
Università degli Studi di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Quantitative Evaluation and
Reevaluation of Security in Services

Leanid Krautsevich

Supervisor

Dr. Fabio Martinelli

October 20, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/19750769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Services are software components or systems designed to support interoperable ma-
chine or application-oriented interaction over a network. The popularity of services
grows because they are easily accessible, very flexible, provide reach functionality,
and can constitute more complex services. During the service selection, the user
considers not only functional requirements to a service but also security require-
ments. The user would like to be aware that security of the service satisfies security
requirements before starting the exploitation of the service, i.e., before the service
is granted to access assets of the user. Moreover, the user wants to be sure that
security of the service satisfies security requirements during the exploitation which
may last for a long period. Pursuing these two goals require security of the ser-
vice to be evaluated before the exploitation and continuously reevaluated during
the exploitation.

This thesis aims at a framework consisting of several quantitative methods for
evaluation and continuous reevaluation of security in services. The methods should
help a user to select a service and to control the service security level during the
exploitation. The thesis starts with the formal model for general quantitative secu-
rity metrics and for risk that may be used for the evaluation of security in services.
Next, we adjust the computation of security metrics with a refined model of an
attacker. Then, the thesis proposes a general method for the evaluation of security
of a complex service composed from several simple services using different security
metrics. The method helps to select the most secure design of the complex service.
In addition, the thesis describes an approach based on the Usage Control (UCON)
model for continuous reevaluation of security in services. Finally, the thesis dis-
cusses several strategies for a cost-effective decision making in the UCON under
uncertainties.

iv

Acknowledgments

First of all, I would like to deeply thank my supervisor Dr. Fabio Martinelli for his
support, suggestions and advices during my work, without him this thesis would not
have been possible.

My further thanks are to the security group of Istituto di Informatica e Telem-
atica, Consiglio Nazionale delle Ricerche for the great scientific environment that
helped me to elaborate my research skills. Special gratitude is to Dr. Artsiom
Yautsiukhin and Dr. Aliaksandr Lazouski for the close collaboration that we had.

I am very thankful to Prof. Pierpaolo Degano and Prof. Francesco Pegoraro for
the organization of “Galileo Galilei” Ph.D. School and for the opportunity to carry
out the research at the University of Pisa. Special thanks are to Prof. Pierpaolo
Degano for his patience and his help in making decisions during the most intricate
moments of my Ph.D. studentship.

I am especially grateful to external reviewers of my thesis Prof. Stefanos Gritzalis
and Prof. Ketil Stølen for their useful feedback.

I thank the research projects EU-FP7-ICT ANIKETOS, EU-FP7-ICT CON-
TRAIL and EU-FP7-ICT NESSoS that partially supported my work.

I would like to thank all my friends that stayed with me and that encouraged
me during my Ph.D. studies.

Last but not least, there are my warm thanks to my parents and my sister that
believed in me all the time.

vi

to Yana

Contents

Abstract iii

Acknowledgments v

Contents ix

List of Figures xi

List of Tables xiii

Nomenclature xv

1 Introduction 1

1.1 Contributions of the Thesis . 3

1.2 Structure of the Thesis . 6

2 Problem Characterization 9

2.1 Background and Terminology . 9

2.2 Objectives . 14

3 State of the Art 17

3.1 Evaluation of Security . 17

3.2 Evaluation of Security in Complex Systems 23

3.3 Reevaluation of Security . 25

3.4 Access and Usage Control . 27

4 Formal Model for Security Metrics and Risk 31

4.1 Metrics in Mathematics and in Computer Security 31

4.2 Formal Model . 33

4.3 Definitions and Analysis of Security Metrics 37

4.4 Definition of Risk . 41

4.5 Discussion . 43

x CONTENTS

5 Modeling Adaptive Attacker’s Behavior 45
5.1 System and Attacker . 45
5.2 Models of Attacker’s Behavior . 48

6 Security Evaluation of Complex Services 53
6.1 Decomposition of Complex Service into Design Graph 53
6.2 Security-aware Selection of Complex Service Design 57
6.3 Interoperability of Services . 59

7 Continuous Reevaluation of Security in Services 61
7.1 Interactions of Service Consumer and Service Provider 61
7.2 Qualitative Risk Assessment for SOA 63
7.3 Reevaluation of Security for Service Consumer 67
7.4 Reevaluation of Security for Service Provider 68

8 Enforcement of Usage Control Policies under Uncertainties 71
8.1 Peculiarities of Usage Control Model 71
8.2 Attribute Model . 73
8.3 Intentional and Unintentional Uncertainties 76
8.4 Correct Policy Enforcement . 79
8.5 Enforcement of Access Control under Uncertainties 80
8.6 Enforcement of Usage Control under Uncertainties 86
8.7 Architecture for Policy Enforcement under Uncertainties 91

9 Validation of Contributions 93
9.1 Formal Model for Security Metrics 93
9.2 Security Evaluation of Complex Services 94
9.3 Continuous Reevaluation of Security in Services 95
9.4 Impact of Uncertainties on Security Decision Making 95

10 Concluding Remarks 97
10.1 Future Work . 98

Bibliography 101

A Computational Problems of Markov Chains 117
A.1 Discrete-time Markov Chain . 118
A.2 Continuous-time Markov Chain . 118
A.3 Convergence of a Markov Chain to the Steady State 120

List of Figures

5.1 A network system . 47
5.2 The attack graph of the network system 48
5.3 The view of the attacker at the first decision epoch 51
5.4 The view of the attacker at the second decision epoch 52
5.5 The view of the attacker at the third decision epoch 52

6.1 A complex service in the BPMN: an on-line shop 55
6.2 The design graph representing the on-line shop 56

7.1 Interactions of a service consumer and a service provider in the SOA 62
7.2 UCON model adapted for the SOA 63

8.1 A reputation attribute model . 75
8.2 Real and observed attribute values 76
8.3 Cost-effective enforcement of access control 86
8.4 Cost-effective enforcement of usage control 91
8.5 Architecture of reference monitor . 92

xii LIST OF FIGURES

List of Tables

4.1 Analysis of validity of security metrics 41

7.1 Qualitative calculation of risks . 66

xiv LIST OF TABLES

Nomenclature

A Set of elements

a ∈ A Element of a set

A := {a : properties of a} Definition of a set

|A| Number of elements in a set

A ⊂ B Subset of a set

A ∪B Union of sets

A ∩B Intersection of sets

A \B Subtraction of sets

A×B Cartesian product

minA Minimal element of a set

maxA Maximal element of a set

a+ b Addition

a− b Subtraction

a · b Multiplication

a
b

Division

Pr[a] Probability of an event

Pr[b|a] Conditional probability

Pr[a ∪ b] Probability of exclusive events

Pr[a ∩ b] Probability of simultaneous events

a ∧ b Logical “and”

a ∨ b Logical “or”

xvi LIST OF TABLES

Chapter 1

Introduction

The modern Internet is oriented to services [9, 19, 36, 127]. The purpose of the
services is to provide some utility to a service consumer. For instance, the services
can be an infrastructure (e.g., disk space, bandwidth), a development platform or
a software tool [111]. We understand services as “a software component or system
designed to support interoperable machine or application-oriented interaction over
a network” [150]. Several advantages make the services popular [29, 128, 169, 173].
The services allow outsourcing complex parts of a business process. The services
can be deployed on an existing infrastructure, thus, there is no need for investments
into a new infrastructure. Moreover, the services have great interoperability, i.e.,
can interact with each other and become a part of complex services.

A service consumer selects a service according to her service requirements among
several offers proposed by service providers. The service consumer starts to look for
an appropriate service analyzing functional aspects of the services. Functional as-
pects of the services are usually described using Web Service Description Language
(WSDL) and published in a service registry by a service provider [138]. Since several
services may have required functionality, the service consumer analyzes non func-
tional aspects of the services (e.g., an average response time of a service) in addition
to functional ones. Non functional aspects of the services are commonly described
in a service level agreement (SLA) template and represent quality of service (QoS)
[112]. After the service consumer selects the service, she starts the exploitation of
the service. The exploitation may last for a long period, e.g, several days or weeks.

An important part of non functional aspects of services is security. We un-
derstand security as “preservation of confidentiality, integrity and availability of
information” [69, 70]. A special attention should be paid to the management of the
security because of several reasons [108, 109]. First, security threats are the source
of possible significant damage both to a service consumer and a service provider.
Second, the number of security threats grows each year even more increasing the
possibility of damage. In this thesis, we consider the security of the services mainly
from the service consumer’s side. The service consumer aims at selecting a service
with the required security level, thus, the security of the service needs to be eval-

2 INTRODUCTION

uated. Then, the service consumers wants to be sure that the security level still
satisfies the requirements during the exploitation of the service. Therefore, the se-
curity of the services needs to be continuously reevaluated during the exploitation
of the service. Evaluation and reevaluation of security in services require sorting out
several theoretical and practical issues which we consider further.

A service consumer requires the security of services to be evaluated during the
selection of a service in order to understand whether security is at a required level.
We consider security evaluation as “process of obtaining evidence of the security
level and performance in systems, products and services” [146]. A possible way to
evaluate security is to exploit general security metrics (e.g., the number of attacks
existing to a system) [145, 162]. There are qualitative and quantitative security
metrics. Qualitative metrics are rather subjective and rough however they are easy
to exploit and to understand. Quantitative metrics allow a more precise evaluation
of the security however the evaluation procedure is more complicated. While several
quantitative metrics were proposed, there is still no general formal model that allows
describing quantitative security metrics. A formal model can help to understand the
actual meaning of the metrics and to analyze the metrics, check their validity, find
overlapping and relations between metrics.

Another approach for the evaluation of security is risk assessment. The main
goal of risk assessment is to compute the amount of possible losses which are caused
by occurrences of various events. The risk assessment has many advantages: the
technique is general enough to be applied to any system, results of the assessment
provide the complete vision of security, it helps to justify investments in security,
and such justification is understandable for company managers. Sometimes the risk
assessment is criticized for providing results with low precision and consuming huge
amount of time [74, 153]. Usage of security metrics contributing into the overall
risk may facilitate the assessment, e.g., may help to make a preliminary assessment.
However, a formalization of risk is necessary to analyze the dependencies between
security metrics and risk.

Easy interoperability allows simple basic services to be composed into more com-
plex ones. Selection of complex services (i.e., their design) also requires the eval-
uation of security. Security of complex services depends on security of all basic
services constituting the complex one. A method for the evaluation of security of
complex services can be based on security metrics values of basic services [108, 109].
The method should allow evaluating security of a complex service on the basis of
different metrics because different metrics can be useful for the evaluation of secu-
rity. In this case, we assume that a value of a certain metric is available for each
simple service constituting the complex one. In addition, the method should allow
mappings between metrics. This is necessary when values of different metrics are
available for different simple services. In this case, the metrics can be mapped to
the needed one, and the value of the needed metric may be derived for the complex
service.

Services stand under constant control of service providers. This allows the ser-

1.1. CONTRIBUTIONS OF THE THESIS 3

vice providers to modify their services promptly in order to meet the needs of service
consumers. The modifications may occur during the exploitation of services because
the exploitation may last for a long period. Thus, functional and non functional as-
pects of services may change during the exploitation. Particularly, the security level
of the services may change. Therefore, it is not enough to evaluate the security of a
service just once before the exploitation starts [12, 107, 136]. The continuous reeval-
uation of the security is required during the exploitation in order to understand the
impact of changes. Recently, the Usage Control (UCON) model [129] was proposed
to control a resource usage during long-lasting interactions. The UCON model
should be adapted for the continuous reevaluation of security in services during the
exploitation.

The evaluation of security is followed by security decisions that aim at improving
security. The security evaluation and, thus, the security decisions highly depend on
the input data [96, 122, 131]. The example of input data are security preferences
of a service provider (e.g., encryption mechanisms currently used by the service
provider). The data should be correct and trustworthy, in addition data should
be timely delivered for the continuous reevaluation of security. In a distributed
environment like a service-oriented architecture (SOA), the data may be delivered
with delays, may be intentionally or unintentionally corrupted, i.e., the data used for
the security decisions, may be uncertain. A method for making security decisions
should take into account possible uncertainties of the input data. Moreover, the
continuous query of data is sometime impossible due to limited resources of a system
(e.g., network bandwidth, sensor battery). In this case, an effective strategy for
querying data is required.

This thesis proposes a framework that focuses on evaluation and continuous
reevaluation of security in services and should achieve the following goals :

1. propose a formal model for security metrics and risk ;

2. allow evaluation of security of complex services on the basis of different security
metrics ;

3. enable continuous reevaluation of security in services during their exploitation;

4. take into account possible uncertainties of the data used for security decisions
in services.

1.1 Contributions of the Thesis

We list the main contributions of the thesis. Each contribution is the important part
of the framework for evaluation and continuous reevaluation of security in services.
At the same time, each contribution is valuable as an independent method. Note,
that the number of contribution in the list corresponds to the number of a goal
which the contribution is supposed to achieve.

4 INTRODUCTION

1. We developed a formal model for general quantitative security metrics and
risk. The model considers the interactions between a system and an attacker
as two communicating processes. We proposed possible formal definitions of
several general quantitative security metrics and a definition of risk. We made
an initial analysis of validity of several security metrics. The analysis showed
that all these metrics are valid. The contribution was presented in [92, 93].

(a) During the work on Contribution 1, we determined that metrics highly
depend on the model of attacker’s behavior that is used during the eval-
uation. We developed a refined model of the attacker’s behavior in or-
der to allow a finer-grained evaluation of security. The model is based
on Markov Decision Processes theory. In contrast to existing models,
our model considers the attacker as an entity with limited resources and
partial knowledge about a target system. Moreover, in our model the
attacker may change an initially selected attack path during the attack
execution, thus, the behavior of the attacker is adaptive. We presented an
algorithm that allows simulating the adaptive behavior of the attacker.
We see the model as an extension of Contribution 1. The model was
introduced in [95].

2. We proposed a general method for the evaluation of security of complex ser-
vices on the basis of different metrics. The evaluation helps to select the most
secure design of a complex service. The method is based on semiring algebraic
structures. The method allows the exploitation of a single algorithm for the
evaluation of the security of the complex service using different metrics. More-
over, the semirings allow mappings between metrics which are useful for the
evaluation of security of the complex service when different metrics are used
for the evaluation of simple services. We defined several security metrics as
semirings to illustrate the method. The method was described in [94].

3. We developed a method for the continuous reevaluation of security of services
using UCON model enhanced with qualitative risk assessment. The model
allows a service consumer to select a service with required security. Moreover,
the method allows continuous reevaluation of service security and decision
making about interactions with the service. Finally, the service provider can
exploit our method to determine directions for the improvement of the security
of her service in order to better satisfy the needs of the consumers. The
approach was presented in [87].

4. We considered the impact of unintentional uncertainties on decision making
in the UCON model. We proposed threshold and flip coin strategies to make
decision making cost-effective. Moreover, we derived cost-effective strategies
for periodic and aperiodic queries of the mutable data for the case when con-
tinuous queries are not possible. We presented an architecture for the UCON

1.1. CONTRIBUTIONS OF THE THESIS 5

enforcement that allows cost-effective decision making and cost-effective data
query. The cost-effective methods for the UCON enforcement under uncer-
tainties were described in [85, 86, 88, 89].

1.1.1 List of Publications

This thesis is based on the following publications:

• L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Risk-based
usage control for service oriented architecture. In Proceedings of 18th Euromi-
cro Conference on Parallel, Distributed and Network-based Processing, pages
641–648. IEEE, 2010

• L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Risk-aware
usage decision making in highly dynamic systems. In Proceedings of 5th In-
ternational Conference on Internet Monitoring and Protection, pages 29–34.
IEEE, 2010

• L. Krautsevich, F. Martinelli, and A. Yautsiukhin. Formal approach to security
metrics: what does “more secure” mean for you? In Proceedings of 4th Euro-
pean Conference on Software Architecture: Companion Volume, pages 162–169.
ACM, 2010

• L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Influence of
attribute freshness on decision making in usage control. In Proceedings of 6th
Workshop on Security and Trust Management, pages 35–50. Springer, 2010

• L. Krautsevich, F. Martinelli, and A. Yautsiukhin. Formal analysis of security
metrics and risk. In Proceedings of 5th Workshop on Information Security
Theory and Practice of Mobile Devices in Wireless Communication, pages 304–
319. Springer, 2011

• L. Krautsevich, F. Martinelli, and A. Yautsiukhin. A general method for
assessment of security in complex services. In Proceedings of 4th European
Conference ServiceWave, pages 153–164. Springer, 2011

• L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Cost-effective
enforcement of ucona policies. In Proceedings of 6th International Conference
on Risk and Security of Internet and Systems, pages 1–8. IEEE, 2011

• L. Krautsevich, F. Martinelli, and A. Yautsiukhin. Towards modelling adap-
tive attacker’s behaviour. In Proceedings of 5th International Symposium on
Foundations and Practice of Security. Springer, 2012

6 INTRODUCTION

• L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Cost-effective
enforcement of access and usage control policies under uncertainties. IEEE
Systems Journal, Special Issue on Security and Privacy in Complex Systems,
7(2):223–235, 2013

Several other papers were published during completing the Ph.D. curriculum:

• L. Krautsevich, A. Lazouski, F. Martinelli, P. Mori, and A. Yautsiukhin. Usage
control, risk and trust. In Proceedings of 7th International Conference Trust,
Privacy and Security in Digital Business, pages 1–12. Springer, 2010

• L. Krautsevich, F. Martinelli, C. Morisset, and A. Yautsiukhin. Risk-based
auto-delegation for probabilistic availability. In Proceedings of 4th Interna-
tional Workshop on Autonomous and Spontaneous Security, pages 206–220.
Springer, 2011

• L. Krautsevich. Parametric attack graph construction and analysis. In Pro-
ceedings of Doctoral Symposium of International Symposium on Engineering
Secure Software and Systems 2012, pages 29–34. CEUR-WS.org, 2012

• L. Krautsevich, A. Lazouski, P. Mori, and A. Yautsiukhin. Quantitative meth-
ods for usage control, 2012. Presented at the International Workshop on Quan-
titative Aspects in Security Assurance

• L. Krautsevich, A. Lazouski, F. Martinelli, P. Mori, and A. Yautsiukhin. Inte-
gration of quantitative methods for risk evaluation within usage control poli-
cies. In Proceedings of 22nd International Conference on Computer Commu-
nications and Networks. IEEE, 2013

1.2 Structure of the Thesis

The thesis continues as follows.

Chapter 2 introduces definitions, provides background information for the thesis
and divides goals of the thesis into smaller objectives.

Chapter 3 reviews the state of the art.

Chapter 4 presents a formal model for general quantitative security metrics and
risk. The chapter provides a simple check of validity of security metrics.

Chapter 5 discusses modeling adaptive attacker’s behavior.

Chapter 6 introduces semiring-based methods for the evaluation of security of
complex services on the basis of different metrics.

1.2. STRUCTURE OF THE THESIS 7

Chapter 7 is devoted to a UCON-based approach for the continuous reevaluation
of security of services.

Chapter 8 focuses on the problem of decision making in the UCON under uncer-
tainties.

Chapter 9 validates whether the goals of the thesis are achieved.

Chapter 10 recalls contributions of the thesis and highlights our ideas about the
future work.

8 INTRODUCTION

Chapter 2

Problem Characterization

The thesis is devoted to a framework for evaluation and continuous reevaluation of
security in services. This section contains terminology and background information
of the areas considered in the thesis. The section also divides the goals of the thesis
into smaller objectives which should be fulfilled in the thesis.

2.1 Background and Terminology

We provide some background information on services and security and recall the
terminology related to these areas.

2.1.1 Services

During the epoch of Web 1.0 in 1990s, the Internet was a bunch of non-interactive
rather static web resources that possessed limited communicating abilities. Since
early 2000s, the Internet moved towards web applications that provided rich abilities
for communicating with users and between the applications themselves. The epoch
of Web 2.0 arrived and the Internet became oriented to services. Generally speaking,
a service is a utility provided to a user by the service invocation. One type of
services are web services that are “software components or systems designed to
support interoperable machine or application-oriented interaction over a network”
[150]. Further, we usually assume a web service saying “service”.

A service-oriented architecture (SOA) was proposed to connect service consumers
and service providers [128, 132]. The SOA is “an architectural style of building
reliable distributed systems that deliver functionalities as services” [52]. We consider
the SOA for web services that provides an opportunity for interoperability between
web services. Basically, the SOA contains three main entities. A service provider is
an entity that implements, supplies, maintains and describes a service. The service
provider publishes a service in a service registry which is an authoritative, centrally-
controlled store of information about services. A service consumer looks in the

10 PROBLEM CHARACTERIZATION

service registry for a service which aspects satisfy the service consumer requirements,
selects an appropriate service and exploits the selected service.

A service description contains an information about the different aspects of the
service, for example, its capabilities, interface, behavior, and quality. A service con-
sumer analyzes the service aspects during the selection of a service. The service
consumer starts with the analysis of functional aspects of services. Functional as-
pects are usually described with Web Services Description Language (WSDL) [138].
If there are services with required functionality then the service consumer analyses
non functional aspects of services. The non functional aspects of the service are
usually described as a part of a service level agreement (SLA) template and repre-
sent quality of service (QoS) [8, 43]. We are interested in security of services which
is usually described within the QoS (see Section 2.1.2). We assume that there is a
QoS certifier in the SOA which is responsible for the certification of QoS aspects of
services [138]. The certifier checks whether the QoS aspects of a service are at the
level claimed by a service provider and then the certified QoS aspects are published
in a service registry.

Essential peculiarity of services is that they are under the constant control of
service providers. A benefit of such situation is that the service providers can easily
and regularly update their services. The updates are required to meet the needs
of the market, i.e., to provide a wider functionality and a better QoS to service
consumers. Thus, the aspects of the services may change during the services ex-
ploitation which may last for a long period. The service consumers should be aware
about these changes. Therefore, continuous reevaluation of the aspects of the ser-
vices is required. In particular, the security of the services should be continuously
reevaluated during the exploitation of the service.

Complex Services

An important feature of services is their interoperability. Simple basic services
can be composed into more complex services that can perform complex activities
(e.g., business processes) [120, 151, 173]. Two basic concepts for the aggregation of
services are orchestration and choreography [130]. The orchestration corresponds to
the case when a single party is responsible for the control of the resulted complex
service. The choreography allows each service to define its part of interaction. We
consider the evaluation of security of complex orchestrated services in the thesis.
The evaluation is required for the selection of the most secure design of a service.

Many notations for the description of complex services could be used as a starting
point for the security evaluation. For example, Business Process Execution Language
(BPEL) [1] is one of the most well-known and wide-spread notations. The main
disadvantage of using BPEL for the purpose of the analysis is that this language
requires too many low-level details, which are not used for the security evaluation.
On the other hand, the process can be described with Business Process Modeling
Notation (BPMN) [4]. BPMN is a high-level notation and, thus, is more suitable

2.1. BACKGROUND AND TERMINOLOGY 11

for the high-level evaluation of security. In the thesis, we consider complex services
described in BPMN notation.

2.1.2 Security

We understand security as information security, i.e., as “preservation of confidential-
ity, integrity and availability of information” according to the definition in ISO/IEC
27002:2005 [69]. Confidentiality is “property that information is not made available
or disclosed to unauthorized individuals, entities or processes”, integrity is “property
of protecting the accuracy and completeness of assets”, availability is “property of
being accessible and usable upon demand by an authorized entity”.

We assume that a violation of security occurs as a result of a successful attack
attempt. We see an attacks as a way “to destroy, expose, alter, disable, steal or
gain unauthorized access to or make unauthorized use of an asset” [69]. Attack
attempt is a deliberate action or a sequence of deliberate actions (attack steps) to
execute an attack. We distinguish between intentional and unintentional security
violations. For example, a coordinated denial-of-service attack is deliberate and it
is within the scope of interests of the thesis. An accidental data disclosure by an
employee of a company is unintentional and it is not considered. However, in this
thesis we consider how unintentional uncertainties (e.g., a delay of data delivery due
to network latency) impact decision making in the UCON model.

We call attacker an entity that executes attacks. There are different types of at-
tackers that posses different amount of resources, different skills and behavior. The
attacker’s behavior determines the way how the attacker selects her actions during
the attack. The attacker’s skill defines whether the attacker is trained enough to ex-
ecute the actions of different complexity. The attacker’s resources (e.g., time or/and
money) bound the set of actions available to the attacker. Roughly speaking, the
resources determine how much the attacker can pay for the execution of an action.
Current models of attackers frequently do not take into account these parameters
of attackers which may lead to a coarse evaluation of security.

Evaluation of Security

Popular approach to evaluate security is to exploit security metrics. A metric may
be defined as “a proposed measure or unit of measure that is designed to facilitate
decision making and improve performance and accountability through collection,
analysis, and reporting of relevant data” [62]. Security metrics usually refer to
a security level, a security performance, security indicators or a security strength
[146]. Frequently, a metric is considered as a method for an evaluation together with
a value obtained as a result of the evaluation [58]. Therefore, even if two methods
produce the same value, these values are considered as different metrics.

Another popular approach for the evaluation of security is risk assessment [6, 69,
155]. We consider risk assessment as “activity to assign values to the probability

12 PROBLEM CHARACTERIZATION

and consequences of a risk” which is only the part of risk assessment procedure
defined in [69]. We see risk as “combination of the probability of event and its
consequence” [69]. The following concepts contributes into risk. Threat represents
“potential cause of an unwanted incident, which may result in harm to a system
or organization”, for example, an attacker threats to cause an unavailability of a
service. Vulnerability is “weakness of an asset or control that can be exploited by
a threat”, for example, a vulnerability is a technical bug in the system that can
be exploited by the attacker. Impact is “adverse change to the level of business
objectives achieved”, e.g., the impact can be monetary losses caused by a successful
attack. Asset is “anything that has value to the organization”, for example, some
valuable data that should not be disclosed to competitors.

There is no single formal model for security metrics and risk. Thus, there are
uncertainties in the real meaning of the metrics, it is difficult to analyze metrics,
check their validity, find overlapping and relations between metrics and between
metrics and risk. Unsurprisingly, NIST stated that one of the directions in security
metrics should be the definition of formal models for the security metrics [73].

2.1.3 Security of Services

For the service consumer side according to ISO/IEC 27002:2005 [69], the security
management of third party services should include three activities: (i)“it should be
ensured that the security controls, service definitions and delivery levels included
in the third party service delivery agreement are implemented, operated, and main-
tained by the third party”; (ii) “the services, reports and records provided by the
third party should be regularly monitored and reviewed, and audits should be carried
out regularly”; (iii) “changes to the provision of services, including maintaining and
improving existing information security policies, procedures and controls, should be
managed, taking account of the criticality of business systems and processes involved
and re-assessment of risks.”. In the thesis, we are focus on the issues connected with
the implementation of the activities. The evaluation of security in services is required
to guarantee that security is at a required level before the exploitation (activity (i)).
The continuous reevaluation allows monitoring the changes of security and make
corresponding security decisions during the exploitation (activities (ii) and (iii)).

From the service provider side, security of a service is reached by the implementa-
tion of controls which are “means of managing risks, including policies, procedures,
guidelines, practices or organizational structures, which can be administrative, tech-
nical, management or legal in nature” [69]. We use interchangeably notions of secu-
rity controls and security preferences of a service provider. The security preferences
of a service provide impact the security level of the service and should be taken into
account during the evaluation of security.

2.1. BACKGROUND AND TERMINOLOGY 13

Evaluation of Security in Services

We consider the following approach for the evaluation of security by a service con-
sumer. The service consumer derives the security level of the service on her own
analyzing the security preferences of service providers which are available in a ser-
vice registry. The service consumer continuously updates the information about the
preferences during the exploitation of the service and reevaluates the security level if
the preferences change. If security level becomes worse than required by the service
consumer, she makes a decision about interactions with the service, e.g., stops the
interactions and selects another service.

2.1.4 Access and Usage Control

Traditional access control models [143], such as Mandatory Access Control (MAC),
Discretionary Access Control (DAC) or Role-based Access Control (RBAC), check
that subjects hold the proper rights before granting them the access to the requested
objects. In modern computer systems like services, access sessions last for a long
time, thus it is not enough to check access rights only before granting the access.
Further checks performed during the access sessions are required in order to verify
that the access rights are still valid. The Usage Control (UCON) model [97, 129]
was introduced to satisfy these needs.

We understand policy as “statements, rules or assertions that specify the cor-
rect or expected behavior of entity” [52]. The UCON model defines three types
of policy statements: (i) authorizations, which are the predicates over subject and
object attributes that are similar to access control policies; (ii) conditions, which are
predicates over environmental attributes; (iii) obligations, which are actions which
must be performed. Hence, the decisions process is based on the attributes that are
characteristics of the requesting subject, the accessed object, and the execution envi-
ronment. The UCON assumes the attributes as mutable characteristics that change
over time. To address this issue, the UCON proposes continuous enforcement of
the security policy, in order to interrupt ongoing accesses when the corresponding
access rights are not valid any longer because of the new attribute values.

In this thesis, we adapt UCON model for evaluation and continuous reevaluation
of security in services. We consider a service provider as a subject that is trying to
access an object which is an asset of a service consumer, e.g., some valuable data of
the service consumer that should be processed. We assume the security requirements
of the service consumer and the security preferences of the service provider as the
policies based on attributes of object and subject correspondingly. The example of
policy is “the data is encrypted with a 128-bit key”, the attribute is “the length of
the key”. The service consumer makes the decision whether the service provider is
legitimate to access the data comparing her security requirements to a service and
the security preferences of the service provider. The service consumer continuously
reevaluates the security of the service after the access to the data is granted. Possible

14 PROBLEM CHARACTERIZATION

security decisions for the service consumer in case she identifies that the security of
the service is not at the required level are to revoke the access to the data for the
current service provider and to select another service provider or to ask the service
provider to adjust her security preferences.

Attributes values are data that is used for the decision making in the UCON.
Decisions making in the UCON model highly depends on obtaining correct, trust-
worthy, and fresh attribute values. Attribute values are collected from attribute
providers and sent to the UCON authorization system which exploits them for the
decision process. Some attributes are remote, i.e., they are managed by attribute
providers located outside the administrative domain of the authorization system.
Therefore, the attribute values may be received with delays (e.g., due to delays in
delivery or processing) or may be corrupted. In this case, some attributes values
may be uncertain, i.e., the values possessed by the authorization system are different
from the real attributes values. Thus, the access decision may be incorrect and may
lead to a violation of the policy. Moreover, in order to save resources of the at-
tribute provider (e.g., a sensor) and bandwidth of the network, up-to-date values of
attributes are sent to the UCON authorization system periodically. Hence, some at-
tribute values may be missed which may cause unnoticed violations of policies. The
problem of making decisions under uncertainties is general for the UCON model,
while also important for the reevaluation of security in services.

2.2 Objectives

The main goals of the thesis are:

1. propose a formal model for security metrics and risk ;

2. allow evaluation of security of complex services on the basis of different security
metrics ;

3. enable continuous reevaluation of security in services during their exploitation;

4. take into account possible uncertainties of the data used for security decisions
in services.

We describe several objectives that we are going to fulfill in order to satisfy the
main goals of the thesis.

2.2.1 Formal Model for Security Metrics

• The model should be capable of formalizing general quantitative security met-
rics. There is no single formal model that can describe security metrics. The
formal model for security metrics can be useful for the analysis of security met-
rics, for instance to analyze validity of the metrics, to understand overlapping
and relations between metrics.

2.2. OBJECTIVES 15

• The model should be capable of formalizing risk. Formal definition of risk may
help to understand the relations between security metrics and risk. Risk may
incorporate some security metrics, but it is not clear how different metrics
contribute into the overall risk value. A preliminary calculation of security
metrics contributing into the overall risk may facilitate the risk assessment.

• The model should help to analyze several general quantitative security metrics
and risk. We would like to exploit the formal model for the analysis of se-
curity metrics and risk. At least we are going to perform a simple check of
security metrics validity assuming that valid metrics “allow different entities
be differentiated from each other” [80].

2.2.2 Security Evaluation of Complex Services

• The method should allow selecting the most secure design of a complex service.
The evaluation of security of complex services is required for the selection of
the most secure design.

• The method should allow the evaluation of complex services on the basis of
different metrics. This is necessary because several security metrics may be
useful for the evaluation of security. The orchestrator of the service can use
the method to analyze designs of the service from different points of view.

• The method should allow mapping between different metrics. The method
should allow evaluating security of a complex service when the same metric is
not available for each simple service constituting the complex one.

2.2.3 Continuous Reevaluation of Security in Services

• The UCON model should be adapted for the continuous reevaluation of services.
We need to define interactions and properties of service providers and service
consumers in terms of the UCON model. This should allow exploiting the
UCON model for the continuous reevaluation of security in services.

• The method should help a service consumer to evaluate and continuously reeval-
uate security of services. Evaluation and reevaluation of security should assist
the service consumer in selecting the most secure service and in decision mak-
ing about interactions with the service during the service exploitation.

• The method should be useful for a service provider. The service provider can
improve the security of her service analyzing security requirements of service
consumers. Our method should help to obtain the direction of improvements
for the service provider.

16 PROBLEM CHARACTERIZATION

2.2.4 Impact of Uncertainties on Security Decision Making

• We should identify uncertainties that may impact decision making in the UCON.
We need to determine intentional and unintentional uncertainties that may im-
pact decision making in the UCON.

• The method should allow decision making under uncertainties. We need to en-
hance the decision making procedure of the UCON in presence of uncertainties.
We should analyze the impact of uncertainties on the decision making. In case
of too high impact, an access decision should be adjusted to be cost-effective
by minimizing possible losses caused by uncertainties.

• The method should allow computing a strategy for attributes values checking.
The strategy serves for the enforcement of UCON policies when the contin-
uous checks of attributes values are not possible. The strategy is supposed
to determine the moment when it is necessary to check attribute values in a
cost-effective way that minimizes the impact of uncertainties caused by non-
continuous checks of the attributes.

• The method should propose an architecture for the cost-effective enforcement of
usage control policies under uncertainties. The architecture for the UCON en-
forcement requires modifications for making the decisions under uncertainties
and for computation and exploitation of cost-effective strategies for checking
attributes values.

Chapter 3

State of the Art

In this chapter, we review existing quantitative methods and approaches for evalu-
ation and reevaluation of security. We describe how attacker’s behavior is modeled
during the evaluation. We discuss and usage control models and quantitative meth-
ods for the improvement of decision making.

3.1 Evaluation of Security

We review methods and approaches for evaluation of security on the basis of general
security metrics and risk.

3.1.1 Security Metrics

Several security metrics are computed on the basis of attack graphs. Attack graphs
is a wide-spread model for description and analysis of systems security. Ortalo et
al. [124] did one of the first works on attack graphs. The nodes in a graph represent
possible privileges of an attacker and edges denote exploits which are required to
get new privileges. The graph is exploited for the analysis of security of a system
and for the comparison of security levels while the system is evolving.

Similar attack graphs were considered by Wing et al. [75, 76, 149] and by Phillips
and Swiler [134]. The attack graph is considered as a set of nodes representing
vulnerabilities in the system and the set of edges representing attempts (attack
steps) to execute the vulnerabilities. Successful execution of a vulnerability gives
new privileges to the attacker. The end nodes of the attack graph correspond to the
vulnerabilities required to reach the attacker’s goal.

Special tools for building attack graphs were developed [148, 157]. Construction
of the attack graph usually consists of two steps. The first step is to find the vul-
nerabilities existing in the system. The second step is to compose possible attacks
from the existing vulnerabilities. Both steps can be done either manually or auto-
matically. After the attack graph is composed, it is analyzed to determine possible

18 STATE OF THE ART

security metrics.
The representation of attack graphs in [75, 76, 124, 134, 149] has poor scalability

since amount of nodes and edges grows exponentially with the number of considered
hosts [7, 125]. To overcome this problem another representation of attack graphs
was proposed by Jajodia et al. [123, 165, 166]. In these graphs there are two types of
nodes: conditions and exploits, which are linked with two types of edges: require and
imply. Require edges connect conditions with exploits and show which conditions
are required to exploit a vulnerability. Imply edges connect exploits with achieved
conditions. The attacker starts with the initial number of conditions she may satisfy
in the beginning (depending on the profile of the attacker) and moves to the final
conditions which are her goal. The authors also proposed analysis using this type of
attach graph: finding minimal cut-set which leads to impossibility to compromise a
goal for an attacker [166] and evaluation of security using weakest-adversary metric
[126].

A number of quantitative security metrics are defined on the basis of attack
graphs: number of attacks [124], minimal length of attack [124], minimal cost of
attack [126], probability of successful attack [163]:

• Number of attacks simply counts how many distinct attacks exist in the system,
i.e., how many paths from initial nodes to goal nodes are in corresponding
attack graph. This metric does not take into account the additional parameters
of the attack.

• Minimal length of attack describes the minimal number of attack steps required
to compromise the system. The intuition behind this metric is simple. The less
steps are required to complete the attack, the easier this attack is supposed
to be. The assumption behind this metric is that the attack steps have equal
probabilities of successful execution.

• Minimal cost of attack describes what minimal resources should attacker spend
to reach the goal. Thus, the metric assumes that the security of the system
should be considered versus the weakest attacker that could try to compro-
mise the system. The metric takes into account the initial resources that the
attacker must posses to start the attack.

• Maximal probability of successful attack requires an assignment of weights to
the edges of the attack graph. Each weight denotes a probability of successful
exploitation of an attack step. Finally, the probability of an attack consisting
of atomic steps is derived from the probabilities of successful exploitation of
these steps.

Attack surface metric [103, 104] proposes a different approach to the description
of the security than attack graphs. The authors formally defined the notion of attack
surface as sets of entry and exit points, channels, and untrusted data items. These

3.1. EVALUATION OF SECURITY 19

sets describes the resources that the attacker can exploit to perform the attacks. The
bigger attack surface corresponds to the less secure system because the attacker in
this case has more ways to execute an attack. The authors of the model formally
proved that this metric is equivalent to risk, if the specific assumptions are taken
into account.

Another metric is “mean time to failure” metric by Madan et al. [102]. The
metric shows how much time an attacker spends to cause a failure of a system. This
metric assumes that only one-step attacks are possible, and model the failure as a
state transition diagram, that is a generic way to describe intrusion tolerant systems.

Wang et al. [164] defined a k-zero day safety metric. The metric aims at the
analysis of an impact of zero day vulnerabilities on a system. A zero day vulnerability
is a vulnerability that exists in the system but is not identified or publicly reported.
The method of the evaluation of the metric considers an attack graph composed from
existed vulnerabilities. Zero day vulnerabilities are modeled as new nodes added
into the attack graph. The analysis is made to understand how the additional nodes
impact security of the system. Eventually, the metric shows how many zero days
vulnerabilities the system can withstand.

The Gap While several security metrics exist, there is no general formal model
that is capable of expressing all metrics. Such a model is required to analyze the se-
curity metrics, check their validity and understand the relations among the metrics.

Models of Attacker

The evaluation of security depends on the attacker’s model. Usually, the simple
attackers models are defined as a part of methods for the evaluation of security.
Frequently, the attacker is considered as an omniscient entity, that follows a single
attack path. This attack path is selected on the basis of subjective functions defined
by authors of an evaluation method (e.g., [98, 99]).

Sheyner et al. [148] defined deterministic attackers behavior. Authors proposed
that an attacker selects a path in an attack graph on the basis of the highest prob-
ability to complete an attack. This path is supposed to be always followed by the
attacker. Authors describe an initial idea to search the path using Markov Decision
Processes (MDP) theory.

Ortalo et al. [124] introduced two models of the attacker behavior: Total Memory
attacker and Memoryless attacker. Total Memory attacker considers further attack
steps from the currently occupied node of the attack graph and also attack steps
that was not tried from previously visited nodes. Memoryless attacker considers
attack steps available only from currently occupied node. The models are used to
fined shortest attack path in a graph.

LeMay et at. [98, 99] proposed an attacker-driven approach for the evaluation
of security of computer systems. The authors consider the system that behaves
probabilistically. Thus, the result of attacker’s actions is not known in advance.

20 STATE OF THE ART

The authors introduced the set of functions based on the parameters of an attacker
(e.g., possessed skills and time) that helps to compute the best possible attack path,
i.e, the attacker selects her actions deterministically. Authors defined a model of
the attacker that should enhance computation of security metrics.

Several attacker models which assume that attacker may select alternative ways
for compromising a system were proposed for the analysis of cryptographic protocols
[44, 105, 114]. The models assume that attackers know the system, i.e., the protocol,
while have bounded resources. The models consider specific limitations relevant
to the analysis of protocols like computational power and message manipulation
capabilities. The models are not suitable for generic computer systems.

Sarraute et al. [144] proposed to use Partially Observable Markov Decision
Processes (POMDPs) for attack planning during penetration tests. The authors
analyze the system considering network configuration graph instead of an attack
graph. In terms of knowledge collecting, authors introduces special actions that
allow scanning network hosts.

The Gap Most current models of the attacker are quite simple. The attacker is
considered as an entity that possesses full knowledge about the system. Moreover,
the attacker usually behaves deterministically, i.e., follows a single path that she
selects before the attack start. The evaluation of security on the basis of these
models may be too coarse. A refined model of the attacker is required for a finer-
grained evaluation of security.

3.1.2 Risk Analysis

An efficient practice for the evaluation of security is risk analysis [2, 6, 69, 155].
Risk analysis came to information systems from industries like chemistry and power
engineering [54]. Although this practice was initially developed for managing unin-
tentional threats (dependability), later it was adapted for dealing with intentional
threats (security).

Usually, risk analysis is a formal well-defined procedure that contains several
steps (like, risk management standards [69, 155]). Risk analysis starts with risk
assessment which is activity to assign values to the probability and consequences of
a risk [69]. Risk assessment is followed by risk mitigation process that is devoted to
the addressing of identified risks. We review existing approaches to the risk analysis
paying major attention to the risk assessment part.

Standards for Risk Management

ISO/IEC 27000:2009, 27001:2005, 27002:2005 [69, 70, 71] are well known standards
for security management. The 27000 part describes overview and vocabulary of the
standard, the 27001 part is devoted to organizational aspects of security, the 27002
part discusses security practices. The standard briefly describes the risk assessment

3.1. EVALUATION OF SECURITY 21

process but explicitly states that risk assessment is an essential part of security
management.

NIST SP 800-30 [155] is a standard for risk management during information sys-
tem development life cycle. The standard provides a well-defined basic description
of risk management process. The standard consists of three phases of risk manage-
ment process: risk assessment, risk mitigation, and evaluation and assessment, but
focuses only on the first two. Risk is assessed using qualitative values (however,
quantitative assessment is also possible). Risk mitigation strategy is determined
using a trade off analysis.

General Risk Analysis Approaches

Operational Critical Treat, Assets, and Vulnerability Evaluation (OCTAVE) Crite-
ria [6] is a well-defined and widely-known approach for risk analysis. Three phases of
OCTAVE are to built asset-based threat profiles, to identify infrastructure vulnera-
bilities and to develop a security strategy and a plan for risk mitigation. The phases
are described using principles, attributes and outputs. Attributes and principles are
the features of evaluation process. Outputs define the outcomes that organization
should achieve during evaluation process. While principles and attributes are the
same for each phase of OCTAVE, outputs are different. OCTAVE Criteria can serve
as a basis for the development of risk analysis methods for organizations [168].

CCTA Risk Analysis and Management Method (CRAMM) [3] is a universal
method to perform risk management at any organization. CRAMM is supported by
an automated tool based on qualitative risk assessment. The tool guides security
specialist through the every stage of risk management. CRAMM is considered as a
basis for other risk analysis methods, e.g, [78].

CORAS [25, 47, 55, 154] is a framework for model-based security risk analysis.
The framework consists of four parts: a terminology, a library, a methodology,
and a tool. The terminology combines terminology from security and risk analysis
fields. The library contains two repositories. The experience repository contains
reusable UML-models, checklists, procedures, etc. The assessment repository stores
the results of the actual security analysis. CORAS is supported by an open-source
tool. The method have been widely tested in the industry. Several other methods
based on CORAS were developed [51, 63, 64].

Several methods for risk analysis are based on questionnaires and checklists.
Karabacak and Sogukpinar [79] proposed Information Security Risk Analysis method
(ISRAM). ISRAM is a quantitative approach that uses questionnaire results to
analyze security risks. Special attention is devoted to creation of questionnaires.
A questionnaire contains questions and possible answers about particular security
problems. The questionnaire helps to receive the opinions of management and tech-
nical personnel about current security problems. Bennett and Kailay [18] introduced
a qualitative questionnaire-based method which main goal is to provide a risk anal-
ysis for low and mid-size commercial companies. Farahmand et al. [45] described an

22 STATE OF THE ART

approach to evaluate the damage of security incidents using checklists. A checklist
is exploited for the computation probabilities and tangible and intangible losses of
incidents.

Shawn A. Butler [28] described cost-benefit analysis method called Security At-
tribute Evaluation Method (SAEM). The approach is used to analyze and to com-
pare security designs of financial and accounting information systems. The method
is based on the multi-attribute assessment, where analysis is performed using several
criteria at once. For example, impact of different threats is considered using four
criteria: the loss of productivity, the loss of revenue, regulatory penalties, and the
loss of reputation. The overall impact for a threat is a weighted sum of these losses.
Similar analysis is performed for the selection of the most appropriate protection
strategy. Countermeasures are selected depending on how well they mitigate risk,
how costly they are, and how much maintenance they require. In addition, the
author proposed a coverage analysis, which is based on the idea of defense-in-depth
and defense-in-breadth. The need of a countermeasures is determined by the aim
to have at least some protection against all most dangerous threats and to have
protection mechanisms on different levels.

There are many methods which are based on risk and have their small pecu-
liarities. Wei et al. [167] proposed a cost-benefit analysis for network intrusion
detection system. Tarr and Kinsman [158] used fault trees to identify the frequency
of undesirable events and to determine the consequences of events. Ryan and Ryan
[142] presented risk management method that uses system failure analysis based
on the measures of relative risk. Relative risk is the ratio of two probabilities: the
probability of a system failure before the countermeasures implementation and the
probability of a system failure after the countermeasures implementation. McGraw
[110] pointed out that risk should be compared with operational needs. The author
did not provide any information about how this risk and operational needs could be
calculated.

Risk Management Approaches for Software Development

Microsoft corporation introduces a risk management approach for software develop-
ment based on Security Risk Management Discipline (SRMD) [113]. Two types of
risks are considered: the first one is connected with the current project life cycle, the
second one is related to the life cycle of computer system. Microsoft uses security
risk statements to describe the risks. A security risk statement contains two parts.
The first part describes the state of a system or a potential threat that can cause
some damage. The second part describes the possible impact of an event from the
first part. Microsoft follows a quantitative way for the evaluation of assets, losses,
and costs of countermeasures as well as for calculating risk values.

Cigital Risk Management Framework (CRMF) [161] is a framework to manage
risks during software development life cycle. CRMF has two main peculiarities:
it stresses that risk management should be an iterative, continuous process and it

3.2. EVALUATION OF SECURITY IN COMPLEX SYSTEMS 23

considers threats to business goals, not to assets.
Risk analysis of software systems based on security patterns is presented by

Halkidis et al. [57]. The idea of security patterns is similar to the idea of design
patterns, which allow to create well-structured and reusable software. The risk is
used to represent the security extent of a pattern or a system. Security level of a
system is evaluated during patterns merging.

The Gap Although risk is a popular mean for the evaluation of security, standards
and approaches to risk analysis mostly consider a system as a static entity, take a
lot of time to be applied, require experienced specialists to participate, and are
expensive and difficult to be carried out. Due to these reasons usual practice is
to perform risk analysis only few times per year (sometimes one time per several
years) [140]. Modern dynamic systems like services change frequently and require
continuous risk assessment to provide rapid and efficient response to system changes.
Moreover, different methods propose different models for risk. A general formal
model capable of describing risk is required for the analysis of relations between
security metrics and risk. Preliminary evaluation of security using metrics may
facilitate risk assessment.

3.2 Evaluation of Security in Complex Systems

While previously reviewed approaches mainly consider a computer system as a
whole, it is frequently required to evaluate the security of a complex system that is
composed from more simple parts. There are several approaches suitable for the eval-
uation of composed systems. Usually approaches aim at the evaluation of security
of the complex system by aggregation of security levels of its parts [16, 17, 56, 101].
We consider several methods for the evaluation of the security of complex systems
and also several methods devoted to complex services.

Freeman et al. [48] described risk assessment in large heterogeneous systems.
Two approaches to risk assessment are studied. The first one is down-top approach
when risk for subsystems is assessed in the beginning and then aggregated into the
risk of the whole system. The second one is a top-down risk assessment approach
when the system is considered as the whole during initial risk assessment and then
risk assessment of subsystems is performed.

The important task of complex systems evaluation is to understand and reflect
dependencies among presented parts. Balzarotti et al. [17] presented a system as a
graph where nodes are system components and edges are the connections between
the components. Components and links may contain vulnerabilities. Risk assess-
ment is required to understand how difficult is for an attacker to compromise a
component directly or through a some path. Another graph is constructed to de-
scribe the dependencies between vulnerabilities. Nodes represent vulnerabilities of
components and vulnerabilities of links between the components, edges represent

24 STATE OF THE ART

dependencies between vulnerabilities. The method is intended for the analysis of
different design choices, mitigation of risks if system has been modified, selection of
security solutions.

Grunske and Joyce [56] modified attack trees to analyze component based sys-
tems. Basic attacks are mapped to each element of the power set of all system com-
ponents. The probability of attack is assessed using attack profiles. The probability
of attack depends on different attacker peculiarities such as available computational
resources, skills, available amount of money, etc. This information about an attacker
is saved in a profile. When probabilities of basic attacks are assessed, the attack
tree is evaluated and the total risk of the system is obtained. The main problem of
this method is the process should be repeated from the beginning after the system
is reconfigured or countermeasures are applied.

Clark et al. [34] used a risk tree for the computation of risk for a system.
The authors considered a tree constructed on the basis of the business objectives
of an organization. The main business objectives are decomposed until small sub-
objectives are found. A number of assets required for fulfillment of sub-objective
are assigned to the corresponding leaves of the tree. Using this tree, an analyst
determines the value of each asset. The vulnerabilities which can be used to damage
assets are discovered and assigned to the corresponding assets. Then, the risk for
the main business objectives is computed by aggregating risks for leaf nodes.

Zambon et al. [118, 171, 172] considered a graph constructed for a layered
structure of an enterprise. In [171], the authors analyzed availability risks. In [118],
authors used the graph to analyze risks in an enterprise where components are
connected with each other and threats may propagate through the system.

Innerhofer-Oberperfler and Breu [68] considered a large enterprise and described
how overall risk for an enterprise can be assessed considering various risks related
to different parts of the enterprise. First, a dependency graph is constructed. The
graph has four layers: (i) a business layer containing business objects, (ii) an applica-
tion layer which contains applications required for business objects, (iii) a technical
layer containing basic software (e.g., operation systems), and (iv) a physical layer
which contains physical objects (e.g., laptops, servers). Different types of risk are
assessed for different elements of the graph. There is a corresponding administrator
who evaluate the risk according to the graph. Finally, risk of failure of security busi-
ness goal is computed. The work was continued in [27] with a finer-grained analysis
of the enterprise.

3.2.1 Evaluation of Security in Services

Massacci and Yautsiukhin [109, 108] proposed a specific method for the analysis
of security of a complex service (a business process). The method transforms the
business process into a tree and selects the most secure design according to the
defined aggregation functions. The security level of business processes is evaluated
on the basis of assurance indicators. The authors use probability of compromising an

3.3. REEVALUATION OF SECURITY 25

activity as an assurance indicator. The total assurance level of a business process is
calculated from the values of indicators of sub-processes using a directed graph. The
authors also take into account that the values of assurance indicators which come
from partners can be untrusted, therefore the authors modify the values according
to the trust level of the partners. The algorithm can be adopted for the analysis of
dynamic system.

Cheng et al. [32] proposed a framework for aggregation of downtime of a complex
service. Derwi et al. [38] analyzed security in complex services using multi-objective
optimization. The aim of the framework is to analyze the workflow in order to select
a set of security solutions for a complex service. Moreover, authors consider 0-1
metrics which show whether a simple service is secure or it is not secure. Similar
problems have been considered in non-security domains. For example, Jeager et al.
[72] provided several aggregation functions for such criteria of services as minimal
execution time, cost, etc. Yu et al. [170] proposed a method for the selection of
alternative complex services designs using the graph theory.

There are several approaches for the evaluation of security in services that pro-
pose the comparison of security preferences of a service provider and security require-
ments of a service consumer. Ronda Henning [61] proposed to evaluate security of a
service against 15 security domains using a level from 1 to 4. Casola et al. [31] pro-
posed a method for selection of the best alternative based on the distance between
two lists of security levels using the assessment results provided by the method
of [61]. In addition, Casola et al. [30] proposed a more generic method for the
aggregation of different evaluation results for security and quality of service.

The Gap There are several methods for the analysis of complex systems. However
they are specific in different senses. The methods are system specific (e.g., consider
a computer network) or metric specific, i.e., exploit just one way of the evaluation
(e.g., compute risk). Simple services composing a complex service may be evaluated
using different security metrics. Thus, a general method that can take into account
several metrics is required.

3.3 Reevaluation of Security

As we described above, usual approaches to the evaluation of security (e.g., risk
analysis) are manual, tedious, time consuming, and very expensive activities. They
are performed regularly but only few times per year or rarer. Recently, approaches
for continuous reevaluation of security were proposed in order to make the control
of security efficient and effective for the application in dynamic systems.

Gehani and Keden [50] proposed an approach based on quantitative continuous
risk assessment for an intrusion prevention for a network host. Authors supposed
the host runs an operating system and an access control mechanism. The approach
uses the idea of the host exposure which is the set of permissions granted to the

26 STATE OF THE ART

software by access control mechanism. The permissions restrict an access to the
resources (e.g., files) of the host. Overall risk level is connected with the exposure
and changes after each event that changes the exposure (e.g., granting or denying
a permission of an access to a resource). There is a level of risk that the host can
tolerate (threshold). If the risk is above the threshold then a cost benefit analysis is
done to select countermeasures for an adjustment of risk level. The adjustment of the
risk should be done with the minimum impact on the host performance. This issue
requires solving a knapsack problem. In addition, the approach proposes relaxation
of security restrictions to improve performance when general risk level becomes
below the threshold. The approach considers a single host and does not suitable
for implementation in distributed environment. The approach pays no attention to
collecting of information for risk assessment and its trustworthiness and freshness.

Arnes et al. [10] presented a method for continuous risk assessment of network
systems. The method is based on observations from network monitoring sensors
or intrusion detection systems (IDS). The overall risk level of the system is com-
puted by the aggregation of data from sensors. The information about an object
provided by a sensor is weighted according to the trust level of the sensor. Sensors
are monitored by agents that are special programs which are the part of IDS. The
agents can communicate and cooperate with each other. Thus, an agent can receive
the data from different sensors. The data form sensors may contain mistakes or be
inconsistent, so the agent cannot be sure if this information about the state of the
object is correct. As a result, real security state of the object is hidden from the
agent. This is the reason to represent an object as discrete-time Hidden Markov
model. Hidden Markov models are used for the computation of the additional prob-
ability of an object to be attacked. This probability is used together with the data
obtained from sensors to compute the risk of the object to be attacked. The overall
risk is the simple sum of risks of objects. The proposed approach was enhanced with
continuous-time Hidden Markov model [60].

Miura-ko and Bambos [116] introduced an approach focused on dynamic risk
mitigation. A computing system is presented as a set of nodes. Each node has a
risk indicator which denotes risk as a function of time. A vector consisted of such
indicators is called a risk profile. The set of risk profiles forms an integer lattice
for basic Markov model. Subsets of risk profiles represent different risk zones (e.g.,
zone of low risk, medium, high). The risk changes and the risk profile transition
occurs after each event occurred in the system. The system manager can control
risk level applying different defend strategies. Markov model is extended to a non-
Markov case using the notion of “risk shocks”. A risk shock increases the value of
risk indicator hitting the node, while a defense strategy decreases the risk value.

Refsdal and Stølen [141] introduced an approach based on risk indicators for
providing dynamic risk picture. The threats in the system are modeled with CORAS
threats diagrams. The diagrams help to identify key risk indicators and functions
for threat execution likelihoods and impacts. The main element in the model is a
Risk Monitor, which next to dynamic creation of risk picture also is responsible for

3.4. ACCESS AND USAGE CONTROL 27

evaluating the consistency of and measuring the confidence in a risk picture.
Blyth and Thomas [23] proposed a real-time threat assessment of security in-

cidents using data fusion of intrusion detection system (IDS) logs. The approach
is based on the idea of a footprint. The footprint is a set of characteristics (e.g.,
actions and activities) observed during a period of time. The footprints allows iden-
tifying an attack and understanding how an attacker has accomplished this attack.
The paper describes a framework for an automatic footprints analysis. Each host
in the network contains a host IDS (HIDS) for its own attack detection, all HIDS
observations are sent to the footprint manager which analyses general situation in
the system.

The Gap Current approaches focus on the evaluation of security for a system
owner. In services, the security should be evaluated for a service consumer that
does not possess the system. Security requirements of the service consumer may
be fulfilled partially by security preferences of a service provider. However, service
consumer still needs to select and exploit a service.

3.4 Access and Usage Control

Access control is another area where the approaches for the continuous security
control of the systems were developed. With new technologies where an access
session lasts for long time (such as Web Services, Cloud computing, Grid) it is not
enough to check access rights of a subject before granting an access to an object,
but checks of rights during the access sessions are required. Usage Control model
(UCON) was introduced to satisfy the needs [176] of security control over long lasting
interactions. We discuss the approaches that tackle the impact of uncertainties on
the decision making in the UCON. Moreover, we consider several other quantitative
methods that aim at improvement of decision making in the UCON.

3.4.1 Impact of Uncertainties on the Decision Making

Data freshness is an important property for many computer systems (e.g., data
caching, replication systems, data warehousing, etc). The property requires the
data to be up-to-date to make the right decisions about a computer system. Usually
data is not fresh because to the delays of data delivery or data processing. Thus,
an unintentional uncertainty exists. Data freshness was studied by the computer
science community during past years [24, 131]. Another unintentional uncertainty
appears when the data is incorrect, for instance, corrupted by noise.

The importance of authorization information to be up to date during the access
decisions was stated by Krishnan et al. [96] and Niu et al. [122]. Authors formally
define two security properties: weak stale safety and strong stale safety. Weak stale
safety holds in two cases: first, if a policy holds during the last update of the

28 STATE OF THE ART

attribute before the request and, second, if the policy holds during the check after
the request and before the access is granted. Strong stale safety requires the policy
to hold during the update after the request and before the access is performed.
Authors design enforcement and decision points for group-based Secure Information
Sharing (g-SIS) system as state machines and use model checking to show that the
points satisfy defined properties.

3.4.2 Quantitative Methods for Access and Usage Control

There is a number of applications of quantitative methods in access and usage con-
trol. Usually, the access and usage control is enhanced with trust or risk. Cost-
effectiveness of access and usage control is frequently analyzed on the bases of a risk
notion. Risk is used to make an access decision taking into account that granting
the access is connected with a threat. The threat is evaluated with a probability to
occur and a cost in the case of occurrence.

Degano et al. [37] proposed a formal framework for the enforcement of quan-
titative security policies. The framework suggests two complementary models for
the enforcement. The monitoring mechanism evaluates current state of a policy and
aborts execution if the policy is violated. Moreover, continuous-time Markov chain
is used to compute the probability of a possible policy violation in future. The
execution is aborted if the probability of the violation is too high.

Belsis et al. studied the decision making for role-based access control in multi-
domain environments. Decision making procedure is enhanced using fuzzy relations
which allow to understand how a specific policy statement is satisfied in a multi-
domain environment.

Aziz et al. [13] described reconfiguring role-based access control policies using
risk semantics. The approach allows measuring a risk for a policy and reconfigur-
ing the policy reducing the risk and saving policy strength. The policy language
proposed by the authors contains three types of risks: operational, combinatorial,
and conflict of interest. Han et al., [59] considered pre-evaluation of security poli-
cies enhanced with risk analysis. Dimmock et al., [42] demonstrated the method of
architecture extension of access control with trust evaluation, creation of dynamic
policy and risk management in role-based access control where risk is used as one
of policy predicates. Zhang et al. [175] proposed the ordered semiring-based trust
establishing model with risk assessment. The risk is used as a metric for credential
analysis in a distributed environment.

Some authors use risk as a static parameter which simply helps to assign correct
privileges taking into account possible losses [59, 100, 152]. For example, Skalka et
al. [152] discussed a risk assessment approach for distributed authorization. The
formal approach is used to assess and combine the risks of assertions that are used in
the authorization decision. The method based on RT trust-management framework
is called RTR: framework for risk assessment in authorization. Li et al. [100]
used quantitative risk assessment as the key factor for decision making about access

3.4. ACCESS AND USAGE CONTROL 29

control in a grid environment. Zhang et al. [174] described a benefit and risk access
control (BARAC) model. The idea is based on balancing between the risk of data
compromising due to granting access and benefits from granting access.

Other authors use risk as a dynamically changing value which depends on the
current value of possible losses and benefits as well as on the probability of abusing
granted privileges by a concrete subject [33, 39, 110]. Diep et al. [39] proposed an
access control enforcing mechanism with risk as a key component of decision making
process during access control. Ni et al. [121] considered a risk-based access control
system which assumes that the access to a resource can be granted to a risky subject
if mitigation actions (post-obligations) will be applied in the future. The authors
proposed an approach for the risk assessment under incomplete and imprecise data
using fuzzy inferences.

The Gap Few methods focus on the decision making in presence of uncertainties.
Moreover, the methods for decision making enhanced with quantitative methods
mostly focus on access control, while usage control is left apart. The specific issue of
usage control is that the unnoticed changes of attribute value may occur during the
usage session, since continuous control of the attribute value is not always possible.
Quantitative methods for access control do not take into account this issue.

30 STATE OF THE ART

Chapter 4

Formal Model for Security Metrics
and Risk

We propose a formal model for general quantitative security metrics and risk. The
model considers communications between an attacker and a system. The model is
used to define security metrics and risk. Moreover, the model helps to analyze the
validity of security metrics.

The chapter goes as follows. Section 4.1 recalls what metrics mean in theory of
measurements and in the security community. Section 4.2 presents our basic formal
model and proposes the definitions of the perfect security, the definition of “more
secure” relation. Section 4.3 the definition of risk, and definitions and analysis of
general security metrics. We conclude the chapter with Section 4.5 which contains
a discussion of the initial results of the formalization of metrics.

4.1 Metrics in Mathematics and in Computer Se-

curity

In the measurement theory, we can find the following theorem which helps to estab-
lish a link between an empirical evidence and an objective measurement. This is a
central theorem which is called a representation theorem [46, 156]:

Theorem 1 Let Q be a set of elements and q1 and q2 be its members (q1, q2 ∈ Q).
Let also R = {r1, . . . , rn} be a set of relations on Q. The tuple ⟨Q,R⟩ is called
an empirical relational system. Measurement can be seen as an objective-empirical
function M : Q → R which assigns a real value to an element and a set of relations
P = {p1, . . . , pn} on R (real numbers) which is in a binary relation with R (i.e.,
each ri corresponds to pi). Then:

∀i, ri(q1, q2, . . .) ⇔ pi(M (q1),M (q2), . . .) (4.1)

32 FORMAL MODEL FOR SECURITY METRICS AND RISK

We consider binary measurement systems that are forms of representation the-
orem [46]:

Definition 1 A nominal security measurement system is representative if the fol-
lowing holds:

∀q1, q2 ∈ Q, q1 ∼sec q2 ⇔ M (q1) = M (q2) (4.2)

where q1 ∼sec q2 means that q1 is equally secure as q2.

Definition 2 An ordinal security measurement system is representative if the fol-
lowing holds:

q1 ≽sec q2 ⇔ M (q1) ≥ M (q2) (4.3)

where q1 ≽sec q2 means that q1 is more secure than q2.

Definition 2 shows that a measurement function must be monotone. Another
definition of metrics in the measurement theory is based on interval system [81]:

Definition 3 Metric is a function D on a set Q which determines the distance
between two members of the set (D : Q × Q → R) and satisfies the following prop-
erties:

1. ∀q1, q2 ∈ Q,D(q1, q2) ≥ 0 (positivity);

2. ∀q1, q2 ∈ Q, q1 = q2,D(q1, q2) = 0 (identity);

3. ∀q1, q2 ∈ Q,D(q1, q2) = D(q2, q1) (symmetry);

4. ∀q1, q2, q3 ∈ Q,D(q1, q3) ≤ D(q1, q2) + D(q2, q3) (triangle inequality).

The computer security community usually uses the term “metric” as it is shown
in Definitions 1 and 2: one value is assigned to a system which defines how secure the
system is. We stick to this common definition of “metric” accepted in the computer
security community. Thus, we need to define what does it mean that two systems
are equally secure or that one system is more secure than another one.

We aim at establishing a “more secure” relation. The relation should be similar
to the ones from physics where without measurements we often can say that one
object is hotter (or longer, or brighter) than another one. For example, the length
of objects can be compared simply by putting the objects close one to another.
Unfortunately, in the security community there is no such widely accepted answer.
Usually, authors first define a way of measurement and then say that this means
that the relation between two measurements defines relations between security levels
of the two systems (e.g., [126]). We try to overcome this challenge and formalize
“more secure” relation.

4.2. FORMAL MODEL 33

4.2 Formal Model

We propose a formal model that allows a more accurate discussion about security
metrics and risk. We introduce definitions of a perfect security and “more secure”
relation. We consider a system in and out of the context.

4.2.1 Security of a System out of a Context

The initial target of our analysis is a system which is applied out of a context, i.e.,
we do not consider parameters of attackers and possible impact of attacks. We will
add context to our model in Sections 4.2.2. We use the notation of the process
algebra [106] and define security as follows:

Definition 4 Let S be a process modeling behavior of a system and X a process
modeling behavior of an attacker. The system and the attacker perform actions
ai ∈ AS and aj ∈ AX correspondingly and move from one state to another one:

S
ai−→ S ′ and X

aj−→ X ′. We denote a trace of actions accomplished by the system as
γS and by the attacker as γX . A trace γ = γS • γX is a result of merging one trace
of actions with another one in a way that preserves the order of events. We say that
the system S is (perfectly) secure if and only if:

∀X, γ = γS • γX , γS ∈ S, γX ∈ X,S
γS−→ S ′ ∧X

γX−→ X ′, (4.4)

S∥X γ−→ S ′∥X ′ ⇒ Psec(S
′∥X ′) = ∅

Function Psec(S
′∥X ′) returns the set of possible goals successfully achieved by

an attacker in the state S ′∥X ′ (e.g., the attacker has root access to a database) when
the system and the attacker work in parallel. Equivalence to the empty set means
that no goals are successfully achieved, i.e., the security [69] is preserved. We write
γX ∈ X to show that the attacker may execute a trace of actions and γS ∈ S to
show that the system may execute a trace of actions. A trace of actions is denoted
in the following way preserving the order of actions: γ = a1 ◦ a2 ◦ · · · ◦ an. We use
a ∈ γ notation to denote that an action a is contained in the trace γ.

Definition 5 An attack to a system S is a trace of actions γX :

∀X, γ = γS • γX , γS ∈ S, γX ∈ X,S
γS−→ S ′ ∧X

γX−→ X ′, (4.5)

S∥X γ−→ S ′∥X ′ ⇒ Psec(S
′∥X ′) ̸= ∅

Thus, the attack is the trace of actions of attacker that leads to a state where the
attacker reaches her goal (set of goals).

We define the set of attacks relevant to a system.

34 FORMAL MODEL FOR SECURITY METRICS AND RISK

Definition 6 Let XS be the set of attackers relevant to a system S then the set of
attacks relevant to S is:

ΓS := {γX : γ = γS • γX , γS ∈ S, γX ∈ X,X ∈ XS, (4.6)

S
γS−→ S ′ ∧X

γX−→ X ′, S∥X γ−→ S ′∥X ′ ⇒ Psec(S
′∥X ′) ̸= ∅}

We derive a definition that determines the “more secure” relation.

Definition 7 Let ΓS1 be a set of attacks relevant to a system S1 and ΓS2 be a set
of attacks relevant for a system S2. We say that the system S1 is more secure than
or equally secure to the system S2 (S1 ≽sec S2) if a set of attacks ΓS1 relevant to the
system S1 is included into a set of attacks ΓS2 relevant to the system S2 (ΓS1 ⊆ ΓS2).

Definition 7 does not allow distinguishing between equal or higher security in
case ΓS1 ⊂ ΓS2 thus we call this definition non sensitive. The sensitive definitions
can be formalized in the following way.

Definition 8 We say that the system S1 is more secure than the system S2 (S1 ≻sec

S2) if a set of attacks ΓS1 relevant to the system S1 is included into a set of attacks
ΓS2 relevant to the system S2 (ΓS1 ⊂ ΓS2).

Definition 9 We say that the system S1 is equally secure to the system S2 (S1 ∼sec

S2) if a set of attacks ΓS1 relevant to the system S1 is equal to a set of attacks ΓS2

relevant to the system S2 (ΓS1 = ΓS2).

Though the definitions (Definition 7 or Definition 8) indicate that one system is
more secure than the other one, it is a rare case when the set of possible attacks
for one system is completely included into the set of possible attacks for another
system. However, the definition can still be good for the initial analysis of general
quantitative security metrics.

4.2.2 Security of a System in a Specific Context

We extend our model considering security of a system in a specific context. The
context includes protected assets and possible attackers. In particular, we need the
amount of possible losses, caused by affecting valuable assets, and parameters of
attackers.

We start with a more detailed model of attacker. We consider only entities that
try intentionally violate security of a system.

Definition 10 An attacker is a process which is characterized by the following
tuple: ⟨goal,ΓX , skill, intang, tang⟩, where goal is the goal of the attacker1; ΓX is
a set of attacks the attacker knows; skill is the level of skills the attacker possesses;

1In our model every attacker has only one goal

4.2. FORMAL MODEL 35

intang is the amount of intangible resources (e.g., time) the attacker can spend to
achieve her goal; tang is the amount of tangible resources (e.g., money) the attacker
can spend in order to make an attempt to compromise the system.

Considering every attacker separately is an impractical approach. We consider
similar attackers as one collective entity, or an attacker profile X . We assume
that all members of the same profile of attackers have the same goal goal. For
example, cyber-terrorists aim at shutting down a system for a long time, cyber-
thieves (hackers) want to receive economical benefits, insiders commit a fraud. Thus,
we group the attackers according to their goals assuming that the attackers which
have the same goal have also similar skills and resources (i.e., we assume small
dispersion). Sometimes, there are attacker profiles which have a similar goal but
should be grouped differently (e.g., terrorists which usually have high skills and
large amount of resources, and simple hooligans which have very limited amount of
resources). Such groups can be separated, and this separation will not affect our
further discussions.

We would like to consider tangible and intangible resources required for an attack
apart from each other. In our model, tangible resources are needed for buying
the tools without which the attack is impossible (e.g., in order to crack a safe a
special drill is required). When the attacker starts her attack she spends intangible
resources in order to achieve her goal. The more intangible resources are spent the
more chances for success the attacker has (e.g., the more time a bugler spends for
studying and attempting to open a lock the more probably she will be able to open
the safe). Sometimes tangible and intangible resources are connected, e.g., the more
money is spent on a computer the more powerful it is and the less time is required
to perform a brute-force attack on a cipher-text. We consider the resources as two
distinct sets in order to show the different nature of these expenditures.

Each attack has a cost, thus, the attacker spends her resources during the attack.
Cost may be considered as a one-time payment which an attacker has to make
in order to exploit a vulnerability, i.e., to make a single step of an attack. An
example could be the average amount of money required for bribing an employee
in order to get access to the network or to buy information about an unknown
vulnerability on a black market [147]. Such model is not entirely correct. First,
one-time payment is usually an indispensable condition, but not a sufficient one.
Possessing the information about an existing vulnerability and required tools do not
always imply its successful exploitation. Second, in many cases different amount
of investments may result in different probabilities of success. For example, the
higher the bribe is, the higher the probability that it is accepted. Third, in contrast
to the real world criminals (e.g., buglers or thieves), hackers often do not need
special equipment, but a computer, tools (likely, simply downloaded) and access to
the Internet (or to the internal network). In other words, exploitation of most of
vulnerabilities often does not require one-time investments.

Therefore, we propose to consider two types of cost: a fixed cost Cfix and a

36 FORMAL MODEL FOR SECURITY METRICS AND RISK

changing cost Cchg. The first cost is the common one-time investment. Such invest-
ment is required to allow the attacker to make an attempt to execute an attack.
The changing cost is the investment which influences the probability of successful
exploitation of a vulnerability. Such investment is often only the time the attacker
devotes to exploitation of a vulnerability. We can express this time in currency by
simple multiplication of the time spent by the cost of an hour of the attacker (a
way of transformation does not affect the further discussion). The idea behind this
cost is the following one: anyone can exploit a vulnerability spending some time
trying to do this (see, for example, the work of Jonsson and Olovsson [77] where
even unskilled attackers were able to compromise a system after considerable time).

In order to model such dependency we can use either lognormal [119] or Weibull
distributions. Both these distributions are used for modeling faults. In our case
we can see the problem as how long the system withstands an attack. We also can
apply multiplicative degradation argument here. In every small amount of time an
attacker gets a tiny amount of knowledge about how to exploit a vulnerability. In
this case system is “degrading” until it is broken. Such degradation is modeled by
lognormal distribution [14].

We consider how a probability of successful execution of a single action depends
on a cost in order to analyze how the probability of successful execution of the
whole attack depends on the resources possessed by the attacker. The probability
of successful execution of action ak is a conditional probability that the action is
successfully executed if the attacker spent Cchg(ak):

Pr[ak|Cchg(ak)] =
Pr[ak ∩ Cchg(ak)]

Pr[Cchg(ak)]
(4.7)

where Pr[Cchg(ak)] corresponds to the probability that the attacker belongs to a
certain profile because Cchg(ak) is specific for the attacker profile (attacker skill
level), Pr[ak ∩ Cchg(ak)] is a joint probability that cost Cchg(ak) is spent and the
action is successful. We assume that the probability Pr[ak ∩Cchg(ak)] also depends
on parameters of attacker profile.

Definition 11 The probability of successful attack γX executed by the attacker X is
the maximal probability to accomplish successfully all required actions, if the overall
sum of resources spent for the overall attack is less than or equal to the amount of
resources the attacker has:

Prv[γX , X] = max{
∏

∀ak∈γX

Pr[ak|Cchg(ak)] : γ = γS • γX , γS ∈ S, γX ∈ X, (4.8)

S
γS−→ S ′ ∧X

γX−→ X ′, S∥X γ−→ S ′∥X ′ ⇒ Psec(S
′∥X ′) ∋ goal,∑

∀ak∈γX

Cchg(ak) ≤ intang}

4.3. DEFINITIONS AND ANALYSIS OF SECURITY METRICS 37

The subscript v of probability Prv stands for a successful violation of security which
we use in the same sense as a successful attack. We assume that the successful ex-
ploitation of each attack action is an independent event. Therefore we can compute
the probability of the successful execution of the attack as a product of probabilities
of the successful execution of steps.

Definition 12 The fixed cost is used for defining the set of attacks available to an
attacker X in a system S:

ΓS|X := {γX : γ = γS • γX , γS ∈ S, γX ∈ X,S
γS−→ S ′ ∧X

γX−→ X ′, (4.9)

S∥X γ−→ S ′∥X ′ ⇒ Psec(S
′∥X ′) ∋ goal,

∑
∀ak∈γX

Cfix(ak) ≤ tang}

4.3 Definitions and Analysis of Security Metrics

In this section, we present formal definitions for several general quantitative metrics
which are used for evaluating security. We analyze formally defined metrics against
Definitions 2 and 7. While the definitions are coarse, they are still useful for a
simple check of metrics validity. We assume that a metric is valid if it “allows
different entities be differentiated from each other” [80]. We formally represent the
check of each metric as a criterion.

We consider the following metrics:

• number of attacks,

• minimal length of attack,

• minimal cost of attack,

• maximal probability of successful attack,

• attack surface metric.

For a metric M we write M (S) to denote that the metric is computed for a
system S, e.g., for a workstation with all hardware and software installed.

Number of attacks Number of attacks metric defines how many attacks to a
system exist. The idea behind this metric is that the more attacks for a system
exist the less secure the system is. This metric is applied for the simplest analysis
of attack graphs [124, 126]. Number of attacks also can be used for the analysis of
results of the penetration testing.

Definition 13 Number of attacks Natt(S):

Natt(S) = |ΓS| (4.10)

38 FORMAL MODEL FOR SECURITY METRICS AND RISK

We introduce the relation ≽Natt .

Definition 14 We say that the system S1 is more secure than the system S2 ac-
cording to the number of attack metric if the number of attacks existed to the system
S1 is less than the number of attacks existed to the system S2:

S1 ≽Natt S2 ⇔ Natt(S1) ≤ Natt(S2) (4.11)

Criterion 1 The number of attacks is a valid security metric:

S1 ≽sec S2 ⇒ S1 ≽Natt S2 (4.12)

Proof

S1 ≽sec S2 ⇒ Γ(S1) ⊆ Γ(S2) ⇒ Natt(S1) ≤ Natt(S2) ⇒ S1 ≽Natt S2 (4.13)

�

Minimal Length of Attack An intuition behind this metric is the following: the
less steps an attacker has to make, the simpler is to execute the attack successfully,
and the less secure the system is. The attack length is:

Definition 15 The length LγX of attacks γX is:

LγX = |γX |, γ = γS • γX , γS ∈ S, γX ∈ X,S
γS−→ S ′ ∧X

γX−→ X ′, (4.14)

S∥X γ−→ S ′∥X ′ ⇒ Psec(S
′∥X ′) ̸= ∅

Here we slightly abuse the notation using |γX | to determine the number of steps
in a sequence.

Definition 16 The minimal length of attack Lmin(S) is:

Lmin(S) = min
∀γX∈X

{LγX : γX ∈ ΓS} (4.15)

We introduce the relation ≽Lmin .

Definition 17 We say that the system S1 is more secure than the system S2 ac-
cording to the minimal length of attack metric if the minimal length of attack existed
to the system S1 is greater than the minimal length of attack existed to the system
S2:

S1 ≽Lmin S2 ⇔ Lmin(S1) ≥ Lmin(S2) (4.16)

Criterion 2 The minimal length of attack is a valid security metric:

S1 ≽sec S2 ⇒ S1 ≽Lmin S2 (4.17)

Proof

S1 ≽sec S2 ⇒ Γ(S1) ⊆ Γ(S2) ⇒ Lmin(S1) ≥ Lmin(S2) ⇒ S1 ≽Lmin S2 (4.18)

�

4.3. DEFINITIONS AND ANALYSIS OF SECURITY METRICS 39

Minimal cost of attack Minimal cost of attack (see Definition 18) has sense only
for the fixed cost Cfix, but as we noted, possessing this amount of money does not
always guarantee successful exploitation. The changing cost Cchg simply cannot be
minimal because even with a little effort an attacker has a chance (but a very small
chance) to achieve her goal. Example could be the password cracker who finds a
strong password after a couple of attempts by sheer luck.

Definition 18 Minimal fixed cost of attack Cmin
fix (S):

Cmin
fix (S) = min

∀γX∈X
{

∑
∀ak∈γX

Cfix(ak) : γX ∈ ΓS} (4.19)

We introduce the relation ≽Cmin
fix

.

Definition 19 We say that the system S1 is more secure than the system S2 ac-
cording to the minimal fixed cost of attack metric if the minimal fixed cost of attack
existed to the system S1 is greater than the minimal fixed cost of attack existed to
the system S2:

S1 ≽Cmin
fix

S2 ⇔ Cmin
fix (S1) ≥ Cmin

fix (S2) (4.20)

Criterion 3 The minimal fixed cost of attack is a valid security metric:

S1 ≽sec S2 ⇒ S1 ≽Cmin
fix

S2 (4.21)

Proof

S1 ≽sec S2 ⇒ Γ(S1) ⊆ Γ(S2) ⇒ Cmin
fix (S1) ≥ Cmin

fix (S2) ⇒ S1 ≽Cmin
fix

S2 (4.22)

�

Maximal probability of successful attack The probability to accomplish an
attack successfully describes the most probable way to compromise the system [163].

Definition 20 We define the maximal probability of successful attack as follows:

Prmax(S) = max
∀γX∈X

{Prv[γX , X] : γX ∈ ΓS} (4.23)

We introduce the relation ≽Prmax .

Definition 21 We say that the system S1 is more secure than the system S2 accord-
ing to the maximal probability of successful attack metric if the maximal probability
of successful attack existed to the system S1 is less than the maximal probability of
successful attack existed to the system S2:

S1 ≽Prmax S2 ⇔ Prmax(S1) ≤ Prmax(S2) (4.24)

40 FORMAL MODEL FOR SECURITY METRICS AND RISK

Criterion 4 The maximal probability of successful attack is a valid security metric:

S1 ≽sec S2 ⇒ S1 ≽Prmax S2 (4.25)

Proof

S1 ≽sec S2 ⇒ Γ(S1) ⊆ Γ(S2) ⇒ Prmax(S1) ≤ Prmax(S2) ⇒ S1 ≽Prmax S2 (4.26)

�

Attack surface metric This metric has been proposed by Howard [65] and Man-
adhata and Wing [103].

Definition 22 Let us have three assets which can be affected by an attack: method
(m), data items (d), channel (c). Let us know the damage-potential level dmgpot(γX)
of each asset and the level of privileges priv(γX) required for execution of an attack
γX (maximal difference in level of privileges among required actions of the same
attack). Then, for every system we can assign the following tuple:

ASM(S) = ⟨Riskm, Riskc, Riskd⟩ (4.27)

where:

Riskm =
∑

∀γX∈Γm

dmgpot(γX)

priv(γX)
; Riskc =

∑
∀γX∈Γc

dmgpot(γX)

priv(γX)
; (4.28)

Riskd =
∑

∀γX∈Γd

dmgpot(γX)

priv(γX)

where Γm,Γc,Γd are the sets of attacks leading to compromise of the corresponding
asset.

We introduce the relation ≽ASM .

Definition 23 We say that the system S1 is more secure than the system S2 ac-
cording to the attack surface metric if the attack surface of the system S1 is smaller
than the attack surface of the system S2:

S1 ≽ASM S2 ⇔ ASM(S1) ≤ ASM(S2) (4.29)

Criterion 5 The attack surface is a valid security metric:

S1 ≽sec S2 ⇒ S1 ≽ASM S2 (4.30)

Proof

S1 ≽sec S2 ⇒ Γ(S1) ⊆ Γ(S2) ⇒ ASM(S1) ≤ ASM(S2) ⇒ S1 ≽ASM S2 (4.31)

�

4.4. DEFINITION OF RISK 41

N
a
tt

L
m
in

C
m
in

a
tt

P
rm

a
x

A
S
M

+ + + + +

Table 4.1: Analysis of validity of security metrics

Table 4.1 gathers the results of criteria, where “+” means that the metric is valid
and “-” means that the metric is not valid.

4.4 Definition of Risk

We formally define risk which is one of the most general methods for the evaluation
of the security of a system considered in a specific context.

Let a number of attacker profiles be NX and let each profile Xj make |Xj| = NXj

attempts to execute attacks, the total number of attempts is N ttl
X =

∑NX
j=1NXj

.
Suppose ΓS|Xj

is the set of attacks available to the profile Xj. Then the number of

attacks available to Xj are NΓS|Xj
= |ΓS|Xj

|.

Definition 24 The risk Risk(S) of a system S to be compromised is:

∀Xj, γ = γS • γi, γS ∈ S, γi ∈ Xj, (4.32)

S
γS−→ S ′ ∧ Xj

γi−→ X ′
j , S∥Xj

γ−→ S ′∥X ′
j ⇒ Psec(S

′∥X ′
j) ∋ goalj,

Risk(S) =

NX∑
j=1

NXj
·

NΓS|Xj∑
i=1

Prv[γi,Xj] ·Prt[γi,Xj] · dmg(γi,Xj)

Where Prv[γi,Xj] is the probability of successful execution of the attack γi by Xj,
Prt[γi,Xj] is the probability of selection of attack γi by an attacker from the profile
Xj, dmg(γi,Xj) is the damage which Xj causes by successful execution of γi.

Note, that an attacker which is going to attack the system has to select one of the
available attacks leading to achievement of her goal. Therefore, we have complete

probability space here:
∑NΓS|Xj

i=1 Prt[γi,Xj] = 1. On the contrary, we assume that
the probability of successful execution of an attack does not depend on other attacks.
Therefore, the complete probability space for the probability of successful execution
of attack γi by Xj is Prv[γi,Xj] and 1−Prv[γi,Xj].

If we know that a randomly taken attempt of attack is made by the profile Xj

with probability PrXj
we can find the number of attempts made by the profile if the

overall amount of attempts is known.

NXj
= N ttl

X ·PrXj
(4.33)

42 FORMAL MODEL FOR SECURITY METRICS AND RISK

Naturally,
∑NX

j=1PrXj
= 1.

Proposition 1 Definition 24 is a fine-grained form of the classical formula for
computation of risk (annualized losses) [53, 74]:

Risk =

NX∑
j=1

AROj · SLEj (4.34)

Where AROj is the annual rate of successful achieving goalj by the attacker from
profile Xj and SLEj is single loss expectancy from achieving goalj.

Proof AROj gives us the average number of successful attacks which realise goalj.
Let PrsccXj

be the probability that an attempt of attack on the system is successful
and realises goalj. Then, the number of successful attacks can be found if a number
of attempts to compromise the system and probability PrsccXj

are known AROj =

N ttl
X ·PrsccXj

. To complete an attack, an attacker has to select a goal, i.e., to be from
a certain profile and then successfully achieve the goal. Expanding PrsccXj

, AROj can

be seen as AROj = N ttl
X · Thrj · V lnj, where Thrj is the probability that goalj is

selected and V lnj is the probability that goalj is successfully achieved.

The selection of goalj is equivalent to the probability that an attack attempt
is made by the profile Xj therefore Thrj = PrXj

. We can compute the average
probability that a concrete goal will be successfully achieved if we know all attacks
which lead to realisation of this goal.

V lnj =

NΓS|Xj∑
i=1

Prv[γi,Xj] ·Prt[γi,Xj] (4.35)

SLEj is the expected damage in case of goalj is achieved. In practice the ex-
pected damage is computed using the data collected from previous successful attacks.
We compute SLEj using the usual equation for the computation of expected values:

SLEj =

∑NΓS|Xj

i=1 Prsccγi
· dmg(γi,Xj)∑NΓS|Xj

i=1 Prsccγi

(4.36)

where Prsccγi
is the probability that the attack i is selected in the realization of the

goalj and then successfully achieved. Thus, SLEj is:

SLEj =

∑NΓS|Xj

i=1 Prv[γi,Xj] ·Prt[γi,Xj] · dmg(γi,Xj)∑NΓS|Xj

i=1 Prv[γi,Xj] ·Prt[γi,Xj]

(4.37)

4.5. DISCUSSION 43

Now, if we multiply and divide at once the part of Equation 4.32 after the first

sum by
∑NΓS|Xj

i=1 Prv[γi,Xj]·Prt[γi,Xj] and substituteNXj
as shown in Equation 4.33:

Risk(S) =

NX∑
j=1

N ttl
X ·PrXj

· (

NΓS|Xj∑
i=1

Prv[γi, X] ·Prt[γi,Xj]) (4.38)

·
∑NΓS|Xj

i=1 Prv[γi,Xj] ·Prt[γi,Xj] · dmg(γi,Xj)∑NΓS|Xj

i=1 Prv[γi,Xj] ·Prt[γi,Xj]

Finally, using Equations 4.35 and 4.37 and recalling that Thrj = PrXj

we get:

Risk(S) =

NX∑
j=1

N ttl
X · Thrj · V lnj · SLEj =

NX∑
j=1

AROj · SLEj (4.39)

�

4.5 Discussion

We would like to discuss two important outcomes of the formal model.

4.5.1 Attacker Models and Metrics

The first outcome of the analysis, is that the security evaluation depends on the
behavior of an attacker. Considering security strength, even not in a specific context,
we should take into account possible behavior of an attacker. For example, we say
that a castle with thicker walls is more secure than the one with thinner walls. In this
case, we implicitly assume that an attacker is going to break the walls with cannons
or catapults. Definition 4 already takes into account all possible ways which an
attacker can follow to break the system. However, the definition does not consider
how the attacker is going to select an attack to execute among several alternatives
and does not say what kind of knowledge the attacker possesses. We consider two
simple models of an attacker in order to show different behaviors of attackers.

Omniscient deterministic attacker is a “worst-case attacker”. The attacker has
a complete knowledge of the system: knows all possible attacks, costs she has to pay
to execute each attack and also the probability that an attack will be successful.
With all this knowledge the attacker will always select the “easiest” way (less costly
or more probable). Thus, the existence of other attacks rather than the “easiest”
one does not affect the overall security level because these attacks will never be used.
In this case, such metrics as minimal cost of attack or the most probable attack are
the most appropriate choice for the evaluation of security.

44 FORMAL MODEL FOR SECURITY METRICS AND RISK

Although the omniscient deterministic attacker is popular in the literature she
is not suitable for estimation of a real security level which security metrics do have
to evaluate. If such attackers were possible all attempts of attacks on the same
system would be the same. On the contrary, we see the diversity of attacks (see, for
example, the experiment described in [77]).

Blind adaptive attacker is another extreme: the attacker does not know anything
about the system. The attacker finds the first possible attack and tries to execute it
because there is no knowledge of how easy the attack is. In other words, the attacker
selects attacks randomly. With such an attacker in mind every attack will contribute
to the overall security strength, but not only the “easiest” one. Therefore, metrics
like minimal cost of attacks are not appropriate for estimation of security strength,
because they do not register improvement of security strength caused by hardening
of other attacks, except the “easiest” one.

Neither the first nor the second model are good for description of the behavior
of attacker, since an attacker always has some knowledge about the system, but
this knowledge is not complete. Therefore, new and more realistic models of an at-
tacker are required. On the other hand, two extreme models illustrate that different
conclusions can be derived with respect to the considered behavior of an attacker.
Our initial model that captures different possible attackers behaviors is presented
in Chapter 5.

4.5.2 Metrics and Stakeholders

Using only Definitions 7, 8 we cannot decide which metric is more suitable for the
evaluation of security. Such decision cannot be done because the criterion we use
is too coarse and, thus, we need other criteria to make a finer-grained analysis of
metrics. Therefore, we have to accept that several metrics can be used. The selection
of more appropriate metric can be done depending on who needs this metric:

• A security team or administrators are more interested in what has to be done
to reduce amount of penetrations. Thus, a number of possible attacks is more
useful for these stakeholders. Also attack surface can be useful too to see how
assets can be better protected.

• Minimal cost of attack, minimal length of attacks and maximal probabilities of
successful attack are more useful for the analysts studying attackers. After an
analysis these metrics can be provided to security staff which can improve the
system knowing the weakest places. In addition, these values are interesting
for an attacker, who wants to attack a system in the most efficient way.

In Chapter 6, we propose a general method for evaluation of security of complex
services using different security metrics.

Chapter 5

Modeling Adaptive Attacker’s
Behavior

As we have discussed in Chapter 4, the model of an attacker and her way to select
the attacks significantly impact the values of security metrics during the evaluation.
In this chapter, we strive for a refined attacker model which should allow a finer-
grained evaluation of security. We introduce the attacker’s view of a system, which is
sometimes different from the real system. This view drives the actions of the attacker
depending on the knowledge and resources the attacker possesses. Moreover, in our
model an attacker may give up on her current attack and follow an alternative attack
path. We use Markov Decision Process (MDP) to model the behavior of the attacker
as the method of the selection of attack steps.

The chapter is organized as follows. Section 5.1 explains our concerns on un-
certain knowledge of an attacker about a system. Section 5.2 focuses on models of
attacker’s behavior.

5.1 System and Attacker

We consider an attack graph G = (S,A) that represents the ways to compromise
the system [75, 148]. The set S of nodes si ∈ S denotes a successfully exploited
vulnerability and the set A of edges aij ∈ A denotes an attempt of exploitation
of vulnerability sj after previously exploited vulnerability si. Thus, successful ex-
ploitation of vulnerabilities leads an attacker to new states with new privileges.

Similarly to Chapter 4 we group attackers into attacker profiles. Within a profile,
attackers have the same goal and similar parameters such as money, skills, etc. For-
mally, the attacker profile is the tuple X = {goal,Γ, skill, intang, tang} where goal
is the goal of the attacker, Γ is the set of attacks γ ∈ Γ known by the attacker, skill
defines how trained is the attacker, intang is an amount of intangible resources pos-
sessed by the attacker, e.g., time, tang is the amount of tangible resources possessed
by the attacker.

46 MODELING ADAPTIVE ATTACKER’S BEHAVIOR

We modify the attack graph to capture properties of the attacker. First, we
add to the graph an initial node sinit ∈ S corresponding to initial privileges of the
attacker. Second, we define the subset of goal nodes Send ⊂ S that correspond to
vulnerabilities that complete the attack (the ultimate step of each attack).

We assume that the attacker has certain amount of time units to perform the
attacks. She spends a unit of time for executing a single attack step. The attacker
stays in a goal state if she reaches it before spending all units of time. This situation
is modeled by adding edges that start and end in the same goal state.

We distinguish between the real system and the attacker belief about the system.
When the attacker is omniscient, her view of the system coincides with the real
system. We consider a more realistic case, when the view does not coincide with
the real systems. The attacker’s knowledge about the system determines the set
of vulnerabilities that the attacker believes present in the system. These believed
vulnerabilities define a new graph GB. This graph is similar to the attack graph for
the real system while has believed vulnerabilities as nodes:

GB = (SB, AB), SB = Strue ∪ Sfalse, AB = Atrue ∪ Afalse (5.1)

Where Strue ⊆ S and Atrue ⊆ A are the subset of vulnerabilities and the subset of
attack steps really existing in the system and also believed by the attacker to exist,
Sfalse and Afalse are the set of vulnerabilities and the set of action that are believed
to exist but are absent in reality.

The set of vulnerabilities that are believed by the attacker is further reduced
according to attacker’s skills and her tangible resources. Finally, the attacker has
her own view (a graph GX) of the system:

GX = (SX , AX), SX ⊆ SB, AX ⊆ AB (5.2)

We assume that the system behaves probabilistically. We introduce probability
Prij of system transition from the state si to the state sj in response to an attacker’s
action. For the attacker this probability is:

Prij = Prpij ·Prexpij (5.3)

where Prpij is the probability that the vulnerability sj presents in the systems and
Prexpij is the conditional probability that the vulnerability may be successfully ex-
ploited in case it exists in the system. The probability Prij depends only on the
successive state sj while we use both indexes i and j for the uniformity with usual
definition of transition probabilities.

We measure Prpij assuming that the attacker knows which software is installed
in the system but may not know whether the software is patched or it is not. The
probability of presence of the vulnerability in the system depends on the period
passed after the vulnerability was discovered: the more time passed since the dis-
covery the lower the probability of presence of the vulnerability [133]. We assume

5.1. SYSTEM AND ATTACKER 47

Figure 5.1: A network system

Prpij decreases linearly in time:

Prpij = − 1
Tpatch

· t+ 1 if Tpatch ≥ t (5.4)

Prpij = 0 if Tpatch < t

where Tpatch is the time required for patching all systems, t is time passed since the
release of a patch and for t > Tpatch we assume that all systems are patched. The
probability Prexpij may be computed using the score from vulnerability databases
similarly to [49] or by security experts. Our approach does not depend on the
method of computation of Prpij and Prexpij , thus, any other methods can be used.

Example 1 We consider a company which saves information in an on-line database
service. A competitor company would like to steal the information by attacking the
server where the database is installed. The server operates FreeBSD 7 and MySQL
5. The database is managed by an administrator that uses a local workstation oper-
ated by Linux Mint 12 with Pidgin Messenger installed. Moreover, the administrator
manages the database from her home laptop using a VPN connection to the work-
station. The laptop runs Windows 7, Chrome browser, and TUKEVA Password
Reminder. The whole system is depicted in Figure 5.1.

The attacker composes the following attacks to the system1:

• The shortest possible attack requires registration in the on-line database service
and execution of vulnerability CVE-2012-0484 in MySQL.

• Another possible attack is based on vulnerability CVE-2011-3108 in Chrome
browser and CVE-2009-4781 in TUKEVA where the administrator saves pass-
words to a database management tool.

• The attacker exploits CVE-2012-2369 in Pidgin gaining the access to the work-
station. Then she causes a buffer overflow on the server using CVE-2011-4862
and exploits CVE-2012-0114 against MySQL.

1Please, follow http://nvd.nist.gov/home.cfm for details of vulnerabilities.

48 MODELING ADAPTIVE ATTACKER’S BEHAVIOR

Figure 5.2: The attack graph of the network system

• Since the laptop is connected by VPN to the workstation, the attacker gains
the access to the laptop executing CVE-2012-0173 in Windows 7. Then she
exploits CVE-2009-4781 in TUKEVA.

• The attacker may gain the access to the workstation after successful attack to
the laptop by executing CVE-2011-4913 in the Linux kernel. Then she exploits
CVE-2011-4862 in the FreeBSD server and CVE-2012-0114 in MySQL.

The resulted attack graph is displayed in Figure 5.2. We enumerate the nodes
for the sake of convenience. The node 0 is the initial node. The nodes 3, 7 and 8
(colored in grey) are goal nodes.

5.2 Models of Attacker’s Behavior

We use Markov Decision Process (MDP) [137] to model decision making process
of attackers. An attacker observes a system and can influence the behavior of the
system by making actions at discrete moments of time (decision epochs). The system
responds to an action probabilistically. The attacker does not make the decisions
about actions blindly but takes into account past, current, and possible future states
of the system and also possible rewards that are connected with the actions. The
goal of the attacker is to maximize the expected total reward according to a some
criterion.

Formally, MDP is a tuple P = ⟨S,A, P,R, T ⟩ where S is a set of system states
si, A is a set of sets Ai of actions aij ∈ Ai available for the attacker in the state si,
P is a set probabilities Prij that the system transits from state si to sj in response
to attacker’s action aij, R is a set of rewards functions rij dependent on the state si
and the action aij, T is a set of decision epochs t. Regarding transition probabilities,
in general, the system may transit to any state available from si in response to the
action aij. We assume that the system only transits to the state sj with probability
Prij or stays in the state i with probability 1−Prij.

5.2. MODELS OF ATTACKER’S BEHAVIOR 49

Algorithm 1 Computation of a deterministic policy

t := N {number of decision epochs}
for all sN ∈ S do
uN(sN) := rN(sN)

end for
while t > 1 do
t := t− 1
for all st ∈ S do

ut := max
a∈Ast

{
rt(st, at) +

∑
aij∈Ai

Prtij · ut+1(sj)

}

A∗
st,t := argmax

a∈Ast

{
rt(st, at) +

∑
aij∈Ai

Prtij · ut+1(sj)

}
end for

end while

We model attacker’s behavior as an MDP policy π which determines how an at-
tacker selects actions. We exploit finite-horizon policies to define attacker’s behavior
because the attacker has finite amount of time to perform an attack. The policy
can be deterministic or probabilistic. The policy is deterministic if the next action
of the attacker in the state is unambiguously defined by the history of actions and
states. The policy is probabilistic if the attacker selects the next action at random.
The probability of an action to be selected may also depends on the history. The
policy is composed of decision rules. A decision rule is a procedure for the selection
of an action for each moment of time. The decision rules either as the policy may
be deterministic or probabilistic.

There is an optimal policy that maximizes an expected total reward obtained
by the attacker during the attack. A total reward uπ obtained by the attacker as a
result of the execution of policy π is computed on the basis of instant and terminal
rewards. The attacker obtains an instant reward after execution of an action. The
instant reward depends on st and at. The terminal reward rN(sN) depends on the
state of the process at the last decision epoch N . Thus, the total reward:

uπ =
N−1∑
t=1

rt(st, at) + rN(sN) (5.5)

Note, that we use upper index (e.g., st for a state) to denote the current value of a
variable at a moment of time.

We evaluate every attacker’s action as an amount of money. E.g., for an attacker
that tries to cause maximal damage to a system, the reward are losses faced by the
system owner in case of a successful attack.

50 MODELING ADAPTIVE ATTACKER’S BEHAVIOR

Algorithm 2 Model of adaptive attacker

τ := N {number of decision epochs}
t := 1 {current decision epoch}
Run the backward induction algorithm using τ to obtain A∗

st,t

while τ ̸= 0 do
if at = aij is successful then
for all q,Prjq ̸= 0 do
Pr0q := Prjq

end for
τ := τ − 1
t := t+ 1

else
if sj exists then
for all k,Prkj ̸= 0 do
Prkj := Prexpkj

end for
else
for all k,Prkj ̸= 0 do
Prkj := 0

end for
end if
τ := τ − 1
t := 1
Run the backward induction algorithm using τ to obtain A∗

st,t

end if
end while

Omniscient Deterministic Attacker

The simplest model of attackers behavior [98, 148, 165] may be defined by an optimal
deterministic policy of MDP. In this case, an attacker always prefers the best possible
action in a state which belongs to the optimal attack path in the attack graph. The
algorithm for the computation of optimal deterministic policies is the backward
induction [137] (see Algorithm 1). Variables ut and un describe intermediate values
of total reward. The algorithm finds sets A∗

st,t of actions that the attacker should
follow in each state at each decision epoch. Sets A∗

st,t maximize the expected total
reward of the attacker.

Adaptive Attacker

We modify the behavior of the deterministic attacker so that she may reconsider
her course of action when she cannot complete her current attack path (e.g., because
the vulnerability initially thought to be in the system is really absent). We assume

5.2. MODELS OF ATTACKER’S BEHAVIOR 51

Figure 5.3: The view of the attacker at the first decision epoch

that the attacker sets Prpij = 0 (and, thus, Prij = 0) when she cannot complete an
attack step aij and understands that the vulnerability sj is absent in the system. In
addition, the attacker sets Prkj = 0 for all other edges entering sj from all states
sk. Then the attacker uses the backward induction algorithm to compute a new
strategy using the updated attack graph and the amount of decision epochs τ left
after the initial part of the attack.

The attacker sets Prkj = Prexpkj for all edges entering sj from all states sk if she
cannot complete the action aij but understands that the vulnerability sj exists in the
system. Then the attack strategy is recomputed according to the backward induction
algorithm with the rest τ of the decision epochs. If the attacker successfully exploits
the vulnerability sj she adds edges a0q and setsPr0q = Prjq for all states sq reachable
from sj in one step. This modification is required to remember the privileges gained
by the attacker for future adjustments in her strategy.

The modified behavior is described in Algorithm 2.

Example 2 Suppose the attacker has the view of the system shown in Figure 5.3.
The attacker supposes that nodes 9 and 10 are presented in the system, while they
are actually not presented. Exploitation of nodes 1 and 4 (see Figure 5.2) is too
expensive for the attacker. Moreover, the attacker does not have enough skills to
exploit node 8.

In our example, the attacker has N = 5 decision epochs and gets terminal rewards
($10K) only if she reaches states 3, 7, 10 i.e. rN(s3) = rN(s7) = rN(s10) = 10
other terminal rewards equal 0. Instant rewards also equal to 0. The first step is a
computation of deterministic policies for the initial configuration of the system.

For the attack graph presented in Figure 5.3, the policy is π = (a1 = a05) at the
initial state during the first decision epoch. The action is successful and the attacker
sets the probabilities Pr06 = Pr56, Pr07 = Pr57 and Pr0,10 = Pr5,10. Changes of
probabilities are depicted as new edges of the attack graph (see Figure 5.4).

The policy π requires the attacker to select the action a2 = a5,10 at the second
decision epoch. The attacker unsuccessfully tries the action understanding the vul-
nerability 10 is absent in the system. The attacker sets probabilities Pr0,10 = 0,

52 MODELING ADAPTIVE ATTACKER’S BEHAVIOR

Figure 5.4: The view of the attacker at the second decision epoch

Figure 5.5: The view of the attacker at the third decision epoch

Pr5,10 = 0 and Pr9,10 = 0. She reconsiders her initial policies using N − 2 = 3
decision epochs, and obtains a new initial deterministic policy π = (a1 = a07).

Exploitation of Algorithm 2 allows running a simulation of interactions of an
attacker and a system. We suppose that the security metrics should be estimated
on the basis of several simulations (similarly to [98]). We suggest the following
method for the evaluation of security metric. First, a security administrator should
build an attack graph for a computer system she manages. Second, she needs to
determine the parameters of the attacker that is supposed to attack the system.
Finally, the administrator runs Algorithm 2 several times and obtains values of
security metrics. We leave determination of exact formulas for the computation of
other security metrics as a future work.

Chapter 6

Security Evaluation of Complex
Services

W focus on the evaluation of security of complex services on the basis of different
security metrics. The evaluation should help a service orchestrator to select the most
secure design of a complex service. We assume that the complex service is composed
of simple services evaluated with general quantitative security metrics. Essential pe-
culiarity of our method is that we express security metrics as semirings which allow
abstracting from the metric type during the evaluation. First, we consider a prim-
itive decomposition of the complex service into a weighted graph which describes
possible designs of the the complex service. Second, we evaluate the security using
semiring-based methods for a graph analysis. Finally, we exploit semirings to de-
scribe mappings between security metrics which are useful when different metrics
are used for the evaluation of security of different simple services.

The chapter is structured as follows. Section 6.1 presents a transformation of a
complex service described in Business Process Modeling Notation (BPMN) into a
graph. In Section 6.2, we evaluate overall security of a complex service analyzing
the graph with help of semiring-based methods. Section 6.3 shows how mappings
between security metrics can be described.

6.1 Decomposition of Complex Service into De-

sign Graph

We consider a general complex service composed of simple abstract services. An
abstract service describes a single job that should be done during the execution of the
complex service. We follow BMPN notation for the description of a complex service.
BPMN is a high-level notation and, thus, is suitable for the high-level evaluation
of security. BPMN is a graphical notation, therefore an ad-hoc formalization is
required for the further analysis.

We consider a complex service which is composed using the four basic structured

54 SECURITY EVALUATION OF COMPLEX SERVICES

activities: sequence, choice, flow, and loop. Sequence describes a situation when
services or structured activities are executed sequentially. Choice allows selecting a
service on the basis of attributes of the complex service or events external to the
complex service. Flow is used to denote two or more services or activities run in
parallel. Loop supports the iterative execution of services and activities.

We extend this set with one more structured activity called design choice simi-
larly to Massacci and Yautsiukhin [108, 109], which denotes a design alternative for
a complex service. Design alternatives denote sub-processes which fulfill the same
functional goal, but in different ways (i.e., these are different subprocesses). The
alternatives provide different qualities in general, and security level in particular.
Semantics of the design choice is similar to a regular choice, but the design choices
are solved during the design of the complex service, while the regular choice is solved
during the execution. We exploit a gateway with letter “X” inside to denote the
regular choice and a gateway with letter “D” inside to denote the design choice in
a complex service diagram.

Each abstract service has several real instantiations, concrete services. Concrete
services are run by different service providers. For instance, an on-line trading
platform may be provided by Amazon or eBay, an off-the-shelf e-mail solution may
be provided by Google or Microsoft. We suppose that the security level of a concrete
service is evaluated using general quantitative security metrics or risk. The security
level is queried by an orchestrator from a service registry. An essential goal of the
orchestrator is to solve all design choices and select instantiations for the abstract
services in a way to obtain the most secure design of the complex service.

Example 3 We consider an on-line shop as an example of a complex service (see
Figure 6.1). First, a customer uses an on-line engine for searching and selecting
items for buying. The owner of the shop would like to choose the way to implement
the on-line engine. She considers two alternatives: to rent an on-line trading plat-
form or to rent a server and install a content management system (CMS) there.
Second, selected items are paid using a payment service. Third, items are shipped to
the customer. Finally, the customer gets information about the payment and condi-
tions of shipping by e-mail or VoIP service. The owner considers two opportunities
to organise an e-mail service: to run an off-the-shelf e-mail solution or to organise
her own e-mail server buying a hosting and installing an e-mail server software. We
numerate abstract services for further convenience.

6.1.1 Mathematical Model

We use a graph-based mathematical model of a complex service for description and
analysis of complex services. A high level description of a complex service can be
transformed into a graph in several ways (e.g., [108, 109]). In the current work, we
simplify the transformation assuming that an orchestrator has information about
usual execution of complex service in advance. Thus, all choices except design

6.1. DECOMPOSITION OF COMPLEX SERVICE INTO DESIGN GRAPH 55

Figure 6.1: A complex service in the BPMN: an on-line shop

choices are known in advance and we can consider only a part of the initial complex
service containing design choices only. Loop activity is considered as a number of
the same executions in a raw. We assume that the orchestrator knows exact number
of loops or uses the average number. The following technique is used to obtain the
graph.

We call Design Graph a graph composed of concrete services connected with
edges representing message flow in a complex service. The root node of the graph is
an empty node representing the beginning of the complex service. For the sequential
composition, the child of a node is the next executed service in a BPMN description.
In case of parallel composition we select any activity first and then another one,
hence, the parallel composition is a sequence of nodes in the graph. Intuition behind
such transformation is that we consider the security of the complex service and all
parallel branches should be successfully executed for the successful execution of the
complex service. Regular choices are solved according to the assumption above.
A node has several outgoing edges if corresponding service is followed by a design
choice. We call such node an “or-node”. Outgoing edges lead to nodes corresponding
to the first services in design alternatives grouped by the design choice. In addition,
“or-node” is used to represent a choice between concrete services. Finally, an empty
node is used to conclude the graph. The direction of connections is the same as the
direction of message flow in the BPMN diagram. Moreover, each node is assigned
with a weight according to the value of a metric expressing service security. Source
node and final nodes have zero weights. Now, we are able to formalize the Design
Graph we receive after transformation of a complex service description.

Definition 25 Let SA := {ai} be a set of abstract services. Let also SC := {cij} be
a set of concrete services and any cij ∈ SC is a j-th concrete service for an abstract
service ai. Then, we define the Design Graph as a tuple ⟨N,E,L ⟩. Where:

• N := {nij} ∪ {n0} ∪ {n∞} is a set of nodes, where nodes nij correspond to the
concrete services cij, n0 and n∞ are initial and final nodes corresponding to
the start and the end of the complex service;

56 SECURITY EVALUATION OF COMPLEX SERVICES

Figure 6.2: The design graph representing the on-line shop

• E is a set of edges between nodes which correspond to the message flow in the
complex service;

• L : N → D is a labeling function which assigns to every node a number from
the domain D of a security metric, the initial node and the final node are
always assigned with zero value of the metric.

Example 4 We continue Example 3. Consider transformation from a complex
service in Figure 6.1 into a Design Graph. Suppose the owner of the on-line shop
knows that most of her customers prefer to be contacted via e-mail. This information
helps an orchestrator of the complex service to remove the exclusive choice between
a VoIP service and an e-mail service on the final step of the complex service.

The design graph starts with the initial node n0 which has three children n11,
n12, and n21. Nodes n11 and n12 describes the selection between concrete services
instantiating a trading platform in Figure 6.1 (e.g., n11 is for Amazon and n12 is for
eBay). The alternative design of the on-line engine is presented by node n21 which
stands for a hosting service and two its children n31 and n32 denoting different CMSs.
Nodes n41 and n42 represent payment services, n51 stands for shipping service, n61

and n62 denote external mailing services, n71 and n72 represent hosting for an e-mail
server, n81 and n82 are the e-mail server software. The graph ends with the node
n∞ which stands for the end of the complex service. We display the resulted Design
Graph produced from the complex service in Figure 6.2.

Every design of the complex service is represented as a path in the Design Graph.
We define the set P(n0,n∞) := {π(n0,n∞)} of all the possible paths π between n0

and n∞. Each path has its own weight obtained by aggregating weights of nodes
belonging to the path. The weight of the path is representing the security metric
for an design of a complex service. Aggregating weights corresponds to aggregating
metrics values. The problem of the selection of the most suitable design of the
complex service can be seen as to find such path in a Design Graph that the weight

6.2. SECURITY-AWARE SELECTION OF COMPLEX SERVICE DESIGN 57

of the path is the best one (e.g., maximal or minimal) among all possible. We call
the path with optimal value of metric the shortest path and denote it as πsh

(n0,n∞) ∈
P(n0,n∞). The most secure design of the complex service corresponds to the shortest
path in the Design Graph and has the best value of the security metric.

6.2 Security-aware Selection of Complex Service

Design

We analyze the Design Graph using semiring-based methods in order to select the
design of a complex service which satisfies the desirable requirements of the service
consumer. We select the most secure complex service design among available alter-
natives. If this selection does not satisfies the desirable customer’s policies then no
other design does.

We aim at the evaluation of the security of a complex service using different
security metrics. However, in this section, we assume that the security of all concrete
services is evaluated using the same security metric. This assumption will be relaxed
in Section 6.3. Each node nij in the Design Graph is assigned with weight wij =
L(nij). The initial n0 and the final node n∞ are assigned with a zero value. We look
for a method that allows abstracting from the security metrics and using universal
algorithms for the computation of the shortest path in graphs.

Mehryar Mohri [117] proposed a framework that contains algorithms for search-
ing for the shortest path in a weighted graph, extending the work of Edsger Dijkstra
[40]. The framework exploits the notion of semiring for the abstraction of weights
and operators over weights. A semiring consists of the set of values D (e.g., natural
or real numbers), and two types of operators: aggregation (⊗) and comparison (⊕)
of values. Formally, the semiring is defined as follows [22]:

Definition 26 Semiring T is a tuple ⟨D,⊕,⊗,0,1⟩:

• D is a set of elements and 0, 1 ∈ D;

• ⊕ is an additive operator defined over (possibly infinite) set of elements D,
for d1, d2, d3 ∈ D, it is commutative (d1 ⊕ d2 = d2 ⊕ d1) and associative
(d1 ⊕ (d2 ⊕ d3) = (d1 ⊕ d2) ⊕ d3), and 0 is a unit element of the additive
operator (d1 ⊕ 0 = d1 = 0⊕ d1).

• ⊗ is a binary multiplicative operator, it is associative and commutative, 1 is
its unit element (d1 ⊗ 1 = d1 = 1 ⊗ d1), and 0 is its absorbing element
(d1 ⊗ 0 = 0 = 0⊗ d1);

• ⊗ is distributive over additive operator (d1⊗ (d2⊕d3) = (d1⊗d2)⊕ (d1⊗d3));

58 SECURITY EVALUATION OF COMPLEX SERVICES

• ≤T is a partial order over the set D, which enables comparing different ele-
ments of the semiring, the partial order is defined using the additive operator
d1 ≤T d2 (d2 is better than d1) iff d1 ⊕ d2 = d2.

The weight δsh(πsh
(n0,n∞)) of the shortest path πsh

(n0,n∞) is computed using additive
operator ⊕:

δsh(πsh
(n0,n∞)) =

⊕
∀π(n0,n∞)∈P(n0,n∞)

δ(π(n0,n∞)) (6.1)

Where P(n0,n∞) is the set of all paths from the initial node n0 to the final one n∞. The
weight δ(π(n0,n∞)) of the path π(n0,n∞) is computed using multiplicative operator:

δ(π(n0,n∞)) =
⊗

∀nij∈π(n0,n∞)

wij (6.2)

Where we write nij ∈ π(n0,n∞) to show that the node nij belongs to the path π(n0,n∞).
We need to express security metrics as semirings for exploitation of universal

algorithms for the search of the shortest path in a weighted graph.

6.2.1 Semirings for Expressing Security Metrics

We assume that security of the complex service and concrete services is evaluated
using general security metrics or risk. Different semirings should be used to express
different metrics. We describe several security metrics expressed as semirings.

• Weighted semiring ⟨R+,min,+,∞,0⟩ represents the risk that a successful at-
tack on a complex service occurs. A path in a tree computed under preferences
that weighted semiring minimizes the overall sum of risks of successful attacks
on simple services constituting the complex service. We assume that the com-
plex service is compromised if a successful attack compromises at least one
service included in the complex service.

• Semiring ⟨N+,min,+,∞,0⟩ serves for identification of a path with the mini-
mal number of attacks.

• Probability semiring ⟨[0, 1],max, ·,0,1⟩ expresses the probability of a success-
ful operation of the complex service (a resistance to all attack). In case we
know the probability pij of compromising the service cij, then (1− pij) is the
probability that the service cij tolerates all attacks.

This is not a complete list of metrics and semirings that can be used for the search
of the most secure design of a complex service. Other semirings can be defined for
other metrics. Note, that semirings can serve also for the evaluation of non-security
aspects of the complex service. For instance, semiring ⟨N+,min,+,∞,0⟩ can be

6.3. INTEROPERABILITY OF SERVICES 59

used for identification of the minimal number of steps to reach the end goal of the
complex service. Semiring ⟨R+,max,min,0,∞⟩ allows evaluating the latency of the
complex service if we assume that only one delay may occur during the execution of
the complex service. Probability semiring ⟨[0, 1],max, ·,0,1⟩ can be used to express
users trust to the complex service.

We can apply a semiring-based Generic Single Source Shortest Distance algo-
rithm [117] for searching of the shortest path after a semiring was chosen and the
problem is defined by Equations 6.1 and 6.2. Note, that the algorithm uses the
weights on the edges while we use the weights on the nodes. The algorithm can still
be applied to Design Graph if we use the weights for the node as the weight of every
incoming edge leading to this node.

Example 5 Suppose each concrete service is evaluated with the quantitative risk
value. Weighted semiring ⟨R+,min,+,∞,0⟩ is used to represent the risk. There are
48 possible paths in the graph presented in Figure 6.2. For simplicity, we consider
just two paths. Let weights of nodes be w11 = 100, w41 = 120, w51 = 150,w61 =
90, w62 = 110, w0 = w∞ = 0. First, we find the weights for paths π1

(n0,n∞) =

n0n11n41n51n61n∞ and π2
(n0,n∞) = n0n11n41n51n62n∞. The weights δ1(π1

(n0,n∞)) = 480

and δ2(π2
(n0,n∞)) = 500 are computed using multiplicative operator + of weighted

semiring. Second, the best weight is selected using additive operator min: δsh =
min{δ1, δ2} = 480. The shortest path is πsh

(n0,n∞) = π1
(n0,n∞). Note, that here we used

a simplified computation for this example, when the mentioned algorithms (e.g.,
[117]) are much more efficient.

The main advantage of exploitation of semirings is that the orchestrator can eval-
uate the complex service using different security criteria and select several designs
corresponding to different security metrics. The orchestrator can exploit an design
satisfying the major part of criteria.

6.3 Interoperability of Services

Our previous idea requires concrete services being evaluated using the same metric.
However in the real world a situation when security of all concrete services is evalu-
ated using the same metric is not always possible. For instance, consider a situation
when the security of the first part of services is evaluated using minimal number of
attacks and the security of the second part is evaluated using risk. There is a need
for a method that can evaluate the security of a complex service in case of several
different metrics are used for the evaluation of security of different simple services.
We propose to tackle the issue by mapping between security metrics. The relations
may be expressed using mappings between semirings presented by Bistarelli et al.
[20]. The analysis described in Sections 6.1 and 6.2 should be applied after the
mapping is done.

60 SECURITY EVALUATION OF COMPLEX SERVICES

Suppose there are two semirings T = ⟨D,+, ·, 0, 1⟩ and T̂ = ⟨D̂, +̂, ·̂, 0̂, 1̂⟩. Our
goal is mappings between these semirings. A Galois insertion ⟨α, γ⟩ : ⟨D,≤T ⟩

⟨D̂,≤T̂ ⟩ is used for the mappings. Here α and γ are two mappings such that:

• α and γ are monotonic,

• ∀d ∈ D, d ≤T γ(α(d)),

• ∀d̂ ∈ D̂, α(γ(d̂)) ≤T̂ d̂.

For a constraint satisfaction problem (CSPs, [22]) H over semiring T we get a

problem Ĥ = α(H) over semiring T̂ applying α. Similarly, we obtain the problem

H ′ = γ(Ĥ) over semiring T applying the mapping γ to the problem Ĥ over semiring

T̂ . The mapping has several useful applications. First, the mapping allows evalu-
ating bounds for the solution of H if the solution of the problem α(H) is known.

If there is the problem H over T , and ĥ is an optimal solution of problem α(H)

with semiring value d̂ in α(H) and d in H, then there is an optimal solution h of

H with semiring value d such that d ≤ d ≤ γ(d̂). Second, a mapping is called order

preserving if
⊗̂
d∈I1

α(d) ≤T̂

⊗̂
d∈I2

α(d) ⇒
⊗
d∈I1

d ≤T

⊗
d∈I2

d, where I1 and I2 are two sets

of elements from D. If the mapping is order preserving then the set of all optimal
solutions of the problem H over T is the subset of optimal solutions of the problem
α(H) over T̂ .

A problem of searching the shortest path in a graph is a CSPs problem [117].
Thus, we are able to find bounds for a weight of the shortest path in a Design
Graph if we do mapping between metrics using semirings. The bounds may be
used as an approximated level of security of complex service. The bounds also may
be used as a starting point for searching a precise value. If the mapping is order
preserving, the set of shortest paths in the graph after the mapping contains all
shortest paths for the graph before the mapping. Thus, we can also use this set as
a starting point for searching a precise level of security for the complex service.

Chapter 7

Continuous Reevaluation of
Security in Services

We consider service-oriented architecture (SOA) and propose a method for continu-
ous reevaluation of security in services based on the Usage Control model (UCON)
enhanced with qualitative risk assessment. For the service consumer side, we show
how to use risk for selecting a service and how to continuously reevaluate risk during
the service exploitation in order to make decisions about current service. For the
service provider side, we show how to improve the service in order to mitigate risk
and to keep or to attract the consumers.

The chapter is organized as follows. Section 7.1 summarizes interactions of a
service consumer and a service provider and shows how to adapt the UCON for
describing the interactions. In Section 7.2, we present our idea about computing
the risk for a service consumer. We use the proposed method for selecting the most
secure service and for continuous reevaluation of security during the usage of the
service in Section 7.3. We propose a method for a service provider that allows
selecting the best improvements for her security preferences in Section 7.4.

7.1 Interactions of Service Consumer and Service

Provider

We consider the SOA (see Figure 7.1) where asset (e.g., data) belonging to a service
consumer is processed by a service belonging to a service provider. During the
processing the data can be compromised. The service consumer wants to be sure
that her data is processed in the most secure (i.e., the least risky) way while it
is under provider’s control. The security should be high when access to the data
is granted and should remain high during the data processing and, maybe, some
time after. Therefore, the service consumer considers various service providers and
decides which one provides the service with the best security. More important, the
security should be constantly reevaluated by the service consumer after the access

62 CONTINUOUS REEVALUATION OF SECURITY IN SERVICES

Figure 7.1: Interactions of a service consumer and a service provider in the SOA

to the data is granted. Hence, the usage of data must be controlled.
We assume that security requirements of a service consumer and security pref-

erences of a a service provider can be expressed as attribute-based policies of the
UCON. The attributes of the service consumer are collected into desirable policy
statements that represent security requirements of the service consumer. The at-
tributes of the service provider are collected into guaranteed policy statements that
represent security properties of the service provider. Also environment itself has
attributes (e.g., time, location, etc.) which may affect the decision to grant access
to data or not to grant [5, 129].

Example 6 For the policy statement “data must be deleted after 30 days”, an
attribute is “time after request about deletion”, the value of the attribute is “30
days”.

Technically, we follow the SOA model presented in [138]. We assume that a ser-
vice consumer can only observe policy statements of a service provider asking a SOA
registry about security preferences of the service provider. The policy statements
are certified by a certifier that confirms that security preferences announced by the
service provider correspond to the reality. Moreover, we assume that the registry
is notified about any changes of security preferences. For the sake of simplicity, we
skip the intermediate interactions of the service consumer and the service provider
with the registry and the certifier in further discussion.

We suppose that the service consumer should derive the security level of the
service on her own analyzing certified security preferences. In Section 7.2 we discuss
how the qualitative risk level may be assessed on the basis of security requirements
and security preferences of the service consumer and the service provider.

We adapt the UCON model for security evaluation and reevaluation in the SOA
(Figure 7.2). We suppose that service providers (subjects) are trying to access
an object which is data of a service consumer. First, the service consumer starts

7.2. QUALITATIVE RISK ASSESSMENT FOR SOA 63

Figure 7.2: UCON model adapted for the SOA

selecting a service provider evaluating security of services. This step corresponds
to preUpdate step of the UCON when initial attributes values are checked. If the
service with appropriate security is found, the contract between the partners is
signed and the exploitation of the service starts. This corresponds to granting the
access to an object in the UCON. Otherwise, the service consumer denies the access
to service providers because of inappropriate security level. The service provider
gets the access to data and starts to process the data. During the usage of the data
security is continuously reevaluated. The reevaluation corresponds to continuous
checks of the attributes, hence, to onUpdate action of the UCON. If in result of
reevaluation the service consumer understands that the security does not correspond
to the required level, she terminates the contract, i.e., revokes the access to data.
The access simply ends if the data is successfully processed by the service provider.
Some postUpdate actions may be required after the access is ended, for instance, the
service provider should delete the data from her servers.

7.2 Qualitative Risk Assessment for SOA

Every service consumer wants to minimize the risk related to possible abuse of her
data during the processing. A service consumer has her requirements how the data
should be used to minimize the risk of data to be revealed to the third parties,
maliciously modified, become unavailable. For this purpose the service consumer
specifies a list of desirable policy statements. Each policy statement specifies how
the object must be used.

Policy statements have different importance for a service consumer. Violation
of some policy statements may not harm the service consumer significantly. Other
policies may be crucial. Moreover, the service consumer should consider which
policies may be more likely violated during the processing while she determines the

64 CONTINUOUS REEVALUATION OF SECURITY IN SERVICES

importance of the policies. Only the service consumer has the necessary knowledge
to determine the importance which is based on the nature of data and policies. We
assume that the service consumer uses qualitative scale to rate the importance of
policy statements assigning high, medium or low ranks of importance to each policy
statement.

Definition 27 Let P be a set of all desirable policies then we can define a function
rank as follows:

rank : P → {low,medium, high} (7.1)

Example 7 Suppose that a service consumer wants two policy statements to be
enforced: “the data must be deleted after 30 days” and “the audit must be performed
twice a month”. The first policy is not very important for the service consumer and
has the level of importance “low”. On the other hand, it is important for the service
consumer that the service provider correctly processes the data and does not abuse
it, e.g., for committing a fraud. Thus, the second policy statement has “high” rank
of importance.

A service consumer starts looking for a service provider which provides the re-
quired functionality and also satisfies the specified desirable policy statements. Ob-
viously, not all statements can be addressed by every service provider in general case.
The service consumer wants to grant the access to data to the service provider which
guarantees the best security, i.e., the service provider which satisfies the desirable
policy statements in the best way.

Policies may be expressed differently while have the same meaning. Thus, first
of all, the service consumer should find the correspondence between her desirable
policies and guaranteed policies of a service provider. We do not consider the prob-
lem of semantical mapping of policy statements here and refer the reader to the
solutions already proposed in the literature, e.g., [26].

The next step is to consider if the desirable policies are addressed well enough
by guaranteed policies. Every policy statement is based on some attributes [129].
This means that strength of statements depends on the values of the attributes.
These attributes values may not be the same as the service consumer requires,
but be slightly different. This means that the statement is not fulfilled entirely or
sometimes fulfilled better than it is required.

Example 8 The service consumer requires that “data must be deleted after 30
days” but the service provider may guarantee only that “data will be deleted after 90
days” because the local law requires to keep the data for this period.

One solution is to search for a provider which can guarantee the policy statements
as the service consumer requires, but this solution is too idealistic in the most real-
world situations. We propose an alternative solution: accept a service provider

7.2. QUALITATIVE RISK ASSESSMENT FOR SOA 65

which has the “closest” attributes values to the desired ones. The service consumer
should specifies the strength of policy statements depending on the attributes values.
We define a function str which is specific for each policy statement and determines
the strength of a statement depending on the values of the corresponding attributes.

Definition 28 Let R be the set of all attributes used in policies of set P . Each
attribute r ∈ R has domain of values Vr. We define the set of tuples containing
policy statements together with attribute values used in the statements:

S = {⟨pi, vri,1 , . . . , vri,n⟩ : ri,1, . . . , ri,n ∈ pi, pi ∈ P} (7.2)

Where pi is a policy, ri,1, . . . , ri,n ∈ pi means that attributes ri,1, . . . , ri,n are used in
the policy pi and vri,1 ∈ Vri,1 , . . . , vri,n ∈ Vri,n are values of attributes ri,1, . . . , ri,n.

Then by the function str we mean the following mapping:

str : S → {perfect, high,medium, low, unacceptable} (7.3)

Together with usual levels (high, medium and low) we use two extremes: per-
fect, which means that a requirement is considered very well protected (almost per-
fect), and unacceptable, the strength level which the service consumer cannot accept.
We admit that the first level can be rarely used because even the most robust re-
quirement cannot give 100% protection. Nevertheless, we can assume that some
attributes vales can make a policy statement almost perfect (e.g., encryption of
data with a strong encryption algorithm has a very small probability to be broken).
Unacceptable level is more useful and determines the border line that the service
consumer does not wish to cross in any circumstances.

Example 9 Continuing Example 8 for the policy statement “data must be deleted
after N days” the service consumer specifies that in case N ≤ 30 the strength of
the policy is high and if N ≥ 60 the strength is low. Actual deletion of data later
than 180 days after the request about deletion is unacceptable. Thus, in our example
(with N = 90) the strength is “low”.

We assume that every service provider has a huge list of guaranteed policy state-
ments and every service consumer can find all her desirable policies in this list.
Alternatively, a service consumer can assign the lowest strength level (depending on
the defined str function) to the policy statements which were not found in the guar-
anteed list. Note, that it is not required to define the function str for all possible
results. Especially, perfect and unacceptable levels can be often omitted.

We summarize the preparation procedures described above. First, ranks are
assigned to desirable policy statements. Then, the desirable policy statements are
mapped with the policy statements guaranteed by a service provider. Finally, the
strength of policies is computed.

Now we are ready to determine how well a concrete service provider satisfies the
requirements of the service consumer. For this purpose we would like to exploit risk

66 CONTINUOUS REEVALUATION OF SECURITY IN SERVICES

rank\str no risk low medium high unacceptable
low no risk low low low unacceptable

medium no risk low medium medium unacceptable
high no risk low medium high unacceptable

Table 7.1: Qualitative calculation of risks

of each requirement to fail to fulfill its purpose. We use a simple approach for the
assessment of risk using qualitative values but the method may be performed in a
quantitative way, though the quantitative way is much harder [35, 153].

Risk can be seen as a combination of three components: Impact, Threat, and
Vulnerability [6, 69, 155]. Frequently risk assessment methods find probabilities
(ARO) of security violation as a combination of Threat and Vulnerability compo-
nents, and the damage (SLE) caused by the violation as Impact component. Then,
mathematically risk (Risk) is [53, 74]:

Risk = ARO · SLE (7.4)

Both probability and damage usually evaluated on the basis of statistics. We
have to make a decision before the interaction between a service consumer and a
service provider starts and thus we cannot use probability like it is done in classi-
cal risk assessment methods. On the other hand, we have rank which represents
combination of Impact and Threat components. The exposure to the violation of a
policy (Vulnerability) can be seen as a reverse value of the strength str. The logic
here is that the more robust a policy is the less chance is that it will fail to fulfill its
purpose. The calculation of the reverse value is: perfect → no risk, high → low,
medium → medium, low → high, unacceptable → unacceptable and vice versa1.

Example 10 The service consumer has rated the strength of the requirement “data
must be deleted after 90 days” guaranteed by a possible service provider as having
‘low’ strength. This means that there is a ‘high’ exposure for the data to be abused
in this period.

For each requirement, it is possible to compute the risk using a table similar
to the risk-level matrix [155] extended with the two extremes (see Table 7.1). In
Table 7.1 rows are the rank levels and columns are exposure levels. Risk is the value
of the cell situated on the intersection of given rank and exposure levels.

Definition 29 We define Risk function as follows:

Risk : {unacceptable, high,medium, low, perfect} (7.5)

× {high,medium, low}
→ {unacceptable, high,medium, low, no risk}

1We renamed level “perfect” to “no risk”.

7.3. REEVALUATION OF SECURITY FOR SERVICE CONSUMER 67

In other words, if we would like to compute the risk for a policy pi ∈ P which
requires attributes ri,1, ..., ri,n ∈ R the function will be:

Risk(pi) = str(pi, vri,1 , . . . , vri,n) · rank(pi) (7.6)

Where str is a reverse operation applied to the result of the function str, i.e.,
an exposure level, and · denotes multiplication of qualitative values according to
Table 7.1.

The overall result of such calculation is a list of policy statements with assigned
qualitative risks.

7.3 Reevaluation of Security for Service Consumer

We consider how a service consumer can exploit risk to select a service provider and
then continuously reevaluate risk and make decisions about the interactions with
the service.

7.3.1 Risk-based Access Control

We return to the comparison of different services in order to select the one which
satisfies policy statements in the best way. We employ the idea presented in [160] for
comparison of multi-objective qualitative values. First, all providers which have at
least one “unacceptable” risk are eliminated from the further consideration. Second,
the numbers of high, medium, and low risks are summed up separately for each
service provider. In other words, a service consumer can assign the following tuple
to each suitable service provider.

Definition 30 Risk for a service provider sp is a tuple: Rsp = ⟨h,m, l⟩, where h
is a number of risks with high value, m – with medium values, l – with low values.
We define the functions HIGH,MEDIUM and LOW : RDP → N where RDP is
the set of risks computed for the set of policies P and N is the domain of natural
numbers. These functions simply return a number of high, medium and low risks
taking a set of risks as an argument.

The service consumer selects only service providers with the lowest number of
high risk requirements. Among these service providers only those who have less
medium risks are taken. Finally, those who have less low risks are determined.
These service providers satisfy desirable policy statements in the best way and the
service consumer should select one of these providers to process the data. Another
approach for the service consumer can be to select a threshold for the risk and to
consider all service providers with the risk below the threshold.

68 CONTINUOUS REEVALUATION OF SECURITY IN SERVICES

Example 11 Assume that we found three service providers which got the following
risks according to our computations: ⟨3, 5, 7⟩, ⟨4, 4, 8⟩, ⟨3, 6, 6⟩. After the first check
only the first and the third service providers are left. The second check indicates that
the first service provider has less number of medium risks. Thus, the first service
provider should be selected.

7.3.2 Risk-based Usage Control

In the Section 7.3.1, we considered granting the access to a service provider which
guarantees the best security. Since relations between the partners may last for a
long period (days, months) the attributes values may change. The UCON is based
on the idea that the usage of data must be controlled also after the access is granted.
In this section we consider how a risk-based decision about further access can be
made during usage of data.

Example 12 After some time of interaction the service provider notifies the ser-
vice consumer that from now on her data will be processed also by a specialized
subsidiary situated in EU. Though this change violates one of the previously negoti-
ated policy, i.e., “data must be processed only by the service provider”, this change
is not considered by the service consumer as a serious issue.

Example 13 Monitoring has shown that some data was removed 90 days after
deletion request as this was agreed, but some data was removed only after 120 days
after deletion request. The delay was detected by the monitoring mechanisms and
mean that the service provider violates the negotiated policy: “completely remove
data after 90 days from a delete request”. The service consumer decides to take the
maximal time to complete removal as a real value of the attribute and this adjustment
changes the risk of the service provider.

Our idea is not to jump to a quick decision and revoke access to the data because
one attribute became less strong than it has been agreed. We propose to look at the
overall risk and only then make a decision. The changed attributes values should be
used for reevaluation of risk. If the risk is still acceptable, the access is continued.
If the risk is higher than some previously predefined threshold, we consider two
possible decisions for the service consumer. First, the service consumer can ask the
service provider to adjust the security preferences. Second, if it is not possible to
adjust the preference, the access to the data is revoked and the service consumer
can select a service with better security.

7.4 Reevaluation of Security for Service Provider

A service provider may would like to improve her security in order to keep or to
attract consumers. In other words, the service provider may install new security

7.4. REEVALUATION OF SECURITY FOR SERVICE PROVIDER 69

controls, enforce more secure data management practices, change old encryption
algorithms, etc. All these improvements mitigate risks and thus make the service
more attractive to service consumers.

In a simple scenario, a service provider may notice that risk according to require-
ments of a service consumer is too high. If the service provider does not want to
lose the consumer she can improve her system in order to satisfy the service con-
sumer’s requirements. We assume that the service provider has to know the strength
functions and threshold risk level used by the service consumer.

Example 14 Assume that after some time of operation the attribute of the re-
quirement “delete data after 90 days” has changed because of the latest local law
amendment. Now the data can be deleted only after 120 days. This fact raises the
risk the service consumer thinks of changing the service provider. In order to de-
crease the high risk level the service provider decides to improve other attributes.
The service provider decides to perform an external audit twice a month, but not
just once as it was before.

Usually, the service provider has limited budget for security improvements. Thus,
the service provider aims at selecting security controls which improve her security
in the best possible way. First, we should find the security controls which reduce
the number of high risks. Then, the rest of the budget can be spent on the controls
reducing medium risks. And finally we should consider low risks.

Definition 31 We define the function chng which transforms attribute values if a
security control (from a security control set CS) is installed as follows:

chng : CS × VP → V ′
P (7.7)

Where VP is the set of sets of attributes values used in policies P before security
controls are installed, and V ′

P is the set of sets of attribute values used in policies P
after security controls are installed

Now we can find how good is a security control csj, i.e., how many high risks

become medium and low after its installation. For instance, let ĥcsj be this difference,
then it can be computed as follows:

ĥcsj = HIGH({str(pi, vri,1 , . . . , vri,n) · rank(pi) : ∀pi ∈ P}) (7.8)

−HIGH({str(pi, v′ri,1 , . . . , v
′
ri,n

) · rank(pi) : ∀pi ∈ P})

Every security control has its cost ccsj . The overall security budget is W . Some
security controls which should be implemented together in order to mitigate risks
we consider as one complex countermeasure with the summarized cost. Note, that
if the atomic security controls are able to mitigate some risks not only as a part of a
complex countermeasure but by their own they must be also considered separately.

70 CONTINUOUS REEVALUATION OF SECURITY IN SERVICES

Now we can formalize the problem:

maximise
m∑
j=1

ĥcsj · xj (7.9)

m∑
j=1

ccsj · xj < W (7.10)

xj = {0, 1}, j = 1, . . . ,m (7.11)

Wherem is the number of controls that can be installed, xj = 1 in the formula means
that the corresponding security control (csj) have been selected, xj = 0 otherwise.

This is a classical knapsack problem [135]. The knapsack problem can be solved
by methods of dynamic programming. After selection of the security controls miti-
gating high risks the mitigation should be continued for medium risks with the rest
of the budget:

Wmedium = W −
m∑
j=1

ccsj · xj (7.12)

Here we assumed that there were no unacceptable risks in the beginning because
a service provider is able to know the desires of service consumers only when she
has contract with them. And since the contract exists we conclude that service
consumers have not found unacceptable risks in the guaranteed policies. If a service
provider can assess risk for service consumers which have not selected this provider
(e.g., by collecting wishes through a questionnaire), then she has to eliminate as
many unacceptable risks as possible first of all.

Usually, a service provider works with more than one service consumer. Thus,
the provider has to improve her system in order to mitigate as many risks as possible.
In order to solve this more complex problem we should simply consider policies for
different service consumers together. Suppose the number of clients is n:

ĥcsj =
n∑

l=1

(HIGH({str(pi, vri,1 , . . . , vri,n) · rank(pi) : ∀pi ∈ Pn}) (7.13)

−HIGH({str(pi, v′ri,1 , . . . , v
′
ri,n

) · rank(pi) : ∀pi ∈ Pn}))

The rest of analysis goes as it was defined for the case of one service consumer.

Chapter 8

Enforcement of Usage Control
Policies under Uncertainties

We propose a set of policy enforcement models which help to mitigate the uncer-
tainties associated with mutable attributes. In our model, the reference monitor,
as usual, evaluates logical predicates over attributes and, additionally, makes some
estimates on how much observed attribute values differ from the real state of the
world. The final access decision takes into account both factors. We assign costs
for granting and revoking access to legitimate and malicious users and compare the
proposed policy enforcement models in terms of cost-efficiency.

The chapter is structured as follows. Section 8.1 recalls important notes on
UCON. Section 8.2 introduces the model of a mutable attribute. Section 8.3 enlists
all types of uncertainties associated with mutable attributes. Section 8.4 presents
models of a correct policy enforcement. Sections 8.5 and 8.6 outline a cost model and
estimate an average profit for a policy enforcement under uncertainties for access
and usage control. Section 8.7 presents the architecture of the reference monitor for
enforcement of policies under uncertainties.

8.1 Peculiarities of Usage Control Model

Usage Control model (UCON) [129] requires continuous control over long-lasting
accesses to computational resources (e.g., an interaction with a service, an execution
of a job in Grid, a run of a virtual machine in Cloud). Continuity of control is a
specific feature of the UCON intended to operate in a mutable context. The context
is formed by attributes of a requesting subject, an accessed object and an execution
environment.

An attribute is denoted as h.r where h identifies a subject requesting an object,
the object itself, or an environment, and r refers to the attribute. An assignment
of an attribute maps it to a value in its domain Vr, i.e., h.r = v, where v ∈ Vr. For
simplicity, we assume that there is only one attribute in the system denoted as r

72 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

and that this attribute has a finite domain of values.
Attribute mutability is an important feature of the UCON, which means that an

attribute can change its value as a result of an access request or another uncontrol-
lable factor. We define the behavior of the attribute as a sequence of values assigned
to an attribute with time passage v0v1 . . . vi . . . where v0 refers to the attribute value
when a subject sends an access request, and index i ∈ N refers to a time point at
which the attribute changes its value. We define a strictly increasing function cl
which assigns a real time value to any index, cl : N → R.

Access decisions in the UCON are based on authorizations (predicates over sub-
ject and object attributes), conditions (predicates over environmental attributes),
and obligations (actions that must be performed by a requesting subject). We
consider security policies consisting of authorization and condition predicates only,
that is, the UCONAC model [129]. We define a predicate p to be a boolean-valued
function mapping an attribute value to either true or false, p : Vr → {true, false}.

Another important feature of the UCON is that it specifies when access deci-
sions are evaluated and enforced. There are two phases: preauthorization or access
control when preUpdate checks of the attribute values are done, and continuous pol-
icy enforcement or usage control when continuous onUpdate checks of the attribute
values are done.

Access control starts at time ttry when a user sends a request to the reference
monitor. The reference monitor acquires an attribute value v0, evaluates authoriza-
tion predicates only once and grants the access at time tperm if p(v0) = true, and
ttry = cl(0), ttry ≤ tperm.

Usage control begins at time tperm when the attribute takes value vi, and cl(i) ≤
tperm < cl(i + 1). The reference monitor reevaluates authorization predicates each
time the attribute changes its value. The access should be continued by time tnow =
cl(j) only if p(vi)∧p(vi+1)∧...∧p(vj) = true. Although usage control ends as a result
of the access revocation or at the subject’s discretion, for simplicity we consider only
the first scenario. When a new value vk violates the policy, i.e., p(vk) = false, the
reference monitor revokes the access. Usage control is over at time trev = cl(k).

8.1.1 Example

We consider a reputation of a service provider in a service-oriented architecture
(SOA). The attribute changes its value based on “bad”, “good” and “neutral” feed-
back received from other parties. The attribute domain is Vr = {“general”, “nor-
mal”, “suspicious”, “malicious”}. There is a reputation management system (RMS)
which measures the reputation value for all service providers in the SOA. We as-
sume that the RMS is managed by a service registry that collects the feedback about
previous interactions of service consumers and service providers. Every service con-
sumer has an access and usage control system (AUCS) which allows processing of
data belonging to a service consumer only if the reputation of a service provider is
other than “malicious”. Before granting the access to data, the AUCS (reference

8.2. ATTRIBUTE MODEL 73

monitor) pulls the reputation value from the RMS (attribute provider). If the value
is “malicious” the AUCS denies access, otherwise the AUCS grants access to the ser-
vice provider. During the usage session the AUCS periodically pulls the reputation
from the RMS.

The problem is that, at the time of the access request, a service provider may be
involved in several data processing jobs for which the RMS has no feedback yet. In
other words, the reputation that the service provider has at the time of the access
request could differ from the real one. The AUCS, which uses only the current
version of the reputation, is opened to the following attack. A new service provider
with a good or neutral reputation gets involved in many jobs in a short period of
time. The service provider abuses her rights but, since feedback about her behavior
is provided only at the end of a job, her reputation remains good for some time.
During this time the malicious service provider is still able to have an access to
consumers data. The AUCS should take into account the uncertainty which is in
the system in order to make a right access decision.

After granting access to some data the AUCS should monitor the current rep-
utation of the service provider. Now, during the usage of the resource, the AUCS
has another problem which is also rooted in uncertainty. The AUCS has to define
how often the reputation of the service provider has to be requested from the RMS.
Continuous checks of the reputation value imply the use of computational resources
and are expensive to perform. There is a need for a balance between security and
benefits of usage of the resource.

8.2 Attribute Model

Our main concern in this chapter is the enforcement of a UCON policy based on
a remote attribute with observable mutability. Remote means that an attribute is
managed by the attribute provider which is not under the control of the reference
monitor. Observable mutability means that the reference monitor observes only
how the attribute behaves in time. Thus, for the same attribute we distinguish
real attribute values which truly describe the attribute behavior in the system and
observed attribute values which are obtained by the reference monitor and used to
evaluate authorization predicates.

8.2.1 Real Attribute Values

We assume that a change of the attribute’s value can be modeled as a random event.
Let ω : r = v denote this event which happens when the attribute r takes the value
v. We define Ωr to represent a set of all possible events ω. Since the attribute
can take any value from its domain, there is a one-to-one correspondence between
elements of Ωr and Vr. Each change of an attribute is paired with the value the
attribute takes as the result of this change.

74 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

In probability theory, it is often easier to deal with a value associated with the
random variable rather than with the event itself. Therefore, we introduce a random
variable A which gives a numerical description of the event ω. A is a real valued
function on Ωr, that is A : Ωr → R. The event A = a represents the fact that
the attribute r takes the value v, s.t., A(ω) = aω. Let probability of the event to
happen be Pr[A = a]. The function Pr has all properties of a probability function,
e.g., for any event e, 0 ≤ Pr[e] ≤ 1. We write e1 ∩ e2 for occurrence of both e1 and
e2 and write e1 ∪ e2 for the occurrence of either e1 or e2 (or both). Let the event
P(A) denote the fact that an attribute takes any value which satisfies a policy, i.e.,
P(A) =

∪
ω∈ΩG

(A = aω), and ΩG = {r = v : p(v) = true, v ∈ Vr}. The event

P(A) specifies the fact that the attribute takes any value which violates the policy.
Further, we use A to refer to the attribute value.

Let the behavior of a real attribute be specified by a scheme ⟨A, CLAP ⟩, where:
• A = {Ai : i ∈ N} is a discrete-time stochastic process modeling a behavior
of a mutable attribute. We call Ai the state of the process at i, and Ai = ai
denotes that after i changes the attribute value equals ai;

• CLAP = {clAP (j) : j ∈ N} is an ordered set of timestamps assigned to each
attribute change by the attribute provider when it happens. We assume that
clAP (0) = ttry and for all j ≥ 1, clAP (j) = clAP (j − 1) + Tj, where Tj > 0 and
it specifies a time interval between adjacent attribute changes.

Example 15 A reputation attribute may be modeled as a random variable A with
values A(r = “general”) = 1, A(r = “normal”) = 2, A(r = “suspicious”) = 3, and
A(r = “malicious”) = 4. The mutability of the reputation attribute could be modeled
as a discrete-time Markov chain [85, 86] uniquely defined by the one-step transition
matrix. Thus, the entry in the i-th row and j-th column is the transition probability
Pr[Ai = a | Ai−1 = b] giving the probability that the attribute changes value to a if
its current value is b.

Figure 8.1 shows the Markov model for our example with the transition proba-
bilities collected in a transition matrix. These probabilities could be used in order
to find whether reputation has a certain value (e.g., Pr[A = 2]). The transition
probabilities are taken from the history of changes stored by the RMS and shared
with the AUCS:

Prob =

0.6 0.4 0.0 0.0
0.5 0.3 0.2 0.0
0.0 0.2 0.3 0.5
0.0 0.0 0.1 0.9

 (8.1)

8.2.2 Observed Attribute Values

Only the attribute provider knows how the attribute behaves in time, but the ref-
erence monitor can also observe this process. There are two basic models how

8.2. ATTRIBUTE MODEL 75

Figure 8.1: A reputation attribute model

attribute changes are delivered to the reference monitor: push and pull. The push
model defines a scenario where every new attribute value is timestamped and pushed
by the attribute provider to the reference monitor. The pull model defines a sce-
nario where the reference monitor queries the attribute provider to give the current
attribute value. The attribute provider replies with the value, its timestamp and
some additional information.

By analogy with real attribute values, let observed attributes be specified by a
scheme ⟨Ã, CLRM⟩, where:

• Ã = {Ãi : i ∈ N} is a discrete-time stochastic process modeling an observation
of attribute changes over time. Ãi = ai denotes that an attribute value after
i observations equals ai;

• CLRM = {clRM(j) : j ∈ N} is an ordered set of timestamps assigned by the
reference monitor. A timestamp j denotes when the j-th observation of an
attribute value was processed and the appropriate access decision was enforced
by the reference monitor. We assume that clRM(0) = tperm.

Real and observed attribute values form a bipartite directed graphW = (A, Ã,E),
where edges E connect real and observed attributes via push/pull queries. If there
exists an edge e which connects Ac and Ãc′ , we say that Ac corresponds to Ãc′

and denote this as Ac h Ãc′ . To evaluate authorization predicates, the reference
monitor can exploit observed attribute values and timestamps of the corresponding
real counterparts.

Example 16 Figure 8.2 describes the exchange of attributes between the RMS and
the AUCS from our example. The left part of the figure is devoted to access control.
The attribute value A0 sent by the RMS at ttry = clAP (0) is observed by the AUCS
at tperm = clRM(0) as Ã0, i.e., A0 h Ã0.

For the right part of the figure, i.e., usage control, the RMS sends the fourth
change of the attribute A4 at clAP (4), which is observed by the AUCS as Ã2 at time
clRM(2), i.e., A4 h Ã2.

76 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

Figure 8.2: Real and observed attribute values

8.3 Intentional and Unintentional Uncertainties

Observed attributes values differ from their real counterparts due to attacks, noise,
delays during delivery, missed values, etc. We call uncertainty a property on real
and observed attributes values which specifies how these values vary. The closer
observed values are to the real ones the more reliable the enforcement of the policy.
We consider two types of uncertainties: unintentional (freshness and correctness),
and intentional (trustworthiness).

Freshness of Attributes

Freshness is an unintentional uncertainty occurring due to the mutability of at-
tributes. Generally, this property means that the latest observed value of an at-
tribute is out-of-date, while the current real value of the attribute is unknown. We
introduce three types of freshness uncertainties.

Freshness I (non-continuous checks) corresponds to scenarios where only
part of attribute changes is detected because the checks are carried out through
some time interval:

∃c ≥ 0, m > 0, c,m ∈ N : Ac+m h Ãc (8.2)

In Figure 8.2 the attribute provider sends A2 and A4 values, while A3 is not sent.
Thus, the reference monitor making a decision after getting A2 value (Ã1) uses the
wrong input for the decision.

Example 17 After granting access to the service provider the AUCS has to mon-
itor the reputation value during the usage. The RMS sends the current reputation
value only once per hour in order to save resources. If the reputation of the service
provider became “malicious” between the checks she will still process data because
the AUCS is not aware of this change.

Freshness II (delays in delivery and processing) implies that there are
inevitable time delays in delivery of an attribute value (due to a network latency)

8.3. INTENTIONAL AND UNINTENTIONAL UNCERTAINTIES 77

and decision making (evaluation of authorization predicates). That is:

∃c′ ≥ 0, c′′ ≥ 0, c′, c′′ ∈ N : Ac′′ h Ãc′ (8.3)

clRM(c′) > clAP (c
′′)

When the attribute provider gets a request for the attribute it sends value A0

to the reference monitor (see Figure 8.2 again). Since the delivery takes some time
(tperm − ttry) the attribute changes to A1 and the access control system uses the
wrong value for the decision making.

Example 18 A service provider asks the AUCS for an access. The AUCS asks the
RMS for the current reputation value of the service provider and gets “suspicious”.
The problem is that because of the delay in the delivery when the AUCS makes the
decision the value becomes obsolete, since a new feedback comes to the RMS and the
reputation value changes to “malicious”.

Freshness III (pending updates) corresponds to scenarios where the current
attribute value is uncertain since some update queries are pending at the time of
the access reevaluation. In this case, the attribute provider sends two values: (i) the
last certain attribute value, (ii) additional information on how the real value differs
from the last certain value.

The presence of the uncertainty Freshness III implies:

∃c′ ≥ 0, c′′ ≥ 0,m > 0, c′, c′′,m ∈ N : Ac′′ h Ãc′ (8.4)

clAP (c
′′ +m) ≤ clRM(c′)

In Figure 8.2, the reference monitor which is going to make a decision after
getting value A4 may already know, that this value is not certain. The attribute
provider sending A4 also sends additional information that there should be one more
change (m = 1) in the attribute between clAP (5)− clAP (4).

Example 19 The RMS updates the reputation only when a data processing job
is ended and the RMS receives feedback from a service consumer. Data processing
jobs run concurrently and each single execution may be long-lived and last for days.
The access decision to allows data processing (made by the AUCS) is based on the
reputation value dated by the last registered feedback and on the number of data
processing jobs currently running by the service provider. Indeed, the service provider
can perform malicious activities over the data but this fact will only be discovered
afterwards. The only way to make the certain decision is to block the access until
all running data processing jobs terminate. Instead, the AUCS should be set up to
make an access decision with some uncertainty regarding the current reputation of
the service provider. This uncertainty is contained in the amount of data processing
jobs still active (value m).

78 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

Correctness

Correctness is unintentional uncertainty occurring due to additive noises that usually
exist in case of non-accurate measurements. For example, the location attribute can
be sensed only with the given precision. Thus, observed attribute values differ from
the real ones:

∃c′ ≥ 0, c′′ ≥ 0 , c′, c′′ ∈ N : Ac′′ h Ãc′ (8.5)

Ãc′ = Ac′′ +N

where N is a random variable that models additive noises presented in observed
attribute values. The reference monitor may know that the attribute value measured
by the attribute provider is not precise. Thus, on getting a value (e.g., A2) the
reference monitor makes the decision taking the mistake N into account. This case
cannot be shown in Figure 8.2 directly.

Example 20 It is known that the RMS reputation values may differ from the real
ones by a maximum of 1 for various reasons (e.g., some feedback could be lost). The
AUCS should be aware of the possibility of such mistakes.

Trustworthiness

Trustworthiness is an intentional uncertainty. It appears as a result of the attribute
provider altering attributes or as a result of attacks during attribute delivery, storage,
etc. Current approaches guarantee only the integrity of an attribute by validating a
signature of the entity signing the attribute, but this does not guarantee trustworthi-
ness. This uncertainty assumes that either an attribute value, or a time of issuance,
or both can be modified. It implies that the reference monitor does not trust the
attribute provider and assigns a confidence value for each observed attribute. This
value represents the reliability of the attribute provider in the assertions it makes.

Approaches that consider trust as a probability of an interaction to succeed or to
fail can be used for the analysis of a probability of a policy to be violated when the
policy attributes can be either true or false (e.g., [41, 152]). For the computation of
trustworthiness value a feedback collection mechanism is required, which is powerful
enough to detect whether the received value was modified. Naturally, if such check
could be performed timely for all received values there is no intentional uncertainty
in the system. However, such check may require significant amount of resources
and time (e.g., checking the logs of a service provider) and the information about
trustworthiness of a user may be collected only from time to time just to compute
the reputation value. The problem of trustworthiness for the attributes that have
a wider domain of possible values is an open issue which is to be investigated. But
our method only uses the probability of policy violation and does not depend on its
way of computation.

8.4. CORRECT POLICY ENFORCEMENT 79

The presence of the trustworthiness uncertainty states:

∃c′ ≥ 0, c′′ ≥ 0 , c′, c′′ ∈ N : Ac′′ h Ãc′ (8.6)

Pr[Ãc′ = Ac′′] = η, 0 ≤ η < 1

i.e., the probability that the observed attribute is equal to the real counterpart is
below 1 and we assume that the reference monitor has the power to compute η.
Similarly to Correctness this uncertainty cannot be shown in Figure 8.2.

Example 21 The RMS sends to the AUCS the reputation attribute is equal to
“normal”. The AUCS does not trust the RMS entirely and based on its internal
estimates the AUCS considers that the observed attribute has the “normal” value
but with a probability of 0.8.

In the following sections we continue to use our example taking into consideration
only the uncertainties of Freshness III type for access control (Section 8.5) and
Freshness I for usage control (Section 8.6).

8.4 Correct Policy Enforcement

The correct policy enforcement implies that having observed attributes the reference
monitor enforces the policy exactly in the same fashion as with real attributes, and
both observed and real attributes satisfy authorization predicates.

8.4.1 Correct Enforcement of Access Control

Access control starts at time ttry = clAP (0) when the user sends the access request
and the initial attribute value. The reference monitor evaluates a policy only once
and grants an access to a resource at time tperm = clRM(0) if the policy holds. We
say that the policy holds for access control if:

1. P(Ã0) happens, i.e., the initial observed attribute value Ã0 satisfies the policy;

2. P(Am) happens, i.e., the real attribute value Am at the time the decision is
made also satisfies the policy and clAP (m) ≤ tperm < clAP (m+1) wherem ≥ 0.

Note, that some attribute changes may happen between ttry and tperm, but at-
tribute values must satisfy security policy exactly when the request is issued and
later when the access decision is evaluated.

Let H be an event specifying that the policy holds and H specifies the opposite.
Clearly, the policy satisfaction and violation can be defined as:

H = P(Ã0) ∩ P(Am) (8.7)

H = P(Ã0) ∪ (P(Ã0) ∩ P(Am))

80 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

Definition 32 (Correct Enforcement of Access Control) The reference mon-
itor grants the access at tperm if the policy holds and denies it otherwise.

Let G be an event specifying that the reference monitor grants the access and
G specifies the opposite (i.e., denies the access). Thus, the correct enforcement of
access control is:

G = H, G = H (8.8)

8.4.2 Correct Enforcement of Usage Control

We say that a policy holds for usage control on a time interval [tb : te] if:

1. P(Ãk)∩P(Ãk+1)∩...∩P(Ãl) happens and clRM(k) ≤ tb < clRM(k+1), clRM(l) ≤
te < clRM(l + 1);

2. P(Ai)∩P(Ai+1)∩ ...∩P(Aj) happens and clAP (i) ≤ tb < clAP (i+1), clAP (j) ≤
te < clAP (j + 1),

i.e., all real and observed attribute changes occurring within this interval do satisfy
authorization predicates.

If there is at least one attribute value (either real or observed) which does not
satisfy authorization predicates, we call this a policy violation of usage control.

Definition 33 (Correct Enforcement of Usage Control) The reference mon-
itor correctly continues the usage session at tnow if a policy holds on interval [tperm :
tnow]. The reference monitor revokes the access immediately when the policy viola-
tion occurs.

8.5 Enforcement of Access Control under Uncer-

tainties

Correct enforcement is not feasible in the presence of uncertainties since the reference
monitor is unable to show that real attribute values satisfy a policy. The basic idea
of the policy enforcement of access control under uncertainties is:

1. The reference monitor evaluates the policy with respect to observed attribute
values.

2. If the observed values satisfy the policy, the reference monitor runs an ex-
periment which estimates to what extent the observed attributes differ from
the real ones. If this difference is negligible, the experiment succeeds and the
reference monitor allows the access.

8.5. ENFORCEMENT OF ACCESS CONTROL UNDER UNCERTAINTIES 81

8.5.1 Models for Access Control Enforcement

We suppose that the reference monitor is powerful to get some probabilistic knowl-
edge about a real attribute value based on the observed attribute Ã0 = a:

PrRM = Pr[P(Am)|Ã0 = a]

PrRM specifies a conditional probability that a value of real attribute Am satisfies
authorization predicates at time tperm if the observed attribute value at time tperm
is equal to a. The reference monitor computes PrRM using the following data:

1. observed values of the attribute;

2. parameters of a stochastic process that models a real behavior of an attribute;

3. a list of uncertainties presented in the system.

Possible combinations of the last two factors produce a variety of techniques
on how to compute PrRM . As an example, we refer the reader to [85, 86] and
Appendix A.1 and A.2 where the behavior of an attribute is modeled as a Markov
chain and freshness uncertainties exist in the system. Another example given in [21]
studies a static attribute (i.e. the attribute does not change its value over time) in
the presence of the trustworthiness uncertainty. In our example for access control we
compute PrRM considering only Freshness III uncertainty and model the attribute
behavior as a discrete-time Markov chain.

Let Y be a random variable such that

Y =

{
1 if uncertainties are acceptable
0 otherwise

Let δ(x) be a function, that is

δ(x) =

{
1 if x ≥ th
0 otherwise

where th is a real-value threshold.
We propose two models of enforcement for access control under uncertainties: a

threshold enforcement and a flip coin enforcement. The reference monitor chooses
one of these models.

Definition 34 (Threshold Enforcement of Access Control) The reference
monitor computes PrRM and grants access at tperm if:

1. P(Ã0) happens;

2. Y = 1, where Pr[Y = 1] = δ(PrRM).

otherwise, the access is denied.

82 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

That is, if the initial observed attribute value satisfies authorization predicates,
the reference monitor grants the access if the probability that the real attribute
value Am also satisfies authorization predicates is above a specified threshold th.

Definition 35 (Flip Coin Enforcement of Access Control) The reference
monitor behaves exactly as in the threshold enforcement but uses Pr[Y = 1] = PrRM

instead.

Hence, if the initial observed attribute value satisfies authorization predicates,
the reference monitor runs the random experiment that succeeds (returns grant)
with probability PrRM and fails (returns deny) with probability 1−PrRM .

In the notation of events, we get for the enforcement of access control under
uncertainties (either threshold or flip coin):

G = P(Ã0) ∩ [Y = 1] (8.9)

G = P(Ã0) ∪ (P(Ã0) ∩ [Y = 0])

Example 22 Consider the access control part of our example (see Figure 8.2). The
AUCS gets value Ã0 = 3 (“suspicious”) at time tperm and it knows that there was
one attribute change between ttry and tperm. Now the AUCS should evaluate whether
the current reputation value is still a good one, e.g., PrRM = Pr[P(Am)|Ã0 = 3].

The transition matrix (see Example 15) shows that if the initial attribute value
is A0 = 3, then there are three possibilities for the value to evolve in one step: (i)
(A1 = 4) with Pr34 = 0.5; (ii) (A1 = 3) with Pr33 = 0.3; (iii) (A1 = 2) with
Pr32 = 0.2. Since, the good states are 1, 2, and 3 then PrRM = 0.3 + 0.2 = 0.5.

8.5.2 Cost Matrix

We would now like to estimate the cost-effectiveness of the proposed enforcement
methods. Our goal is to find the expected profit ⟨C⟩ for the enforcement of access
control.

We assign monetary outcomes for granting and revoking access. Correct enforce-
ment is impossible in the presence of uncertainties and mistakes in the decisions
made by the reference monitor are unavoidable. We have four scenarios (events) of
how the reference monitor acts under uncertainties:

• G ∩H true positive: grant access when a policy holds;

• G ∩H false negative: grant access when a policy is violated;

• G ∩H false positive: deny access when a policy holds;

• G ∩H true negative: deny access when a policy is violated.

8.5. ENFORCEMENT OF ACCESS CONTROL UNDER UNCERTAINTIES 83

Where true positive and true negative are well-chosen scenarios, while false negative
and false positive are erroneous.

Each scenario has a monetary outcome, i.e. cost, the reference monitor loses or
gains if a scenario happens. Let Ctp denote the cost of the true positive scenario,
when the reference monitor grants the access and the policy really holds. Cfn,
Cfp, Ctn are the costs of the remaining scenarios, respectively. The semantics of
costs for access control corresponds to “pay-per-access”, and specifies exact benefits
and losses for a given access request. Naturally, well-chosen scenarios have positive
values, i.e. Ctp ≥ 0, Ctn ≥ 0, while the erroneous ones have negative costs, i.e.,
Cfp < 0, Cfn < 0. Finally, let Ca be the cost to push/pull (observe) an attribute
value.

Finding correct costs is not an easy task and usually requires a considerable
amount of statistical data. Thus, we make the usual assumption for risk-based
methods that the reference monitor has enough historical data to compute costs.

8.5.3 Cost of Access Control Enforcement

The expected profit received by the reference monitor processing a single access
request is the sum of the costs of all 4 scenarios weighted on corresponding proba-
bilities.

⟨C⟩ = Ctp ·Pr[G ∩H] + Cfn ·Pr[G ∩H] (8.10)

+ Cfp ·Pr[G ∩H] + Ctn ·Pr[G ∩H] + Ca

Correct Enforcement

Since H and H are disjoint events, i.e. Pr[H ∩ H] = 0 and Pr[H] + Pr[H] = 1,
from Equations 8.7, 8.8 and 8.10 we receive:

⟨C⟩cor = Ctp ·Pr[H] + Ctn ·Pr[H] + Ca (8.11)

Pr[H] = Pr[P(Ã0) ∩ P(Am)] (8.12)

= Pr[P(Ã0)] ·Pr[P(Am)|P(Ã0)]

In what follows, we usePr[P(Ã0)] interchangeably with α, andPr[P(Am)|P(Ã0)]
with β. Note, that for the correct access control β = 1. Finally,

⟨C⟩cor = Ctp · α · β + Ctn · (1− α · β) + Ca (8.13)

Threshold Enforcement

We point out that the probability of a policy satisfaction for real attributes is con-
ditionally independent of the estimates made by the reference monitor given that

84 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

observed attribute values satisfy the policy. Using this observation and Equations 8.7
and 8.9 we receive

Pr[G ∩H] = α · β ·Pr[Y = 1|P(Ã0)] (8.14)

Pr[G ∩H] = α · (1− β) ·Pr[Y = 1|P(Ã0)]

Pr[G ∩H] = α · β · (1−Pr[Y = 1|P(Ã0)])

Pr[G ∩H] = α · (1− β) · (1−Pr[Y = 1|P(Ã0)])

We assume that all access requests come with the same initial attribute value
a which satisfies authorization predicates. Such a situation is modeled with an
assumption α = 1. With this assumption, we get that Pr[Y = 1|P(Ã0)] = Pr[Y =
1|Ã0 = a] and β = Pr[P(Am)|Ã0 = a] = PrRM .

We denote Cg = β · (Ctp − Cfn) + Cfn and Cd = β · Cfp + Ctn · (1 − β). From
Definition 34 and Equations 8.10 and 8.14 we get the average profit for a threshold
enforcement:

⟨C⟩th = Ca +

{
Cg if β ≥ th
Cd otherwise

(8.15)

Cost-effective enforcement implies that we should pick a threshold which gives
the maximal profit for all possible average costs. Since the cost is a function of
β which takes any value from 0 to 1, we should maximize the sum of costs for all
β. The argument, for which this sum attains its maximum, constitutes the optimal
threshold value:

argmax
th

∫ 1

0

⟨C⟩th dβ

To obtain it, we solve the equation in which the derivative of the integral takes zero:(∫ th

0

Cd dβ +

∫ 1

th

Cg dβ

)′

th

= 0

Hence, the optimal threshold value is given by

th =
Cfn − Ctn

Cfp + Cfn − Ctn − Ctp

(8.16)

Flip Coin Enforcement

All equations of a threshold enforcement are also valid for a flip coin enforcement.
Taking the assumptions made in the threshold enforcement and Definition 35, we
obtain the average profit for a flip-coin enforcement per access request:

⟨C⟩flip = Ctp · β2 + (Cfp + Cfn) · β · (1− β) (8.17)

+ Ctn · (1− β)2 + Ca

8.5. ENFORCEMENT OF ACCESS CONTROL UNDER UNCERTAINTIES 85

Proposition 2 Threshold strategy is more cost-effective than flip coin, except the
points β = 0, β = 1, and β = th, where the strategies are equal: ⟨C⟩th ≥ ⟨C⟩flip.
Proof Consider the first case when 1 > PrRM = β > th. We do not consider the
case when PrRM = β = 1 since it is easy to see that the two strategies are equal
at this point. Now let us derive the conditions where the flip coin strategy is better
than the threshold one:

Ctp · β2 + (Cfp + Cfn) · β · (1− β) + Ctn · (1− β)2 + Ca

> β · (Ctp − Cfn) + Cfn + Ca

Algebraic transformations give:

β <
Cfn − Ctn

Cfp + Cfn − Ctn − Ctp

= th

We see that the condition for the flip coin strategy violates the initial preposition
β > th. Thus, if 1 > β > th the threshold strategy is more profitable.

In the same way we can compare the strategies with the conditions th > β > 0.
We exclude β = 0 point where the strategies are equal. In this case we get that
β > th that proves once again that the threshold strategy is better, except the points
where the strategies are equal. �

Example 23 We show how different strategies cope with Freshness III uncertainty
in our example.

The AUCS gets the attribute value Ã0 = 2 at tperm and can compute that there
were exactly m attribute changes between ttry and tperm. The AUCS must then com-
pute the probability β that the policy holds at tperm and choose the model of the
policy enforcement. The probability matrix of the Markov chain was given in Exam-
ple 15 and the probability β can be found as (see also [66, 85, 86] and Appendix A.1
and A.2):

β = Pr[P(Am)|Ã0 = 2] =
∑

j∈{1,2,3}

(S×Probm)j

Where vector S = [0 1 0 0] specifies the initial attribute value, Probm means matrix
Prob in power m, and × denotes a product of two matrices.

The AUCS makes monetary estimations and determines the following costs:
Ctp = 10, Cfn = −15, Cfp = −1, Ctn = 0 and to query an attribute we pay
Ca = −2.

We performed a set of simulations in order to illustrate our theory. We com-
puted the average profit per access request for the correct enforcement ⟨C⟩cor, for the
threshold enforcement ⟨C⟩th, and for the flip coin enforcement ⟨C⟩flip. We varied
the uncertainties between real and observed attributes by increasing the number m
of attribute changes that occur between ttry and tperm. We start from m = 0 and go
up to 30 unobserved attribute changes.

86 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8

m

<
C

>

Correct
Flip−coin
Threshold

Figure 8.3: Cost-effective enforcement of access control

Figure 8.3 shows the obtained results. The average profit per access request for
the correct enforcement is always higher. The decline of the correct curve occurs
because while the delay increases the probability that the received value would fail the
policy also increases (because of Pr[P(Am)|P(Ã0)] = β). Since the attribute cannot
get a bad value in m = 0 or m = 1 steps (starting from state 2) all three curves have
the same maximal value in these cases. The flip coin enforcement shows the worse
results with respect to the threshold enforcement which tallies with our theoretical
findings.

8.6 Enforcement of Usage Control under Uncer-

tainties

Our model of usage control enforcement under uncertainties imposes that the refer-
ence monitor iteratively performs three main activities.

1. Evaluates a policy and makes the decision based on the observed attribute
values. If the access decision is “deny”, the reference monitor terminates the
usage session and halts.

8.6. ENFORCEMENT OF USAGE CONTROL UNDER UNCERTAINTIES 87

2. Computes when the next attribute query should be performed.

3. Waits until the next check and when time elapses pulls a fresh attribute value.

The reference monitor executes these actions on each check. A check is a time
interval [tb : te] between two adjacent observations of the attribute Ãk−1 and Ãk,
where clRM(k−1) = tb, clRM(k) = te. The time of the first check is tperm when there
is the observed attribute Ã0. The usage session contains a sequence of n checks and
n ∈ N.

8.6.1 Models for Usage Control Enforcement

Decision Making

The basic idea of a decision making for usage control under uncertainties is the
same as for access control (see Section 8.5). The only difference is that the reference
monitor should take into account all possible changes occurred on a check. We
assume that the reference monitor has the power to compute the probability that
all real attributes satisfy a policy on the k-th check:

PrkRM = Pr[P(Ai) ∩ ... ∩ P(Aj)|Ãk−1 = ak−1 ∩ Ãk = ak]

where clAP (i) ≤ clRM(k − 1) ≤ clAP (i+ 1), clAP (j − 1) ≤ clRM(k) ≤ clAP (j).
We propose two models of a decision making for usage control under uncertain-

ties: a threshold and a flip coin.

Definition 36 (Usage Control Based on Threshold) The reference monitor
continues the access after n policy checks at tnow = clRM(Ãn) if:

1. P(Ã0)∩P(Ã1)∩ ...∩P(Ãn) occurs, i.e., all attribute changes observed within
n checks do satisfy the policy,

2. ∀k = 1, .., n : Yk = 1, where Pr[Yk = 1] = δ(PrkRM), i.e., for each check
the probability that a policy holds on this check should be above a specified
threshold,

otherwise access is revoked.

Definition 37 (Usage Control Based on Coin Flip) The reference monitor
behaves as in the threshold enforcement but uses Pr[Yk = 1] = PrkRM .

Attribute Retrieval

Fresh attribute values could be pushed or pulled. Without loss of generality we
assume that the reference monitor is responsible for pulling attribute values. Since
frequent attribute queries are not always possible, expensive and lead to a perfor-
mance slowdown, we assume that several attribute changes may occur on a single

88 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

check. Such scenario brings the inevitable Freshness I uncertainty since the reference
monitor will observe only a part of attribute changes. The reference monitor should
be aware that unnoticed attribute changes may violate a policy and result in a loss.

Our main concern is to find such intervals between queries that give the maximal
profit for the enforcement of a usage session. We propose two models of attributes
retrieval. The first one is periodic pull of attributes when the interval between
attribute quires is constant. The second model is aperiodic pull of attributes. We
assume that the reference monitor may increase the profit if it selects the interval
between quires according to the history of observed attributes during the current
session. Thus, there is a specific value of interval for each specific check.

8.6.2 Costs of Usage Control Enforcement

Possible combinations of decision making and attribute retrieval launch a variety
of enforcement models. We discuss only the models relevant for usage control and
do not consider models discussed previously for access control. We examine the
cost-effectiveness of models when attributes are pulled periodically and aperiodi-
cally while the decision making is based on a threshold. In both models, we set the
threshold value to 0 and assume that no uncertainties exist in the system except
inevitable Freshness I. Such assumptions allows the reference monitor to skip the ex-
ecution of the random experiment and just continue access if the observed attribute
value satisfies a policy and revoke otherwise.

Cost of Usage Session in case of Periodic Checks

We start with a cost gained from the enforcement of a particular usage session.
The semantics of costs for usage control corresponds to “pay-per-time-of-usage”
attributes, and specifies the benefits and losses the system gains in a unit of time.
The system receives profit if a policy holds on a time interval and this revenue is
proportional to the duration of the interval. In opposite, the system suffers losses
during the policy violation time. There are three costs for usage control: (i) ctp is
the gain per atomic interval of time when all changes of real attributes satisfy the
policy; (ii) cfn is the cost per atomic interval of time when the policy fails; and (iii)
Ca is the cost paid for the attribute retrieval and the re-evaluation of access decision.

The usage session is associated with a sample sequence s of a stochastic process
which models the behavior of a real attribute. That is:

s : (A0 = a0) ∩ (A1 = a1) ∩ . . . ∩ (Al = al)

Let n state a total number of checks in the session before revocation. This means that
after the last check the reference monitor revokes the session, i.e., P(Ãn) happens
and Al h Ãn. Let q be a number of attribute changes on a check. Since checks are
periodic, q is a constant for any check and l = n · q. A cost Cs of a particular usage

8.6. ENFORCEMENT OF USAGE CONTROL UNDER UNCERTAINTIES 89

session depends on the time τg when an attribute satisfies a policy, on the time τb
when the attribute violates the policy, and a number of checks n:

Cs = ctp · τg + cfn · τb + Ca · (n+ 1) (8.18)

Let θ(x) be a function such that

θ(x) =

{
1 if P(Ax) happens
0 otherwise, i.e., a policy violation happens

Then, τg and τb are given by

τg =
l−1∑
j=0

(clAP (j + 1)− clAP (j)) · θ(j)

τb = clRM(n)− clRM(0)− τg

In fact, s is a random event and let Pr[s] denote a probability that s occurs.
Thus, the average cost of usage control enforcement will be a sum over every possible
cost weighted by the probability of s:

⟨C⟩q =
∑
s∈S

Pr[s] · Cs (8.19)

where S contains all possible sample sequences associated with usage sessions en-
forced under uncertainties.

Cost-effective enforcement implies that the reference monitor should choose such
q that maximizes profit: argmaxq⟨C⟩q.

Cost of Usage Session in case of Aperiodic Checks

In case of aperiodic checks, a number of attribute changes occurred on each check
is different. There is a set Q = {q1, q2, . . . , qn} and each qi tells how many attribute
changes happened on the i-th check. All formulas given for periodic checks are valid
for aperiodic. Only a number of attribute changes is different, and for aperiodic
checks we have that l =

∑
q∈Q

q. We also use ⟨C⟩Q to denote the average cost of the

usage control enforcement under aperiodic checks.
Cost-effective enforcement implies that the reference monitor should choose such

Q that gives the maximal profit, i.e., argmaxQ⟨C⟩Q. The simplex method can be
used to find Q for which ⟨C⟩Q attains the maximum. The application of such
methods is left behind the scope of our work but initial ideas can be found in
[11, 139].

Proposition 3 Aperiodic checks are at least as good as periodic checks in terms
of cost-effectiveness: ⟨C⟩Q ≥ ⟨C⟩q.
Proof The proof follows from the fact, that the method selects the set Q with the
best average cost within all possible Q’s. Periodic checks may be considered as a
particular case of aperiodic checks when all intervals are equal. �

90 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

Example 24 We continue our example comparing periodic and aperiodic checks.
The AUCS selects the following costs ctp = 3, cfn = −5, and Ca = −2 on the

basis of previous behavior of the reputation attribute. The AUCS exploits discrete-
time Markov chain (Equation 8.1) to model the behavior of the reputation and find
the best strategy for querying this attribute.

For the periodic checks, the probability Pr[s] is:

Pr[s] = Pr∗j0 · (
n−1∏
y=1

Pr
ky
jyjy+1

(q)) ·Prknyn−1yn
(q)

Where Pr
ky
jyjy+1

(q) is a probability of the reputation change from the value jy to the
value jy+1 taking the set of values ky on the interval between changes, Pr∗j0 is a
probability that the attribute will have the certain good value at the first check.

Pr
ky
jyjy+1

(q) =

q−1∏
z=1

Prfzfz+1

Prfzfz+1 is an element of the matrix Prob of one-time transition probabilities.
Clearly f1 = jy, fq = jy+1, and ky determines concrete values of {f2, . . . , fq−1}.
There are mq−2 possible Pr

ky
jyjy+1

(q) if jy and jy+1 are fixed.
For aperiodic checks the computations are similar to ones above. However, since

the reputation is modeled as a Markov chain, the probabilistic behavior of the rep-
utation significantly depends on the current state of the random process. Thus, q
now depends on the current value of the reputation and the AUCS selects a spe-
cific interval qi on the basis of the last observed value Ãi−1 = ai−1. Markov process
quickly converges to a steady state. Therefore, the AUCS considers qi < qmax, where
qmax is the number of changes when the distribution of probabilities differs from the
steady state distribution by some small value ϵ. For a more detailed description see
Appendix A.3.

We performed several simulations to check the values provided by our theoretical
equation. To evaluate the aperiodic checks we carried out an exhaustive search of
the optimal lengths of intervals between checks and found the values q1 = 7, q2 = 4,
and q3 = 1 if the current observed value is “general”, “normal”, and “suspicious”
respectively. The computations of qi are only required ones the policy is deployed in
the system.

The results of the simulations are shown in Figure 8.4. Since there is no single
interval for aperiodic checks, we display aperiodic checks as a straight line.

First, both periodic and aperiodic checks are close enough to the theoretical
curves. Second, the simulations illustrate our proposition regarding the fact that
aperiodic checks are at least as cost-effective as periodic ones. In our example, ape-
riodic checks are about 15% more cost-effective then periodic checks. Third, the
analysis of the periodic checks shows that the average cost of the session has the

8.7. ARCHITECTURE FOR POLICY ENFORCEMENT UNDER UNCERTAINTIES 91

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Interval between checks

<
C

>

Aperiodic checks (theory)
Aperiodic checks (simulation)
Periodic checks (theory)
Periodic checks (simulation)

Figure 8.4: Cost-effective enforcement of usage control

maximum value when the interval between checks is 4. The smaller interval is in-
effective because we pay more for requesting an attribute. The bigger intervals are
ineffective, because the system misses more policy violations.

8.7 Architecture for Policy Enforcement under Un-

certainties

The architecture of the reference monitor should be tuned to capture the presence of
uncertainties. Figure 8.5 shows the overall architecture (in a distributed environment
each component can run on a different host):

• Policy Enforcement Point (PEP) is a component which intercepts invocations
of security-relevant access requests, suspends them before starting, queries the
PDP for access decisions, enforces obtained decisions by resuming suspended
requests, and interrupts ongoing accesses when the policy violation occurs.

• Policy Decision Point (PDP) is a component which evaluates security policies
and produces the access decision.

92 ENFORCEMENT OF USAGE CONTROL POLICIES UNDER UNCERTAINTIES

Figure 8.5: Architecture of reference monitor

• Attribute Provider (AP) is a component which manages attributes and knows
their real values.

• Policy Administrative Point (PAP) is a component which provides and governs
security policies.

The main novelty of the policy enforcement under uncertainties is that the PDP
also consists of several components: the logic PDP, the risk PDP, and the scheduler.

The logic PDP behaves as a usual PDP [97] and evaluates logical predicates
over observed attributes. The risk PDP computes all uncertainties associated with
observed attributes and runs the random experiment to get a value of a random
variable Y . If Y = 1, the risk PDP outputs “grant” and “deny” otherwise. Decisions
of both PDPs are combined as “deny-override”, i.e. the PDP sends “grant” to the
PEP only if both the logical and risk PDPs grant the access.

Policies used by the logical PDP can be written in any appropriate language to
formalize the UCON model, e.g., a POLPA language [15]. The risk PDP additionally
uses risk policies, i.e., a cost matrix, specifications of stochastic processes which
model the behavior of attributes, and values of thresholds. In fact, security and risk
policies can be provided by different parties (security administrators).

The scheduler is managed by the risk PDP and is responsible to collect and
process attribute observations. When a new attribute value is pushed to the refer-
ence monitor, the scheduler transforms it into the proper format and triggers both
PDPs to reevaluate the access decision. During usage control, the scheduler usually
pulls new attributes from the AP and then again processes them and forwards these
observations to the PDPs. The risk PDP is responsible for informing the scheduler
about how and when attribute queries should be initiated: either periodically or
aperiodically.

Chapter 9

Validation of Contributions

We recall the main goals of the thesis:

1. propose a formal model for security metrics and risk ;

2. allow evaluation of security of complex services on the basis of different security
metrics ;

3. enable continuous reevaluation of security in services during their exploitation;

4. take into account possible uncertainties of the data used for security decisions
in services.

In Chapter 2, the goals were divided into several objectives. In this section, we ana-
lyze whether the objectives were successfully accomplished. Successful accomplish-
ing the objectives should indicate that the main goals of the thesis were achieved.

9.1 Formal Model for Security Metrics

• The model should be capable of formalizing general quantitative security met-
rics. We proposed a model where a system and an attacker are considered
as communicating processes. For formal definitions of metrics, we considered
a system applied out of the context, i.e., we did not take into account the
attacker parameters and impact of the attacks. We defined formally the fol-
lowing security metrics: number of attacks, minimal cost of attack, minimal
length of attack, maximal probability of successful attack, attack surface.

• The model should be capable of formalizing risk. Formal definition of risk
required us to extend the initial model adding the context to the system. We
enhanced the initial model with parameters of the attacker which are a tuple of
attacker’s goal, set of attacks available to the attacker, her skills, tangible and
intangible resources. We checked our definition of risk against the definition
of risk accepted in the area and showed that the definitions are equal.

94 VALIDATION OF CONTRIBUTIONS

• The model should help to analyze several general quantitative security met-
rics. We performed simple analysis of validity of general security metrics. We
showed that all considered metrics are valid and, thus, can be used for the
evaluation of security in services. Although the model is supposed to allow
the analysis of relations between metrics and between metrics and risk, we did
not performed the analysis in the thesis.

9.1.1 Refined Model of the Attacker

During the work on the formal model for security metrics and risk we understand
that they depend on the model of the attacker. We proposed the refined model
of the attacker which is an additional contribution into the Goal 1. The model
considered attackers with limited resources, partial knowledge about the systems and
adaptive behavior. The model is based on the Markov Decision Processes theory. We
proposed an algorithm for the simulation of adaptive attacker’s behavior. While we
suppose that the model should allow finer-grained evaluation of security, additional
checks of the model usefulness are required. Moreover, methods for the computation
of metrics on the basis of adaptive attacker behavior should be defined.

9.2 Security Evaluation of Complex Services

• The method should allow selecting the most secure design of a complex service.
We proposed a method for decomposition of a complex service described in
BPMN notation into a design graph which represents possible designs of the
complex service. The decomposition is done under several assumptions on
representing BPMN activities in the graph. We analyze the design graph using
semiring-based methods for the evaluation of security. The analysis helps a
service orchestrator to select the most secure design of the complex service.

• The method should allow the evaluation of complex services on the basis of
different metrics. We defined several security metrics as semirings algebraic
structures. The semirings allow utilizing a single algorithms for the analysis of
the design graphs regardless what security metric is selected for the analysis.
This allowed the analysis of complex services using different metrics.

• The method should allow mapping between different metrics. We exploited
mappings between semirings to make possible mappings between security met-
rics. We described what conditions should be fulfilled by the metrics to make
correct mappings. We reviewed limitations of the method based on mappings
between semirings.

9.3. CONTINUOUS REEVALUATION OF SECURITY IN SERVICES 95

9.3 Continuous Reevaluation of Security in Ser-

vices

• The UCON model should be adapted for the continuous reevaluation of ser-
vices. We determined the interactions between a service consumer and a
service provider in terms of the UCON model. We considered the service
provider as subject that is trying to access objects which are assets of a ser-
vice consumer. We considered security preferences of the service consumer
and security preferences of service provider as attribute-based UCON policies.
We showed how the UCON model can be used for reevaluation and security
decisions during the exploitation of services.

• The method should help a service consumer to evaluate and continuously reeval-
uate security of services. We proposed a method for a qualitative risk evalu-
ation on the basis of security requirements of a service consumer and security
preferences of a service provider. The risk value is used to select a service
with a proper security and to continuously reevaluate security of the service
to make decisions about interactions with services. We considered only two
security decisions for the case when the service does not satisfy security re-
quirement of the consumer. First, the service consumer can revoke the access
to the assets to the current service and select a different service with better
security. Second, the service consumer may ask the current service provider to
adjust the security level of the service. Currently, the method does nor work
with complex services.

• The method should be useful for a service provider. The service provider uses
risk computed by her clients to understand whether the security of the service
should be improved. We formulated the risk mitigation strategy as a knapsack
problem. This formulation allows exploiting existing algorithms for selecting
security controls for the risk mitigation. Mitigating the risk helps the service
provider to keep her service consumers and to attract new ones.

9.4 Impact of Uncertainties on Security Decision

Making

• We should identify uncertainties that may impact decision making in the UCON.
We listed unintentional and intentional uncertainties that can impact decision
making. The uncertainties are: freshness, correctness (unintentional ones) and
trustworthiness (intentional one).

• The method should allow decision making under uncertainties. We defined
a correct policy enforcement for the UCON in absence of uncertainties. We

96 VALIDATION OF CONTRIBUTIONS

proposed cost-effective threshold and flip coin strategies for the decision mak-
ing in presence of unintentional uncertainties. In these strategies, we evaluate
possible monetary outcomes of the decision considering the case when fresh
values of attributes are not available. To illustrate our theory, we made several
simulations assuming the attribute changes follow Markov property.

• The method should allow computing a strategy for attributes checking. We de-
veloped periodic and aperiodic strategies for the attributes query. The strate-
gies are cost-effective because they minimizing possible losses connected with
impact of missed attribute values due to non-continuous checks. We consid-
ered periodic and aperiodic strategies for checking attributes values. We im-
plemented the strategies as a software prototype assuming that the attributes
behavior follows Markov property. We used the prototype to compare peri-
odic and aperiodic checks. The comparison as well as our theoretical findings
indicated that aperiodic checks are at least as effective as periodic ones.

• The method should propose an architecture for the cost-effective enforcement
of usage control policies under uncertainties. We proposed a modification
for the architecture for the enforcement of the UCON. We introduced three
additional modules: a logic policy decision point, a risk policy decision point
and a scheduler. New modules enabled the cost-effective decision making and
attribute values checking in the UCON.

Chapter 10

Concluding Remarks

This thesis discussed the framework for quantitative evaluation and reevaluation of
security in services. We remind the main contributions to conclude the thesis.

We proposed the formal model for the definition and analysis of general quan-
titative metrics and risk. We used the model to define several general quantitative
metrics and risk. The definition allowed us to analyze validity of several security
metrics: number of attacks, minimal cost of attack, minimal length of attack, maxi-
mal probability of successful attack, and attack surface metric. The analysis showed
that all metrics are valid and, thus, can be exploited for evaluation of security in
services. However, since the metrics are general they may be exploited also for the
evaluation of other computer systems, for instance, computer networks.

The analysis of security metrics showed that metrics depend on the behavior of
the attacker. While current models of the attacker are simplified, we introduced
a refined model for the attacker’s behavior. The model is based on the Markov
Decision Processes theory. The model takes into account that the attacker has
limited resources to attack the system. Moreover, the attacker has partial knowledge
about a target system. The model allows the attacker to change her behavior during
the attack, i.e., to behave adaptively. We presented an algorithm for the simulation
of adaptive attacker’s behavior. We suppose that the refined model of the attacker
should allow a finer-grained evaluation of security.

The thesis presented a semiring-based method for the evaluation of security of
complex services on the basis of different metrics and for the selection of the most se-
cure design of complex services. We proposed a simplified decomposition of complex
services described using the BPMN notation into a design graph. Then, the method
exploits a semiring-based algorithm for the evaluation of design graphs. Moreover,
the method allows semirings-based mappings between metrics. Such mappings are
useful for the case when simple services are evaluated using different metrics. We
defined several security metrics as semirings to exemplify our approach. The semir-
ings can also be used for the definition of aspects not related to security, for instance,
latency and trust. Hence, the method may be useful for the analysis of non-security
QoS parameters of the complex services.

98 CONCLUDING REMARKS

We proposed a method for the continuous reevaluation of the security in services.
The method is based on the UCON enhanced with qualitative risk assessment. The
method suits for the evaluation of security of a single service in the SOA. The method
is useful both for a service provider and a service consumer. The method helps the
service consumer to select a service according to security requirements and then to
control whether the security requirements are satisfied during the interactions. The
service provider can adjust security preferences using the method to provide a better
service to her customers.

We addressed the issue of the UCON when a decision have to be made under
uncertainties. We described the uncertainties that may impact decision making. We
proposed threshold and flip coin strategies for cost-effective decision making. The
threshold strategy is more cost-effective than the flip coin one. We introduced peri-
odic and aperiodic strategies of attribute checks for usage control. Aperiodic checks
are equally or more cost-effective than periodic checks. We checked our theoretical
findings using simulations describing changes of an attribute as a random process
that possesses Markov property. We proposed an architecture for the cost-effective
enforcement of the UCON policies. While we considered the decisions making for
the UCON in services, the problem of decision making under uncertainties is rele-
vant for the UCON model applied in any system. Thus, the results of our work may
be useful for any system where the UCON is applied.

10.1 Future Work

The results of the thesis give a rich background for the future work.

10.1.1 Formal Model For Security Metrics

A possible exploitation of the formal model is to analyze connections between se-
curity metrics and between security metrics and risk. The analysis can help to
understand whether security metrics can be used interchangeably. Moreover, the
analysis can help to understand how the metrics contributes into the risk. Such
analysis can facilitate the security evaluation.

10.1.2 Modeling Adaptive Attacker’s Behavior

The model of the attacker can be improved in several ways. The notion of decreasing
tangible resources of the attacker can be introduced into the model. In this case,
the attacker will spend the resources not only before the attack, but also during the
attack. A better way of representing the time is necessary, i.e., in a real situation
each attack step needs different amount of time. The model should be able to work
with zero-day vulnerabilities which currently are not taken into account.

10.1. FUTURE WORK 99

10.1.3 Security Evaluation of Complex Services

The model for the evaluation of complex services can be extended as follows. First,
the assumptions on the transformation of a business process into the design graph
can be relaxed, because an orchestrator often does not have an information required
to avoid choices and loops. Second, explicit definitions of mappings between security
metrics on the basis of their formal relations are needed.

10.1.4 Continuous Reevaluation of Security in Services

There is a number of ways how the main idea of continuous reevaluation of security
in services can be elaborated. Detailed analysis and formalization of possible UCON
policies in the SOA can facilitate the mapping of security requirements and secu-
rity preferences. Also the method can be modified to work with complex services.
Moreover, the quantitative risk can be exploited for evaluation and reevaluation of
security.

10.1.5 Enforcement of Usage Control Policies under Uncer-
tainties

For the decision making under uncertainties, the computation of probabilities of
policy failure under intentional uncertainty is needed. Current state of the art can
be applied only to static attributes and the model can be extended for more general
cases, i.e. for the case of mutable attributes.

100 CONCLUDING REMARKS

Bibliography

[1] Business process execution language for web services version 1.1, 2003. Was
available via http://public.dhe.ibm.com/software/dw/specs/ws-bpel/

ws-bpel.pdf on 13/04/2011.

[2] Systems security engineering capability maturity model version 3.0, June 2003.

[3] Cramm user guide, issue 5.1, July 2005.

[4] Business process model and notation (bpmn) version 2.0, January 2011. Was
available via http://www.omg.org/spec/BPMN/2.0 on 19/05/2011.

[5] M. Alam, X. Zhang, M. Nauman, T. Ali, and J.-P. Seifert. Model-based
behavioral attestation. In Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies, 2008.

[6] C. J. Alberts and A. J. Dorofee. OCTAVE Criteria. Technical Report
CMU/SEI-2001-TR-016, CERT, December 2001.

[7] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network
vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, 2002.

[8] A. Andrieux, K. Czajkowski, A. Dan, a. L. Kate Keahey, J. P.
Toshiyuki Nakata, J. Rofrano, S. Tuecke, and M. Xu. Web services agree-
ment specification (ws-agreement), March 2007.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

[10] A. Arnes, K. Sallhammar, K. Haslum, T. Brekne, M. E. G. Moe, and S. J.
Knapskog. Real-time risk assessment with network sensors and intrusion detec-
tion systems. In Proceeding of the International Conference on Computational
Intelligence and Security, 2005.

[11] M. Avriel. Nonlinear Programming: Analysis and Methods. Dover Publishing,
2003.

102 BIBLIOGRAPHY

[12] B. Aziz, A. Arenas, F. Martinelli, I. Matteucci, and P. Mori. Controlling usage
in business process workflows through fine-grained security policies. In Pro-
ceedings of the 5th International Conference on Trust and Privacy in Digital
Business, 2008.

[13] B. Aziz, S. N. Foley, J. Herbert, and G. Swart. Reconfiguring role based
access control policies using risk semantics. High Speed Networks Journal,
15(3):261–273, 2006.

[14] S. J. Bae, W. Kuo, and P. H. Kvam. Degradation models and implied lifetime
distributions. Reliability Engineering & System Safety, 92:601–608, 2007.

[15] F. Baiardi, F. Martinelli, P. Mori, and A. Vaccarelli. Improving grid service
security with fine grain policies. In Proceedings of On the Move to Meaningful
Internet System Workshop, 2004.

[16] F. Baiardi, C. Telmon, and D. Sgandurra. Hierarchical, model-based risk
management of critical infrastructures. Reliability Engineering and System
Safety, 94(9):1403–1415, 2009.

[17] D. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using vulnerable
components. In Quality of Protection: Security Measurements and Metrics.
2006.

[18] S. P. Bennett and M. P. Kailay. An application of qualitative risk analysis to
computer security for the commercial sector. In Proceedings of the 8th Annual
Computer Security Applications Conference, 1992.

[19] N. Bieberstein, S. Bose, K. J. Marc Fiammante, and R. Shah. Service-
Oriented Architecture (SOA) Compass: Business Value, Planning, and En-
terprise Roadmap. IBM Press, 2006.

[20] S. Bistarelli, P. Codognet, and F. Rossi. Abstracting soft constraints: Frame-
work, properties, examples. Artificial Intelligence, 139:175–211, 2002.

[21] S. Bistarelli, F. Martinelli, and F. Santini. A semantic foundation for trust
management languages with weights: An application to the rt family. In
Proceedings of the 5th International Conference on Autonomic and Trusted
Computing, 2008.

[22] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfac-
tion and optimization. Journal of the ACM, 44:201–236, 1997.

[23] A. Blyth and P. Thomas. Performing real-time threat assessment of secu-
rity incidents using data fusion of ids logs. Journal of Computer Security,
14(6):513–534, 2006.

10.1. BIBLIOGRAPHY 103

[24] M. Bouzeghoub and V. Peralta. A framework for analysis of data freshness.
In Proceedings of the 2004 International Workshop on Information Quality in
Information Systems, 2004.

[25] F. Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen. Model-
based security analysis in seven steps – a guided tour to the coras method.
BT Technology Journal, 25(1):101–117, 2007.

[26] I. Brandic, D. Music, and S. Dustdar. Service mediation and negotiation boot-
strapping as first achievements towards self-adaptable grid and cloud services.
In Proceedings of the 6th International Conference Industry Session on Grids
Meets Autonomic Computing, 2009.

[27] R. Breu, F. Innerhofer-Oberperfler, and A. Yautsiukhin. Quantitative assess-
ment of enterprise security system. In Proceedongs of the 3rd International
Conference on Availability, Reliability and Security, 2008.

[28] S. A. Butler. Security attribute evaluation method: a cost-benefit approach.
In Proceedings of the 24th International Conference on Software Engineering,
2002.

[29] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud comput-
ing and emerging it platforms: Vision, hype, and reality for delivering comput-
ing as the 5th utility. Future Generation Computer Systems, 25(6):599–616,
2009.

[30] V. Casola, A. R. Fasolino, N. Mazzocca, and P. Tramontana. An ahp-based
framework for quality and security evaluation. In International Conference on
Computational Science and Engineering, 2009.

[31] V. Casola, A. Mazzeo, N. Mazzocca, and M. Rak. A sla evaluation methodol-
ogy in service oriented architectures. In Proceedings of Quality of Protection
Workshop, 2005.

[32] F. Cheng, D. Gamarnik, N. Jengte, W. Min, and B. Ramachandran. Modelling
operational risks in business process. Technical Report RC23872, IBM, July
2005.

[33] P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and A. S.
Reninger. Fuzzy multi-level security: An experiment on quantified risk-
adaptive access control. 2007.

[34] K. Clark, J. Dawkins, and J. Hale. Security risk metrics: Fusing enterprise
objectives and vulnerabilities. In Proceedings of the 6th Annual IEEE SMC
Information Assurance Workshop, 2005.

104 BIBLIOGRAPHY

[35] F. Cohen. Managing network security – part 5: Risk management or risk
analysis. Network Security, 1997:15–19, 1997.

[36] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the web services web: an introduction to soap, wsdl, and uddi.
IEEE Internet Computing, 2(6):86–93, 2002.

[37] P. Degano, G.-L. Ferrari, and G. Mezzetti. On quantitative security policies.
In Proceedings of the 11th International Conference on Parallel Computing
Technologies, 2011.

[38] R. Dewri, I. Ray, I. Ray, and D. Whitley. Security provisioning in pervasive
environments using multi-objective optimization. In Proceedongs of the 13th
European Symposium on Research in Computer Security, 2008.

[39] N. N. Diep, L. X. Hung, Y. Zhung, S. Lee, Y.-K. Lee, and H. Lee. Enforc-
ing access control using risk assessment. In Proceedings of the 4th European
Conference on Universal Multiservice Networks, 2007.

[40] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[41] N. Dimmock. How much is “enough”? risk in trust-based access control.
In Proceedings of the 12th International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003.

[42] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, and K. Moody. Using
trust and risk in role-based access control policies. In Proceedings of the 9th
ACM Symposium on Access Control Models and Technologies, 2004.

[43] G. Dobson and A. Sanchez-Macian. Towards unified qos/sla ontologies. In
Proceedings of the 3rd International Workshop on Semantic and Dynamic Web
Processes, 2006.

[44] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[45] F. Farahmand, S. B. Navathe, P. H. Enslow, and G. P. Sharp. Managing
vulnerabilities of information systems to security incidents. In Proceedings of
the 5th international conference on Electronic Commerce, 2003.

[46] L. Finkelstein and M. S. Leaning. A review of the fundamental concepts of
measurement. Measurement, 2(1):25–34, 1984.

[47] R. Fredriksen, M. Kristiansenand, B. A. Granand, K. Stølen, T. A. Opperud,
and T. Dimitrakos. The coras framework for a model-based risk management
process. In Proceedings of the 21st International Conference on Computer
Safety, Reliability and Security, 2002.

10.1. BIBLIOGRAPHY 105

[48] J. W. Freeman, T. Darr, and R. B. Neely. Risk assessment for large het-
erogeneous systems. In Proceedings of the 13th Annual Computer Security
Applications Conference, 1997.

[49] L. Gallon and J.-J. Bascou. Cvss attack graphs. In Proceedings of 7th Inter-
national Conference on Signal-Image Technology and Internet-Based Systems,
2011.

[50] A. Gehani and G. Kedem. Rheostat: Real-time risk management. In Pro-
ceedings of the 7th International Symposium on Recent Advances in Intrusion
Detection, 2004.

[51] G. Geri, H. S. Hilde, and R. Indrakshi. Aspect-oriented risk driven develop-
ment of secure applications. In Proceedings of the 20th Annual IFIP WG 11.3
Working Conference on Data and Applications Security, 2006.

[52] Global Grid Forum. Open Grid Services Architecture Glossary of Terms Ver-
sion 1.5, 2006.

[53] L. A. Gordon and M. P. Loeb. Managing Cybersecurity Resources: a Cost-
Benefit Analysis. McGraw Hill, 2006.

[54] J. Gould, M. Glossop, and A. Ioannides. Review of hazard identification
techniques. Technical Report HSL/2005/58, Health and Safety Executive,
2000.

[55] B. A. Gran, R. Fredriksen, and A. P.-J. Thunem. An approach for model-
based risk assessment. In Proceedings of the 23rd International Conference on
Computer Safety, Reliability and Security, 2004.

[56] L. Grunske and D. Joyce. Quantitative risk-based security prediction for
component-based systems with explicitly modeled attack profiles. Journal
of Systems and Software, 81(8):1327–1345, 2008.

[57] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides. Archi-
tectural risk analysis of software systems based on security patterns. IEEE
Transactions on Dependable and Secure Computing, 5(3):129–142, 2008.

[58] J. Hallberg, A. Hustad, A. Bond, M. Peterson, and N. Pahlsson. System
it security assessment. Technical Report FOI-R-1468-SE, Swedish Defence
Research Agency, 2004.

[59] Y. Han, Y. Hori, and K. Sakurai. Security policy pre-evaluation towards risk
analysis. In Proceedings of the 2008 International Conference on Information
Security and Assurance, 2008.

106 BIBLIOGRAPHY

[60] K. Haslum and A. Arnes. Multisensor real-time risk assessment using
continuous-time hidden markov models. In Proceeding of the International
Conference on Computational Intelligence and Security, 2007.

[61] R. Henning. Security service level agreements: quantifiable security for the
enterprise? In Proceedings of the 1999 Workshop on New Security Paradigms,
2000.

[62] D. S. Herrmann. Complete Guide to Security and Privacy Metrics: Measuring
Regulatory Compliance, Operational Resilience, and ROI. Auerbach Publica-
tions, 2007.

[63] I. Hogganvik and K. Stølen. A graphical approach to risk identification, mo-
tivated by empirical investigations. In Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems, 2006.

[64] S. H. Houmb and G. Georg. The aspect-oriented risk-driven development
(aordd) framework. In Proceedings of the International Conference on Software
Development (SWDC/REX, 2005.

[65] M. Howard. Fending off future attacks by reducing attack surface, Febru-
ary 2003. Was available via http://msdn.microsoft.com/en-us/library/

ms972812.aspx.

[66] O. C. Ibe. Fundamentals of Applied Probability and Random Processes. Else-
vier Academic Press, 2005.

[67] O. C. Ibe. Markov processes for stochastic modeling. Elsevier Academic Press,
2009.

[68] F. Innerhofer-Oberperfler and R. Breu. Using an enterprise architecture for
it risk management. In Proceedings of the Information Security South Africa
from Insight to Foresight Conference, 2006.

[69] International Organization for Standardization (ISO). ISO/IEC 27002:2005
Information technology – Security techniques – Code of practice for informa-
tion security management, 2005.

[70] International Organization for Standardization (ISO). ISO/IEC 27000:2009
Information technology – Security techniques – Information security manage-
ment systems – Overview and vocabulary, 2009.

[71] ISO/IEC. ISO/IEC 27001:2005 Information technology – Security techniques
– Specification for an Information Security Management System, 2005.

10.1. BIBLIOGRAPHY 107

[72] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl. Qos aggregation in web ser-
vice compositions. In Proceedongs of the 2005 IEEE International Conference
on e-Technology, e-Commerce, and e-Services, 2005.

[73] W. Jansen. Directions in security metric research. Technical Report
NISTIR 7564, National Institute of Standards and Technology, 2009.
Was available via http://csrc.nist.gov/publications/nistir/ir7564/

nistir-7564_metrics-research.pdf on 28/04/2010.

[74] A. Jaquith. Security metrics: replacing fear, uncertainty, and doubt. Addison-
Wesley, 2007.

[75] S. Jha, O. Sheyner, and J. M. Wing. Minimization and reliability analyses of
attack graphs. Technical Report CMU-CS-02-109, Carnegie Mellon University,
2002.

[76] S. Jha, O. Sheyner, and J. M. Wing. Two formal analys s of attack graphs.
In Proceedings of the 15th IEEE Computer Security Foundations Workshop,
2002.

[77] E. Jonsson and T. Olovsson. A quantitative model of the security intrusion
process based on attacker behavior. IEEE Transactions on Software Engineer-
ing, 23:235–245, 1997.

[78] A. Josang, D. Bradley, and S. J. Knapskog. Belief-based risk analysis. In
Proceedings of the 2nd Workshop on Australasian Information Security, Data
Mining and Web Intelligence, and Software Internationalisation, 2004.

[79] B. Karabacak and I. Sogukpinar. Isram: information security risk analysis
method. Computers & Security, 24(2):147–159, 2005.

[80] B. Kitchenham, S. L. Pfleeger, and N. Fenton. Towards a framework for soft-
ware measurement validation. IEEE Transactions on Software Engineering,
12(21):929–944, 1995.

[81] I. Kramosil and J. Michalek. Fuzzy metrics and statistical metric spaces.
Kybernetica, 11(5):336–344, 1974.

[82] L. Krautsevich. Parametric attack graph construction and analysis. In Pro-
ceedings of Doctoral Symposium of International Symposium on Engineering
Secure Software and Systems 2012, pages 29–34. CEUR-WS.org, 2012.

[83] L. Krautsevich, A. Lazouski, F. Martinelli, P. Mori, and A. Yautsiukhin. Usage
control, risk and trust. In Proceedings of 7th International Conference Trust,
Privacy and Security in Digital Business, pages 1–12. Springer, 2010.

108 BIBLIOGRAPHY

[84] L. Krautsevich, A. Lazouski, F. Martinelli, P. Mori, and A. Yautsiukhin. Inte-
gration of quantitative methods for risk evaluation within usage control poli-
cies. In Proceedings of 22nd International Conference on Computer Commu-
nications and Networks. IEEE, 2013.

[85] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Influence of
attribute freshness on decision making in usage control. In Proceedings of 6th
Workshop on Security and Trust Management, pages 35–50. Springer, 2010.

[86] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Risk-aware
usage decision making in highly dynamic systems. In Proceedings of 5th In-
ternational Conference on Internet Monitoring and Protection, pages 29–34.
IEEE, 2010.

[87] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Risk-based
usage control for service oriented architecture. In Proceedings of 18th Euromi-
cro Conference on Parallel, Distributed and Network-based Processing, pages
641–648. IEEE, 2010.

[88] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Cost-effective
enforcement of ucona policies. In Proceedings of 6th International Conference
on Risk and Security of Internet and Systems, pages 1–8. IEEE, 2011.

[89] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Cost-effective
enforcement of access and usage control policies under uncertainties. IEEE
Systems Journal, Special Issue on Security and Privacy in Complex Systems,
7(2):223–235, 2013.

[90] L. Krautsevich, A. Lazouski, P. Mori, and A. Yautsiukhin. Quantitative meth-
ods for usage control, 2012. Presented at the International Workshop on Quan-
titative Aspects in Security Assurance.

[91] L. Krautsevich, F. Martinelli, C. Morisset, and A. Yautsiukhin. Risk-based
auto-delegation for probabilistic availability. In Proceedings of 4th Interna-
tional Workshop on Autonomous and Spontaneous Security, pages 206–220.
Springer, 2011.

[92] L. Krautsevich, F. Martinelli, and A. Yautsiukhin. Formal approach to secu-
rity metrics: what does “more secure” mean for you? In Proceedings of 4th
European Conference on Software Architecture: Companion Volume, pages
162–169. ACM, 2010.

[93] L. Krautsevich, F. Martinelli, and A. Yautsiukhin. Formal analysis of security
metrics and risk. In Proceedings of 5th Workshop on Information Security
Theory and Practice of Mobile Devices in Wireless Communication, pages
304–319. Springer, 2011.

10.1. BIBLIOGRAPHY 109

[94] L. Krautsevich, F. Martinelli, and A. Yautsiukhin. A general method for
assessment of security in complex services. In Proceedings of 4th European
Conference ServiceWave, pages 153–164. Springer, 2011.

[95] L. Krautsevich, F. Martinelli, and A. Yautsiukhin. Towards modelling adap-
tive attacker’s behaviour. In Proceedings of 5th International Symposium on
Foundations and Practice of Security. Springer, 2012.

[96] R. Krishnan, J. Niu, R. Sandhu, and W. H. Winsborough. Stale-safe security
properties for group-based secure information sharing. In Proceedings of the
6th ACM Workshop on Formal Methods in Security Engineering, 2008.

[97] A. Lazouski, F. Martinelli, and P. Mori. Usage control in computer security:
A survey. Computer Science Review, 4:81–99, 2010.

[98] E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke. Model-
based security metrics using adversary view security evaluation (advise). In
Proceedings of the 8th International Conference on Quantitative Evaluation of
SysTems, 2011.

[99] E. LeMay, W. Unkenholz, D. Parks, C. Muehrcke, K. Keefe, and W. H.
Sanders. Adversary-driven state-based system security evaluation. In Pro-
ceedings of the 6th International Workshop on Security Measurements and
Metrics, 2010.

[100] Y. Li, H. Sun, Z. Chen, J. Ren, and H. Luo. Using trust and risk in access con-
trol for grid environment. In Proceedings of the 2008 International Conference
on Security Technology, 2008.

[101] U. Lindqvist and E. Jonsson. A map of security risks associated with using
cots. Computer, 31(6):60–66, 1998.

[102] B. B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, and K. S. Trivedi.
A method for modeling and quantifying the security attributes of intrusion
tolerant systems. Performance Evaluation Journal, 1-4(56):167–186, 2004.

[103] P. Manadhata and J. Wing. Measuring a system’s attack surface. Technical
Report CMU-TR-04-102, Carnegie Mellon University, 2004.

[104] P. K. Manadhata, K. M. C. Tan, R. A. Maxion, and J. M. Wing. An approach
to measuring a systems attack surface. Technical Report CMU-CS-07-146,
School of Computer Science, Carnegie Mellon University, 2007.

[105] D. Marchignoli and F. Martinelli. Automatic verification of cryptographic
protocols through compositional analysis techniques. In Proceedings of the
5th International Conference on Tools and Algorithms for Construction and
Analysis of Systems, 1999.

110 BIBLIOGRAPHY

[106] F. Martinelli. Analysis of security protocols as open systems. Theoretical
Computer Science, 290(1):1057–1106, 2003.

[107] F. Martinelli, P. Mori, and A. Vaccarelli. Towards continuous usage control on
grid computational services. In Proceedings of the Joint International Confer-
ence on Autonomic and Autonomous Systems and International Conference
on Networking and Services, 2005.

[108] F. Massacci and A. Yautsiukhin. An algorithm for the appraisal of assurance
indicators for complex business processe. In Proceedings of the 2007 ACM
Workshop on Quality of Protection, 2007.

[109] F. Massacci and A. Yautsiukhin. Modelling of quality of protection in out-
sourced business processes. In Proceedings of the 3rd International Symposium
on Information Assurance and Security, 2007.

[110] R. W. McGraw. Risk-adaptable access control (radac). Was available via
http://csrc.nist.gov/news_events/privilege-management-workshop/

radac-Paper0001.pdf on 16/08/09.

[111] P. Mell and T. Grance. The nist definition of cloud computing, September
2011. Available on-line via http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf on 12/12/2012.

[112] D. A. Menasce. Qos issues in web services. IEEE Internet Computing, 6(6):72–
75, 2002.

[113] Microsoft. Securing windows 2000 server chapter 3: Understanding the secu-
rity risk management discipline. Microsoft TechNet Archive, November 2004.

[114] J. C. Mitchell, A. Ramanathan, A. Scedrovb, and V. Teaguea. A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols.
Theoretical Computer Science, 353(1):118–164, 2006.

[115] M. Mitzenmacher and E. Upfal. Probability and Computing Randomized Al-
gorithms and Probabilistic Analysis. Cambridge University Press, 2005.

[116] R. A. Miura-Ko and N. Bambos. Dynamic risk mitigation in computing infras-
tructures. In Proceedings of the 3rd International Symposium on Information
Assurance and Security, 2007.

[117] M. Mohri. Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics, 7:321–350, 2002.

[118] A. Morali, E. Zambon, S. Etalle, and P. Overbeek. It confidentiality risk assess-
ment for an architecture-based approach. In Proceedings of the 3rd IEEE/IFIP
International Workshop on Business-driven IT Management, 2008.

10.1. BIBLIOGRAPHY 111

[119] R. E. Mullen. The lognormal distribution of software failure rates: application
to software reliability growth modeling. In The 9th International Symposium
on Software Reliability Engineering, 1998.

[120] S. Narayanan and S. A. McIlraith. Simulation, verification and automated
composition of web services. In Proceedings of the 11th International Confer-
ence on World Wide Web, 2002.

[121] Q. Ni, E. Bertino, and J. Lobo. Risk-based access control systems built on
fuzzy inferences. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, 2010.

[122] J. Niu, R. Krishnan, J. F. Bennat, R. Sandhu, and W. H. Winsborough.
Enforceable and verifable stale-safe security properties in distributed systems.
Technical Report CS-TR-2011-02, University of Texas at San Antonio, 2011.

[123] S. Noel and S. Jajodia. Managing attack graph complexity through visual
hierarchical aggregation. In Proceedings of the 2004 ACM Workshop on Visu-
alization and Data Mining for Computer Security, 2004.

[124] R. Ortalo, Y. Deswarte, and M. Kaâniche. Experimenting with quantitative
evaluation tools for monitoring operational security. IEEE Transactions on
Software Engineering, 25(5):633–650, 1999.

[125] X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach to attack
graph generation. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, 2006.

[126] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary
security metric for network configuration security analysis. In Proceedings of
the 2nd ACM Workshop on Quality of Protection, 2006.

[127] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching
of web services capabilities. In Proceedings of the 1st International Semantic
Web Conference, 2002.

[128] M. P. Papazoglou. Service-oriented computing: concepts, characteristics and
directions. In Proceedings of the 4th International Conference on Web Infor-
mation Systems Engineering, 2003.

[129] J. Park and R. Sandhu. Towards usage control models: beyond traditional
access control. In Proceedings of the 7th ACM Symposium on Access Control
Models and Technologies, 2002.

[130] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–
52, 2003.

112 BIBLIOGRAPHY

[131] V. Peralta. Data freshness and data accuracy: A state of the art. Technical
Report TR0613, Universidad de la Republica Uruguay, 2006.

[132] R. Perrey and M. Lycett. Service-oriented architecture. In Proceedings of
Symposium on Applications and the Internet Workshops, 2003.

[133] Y. N. Pettersen. Renego patched servers: A long-term interoperability time
bomb brewing. Was available online on 20/07/2012.

[134] C. Phillips and L. P. Swiler. A graph-based system for network-vulnerability
analysis. In Proceedings of the 1998 Workshop on New Security Paradigms,
1998.

[135] D. Pisinger. Algorithms for knapsack problems. Technical Report DK-2100,
University of Cophenhagen, 1995.

[136] A. Pretschner, F. Massacci, and M. Hilty. Usage control in service-oriented
architectures. In Proceedings of the 4th International Conference on Trust,
Privacy and Security in Digital Business, 2007.

[137] M. L. Puterman. Markov Decision Processes Discrete Stochastic Dynamic
Programming. Wiley-Interscience, 2005.

[138] S. Ran. A model for web services discovery with qos. Newsletter ACM SIGecom
Exchanges, 4(1):1–10, 2003.

[139] R. L. Rardin. Optimization in operations research. Prentice Hall, 1997.

[140] J. Rees and J. Allen. The state of risk assessment practices in information
security: An exploratory investigation. Journal of Organizational Computing
and Electronic Commerce, 18(4):255–277, 2008.

[141] A. Refsdal and K. Stølen. Employing key indicators to provide a dynamic risk
picture with a notion of confidence. In Proceedings of the 3rd IFIP WG 11.11
International Conference on Trust Management III, 2009.

[142] J. J. C. H. Ryan and D. J. Ryan. Performance metrics for information security
risk management. IEEE Security and Privacy, 6(5):38–44, 2008.

[143] P. Samarati and S. D. C. di Vimercati. Access control: Policies, models, and
mechanisms. In In Revised versions of lectures given during the IFIP WG
1.7 International School on Foundations of Security Analysis and Design on
Foundations of Security Analysis and Design: Tutorial Lectures, 2000.

[144] C. Sarraute, O. Buffet, and J. Hoffmann. Pomdps make better hackers: Ac-
counting for uncertainty in penetration testing. In Proceedings of the 26th
Conference on Artificial Intelligence, 2012.

10.1. BIBLIOGRAPHY 113

[145] R. Savola. Towards a security metrics taxonomy for the information and
communication technology industry. In Proceedings of the International Con-
ference on Software Engineering Advances, 2007.

[146] R. M. Savola. A security metrics taxonomization model for software-intensive
systems. Journal of Information Processing Systems, 5(4):197–206, 2009.

[147] S. Schechter. How to buy better testing. In Proceedings of the International
Conference on Infrastructure Security, 2002.

[148] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, pages 273–284, 2002.

[149] O. Sheyner and J. M. Wing. Tools for generating and analyzing attack graphs.
In Proceedings of the 2nd International Symposium on Formal Methods for
Components and Objects, 2003.

[150] A. Singhal, T. Winograd, and K. Scarfone. Guide to secure web services.
Technical report, National Institute of Standards and Technology (NIST),
2007.

[151] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web ser-
vices using semantic descriptions. In Workshop on Web Services: Modeling,
Architecture and Infrastructure, 2002.

[152] C. Skalka, X. S. Wang, and P. Chapin. Risk management for distributed
authorization. Journal of Computer Security, 15:447–489, 2007.

[153] A. Stewart. On risk: perception and direction. Computers & Security, 23:362–
370, 2004.

[154] K. Stølen, F. D. Braber, T. Dimitrakos, R. Fredriksen, B. A. Gran, S.-H.
Houmb, S. Lund, Y. C. Stamatiou, and J. O. Aagedal. Model-based risk
assessment the coras approach, presented at the 1st itrust workshop, 2002.

[155] G. Stoneburner, A. Goguen, and A. Feringa. Risk management guide for infor-
mation technology systems. Technical report, National Institute of Standards
and Technology (NIST), 2002. Was available via http://csrc.nist.gov/

publications/nistpubs/800-30/sp800-30.pdf.

[156] P. Suppes and J. L. Zinnes. Basic measurement theory. Technical report,
Institute for mathematical studies in the social science, 1962.

[157] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer-attack graph
generation tool. In Proceedings of DARPA Information Survivability Confer-
ence, 2001.

114 BIBLIOGRAPHY

[158] C. Tarr and P. Kinsman. The validity of security risk assessment. In Proceed-
ings of the 30th Annual 1996 International Carnahan Conference on Security
Technology, 1996.

[159] H. C. Tijms. A First Course in Stochastic Models. Wiley, 2003.

[160] S. Venkataraman and W. Harrison. Prioritization of threats using the k/m
algebra. In Proceedings of Workshop on Software Security Assurance Tools,
Techniques, and Metrics, 2005.

[161] D. Verdon and G. McGraw. Risk analysis in software design. IEEE Security
and Privacy, 2(4):79–84, 2004.

[162] A. J. A. Wang. Information security models and metrics. In Proceedings of
the 43rd Annual Southeast Regional Conference, 2005.

[163] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-
based probabilistic security metric. In Proceeedings of the 22nd Annual IFIP
WG 11.3 Working Conference on Data and Applications Security, 2008.

[164] L. Wang, S. Jajodia, A. Singhal, and S. Noel. k-zero day safety: Measuring
the security risk of networks against unknown attacks. In Proceedings of the
15th European Conference on Research in Computer Security, 2010.

[165] L. Wang, A. Liu, and S. Jajodia. Using attack graphs for correlating, hy-
pothesizing, and predicting intrusion alerts. Computer Communications,
29(15):2917–2933, 2006.

[166] L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using
attack graphs. Computer Communications, 29(18):3812–3824, 2006.

[167] H. Wei, D. Frinke, O. Carter, and C. Ritter. Cost-benefit analysis for network
intrusion detection systems. In Proceedings of the 28th Annual Computer
Security Conference, 2001.

[168] C. Woody and C. Alberts. Considering operational security risk during system
development. IEEE Security and Privacy, 5(1):30–35, 2007.

[169] L. Youseff, M. Butrico, and D. D. Silva. Toward a unified ontology of cloud
computing. In Proceedings of Grid Computing Environments Workshop, 2008.

[170] T. Yu and K.-J. Lin. A broker-based framework for qos-aware web service
composition. In Proceedongs of the 2005 IEEE International Conference on
e-Technology, e-Commerce, and e-Services, 2005.

[171] E. Zambon, D. Bolzoni, S. Etalle, and M. Salvato. Model-based mitigation of
availability risks. In Proceedongs of the 2nd IEEE/IFIP International Work-
shop on Business-Driven IT Management, 2007.

10.1. BIBLIOGRAPHY 115

[172] E. Zambon, D. Bolzoni, S. Etalle, and M. Salvato. A model supporting business
continuity auditing & planning in information systems. In Proceedings of the
2nd International Conference on Internet Monitoring and Protection, 2007.

[173] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
Qos-aware middleware for web services composition. IEEE Transactions on
Software Engineering, 30(5):311–327, 2004.

[174] L. Zhang, A. Brodsky, and S. Jajodia. Toward information sharing: Benefit
and risk access control (barac). In Proceedings of the 7th IEEE International
Workshop on Policies for Distributed Systems and Networks, 2006.

[175] M. Zhang, B. Yang, S. Zhu, and W. Zhang. Ordered semiring-based trust es-
tablish model with risk evaluating. International Journal of Network Security,
8(2):101–106, 2009.

[176] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model and
policy specification of usage control. ACM Transactions on Information and
System Security, 8(4):351–387, 2005.

116 BIBLIOGRAPHY

Appendix A

Computational Problems of
Markov Chains

In the appendix, we briefly present solutions of several computational problems
related to the Markov chains theory. We discuss in details a method for computa-
tion of transition probabilities based on discrete-time (DTMC) and continuous-time
(CTMC) Markov chains.

We consider an attribute r with a discrete domain of values and assume that
the attribute satisfies the Markov property, which means that a future attribute
value depends only on the present value and does not depend on its previous values.
We model possible changes of the attribute value with the Markov chain. The
Markov chain contains states and transitions between states. The states of the
chain represent the values of the attribute, and the transitions describe the changes
of the attribute. The values of the attribute can be grouped into two domains: the
“bad” domain VB and the “good” domain VG. If the attribute takes a value from the
“bad” domain then the policy is violated and the usage session should be revoked.
If the attribute takes a value from the “good” domain then the policy holds and the
usage is continued. The states of the Markov chain can be gathered into two groups
IB and IG respectively. The set of all values of the attribute is Vr = VB ∪ VG and
the corresponding set of states is I = IB ∪ IG.

We define the following variables:

• x ∈ Vr is a value of an attribute, xi we denote the value of the attribute in the
state i;

• t0 is the time when we know the exact value of the attribute;

• t′ is the time, when we make an access decision about the usage session.

118 COMPUTATIONAL PROBLEMS OF MARKOV CHAINS

A.1 Discrete-time Markov Chain

First, we consider a stochastic process represented as a DTMC. We compute a
transition probability Prij(q) of a stochastic process to be in a state j if the process
started from the state i and exactly q changes occur. The case is useful for the
computation of the probability of a policy failure after q changes of an attribute
value.

There is a vector of transition probabilities:

S(q) = [Pr1j(q) Pr2j(q) . . . PrjM(q)]

where M = |Vr| is the number of elements in the domain Vr. Prij(n) can be found
using the Markov chains theory and Kolmogorov-Chapman’s equation in particular
[159]. Assume that we know the initial value xi where the process starts (q = 0).
Thus, Prii(0) = 1 and others are 0, i.e., S(0) = [0 0 . . . 1 . . . 0]. The value of the
vectors after q changes will be:

S(t′) = S(t0)×Probq (A.1)

where × denotes multiplication of matrices, Prob is a transition matrix composed
by probabilities of one-time transitions from a state a (row) to a state b (column),
Probq shows the matrix in power q.

Sometime we need a probability PriIB(q) of transition from the state i to the
set of states IB. In this case, the vector of states S(q) is computed according to
Equation A.1, the probability PriIB(q) of the transition is:

PriIB(q) =
∑
j∈IB

S(q)[j] (A.2)

A.2 Continuous-time Markov Chain

Now, we consider a slightly different situation when we know only the time passed
from the last check of an attribute. We assume that the average time between
changes of the attribute value is exponentially distributed with the rate parameter
ν. This assumption allows modelling the behaviour of attribute values using CTMC,
where:

• νi is the rate parameter of an exponential distribution for the time of jumping
from a state i to another state, the value 1

νi
is the average life-time of the

attribute in the state xi;

• Prij is the one-step transition probability (the probability that the process
makes a direct jump from a state i to a state j without visiting any interme-
diate state).

A.2. CONTINUOUS-TIME MARKOV CHAIN 119

We assume that the values νi and Prij can be determined and adjusted using
statistical methods during the analysis of the past behaviour of the process. The
history of attribute changes is required for this purpose. Using νi and Prij we can
evaluate the probability of the policy violation on the basis of the following approach.

The transitions between the states are described with the infinitesimal transition
rates (qij ∈ Q). The infinitesimal transition rates are defined as:

qij = νi ·Prij,∀i, j ∈ I and i ̸= j (A.3)

The infinitesimal transition rates uniquely determine the rates νi and one-step
transition probabilities Prij:

νi =
∑
∀j ̸=i

qij (A.4)

Prij =
qij
νi

(A.5)

Suppose, the value of an attribute is xi ∈ VG (the state is i ∈ IG) at time t0 and
we need to find the probability of xj ∈ VB (j ∈ IB) during the period from t0 till t′.

We apply the uniformization method to compute transient state probabilities
Prij [67, 159]. The uniformization method replaces a CTMC by a DTMC analogue,
which is more suitable for numerical computations. The uniformisation is done by
replacing the transition rates of Markov chain νi with a sole transition rate ν:

ν ≥ νi,∀i ∈ I (A.6)

Usually, the following strategy is applied: ν = max
∀νi∈V

νi.

The DTMC chain makes a transition from a state with probabilities:

Prij =

{
νi
ν
·Prij =

qij
ν
, ∀i ̸= j

1− νi
ν
, ∀i = j

(A.7)

Now we have all required parameters and we can skip the mathematical proofs,
which can be found here [159, pages 167-168]. The transition state probabilities are:

Prij(t
′) =

∞∑
n=0

e−ν·(t′−t0) · (ν · (t′ − t0))
n

n!
·Pr

(n)

ij ,∀i, j ∈ I and t′ > t0 (A.8)

where Pr∗
(n)

ij can be recursively computed from:

Pr
(n)

ij =
∑
xk∈I

Pr
(n−1)

ik ·Prkj, n = 1, 2, . . . (A.9)

starting with Pr∗
(0)

ii = 1 and Pr
(0)

ij = 0 for i ̸= j.

120 COMPUTATIONAL PROBLEMS OF MARKOV CHAINS

For fixed t′ > t0 the infinite series can be truncated because of the negligible
impact of the residue. The truncation number U (upper limit of summation) in
Formula A.8 can be chosen as:

U = ν · t′ + c
√
ν · t′ (A.10)

for some c with 0 < c ≤ c0(ε), where ε is a tolerance number [159, page 169].
Formula A.8 gives a matrix of transition probabilities if time t′ − t0 passed. The

additional summation is required if we look for a transition into a set of states IB:

Prvl(t
′) =

∑
j∈IB

Pr∗ij(t
′) (A.11)

where i is an index of the initial state, and j ∈ IB are the forbidden states.

A.3 Convergence of a Markov Chain to the Steady

State

If the attribute behaviour follows the Markov property, the probabilities of the
attribute to be in a certain state converges to a stationary (steady state) distribution.
We can find the number nst of transitions when the distribution of probabilities
differs from the steady state distribution by any small value [115].

We first define a distance ∆as(t) between steady state distribution π and distri-
bution of probabilities ptas obtained when a process starts from the initial state as
and t transitions occurred:

∆as(t) = ∥ptas − π∥ =
1

2

∑
as∈Ωattr

|ptas(a)− π(a)|

In addition, we define:

τas(t) = min{t : ∆as(t) ≤ ϵ}
τ(ϵ) = max

as∈Ωattr

τas(ϵ)

where τas(t) is the first step when the distance between ptas ans steady state dis-
tribution becomes lower then ϵ, and τ(ϵ) is maximum among all possible starting
states.

A general result for the convergence of Markov chains is the following. Suppose
there is τ(c) ≤ T for some c < 1/2 where T is an amount of transitions. Then:

τ(ϵ) ≤ ⌈ ln ϵ

ln(2c)
⌉T (A.12)

Thus, the distribution ptas is indistinguishable from the steady state distribution
after τ(ϵ) steps:

nst = τ(ϵ)

