs is 

regarding the overfitting, or more precisely finding an optimal robust 

model able to classify correctly new (unseen) data. Overfitting of the 

model parameters as well as training the model on only particular, sta-

tistical most appropriate data occurs when a model rather adopts to the 
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noise in the data set (so called outliners) than on the exact clusters. The 

problem is especially important when addressing the elderly population 

in the non-ambulatory environment where a high influence of noise is 

expected. Models affected with overfitting have poor predictive perfor-

mance since they exaggerate even minor fluctuations in the data.  

Overfitting can be avoided by using the model validation techniques that 

assess how the analytical model will perform on an independent data 

set. Two most popular techniques are leave-one-out (LOO) and k-fold 

cross-validation (CV), but due to its time effectiveness (i.e. lower com-

putational demanding) the latter one was chosen for the purposes of 

this study. Simple solution for the problem raised already in the early 

1930s by (Larson, 1931) starts from a remark that testing the defined 

model on new data yields a good estimate of its performance.  

The basic idea of the k-fold CV is in splitting the limited available data 

into k clusters. Thereby, it was important to ensure that data (i.e. all ex-

tracted features) of a particular participant belong to the same cluster. 

These clusters were iterated in k-number of loops, where k-1 clusters 

were used for the training, while the remaining k-th cluster was used for 

model validation purposes (i.e. evaluation of the model performance). A 

single iteration with divided data yields a validation estimate of the risk, 

while averaging it over k splits yields a cross-validation estimate. Ro-

bustness of the CV method lies in the assumption that the data distribu-

tion is identical, as well as that the training and validation clusters are 

independent. Numerous previous studies have used for these purposes 

a 10-fold CV (Schooten, 2015), so due to the consistency purposes the 

same number of iterations was used in this thesis too.     
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Figure 35 Training of the SVM model for the fall risk classification 

The whole process of training a model based on the SVM that can distin-

guish between fallers and non-fallers is shown in the flowchart (Figure 

35). It is split into three steps – training of the model, its validation and 

final testing. First two steps are used for the parameter selection for the 

RBF kernel and each time a new parameter set is tested on an unknown 

dataset. The best parameter set was chosen based on the maximum 

F1-measure: 

   ),(maxarg; 1 ii BFB   . (62) 

The F1-measure for the i-th parameter set is defined as: 
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In the equation (62), the 𝑝(𝛾, 𝐵) depicts the model’s precision and 

𝑠(𝛾, 𝐵) depicts the model’s sensitivity. Each output of the equation (61) 

was then further tested on the new dataset where for the each data point 
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(participant) a probability of correct classification was given. This out-

put was then averaged throughout the 10-fold CV and finally a receiver 

operating curve (ROC) was calculated. ROC curve shows the algorithm 

performance in the way that it opposes false positive and true positive 

rates. A measure of the model accuracy is then given with the area under 

the curve (AUC). This approach was also previously used in the numer-

ous other studies (Ihlen, 2015 and Schooten, 2015) so it additionally al-

lows easy comparison of the results with the state-of-the-art literature 

findings. The AUC value at 0.5 and lower represents a worthless test, 

while the value 1 represents a perfect test.      

5.5 Summary 

In this chapter a trustworthy simulation of ADL in a controlled setting 

has yielded a solid basis for identification of inter-limb, gait and 

sit-to-stand features, as well as for the development of methods that 

could be used for their reliable extraction from inertial and environmen-

tal sensor signals acquired with the waist- and wrist-worn devices. The 

final steps of proposed methods offer novel approaches for understand-

ing of the fall risk in a geriatric population from a highly non-stigmatized 

perspective – wrist.  

Chapter 5.1 shows a noticeable reduction of the number of sensor nodes 

needed for assessment of the inter-limb coordination. Despite the exist-

ing methods for estimation of the gait speed from the acceleration sig-

nal, the proposed multi-model filter approach in chapter 5.1.4 leads to 

more accurate assessment in longer gait bouts since influence of the 

noise components is significantly reduced. Added value of the gyroscope 

signal (5.1.6) for discrimination between contralateral and ipsilateral 

heel strikes (or more precisely alternating hip rotations) in fusion with 

acceleration signal transformed into global coordination system (5.1.3) 

shows the importance of understanding of the model of human move-

ment for direct implementation of reliable algorithms. Highly accurate 

step detector based on the adaptive multi-threshold approach (5.1.1) 
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and correct selection of clinically relevant gait bouts (5.1.2) have shown 

their further true value in the following chapter.   

Implementation of the feature that assesses small perturbations in hu-

man kinematics throughout the measure of the maximal Lyapunov ex-

ponent (5.2) has broaden already wide spectrum of its possible applica-

tions. Approach with short Lyapunov exponent on specific gait bouts by 

means of minimum numbers of state spaces needed for trajectory re-

construction (determined by percentage of false nearest neighbours) 

and time delay constant (determined by the convergence of mutual in-

formation in the signal) have been shown as computationally less de-

manding than more reliable method proposed in (Schooten, 2012). Nev-

ertheless, it satisfies rigorous requirements typical for the wrist-worn 

devices and possible clinical applications.  

Direct transfer of the waist-based algorithms for STST detection to the 

wrist (5.3.1.1) has shown poor performance but it paved the way for 

further development. The chapter 5.3.1.2 has shown a simple sam-

ple-based algorithm highly optimized in terms of its precision for detec-

tion of non-recurrent movements in ADL (such as STST). The whole de-

velopment process origins from the empirical evidence of the video 

analysis and its fundamentals were grounded in using various activity 

detectors as band-pass filters in specific phases of the transitions. Novel 

approach was additionally improved by adding the environmental con-

text (i.e. detection of the change in luminance) to algorithm flow, which 

opens a completely new perspective in assessment and understanding 

of human physical performance.  

Quantitative evaluation of extracted signals that correspond to transi-

tions (5.3.2.1 and 5.3.2.2) was also radically different than in conven-

tional methods found in the literature by means it was focused on find-

ing vigorous robust features capable of assessing only chunks of the ac-

tual movement captured far from the centre of balance rather than 

unreliably taking into account extreme points. The need for that was 

simply inspired by intensive prevailing dynamics in transition’s poste-
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riori wrist movements, as noted in the previous observations. The chap-

ter 5.3.2.3 investigates oscillation frequency spectrum in terms of an in-

novative quantitative measure for assessment of transitions. The hy-

pothesis has shown clear difference between two groups in preliminary 

investigation, but feature robustness will be shown in the following 

chapter. 

Statistical analysis inter alia proposes an approach for understanding 

the influence of both, dominant and non-dominant hand on the feature 

performance in terms of FRA (5.4.1). To round the quantitative assess-

ment, a non-linear SVM-based algorithm with radial basis kernel func-

tion was introduced (5.4.2) for separating the defined groups of partici-

pants. This well-known kernel trick maps the hand-crafted non-linearly 

separable feature space into higher dimensional space, where it is pos-

sible to find a separating hyperplanes. The overfitting problem was ad-

dressed by cross-validating defined models, which utility for clinically 

relevant applications will be shown in the upcoming chapter.  



 

 

6 Results 

6.1 Inter-limb coordination assessment  

In this chapter the results for the inter-limb coordination assessment in 

terms of acute and 6-months based FRA are shown. The analysis is sep-

arated in quantitative and feature analysis. Quantitative analysis evalu-

ates amount of recording time, number of walking bouts, their duration 

and average speed. It is performed independently for acute and 

6-months based fallers and non-fallers. Feature analysis includes evalu-

ation of five proposed features (chapter 5.1) assessing lower-limb and 

upper- to lower-limb coordination: STV, SPV, IC, YC and CC.  

6.1.1 Quantitative analysis 

6.1.1.1 Acute FRA 

For the acute FRA 9514.2 hours of validated recording were analysed, 

from which 799.3 hours (8.4%) belonged to acute fallers and 8714.9 

hours (91.6%) to non-fallers. On average, the participants at no risk of 

falling generated slightly more data (52.2 h versus 44.4 h per partici-

pant). The total number of walking bouts that were satisfying the exclu-

sion criteria explained in chapter 5.1.2 for acute FRA is 21618 (116.8 

walking bouts per participant). For non-fallers 20115 walking bouts 

(120.0 walking bouts per participant per week) were detected, while for 

acute fallers in total 1503 walking bouts (83.5 walking bouts per partic-

ipant per week) were identified. For the selected gait bout length for the 

non-fallers this choice included 37.6% of the total number of detected 

walking bouts, while for the fallers this included only 26.7%. The distri-

bution of the walking bout length per participant is shown in Figure 36.  

The upper subplot shows distribution of walking bout independently of 

the gait speed, while the lower subplot shows only the bouts satisfying 

the gait speed criteria from chapter 5.1.4. All values were normalized for 

the length of the validated recording time for these two groups in order 
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to avoid misinterpretation of the results. The number of walking bouts 

on average per participant is slightly higher (p = 0.17) in the acute fall-

ers group than in non-fallers group, with emphasized difference for 

walking bouts shorter than 30 seconds (p < 0.01). Taking into consider-

ation the defined average gait speed these results remain consistent 

(p = 0.15 and p < 0.01 for all and gait bouts shorter than 30 seconds).   

Looking at the difference in average walking bout duration per partici-

pant for non-fallers and acute fallers, independently on the gait speed, 

significantly shorter bouts (p = 0.02) were found for acute fallers 

(µ = 20.3 ± 15.7 versus µ = 21.3 ± 16.0 for fallers and non-fallers, re-

spectively). However, no difference in average walking bout duration 

between these two groups was found when taking into consideration 

the defined average gait bout speed (p = 0.29). Furthermore, a consid-

erable inequality was found in average gait speed within defined gait 

bouts between the groups (p < 0.01) with higher values for non-fallers 

(µ = 0.84 ± 0.16 m/s versus µ = 0.80 ± 0.15 m/s for non-fallers and 

acute fallers, respectively). To summarize, non-fallers have walked 

faster than acute fallers and moreover have performed smaller amounts 

of bouts shorter than 30 seconds.     
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Figure 36 Distribution of the gait bouts length for acute fallers and non-fallers 
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6.1.1.2 Six-months FRA 

In the six-months based analysis, 8088.1 hours of validated recording 

were used. From that, non-fallers generated 6157.5 hours (76.1%) of 

recording or 54.5 hours/per participant. In the same time period, fallers 

generated 1930.5 hours (23.9%) of validated recordings or 55.2 

hours/per participant. Non-fallers generated 27383 walking bouts 

(77.6%) that were satisfying defined exclusion criteria (chapter 5.1), 

whereas 7906 walking bouts (22.4%) were detected within fallers’ re-

cordings. Consistently with the quantitative analysis for acute FRA, se-

lected gait bout length included 34.4% of all walking bouts detected for 

non-fallers and brought clearly lower percentage (28.6%) walking 

bouts detected for fallers. This strongly indicates that fallers achieve a 

greater number of gait bouts shorter than 10 seconds compared to 

non-fallers, which follows well current literature findings in this field 

(Brodie, 2015). 
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Figure 37 Distribution of the gait bouts length for 6-months based fallers and non-fallers 

Similar to the previous chapter (6.1.1.1), a normalized distribution of 

the gait bout length for all and speed-limited bouts is shown (Figure 37). 

These findings are comparable to the analysis for acute FRA. Fallers 

have predominantly (p < 0.01) performed shorter walking bouts than 



Results 

111 

non-fallers (µ = 20.6 ± 15.6 versus µ = 21.2 ± 16.1 for fallers and 

non-fallers, respectively). Moreover, they have also walked with slower 

average gait speed (p < 0.01) than non-fallers (µ = 0.88 ± 0.17 m/s ver-

sus µ = 0.90 ± 0.17 m/s for fallers and non-fallers, respectively). Com-

paring only the average gait speed, six-months based fallers have 

walked much faster than acute fallers (0.08 m/s faster, or in other words 

with 10% higher average gait speed).  

6.1.2 Feature analysis 

6.1.2.1 Acute FRA 

The feature analysis for acute FRA by means of the inter-limb features 

described in chapters 5.1.5 and 5.1.6, the results shown in the figures 

below (Figure 38 and Figure 39) were derived. The Figure 38 demon-

strates the difference between acute fallers and non-fallers for features 

describing the bimanual coordination (STV and SPV). The STV feature 

has shown no difference between these two groups (p = 0.790), rather 

just an extremely high variability within the fallers group reflected 

throughout the wide confidence interval (95% CI = 0.117-0.127) in 

comparison to the non-fallers group (95% CI = 0.123-0.126). Despite 

that, the SPV feature was significantly higher (p = 0.003) for fallers than 

for non-fallers (µ = 0.036 s, 95% CI = 0.036-0.037 and µ = 0.034 s, 

95% CI = 0.032-0.036, respectively). 
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Figure 38 Bimanual coordination features for the acute FRA 
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The Figure 39 shows relation between IC, CC and YC features for the two 

defined groups respectively. The most significant difference between 

the groups was for the IC feature (p < 0.001), which was clearly higher 

for fallers than for non-fallers (µ = 0.333 s, 95% CI = 0.331-0.336 and 

µ = 0.309 s, 95% CI = 0.301-0.318). While YC feature has shown no dif-

ference between the groups (p = 0.535), the CC feature has shown sta-

tistically significant difference (p = 0.030). Despite again the relatively 

wide confidence interval in the fallers groups (95% CI = 0.317-0.328 

versus 95% CI = 0.283-0.319), the mean values could have been dis-

tinctly distinguished (µ = 0.322 and µ = 0.301 for fallers and non-fallers, 

respectively). Interestingly to note, results previously published in 

(Pozaic, 2015) on a considerably smaller population (N = 16) are con-

sistent with the current ones and therefore confirm high robustness of 

the proposed approach.  
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Figure 39 Features describing the upper to lower limb coordination for the acute FRA 

6.1.2.2 Six-months FRA 

The analysis performed on the six-months follow-up phase has revealed 

some further scientifically intriguing results, which are shown in the 

two-dimensional space by using the principal component analysis in the 

figure below (Figure 40). Namely, the defined five-dimensional space is 

orthogonally projected on two dimensions allowing a visual interpreta-

tion of extracted features. The blue dots in the figure depict non-fallers, 
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while fallers are depicted with the red dots. Additionally, the Gaussian 

contours are plotted for each group showing the probability distribution 

of the orthogonal feature projection. 
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Figure 40 Gaussian contours for the two-dimensional projection of the inter-limb features 

Quantitatively, the results have shown significant difference between 

the groups for four features (p < 0.001, p < 0.001, p = 0.049 and 

p = 0.003 for SPV, STV, IC and YC features, respectively). Both features 

describing the bimanual coordination were significantly higher for fall-

ers (µ = 0.037 s, 95% CI = 0.036-0.038 versus µ = 0.035 s, 

95% CI = 0.034-0.036 for the SPV and µ = 0.131 s, 95% CI = 0.128-0.134 

versus µ = 0.109 s, 95% CI = 0.107-0.111 for the STV feature). Further-

more, IC feature’s good performance has stayed consistent with the 

acute FRA (chapter 6.1.2.1) and it kept showing significantly higher val-

ues for fallers (µ = 0.327 s, 95% CI = 0.323-0.332 versus µ = 0.322 s, 

95% CI = 0.319-0.326). Although in the acute FRA the YC feature has 

shown no difference between the groups, for the six-months based FRA 

it shows significantly higher average time delays between the heel 

strikes and corresponding arm swing for fallers (µ = 0.327 s, 

95% CI = 0.311-0.342 versus µ = 0.305 s, 95% CI = 0.292-0.318). Inter-

estingly, the CC feature does not show such a good performance 

(p = 0.095), but presents similar tendencies as in the previous analysis 

regarding acute fallers and non-fallers (chapter 6.1.2.1).  
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6.2 Gait analysis 

Results for the local dynamic stability assessed throughout the Lya-

punov exponent from the wrist-worn sensor data are shown in this 

chapter. In the first subchapter, the implemented algorithm validated on 

the Lorenz attractor is presented. The result of an analysis for acute and 

6-months based FRA are reported in the following subchapter. The im-

plemented feature (Lyapunov exponent) was tested when considering 

all participants as one group, as well as when considering participants 

regarding on which hand the sensor node was placed (dominant or 

non-dominant hand).  

6.2.1 Algorithm validation 

The algorithm described in the chapter 5.2.1 was firstly validated by us-

ing the Lorenz attractor. Lorenz attractor is a set of solutions of the cha-

otic Lorenz system, which is defined with three ordinary differential 

equations (Lorenz, 1963). The value of the largest Lyapunov exponent λ 

for the Lorenz system was previously calculated for the parameters 

σ = 16.00, ρ = 45.92 and β = 4.00 (Viswanath, 1998) and the result is 

shown in the figure below (Figure 41). This widely applied value of the 

largest Lyapunov exponent (λREF = 0.91) was used for validation pur-

poses of the developed algorithm, where the output λL = 0.92 (relative 

error ε = 1%) considerably well approximates distance between trajec-

tories in the defined state space.   

The in-house developed arm swing detector described in chapter 5.1.1 

was used for an identification of arm swings during walking in ADL. Re-

liable estimation of the average gait speed within particular gait bout in 

ADL has shown good performance for the waist-worn device, whereas 

this estimation for the wrist-worn devices does not satisfy the standards 

of clinically relevant results. Therefore, due to the focus being set only 

on the wrist-attached sensor, the gait bouts used in the further feature 

analysis were defined by a single exclusion criterion – their temporal 

duration. The exclusion criterion, as suggested in the literature (Bro-

die, 2015), was set to 10 seconds. Lyapunov exponent, as defined in the 
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chapter 5.2.1, was calculated based on the Wolf’s algorithm. Calculation 

was based in the state space constructed from the number of embedding 

dimensions determined by the false nearest neighbour algorithm and 

with time delay constant τ defined by the mutual information algorithm. 

The Lyapunov exponent was investigated for the selected gait bouts 

from the data from the FRA study (chapter 3.1.2).    

ρ  = 45.92, σ = 16, β = 4 

Lorenz attractor

Z

Y
X

 

Figure 41 Lorenz attractor with defined parameters 

6.2.2 Statistical analysis 

The statistical analysis of the extracted largest Lyapunov exponent was 

performed by tools described in the chapter 5.4.1. In this thesis, only re-

sults for the acceleration sensor are shown since gyroscope and magne-

tometer sensor at the wrist have not brought any added value in distin-

guishing between fallers and non-fallers. Accordingly to the previous 

chapter with inter-limb coordination assessment, statistical analysis of 

this gait feature was independently performed for acute and 6-months 

based FRA.   

Irrelevantly whether one is analysing this feature in terms of the acute 

or the 6-months based FRA, the λL feature shows consistently higher val-

ues for the participants at risk of falling (Table 3). Statistical significance 
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in this feature cannot be found by implementing it on particular sensor 

axes, but rather looking at the full acceleration contribution while walk-

ing (i.e. analysing this feature on the signal vector magnitude). For the 

magnitude of the acceleration signal significantly higher dynamics in the 

arm movement was present (p = 0.045) for acute fallers. The reliability 

of this assessment for the studied population was also assessed with 

high values (ICC = 0.750, 95% CI = 0.696-0.802).  

Taking into consideration Lyapunov exponent from the acceleration sig-

nal vector magnitude (λL, ACC_SVM) in 6-months based FRA, the fallers, 

compared to non-fallers, continued to achieve significantly higher val-

ues (p = 0.025). Nevertheless, these non-fallers have shown comparable 

results for λL, ACC_SVM as the ones defined in the first month of the fol-

low-up phase, whereas acute fallers are still showing slightly higher val-

ues (i.e. instability) than regular fallers. In this experimental setup the 

reliability of this measure continued to be high (ICC = 0.753).  

In order to further broaden the spectrum of understanding the Lya-

punov exponent’s performance in terms of FRA, acquired data was ana-

lysed separately for participants that wore the sensor node on their 

dominant hand (Table 4) and non-dominant hand (Table 5). Higher in-

stability in the dominant arm swings while walking was profoundly 

found in all sensor axes, whereas only their joint contribution has shown 

significant and reliable difference between 6-months based fallers and 

non-fallers (p = 0.015, ICC = 0.758). Contrary, the non-dominant hand 

for acute FRA could clearly distinguish between participants at risk of 

falling and non-fallers, whereas 6-months based FRA has delivered con-

fusing results suggesting deeper analysis of this case. In both cases, fall-

ers have shown more instability during walking at the dominant than at 

the non-dominant hand (p = 0.006 and p = 0.022, for acute and 

6-months based fallers respectively). These findings for fallers demon-

strated poor normal distribution. Contrary to fallers, non-fallers have 

more normal distribution of performance between dominant and 

non-dominant hand. 
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Table 3 Statistical analysis of the Lyapunov exponent for all participants 

Do-
main 

Fea-
ture 

All gait bouts  

Mean 95% CI 
p-value 

ICC4 

Non-fall-
ers 

Fallers 
Non-fall-

ers 
Fall-
ers 

Mean 95% CI 

A
cu

te
 F

R
A

 

λL, 

Acc_AP3,1 
0.664 0.676 

0.641-
0.687 

0.559-
0.793 

0.532 0.757 
0.704-
0.808 

λL, 

Acc_ML 
0.535 0.574 

0.510-
0.559 

0.466-
0.683 

0.627 0.836 
0.796-
0.873 

λL, 

Acc_VT 
0.625 0.629 

0.598-
0.652 

0.513-
0.746 

0.654 0.811 
0.767-
0.853 

λL, 

Acc_SVM2 
0.378 0.405 

0.365-
0.392 

0.368-
0.442 

0.045* 0.750 
0.696-
0.802 

6
-m

o
n

th
s 

F
R

A
 λL, 

Acc_AP 
0.666 0.656 

0.642-
0.691 

0.601-
0.711 

0.528 0.754 
0.701-
0.806 

λL, 

Acc_ML 
0.544 0.515 

0.518-
0.569 

0.452-
0.578 

0.647 0.834 
0.794-
0.872 

λL, 

Acc_VT 
0.621 0.641 

0.597-
0.645 

0.555-
0.727 

0.637 0.812 
0.769-
0.854 

λL, 

Acc_SVM 
0.377 0.391 

0.365-
0.390 

0.356-
0.426 

0.025* 0.753 
0.699-
0.805 

1VT depicts X axis of the local coordination system of the sensor, AP is the Y axis, 

while ML is the Z axis; 2SVM = Signal Vector Magnitude on which the feature was 

calculated; 3Acc = Acceleration; 4ICC = Intra-class correlation coefficient 

Table 4 Statistical analysis of the Lyapunov exponent for the dominant hand 

Do-
main 

Fea-
ture 

All gait bouts  

Mean 95% CI 
p-

value 

ICC4 

Non-fall-
ers 

Fallers Non-fallers 
Fall-
ers 

Mean 95% CI 

A
cu

te
 F

R
A

 

λL, 

Acc_AP3,1 
0.689 0.729 

0.653-
0.725 

0.621-
0.837 

0.490 0.795 
0.725-
0.861 

λL, 

Acc_ML 
0.533 0.517 

0.502-
0.565 

0.411-
0.622 

0.667 0.719 
0.633-
0.804 

λL, 

Acc_VT 
0.654 0.680 

0.615-
0.692 

0.505-
0.856 

0.271 0.645 
0.549-
0.744 

λL, 

Acc_SVM2 
0.396 0.419 

0.378-
0.414 

0.345-
0.494 

0.896 0.540 
0.438-
0.655 

6
-m

o
n

th
s 

F
R

A
 λL, 

Acc_AP 
0.682 0.709 

0.635-
0.729 

0.678-
0.740 

0.513 0.791 
0.718-
0.858 

λL, 

Acc_ML 
0.530 0.536 

0.491-
0.570 

0.494-
0.577 

0.093 0.700 
0.610-
0.789 

λL, 

Acc_VT 
0.634 0.714 

0.595-
0.673 

0.625-
0.803 

0.113 0.649 
0.553-
0.749 

λL, 

Acc_SVM 
0.392 0.418 

0.371-
0.413 

0.387-
0.449 

0.015* 0.758 
0.679-
0.834 

1VT depicts X axis of the local coordination system of the sensor, AP is the Y axis, 

while ML is the Z axis; 2SVM = Signal Vector Magnitude on which the feature was 

calculated; 3Acc = Acceleration; 4ICC = Intra-class correlation coefficient 
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Table 5 Statistical analysis of the Lyapunov exponent for the non-dominant hand 

Do-
main 

Fea-
ture 

All gait bouts  

Mean 95% CI 
p-

value 

ICC4 

Non-fall-
ers 

Fallers Non-fallers Fallers Mean 
95% 

CI 

A
cu

te
 F

R
A

 

λL, 

Acc_AP3,1 
0.645 0.605 

0.616-
0.675 

0.191-
1.019 

0.116 0.721 
0.644-
0.797 

λL, 

Acc_ML 
0.535 0.651 

0.499-
0.572 

0.308-
0.994 

0.986 0.879 
0.836-
0.916 

λL, 

Acc_VT 
0.603 0.561 

0.566-
0.641 

0.235-
0.887 

0.101 0.872 
0.828-
0.912 

λL, 

Acc_SVM2 
0.365 0.385 

0.346-
0.383 

0.337-
0.434 

0.026* 0.829 
0.773-
0.880 

6
-m

o
n

th
s 

F
R

A
 λL, 

Acc_AP 
0.655 0.593 

0.628-
0.682 

0.482-
0.704 

0.606 0.721 
0.644-
0.797 

λL, 

Acc_ML 
0.553 0.491 

0.519-
0.586 

0.350-
0.631 

0.047* 0.879 
0.837-
0.917 

λL, 

Acc_VT 
0.612 0.554 

0.581-
0.643 

0.398-
0.711 

0.397 0.872 
0.828-
0.912 

λL, 

Acc_SVM 
0.367 0.359 

0.351-
0.383 

0.289-
0.428 

0.822 0.829 
0.773-
0.880 

1VT depicts X axis of the local coordination system of the sensor, AP is the Y axis, 

while ML is the Z axis; 2SVM = Signal Vector Magnitude on which the feature was 

calculated; 3Acc = Acceleration; 4ICC = Intra-class correlation coefficient 

6.3 Sit-to-stand transition detection  

6.3.1 Waist to wrist algorithm transfer 

The algorithm proposed in the chapter 5.3.1.1 was tested on the data 

acquired in the pilot study described in the chapter 3.1.1. The study in-

cluded in total 321 transitions assessed with the wrist- and waist-worn 

sensor nodes. Thereof, seven transitions were excluded from further 

analysis since their duration was longer than four seconds, which is 

maximum duration detectable with the proposed algorithm. Moreover, 

seven further transitions were excluded for the waist-based analysis be-

cause the algorithm could not detect the defined extrema (5.3.1.1). For 

the same reason, 23 transitions were excluded from the wrist-based 

analysis.  

In another words, the algorithm’s sensitivity for the waist-worn data 

was 97.8%, while for the wrist-worn data the sensitivity was 92.8%. The 
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specificity was not calculated for the proposed method, since only parts 

of the signal containing the transition were taken as input data (i.e. al-

gorithm was not designed to automatically segment transitions from 

ADL but rather just estimate their duration).  The mean transition dura-

tion derived from the labelled data was 1.73 ± 0.78 seconds.  

Analysis on the whole defined spectrum of transition durations has 

shown that video-labelled durations were moderately associated with 

the waist sensor estimates (Pearson’s r = 0.56, p < 0.001) while for the 

wrist sensor estimates a poor correlation was shown (Pearson’s r = 0.44, 

p < 0.001). As a measure of accuracy of prediction, the standard error of 

estimate (SEE), defined as the sum of squared deviations of estimates, 

was introduced. For the waist estimates it was SEE = 0.75 seconds, 

while for the wrist estimates was slightly higher (SEE = 0.81 seconds). 

If an imaginary line throughout the mean transition duration would be 

drown, the results change considerably in favour of the waist-worn sen-

sor node.  The transitions shorter than 1.73 seconds have shown for the 

waist sensor good linear correlation with the reference duration 

(r = 0.79, p < 0.001) with the considerably lower SEE = 0.32 seconds. At 

the same time, the wrist sensor shows moderate correlation (r = 0.63, 

p < 0.001) with similar SEE = 0.31 seconds. The scatter plot in Figure 42 

shows estimation of the transition duration with the cut-off point be-

tween short and long transitions at 1.73 seconds (mean reference tran-

sition duration), indicating poor to moderate performance for the STST 

durations characteristic for the targeted population (elderly at risk of 

falling). 
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Figure 42 Waist and wrist sensor estimates in comparison to the reference values 

Wrist and waist sensor estimates were further tested for eight groups 

defined in the chapter 3.1.1. Additionally to that, these eight groups 

were sorted into six following groups and corresponding SEE was 

shown for them as well in the Figure 43: 

 Chairs with armrests; 

 Chairs without armrests; 

 Standing up by using hands; 

 Standing up without using hands; 

 Supervised transition; 

 Unsupervised transition. 

Generally speaking, waist sensor estimates have shown considerably 

better results in terms of SEE for nine out of 14 analysed groups. In all 

analysed groups, except one (standing up from a chair without armrests 

by using hands), the SEE is in the interval between half and one second.  
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Figure 43 Group-based analysis of the SEE for the wrist and waist sensor estimates 

6.3.2 Wrist perspective 

The proposed algorithm was developed on a pilot study described in the 

chapter 3.1.1, which included eight different types of the sit-to-stand 

transitions in a controlled environment (i.e. camera-supervised labora-

tory setting) as part of the protocol that simulated activities of daily liv-

ing. A hyper-parameter optimization was performed for a set of param-

eters defined in chapter 5.3.1.2. The parameters were optimized for the 

algorithm with and without the light-sensor feature and independent 

optimization was performed for the dominant and non-dominant hand. 

Due to relatively small number of parameters, as well as highly compu-

tationally inexpensive model (function) that has to be optimized, a com-

putationally exhaustive grid-search method for hyper-parameter opti-

mization explained in chapter 5.4.1 was used. The set of values used in 

the grid-search method are shown in the table below (Table 6). 
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Table 6 Parameter sets for the hyper-optimization process by the grid-search method 

Parameter Minimum value Maximum value Step 

C1, [g] 0.003 0.005 0.0005 

C2, [g] -0.005 -0.003 0.0005 

C3, [s] 1.0 3.0 0.5 

C4, [°] 70 90 5 

C5, [s] 2.0 4.0 0.5 

C6, [°]  40 60 5 

C1 – threshold for maximum positive acceleration deviation; C2 – threshold for 

maximum negative acceleration deviation; C3 – minimum dormancy phase dura-

tion; C4 – angle rotation; C5 – standing interval; C6 – standing angle 

The defined parameters were optimized in terms of the algorithm’s pre-

cision. The overall color-coded performance of the grid-search method 

for the proposed method without the light feature can be seen for the 

dominant and non-dominant hand in the Figure 44 and with the light 

feature in the Figure 45. Abscissas in the figure have parameters C1, C2 

and C3, while ordinates have the remaining parameters. Their values are 

distributed in the figures in the block order, meaning C1 and C4 parame-

ters have continuous values for five consecutive blocks throughout the 

figure (52 values), values for the parameters C2 and C5 parameters 

change within each of these block for each 51 values, while parameters 

C3 and C6 change continuously. In this way, all possible parameter com-

bination are shown in the two-dimensional space. Color-coded preci-

sion values are described with the colour bar, where dark red depicts 

the highest values. Part that is in both figures shown in dark blue colour 

depicts the lowest values. Namely, for the highest value of C4 parameter 

(C4 = 90°), algorithm’s precision drops to zero (i.e. no transitions are de-

tected) since derivative of the angle rotation from equations (30) and 

(31) is limited with definition of atan function limited on the interval 

from 〈−
𝜋

2
,
𝜋

2
〉.    
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Figure 44 Algorithm performance without the light feature for parameter variation (C1-C6) 
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Figure 45 Algorithm performance with the light feature for parameter variation (C1-C6) 

The precision or positive predictive value was defined as the ratio be-

tween the number of correctly detected transitions and total number of 

detected transitions. The transition is considered as correctly detected 

in cases when the trigger point defined in chapter 5.3.1.2 falls within the 

video-labelled transition interval including the 0.5 seconds deviation 

added to avoid possible human mistakes during labelling.    

The best shown performance (i.e. highest algorithm precision) for the 

proposed method without the light feature was 47.8% and 73.9%, for 

the dominant and non-dominant hand respectively. By adding the light 

feature in the proposed method with a fixed parameter C7 = 20 lux/s, the 



Sit-to-stand transition assessment 

124 

algorithm’s precision improves considerably. More precisely, the over-

all precision was 76.8%, for the dominant hand was 72.5% (improve-

ment of 51.7%), while for the non-dominant hand was 92.3% (improve-

ment of 24.9%). As a trade-off, this improvement in the precision 

yielded slightly lower sensitivity, but due to the high number of transi-

tions in ADL enough data for clinically relevant interpretation of one’s 

performance will still be ensured. 

Different sets of parameters have shown the optimal performance for 

the dominant and non-dominant hand for the proposed method with 

and without the light feature. The Hausdorff distance hD, as a measure 

of similarity of two metric spaces (in this case the metric spaces are pre-

cision matrixes for the algorithm performance at the dominant and 

non-dominant hand with the light feature), showed a low similarity be-

tween them (hD = 0.19), thus suggesting different parameter sets for 

each hand.  

6.4 Sit-to-stand transition assessment 

The STST assessment is shown in separate subchapters for acute and 

6-months based FRA. Each subchapter comprises of quantitative and 

feature analysis. Quantitative analysis includes the amount of validated 

recording time, number of detected STST and their distribution across 

different groups (fallers, non-fallers). Feature analysis shows statistical 

analysis of features proposed in chapters 5.3.2.1 and 5.3.2.2. In addition 

to that, a detail statistical analysis of a novel AS feature (chapter 5.3.2.3) 

for acute and 6-months based FRA is shown in the last subchapter. While 

quantitative analysis is performed on all participants disregarding on 

which hand the sensor node was placed on, feature analysis is per-

formed on all participants taken as one group, as well as on participants 

wearing the sensor node on their dominant or non-dominant hand. 
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6.4.1 STST assessment for acute FRA 

6.4.1.1 Quantitative analysis  

The optimal set of parameters for the method including the light feature 

was applied for the detection of transitions in the study described in 

chapter 3.1.1. Only validated data that satisfies the defined exclusion cri-

teria (explained in 3.1.2.3) was used for further analysis. In the FRA 

study 5934 hours of validated recordings were created, from which 588 

hours (32.6 hours per participant per week of recording) for the acute 

fallers and 5346 hours for non-fallers (33.0 hours per participant per 

week). The algorithm detected 427 transitions in total for fallers (30.5 

transitions per participant per week). From that number, 64 transitions 

were STW (15.0%), 357 (83.6%) were STSA and only 6 were STSP 

(1.4%). In the same time, the algorithm detected 6587 transitions for 

non-fallers (39.7 transitions per participant per week) from which 989 

were STW (15.0%), 5488 were STSA (83.3%) and 110 were STSP 

(1.7%). Due to the rare occurrence of the STSP in ADL, these transitions 

were analysed together with the STSA.  

Although non-fallers performed in average more transitions, solely the 

number of transitions could not distinguish between the groups 

(p = 0.465). Moreover, the transition patterns (share of each transition 

type) were similar in both groups from the macro perspective. A high 

variability in the number of detected transitions was present for both 

groups (30.5 ± 32.2 and 39.7 ± 45.9 transitions in average for fallers and 

non-fallers respectively). Nevertheless, the number of detected transi-

tions followed the exponential distribution for the groups of fallers (Fig-

ure 46), while for the group of non-fallers this feature was bimodal (a 

mixture distribution was present). 
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Figure 46 The distribution of the number of transitions for acute fallers and non-fallers 

6.4.1.2 Feature analysis 

The feature analysis was performed independently for the acute FRA 

and 6-months FRA. The results were analysed in both cases for all tran-

sitions, as well as separately for dominant and non-dominant hand. For 

each participant and each extracted feature, a mean value based on the 

all transitions within the participant’s measurement period was derived 

and was further used in the statistical analysis. In total, for both FRA 

analyses 17 time and frequency domain features were tested.  

For the acute FRA, the Benjamini-Hochberg correction for multiple com-

parison defined p = 0.050 as the critical p-values for all transitions, dom-

inant and non-dominant hand. The one-sample Kolmogorov-Smirnov 

test rejected a null hypothesis that extracted features have a standard 

normal distribution at 5% significance level, thus a non-parametric Wil-

coxon-Mann-Whitney test was applied. 

After the correction for the multiple comparison, the test applied on all 

detected transitions has shown significant difference between the 

groups for in total five features and some further prominent results for 
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two more time domain features (Table 7). From that number, one fea-

ture was in the time domain and four were in the frequency domain. The 

only time domain feature showing the statistically significant difference 

between acute fallers and non-fallers was median value calculated on 

the signal vector magnitude of the transition (p = 0.026) with higher val-

ues in favour of the non-fallers (µ = 1.007, 95% CI = 1.003-1.011 versus 

µ = 1.003, 95% CI = 0.986-1.022). Despite, as already mentioned, prom-

ising results in previous studies (chapter 5.3.2), the peak value has 

shown no significant difference between the groups (p = 0.054). Never-

theless, considerable higher peak values in the ML and AP direction for 

acute fallers indicate more instability (side movement) while standing 

up and more pushing forward alongside armrests during transfers char-

acteristic for people with lower limb weakness. From the feature con-

cept, the jerk feature looked like a good feature based on the study men-

tioned in the chapter 5.3.2, but it has shown surprisingly poor perfor-

mance for acute FRA, particularly due to very wide confidence intervals.  

Table 7 Feature analysis for acute FRA for all detected transitions 

Do-
main 

Feature 

All detected transitions 

Mean 95% CI 
p-value11 ICC Non-fall-

ers 
Fall-
ers 

Non-fallers Fallers 

T
im

e 

Peak_VT1 0.789 0.756 
0.769-
0.808 

0.686-
0.827 

0.224 0,821 

Peak_AP1 0.917 0.982 
0.899-
0.934 

0.915-
1.051 

0.054 0,910 

Peak_ML1 0.855 0.903 
0.841-
0.869 

0.845-
0.962 

0.108 0,874 

RMS_SVM2,3 1.023 1.019 
1.019-
1.028 

1.001-
1.037 

0.054 0,855 

Median_SVM2 1.007 1.003 
1.003-
1.011 

0.986-
1.022 

0.026* 0,872 

TTFS4 1.816 1.646 
1.764-
1.869 

1.439-
1.853 

0.118 0,852 

AFS5 1.103 1.132 
1.072-
1.134 

0.935-
1.328 

0.915 0,862 

SD6 0.155 0.158 
0.152-
0.158 

0.149-
0.167 

0.103 0,841 

Jerk (10-3) 0.266 0.305 
0.232-
0.301 

0.076-
0.535 

0.915 0,709 

F
re

-
q

u
en

cy
 

Entropy_VT1 5.218 5.125 
5.196-
5.241 

5.029-
5.222 

0.003* 0,789 

Energy_VT1 0.653 0.561 
0.642-
0.665 

0.519-
0.604 

0.002* 0,854 
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FF_SVM8 1.253 1.240 
1.234-
1.272 

1.175-
1.305 

0.915 0,714 

AO_ML1,9 (10-

2) 
0.279 0.250 

0.250-
0.317 

0.201-
0.302 

0.104 0,854 

AO_VT (10-2) 0.243 0.182 
0.212-
0.278 

0.130-
0.235 

0.224 0,781 

AO_AP (10-2) 0.564 0.508 
0.519-
0.613 

0.398-
0.629 

0.164 0,780 

RatioEnergy 12.03 12.56 
11.86-
12.23 

11.62-
13.50 

0.621 0,804 

IH_VT1,10 29.20 22.81 
24.84-
33.55 

18.93-
26.70 

0.026* 0,821 

1VT depicts X axis of the local coordination system of the sensor, AP is the Y axis, 

while ML is the Z axis; 2SVM = Signal Vector Magnitude on which the feature was 

calculated; 3RMS = Root Mean Square; 4TTFS = Time to First arm Swing; 5AFS = 

Amplitude of the First Step; 6SD = Standard Deviation; 7AS = Amount of applied 

Support; 8FF = Fundamental Frequency; 9AO = Amount of Oscillation; 10IH = Index 

of Harmonicity; 11Adjusted for multiple comparison 

Overall speaking for the acute FRA, the frequency domain features have 

shown noticeably better performance. More precisely, entropy in the VT 

direction, energy in the VT direction and IH in the VT direction were all 

significantly higher for the non-fallers (p = 0.003, p = 0.002 and 

p = 0.026, respectively) conforming to previous literature findings and 

starting hypothesis (chapter 5.3.2.2). Once again, the fallers were pre-

sented with more than twice wider confidence intervals 

(95% CI = 5.029-5.222 versus 95% CI = 5.196-5.241 for entropy and 

95% CI = 0.642-0.665 versus 95% CI = 0.519-0.604 for energy) despite 

the considerably smaller number of participants. Although the IH was 

significantly higher for non-fallers depicting the dominance of the first 

harmonic over the following five harmonics in the VT direction of the 

acceleration signal while standing up, the energy ratio could not distin-

guish between the groups. FF was on average also higher for non-fallers 

but without any significance (p = 0.915). 

The analysis of the transitions detected in data acquired only at the 

dominant hand has revealed different features as significant fall risk 

predictor in terms of the sit-to-stand transitions. In total six features, 

from which four time and two frequency domain features, have shown 

statistically significant difference at significance level α = 0.05 between 

the groups (Table 8). The peak values in the AP and ML direction have 
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consistently followed the results from the previous case with even 

higher difference between the groups (µ = 0.498, 95% CI = 0.472-0.525 

and µ = 0.902, 95% CI = 0.786-1.018 for AP and µ = 1.017, 

95% CI = 0.992-1.042 and µ = 0.901, 95% CI = 0.805-0.998 for peak val-

ues in ML direction). The results have also shown significantly higher 

peak values in the ML direction than in the AP direction for non-fallers 

(p < 0.001), whereas for fallers the movement was equally distributed 

(p = 0.737) yielding more unstable transition patterns while standing 

up. Both, median and RMS values were significantly higher for acute fall-

ers (p = 0.003 and p = 0.004, respectively) with correspondingly wide 

confidence intervals (95% CI = 0.962-1.018 and 95% CI = 0.978-1.036, 

respectively). Interestingly, although the TTFS was slightly higher for 

non-fallers than for acute fallers, the amplitude of the first arm swing 

following the transfer reflected throughout the AFS feature was higher 

in fallers but without any statistical significance (p = 0.296 for both fea-

tures).  

Table 8 Feature analysis for acute FRA for transitions detected at the dominant hand  

Do-
main 

Feature 

Dominant hand transitions (7 fallers, 82 non-fallers) 

Mean 95% CI 
p-value11 ICC Non-fall-

ers 
Fall-
ers 

Non-fallers Fallers 

T
im

e 

Peak_VT1 0.631 0.739 
0.597-
0.665 

0.624-
0.853 

0.172 0,796 

Peak_AP1 0.498 0.902 
0.472-
0.525 

0.786-
1.018 

< 0.001* 0,806 

Peak_ML1 1.017 0.901 
0.992-
1.042 

0.805-
0.998 

0.044* 0,845 

RMS_SVM2,3 1.003 1.007 
0.995-
1.011 

0.978-
1.036 

0.004* 0,841 

Median_SVM2 0.988 0.991 
0.980-
0.995 

0.962-
1.018 

0.003* 0,870 

TTFS4 1.686 1.554 
1.591-
1.780 

1.264-
1.846 

0.296 0,875 

AFS5 1.012 1.214 
0.955-
1.068 

0.853-
1.575 

0.296 0,888 

SD6 0.153 0.164 
0.148-
0.158 

0.148-
0.181 

0.172 0,782 

Jerk (10-3) 0.075 0.540 
0.018-
0.131 

0.076-
0.104 

0.142 0,635 

F
re

-
q

u
en

cy
 

Entropy_VT1 5.142 5.043 
5.099-
5.183 

4.886-
5.199 

0.034* 0,782 

Energy_VT1 0.577 0.546 
0.558-
0.595 

0.480-
0.612 

0.419 0,785 



Sit-to-stand transition assessment 

130 

FF_SVM7 1.255 1.276 
1.221-
1.289 

1.167-
1.385 

0.375 0,681 

AO_ML1,8 (10-

2) 
0.344 0.317 

0.285-
0.402 

0.231-
0.409 

0.172 0,907 

AO_VT (10-2) 0.317 0.234 
0.246-
0.391 

0.120-
0.355 

0.172 0,748 

AO_AP (10-2) 0.686 0.635 
0.580-
0.796 

0.407-
0.862 

0.427 0,752 

RatioEnergy 12.15 12.77 
11.77-
12.55 

11.17-
14.38 

0.727 0,791 

IH_VT1,9 27.12 18.44 
24.86-
29.39 

16.20-
20.70 

0.030* 0,796 

1VT depicts X axis of the local coordination system of the sensor, AP is the Y axis, 

while ML is the Z axis; 2SVM = Signal Vector Magnitude on which the feature was 

calculated; 3RMS = Root Mean Square; 4TTFS = Time to First arm Swing; 5AFS = 

Amplitude of the First Step; 6SD = Standard Deviation; 7FF = Fundamental Fre-

quency; 8AO = Amount of Oscillation; 9IH = Index of Harmonicity; 11Adjusted for 

multiple comparison 

In contrary to the feature analysis performed on all detected transitions, 

analysis only on the dominant hand has shown lower number of fea-

tures in the frequency domain that can significantly separate acute fall-

ers from non-fallers. More precisely, only entropy and IH in the VT di-

rection has shown good performance in this particular case (Table 8). 

This just repeats the findings from previous analysis (Table 7). Both fea-

tures were significantly higher (p = 0.034 and p = 0.030 for entropy and 

IH, respectively) for non-fallers than for fallers (µ = 5.142, 

95% CI = 5.099-5.183 versus µ = 5.043, 95% CI = 4.886-5.199 and 

µ = 27.12, 95% CI = 24.86-29.39 versus µ = 18.44, 95% CI = 16.20-20.70 

for entropy and IH, respectively). As the most noticeable change in com-

parison to the previous analysis, the FF feature was slightly higher 

(p = 0.375) for fallers than for non-fallers, but without any significance, 

which can mainly be ascribed to high variability (i.e. wide confidence 

intervals) in the feature values. 

Table 9 Feature analysis for acute FRA for transitions detected at the non-dominant hand  

Do-
main 

Feature 

Non-dominant hand transitions (7 fallers, 84 non-fallers) 

Mean 95% CI 
p-

value11 
ICC Non-fall-

ers 
Fallers Non-fallers Fallers 

T
i

m e Peak_VT1 0.878 0.770 
0.855-
0.902 

0.681-
0.859 

0.045* 0,807 
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Peak_AP1 1.155 1.045 
1.136-
1.174 

0.964-
1.126 

0.274 0,901 

Peak_ML1 0.763 0.905 
0.747-
0.778 

0.833-
0.977 

< 0.001* 0,863 

RMS_SVM2,3 1.035 1.028 
1.031-
1.040 

1.005-
1.052 

0.332 0,835 

Median_SVM2 1.019 1.0147 
1.014-
1.023 

0.992-
1.038 

0.159 0,849 

TTFS4 1.889 1.738 
1.828-
1.951 

1.434-
2.041 

0.473 0,824 

AFS5 1.154 1.049 
1.117-
1.190 

0.876-
1.222 

0.614 0,808 

SD6 0.156 0.154 
0.152-
0.159 

0.144-
0.164 

0.332 0,888 

Jerk (10-3) 0.376 0.125 
0.332-
0.419 

0.068-
0.318 

0.331 0,773 

F
re

q
u

en
cy

 

Entropy_VT1 5.262 5.189 
5.237-
5.287 

5.067-
5.311 

0.092 0,799 

Energy_VT1 0.697 0.573 
0.683-
0.712 

0.518-
0.629 

< 0.001* 0,882 

FF_SVM7 1.252 1.213 
1.229-
1.274 

1.133-
1.292 

0.424 0,775 

AO_ML1,8 (10-

2) 
0.242 0.198 

0.212-
0.270 

0.142-
0.256 

0.473 0,756 

AO_VT (10-2) 0.201 0.142 
0.175-
0.233 

0.115-
0.176 

0.614 0,807 

AO_AP (10-2) 0.495 0.409 
0.457-
0.538 

0.329-
0.491 

0.332 0,823 

RatioEnergy 11.96 12.40 
11.72-
12.19 

11.29-
13.51 

0.613 0,824 

IH_VT1,9 30.38 26.18 
23.66-
37.09 

19.53-
32.83 

0.422 0,806 

1VT depicts X axis of the local coordination system of the sensor, AP is the Y axis, 

while ML is the Z axis; 2SVM = Signal Vector Magnitude on which the feature was 

calculated; 3RMS = Root Mean Square; 4TTFS = Time to First arm Swing; 5AFS = 

Amplitude of the First Step; 6SD = Standard Deviation; 7FF = Fundamental Fre-

quency; 8AO = Amount of Oscillation; 9IH = Index of Harmonicity; 11Adjusted for 

multiple comparison 

Another perspective on the sit-to-stand transitions was provided by the 

analysis of features extracted from the non-dominant hand (Table 9). 

The peak-based features show good performance as for the dominant 

hand, whereas RMS and median features show no significant difference 

between acute fallers and non-fallers. The peak values in the VT direc-

tion show significantly higher values for non-fallers (p = 0.045), while in 

the ML direction the findings are consistent with the dominant hand. 

The TTFS is for the non-dominant hand significantly higher than for the 

dominant hand (p < 0.001 for both, fallers and non-fallers). Moreover, 
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for the non-dominant hand both, TTFS and AFS are slightly higher for 

non-fallers. In the frequency domain only energy in the VT direction 

shows significant difference between two defined groups. Hence, the en-

tropy also shows tendencies as for the dominant hand with higher val-

ues for the non-fallers (µ = 5.262, 95% CI = 5.237-5.287 versus 

µ = 5.189, 95% CI = 5.067-5.311). 

6.4.2 STST assessment for 6-months based FRA 

6.4.2.1 Quantitative analysis  

The quantitative analysis for 6-months based FRA was performed under 

same conditions as for the acute fallers (chapter 6.4.1). In total 5301 

hours of recordings were analyzed, from which 1546 hours of data was 

generated by fallers and 3755 hours by non-fallers. Compared to the 

acute FRA, decreased number of participants was included into analysis 

due to insufficient number (less than six) of submitted fall diaries. The 

algorithm detected in total 6482 sit-to-stand transitions. Fallers per-

formed in total 1678 transitions or 35.7 transitions per participant per 

week, whereas non-fallers performed considerably more (p = 0.109) 

transitions (4804 transitions in total or 49.0 transitions per participant 

per week). Looking at the transition types, their distribution resembles 

one in acute FRA (Figure 47). Namely, for non-fallers the most of transi-

tions belongs to STSA type (4003 or 83.3%), minimal amount to STSP 

(88 or 1.8%) and as in acute FRA similar amount to STW (713 or 14.8%). 

The analysis for fallers brought 1429 STSA (85.2%), 20 STSP (1.2%) and 

229 STW (13.6%). 
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Figure 47 Distribution of transition types for 6-months based fallers and non-fallers 

Occurrence of the transition types was similar between the groups, as 

well as in the acute FRA. High variability in the number of detected tran-

sitions was also present here. The distribution of the number of detected 

transitions per participant per week followed again an exponential dis-

tribution for fallers, whereas in the group of non-fallers this distribution 

was bimodal (p < 0.001 in both cases) as shown in the figure below (Fig-

ure 48). 
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Figure 48 The distribution of the transition occurrence for 6-months based FRA 
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6.4.2.2 Feature analysis  

The 6-months based FRA analysis of extracted features is shown in this 

chapter. Firstly, all participants, disregarding on which hand they wore 

the sensor node, were considered for the analysis. The results are shown 

consistently with the results for the acute FRA in chapter 6.4.1.2. After 

the correction for the statistical type I error in total seven features have 

shown significant difference between the fallers and non-fallers, from 

which four features derived in the time domain and two in the frequency 

domain. Peak values for all detected transitions show consistency with 

finding for acute fallers (6.4.1.2), where peak values in AP direction are 

significantly lower for fallers (p < 0.001), whereas peak values in the ML 

direction are significantly higher for the same group (p = 0.003). More-

over, median value calculated over the signal vector magnitude is signif-

icantly higher for non-fallers (p = 0.024), showing the remarkable con-

sistency with previous findings for acute fallers. In this case the Wil-

coxon-Mann-Whitney test has also shown difference for the SD feature 

(p = 0.009) (Table 10).      

Analysis of the features implemented in the frequency domain has also 

shown good performance. Both, energy and entropy were significantly 

higher for the non-fallers than for the fallers (p = 0.049 and p = 0.048, 

respectively). The IH in the VT direction was, on the other hand, signifi-

cantly higher for fallers (µ = 37.36, 95% CI = 15.02-59.72 versus 

µ = 27.44, 95% CI = 26.13-28.74 with p = 0.020), which is opposing pre-

vious findings (chapter 6.4.1.2). Although, the FF feature has not shown 

significant difference between the groups, it was again slightly higher 

for non-fallers. On top of that, all significant features have been shown 

as robust measures in terms of the FRA with high intra-test reliability 

(ICC > 0.750). 

Table 10 Feature analysis for 6-months FRA for all detected transitions 

Do-
main 

Feature 

All detected transitions (35 fallers, 110 non-fallers) 

Mean 95% CI 
p-value11 ICC Non-fall-

ers 
Fall-
ers 

Non-fallers Fallers 

T
i

m e Peak_VT1 0.797 0.772 
0.775-
0.819 

0.729-
0.814 

0.698 0.807 
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Peak_AP1 0.949 0.839 
0.930-
0.969 

0.801-
0.879 

< 0.001* 0.917 

Peak_ML1 0.844 0.892 
0.829-
0.860 

0.860-
0.923 

0.003* 0.864 

RMS_SVM2,3 1.028 1.020 
1.023-
1.032 

1.010-
1.030 

0.315 0.843 

Median_SVM2 1.012 1.004 
1.008-
1.016 

0.994-
1.014 

0.024* 0.860 

TTFS4 185.3 176.1 
1.796-
1.911 

1.634-
1.888 

0.368 0.832 

AFS5 1.126 1.109 
1.092-
1.161 

1.028-
1.190 

0.776 0.822 

SD6 0.153 0.157 
0.150-
0.157 

0.151-
0.163 

0.009* 0.871 

Jerk (10-3) 0.270 0.230 
0.232-
0.308 

0.147-
0.313 

0.181 0.692 

F
re

q
u

en
cy

 

Entropy_VT1 5.246 5.197 
5.223-
5.269 

5.144-
5.250 

0.049* 0.750 

Energy_VT1 0.661 0.629 
0.648-
0.674 

0.602-
0.655 

0.048* 0.842 

FF_SVM7 1.257 1.215 
1.235-
1.279 

1.177-
1.253 

0.315 0.633 

AO_ML1,8 (10-2) 0.282 0.235 
0.249-
0.315 

0.200-
0.270 

0.204 0.860 

AO_VT (10-2) 0.253 0.171 
0.216-
0.290 

0.149-
0.193 

0.341 0.786 

AO_AP (10-2) 0.560 0.484 
0.514-
0.606 

0.422-
0.546 

0.699 0.815 

RatioEnergy 12.03 12.25 
11.80-
12.27 

11.78-
12.72 

0.311 0.801 

IH_VT1,9 27.44 37.36 
26.13-
28.74 

15.02-
59.72 

0.020* 0.835 

1VT depicts X axis of the local coordination system of the sensor, AP is the Y axis, 

while ML is the Z axis; 2SVM = Signal Vector Magnitude on which the feature was 

calculated; 3RMS = Root Mean Square; 4TTFS = Time to First arm Swing; 5AFS = 

Amplitude of the First Step; 6SD = Standard Deviation; 7AS = Amount of applied 

Support; 8FF = Fundamental Frequency; 9AO = Amount of Oscillation; 10IH = Index 

of Harmonicity; 11Adjusted for multiple comparison 

Secondly, the results for the dominant hand have shown that only three 

features can distinguish between fallers and non-fallers (Table 11). 

More precisely, two features in time domain (peak amplitude in the VT 

and AP direction) and one feature in the frequency domain (IH in the VT 

direction) have shown significant difference (all three with significance 

factor p = 0.047). Lastly and surprisingly, for the participants wearing 

the sensor node on the non-dominant hand, only IH in the VT direction 

has been shown as significant (p = 0.013) and reliable (ICC = 0.830) fea-

ture in terms of the six-months FRA. 
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Table 11 Feature analysis for 6-months FRA for transitions detected at the dominant hand 

Do-
main 

Feature 

Dominant hand transitions (16 fallers, 52 non-fallers) 

Mean 95% CI 
p-value11 ICC Non-fall-

ers 
Fall-
ers 

Non-fallers Fallers 

T
im

e 

Peak_VT1 0.608 0.696 
0.567-
0.649 

0.634-
0.759 

0.047* 0,773 

Peak_AP1 0.474 0.529 
0.442-
0.506 

0.479-
0.579 

0.047* 0,835 

Peak_ML1 1.023 0.984 
0.992-
1.054 

0.936-
1.032 

0.972 0,837 

RMS_SVM2,3 1.002 1.009 
0.993-
1.012 

0.994-
1.024 

0.815 0,814 

Median_SVM2 0.987 0.994 
0.979-
0.996 

0.979-
1.008 

0.972 0,818 

TTFS4 1.674 1.748 
1.560-
1.788 

1.534-
1.961 

0.586 0,854 

AFS5 1.033 1.037 
0.963-
1.102 

0.907-
1.168 

0.972 0,908 

SD6 0.151 0.154 
0.145-
0.157 

0.146-
0.162 

0.082 0,757 

Jerk (10-3) 0.063 0.774 
0.009-
0.135 

0.026-
0.181 

0.586 0,583 

F
re

q
u

en
cy

 

Entropy_VT1 5.153 5.184 
5.104-
5.203 

5.106-
5.262 

0.712 0,702 

Energy_VT1 0.584 0.560 
0.562-
0.606 

0.523-
0.598 

0.503 0,749 

FF_SVM7 1.273 1.182 
1.229-
1.317 

1.127-
1.237 

0.389 0,584 

AO_ML1,8 (10-

2) 
0.383 0.261 

0.299-
0.472 

0.198-
0.320 

0.357 0,912 

AO_VT (10-2) 0.367 0.183 
0.265-
0.465 

0.140-
0.236 

0.357 0,760 

AO_AP (10-2) 0.729 0.504 
0.607-
0.853 

0.413-
0.598 

0.357 0,794 

RatioEnergy 11.95 12.77 
11.46-
12.44 

11.96-
13.59 

0.147 0,781 

IH_VT1,9 28.51 24.25 
25.52-
31.50 

20.10-
28.39 

0.047* 0,773 

1VT depicts X axis of the local coordination system of the sensor, AP is the Y axis, 

while ML is the Z axis; 2SVM = Signal Vector Magnitude on which the feature was 

calculated; 3RMS = Root Mean Square; 4TTFS = Time to First arm Swing; 5AFS = 

Amplitude of the First Step; 6SD = Standard Deviation; 7AS = Amount of applied 

Support; 8FF = Fundamental Frequency; 9AO = Amount of Oscillation; 10IH = Index 

of Harmonicity; 11Adjusted for multiple comparison 
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Table 12 Feature analysis for 6-months FRA for transitions detected at the non-dominant 

hand 

Do-
main 

Feature 

Non-dominant hand transitions (19 fallers, 58 non-fallers) 

Mean 95% CI 
p-value11 ICC Non-fall-

ers 
Fall-
ers 

Non-fallers Fallers 

T
im

e 

Peak_VT1 0.881 0.835 
0.855-
0.906 

0.778-
0.892 

0.811 0.801 

Peak_AP1 1.160 1.102 
1.139-
1.181 

1.051-
1.152 

0.207 0.891 

Peak_ML1 0.765 0.813 
0.748-
0.782 

0.773-
0.853 

0.286 0.846 

RMS_SVM2,3 1.039 1.029 
1.034-
1.044 

1.016-
1.043 

0.811 0.812 

Median_SVM2 1.023 1.013 
1.018-
1.027 

0.999-
1.026 

0.811 0.838 

TTFS4 1.934 1.770 
1.869-
1.998 

1.610-
1.930 

0.290 0.811 

AFS5 1.169 1.158 
1.130-
1.207 

1.054-
1.261 

0.811 0.809 

SD6 0.155 0.159 
0.151-
0.158 

0.152-
0.167 

0.080 0.881 

Jerk (10-3) 0.362 0.359 
0.318-
0.406 

0.235-
0.484 

0.900 0.717 

F
re

q
u

en
cy

 

Entropy_VT1 1.475 1.461 
1.465-
1.485 

1.436-
1.487 

0.811 0.799 

Energy_VT1 0.695 0.686 
0.680-
.0711 

0.649-
0.724 

0.811 0.876 

FF_SVM7 1.250 1.242 
1.225-
1.274 

1.191-
1.294 

0.958 0.702 

AO_ML1,8 (10-

2) 
0.237 0.213 

0.207-
0.276 

0.176-
0.254 

0.900 0.755 

AO_VT (10-2) 0.202 0.161 
0.173-
0.232 

0.142-
0.181 

0.811 0.806 

AO_AP (10-2) 0.485 0.468 
0.448-
0.528 

0.383-
0.559 

0.811 0.845 

RatioEnergy 12.07 11.81 
11.81-
12.33 

11.27-
12.34 

0.901 0.705 

IH_VT1,9 
23.90 23.75 

23.12-
24.68 

21.02-
26.47 

0.013* 0.830 

1VT depicts X axis of the local sensor system, AP is the Y axis, while ML is the Z axis; 
2SVM = Signal Vector Magnitude on which the feature was calculated; 3RMS = Root 

Mean Square; 4TTFS = Time to First arm Swing; 5AFS = Amplitude of the First Step; 
6SD = Standard Deviation; 7AS = Amount of applied Support; 8FF = Fundamental 

Frequency; 9AO = Amount of Oscillation; 10IH = Index of Harmonicity; 11Adjusted 

for multiple comparison 
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6.4.3 Novel feature analysis 

Preceding the analysis of the novel feature in the FRA study, its valida-

tion was performed on transitions in the pilot study. In this manner, only 

parts of the signal that correspond to actual transitions performed by 

participants were extracted and AS feature was derived from them. The 

start and end points of all performed sit-to-stand transitions were de-

fined based on the clinically defined points from perspective of the par-

ticipant’s torso. These points were detected in the recorded videos and 

correspondingly marked in the signals. The transitions were not ana-

lysed separately based on the type (movement pattern) but rather they 

were divided into transitions performed by fallers and non-fallers. The 

definition of fallers is in this case different from the one used in the FRA 

study (chapter 3.1.1), more precisely a specialized neurologist per-

formed a classification of all participants based on their video record-

ings (i.e. performance during the study protocol).   

The figure below shows an exemplary set of randomly selected 18 dif-

ferent sit-to-stand transitions (nine performed by fallers and nine by 

non-fallers). An FFT analysis of the wrist-acquired acceleration signal 

during these transitions was performed and the oscillation spectrum 

analysis for the AS feature between seven and 40 Hz is shown (Figure 

49). The blue lines depict fallers, whereas the red lines depict non-fall-

ers. On the first sight it is apparent from the picture the dominance of 

high amplitudes in this spectrum from transition performed by non-fall-

ers. In order to give this observation a numerical description, a statisti-

cal Mann-Whitney test was applied on the AS feature derived from all 

transitions for fallers and non-fallers. AS feature was significantly higher 

(p = 0.031) for non-fallers than for fallers (µ = 0.0052 and µ = 0.0028 for 

non-fallers and fallers, respectively).  



Results 

139 

10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Non-fallers

Fallers

7 - 40 Hz

DFT of the acceleration signal of 18 randomly selected STST

Energy in the “oscillation” spectrum 

calculated during STST.

Frequency, [Hz]

N
o
rm

a
li
z
e
d

a
m

p
li
tu

d
e

A
m

o
u
n
t 
o
f 
a
p
p
li
e
d
 s

u
p
p
o
rt p = 0.03

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

Non-fallers Fallers

7

FallersNon-fallersA
m

o
u

n
t 

o
f 

a
p

p
lie

d
 s

u
p

p
o

rt

Frequency, [Hz]

N
o

rm
a

liz
e

d
 a

m
p

li
tu

d
e

Energy in the oscillation 
spectrum calculated during STST

7-40 Hz

 

Figure 49 AS feature derived from the transitions performed within the pilot study 

The newly proposed feature showed significant difference between the 

groups for all detected transitions (p = 0.034), as well as only for the 

non-dominant hand (p < 0.001), whereas for the dominant hand it 

showed no statistically significant distinction (p = 0.251) (Table 13). 

The AS feature was higher for non-fallers for all analysed transitions 

(µ = 0.512 versus µ = 0.472) and especially for the non-dominant hand 

(µ = 0.476 versus µ = 0.351), while for the dominant hand it was higher 

for fallers (µ = 0.629 versus µ = 0.574) but without any significance. Fur-

ther analysis of this feature shows significantly more applied support at 

the dominant hand than at the non-dominant hand (Figure 50) for both, 

fallers (p = 0.091) and non-fallers (p = 0.014). In the most extreme cases 

the fallers have applied twice as much support at the dominant hand 

than at the non-dominant. The test retest reliability of the implemented 

feature has shown credible values between the days (ICC > 0.750 for all 

three cases). 
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Table 13 Acute FRA analysis of the AS feature for all three cases 

Feature Hand 
Mean 95% CI 

P-value ICC Non-fall-
ers 

Fallers Non-fall-
ers 

Fallers 

AS1 

All (10-2) 0.512 0.472 0.474-
0.550 

0.312-
0.632 

0.034 0.819 

Dominant 
(10-2) 

0.574 0.629 0.487-
0.663 

0.265-
0.991 

0.251 0.776 

Non-dom-
inant (10-

2) 

0.476 0.351 0.445-
0.508 

0.302-
0.400 

< 0.001 0.830 

1Amount of applied Support 
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Figure 50 Analysis of the AS feature in terms of the acute FRA 

The AS feature proposed in the chapter 5.3.2.3 shows no significance be-

tween the groups in 6-months based FRA, despite very good perfor-

mance for the acute FRA (Table 14). Nevertheless, it was still slightly 

increased for non-fallers in all three cases (while analysing all transi-

tions, as well as only for the transitions analysed at dominant and 

non-dominant hand) with considerably high reliability throughout the 

measurement week (ICC > 0.800), even slightly higher than for the acute 

FRA. While for the group of fallers has shown uniform distribution be-

tween applied support from the dominant and non-dominant hand 

(p = 0.344), non-fallers have applied significantly more support at their 
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dominant hand while standing up (p < 0.001). These results consistently 

follow the findings for the acute FRA for the novel feature.  

Table 14 Six-months based FRA analysis of the AS feature for all three cases 

Feature Hand 
Mean 95% CI 

P-value ICC Non-fall-
ers 

Fallers Non-fall-
ers 

Fallers 

AS1 

All (10-2) 0.524 0.411 0.479-
0.570 

0.380-
0.442 

0.090 0.823 

Dominant 
(10-2) 

0.633 0.404 0.508-
0.758 

0.353-
0.456  

0.800 0.807 

Non-dom-
inant (10-

2) 

0.477 0.417 0.442-
0.511 

0.379-
0.454 

0.509 0.832 

1Amount of applied support 

6.5 Fall risk assessment - classification 

The final FRA for both, acute assessment as well as for 6-months based 

assessment, was performed throughout classification step by using the 

support vector machine with configuration described in the chapter 

5.4.2. The classification was performed independently for the inter-limb 

features (FRA based on two sensors, wrist- and waist-worn) and for the 

sit-to-stand features (FRA based on only wrist-worn sensor).  

The statistical tests in the chapters 6.1 and 6.3 have yielded the most 

significant features from which only the following ones were chosen 

throughout the forward feature selection process for classification pur-

poses:  

 Acute FRA 

o Inter-limb features: SPV, IC, CC; 

o Gait features: λL,Acc_VT; 

o Sit-to-stand features: energy_SVM; 

 Six-months FRA 

o Inter-limb features: STV, CC; 

o Gait features: λL,Acc_AP, λL,Acc_SVM; 

o Sit-to-stand features: IH_VT, FF_SVM. 
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Classification was also analyzed for all extracted features, but with sig-

nificantly lower results, thus these findings are not shown in the thesis. 

Furthermore, other machine learning techniques such as Random For-

est and Naïve Bayes were tested for these purposes, but with lower per-

formance, so these results are also not published here.    

The AUC for the acute FRA based only on the selected inter-limb features 

was AUCIL = 0.76, for the gait feature it was AUCG = 0.84, whereas for the 

sit-to-stand features the results were slightly lower with AUCSTS = 0.75 

(Figure 51). Comparing other statistical measures of the developed ma-

chine learning model, the results were considerably higher for sensitiv-

ity, specificity and accuracy for the inter-limb features in comparison to 

sit-to-stand features (Table 15). The model based on the gait dynamics 

has shown astonishingly high results. The PPV was high in all three 

cases (PPVIL = 0.98, PPVG = 0.97 and PPVSTS = 0.97), while F1-score has 

shown lower performance for the inter-limb features (F1-scoreIL = 0.76) 

and considerably high results for other two models (F1-scoreG = 0.93 

and F1-scoreSTS = 0.91).  

In comparison with the figures shown in available literature (Ih-

len, 2015, Schooten, 2015, Schooten, 2012 and Cattelani, 2015), the lat-

ter results are exceeding them in good portions. Namely, AUCG of the 

model for gait features is for 0.20 percentage points higher than the 

questionnaire-based FRAT-up score in (Cattelani, 2015). Furthermore, 

it is for 0.13 percentage points higher than the model based on the fea-

tures extracted from the waist-worn device (Schooten, 2012). It also ex-

ceeds considerably (for 0.03 percentage points) the model based on 

combination of sensor-based and questionnaire-based features 

(Schooten, 2015), as well as it slightly outperforms (for 0.01 percentage 

points) the highest literature results in classification of participants at 

higher risk of falling (Ihlen, 2015). Results of other two proposed model 

based on the sit-to-stand and inter-limb features relates accordingly to 

these literature findings.        
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Figure 51 ROC analysis for acute FRA 

Table 15 Classification results for the acute FRA 

                     Feature 
Measure 

Inter-limb Gait Sit-to-stand 

Sensitivity 0.65 0.90 0.86 

Specificity 0.79 0.57 0.70 

Accuracy 0.65 0.88 0.85 

NPV1 0.16 0.42 0.38 

PPV2 0.98 0.97 0.97 

F1-score 0.76 0.93 0.91 

AUC3 0.76 0.84 0.75 
1NPV = Negative predictive value; 2PPV = Positive predictive value; 3AUC = Area 

under curve 

Six-months based FRA, on the other hand yields results that are by all 

means worse than classification for acute FRA (Table 16). As in the pre-

vious case, the AUC is the highest for the gait feature (AUCG = 0.72) and 

intermediate good for the inter-limb and sit-to-stand features 

(AUCIL = 0.69 and AUCSTS = 0.64) (Figure 52). The F1-score diverged 
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throughout the models (F1-scoreG = 0.86 versus F1-scoreIL = 0.72 ver-

sus F1-scoreSTS = 0.77). The biggest drop in comparison to the acute FRA 

can be seen in classification specificity (specificityG = 0.20, specific-

ityIL = 0.55 and specificitySTS = 0.33, for the gait, inter-limb and STST fea-

tures respectively) and in the number of correctly identified fallers 

(PPVG = 0.80, PPVIL = 0.78 and PPVSTS = 0.72). On the other hand, sensi-

tivity is similar for 6-months based analysis and the acute FRA, whereas 

accuracy of developed models decreased (accuracyIL = 0.64, accura-

cyG = 0.77 and accuracySTS = 0.66). In general, there is a clear tendency 

for good results in the gait-based model, with promising performance of 

the model based on the sit-to-stand features.  

Inter-limb features

Gait features

Sit-to-stand features

AUC = 0.67

AUC = 0.68
AUC = 0.72

 

Figure 52 ROC analysis for 6-months FRA 

Table 16 Classification results for the 6-months FRA 

                     Feature 
Measure 

Inter-limb Gait Sit-to-stand 

Sensitivity 0.68 0.93 0.83 

Specificity 0.55 0.20 0.33 

Accuracy 0.64 0.77 0.66 
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NPV1 0.44 0.50 0.51 

PPV2 0.78 0.80 0.72 

F1-score 0.72 0.86 0.77 

AUC3 0.68 0.72 0.67 
1NPV = Negative predictive value; 2PPV = Positive predictive value; 3AUC = Area 

under curve 

6.6 Summary 

The results performed on large scale of participants in the cross-sec-

tional FRA study are clearly showing that the proposed methods do not 

just offer an alternative solutions for non-stigmatized assessment of the 

fall risk in the home setting, but also they fully overcome limitations of 

clinical tests and propose a reliable clinical application of wrist-bands in 

terms of highly acute and 6-months based FRA in the geriatric popula-

tion. Moreover, the findings further boost the understanding of human 

movement from the wrist perspective and offer first descriptive 

measures for clinically novel group of acute fallers.  

The chapter 6.1 confirms the previous knowledge about the reduced in-

ter-limb coordination in the population at risk of falling, but in broader 

spectrum of movement (i.e. uncontrolled home environment) and with 

significantly reduced number of sensors. Despite the high variability in 

one’s performance throughout the measurement week, SPV, IC and CC 

features have shown robustness and high reliability in terms of acute 

FRA. As already noted in the pilot study, YC feature due to reduced hip 

rotation could not identify highly acute fallers in ADL. Nevertheless, in a 

more relaxed environment (6-months based FRA), this feature (i.e. pro-

posed approach with the gyroscope sensor) shows remarkable results. 

Confirmation of set up hypotheses (chapter 5.1) was found in all other 

features that assess lower-limb, as well as upper- to lower-limb coordi-

nation, which emphasizes the importance of the multi-sensor approach 

in critical evaluations. The findings also stress the need for additional 

investigations of inter-limb coordination in ADL, with focus on both, 

dominant and non-dominant hands.  
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Purely gait dynamics assessed on the wrist (6.2) offers exceptional re-

sults for potential clinically relevant applications in terms of highly 

acute and 6-months based FRA. Higher local dynamics for participants 

at risk of falling can be seen independently on which body side the sen-

sor node was worn, suggesting correlation of performance from the 

macro perspective. 

Hyper-parameter optimization by using the exhaustive grid-search 

method has yielded outstanding results in terms of the algorithm’s pre-

cision (6.3.2). An overview of various time and frequency domain fea-

tures has revealed numerous crucial factors for better quantitative and 

qualitative understanding of transition performance from the wrist per-

spective (6.4.1 and 6.4.2). Choice of the hand for this application was 

relevant and has to be taken with caution. Importance of the meaningful 

hand-crafted features above solely statistic features or symbolic context 

recognition based on the deep learning techniques is obvious in re-

quired computational power, but also in keeping interpretation of given 

results possible for technical and non-technical disciplines. These fea-

tures due to their simplicity are possible for implementation in 

real-time systems and offer a wide palette of possibilities for all pro-

posed applications. The results for the novel acute fall risk predictor 

(amount of applied support in the oscillation spectrum) have two signif-

icant perspectives (6.4.3). From the engineering side it offers a measure 

for easy determination of participants at high risk of falling, whereas 

from the clinical perspective it reveals a new area of research and broad-

ens the existing knowledge about the stand-up strategies.     

ROC analysis has shown for acute FRA remarkable results for all three 

proposed models, whereas in the 6-months based FRA it has shown 

comparable results with state-of-the-art findings based on the models 

with waist-derived measures and questionnaire assessments (6.5). The 

models were performing well for the approach on the periodic gait 

movements, as well as for the approach on solely assessment of non-re-

current patterns (i.e. transitions). These findings add value to the debate 
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about the wrist-worn devices in terms of the clinically relevant applica-

tions and open further questions regarding capturing specific move-

ments far from the origin (e.g. translation of movement, cognitive com-

ponent in the whole process, trade-offs and their relevance).   



 

 

7 Discussion 

7.1 Inter-limb coordination assessment  

7.1.1 Quantitative analysis 

Non-fallers have performed 30.4% more walking bouts that were satis-

fying the exclusion criteria from chapter 5.1.2 per participant per week 

than acute fallers. The previous studies have already confirmed slower 

gait speed as an excellent fall risk predictor (Verghese, 2009), which was 

just further confirmed with the findings in this thesis for acute FRA, 

where acute fallers have shown significantly lower average gait speed 

within defined gait bouts than non-fallers. Furthermore, this average 

gait speed was higher for both groups than the one determined for the 

population in the nursing homes (Peel, 2013). Hence, one should not 

disregard the possible error of estimation of the gait speed in the way 

proposed in chapter 5.1.4, which might have influenced the final results. 

There are certainly another methods for the gait speed estimation based 

on the inertial sensors (Song, 2007, Li, 2010 & Hartmann, 2009), as well 

as better sensor position for these purposes (Yang, 2012), so it would 

be also advisory to validate the proposed method with state-of-the-art 

methods in order to eliminate or at least better understand possible in-

fluences on the final results.  

Additionally, a considerable number of short gait bouts (shorter than 

defined exclusion criteria) should also not be disregarded. These bouts 

were not analysed since previous studies have suggested to avoid them 

in ADL due to high variability and low certainty of correct step detec-

tion within them (Schooten, 2014 & Brodie, 2015). Thus, choice of only 

particular gait bouts that are defined as clinically relevant in terms of 

the FRA from perspective of the total length, as well as from the perspec-

tive of the average gait speed yields reliable results but also leaves space 

for improvement.  
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Despite the precaution steps implemented, based on the recent findings 

from the literature, analysis of all gait bouts longer than 10 seconds 

might have included some other activities during the day, like walking 

up or down the hill or taking the stairs, as these events are difficult to 

differentiate based on the accelerometer data (Kwapisz, 2010) used in 

the proposed step detector (5.1.1). Usage of the pressure sensor in these 

cases could have helped to distinguish these events as proposed in 

(Moncada-Torres, 2014), but then this again opens a debate whether it 

would be more indicative to analyse gait bouts only during these more 

fall-prone activities or during normal walking. Some research has al-

ready tried to address this issue but without clear suggestions 

(Rispens, 2015).  

Estimation of the gait speed within each walking bout have one major 

limitation. Namely, the filter used for estimation of the absolute orien-

tation based on the quaternion calculus and inertial sensor outputs 

(Madgwick, 2011) assumed that the accelerometer and magnetometer 

would measure only the gravity and the earth’s magnetic field. As al-

ready experimentally shown in chapter 4.1, these sensor outputs (espe-

cially the magnetometer) can potentially be corrupted with local mag-

netic distortions, but in most applications these disturbances are pre-

sent for only short period of times. Thus, with appropriate filter gains as 

proposed in (Madgwick, 2011) it is possible to minimize the influence of 

environmental distortions on accelerometer and magnetometer, i.e. 

their influence on the estimated orientation during these problematic 

periods is reduced. As a trade-off the filter outputs need certain time to 

converge, so parts of the walking bouts influenced by this divergence 

have to be eliminated from further analysis.   

For the statistical analysis a mean value of the particular feature above 

all gait bouts for particular participant was used, thus averaging the ex-

tremes. The finding in (Rispens, 2015) argue that these extremes might 

be more indicative (but noisy) for high risk of falling (or in this case for 

acute FRA), so the further investigation should address this issue. In or-

der to enable this kind of analysis, a further improvement in the step 
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detection, as well as in gait speed estimation should be performed to en-

sure a high reliability needed for clinically relevant interpretation of the 

results. 

When talking about assessment of one’s inter-limb coordination in ADL, 

approach with continuous activity monitoring during seven consecutive 

days seems reasonable because it covers participant’s leisure, as well as 

work hours (when applicable). Moreover, previous studies have con-

firmed that this period reflects well one’s physical performance as well 

as it offers a reliable statistical analysis. Nevertheless, the sensor system 

used in the study (3.1.2.2) is able to monitor one’s activity for up to 

10 hours. Corresponding to the study design, where the participants 

start wearing the sensor system in the morning after they wake up, the 

late afternoon hours are mostly missing in recordings. This fact can es-

pecially influence participants that are more physically active in the 

later hours (e.g. due to sedentary work obligations or while doing long 

afternoon walks). The problem was addressed by prolonging the battery 

life-time by usage of the low-power microcontrollers in the sensor 

nodes, as well as real-time operating system optimized in terms of the 

energy consumption.  

The study covered the full year, including all four seasons and weather 

conditions. Walking during different weather conditions can be influ-

enced in its duration and intensity as shown in (Klenk, 2011), but on a 

chosen large data set and monitoring period the influence is minimized. 

Also during certain seasons a probability for extreme weather condi-

tions is higher (e.g. iced or slippery ground), but the influence that this 

has on one’s performance was in this study disregarded due to inability 

of reliable estimation of the weather conditions with provided sensor 

systems. Thus, the importance of the environmental context on the in-

ter-limb coordination in terms of the fall risk assessment should be eval-

uated throughout further studies since the influence of the external pa-

rameters on the fall risk is not negligible and might explain why current 

clinical prediction models provide only poor to fair predictive ability 

(Schooten, 2015).    
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7.1.2 Feature analysis 

Although, numerous previous studies have found significant differences 

in the STV between fallers and non-fallers on both, 6-months 

(Schooten, 2015) and 12-month bases (Brodie, 2015 & Rispens, 2014), 

the analysis for the acute FRA yielded no differences between the 

groups, particularly due to wide confidence interval of this gait feature. 

The first assumption for the reason for such a high variability between 

the participants, and thus no significant difference between the groups, 

might be in still insufficient long enough gait bouts, as well as in the in-

fluence of the external factors and activity misclassification as already 

discussed in the chapter 7.1.1. Anyhow, STV has been surprisingly 

shown as a not significant fall risk predictor for acute FRA in ADL, while 

the same features shows considerable changes for the 6-months based 

FRA. 

Another feature describing the bimanual coordination, SPV, has shown 

good performance in both cases. Therefore it just confirms the hypoth-

esis that due to focus on more variable and more affected swing phase 

of the human gait cycle this feature will show more significant difference 

between the groups (Verghese, 2009), especially in more critical assess-

ment of acute fall risk. While usage of the SPV in 6-months FRA is not 

new in the scientific community (Plotnik, 2007), it is a great novel acute 

fall risk predictor. Moreover, the method for SPV calculation proposed 

in chapter 5.1.5 based on the flat foot phase detection shows robustness 

for elderly population with wide level of physical performance.     

While the steps within defined gait bouts were relatively easy to detect, 

the real challenge was to detect the corresponding arm swings in order 

to enable inter-limb coordination assessment. There are numerous rea-

sons for these concerns. The long lasting debate about counting step (i.e. 

arm swing) at the wrist shows that there are definitely some deviations 

between this sensor position and the one at the waist (Tu-

dor-Locker, 2015), especially in the uncontrolled environment (i.e. in 

ADL). More precisely, while the wrist-worn devices have shown consist-

ently less detected steps for all selected gait speeds on the treadmill, in 
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the free-living conditions it has shown significantly more detected steps, 

but with high variability within the studied population (Tudor-Locke, 

2015). Hence, the study in (Korpan, 2015) has shown that even the waist 

is not the best sensor placement for step detection in older adults so 

these results should be interpreted critically.  

A logical train of thoughts opens a question regarding the reasons for 

such findings. Starting from physiological perspective, an arm swing can 

be seen as an integral part of human bipedal walking and in normal gait 

serves for reduction of energy expenditure (Meyns, 2013). Arm swing 

in the normal gait is well correlated with steps (i.e. upper body move-

ment is primarily powered by lower body movement), in which the 

arms act as passive mass dampers that reduce torso and head rotation 

(Pontzer, 2009). However the arm swing detection is in ADL further af-

fected with external variables (such as holding hands somewhere, car-

rying or holding something in hands, with different environmental con-

ditions that affect balance and visual sense) that can cause either re-

duced arm swing or additional swings while walking. Exact influence of 

these external variables on the arm swing still has to be investigated, 

although it has already been shown that the absence of the arm swing 

causes no significant changes in step width or step frequency (Or-

tega, 2008).  

On other hand, various upper extremity dysfunctions could additionally 

affect the reliable arm swing detection in the elderly population. Re-

duced and asymmetrical arm swing is characteristic for PD (Roggen-

dorf, 2012), which is then further associated with fall risk (Deandrea, 

2010) and due to reduction in the signal amplitude causes lower sensi-

tivity in the arm swing detection (i.e. less detected arm swings). Addi-

tional fall-prone groups such as post stroke participants (Ford, 2007) 

and participants affected with other diseases (neurodegenerative dis-

eases) or medical conditions (e.g. hip and arm fractures) would have re-

duced arm swing and therefore can influence the final assessment. Es-

sentially important for the elderly population, reduced arm swing has 
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been shown as a sign of the early frailty (Nakakubo, 2014), which is also 

well correlated with the fall risk.   

The approach proposed in chapter 5.1.6 for detection of the highest 

points in the arm swings while walking with trade-off of rather ignoring 

uncertain swings and corresponding steps than analysing wrong move-

ments throughout the features for upper- to lower-limb coordination 

assessment seems to deliver reliable results. Nevertheless, the results 

should be interpreted with extra caution since the study in (Tu-

dor-Locke, 2015) has shown that even small changes in the filter choice 

can influence significantly detection of steps in ADL. Filter choice for the 

arm swing detector was already discussed in previous publication as 

with its maximally flat response in the band pass area attenuates fre-

quencies that do not correspond to dominant frequency components of 

the human arm swinging while walking (Pozaic, 2015 & Pozaic, 2016).  

Mapping the detected steps to the corresponding arm swings is also a 

critical point here which was successfully overcome by choosing adapt-

able and robust thresholds able to adjust on different gait speed, as well 

as on high time delays between arm swings and corresponding heel 

strikes (i.e. on high upper- to lower-limb imbalance). This is also the 

only point in the algorithm where a search-backward loop was used in 

order to enable detection of the corresponding arm swing prior and af-

ter the heel strikes (i.e. detection of imbalance in both ways), as this is 

of high importance shown in the previous studies of inter-limb coordi-

nation (Stephenson, 2009). A search-backward loop is performed 

within a one-dimensional buffer of total length of one second (corre-

sponding to 100 samples at the chosen sampling frequency), which still 

yields no extra memory load even for embedded devices.    

The added value of this mapping approach was reflected throughout the 

IC feature for both, acute and 6-months based FRA where a significant 

difference between the defined groups was found. The results show con-

siderably higher imbalance for the fallers in ADL and within defined gait 

bouts. Very little studies have previously addressed upper- to 

lower-limb coordination in ADL particularly due to obtrusive technical 
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solutions inconvenient for ubiquitous usage (Wagenaar, 2000, Debaere, 

2001 & Stephenson, 2009), but higher time delays between arm swings 

and corresponding heel strikes (i.e. higher imbalance) is well correlated 

with instable (less smoother) gait which is directly related to higher risk 

of falling (Schaafsma, 2003). Thus, it can be concluded that this fall risk 

predictor follows consistently the current findings in the literature for 

both use cases. Important to notice, this feature is still not affected with 

hip rotation (i.e. method based on the gyroscope signal for discernment 

between left and right steps), but rather focused only on accelera-

tion-based analysis. Narrow confidence intervals for non-fallers just fur-

ther confirm this hypothesis, since variability within their gait bouts for 

this feature is significantly smaller than by fallers, and especially than 

by acute fallers.  

The effects of the rotation in the hip while taking a specific step and its 

variability within studied population has been already shown in the al-

gorithm development section (Figure 23). It is already empirically obvi-

ous from this picture that, although dominant rotation can be seen in the 

hip while taking the ipsilateral step, the amplitude varies a lot. This ef-

fect should be analysed from perspective of the lower-limb and hip mus-

cle weakness, which is not only altered in the elderly population but it 

is also shown as a significant fall risk predictor (Moreland, 2004). A 

strong evidence has been found for a deficit in hip external rotation (i.e. 

the one occurring while taking the ipsilateral step), abduction and hip 

extension strength (directly influencing the signal amplitude) directly 

related to the muscle weakness (Prins, 2009). Certainly, the lower-limb 

and hip muscle weakness can be improved with different exercise pro-

grams such as strength trainings (Seguin, 2003) or Tai-Chi (Woo, 2007), 

but till then a robustness of the proposed method will be challenged and 

thus influence the final outcomes. 

Except the degenerative muscle weakness characteristic in the older 

age, another reason for absence or reduced hip rotation can be history 

of hip fractures, frequent in elderly population (Orwoll, 2009). Further-

more, empirically observed in the pilot study (chapter 3.1.1), a reduced 
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hip rotation was present also in participants with walking aid (particu-

larly walking frame), where also absence or reduction of the arm swing 

occurs. Despite indicated reasons that influence the hip rotation while 

walking, which is critical for discernment between left and right step, a 

clinically relevant and significant results could be extracted from the de-

rived features for the ipsilateral and contralateral upper- to lower-limb 

coordination.   

Contralateral coordination index shows significantly higher time delays, 

as well as more variability in these time delays for acute fallers than for 

non-fallers. In terms of the acute FRA, the YC index shows no signifi-

cance between the groups which can be attributed to lack of reliability 

in hip rotation detection, from reasons listed above. On other hand, YC 

shows significant difference between the groups for the 6-months based 

FRA. This just further supports the latter thesis about hip rotation be-

cause, while acute fallers due to more significant hip and lower-limb 

muscle weakness show poor performance throughout this feature, fall-

ers identified on a 6-months basis have enough muscle power to reflect 

the real added value of the YC feature. The CC feature does not show 

significant difference between the groups, but still points in the right di-

rection. Reasons for absence of the clearer difference might also lie in 

the choice of the side where the sensor system was worn. One can here 

only speculate that participants have predominantly chosen less af-

fected (stronger) side to wear the sensor system, thus time delays in the 

contralateral coordination are smaller between the groups than they 

would be in the other situation.    

With that said, a limitation of the proposed method for upper- to 

lower-limb coordination assessment comes to surface. Namely, alt-

hough the method makes enormous steps in the user-friendliness of the 

sensor system by reducing the number of sensor nodes to only two, it 

still can only evaluate one upper limb. This can be critical in specific sit-

uation such as PD or stroke, where only one side of the body is usually 

dominantly affected with the disease. Nevertheless, the choice of this 
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trade-off yielded negligible influence on the FRA, since the assessment 

spans over both lower limbs.   

Worthy mentioning, when looking at the statistical significance of par-

ticular inter-limb features, a remarkable consistence is shown between 

6-months FRA and results from the sample population published in 

(Pozaic, 2015), despite different reference and size of the analysed pop-

ulation in that publication. Nevertheless, this further supports the high 

reliability of the FRA based on extracted features.              

Additional features (e.g. frequency domain features) or features as-

sessed on daily or even walking bout basis from the macro perspective 

as proposed in (Del Din, 2015), could give added value in distinguishing 

between the groups but in this thesis were not tested since already pro-

posed time domain features yielded satisfying results in terms of both, 

acute and 6-months FRA.   

7.2 Gait analysis 

7.2.1 Local dynamic stability 

The proposed method for assessment of acute risk of falling in ADL with 

the wrist-attached sensor node shows statistically significant differ-

ences for the λL independently on which side the device was worn, as 

well as only for the non-dominant hand. On other hand, for the 6-months 

based FRA the same feature applied on the acceleration signal shows 

differences for the dominant hand and independently on which side the 

sensor node was worn. The λL has been noted as a reliable feature 

throughout the measurement period (seven consecutive days) in all ap-

plications of the wrist-worn acceleration sensor. 

When analysing these two cases separately, it is interestingly to note 

how particular sensor axes could not distinguish between acute fallers 

and non-fallers, whereas their joint contribution (signal vector magni-

tude) has been showing a significant difference between the corre-



Discussion 

157 

sponding groups. The reason for that could lie in the fact that small per-

turbations in faller’s kinematics throughout the walking bouts are 

equally distributed in all three directions. Support for this hypothesis 

can be found in presented tables since acute fallers were consistently 

showing more instability in arm swings while walking than non-fallers 

(in particular sensor axes, as well as in the magnitude). The findings 

have also shown how dominant hand movement is unclear or more pre-

cisely, larger variability is present, thus suggesting focus of analysis of 

λL on the non-dominant hand.  

Critical points such as hand movements that can be misclassified as 

walking or reduced arm swings would lead to decreased number of de-

tected steps, should also be taken into account although in this uncon-

trolled environment within the scope of this work were not separately 

analysed. Situations with walking aid, where arm swings are prevail-

ingly diminished and have nothing or very little to do with actual walk-

ing pattern would disrupt the proposed model. Solution for these situa-

tions can be proposed in detection of the walking aid and inclusion of it 

as an additional external factor in the FRA model.  

The scope of this thesis included also other inertial sensors (gyroscopes 

and magnetometers), but no difference could be found between the 

groups in them. Gyroscope sensor is depicted with less sensitivity, i.e. 

high frequency components of linear movement are less represented in 

the total sensor output. Magnetometer sensor in the current realization 

is too affected with extrinsic magnetometer disturbances, so λL would 

rather be represented with noise than with actual perturbations in hu-

man kinematics.  

Decision to focus only on particular gait bouts (as in inter-limb coordi-

nation assessment in 6.1) is inspired by the will for higher step detection 

reliability (especially from the wrist perspective) and more stable 

meaningful gait. Nevertheless, once the arm swing detectors reach be-

yond current performance it would be definitely of interest to focus also 

on the shorter gait bouts or even on gait initialization in ADL since these 
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events despite high variability could contain hidden pearls of one’s 

physical performance for particular diseases or use cases.  

Short Lyapunov exponent is by default something more sensitive since 

it is focused on the start of a walking phase, but even under these cir-

cumstances it can reliably distinguish between designated groups. Its 

long version proposed in previous studies (Schooten, 2015) could re-

duce the noise and it that case maybe even show possible significant dif-

ferences not only in the magnitude but also in particular sensor axes. 

Disadvantage of this approach is in computational power, but with con-

stant improvement in this field for specific medical applications it might 

be worthwhile.      

Further limitations influenced by the data acquisition that were dis-

cussed in previous chapter 7.1, should not be disregarded but won’t be 

further addressed in this manner. The results extracted from the wrist 

for the λL, despite above mentioned limitations, correspond quantita-

tively with current findings in the literature (Ihlen, 2015 and 

Schooten, 2012) and thus show possible applications of this feature in 

acute and 6-months based FRA.   

7.3 Sit-to-stand transition detection  

7.3.1 Waist to wrist algorithm transfer  

The algorithm proposed in 5.3.1 was based on the transition time esti-

mation previously used in (Bidargaddi, 2007), where it has shown 

promising results for the sensor node attached at the sternum. The 

solely detection of the transitions in provided data with both, wrist- and 

waist-worn sensors, was very high, but it is also a critical point, since 

specificity of the proposed algorithm could not be tested. Namely, auto-

matic segmentation of transitions from the signals from ADL was in this 

case not implemented, since pattern used for estimation of transition 

duration (Figure 26) can be found also in numerous other activities (e.g. 

walking, turning, sitting down, housework activities). Nevertheless, the 
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proposed method causes a trade-off between elimination of the move-

ment artefacts (especially present at the wrist-worn devices) prior and 

directly after the transitions (see chapter 4.2) and the loss of infor-

mation for the transition parts outside local extremes interval.  

The population on which the algorithm was tested corresponds by the 

age very well with the target groups in previous studies (Rispens, 2015, 

Schooten, 2014 & Ihlen, 2015). Moreover, the average reference transi-

tion duration derived from the labelled data is similar to previously 

tested populations in terms of the FRA (Zijlstra, 2012). When looking at 

the whole spectrum of transition durations, moderate association be-

tween both sensor estimates and reference duration is predominantly 

caused by longer transition durations. Estimation of these long transi-

tion durations deviates more from the actual duration than by the short 

transitions due to the increasing transition parts outside extremes in-

terval. In other words, linear relation between phases within extrema 

interval and outside that interval, as proposed in (Bidargaddi, 2007), is 

not preserved anymore so well in these cases. Even non-linear relations 

between these two parts have not yielded considerably better results 

due to high variability in duration of different phases as well as high in-

stability during these long transitions (Millor, 2014). As expected, the 

waist sensor estimates have shown slightly better results than the wrist 

sensor estimates for all transition durations since this sensor is closer 

to the centre of mass where biggest portion of movement during transi-

tion can be caught.      

The proposed method on the other hand shows considerably better per-

formance for transitions shorter than 1.73 seconds (both in the correla-

tion between sensor estimates, as well as in SEE). Moreover, the differ-

ence in SEE for the waist and wrist sensor estimates for short transitions 

is smaller, showing similar algorithm performance independently on 

the sensor position. The previous studies (Doheny, 2013) identified dif-

ferences in transition duration between the fallers and non-fallers that 

are in case of the whole transition spectrum smaller than provided SEE. 

Moreover, the transition duration especially in the group of fallers aims 



Sit-to-stand transition detection 

160 

more for durations that have shown poor performance with this algo-

rithm (Doheny, 2013 & Zijlstra, 2012). Thus, although the method ena-

bles estimation of duration of various types of transitions characteristic 

also for the daily life activities, it is appropriate only for assessment of 

well performing persons.  

Nevertheless, the proposed method revealed three key points that 

steered further development of the algorithm for transition detection in 

ADL. Firstly, the time estimation, especially on the wrist, is not appro-

priate in uncontrolled settings. This is reflected in even higher SEE for 

unsupervised transitions, as well as in transitions from the bed and arm-

chair (Figure 43). The main reason for that is hidden in inability to de-

tect the actual start and end points of the transitions due to overwhelm-

ing noisy movement directly prior and after the transitions. Transitions 

that are rather unnatural (from the chair without armrest by using 

hands for support) have also yielded high SEE due to the hesitation at 

the start of the transition, while common transitions (from the chair 

with armrests by using hands) (Dolecka, 2015) have yielded almost 

50% lower SEE. Whether this directly means that more common transi-

tion patterns are smoother and less influenced by other movement still 

has to be further investigated. Most importantly, these findings have 

clearly shown that analysis of the whole transitions is a rather challeng-

ing task, as well as detection of dominant points in the transfer pattern 

depicted with local extremes in the signal, such as seat-off event, should 

be performed on the well prepared datasets (i.e. further filters for noisy 

movement are necessary).   

Secondly, the analysis of the transition duration has just confirmed pre-

vious findings, which showed significantly longer transitions in the el-

derly population and especially for fallers (Najafi, 2002). Moreover, fall 

risk was well correlated with less steadiness in the ML direction while 

standing up (Millor, 2014), as well as already particular phases of the 

transition movement have shown difference in this elderly population 

(Zijlstra, 2012). Latter mentioned findings are important for support of 

the hypothesis that for assessment of the transitions in the ADL does not 
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necessary has to be performed on the whole duration in order to detect 

participants at risk of falling.     

Lastly, similar performance of the proposed method was found for both 

sensor estimates which further support the hypothesis of the implemen-

tation of the transition detector on the wrist, despite suggestions in the 

previous studies (Mannini, 2013). Furthermore, looking at the 

group-based analysis (Figure 43) the transitions performed without us-

ing hands for support have yielded surprisingly slightly lower SEE for 

the wrist estimates than for the waist sensor estimates. One can also ar-

gue here that in these cases wrist follows the whole body movement 

better than the waist. 

A comprehensive analysis of different transitions had a limitation in in-

ability to analyse the transitions independently for fallers and non-fall-

ers, but these issue was then further addressed in the FRA study. More-

over, other algorithms for transition detection (Najafi, 2002, 

Zijlstra, 2012, Rodriguez-Martin, 2013 & Lugade, 2014), as well as for 

its duration estimation (Giansanti, 2006), were not further tested on the 

data from this pilot study since already proposed method yielded clear 

guidelines for the transition detection in ADL from the wrist acquired 

datasets. 

7.3.2 Wrist perspective 

The focus of the proposed method is on the algorithm precision (i.e. cor-

rect detection of the performed transitions in ADL) rather than on the 

sensitivity (i.e. positive hit rate). The hyper-optimization of the available 

parameters was performed with a robust, but time consuming 

grid-search method in terms of the algorithm precision because of al-

ready explained reasons for the sturdy method for wide physical perfor-

mance of the study population. Thus, although only a portion of the total 

number of performed transition in ADL is detected, findings in 

(Dall, 2010) still enable detection of enough transitions for further anal-

ysis even with low algorithm sensitivity. Dormancy and step detectors 

explained in chapters 5.3.1.2 and 5.1.1 have made this high precision 
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possible, but the influence of the false positives in the analysis should 

not be disregarded. This effect is particularly visible in the comparison 

of the results for the dominant and non-dominant hand already from the 

perspective of the number of features that show significant differences 

between the groups. Lower precision for the dominant hand, caused by 

more chaotically movement that in acceleration signal look like 

sit-to-stand transitions (e.g. writing, cooking, cleaning, turning), has 

consequently caused lower performance of the extracted features. The 

limitation of this approach is in inability to detect the exact extreme 

points of the transfer (as defined in the clinical practice), but approach 

with various different features has overcome this problem. Neverthe-

less, further quantitative assessment of the whole transitions from the 

wrist perspective should be addressed in a controlled setting in order to 

confirm the presented finding in the daily life environment.     

In the above mentioned circumstances, the proposed method has re-

vealed some profoundly interesting research results from the non-am-

bulatory acquired data. Non-fallers have performed more transitions 

than acute and 6-months based fallers, which can be supported with the 

predominantly sedentary behaviour characteristic for the individuals at 

high risk of falling (Thibaud, 2012). Although the macro perspective of 

the transition patterns offers no significant discernment between the 

groups, different phases of specific transitions and their temporal char-

acteristics can already distinguish between various groups and possible 

pathologies (Dolecka, 2015), once they can be reliably detected in ADL. 

Further micro-analysis of different types of transitions, their occurrence 

as well as their influence and correlation with proposed features should 

be addressed in future work since it can further extend the knowledge 

about the group-specific transfer techniques in ADL. 

Taking into consideration that the number of detected transitions is well 

correlated with the number of actually performed transitions since no 

pattern-specific performances in transition detection were found in the 

conducted pilot study (chapter 3.1.1), distribution of the detected num-

ber of transitions shows interesting, but also similar results for both, 
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acute and 6-months based FRA. Namely, non-fallers in both cases have 

bimodal distribution of the number of detected transitions, with further 

peaks between 100 and 150 transitions which fits with clinical findings 

in (Dall, 2010), whereas exponential distribution for fallers shows rapid 

decline in the number of performed transitions suggesting again more 

sedentary behaviour for the groups at risk of falling. Moreover, acute 

fallers were limited with maximum of 100 detected transitions, whereas 

6-months based fallers with 150 or more transition are rather an excep-

tion (i.e. outliners) than a rule. This suggests actually that a solely num-

ber of transitions, or more precisely their distribution, can serve as a 

novel fall risk predictor which reliability should be tested in controlled 

conditions to confirm these preliminary findings.      

7.4 Sit-to-stand transition assessment 

7.4.1 Quantitative and feature analysis 

The quantitative analysis, was performed independently for acute and 

6-months FRA (important for the execution of the statistical type I error 

compensation process). Quantitative analysis can be also understood as 

an evaluation process of numerous extracted features. A number of 

these features both, time- and frequency-domain based, indicated the 

significant difference between acute fallers and non-fallers, as well as 

between 6-months based fallers and non-fallers. The differences were 

found independently of the side of the body (dominant or non-dominant 

hand) where the sensor system was worn. 

When looking strictly on the acute FRA, despite the poor performance 

of the clinical tools that are currently used in assessment of the fall risk 

(habitual gait speed (Stone, 2015), 30 seconds chair rise test 

(Jones, 1999 & Millor, 2013) and history of falls), the proposed method 

based on the assessment of the wrist performance during sit-to-stand 

transitions has overcome this highly complex multifactorial challenge. 

The reason for that lies in the analysis of not only macro perspective of 
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the sit-to-stand transitions but rather on its detailed quantitative as-

sessment enabled throughout different implemented features. From the 

perspective of the statistical analysis, the presented results for the as-

sessment of highly acute fall risk have shown similar significant differ-

ences between the defined groups as the previous studies assessing the 

fall risk either based upon detailed quantitative evaluation of the clinical 

characteristics (stride variability (Hausdorff, 2007)) or features derived 

from the waist-worn devices (local dynamic stability (Schooten, 2012)).  

The differences, although not statistically significant, in the peak ampli-

tudes in the AP and ML direction suggest that findings in the transfer 

techniques between healthy elderly and elderly with dementia (more 

movement and pushing through the armrest while standing up) 

(Dolecka, 2015) could also be applied for detecting of the acute 

fall-prone population. Despite higher peak values in the AP and ML di-

rection, the median value of the acceleration signal indicates overall 

higher acceleration for non-fallers which actually fits with previous 

findings of shorter transition duration for this group (i.e. intensity and 

time are inversely proportional). Moreover, this further means 

smoother transitions for non-fallers, whereas fallers perform these 

transitions with variable movement influenced by sudden twitches in 

the AP and ML directions. In addition to that, the IH feature just confirms 

the dominance of the first harmonic in the relationship to the following 

five for non-fallers, thus showing that oscillations in the acceleration sig-

nal for non-fallers are smaller than for fallers (i.e. movement during 

transfer is smoother). 

Other time-domain features could not differentiate between the defined 

groups (i.e. have shown poor performance). Furthermore, opposite 

from expected, TTFS feature was slightly higher in non-fallers than fall-

ers. From strictly pathological perspective there might be two main rea-

sons for this kind of feature behaviour. Firstly, as already shown in the 

analysis of video recording in the pilot study, as well as in the previous 

studies of the transfer patterns (Dolecka, 2015 & Zijsltra, 2012), hands 

were very often used as support while standing up especially when the 
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armrests were provided. Usage of hands for support entails that less for-

ward trunk rotation is needed in preparation for standing up and as a 

further consequence the end of backward trunk rotation may occur ear-

lier in the sequence of events and therefore affect transition duration 

(i.e. time to first arm swing in STW transitions). Secondly, due to less 

imbalance in transitions for fallers as shown throughout the IH feature 

and consequently less stabilizing trunk movements, shorter TTFS can be 

explained with the need for arm swing in order to regain the balance 

right after the transition. 

Significantly more energy for the non-fallers can be explained with more 

lower and upper limbs strength. This also means that total energy in-

vested in the transition is higher for this group despite the shorter time 

period (i.e. power of transition would depict even higher differences be-

tween the groups). Complexity of the movement, as measured through-

out the entropy from the waist-attached sensor, while standing up was 

significantly higher for groups at higher risk of falling (Fat-

mehsari, 2011). The results for the wrist-worn device show quite the 

opposite behaviour indicating more complex movement patterns for 

non-fallers from the wrist perspective. This would suggest that non-fall-

ers are actually use their hands while standing up more often which can 

be supported with higher rigidity characteristic for elderly at higher risk 

of falling. Second theory is that fallers simply need more support from 

the armrests (or chair itself) so their hands are skin-tight attached to the 

chair, whereas in non-fallers the hands are overwhelmingly firmly 

loosen up next to the body.     

The same features show good performance for the 6-months based FRA 

as for the acute FRA with addition of the SD feature. This shows remark-

able similarity in the transition patterns from the wrist perspective be-

tween acute fallers and 6-months based fallers. Does this consequently 

means that the proposed method based on the implemented feature 

would not be able to differentiate between acute and regular faller is 

still not sure, but what has been already shown in the chapter 3.3 is that 
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being an acute fallers does not automatically means being a recurrent 

faller.  

For investigating whether this novel method shows adequate results for 

discrimination of other specific pathologies in elderly population with 

impaired transitioning (e.g. PD population), the studied population 

might not be entirely suitable for that purposes since there can be sig-

nificant difficulties while standing up as already shown in 

(Zijlstra, 2012). Nevertheless, the robustness of the proposed method is 

obvious throughout the number of features that have shown the differ-

ence between defined groups, as well as throughout more than satisfac-

tory performance in both studied use cases.      

7.4.2 Novel feature assessment 

The novel feature described in the chapter 5.3.2.3, AS, indicates that the 

energy of the applied support while standing up is highly beneficial for 

distinguishing between acute fallers and non-fallers. To emphasize the 

importance of this feature and in the same time avoid the influence of 

other artefacts in the analysis (e.g. false positives detected by the algo-

rithm), the additional experiment performed on the transitions from the 

pilot study have just confirmed the significance of the findings in the 

FRA study (chapter 6.4.3). Namely, when the AS feature is derived only 

from the actual transitions, it still shows significantly more applied sup-

port while standing up for the group of participants that were classified 

as non-fallers by a specialized neurologist, independently on the type of 

the standing up pattern. In one hand, this analysis shows robustness of 

the proposed feature to different types of the sit-to-stand transitions, as 

well as remarkable consistency between the values of the AS feature in 

the pilot and FRA study. Furthermore, these findings also show that the 

influence of false positives on the proposed feature (i.e. its values) is 

negligible, especially for the non-fallers group.  

Motivated by these findings, a further analysis of the upper-limb role in 

a well-known and widely used 5-times-sit-to-stand test, where the arms 
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should be folded across chest (Buatois, 2008), would be considered rea-

sonable. More precisely, the accepted proposal of not using hands while 

standing up, especially during the clinical applications, should be recon-

sidered since from this feature is clearly visible the importance of hand 

support and its influence on the transfer patterns, as well as on the 

transfer performance.  

These findings further supplement the knowledge about the transfer 

strategies in elderly population, showing that non-fallers that have more 

available upper and lower limb strength (Kang, 2012) will apply more 

energy for support while standing up, while being a faller does not au-

tomatically imply more applied support. The findings could be even fur-

ther elaborated by combining the proposed method with the force 

plates in which case the lower-limb weakness can be directly brought 

into relationship with the amount of applied support (i.e. energy in the 

oscillation spectrum) while standing up.  

From the perspective of the wrist, AS feature shows significant differ-

ence in applied support between hands only for non-fallers suggesting 

more uniformly distribution of the applied support in both hands in 

acute fallers (i.e. in people with upper and lower limb weaknesses). This 

is also an important factor for the fall prevention implications since 

some of the strategies have been shown to affect only those parts receiv-

ing interventions (Cadore, 2013), thus suggesting further personalized 

and target-orientated trainings and exercises. Furthermore, wearing the 

sensor at the non-dominant hand provides more distinguishing features 

in terms of the acute FRA, which suggests possible combination of the 

proposed method within a watch (or similar wrist-worn device) in fur-

ther applications for a highly non-stigmatized medical use.  

The 6-months based analysis revealed no significant discernment be-

tween the groups based on this feature despite the fact that non-fallers 

have again consistently showed more applied support than fallers. In 

one hand, this limits the AS feature only as an acute fall risk predictor, 

while on the other hand opens further research questions that could ex-
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plain such behaviour in ADL. If acute fallers can be considered predom-

inantly, but not necessarily, as recurrent fallers (chapter 3.3), the 

lower-limb weakness is thus more emphasized which then conse-

quently means less possibility for applied support while standing up.  

But why is the difference between 6-months based fallers and non-fall-

ers so weak? It is possible that from one side reason for that simply lies 

in the human physical behaviour in the home environment or more pre-

cisely, in the fact that participants are simply not keen enough to apply 

all available power for support while standing up. For sure one can also 

speculate that the reasons for that may lie in the insufficiently high pre-

cision of the algorithm for transition detection that includes then other 

movements (e.g. turning, start of walking, specific household activities) 

from the ADL in the statistical analysis. Occurrence of the hand support 

while standing up in ADL can also play an important role here (both, ab-

solute to the total number of transitions as well as relative ratio between 

fallers and non-fallers). Additionally, the challenges mentioned in chap-

ter 3.1.2.1 (question of a reliable reference) that affect statistical analy-

sis of all features, as well as classification of participants, can have influ-

ence also on this novel feature. Possibility for another compensation 

movements (e.g. hand swinging in the flexion phase) during transfer 

would also make the border between fallers and non-fallers in terms of 

the AS feature fuzzier.      

7.4.3 Dominant versus non-dominant hand 

Very little information is currently available in the literature regarding 

side-dependent analysis of algorithm’s performance in ADL. In one 

hand, that would require inclusion of a large scale of participants or ap-

plication of multi-sensor systems in ADL, which as discussed before is 

impropriate for daily usage. On the other hand, previous findings in the 

literature have always marked wrist as a sensor position with poor or 

low performance. Conventional approaches have been focused on the 

centre of mass, while limbs depicting body extremes were unfairly dis-
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regarded. Encouraged with positive findings in chapter 6.4, in both ap-

plications, an additional sub-chapter was dedicated only to analysis of 

dominant and non-dominant hand on the proposed measures. 

As shown in 6.3.2, choice of hand has significant influence on the algo-

rithm’s performance and consequently on the feature analysis (6.4). Just 

the opposite from the gait feature, the precision for STST detection is 

higher for the non-dominant hand and thus the influence of FP on the 

feature analysis, or more precisely, situations that can be misclassified 

as transitions (such as turning or different house works), is lower than 

for the dominant hand. This fact should be kept in mind when analysing 

the obtained results. 

Nevertheless, more features could reliably distinguish between the 

groups for the dominant than for the non-dominant hand suggesting 

better reflection (or transfer) of the full body capabilities in the domi-

nant hand (and consequently their correct detection), despite higher in-

fluence of noise. These results were consistent for both, acute and 

6-months based FRA (6.4.1 and 6.4.2). Influence of the more distin-

guished group of acute fallers in terms of physical performance was also 

consistently visible in this analysis.  

The question that pops out here is whether the same algorithm can be 

used independently on which side the sensor node is worn. Conven-

tional features does not offer a solution in this case, but AS feature for 

acute FRA sounds as a perfect match. This suggest that not just the level 

of noise in extracted signal parts is high, but also the source of this noise 

is different for the dominant and non-dominant hand. In the non-domi-

nant hand the source comes from less reflection of full body perfor-

mance, whereas in the dominant hand the source of this noise could be 

found in transition’s posteriori movements (i.e. additional signal dy-

namics). The question is also whether some components in this behav-

iour have a direct link with the brain and further with cognitive func-

tionality, which would be definitely interesting to investigate in the next 

steps. Importantly to add, similar features were found as significant for 

acute and 6-months based FRA for the dominant hand, as well as for the 
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non-dominant hand (with emphasize of clearer difference in acute FRA). 

The findings would thus suggest a positive answer on the question from 

the beginning of this section.  

Previously it was also briefly mentioned how different diseases that 

mostly affect one side of the body would be critical for this application, 

especially when considering the geriatric population. Understanding 

the correct source of noise in the transition detection that affects feature 

analysis and correct selection of features could potentially lead to pos-

sible reliable application of this algorithm even in extreme cases, but 

this has to be further confirmed in additional explorative study.              

7.5 Fall risk assessment – classification 

The classification of the acute and 6-months based fallers was per-

formed by using the SVM with RBF kernel and in order to avoid overfit-

ting a 10-fold CV was included in the process. Based on the provided re-

sults in chapter 6.5 it can be concluded that inter-limb coordination, 

non-linear quantitative gait features and sit-to-stand transition assess-

ment in ADL contribute to the prediction of fall risk in both, acute and 

6-months based analysis. The predictive values of the developed ma-

chine leaning models can be compared with the state-of-the-art fall risk 

models (Schooten, 2015 & Ihlen, 2015), especially when looking at the 

acute FRA. Although the results suggest that analysis of the transitions 

in daily life from the wrist perspective provides information on behav-

ioural characteristics and although it is likely for that to have a bearing 

on fall risk, it is not necessarily superior over inter-limb coordination 

assessment based on waist and wrist attached sensor or gait assess-

ments in the laboratory setting in terms of the fall risk prediction.  

For the fall prediction models for transition features, a lower values 

might be also explained by limiting the number of implemented features 

in order to ensure lower significance values for feature addition. With 

the ability of many fall risk related features, the exact selection is sensi-

tive to subtle differences. In addition, subjective parameters (such as fall 
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risk questionnaire) could increase the predictive values of the model 

(Schooten, 2015), but are in this case avoided in order to keep the focus 

on unobtrusiveness and objectiveness of the measured features. More-

over, backwards feature selection process (or any other process) can be 

tested in the future work for the model since in this work they were not 

tested due to limited number of features.    

Precision of the developed models might slightly vary since not exactly 

the same population was used for the model training. Namely, due to the 

long-lasting process of the follow-up phase after the measurement 

week, the number of participants in the 6-months based prediction 

model is lower than for the acute FRA. Thus, although the performance 

of the fall prediction models explained in chapter 6.5 are expressed by 

the AUC as well as with other statistical measures associated to the 

model evaluation, the 6-months FRA would need another update once 

the study (i.e. follow-up phase) is completely finished.   

The classification techniques used for fall prediction models vary 

study-wise but as long as the reference for them follow the same guide-

lines with additional Gaussian noise for deviations in fall reporting, a 

possibility for comparison of the prediction values is justified. In the the-

sis the same technique was used for acute and 6-months FRA, although 

in the acute FRA a problem of imbalanced classes, where presence of 

one class is prevailing (i.e. acute fallers) (Kubat, 1997), is present. The 

number of acute fallers is expected to be below 10% for the elderly pop-

ulation above 65 years old (Li, 2005). The SVM algorithm works well on 

such datasets since class weighting is designed in that way that it deals 

with unbalanced data by assigning higher misclassification penalties to 

training instance of the minority class (He, 2009). Decision trees algo-

rithms perform well on such imbalanced datasets since the splitting 

rules that look at the class attributes can force both classes to be ad-

dressed (He, 2009), but as previously mentioned due to limited number 

of extracted features these techniques were not used in the thesis. The 

importance of the evaluation of the predictive performance of the model 

is important to emphasize as well, since solely investigation of the 
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model’s accuracy is not appropriate measure for imbalanced datasets 

(Nitesh, 2010) and another measures (such as F1-score and AUC) as 

proposed in chapter 5.4.2 are needed. 

The features that were used for modelling were sampled with 100 Hz 

thus covering 99% of frequency components of human movement 

(Karantonis, 2006). The question of lower sampling frequency that re-

duces the energy consumption of the sensor node and thus extends its 

life-time was addressed in the work by applying the features on limited 

frequency spectrums as well as averaging them within small time win-

dows. Nevertheless, the work in (Schlaegel, 2016) argues that the ro-

bustness of some prediction model regarding the sampling frequency 

and its effects on statistical inference is satisfactory, but still a system-

atic mathematically founded framework for the analysis should be ap-

plied. 

In this work only accelerometer-based features were used for model 

training as accelerometry is applicable in large scale studies and widely 

accepted also in the clinical practice, as well as it contributes to the 

low-energy performance of the sensor node. As signal characteristics 

differ throughout various activities in daily life (e.g. angular velocity 

during turning), reliability of the prediction models might be improved 

when deriving additional features from other sensors.   

From strictly pathological perspective regarding the differences in 

model performances, more precisely why the model for acute FRA 

shows better results, two theories are possible to the best of the author’s 

knowledge. Firstly, acute fallers are depicted with more distinct behav-

iour (parameters) in terms of both, inter-limb coordination, gait and 

sit-to-stand transition assessment, as presented in the statistical analy-

sis (chapters 6.1, 6.2 and 6.4). This is contributed with emphasized dif-

ferences in physical conditions (such as upper and lower limb weak-

ness), daily behaviour (increased time spent in the sedentary activities) 

and cognitive impairment (Muir, 2012). Acute fallers should also be dif-

ferentiated from recurrent fallers since the direct reliable association 
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between these two groups was not obvious (chapter 3.3). Second possi-

bility lies in the environmental conditions, in which case participant’s 

behaviour is significantly influenced by extrinsic factors during longer 

period of time within monitored interval. In the analysed study, the 

presence of such situations was noted (e.g. hiking). While there is no or 

very little evidence for acute falling (excluding the extrinsic fall risk fac-

tors), the proposed model offers a valuable insight in this problem 

throughout the upper to lower limb coordination as well as throughout 

the way of standing up in ADL.      

7.6 Summary 

In this chapter a thorough discussion about each point of the work, from 

data acquisition, over algorithm development to validation of proposed 

methods, was presented. All three domains of the algorithm develop-

ment (inter-limb coordination, gait and transitions) were addressed 

firstly separately and afterwards discussed as integral parts of devel-

oped SVM models. In each domain, special attention was given to con-

sideration of presented results in terms of clinical relevance. Questions 

regarding the uncontrolled environment in which the data acquisition 

was performed and numerous unobservable factors that influenced it 

were addressed as well for both, quantitative evaluation and classifica-

tion. 

The global structure of the discussion chapter corresponds to the previ-

ous chapters. In 7.1 a macro analysis of the walking class, as detected 

with proposed step detector, was critically analysed in terms of acute 

and 6-months based FRA. Furthermore, feature performance and criti-

cal points addressing novel approaches (in particular reduction of the 

sensor nodes, detection of the hip rotation and gait speed estimation) 

were addressed. The chapter 7.2 supplements the previous one with ad-

ditional feature assessing local dynamic stability in walking, but with fo-

cus only on the wrist-worn sensor node. Additional macro analysis of 

walking was not given for this feature, but rather just a side-dependent 

analysis of feature performance was discussed. Following chapter (7.3) 
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covers topics about waist to wrist algorithm transfer and different tran-

sition detection approaches applied in the work, as well as influence of 

various extrinsic factors on their performance (environmental lumi-

nance, transition’s posteriori hand movements, frailty). Throughout the 

chapter 7.4 a quantitative assessment of extracted features was dis-

cussed in terms of dominant and non-dominant hand, which yields a 

new perspective of understanding one’s performance in the home set-

ting. Application of these findings on the existing clinical tools was con-

sidered in this chapter as well. The chapter 7.5 analyses developed mod-

els, their correlations with currently available state-of-the-art models 

and influence of study limitations on them.             



 

 

8 Scientific contribution 

The scientific contribution of this research work, as presented in the 

above listed chapters, can be split into two main fields – clinical and en-

gineering. Validation of the developed novel assessment methods and 

cost-effective algorithms, as well as machine learning models on a large 

scale of data acquired in a clinical study enabled immediate objective 

and reliable confirmation of relevance of the proposed approach. Nev-

ertheless, clinical significance of these results for the fall prevention 

strategies with the goal of reduction of fall rate, as well as the number of 

fallers, still has to be confirmed in an additional prospective study.      

8.1 Clinical perspective 

The contribution of this thesis to the clinical community from the au-

thor’s point of view was significant in the few points that will be empha-

sized here accordingly. All highlighted findings were performed on stud-

ies with clinically relevant numbers of participants providing a firm sup-

port for presented interpretations and conclusions. In the work, a novel 

fall risk predictor (amount of applied support in the oscillation spec-

trum for standing up, AS) for identification of acute fallers was pre-

sented, extending the knowledge about the current STST strategies and 

suggesting further consideration of well-known and widely used clinical 

tests.  

Performed video analysis has broaden the understanding of the STST 

strategies in the elderly population, as well as their definition from the 

wrist perspective. Furthermore, a concise definition of different STST 

types from the wrist perspective was given, which opens a completely 

new field for further investigations.  

A remarkable performance of the gait feature λL has showed its robust-

ness in reliable assessment of elderly population by using only the 

wrist-attached sensor node. Investigation of this feature for dominant 
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and non-dominant hand suggested that, despite increased uncertainty 

when detecting walking from sensor data acquired from the wrist, small 

perturbations in the human kinematics can still reliably distinguish be-

tween non-fallers and fallers, both in acute and 6-months based study. 

Clear contribution was made by proposing and identifying a group of 

acute fallers. Their relationship to other groups, as well as characteristic 

performance that they have shown are novel in the field of FRA. Using 

the model for acute FRA it is not just possible to act even faster and tar-

get critical subjects, but also it is enabled to monitor a short-term (on a 

monthly basis) progress of these subjects and influence of proposed fall 

prevention strategies on them. In addition to that, model based on the 

SVM with the RBF kernel confirmed non-linear connection between the 

defined groups (in acute FRA, as well as in 6-months based FRA), as well 

as it has proposed means for their identification based on all three do-

mains (inter-limb, gait and transitions).          

8.2 Engineering perspective 

The engineering community has benefited considerably from the find-

ings of this thesis as well. More precisely, significant optimization of the 

number of sensor nodes for reliable evaluation of the inter-limb coordi-

nation in ADL in terms of the FRA was suggested by using the multi-sen-

sor (accelerometer, gyroscope and pressure sensor) fusion approach. 

This approach enabled new tools for various other applications, such as 

assessment of upper- to lower-limb coordination in PD or other motor 

disorders. It is especially worth to highlight added value of the gyro-

scope sensor in combination with accelerometer for contralateral and 

ipsilateral coordination assessment by using only two sensor nodes. Ad-

ditionally, synchronization of physically distant sensors without net-

work connection or RTC by means of temperature-compensated filtered 

pressure signal with high offset stability has shown very promising re-

sults and it can find its application in numerous other systems affected 

by erroneous sensor readings (in healthcare and industry). 
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Proposed methods for detection of non-recurrent movements, such as 

STST, in the noisy environments, such as ADL, by using combination of 

movement filters (dormancy detectors), extreme analysis (rotation de-

tector) and conventional signal processing techniques has moved the 

boundaries in algorithm development for another step forward. Inclu-

sion of the analysis of the environmental context (luminance) was pro-

posed not to necessary directly understand one’s physical performance, 

but to rather set one’s behaviour in the situational setting and add sup-

plementary information as an input to the algorithm. This novel ap-

proach has shown importance of the situational awareness when ana-

lysing someone’s movement and added value to the algorithm’s perfor-

mance by using something that is already provided at the hand reach 

(without significant increase in the system costs or size).  

Machine learning models based on the SVM have just confirmed an ex-

pected non-linear relationship between the groups suggesting a further 

consideration for mapping of current low-dimensional linear models to 

higher dimensional space with perspective of increased performance. 

Finally, the developed models have shown a possible detection of sub-

jects at risk of falling, independently of the domain of assessment (gait, 

inter-limb coordination or transitions), which suggests their close cor-

relation, enables additional reduction in size of the feature space and 

opens possibility for increase in cost-effectiveness, reliability and con-

sequently clinical applications.      



 

 

9 Conclusion and outlook 

In this chapter, the work carried out in the thesis is summarized. Addi-

tionally, the conclusion is provided by reflecting what was set out to 

achieve and what has been accomplished. At the end, an outlook about 

possible application of the proposed models is given. The main focus of 

the work was on designing SVM-based models with features derived 

from wrist-attached sensor nodes worn in ADL, with emphasize on a 

highly unobtrusive and non-stigmatized approach for FRA. Verily, falls 

are a burning problem in a continuously aging society and means that 

would offer a widely acceptable solution for their prevention are emi-

nently desirable. Additional multi-sensor approach for evaluation of the 

inter-limb coordination was investigated as well, but further considera-

tion of the conventional waist-attached sensor node would not be rec-

ommended since it has not shown added value in terms of the FRA. Nev-

ertheless, findings in this area have yielded scientifically worth men-

tioning results that can find its application also in other areas, such as 

motor disorder progression monitoring or long-term gait and postural 

transition assessment.   

9.1 Conclusion 

To this end, the crux of the thesis lies in two main points that will be 

separately discussed further below: 

 Concepts for assessment of inter-limb coordination, gait and 

STST in ADL; 

 Validation of derived features and developed models in terms of 

statistical significance, accuracy and robustness.     

The first point corresponds prevailingly to the algorithm development 

part (chapter 5). The novel tools that were proposed in all three inves-

tigated domains, despite their limitations elaborated in the discussion, 
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offer not just reliable solutions for the FRA, but also open a broad spec-

trum of new possibilities in other areas.  

In the inter-limb coordination domain, a solution for the precisely clock 

synchronized multi-sensor approach based on the cross-correlation of 

temperature compensated pressure signals of physically distant sensor 

nodes has shown incredible dominance above the currently used 

method with the magnetometer sensor, especially for magnetic-prone 

environments. Moreover, sensor fusion based on the quaternions for the 

actual horizontal gait speed estimation within longer gait bouts, as well 

as further usage of the gyroscope as an added value to the accelerometer 

for the hip rotation detection and consequently step selection were pre-

sented.  

Gait feature short Lyapunov exponent with an optimized step (i.e. arm 

swing) detector was presented. Furthermore, its performance was eval-

uated separately for the participants wearing the sensor node on their 

dominant and non-dominant hand. Although a gait speed estimation for 

analysed gait bouts was not possible with the wrist-attached sensor due 

to poor correlation between arm swings and steps, the local dynamic 

stability was applied on the gait bouts that by their temporal duration 

correspond to the literature.  

Wrist perspective in the STST strategies to the best of the author’s 

knowledge is a novel study that should be further investigated in terms 

of different diseases, but it already gives remarkable insights in the pos-

tural transfers of geriatric population. Proposed combined filter ap-

proach for detection of non-recurrent movements such as STST in ADL 

enhanced with the understanding of the environmental context has 

shown significant improvements against the approach based only on the 

inertial (movement) data. Moreover, performance of such an approach 

was investigated for both, dominant and non-dominant hand.  

Importantly to add, simulation of ADL in a controlled setting with the 

goal of reliable and robust algorithm development of inter-limb coordi-
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nation, gait and STST assessment was presented. This kind of experi-

mental and observational study gave a valuable insight and broaden the 

needed understanding about the investigated topic.        

Second point concerning the validation of derived features and devel-

oped methods is mostly summarized in the chapter 6. The conducted 

analysis on a clinically relevant number of participants has yielded a 

novel fall risk predictor for acute FRA in terms of the STST assessment. 

Furthermore, additional basic features (such as peak amplitude or com-

plexity of the signal expressed as the signal entropy) were identified as 

FRA predictors for the wrist-attached sensor. Robustness of the imple-

mented features via ICC was tested and it has shown a high reliability 

for all features that can considerably distinguish between fallers and 

non-fallers. The findings regarding the side-dependence contribute to 

better understanding and definition of the upper-limb role in the elderly 

population, as well as improve disreputableness of the wrist-worn de-

vices. On top of that, they open a broad spectrum of new additional op-

tions that could be investigated in further studies (e.g. different transfer 

strategies, correlation with other sensor positions, additional sensors 

for better understanding of the environmental context, possible appli-

cations in neurodegenerative diseases that affect motor performance).  

The proposed machine learning models based on the SVM have shown 

high performance for acute FRA that exceeds state-of-the-art results in 

this area. Six-months based FRA models still consistently follow the best 

sensor-based results in the literature, but with slightly reduced perfor-

mance, particularly due to the improper definition of falls and question-

able reliability of ground truth (fall-diaries-based reference). Neverthe-

less, the study may be especially worthwhile for clinicians, as it provides 

tools for better adjustment of the fall prevention strategies, as well as 

for tracking their progress on a regular/monthly basis. Cost-effective 

multifactorial interventions that reduce the rate of falls and the number 

of fallers in hospital setting, could benefit from the proposed models 

since they are orientated on the individually-designed prevention pro-

grams based on the previous assessments.  
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9.2 Outlook 

Except the evident motivation for the work, a reasonable amount of ac-

ceptance of the proposed approach should be present for both, con-

sumer and medical sector. On the one hand, the fact of rapidly rising 

number of wearables, especially in the consumer (non-medical) sector, 

while on the other hand the emphasized desirability for tracking of 

physical performance in both sectors (Figure 53) justify the conducted 

work. In addition to these preliminary findings a brief market research 

was conducted regarding possible applications of the FRA models.   

 

Figure 53 What consumers and clinicians would like to track in ADL 

As a final result of the thesis six different machine learning models (from 

which four are only wrist-based) for acute and 6-months based FRA 

were developed. Their implementation in wrist bands as part of existing 

(e.g. Apple’s iWatch or Fitbit’s fitness wristband) or solely based prod-

ucts seems like a reasonable decision. The user-orientated study fo-

cused on the targeted population has revealed a surprisingly low desire 

for FRA products as solely-based solutions. However, as part of the ex-

isting trackers or more precisely as an additional feature that would be 

supported by a call service centre in case of an emergency rises its ac-

ceptance rate and desirability significantly.  
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To sum up, the proposed unobtrusive non-stigmatized approach for 

FRA can imply crucial changes in the fall prevention strategies such as: 

 Optimization of balance and strength trainings; 

 Avoidance of home hazards and shoe modifications; 

 Drug related modifications and interventions. 

The possible impact of these changes was briefly analysed for the figures 

in Germany (Figure 54). Twenty-one percentage of population in Ger-

many is above 65 years, from which one third is at risk of falling. The 

recent findings have shown that 10% of all falls end up with an injury 

that requires medical attention or even longer hospitalization. Generally 

speaking, average costs for these kind of falls go up to € 32000. Taking 

into account that fall prevention strategies can decrease fall rate for in 

average 35%, a market of approximately € 500 million can be reached 

by the proposed solutions only in Germany.    

 

Figure 54 Market analysis for the FRA
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