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Chapter 1

Introduction

In recent years much progress has been made in the experimental manipulation of many-body systems.
In particular, it has become possible to study the behavior of a statistically relevant number of atoms
under well controlled external conditions and in the low-temperature regime. These results have been
achieved thanks to the experimental improvements made along three different directions: cooling
techniques, magnetic trapping and optical lattices.

First laser cooling [112, 113, 114] and then evaporative cooling [9, 10] made it possible to reach the
very low temperatures needed for the establishment of quantum degeneracy in dilute gases. Further-
more, the particular field configurations constituting magnetic and optical traps [17] prevented neutral
atoms and ions to escape a finite region of space, thus attaining a very good confinement of particles,
while optical lattices [25, 28, 47], which are arrays of microscopic potentials induced by the alternate
current Stark effect of interfering laser beams, realized an extremely precise localization of the single
atoms. All of these progresses made it possible to study equilibrium and dynamical properties of a
statistical number of atoms in a thermodynamic regime where quantum effects are relevant for the
collective behavior of the system, thus entering a new field of research where the laws of quantum
mechanics drive not only the physics of the single microscopic constituents, but also that of collec-
tive excitations. Moreover, modern experimental setups are very clean and tunable so that the basic
feature of the underlying interactions can be studied with great precision and in a wide range of the
external parameters.

The most important realization in this field has been the achievement of Bose-Einstein condensa-
tion in diluted atomic vapors [116, 117]. This basic phenomenon constitutes an example of a phase
transition, that is one in which physical observables exhibit an anomalous (typically divergent) be-
havior. It is only the first of a series of experimental results where other similar situations were
observed: as a benchmark example, a Mott-insulator to superfluid transition has been observed [37]
and extensively studied in experiments with ultracold atomic gases loaded in optical lattices.

In the field of modern low-temperature physics we can distinguish two types of phase transitions:
those driven by thermal (classical) fluctuations, where the disordering mechanism resides in thermal
excitations, and those driven by quantum fluctuations, where the Heisenberg uncertainty principle is
responsible for the loosing of order. The most interesting aspects for us is that we can now study in
a controllable and essential manner the interplay of both of these mechanisms. For examples phase
transitions related to the formation of the Bose-Einstein condensation in an interacting Bose gas at
nonzero temperature are essentially driven by thermal fluctuations, giving rise to a classical critical
behavior [124], while quantum fluctuations play a dominant role at zero-temperature transitions, as
for the Mott-insulator to superfluid transition and related phenomena [15], where the low-energy
properties show a quantum critical behavior.

As already mentioned, a common feature of these experiments is the presence of a confining mech-
anism which traps the atoms in a finite region of space. The inhomogeneity due to the trapping
potential strongly affects the phenomenology of (classical and quantum) transitions in homogeneous
systems: correlation functions are not expected to develop a divergent length scale in the presence of
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6 CHAPTER 1. INTRODUCTION

the trap so that a theoretical description of how critical correlations develop in this kind of systems is
of great importance for experimental investigation. The main purpose of this work will be to set the
stage for a general interpretation of the emerging critical behaviors through a theory accounting for
the effects of traps of finite size.

The work is organized as follows.

• In Chapter 2 we briefly describe the physics of cold atoms loaded in optical lattices. In particular
we review the implications on the thermodynamics of the typical experimental conditions.

• In Chapter 3 we discuss the theory of quantum phase transitions. In particular we consider
scaling relations and describe the phases of the Bose-Hubbard model. Finally, we expose the
trap-size scaling theory.

• In Chapter 4 we use the trap-size scaling theory to study the effects of temperature on the phe-
nomenology of quantum phase transitions in the presence of a trapping potential. In particular
we consider the Mott-insulator to superfluid transitions of the Bose-Hubbard model in one and
two dimensions.

• In Chapter 5 we study the effects of confinement on the finite-temperature phase transition from
a superfluid to a normal fluid in the three-dimensional Bose-Hubbard model.

• In the Appendix we give the details of our quantum Monte Carlo simulations.

This thesis is based on the following publications.

• Interplay between temperature and trap effects in one-dimensional lattice systems of bosonic

particles,
G. Ceccarelli, C. Torrero, E. Vicari,
Phys. Rev. A, 85 (2012) 023616 .

• Scaling behavior of trapped bosonic particles in two dimensions at finite temperature,
G. Ceccarelli, C. Torrero,
Phys. Rev. A, 85 (2012) 053637 .

• Critical parameters from trap-size scaling in systems of trapped particles,
G. Ceccarelli, C. Torrero, E. Vicari,
Phys. Rev. B, 87 (2013) 024513 .



Chapter 2

Ultracold atoms in optical lattices

A macroscopic system of identical particles in thermal equilibrium is described by the laws of statistical
physics and usually the principles of classical mechanics can be applied in the external conditions met
in daily life situations. Quantum effects become relevant at very low temperatures or very high
densities and it is therefore of great interest to understand under which conditions quantum effects
play a dominant role in the behavior of macroscopic systems.

For this purpose in this chapter we will describe the phenomenon of Bose-Einstein condensation
and the realization of the Bose-Hubbard model. The physical relevance of these examples resides in
the fact that they manifest collective quantum effects which involve the coherent behavior of a lot of
particles, so that particle statistics and their interactions are at center stage rather than single atoms.
Moreover, the trapped Bose-Hubbard model will provide our staring point for the study of criticality
in phase transitions of the subsequent chapters.

2.1 Bose-Einstein condensation

Within the framework of a theoretical description of the quantum properties of light, in 1924 the
Indian physicist S.N. Bose developed a new interpretation in which black-body radiation was treated
as a gas of identical particles [22], called photons. These ideas were then extended by Einstein to
the case of a set of noninteracting massive particles [23], eventually originating what is today called
Bose-Einstein statistic. One of the first observation was that an ideal gas of massive particles would
undergo a phase transition [24], called Bose-Einstein condensation. The peculiarity of this transition
is that it is not driven by the interactions among constituents but by the quantum statistic. This
subject is one of the most important in the field of condensed matter physics and has been extensively
discussed in the literature: see for example Refs. [7, 14, 16, 18, 19].

2.1.1 Theory of condensation for an ideal Bose gas

Since this work will be mainly devoted to the study of inhomogeneous systems, we now describe
the phenomenon of Bose-Einstein condensation for an ideal (noninteracting) gas in the presence of
an external potential. Let us consider N noninteracting identical particles of mass m in thermal
equilibrium at temperature T in the presence of an external potential Vext(r). The hamiltonian for
the whole system is given by

H =
N∑

i=1

H(1)(i) , (2.1)

where H(1) is the single particle hamiltonian which in our context reads

H(1)(i) =
p2
i

2m
+ Vext(ri) , (2.2)

7



8 CHAPTER 2. ULTRACOLD ATOMS IN OPTICAL LATTICES

where r is the particle position and p is the particle momentum. This factorization is made possible
by the lack of interparticle interactions. Of course this does not mean that particles are not correlated,
since we know from the axioms of elementary quantum mechanics that the global wave function of a
system of identical particles must satisfy the constraint of symmetry (for bosons) or antisymmetry (for
fermions). Eventually this leads to a correlation among particles which has no classical counterpart
and emerges as a pure quantum effect. The eigenvalues ǫα and the eigenfunctions ϕα(r) of (2.2) can
be determined using the standard Schrödinger equation for one-particle systems and then, through
the laws of statistical physics [3], we can compute all the thermodynamical quantities we need. The
index α collects all the quantum numbers and takes on discrete values in a real (finite) system.

At thermal equilibrium the laws of quantum statistical mechanics describe the system giving the
state occupation numbers, when the particles are bosons, as

nα =
1

exp [β(ǫα − µ)]− 1
, (2.3)

where nα is the mean number of particles which occupy the state α and β = (kBT )
−1, with kB the

fundamental Boltzmann constant. The parameter µ is the chemical potential and is related with the
total number of particles. Since all the occupation numbers must be positive definite, we get the
fundamental constrain µ < ǫ0, where ǫ0 is the minimum of the energy levels.1 The total number of
particles must of course obey the normalization condition

N ≡
∑

α

nα =
∑

α

1

exp [β(ǫα − µ)]− 1
. (2.4)

Since the fundamental level can diverge in the physical conditions for which µ → ǫ0, it is now useful
to divide the total number of particles into two terms:

N(µ, T ) = N0(µ, T ) +NT (µ, T ) (2.5)

where N0 ≡ n0 is the number of particles in the ground state while NT is the number of particles in
the thermally exited states and we have emphasized the independent variables. It is common to call
N0 the condensed component and NT the thermal component. From equation (2.3) we see that all nα
turn out to be increasing functions of µ for any finite temperature: N0 is always of order unity (we
say it is macroscopically empty) except when µ → ǫ0 and in this case it diverges; NT is proportional
to the number of states so that is always (except for T = 0) of order N (we say it is macroscopically
populated) and reaches its maximum value (possibly infinite) for µ = ǫ0. The maximum of NT is
called critical particle number Nc and is given by Nc(T ) = NT (T, ǫ0).

2 We now rewrite equation (2.4)
in a continuous form replacing the summation with an integration:

N = N0 +

∫
1

exp [β(ǫα − µ)]− 1
dα , (2.6)

where we extracted the ground state contribution as before. This is permitted only if the excitation
energy kBT is much bigger than the energy spacing between single particles levels and it is equivalent
to assuming a semiclassical description of the excited states.

Let us consider a fixed number of particles and let the temperature vary. The ground state of the
system is obtained by putting all the particles in the fundamental state ϕ0(r), so that the total wave
function turns out to be Φ =

∏
i ϕ0(ri), which is correctly symmetric. This corresponds to the T = 0

state where N0 = N and NT = 0. We thus see that µ(N, 0) = ǫ0. Turning on temperature, all energy
levels will be populated according to the prescription (2.3) and the constrain (2.4): as the temperature
is raised the condensate component will decrease while the thermal component will be populated more

1For fermions there is no restriction on the values of µ since nα = (exp [β(ǫα − µ)] + 1)−1 is always well defined and
positive definite.

2For fermions there is no maximum for NT since µ is unbounded.



2.1. BOSE-EINSTEIN CONDENSATION 9

and more. In the thermodynamic limit, from the occupation number of the fundamental level, we
obtain ǫ0 − µ = kBT ln(1 − 1/N0) ≃ kBT/N0 which implies µ(N,T ) = ǫ0 as long as the fundamental
state is macroscopically occupied. We call critical temperature Tc the temperature such that the
ground state is macroscopically empty and the gas is substantially thermal. If the temperature is high
enough to have N < Nc(T ) then a value of µ < ǫ0 exists which satisfies equations (2.3, 2.4) with
a macroscopically empty ground state. When instead the temperature is so low that N > Nc(T ),
the only way for the system to get thermal equilibrium is to fill without restriction the fundamental
state. We thus see that for T < Tc all the particles that cannot occupy the excited levels are stored
in the fundamental one. Thus a macroscopic number of particles populate this state and we say that
a condensate is formed. In the thermodynamic limit the critical temperature Tc is thus defined as
N = Nc(Tc) which is equivalent to

N = NT (Tc, ǫ0) . (2.7)

At this point, to proceed further, we must somehow specify the form of the external potential.
Two are the typical choices: the hard-wall potential and the harmonic potential. In the former case,
of theoretical interest, particles are supposed free to move within a limited region of space, typically
of cubic shape of length L. In the latter case, typical of experimental realizations with trapped atoms,
we have

V (r) =
1

2
m (ω2

xx
2 + ω2

yy
2 + ω2

zz
2) . (2.8)

We now expose the standard results concerning the Bose-Einstein condensation in homogeneous and
harmonically trapped three-dimensional systems [115].

• Hard-wall limit

In this case the eigenvalues are

ǫ(nx, ny, nz) =
p2

2m
=

2πh̄n

L
, (2.9)

where n is a vector of integer components and we have chosen periodic boundary conditions,
while the eigenvectors are the usual plane waves ϕp(r) = exp(ipx)/

√
V normalized to the volume

V = L3 of the system. The condition for the critical temperature and the ground state population
read

kBTc =
h2

2πmζ(3/2)2/3

(
N

V

)2/3

, (2.10)

N0

N
= 1−

(
T

Tc

)3/2

for T < Tc , (2.11)

where ζ is the Riemann zeta function.
These results have been obtained setting µ = 0, since ǫ0 = 0 for free particles, and using (2.6),
which is justified if kBT ≫ h2/(2mV 2/3). In order to have a well defined critical temperature,
the thermodynamic limit must be defined, as usual, as N,V → ∞ while keeping n ≡ N/V fixed,
which is consistent with the semiclassical approximation.
At Tc the specific heat turns out to have a discontinuity in its first derivative of ∆(∂CV /∂T ) =
−3.66kBN/Tc and this justifies the interpretation of the Bose-Einstein condensation as a phase
transition. Moreover this transition has the peculiarity of taking place in the space of momenta,
since a fraction of particles accommodates in the state of zero speed while, from a spatial
viewpoint, the system remains homogeneous: this is the reason for the name of condensation.
We mention that the condition N0 ≃ N , which corresponds to an almost perfect condensate,
is fulfilled if T ≪ Tc and this can be realized even for macroscopic values of T . The analysis
carried out so far is thus valid in the range h2/(2mV 2/3) ≪ kBT ≪ kBTc.
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• Harmonic confinement

In this case the eigenvalues are

ǫ(nx, ny, nz) =

(
nx +

1

2

)
h̄ωx +

(
ny +

1

2

)
h̄ωy +

(
nz +

1

2

)
h̄ωz , (2.12)

where nx, ny, nz are the usual harmonic oscillator quantum numbers, while the corresponding
eigenvectors are the Hermite special functions. The ground state density is n(r) = N |ϕ0(r)|2,
where the single particle ground state wavefunction is

ϕ0(r) =
(mωho

πh̄

)3/4
exp

[
−m

2h̄
(ωxx

2 + ωyy
2 + ωzz

2)
]
. (2.13)

We get the important length scale

aho =

(
h̄

mωho

)1/2

, (2.14)

where ωho ≡ (ωxωyωz)
1/3 is the geometric average of the trapping frequencies. Thus the quantity

aho fixes the order of magnitude for the spatial extension of the condensed cloud. The critical
temperature and the ground state occupation number turn out to be

kBTc = h̄ωho

(
N

ζ(3)

)1/3

, (2.15)

N0

N
= 1−

(
T

Tc

)3

for T < Tc . (2.16)

These results have been obtained setting µ = (3/2)h̄ω̄, where ω̄ ≡ (ωx + ωy + ωz)/3 is the
arithmetic average of the trapping frequencies, and the semiclassical assumption h̄ωho ≪ kBT .
In order to have a well defined critical temperature, the thermodynamic limit must be defined
as N → ∞ and ω → 0 while keeping Nω3 fixed, which is still consistent with the semiclassical
approximation.
For 0 < T < Tc a finite fraction of particles is thermally exited and, in the semiclassical limit,
we can estimate the density nT (r) with the Boltzmann factor nT (r) = exp [−V (r)/kBT ], which
leads to a gaussian profile whose extension is

RT = aho

(
kBT

h̄ωho

)1/2

. (2.17)

We thus see that, in the semiclassical limit, the thermal component is always more broad then
the condensed one and the above discussion reveals that Bose-Einstein condensation in har-
monic traps shows up with the appearance of a sharp peak in the central region of the density
distribution.

Simply rewriting equation (2.10) as λdB ∼ n−1/3, where λdB = h/(2πmkBT )
1/2 is the thermal de

Broglie wavelength and n is the particle density, we can identify the onset of Bose-Einstein condensa-
tion with the condition that the thermal wavelength is comparable with the mean interparticle spacing.
An analogous deduction can be made for trapped systems using equations (2.15, 2.17) and recalling
that in this case for the density we must use N/R3

T .

Until now we have considered only ideal gases in three dimensions. We now briefly discuss, still
in the noninteracting case, the role of dimensionality. The condition identifying the occurrence of
Bose-Einstein condensation is that the number NT of thermally exited particles has an upper bound
for any value of the temperature T when evaluated for µ = ǫ0. Using equation (2.6) we see that in
the homogeneous case the integral related to NT diverges at small momenta as ln p in two dimensions
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and as 1/p in one dimension. This rules out the possibility of Bose-Einstein condensation for the ideal
gas in low dimensionality. Passing to the harmonic confinement, a similar analysis shows that in two
dimensions the integral in (2.6) is now convergent and this leads to a critical temperature given by

kBTc = h̄ωho

(
N

ζ(2)

)1/2

, (2.18)

where now ωho = (ωxωy)
1/2. Finally for one-dimensional trapped systems the integral is divergent

and no condensate can be formed. The above discussion clearly shows the close relationship between
Bose-Einstein condensation and the density of states of the system.

2.1.2 Experimental realization of Bose condensates

The first experimental realizations of the Bose-Einstein condensation were realized in 1995 in a re-
markable series of experiments with diluted atomic vapors [88, 89, 121]. In this section we enter in
some details in order to give the values of the relevant experimental parameters and to introduce some
aspects of the interactions among atoms which will be relevant for the subsequent discussion.

One of the first problem in obtaining a Bose-Einstein condensate was that of confinement: since real
particles always interact with the walls of a container and can be captured by them, a lot of trapping
techniques, both for charged and neutral particles, have been developed, mainly taking advantage of
the magnetic and optical properties of atoms, in order to realize a stable and manageable ensemble.
For a detailed discussion on this problem, see for example Ref. [26] and references therein.

Moreover real atoms have usually mutual interactions which eventually drive a system into the
liquid and solid phases. The theory developed in Section 2.1.1 was carried on in the ideal limit, so that
it is now important to understand under which conditions interactions can be neglected and what are
their consequences, at least to a first approximation. In order to do this we need to study the scattering
process involving a pair of identical atoms. We make the assumptions that the interparticle potential
(i) diverges for very short distances and goes to zero at large separation and (ii) has a spherical
symmetry. As a consequence, a natural basis onto which expand the diffusion process is that of the
orbital angular momentum, whose quantum number is l. Being interested in the low-temperature
physics, we consider the scattering in the low-energy limit, so that, since for the diffusion of two
bosonic particles only even values of the angular momentum are allowed, the collision is dominated by
the s-wave channel, while, since for the fermionic case only odd values are allowed, the p-wave channel
dominates. In the limit where only s-wave (p-wave) scattering takes place for bosons (fermions), we
say that we are in the ultracold atoms regime. For bosonic particles this condition is realized when
the energy associated with the centrifugal barrier in the states of angular momentum l ≥ 1 is much
bigger than the thermal kinetic energy, so that only the s-wave survives. For the typical interatomic
potentials and masses of the alkali atoms used in experiments this corresponds to temperatures in the
millikelvin range.

Thus, from the quantum theory of scattering [2], we know that in a first approximation, for a
low enough kinetic energy of the relative motion, the two-body scattering amplitude is completely
specified by one parameter, the scattering length a, and is given by

f(k) = − a

(1 + ika)
, (2.19)

where h̄k is the relative momentum. All the details of the interatomic potential are effectively taken
into account by a: positive and negative values for a correspond respectively to repulsive and attractive
forces. For the typical atoms employed in Bose-Einstein condensation we have scattering lengths in
the nanometer range: a = 2.75 nm for sodium; a = 5.11 nm for rubidium; a = −1.45 nm for lithium.
Finally we note that the scattering amplitude (2.19) is the one that corresponds to the interaction
potential

Vint(r) =
4πh̄2a

m
δ(r) (2.20)
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for any value of k. Within the framework of the ultracold atoms regime, we can quantify the interaction
strength with the parameter

g ≡ 4πh̄2a

m
(2.21)

which has dimensions of an energy · volume.

In homogeneous systems, when n|a|3 ≪ 1, only a few particles are present in the scattering volume
|a|3: this is the condition which defines the dilute gas regime, where the interparticle spacing is much
bigger than the scattering length. This definition can be used also for trapped gases with the minor
change to use as n the density at the center of the cloud, where the value is maximum. Typical
values of density range from 1013 cm−3 to 1015 cm−3 so that n|a|3 is always less than 10−3. It is
clear that in homogeneous conditions the dilute gas regime also coincides with the weakly interacting

regime, but in the presence of the harmonic trap we must also take care of the kinetic energy emerging
from the confinement. For example, the interatomic energy in the ground state of the harmonic
oscillator is given by gnN , where the average density is of order N/a3ho, so that Eint ∝ N2|a|a−3

ho /m.
For the kinetic energy we have Ekin ∝ Nh̄ωho ∝ Na−2

ho /m and finally we find that the dimensionless
parameter expressing the relevance of atom-atom interaction for a nearly perfect trapped Bose-Einstein
condensate is

Eint

Ekin
∝ N |a|

aho
. (2.22)

In experiments this value can range from fractions of unity to thousands.

The basic procedure which leads to the formation of a Bose-Einstein condensate is the following:
(i) alkali atoms are extracted from an oven and immediately trapped and cooled through magneto-
optical methods; (ii) using the technique of laser cooling they are cooled to the lowest temperature
compatible with the recoil limit; (iii) the cooling laser is turn off and the trapping potential is reduced
causing evaporative cooling.

In typical experiments the number of trapped atoms at the end of the cooling procedure ranges
from a few thousands to several millions while the final temperatures attained range from tens to
hundreds of nanokelvins. The corresponding frequencies of magnetic traps are usually expressed as
ω = 2π× αHz, where α measures the strength of the confinement. Typical values of α for symmetric
traps are of the order of tens.3

Moreover, for strongly asymmetric traps, an effective change of dimensionality is possible. Let us
consider for example the situation h̄ωx = h̄ωy ≪ kBT ≪ h̄ωz. In this case, along the z-direction,
only the fundamental state is accessible to the system and, since the gaussian extension aho ∝ ωz,
atoms are very tightly confined while in the xy plane exited states are available, so that the system
becomes effectively two-dimensional. To get an effectively one-dimensional system, the condition
h̄ωx ≪ kBT ≪ h̄ωy = h̄ωz must instead be fulfilled. In order to get a strong confinement along some
spatial direction typical used values for α are of the order of thousands.

2.2 Optical lattices

Optical lattices are arrays of microscopic potentials induced by the alternate current Stark effect of
interfering laser beams and are realized by using counter-propagating laser fields. In this section we
recall the basic physical aspects of the atom-light interaction relevant for our future discussion [15]
and we will analyzed the similarities with solid state physics.

The simplest way to form a one-dimensional lattice is by superimposing two oppositely directed
lasers, each with the same angular frequency ω. For simplicity, we assume that both beams are linearly
polarized with the electric field vector along the z axis. The total field is thus

Ez = E0 cos(kx− ωt) + E0 cos(−kx− ωt) = 2E0 cos(kx) cos(ωt) , (2.23)

3This translates into a value for the harmonic confinement aho of the order of microns. Thus the particles cloud
extends over a length of roughly 4aho.
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where k is the wavevector related to the wavelength λ by k = 2π/λ.
The physical mechanism at the origin of trapping is the interaction of the atomic electron cloud

with the electromagnetic radiation. When an atom is placed into laser light, the electric field induces
an atomic dipole moment d that oscillates at the driving frequency and can be expressed in terms
of the atomic polarizability α(ω). In the usual complex notation E(r, t) = Ē(r) exp(−iωt) + c.c. and
d(r, t) = d̄(r) exp(−iωt) + c.c. the amplitude d̄ of the dipole moment is simply related to the field
amplitude Ē by d̄ = α(ω)Ē, where α is the polarizability which can be separated in a real and an
imaginary part.

The resulting dipole potential is determined by time averaging over d ·E and is

Vdip(r) =
1

2
〈d · E〉 = − 1

2ǫ0c
Re[α(ω)]I(r) , (2.24)

where the angular brackets denote the time average over the rapid oscillating terms, the field intensity
is I = 2ǫ0c|Ē| and the factor 1/2 takes into account that the dipole moment is an induced and not a
permanent one.

The interaction potential of the induced dipole moment is thus proportional to the light intensity
times the real part of the polarizability, which describes the dispersive properties of the interaction.
The laser intensity is space dependent and we get a dipole force that results from the gradient of the
interaction potential:

Fdip(r) = −∇Vdip(r) =
1

2ǫ0c
Re[α(ω)]∇I(r) . (2.25)

The power absorbed by the oscillator from the driving field is reemitted as dipole radiation and is
proportional to the laser intensity times the imaginary part of the atomic polarizability, which describes
the dissipative properties of the interaction. The power absorbed by the oscillator from the driving
field (and reemitted as dipole radiation) is given by

Pabs = 〈ḋE〉 = 2ωIm[p̄Ē∗] =
ω

ǫ0c
Im[α]I . (2.26)

Considering the light as a stream of photons h̄ω, the absorption can be interpreted in terms of photon
scattering in cycles of absorption and subsequent spontaneous reemisson processes. This results in a
corresponding scattering rate of

Γsc =
Pabs

h̄ω
=

1

h̄ǫ0c
Im[α]I . (2.27)

When the laser frequency is not resonant with the atomic frequencies, the scattering rate is small and
the dipole force has a quasi conservative character: the minima or the maxima of its potential can
be used for trapping the atoms while the scattering of light sets limits to the performances of dipole
traps. When the difference ∆ = ωat − ω is ∆ > 0 the laser is working at red-detuning and particles
are trapped in the minima while for ∆ < 0 the blue-detuned laser traps particles in the maxima.

These considerations can be immediately generalized to two and three dimensions so that we write
the lattice dipole potential as

Vper(r) = V0(sin
2 kx+ sin2 ky + sin2 kz) . (2.28)

We observe that the periodicity of this potential is d = λ/2 and this will correspond to the optical
lattice spacing. Typical values for d are of order 10−7 m while the height of the potential barriers are
of order 10−5 K.4 For comparison the lattice spacing in crystals is of order 10−10 m and the barrier
strength is of order 105 K. Finally, we mention that optical lattices are very clean systems where the
properties of interactions can be studied at a very fundamental level, contrary to situations met in
common crystals, and moreover the lattice parameters d and V0 can be varied with great accuracy in
a wide range of values.

4Comparing the values of aho and d in typical situations, we get for the ratio aho/d the order of tens. This gives
a rough estimate of the number of lattice sites that are occupied in the conditions described in Section 2.2.1. As a
reference, the experiment reported in Ref. [37] involves 1.5 · 105 sites in a three-dimensional lattice, corresponding to a
linear size of 65.
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2.2.1 Neutral atoms in optical lattices

Putting together all the considerations made so far, we consider the physical situation where neutral
atoms subjected to a two-particle interaction Vint are loaded in an optical lattice potential Vper in the
presence of a trapping external confinement Vext. The total hamiltonian for this system is then

H =
∑

i

p2

2m
+
∑

i

Vper(ri) +
∑

i

Vext(ri) +
∑

i<j

Vint(ri − rj) , (2.29)

where the last sum runs over all pairs of atoms and the other sums run over all atoms. We are
now going to describe the dynamics of this system [27, 92] and to demonstrate that it reduces, under
appropriate conditions, to a well known model of condensed matter physics: the Bose-Hubbard model.

It is well known from solid state physics [13] that the eigenstates of a periodic hamiltonian can
be described by wave functions of the form ψnq(r) = unq(r)e

iqr, where unq(r) are functions with the
same periodicity of the lattice, n is the band index and q is the quasi-momentum. These functions
are called Bloch functions and form a basis, called Bloch basis, for the one particle motion. The Bloch
basis can be changed and we can define a new set of basis functions through the following relation:

ψnq(r) =
∑

z

wnz(r)e
iqz , (2.30)

where the sum is extended over all lattice sites. The functions wnz(r) are known as Wannier functions
and they are the lattice Fourier transform of the Bloch functions. Since the Wannier functions depend
only on the distance r − z, by choosing a convenient normalization they obey the orthonormality
relation ∫

w∗
m(r− x)wn(r− y) d3r = δmnδxy . (2.31)

In the case of one dimensional systems, we know that Wannier functions are exponentially damped
functions centered in the lattice sites, at least for the lowest band, and, in more than one dimension,
this result can be trivially extended when the periodic potential is factored [49]. The characteristic
distance over which the functions decay is of the order of the lattice constant d.

Let us now consider a statistically relevant number of atoms at very low temperatures. Working in
the low-temperature regime means that we restrict our study to low-energy properties only. Our aim
is to describe this system in the formalism of quantized fields, or equivalently of second quantization.
Within this view, we promote the classical hamiltonian (2.29) to an operator and, following standard
results, we write it in the form:

H =

∫
Ψ†(r)

(
− h̄2

2m
∇2 + Vper(r) + Vext(r)

)
Ψ(r) d3r +

1

2

∫
Ψ†(r)Vint(r− r′)Ψ(r′) d3r d3r′ , (2.32)

where Ψ and Ψ† are bosonic field operators satisfying the well known commutation relation

[Ψ(x),Ψ†(y)] = δ(3)(x− y) . (2.33)

In the same spirit of second quantization, they correspond to the atomic wave function. Trivial
extensions to one-dimensional and two-dimensional systems can be obtained for the previous formulas.

We thus expand the boson operators Ψ and Ψ† with respect of the Wannier basis

Ψ(r) =
∑

nz

wn(r− z)bnz (2.34)

so that the operators bnz are implicitly defined by the previous relation. The physical interpretation of
these operators emerges naturally: they destroy particles in the valence band n which are localized in
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the domain of the corresponding Wannier function, that is, for the lowest band, approximately around
the lattice site z. When the external field is sufficiently weak and in the absence of band crossings,
the band index n can be taken to be a constant of the motion and, keeping only the lowest band, our
expansion (2.34) can be simplified in

Ψ(r) =
∑

z

w(r− z)bz . (2.35)

This assumption needs an explanation: what we are really assuming is that the thermal (kinetic) and
the trapping (magnetic) energies of a single particle be much smaller than the separation of the first
exited band.

Inserting equation (2.35) into equation (2.32) we arrive at the expression for the hamiltonian in
terms of b-operators:

H =
∑

ij

Jijb
†
ibj +

∑

ij

ǫijb
†
ibi +

1

2

∑

ij

Uijb
†
i b

†
jbibj , (2.36)

where the spatial variables x,y, z, r, r′ have been replaced by lattice variables i and j and all the sums
run over all (ordered) pairs of lattice sites. The coupling parameters are given by

Jij =

∫
w∗(r− ri)

(
− h̄2

2m
∇2 + Vper(r)

)
w(r− rj) d

3r , (2.37)

Uij =

∫
|w(r− ri)|2Vint(r− r′)|w(r′ − rj)|2 d3r d3r′ , (2.38)

ǫij =

∫
w∗(r− ri)Vext(r)w(r − rj) d

3r . (2.39)

There are two reasons to make an explicit distinction between Vper and Vext in writing down the
interaction couplings. The first is that we have done an operator expansion using the Wannier functions
as a basis; this is equivalent to take the hamiltonian

∑
(p2/2m+Vper) as the imperturbated hamiltonian

and the hamiltonian
∑

(Vext + Vint) as the interaction hamiltonian, even if we are not trying to use
perturbation theory, and Wannier functions are the eigenstates of the imperturbated hamiltonian.
The second reason is that the two potentials have a different spatial behavior: the external one is
slowly varying over the lattice constant. Finally, using relations (2.31, 2.33, 2.34), we obtain the
commutation relations for the bosonic operators:

[bi, bj ] = [b†i , b
†
j ] = 0 , (2.40)

[bi, b
†
j ] = δij . (2.41)

We now make some simplifying considerations. In equation (2.37) the parameters Jij are site
dependent, since the integrand functions are. Recalling that Wannier functions go to zero essen-
tially in a lattice spacing, we can restrict the effectiveness of this sum only to on-site terms and to
nearest-neighbor ones. For the on-site terms we see that all of them are site-independent, due to the
translational invariance of Wannier functions, thus we can set Jii ≡ µ. For the nearest-neighbor terms,
by the same reason, we can set Jij ≡ −J/2 with i 6= j.5 The parameter J is positive definite because
the ground state must have zero quasi-momentum and this means that the Wannier function w0(r) is
symmetric around r = 0. Taking advantage of these results, the first term of (2.36) can be rewritten
as

H1 = −J
2

∑

〈ij〉

(b†i bj + b†jbi) + µ
∑

i

ni , (2.42)

where the first sum is over the set of lattice bonds, the second over all lattice sites and we have defined
the local operator number ni = b†i bi in the usual way.

5The convention for the signs and the 1/2 factor in the definitions of the parameters µ and J is chosen to make
equation (2.46) consistent with the normalizations of Refs. [60, 61].
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In equation (2.38) we take the interaction potential to be that described in Section 2.1.2 by
equations (2.20, 2.21). Since it is short-ranged, all parameters Uij with i 6= j can be set to zero, due
to the very low overlap of the modulus squared of two nearest-neighbor Wannier functions, while the
parameters Uii can be set equal to

U = g

∫
|w(r)|4 d3r , (2.43)

taking advantage of translational invariance. Thus the last term of equation (2.36) can be rewritten
as

H3 =
U

2

∑

i

ni(ni − 1) , (2.44)

where the sum is over the lattice sites and we have used the relation b†ibi = bib
†
i − 1 to get rid of the

noncommutativity of bosonic operators.
In equation (2.39) the external trapping potential, as already mentioned, is supposed to be weak;

as usual Wannier functions are well localized and only ǫii terms survive, leading to the definition

ǫi =

∫
Vext(r)|w(r − ri)|2 d3r ≈ Vext(ri) . (2.45)

As a consequence of the properties of Vext, also the quantities ǫi are slowly varying over the lattice
spacing.

What we have done is essentially to neglect next-nearest-neighbor terms in the hopping term
and to consider only on-site interaction terms. Both of these assumptions are legitimate if Wannier
functions decay essentially over a lattice spacing and if the interaction among particles is short-ranged
and negligible with respect to the first band gap.

Collecting all the previous simplifications, we see that our effective hamiltonian can be further
reduced, taking the following form:

H = −J
2

∑

〈ij〉

(b†i bj + b†jbi) + µ
∑

i

ni +
U

2

∑

i

ni(ni − 1) +
∑

i

ǫini . (2.46)

Equation (2.46) is the well known hamiltonian of the Bose-Hubbard model, which was originally
introduced in 1989 by Fisher et al. [70] in order to investigate the onset of superfluidity in bosonic
systems. A theoretical study of this model will be considered in Section 3.2.

2.2.2 Lattice structure

In an optical lattice the experimental parameters are those related to the characteristics of the lasers
and can be summarized, for d-dimensional hypercubic geometries, in the intensity V0 and the wave-
length λ. It is common to introduce an energy scale of reference, called the recoil energy, through the
definition

Er =
h̄2k2

2m
, (2.47)

which is equivalent to the energy gained by an atom which emits a photon of frequency ν = c/λ. For
rubidium atoms typical values of Er are in the range of several kilohertz.

The band structure of an optical lattice can be obtained from the solution of the one-dimensional
Schrödinger equation which, for a sinusoidal potential, is known as the Mathieu equation.6 In the weak
potential limit V0 ≪ Er the eigenvalues depend critically on the quasi-momentum q and the energy
gap between the nth and (n + 1)th bands scales as V n+1

0 . Thus a particle is very well approximated
as a free particle and the influence of the periodic potential is negligible.

6Two-dimensional and three-dimensional sinusoidal simple cubic lattices are in our case fully separable. Therefore the
wave functions can be calculated separately for each axis and the total energy is given by the sum of the eigenenergies
of all axes.
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In the deep potential limit V0 ≫ Er the eigenvalues of the lowest bands are only weakly depen-
dent on the quasi-momentum. The matrix element J , which describes the tunnel coupling between
neighboring lattice sites, is directly related to the width of the lowest energy band through the well
known relation of solid state physics

J =
max[E(q)] −min[E(q)]

4
(2.48)

and can also be given analytically as

J =
8√
π
Er

(
V0
Er

)4/3

exp

[
−2

(
V0
Er

)1/2
]
. (2.49)

The dynamics in this regime involve typically the lowest band and, as we saw in Section 2.2.1, the
use of localized Wannier functions is appropriate. The confinement in a single site is approximately
harmonic and atoms are then tightly confined at a single lattice site with trapping frequencies ω0 of up
to 100 kHz. Expanding the periodic potential around one minimum we obtain h̄ω0 = 2Er(V0/Er)

1/2

and this value gives the the energy gap to the first exited band for deep lattices. Considering the
repulsion constant U , if we approximate the exact Wannier function w(r) of equation (2.38) with the
gaussian ground state in the local oscillation potential around of the sites, we get

U =

√
8

π
kaEr

(
V0
Er

)4/3

, (2.50)

where a is the scattering length in the s-wave. This approximation is supposed to improve as the
lattice depth is increased since, being the atoms strongly confined, the local harmonic approximation
becomes exact.

For generic values of the lattice parameters we can however use numerical method to solve the
Mathieu equation to get the exact Wannier function and then use the definitions (2.37, 2.38) to obtain
J and U .

2.3 Bose-Einstein condensates in optical lattices

In the previous sections we discussed two of the most important achievements of modern low-tempera-
ture physics: Bose-Einstein condensation and optical lattices. In this section we will describe the new
and fascinating aspects that can be observed by loading a condensate into a lattice potential. The
main relevance for the present work is that a Bose-Einstein condensate in the presence of a periodic
lattice potential makes it possible to realize the quantum phase transition from a superfluid to a
Mott-insulating state [37] that will be the subject of subsequent chapters. A detailed discussion of
the physical aspects of cold atoms and Bose-Einstein condensates in optical lattices is given in Refs.
[15, 30, 109, 118, 119].

Standard ultracold atoms, as obtained simply from laser cooling, have temperatures of the order of
the microkelvin and densities of 1010 cm−3 whereas Bose-Einstein condensates have temperatures of the
order of tens or hundreds of nanokelvin and densities of 1014 cm−3. The most important consequence
of this order-of-magnitude difference is that, when the condensate is loaded in the optical lattice, we
end up with a system which typically is in the fundamental state and each lattice site is populated by
a mean of one atom or even more; instead, with simple ultracold atoms, we will have lots of vacancies
and a non-negligible population of high energy levels. Moreover the optical array of wells introduces
a new length scale, namely the lattice spacing d, which is much smaller than the condensed cloud of
atoms; in this way it is possible to get an array of weakly interacting (or isolate) microcondensates or
to observe phenomena typical of solid state physics.

The interplay between optical lattices and Bose-Einstein condensates is of extreme importance also
because it makes it possible to enter a really new regime of quantum physics where gases interact in a
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strongly way. The defining properties of a gas are diluteness and absence of long-distance correlations.
Of course these conditions are well satisfied for weakly interacting systems where the kinetic energy
per particle is much bigger than the mean interaction energy. Starting from the pseudopotential
description of Section 2.1.2, which replaces the complicated interatomic potential by an effective
contact interaction of the form (2.20, 2.21), at a given density n the importance of direct interaction
effects can be estimated from the ratio

γ =
Eint

Ekin
=

g n

h̄2n2/3/m
∼ n1/3a . (2.51)

In typical gaseous conditions we have γ = 0.02 so that we safely are in the weak-coupling regime. If
one tries to enter the strong-coupling regime varying the γ parameter then correlations lead to the
formation of clusters of interacting particles or molecules and eventually drive the system into the
liquid or solid state, so that the properties of the original interactions among constituents are hidden
in the new configuration. An obvious way to enter the strong-coupling regime is to increase the
interaction energy using Feshbach resonances to make a bigger. The main drawback of this method
is the strong decrease of the life-time of the condensate which occurs at a rate

ṅ

n
∝ − h̄

m
(na2)2 (2.52)

due to three-body losses. A completely alternative route to the strong-coupling regime relies, instead
of increasing the Eint term, on decreasing the Ekin term. From Section 2.2.2 we know that, when
atoms move through an optical lattice, the quantity which is the analog of the kinetic energy is the
hopping parameter J . Thus, using equations (2.49, 2.50), we obtain for the control parameter

γ =
U

J
∝ ka exp

[
2

(
V0
Er

)1/2
]
. (2.53)

We see that, as the potential depth V0 is increased, the kinetic hopping energy of the atoms across the
lattice is exponentially suppressed so that γ can reach very high values, even in a dilute gas where ka
is very small.7 Our conclusion is that the interplay of Bose-Einstein condensates and optical lattices
creates the dynamical conditions where gaseous systems can exist in a strong coupling regime.

A typical experiment starts creating a Bose-Einstein condensate practically without any thermal
component. Then an optical lattice in rumped up in the region of the condensate. Now, if the lattice is
ramped up slowly enough, the wave function of the condensate remains in the many-body ground state
of the system. Two timescales for adiabaticity are relevant [50, 91]: (i) adiabaticity with respect to the
band population and (ii) adiabaticity with respect to the extension of the cloud. The final situation
is that of an optical lattice loaded with neutral atoms in the fundamental state which are splitted all
over the sites, where the atom number on each lattice site is of order unity. The typical observables
which are used in experiments as signatures of the properties of the atoms loaded in the lattice are:
(i) density distribution functions; (ii) momentum distribution functions; (iii) atom number statistics;
(iv) energy gaps.

In Section 2.2.1 we discussed the limits in which this system realizes the Bose-Hubbard model. In
Chapter 3 we will discuss in detail the phase diagram of the Bose-Hubbard model and we will show
that a phase transition appears. Then, in subsequent chapters, we will analyze the influence of the
trapping potential on the phenomenology of this transition, both at zero and finite temperature.

7For the typical conditions of ultracold atoms loaded in optical lattices, the interparticle spacing is of the order of the
lattice constant, that is k ∼ n1/3, so that the dilute gas parameter is now ka.



Chapter 3

Quantum phase transitions

In this chapter we recall the general features of the theory of phase transitions, both at the classical
and quantum level, with a special emphasis on scaling relations. Then we recall the main results about
the Bose-Hubbard model, whose physical relevance has been demonstrated in Chapter 2, showing that
a quantum phase transition is present in its ground state as the relative strength of the parameters J
and U is varied. Finally we expose the theory of trap-size scaling, which will constitute the framework
for the analysis of Chapters 4 and 5.

3.1 Thermal and quantum fluctuations

3.1.1 Classical scaling

We know that in classical statistical mechanics phase transitions occur when the partition function
exhibits some non analyticity. Since a finite sum of analytic functions is always analytic, we can
infer, from the form of the classical partition function, that phase transitions can occur only in the
thermodynamic limit, when the number of degrees of freedom tends to infinity. In classical mechanics
the ground state of the system, for a given set of the values of the parameters of the system hamiltonian,
is the one corresponding to the zero-temperature state.1 Choosing a suitable redefinition constant for
the energy, we can set the energy of the ground state to zero. All the other states of the system then
have a definite positive energy E and, when the system is in thermal equilibrium at temperature T ,
the Boltzmann weight factor, proportional to the probability for the system to be in that particular
dynamical state, is exp(−E/kBT ). In the classical regime we consider typically hamiltonians with a
microscopic ordering interaction, which naturally leads to the introduction of a physical observable,
called order parameter, that quantifies the degree of order and marks the onset of the transition. In
turn this offers the opportunities to define the correlation length, that is a measure of the distance over
which the fluctuations of the order parameter are correlated. Phase transitions can then be divided in
two fundamental classes: discontinuous and continuous phase transitions, depending on the behavior
of the correlation length. Phase transitions at which the correlation length remains finite are called
discontinuous while transitions where it diverges are called continuous.2 In this case, which is the
one we are going to treat, the order parameter vanishes continuously through a phase transition and
its correlation length is divergent. Points at which a second order phase transition occurs are called
critical points.

We see that there are two competitive mechanisms: the microscopic interaction, which tries to
minimize the energy, and the thermal excitation, which tries to bring the system in states different
from the lowest one. A natural picture for this situation is that in the low-temperature regime the
interaction dominates, so that the system is in an ordered state, while at high temperatures thermal

1We assume that the fundamental state is unique and, in case of a spontaneous symmetry breaking, the degeneration
is resolved in the thermodynamic limit by a very tiny external field coupled to the microscopic degrees of freedom.

2Another common nomenclature refers to discontinuous and continuous transitions respectively as first order and
second order phase transitions.

19
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effects lead to a statistical superposition, corresponding to disordered configurations. So we can
infer that there is a value of the temperature at which the two mechanisms exactly balance, forcing
the system into a unique critical phase where correlations diverge and the order vanishes, that is
a continuous phase transition. The main lesson of the classical theory of phase transitions is that
the origin of the phenomenon rests in the competition of an ordering interaction and a randomizing
fluctuation.3

We now describe the phenomenology of a typical continuous phase transition [12]. Let us consider
a thermodynamic system controlled by a single external field H (for concreteness we can think to an
uniaxial ferromagnet). The critical point is at T = Tc and H = 0. Defining t = T/Tc−1, a continuous
phase transition, at H = 0 and for |t| ≪ 1, is characterized by the divergence of the correlation length

ξ ∼ |t|−ν (3.1)

and the equilibration time
τ ∼ |t|−zν (3.2)

from which we derive the relation
τ ∼ ξz . (3.3)

These equations define the experimental exponents ν and z, which are examples of critical exponents
(see below). Thus, exactly at the phase transition point, the correlation length and the correlation
time are infinite: this implies that fluctuations occur on all length and time scales. Near a continuous
phase transition the behavior of a physical observable O is typically expressed by a power function
of the form O ∝ |δ|−x, where δ is a generic dimensionless quantity which measures the distance from
the critical point. The exponent x is called critical exponent.4 Finally the correlation function of the
fundamental degrees of freedom takes the form

G(r) ∝ e−r/ξ

r(d−1)/2
for T 6= Tc , (3.4)

G(r) ∝ 1

rd−2+η
at T = Tc . (3.5)

Equations (3.4, 3.5) are supposed to be valid asymptotically, that is for r ≫ ξ and r ≫ a respectively,
where a is the lattice spacing. At Tc the correlation function has a pure power-law decay behavior,
which is consistent with the absence of any length scale, characterized by the new critical exponent η.

Systems whose correlations are infinite are termed to be scale-invariant since, if we look at them on
a certain fixed scale and then we enlarge the system, we cannot see any difference: the system is self-
similar. This implies that observable quantities must be homogeneous functions of the corresponding
variables (homogeneous functions have no intrinsic scale). These considerations can be summarized
in the homogeneity relation for the singular part of the free energy density:

F (t,H) = b−dF (tbyt ,HbyH ) , (3.6)

where yt and yH are two new critical exponents and b is an arbitrary positive number. Equation (3.6)
is valid as long as the system can be considered scale-invariant, that is as long as the observation scale
b is shorter than the correlation length. The scaling theory of critical phenomena asserts that the
divergences responsible for the singular behavior of the system are determined only by the divergence
of the correlation length: this fact is known as scaling hypothesis. It means that, close to the critical
point, ξ is the only relevant scale of the problem so that the only relevant configurations are those
with long distance fluctuations. Therefore the physical properties must be unchanged if we rescale all

3This competition is quantified in the free energy F = U − TS, where U is the internal energy and S is the entropy:
when the entropy of thermal fluctuations is sufficient to overcome their energy cost, F can lower its value in correspondence
to a disordered situation.

4With such a definition, the critical exponents of non singular quantities, quantities with a logarithmic divergence
and with a peak-like singularity are zero.
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lengths in the system by a common factor and at the same time adjust the external parameters in
such a way that the correlation length retains its old value. This is equivalent to assume |tξyt | ∼ 1,
from which we deduce ν = 1/yt.

5 Finally, fixing the observation scale at the correlation length, that
is fixing b = ξ, and substituting into equation (3.6), we get the well known Widom scaling law

F = |t|dνF(H|t|−νyH ) . (3.7)

The scaling hypothesis asserts that only the fluctuations at the longest possible scales are important
for the critical behavior; in this way the physics at small lengths can be completely ignored in the
study of criticality. This picture suggests that systems defined by different hamiltonians can lead
to a common critical behavior, if long-scale fluctuations have the same structure. In practice this is
demonstrated through a course graining transformation and in turn this gives a natural explanation of
the concept of universality. On this basis a theory, called renormalization group theory [6, 8, 11], can be
constructed and the values of the fundamental critical exponents (yt, yH) can be determined ab initio

from the knowledge of the microscopic hamiltonian. Within the renormalization group framework, it
is possible to associate a field theory to a given hamiltonian, that is the local degrees of freedom now
become the continuous field of a new functional-action, which has the same long distance behavior.
From the perspective of the scaling hypothesis, the critical aspects of a set of different hamiltonians
are mapped onto a well defined field theory, which is thus the starting point for the renormalization
group analysis.

3.1.2 Continuous quantum phase transitions

Let us now study phase transitions in the quantum regime [20]. The hamiltonian of our system will
in general be expressed in terms of its dynamical variables, which define the Hilbert space, and one
control parameter µ, which sets the relative strength of two interaction terms (for concreteness we can
think to a quantum uniaxial ferromagnet in a transverse field): the first term would lead to an ordered
ground state with a non vanishing order parameter while the second would favor a disordered ground
state, the two limiting cases corresponding to µ = 0 and µ = ∞. In these circumstances we expect that
at some intermediate value µc of the control parameter a qualitative change in the fundamental state
properties, for instance the long-distance correlations, must occur, that is we expect a phase transition
at zero temperature. Since the existence of two competitive interactions has its origin in the fact that
a quantum state which favor a type of interaction can be considered a superposition of states which
favor the other, we say that the transition is driven by quantum fluctuations. This justifies the name of
quantum phase transition for transitions occurring at zero-temperature. A quantum phase transition
arises when a non analyticity of some sort appears: in this case the non analyticity regards the ground
state energy (as a function of the control parameter).6

We now give a general description of the phenomenology of a continuous quantum phase transition
[107, 108, 111]. When varying the control parameter µ, we get the relative spectrum and ground state.
For each of the ground states we can compute the correlation length and the value of a properly defined
order parameter. Moreover the spectrum will be characterized by a typical energy scale ∆, which can
be the energy gap of the first exited level or the scale at which there is a qualitative change in the
nature of the low and high frequency parts of the spectrum. A continuous quantum phase transition
shows up as the vanishing of the order parameter and the divergence of the correlation length, the
non analytic behavior corresponding to the vanishing of ∆. Defining µ̄ = µ − µc , our considerations

5Many other relations among the critical exponents appearing in phenomenological laws and the two (yt, yH) which
are defined by equation (3.6) can also be derived.

6This is completely similar to what happens in the classical theory, except the fact that now thermal fluctuations are
substituted by quantum fluctuations and both of these effects are now encoded in the hamiltonian (before the classical
hamiltonian encoded only the interaction while the classical partition function took care of thermal fluctuations).
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can be summarized in the following equations:

ξ ∼ |µ̄|−ν , (3.8)

∆ ∼ |µ̄|zν , (3.9)

∆ ∼ ξ−z . (3.10)

In the two limits µ = 0 and µ = ∞ the exited states of the spectrum can be described as pseu-
doparticles and a perturbative treatment in the corresponding small expansion parameter is usually
very useful; however the physical interpretations of these modes can differ considerably. Of course,
near the critical point µc, this picture breaks down and a new treatment for the strong coupling regime
of the microscopic degrees of freedom is needed.

Let us examine the case of finite temperatures. First of all the new energy scale kBT given by
the thermal excitation must be compared with the ground state scale ∆: for ∆ > kBT only a few
levels will be thermally populated while for ∆ < kBT a classical description of thermodynamics will
in general be correct. These two energy scales naturally define a crossover line through

T ≈ |µ− µc|zν . (3.11)

Turning to the important question of whether or not the T = 0 phase transition present at µc survives
also at finite temperatures, we note that both situations can occur depending on the details of the
system.

Let us discuss the nature of the fluctuations in the various region of the phase space. When the
transition occurs only at zero-temperature, for µ < µc and relative small values of T (the so-called
thermally disordered region), the order present in the ground state is destroyed by thermal fluctuations.
In the symmetric regime for µ > µc and relative small values of T (the so-called quantum disordered
region), the states involved resemble a ground state which already has no long-distance correlations
and the absence of order is substantially due to quantum fluctuations. At µ = µc the system is
critical with respect to quantum fluctuations and turning on temperature will drive the system away
from criticality. In the region of relative high temperature for values of the control parameter near
to the critical one (the so-called quantum critical region), we get an involved situation where thermal
activation of (quasi) critical quantum states are relevant: this mean that both quantum and thermal
fluctuation are present and equally important.

When a transition line exists also at finite temperature, the preceding picture is still valid with the
only change that the thermally disordered region is separated by the T = 0 ordered line by a thermally
ordered region where the order parameter decreases as temperature is turned on, until it vanishes at
the finite-temperature transition. We thus see that the T > 0 transitions must lie under the crossover
line of the quantum critical region, since in the last no order is possible. Across these transitions we
can assume, as usual, that a diverging correlation in space and time is present, described by ξ and τc,
where τc is the typical time in which local microscopic changes are propagated across the system. This
introduces a frequency ωc = 1/τc which can be turned into an energy scale, namely h̄ωc, which is the
typical energy of long-distance order parameter fluctuations. Now, for any transition occurring along
the finite temperature line Tc(µ), quantum mechanics will become unimportant if h̄ωc ≪ kBT . Since
τc → ∞ at a phase transition, h̄ωc → 0 and the critical behavior, asymptotically close to the transition,
will be described by the theory of classical fluctuations. Recalling the scaling behavior of τ , we have

h̄ωc ∝ |t|zν so that the asymptotic region of classical fluctuations is given by the condition |t| < T
1/zν
c .

This justifies calling all finite-temperature phase transitions classical. Quantum mechanics can still
be important on microscopic scales, but classical thermal fluctuations dominate on the macroscopic
scales that control the critical behavior.

3.1.3 Classical-quantum mapping

A peculiar aspect of quantum phase transitions is that statics and dynamics are inextricably connected.
In classical mechanics if we know the phase space and the form of the hamiltonian then we also know
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the spectrum, that is the values that the energy can take. The classical partition function can thus be
computed without solving the equations of motion for the dynamical variables. In quantum mechanics
instead we have to solve the Schrödinger equation in order to get the eigenvalues and the eigenstates
needed to compute the quantum partition function. Another way of stating this fact is that in classical
mechanics the kinetic and potential energy terms commute so that the partition function factorizes
while in the quantum case they are always coupled. The main consequence is that any energy scale
∆ translates into a time h̄/∆, which will appear as the characteristic time scale for the dynamics.

The quantum partition function can be written as

Z =
∑

n

〈n|e−βH |n〉 , (3.12)

where |n〉 is a basis for the Hilbert space of the system. The operator density matrix e−βH is formally
equivalent to the time evolution operator e−iT H/h̄ if we assign to the real time the value T = −ih̄β.
In this way it is possible, for example through the Feynman path-integral formalism, to map a d-
dimensional quantum mechanical system at temperature T to an appropriate (d + 1)-dimensional
classical model in which the extra dimension has length h̄β. It is thus obvious that the quantum system
at T = 0 is mapped onto the infinite classical system. A crucial point is that the temperature of the
classical system corresponds to the control parameter of the quantum system while the temperature
of the quantum system corresponds to the classical extent in the (d+ 1)th direction.

Taking advantage of these considerations, we can guess the scaling relations for a quantum phase
transition both at zero-temperature and finite-temperature. At T = 0 the classical temperature maps
to the control parameter µ while the system gets an extra dimension scaling with the dynamical
exponent z so that

F (µ̄,H) = b−(d+z)F (µ̄b1/ν ,HbyH ) . (3.13)

When the temperature is finite, it acts like a new relevant field with renormalization exponent z so
that our generalization reads

F (µ̄,H, T ) = b−(d+z)F (µ̄b1/ν ,HbyH , T bz) . (3.14)

3.2 The Bose-Hubbard model

The hamiltonian of the Bose-Hubbard model is given in equation (2.46). In this section we consider
the homogeneous (without trap) system, thus we neglect the ǫi term. The relevant physical aspects
of this model, at T = 0, have been extensively investigated in the seminal paper by Fisher et al. [70].
We here recall the basic results, giving a brief summary of theoretical studies [20].

Let us discuss in more detail the qualitative meaning of the single terms of the hamiltonian, which
are related to the three parameters J, µ, U . The first term (the hopping term J) is the equivalent of
a kinetic term and describes the tendency of particles to be delocalized over the lattice. In fact the
diagonal matrix elements of this term in the basis of occupation numbers are clearly vanishing and,
to get a nonzero (negative) contribution, we must consider a superposition of such states. The second
term (the chemical term µ) is connected with the mean occupation number of the lattice sites; working
in this representation is equivalent to working in the grand canonical ensemble and the mean total
particle number can be obtained by a Legendre transformation. The last term (the on site repulsive
term U) is the simplest repulsion term and describes the tendency of particles to be pinned at a
lattice site. We see that this term is diagonal in the basis of occupation numbers and it has a positive
contribution proportional to the number of particles pairs present at the lattice site.

A useful starting point for the study of the quantum phase transition is to consider the opposite
limits J = 0 and U = 0 and explicitly write down the quantum ground state of the model. Let us
suppose we have N atoms distributed in a lattice with V sites and that n̄ = N/V = 1.7 We number

7The following line of reasoning can be trivially extended to the cases of integer occupancy n̄ = 2, 3, . . . .
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atoms with a label n and similarly we number lattice sites with a label j. Since we are working in the
canonical ensemble, we neglect the µ term and the ground state must be expressed as a superposition
of states with N particles.

When J = 0 the ground state of the hamiltonian is the one where each lattice site has exactly one
particle:8

|MI〉 = . . . |j1〉n1
|j2〉n2

|j3〉n3
· · ·+ . . . |j1〉n1

|j2〉n3
|j3〉n2

. . .

+ . . . |j1〉n2
|j2〉n1

|j3〉n3
· · ·+ . . . |j1〉n2

|j2〉n3
|j3〉n1

. . .

+ . . . |j1〉n3
|j2〉n2

|j3〉n1
· · ·+ . . . |j1〉n3

|j2〉n1
|j3〉n2

· · ·+ . . . . (3.15)

We see that in this state fluctuations in the occupation numbers are absent and the state is a pure
Fock state. This implies that |MI〉 describes and insulator. Upon increasing the hopping J , the ground
state will no more be the state (3.15), since now atoms are allowed, even if weakly, to move across
the lattice, thus causing double (or multiple) occupancy. In this state moving particles will walk only
a few lattice sites and, until the repulsion energy U dominates, the state will remain insulating; but,
for a sufficient high value of J , for the system will be energetically favorable to delocalize the atoms
all over the lattice. When U = 0 the ground state of the hamiltonian is then

|BEC〉 = . . . (. . . |j1〉n1
+ |j2〉n1

+ |j3〉n1
. . . )

×(. . . |j1〉n2
+ |j2〉n2

+ |j3〉n2
. . . )

×(. . . |j1〉n3
+ |j2〉n3

+ |j3〉n3
. . . ) . . . . (3.16)

Upon expanding out the products above, we see that the number of bosons in any given site fluctuates
considerably, as demonstrated by the term |j1〉n1

|j1〉n2
|j1〉n3

in which all three of the bosons n1, n2, n3
are in the site j1 and none in the sites j2 or j3. Finally, note that all terms in the state (3.15) are
also present in the state (3.16): the difference between the two is that |BEC〉 has many more terms
present in its quantum superposition representing the number fluctuations.

In the thermodynamic limit the two fundamental states can be rewritten in terms of creation
operators as

|MI〉 =
V∏

j=1

b†j|0〉 , (3.17)

|BEC〉 =
V∏

j=1

exp
(√

N/V b†j

)
|0〉 . (3.18)

From these expressions we see that, both in the J → 0 and U → 0 limits, the ground state of the
Bose-Hubbard model takes the form

|GS〉 =
∏

j

(
∞∑

n=0

cn|n〉j
)
. (3.19)

Since the cn coefficients do not depend on the site j, our products have a local nature (which can
also be used as the starting point for a variational approximation [29, 72]). The associated atom
number probability distribution pn = |cn|2 is either a pure Fock or a full Poissonian distribution. This
dramatic change reflects the basically different nature of the superfluid and insulating phases. Since
the compressibility κ = ∂ρ/∂µ vanishes when passing from a superfluid to an insulator, a divergence
is present in the observable κ−1, marking the onset of a phase transition.

8Any one of the terms above suffices to describe the configuration of the particles in the ground state because the
particles are indistinguishable and we can never tell which particular particle is residing in any given site: we need all
the permutations simply to ensure that physical results are independent of our arbitrary numbering of the particles.
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Let us now consider instead the case n̄ is not an integer. For J ≫ U the states are still superfluid
but, upon decreasing the value of this ratio, particles will tend be pinned at a particular lattice site.
If n̄ is slightly larger than an integer value then there will be a little number of particles which is free
to move over the top of a substantially frozen background. For the situation in which n̄ is slightly
lower than an integer, the same argument applies to holes rather than particles. We conclude that for
non-integer values of the density a superfluid state can exist also in the limit J → 0.

The considerations made so far demonstrate the existence of a phase transition in the ground state
of the Bose-Hubbard model and the more general analysis of the grand canonical ensemble leads to the
phase diagram of figure 3.1. We now briefly describe its main physical features. For J ≫ U the system
is a perfect Bose-Einstein condensate where all the atoms are in the Bloch q = 0 state for any value of
µ. For J = 0 the system is a Mott-insulator whose number density is fixed by the chemical potential
according to n = integer[µ/U ] + 1. As J is increased at fixed µ (but µ 6= −nU), the insulating state
persists until the superfluid state is formed. The phase boundaries of this transition have the typical
lobe-shape depicted in figure 3.1.

There are two qualitative different ways in passing from a superfluid to a Mott-insulator: either at
constant density or at varying density. Increasing J at a constant chemical potential corresponding
to non-integer filling, the onset on superfluidity occurs at varying density and the mechanism at the
origin is the following: when some sites are occupied by n bosons and others by (n + 1) bosons,
the extra particle can hop around the lattice without energy cost condensing for arbitrarily small
J . Instead, when increasing J at a constant chemical potential corresponding to integer filling, the
onset on superfluidity occurs at the tip of the Mott lobe and the density stays constant. In this case
what drives the transition is not the appearance of new particles, which can hop around, but the fact
that the large hopping coupling enables bosons to overcome the repulsion energy. This qualitative
difference in the onset of superfluidity will be reflected in the different field theories which rule the
scaling properties of the transitions.

Given the physical relevance, both theoretical and experimental, of a phase transition driven by
the quantum nature of the interaction among particles, much effort has been devoted, even with
computational simulations, to the study of this fascinating phenomenon [38, 39, 44, 63, 79, 80, 94, 95,
96, 97, 99, 100, 122]. However, we know that the natural physical conditions for investigating bosonic
quantum particles are those where a confining potential is present. In this case, as we will describe in
more detail in Section 3.3, the interplay of quantum degeneracy and confinment leads to a modified
phenomenology, which is characterized by the coexistence of Mott-insulator and superfluid regions
[33, 42, 43, 51, 52, 53, 54, 55, 56, 57, 58, 59, 93, 104, 123].

3.2.1 The hard-core limit

In this work we will not study the Bose-Hubbard model in its generality but we will focus on the
so-called hard-core limit, that is the limit U → ∞.9 In this case the hamiltonian becomes

H = −J
2

∑

〈ij〉

(b†i bj + b†jbi) + µ
∑

i

ni , (3.20)

where now each density number operator ni can take only the values 0, 1. The lattice degrees of
freedom are still bosonic, in the sense that relation (2.40) still applies and that coniugate operators
acting on different lattice sites still commute. But, in order to algebraically improve the hard-core
constraint, the original commutation relation (2.41) for standard bosonic operators must be modified,
and the new commutation relation now reads

[bi, b
†
j ] = δij(1− 2ni) , (3.21)

9The reason for this choice will be explained in Section 4.3.



26 CHAPTER 3. QUANTUM PHASE TRANSITIONS
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Figure 3.1: A qualitative sketch of the T = 0 phase diagram of the Bose-Hubbard model in the µJ
plane (in units of U).

which applies to hard-core bosonic operators.10

Fixing the energy unit with J , the only control parameter for the system is the chemical potential
µ. It is possible to demonstrate that the hard-core Bose-Hubbard model is characterized by two
quantum phase transitions at µ = +dJ and µ = −dJ from a superfluid to a Mott-insulator. When
µ < −dJ the ground state is fully occupied so that 〈ni〉 = 1 while for µ > +dJ the ground state is
completely empty so that 〈ni〉 = 0. We note that, through the change of variables

σxi = b†i + bi , (3.24)

σyi = i(b†i − bi) , (3.25)

σzi = 1− 2b†i bi , (3.26)

where σa are the usual Pauli matrices, the hamiltonian (3.20) becomes the hamiltonian of the so-called
XX-model:

HXX = −J
∑

i

(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
− µ

∑

i

Sz
i , (3.27)

where Sa = σa/2.
These results hold in any dimension. In the one-dimensional case it is possible to solve exactly the

model by the following method [20]. Applying the well know Jordan-Wigner transformation

σxi =
∏

j<i

(1− 2c†jcj)(c
†
i + ci) , (3.28)

σyi =
∏

j<i

(1− 2c†jcj)(c
†
i − ci)i , (3.29)

σzi = 1− 2c†i ci , (3.30)

10The reason for this modification is due to the fact that the standard commutation relation allows the occupation
numbers to be any non-negative integer. Instead, applying equation (3.21), we get

bib
†
j − b†jbi = 0 for i 6= j , (3.22)

bib
†
i + b†i bi = 1 . (3.23)

The last “anticommutation” relation realizes the hard-core constraint.
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HXX becomes

Hc =
∑

i

(
−J
2
(c†i+1ci + c†i ci+1) + µc†i ci

)
. (3.31)

The new operators ci, which are non-local combinations of the original degrees of freedom bi, satisfy
anticommutation relations, so that they support a fermion representation of the model. Furthermore
these modes are easily seen to be spinless. In this representation the hamiltonian can be diagonalized
by a standard Fourier transform of the fermionic variables:

ηk =
∑

j

e−ikxjcj . (3.32)

The final result is

Hη =
∑

k

ǫkη
†
kηk , (3.33)

where ǫ(k) = µ − J cos k. In this way we see that the independent modes of the hard-core Bose-
Hubbard model are the new η-pseudoparticles. Since the empty state has zero energy, the ground
state is obtained by filling with unity occupation all the modes whose energy is negative. For µ > J
the energy of all η-modes is positive and the ground state is empty: this is the Mott-insulator with
n̄ = 0. For µ < −J all the fermions have negative energy and every fermion state is occupied: this is
the Mott-insulator with n̄ = 1. At intermediate values of µ there will be a partial occupation.

We now compute the ground state density, which will be of great interest for the analyses of
subsequent chapters. Recalling that in a homogeneous system ρ = 〈ni〉 independently on the site i

and that 〈b†i bi〉 = (1− 〈σzi 〉)/2 = 〈c†i ci〉, we obtain

ρ(µ) =





0 for µ > 1 ,
1/π arccos(µ/J) for −1 ≤ µ ≤ 1 ,
1 for µ < −1 ,

(3.34)

3.2.2 Quantum field theory of the Bose-Hubbard model

In view of future developments, we now consider the continuum field limit of the Bose-Hubbard model
[20], which is given by

L = K1φ
∗∂φ

∂τ
+K2

∣∣∣∣
∂φ

∂τ

∣∣∣∣
2

+K3|∇φ|2 + r̄|φ|2 + u|φ|4 + . . . , (3.35)

where φ(r, τ) is a c-number field, the parameters K1,K2,K3, r̄, u are complicated functions of the
original system parameters and the dots represent higher order contributions which are irrelevant for
the critical behavior. Equation (3.35) is valid in any number of dimensions and for any value of the
system parameters while the operator |φ|2 is the continuum limit of the density number operator and
r̄ ∼ (µ − µc).

Changing the hamiltonian parameters in a continuous way leads to a path in the system phase
diagram. Sometimes this brings to points of non analyticity and this corresponds to a phase transi-
tion. Depending on the way the path is taken and the point is reached, the phase transition shows
peculiar behaviors and the universal features are described by different effective continuum field the-
ories. For the Bose-Hubbard model, as we have seen at the beginning of this section, there are two
qualitatively distinctive ways of undergoing a phase transition: passing from a Mott insulating phase
to the superfluid phase, the local density may change or stay constant at the insulator value. Phase
transitions driven by the chemical potential are of course of the first type, since this implies a change
in the density value. We now discuss the general results known for both types of transitions.
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• The low-energy properties of the transitions driven by the chemical potential µ are described
by a non-relativistic U(1)-symmetric bosonic field theory, whose relevant lagrangian density is
given by

L = φ∗∂τφ+
1

2m
|∇φ|2 + r̄|φ|2 + u|φ|4 . (3.36)

The upper critical dimension of this bosonic theory is d = 2. Thus its critical behavior is mean
field for d > 2. For d = 2 the field theory is essentially free, apart from logarithmic corrections,
thus the dynamic critical exponent is z = 2 and the renormalization group dimension of the
coupling µ is yµ = 2. In d = 1 the theory turns out to be equivalent to a free field theory
of nonrelativistic spinless fermions, from which one infers the renormalization group exponents
z = 2 and yµ = 2.

• The special transitions at fixed integer density, that is at fixed µ, belong to a universality class
described by a relativistic U(1)-symmetric bosonic field theory, whose relevant lagrangian density
is

L = |∂τφ|2 + v2|∇φ|2 + r̄|φ|2 + u|φ|4 , (3.37)

for which z = 1 and yµ = 1/νXY where νXY is the correlation length exponent of the D = d+1
XY universality class. Thus νXY = 1/2 for d = 3, that is mean-field behavior apart from
logarithms, νXY = 0.6717(1) in the d = 2 case and formally ν = ∞ for the Kosterlitz-Thouless
transition [34, 125] at d = 1.

We finally mention that the gapless superfluid phase is instead described by a free massless bosonic
field theory with dynamical critical exponent z = 1 [8].

3.3 Trap-size scaling of quantum phase transitions

In this section we use the renormalization group theory to obtain an effective description of the scaling
behavior of trapped bosonic particles, as described by the full Bose-Hubbard hamiltonian (2.46). We
call such a description trap-size scaling since we will show that its predictions resemble some aspects
of the well known theory of finite-size scaling [1, 4, 5]. The theory of trap-size scaling has been
developed by Campostrini and Vicari [101] and applied by the authors to the study of quantum phase
transitions, both in equilibrium [35, 60, 61] and off-equilibrium [62] conditions. Moreover, the theory
has been used also for the study of phase transitions at finite-temperature, both in classical [36, 64]
and quantum [66, 67, 81, 82] systems.

We start rewriting the last (trapping) term of equation (2.46) as

V (r) = vprp . (3.38)

We take the origin of coordinates in the zero of V (r) so that the distance of site i from the center of
the trap is ri. The exponent p is clearly a positive number. The parameter v, which is related to the
strength of V (r), has units of energy divided the pth power of a length. The external potential can
be recast in the form

V (r) = J
(r
l

)p
, (3.39)

where we introduced the new parameter

l ≡ J1/p

v
(3.40)

which has the dimension of length. The parameter l will be called the trap size. The trapping potential
(3.38), in the harmonic case, is conventionally expressed as V (r) = 1

2mω
2r2, thus we get

l =
1

ω

√
2J

m
= γ

h

mωλ
, (3.41)



3.3. TRAP-SIZE SCALING OF QUANTUM PHASE TRANSITIONS 29

where, in the last equality, we used equation (2.47) and the relation between the coupling J and the
lattice depth V0 (see Section II.B of Ref. [119]).11 If we fix the unit of energy by setting J = 1 then
l = 1/v.

Let us consider the case in which the system parameters are tuned to values corresponding to
the critical regime of the unconfined system. In the presence of a confining potential, the critical
behavior of the homogeneous (unconfined) system can be observed around the middle of the trap
only in a window where the length scale ξ of the critical modes is much smaller than the trap size,
but sufficiently large to show the universal scaling behavior. If ξ is large, but not much smaller than
the trap size, the critical behavior gets somehow distorted by the trap, although it may still show
universal effects controlled by the universality class of the phase transition of the unconfined system.
The confining potential gives rise to a space inhomogeneity, thus changing the scaling behavior of the
homogeneous system, which could be only recovered in the limit of large trap size (keeping fixed the
other parameters of the system).

Our starting point is then a scaling Ansatz which includes all these ingredients and extends the
scaling laws of homogeneous systems at quantum transitions to allow for the presence of a confining
potential like (3.38). We write the scaling law of the singular part of the free energy density at the
quantum transition as

F (µ̄, T, v, r) = b−(d+z)F (µ̄byµ , T bz, vbyv , rb−1) , (3.42)

where b is again any positive number, µ̄ = µ − µc and yv is the renormalization group dimension of
the trap parameter v. Repeating the steps of Section 3.1, we fix vbyv = 1 and introduce the trap size
l = v−1, obtaining the following quantum trap-size scaling

F = l−θ(d+z)F(µ̄lθ/ν , T lθz, rl−θ) , (3.43)

where as usual ν ≡ 1/yµ while θ ≡ 1/yv is the new trap exponent.
The correlation length ξ around the middle of the trap, or any generic length scale associated with

the critical modes, behaves as

ξ = lθX (µ̄lθ/ν , T lθz) , (3.44)

where X (y, 0) ∼ y−ν for y → 0. This implies that, at the T = 0 quantum critical point, the trap
induces a finite length scale, given by ξ ∼ lθ, which clarifies the physical meaning of the trap exponent.
Analogously one can derive the trap-size scaling formulas of other observables. Any low-energy scale
at T = 0, and in particular the gap, is expected to behave as

∆ = l−θzD(µ̄lθ/ν) , (3.45)

with D(y) ∼ yzν for y → 0 to match the scaling ∆ ∼ µ̄zν in the absence of the trap. In the case of a
generic local operator O(r), with renormalization group dimension yo, we expect that its expectation
value and equal-time correlator behave as

〈O(r)〉 = A(r, µ, l, T ) + l−θyoO(µ̄lθ/ν , T lθz, rl−θ) , (3.46)

〈O(r)O(0)〉c = l−2θyoG(µ̄lθ/ν , T lθz, rl−θ) (3.47)

where A is a possible analytic contribution.
The trap-size scaling has a high degree of generality: the trap-size exponent is determined only

by the analytical shape of the external potential, the way it is coupled to the microscopic degrees
of freedom and, of course, the universality class of the phase transition of the homogeneous system.
Thus, let us compute the critical exponent θ for the case of the Bose-Hubbard model in a trapping
potential. We recall that the low-energy properties of quantum phase transitions driven by the chemical

11The constant γ is a slowly decreasing function of V0: at V0 = 3Er we get c = 0.5 and at V0 = 20Er we have c = 0.1.
For typical experimental values we get l/d in the range 10 to 100, where d = λ/2 is the lattice spacing. As a reference,
in the experiment reported in Ref. [37] we have l/d = 20.
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potential, that is at varying density, are described by the lagrangian density (3.36) which represent a
non-relativistic U(1)-symmetric bosonic field theory. Thus the corresponding renormalization group
perturbation is ∫

V (r)|φ(r)|2 d3r dt (3.48)

where φ(r) is the order parameter of the corresponding φ4 theory. Using the well known relations
between a scaling field and the corresponding operator

yV + y|φ|2 = d+ z , (3.49)

yµ + y|φ|2 = d+ z , (3.50)

where yµ and yV are the renormalization group dimensions of the coupling r̄ which enters the lagrangian
density (3.36) with the φ(r) term and of the trapping potential V (r), we obtain

pyv − p = yµ , (3.51)

where we have used the relation yV = pyv − p which relates the scaling exponents yv, yV of the trap
parameter v and the trapping potential V . As a consequence, recalling the definition ν = 1/yµ, for
the Bose-Hubbard model we obtain

θ =
pν

1 + pν
. (3.52)

We observe that, as expected, in the p → ∞ limit we get θ → 1, corresponding to confining the
homogeneous system into a finite-size box of length L = 2l with open boundary conditions. Moreover,
recalling the positivity of p and ν, we see that θ is an increasing function of p between the values 0
and 1.

Finally, we discuss the question of the robustness of the trap-size scaling with respect to a variation
of the trapping potential from a simple power law. Considering for instance the potential

V (r) =
(r
l

)p
+ c

(r
l

)q
, (3.53)

where c is a positive constant and q > p, we take the trap-size limit: r, l → ∞ while keeping R = r/lθ

fixed (see Section 4.1.1). The resulting potential is thus

V (R) =
Rp

lp(1−θ)

(
1 + c

Rq−p

l(1−θ)(q−p)

)
. (3.54)

We clearly see that in the trap-size limit, if θ < 1 as in our case, the first term dominates over the second
one. Of course this gives rise to scaling corrections, which turn out to be of order O[l−(1−θ)(q−p)]. We
conclude that in the trap-size scaling the leading power is the smallest one and the relevant behavior
is given by the small-r form of the potential. In agreement with this, if we consider a harmonic
confinement in the presence of a box − V (r) = (r/l)2 + (r/l)q with q → ∞ − it is clear that the
leading term in the scaling behavior must be the quadratic one.



Chapter 4

Scaling of the Mott-insulator to

superfluid transition

In this chapter we start to study the effects of a trapping potential on the phenomenology of continuous
quantum phase transitions; in particular we consider the superfluid to Mott-insulator transitions of
the hard-core Bose-Hubbard model (see Section 3.2). These issues have been analyzed in Refs. [60, 61]
for the one dimensional system at T = 0, using the density matrix renormalization group technique.
We now extend the study to the effects of finite temperatures considering the model in one and two
dimensions near its quantum critical points. For this purpose we present the results of numerical
quantum Monte Carlo simulations, whose details are reported in the Appendix. The content of this
chapter is taken from Refs. [66, 67] and we here explicitly write the system hamiltonian:

H = −J
2

∑

〈ij〉

(b†i bj + b†jbi) + µ
∑

i

ni +
∑

i

V (ri)ni . (4.1)

where, as usual, V (ri) is the external harmonic confinement and the values of ni are restricted to 0
and 1 only.

The phase diagram of the homogeneous system is reported in figure 4.1, both for the one-dimensional
and two-dimensional case. We recall that for the one-dimensional model there are three phases at
T = 0: two Mott-insulator phases for µ < −1 (where n = 1) and µ > +1 (where n = 0) which are
separated by a superfliud region for |µ| < 1; no phase transition is present for T > 0 and the system
is a normal fluid. For the two dimensional model the T = 0 line is qualitatively analogous (with two
Mott-insulator phases, for µ < −2 where n = 1 and µ > +2 where n = 0, separated by a superfliud
region, for |µ| < 2) but the superfluid phase also extends at finite temperatures and a phase transition
from a superfluid to a normal fluid takes place. The superfluid phase is characterized by the dynamical

T/J T/J

−1 1 −2 2µ/J µ/J

normal f luid

normal f luid

superfluid

superfluid
Mott Mottvacuum vacuum

Figure 4.1: A qualitative sketch of the phase diagram of the hard-core Bose-Hubbard model in the
µT plane in one (left) and two (right) dimensions.
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exponent z = 1. For the quantum transitions (both at positive and negative chemical potential) we
have z = 2 and ν = 1/2. Finally, specializing equation (3.52), the trap exponent for these transitions
(driven by the chemical potential) is

θ =
p

2 + p
. (4.2)

We want to investigate the existence of a non trivial trap-size limit as the confining potential
is removed and the system approaches its T = 0 transition points. To this end, look at the path
taken following the dashed lines of figure 4.1: it never intercepts a phase transition; this is achieved
tuning the chemical potential at the fixed critical values µc of the unconfined systems and letting
the temperature vary. Strictly speaking, we will simulate the trapped system: as the temperature is
decreased, the trap size l is increased so that, in this way, we can approach in a smooth fashion the
critical points (on the T = 0 axis) of the superfluid to Mott-insulator transitions. Thus, we can study
the interplay of thermal and quantum fluctuations in the quantum critical region described in Section
3.1.2.

We focus our attention on two standard observables: the particle density profile and the density-
density correlation function. They are defined as follows:

ρ(x) ≡ 〈nx〉 , (4.3)

G(x,y) ≡ 〈nxny〉 − 〈nx〉〈ny〉 , (4.4)

where x and y are the coordinates of lattice sites. The scaling relations for the singular part of the
free energy density, for the density and for the density-density correlation function are1

F (µ, T, l,x) = greg(x) + l−θ(d+z)F(µ̄lθ/ν , T lθz,xl−θ) , (4.5)

ρ(x) = freg(x) + l−dθD(µ̄lθ/ν , T lzθ,xl−θ) , (4.6)

G(x,y) = l−2dθG(µ̄lθ/ν , T lzθ,xl−θ,yl−θ) , (4.7)

where, in agreement with standard theoretical results [12], greg(x) and freg(x) are supposed to be
regular (analytic) functions.2

Equations (4.5, 4.6, 4.7) are our trap-size scaling predictions: they relate the behavior of our
observables for different values of the system parameters. More precisely, considering the system at
T = 0, the free energy density, depending on the rescaled coordinate xl−θ, is a function of the variable
µ̄lθ/ν only. Analogously, considering the homogeneous system at criticality (µ̄ = 0), the free energy
density depends only on the combination τ = T lzθ. Similar considerations also apply to ρ and G.
Specializing equations (4.5, 4.6, 4.7) to the proper values of d, z, θ (recalling that ν and p enter through
θ) of the different transitions will lead to a series of specific scaling predictions. In the following we
will demonstrate that these predictions show a very good agreement with our numerical simulations.

4.1 One-dimensional model

4.1.1 Analytic results

In the presence of an external coupling potential, the one-dimensional hard-core Bose-Hubbard model,
following the same steps of Section 3.2.1, can be mapped into

Hc =
∑

ij

c†ihijcj , (4.8)

1All scaling relations are written neglecting contributions from irrelevant scaling operators and corrections of higher
order in l−θ.

2In deriving equations (4.6, 4.7) from equations (3.46, 3.47) we used the renormalization group dimension yρ = d for
the particle density operator.
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where

hij = δij −
1

2
δi,j−1 −

1

2
δi,j+1 + [µ̄+ V (xi)]δij (4.9)

with µ̄ ≡ µ−1. In the fermion representation this hamiltonian can be easily diagonalized by introducing
new canonical fermionic variables ηk =

∑
i φkici , where φ satisfies the equation

∑

j

hijφkj = ωkφki , (4.10)

obtaining Hc =
∑

k ωkη
†
kηk.

We now discuss in more detail our knowledge of the ground state. Since the η-modes are fermionic
and without spin, for each pair of values of the parameters µ and l, the ground state is obviously
obtained filling all levels with a negative energy ωk < 0. The number of filled energy levels is designed
with N . Using the unitarity of the Jordan-Wigner transformation, we can see that the number N
of η-excitations is also the number of bosonic b-particles present in the chain. In case ωk > 0 for all
states, the ground state is obviously the vacuum state with no excitation. When a specific ωκ equals
zero, we have a degeneration, since the state with all negative levels filled and the state which also
has 〈η†κηκ〉 = 1 have the same energy.

The picture which in general emerges is thus the following. For a fixed value of µ we have an infinite
set (labelled by k) of increasing energy levels ωk(l) which depends on the trap size l. Removing the
trapping potential, the particle number will tend to the homogeneous limit so that, in the partially
or totally filled phases (that is for µ < 1) where the ground state has a finite density, we get N → ∞
(because of the previous relation among b-bosons and spinless η-fermions). It is now clear that, in the
l → ∞ limit, an infinite number of ωk(l) must pass from positive values to negative ones, since only
in this way the corresponding level in the ground state can be populated. But this implies that, for
a fixed k value, there must be a specific value of l for which ωk(l) = 0. When this happens we say
that a level crossing has verified: we stress that level crossing is essentially related to the fact that the
particle number is conserved even in the presence of the trap.3

Let us now consider a fixed value of µ and start from a value of l such that ωk(l) is negative for
k < κ and positive otherwise. Increasing l will shift the energy spectrum until ωκ will equal zero.
When this happens, the gap vanishes, the ground state is doubly degenerate and a level crossing has

taken place. In general we denote the values of l at which the gap vanishes by l
(k)
0 with k = 1, 2, . . . .

This implies

l = l
(k)
0 ⇔ ωk(l) = 0 . (4.11)

Further increasing l, we note that ωκ(l) becomes more and more negative, thus raising the gap, while
the smallest positive eigenvalue ωκ+1(l) progressively moves to zero, where the next level crossing
will take place, thus lowering the gap: it is then clear that this competition will lead to a value of
lpeak where the energy gap is maximum and level crossings of the lowest states occur in the µl plane
separating the regions with N = k and N = k + 1. In general we denote the values of l at which the

gap is maximum by l
(k)
peak with k = 1, 2, . . . . Consequently we have

l = l
(k)
peak ⇔ ωk−1(l) + ωk(l) = 0 . (4.12)

Until now all considerations have been general and no approximation has been assumed. We now
take the continuum limit setting φk(x) ≡ φkx and rewriting equations (4.9, 4.10) as

φk(x)−
1

2
φk(x+ 1)− 1

2
φk(x− 1) + [µ̄+ V (x)]φk(x) = ωkφk(x) . (4.13)

3The phenomenon of level crossing has emerged in a natural way looking at the fermionic spinless description, but
we know from the general theory that a level crossing can occur when the hamiltonian can be written as H = H0+ gH1,
where H0 and H1 commute while g is a parameter. In this case the eigenvalues depend on g while the eigenvectors do
not. The trapped Bose-Hubbard model falls under this condition since the number operator, which is the H1 part of the
total hamiltonian, commutes with the remaining part H0, while µ plays the role of the g parameter.
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By expressing the discrete differences in terms of derivative expansions we obtain

[
µ̄+

(x
l

)p
−

∞∑

m=1

1

(2m)!

d(2m)

dx(2m)

]
φk(x) = ωkφk(x) , (4.14)

where we used the parity properties of the Taylor series coming from equation (4.13).4 Introducing
the rescaled quantities

X = xl−p/(2+p) , µr = µ̄l2p/(2+p) , Ωk = ωkl
2p/(2+p) , (4.15)

and then neglecting terms which are suppressed in the large-l limit, we arrive to the equation

(
−1

2

d2

dX2
+Xp

)
ϕk(X) = ekϕk(X) , (4.16)

where ek ≡ Ωk −µr and ϕk(X) ≡ φk(l
p/(2+p)X). These results make it possible to define the trap-size

limit. Equation (4.16) is a Schrödinger-like equation which formally involves no parameter related to
the system: we say it is universal. The trap-size limit is consequently defined as the limit in which
l → ∞ while all the other scaling quantities, like the coordinate X, the eigenenergies ek and the
rescaled chemical potential µr, stay constant.5 Using the result (4.2), we infer the behavior µr = µ̄l2θ

and X = xl−θ for the control parameter of the transition and the rescaled coordinate: thus the
predictions of trap-size scaling fully coincide with the analytical results (4.15).

In view of subsequent analyses, we now specialize the solutions of equation (4.16) to the cases of
the harmonic trapping potential and the hard-wall limit.

• In the case of a harmonic potential (p = 2) we have θ = 1/2 and

ek = 21/2(k + 1/2) k ≥ 0 , (4.17)

ϕk(X) =
21/8Hk(2

1/4X)

π1/42k/2(k!)1/2
exp(−X2/

√
2) ,

where Hk(x) are Hermite’s polynomials.

• In the case of the hard-wall limit (p→ ∞) equation (4.16) becomes equivalent to the Schrödinger
equation of a free particle in a box of size L = 2l with boundary conditions ϕ(−1) = ϕ(1) = 0
so that θ = 1 and

ek =
π2

8
(k + 1)2 k ≥ 0 , (4.18)

ϕk(X) = sin
[π
2
(k + 1)(X + 1)

]
.

Until now we considered only the T = 0 ground state. We are going to extend these results to
the case of finite temperatures. The fermion two-point function, according to the rules of statistical
quantum mechanics, is given by the standard average

〈c†xcy〉 =
∑

ab

φaxφby〈η†aηb〉 =
∞∑

k=0

φkxφky
1 + exp(ωk/T )

. (4.19)

4The smoothness hypothesis underlying the continuum limit requires that only functions with a slowly varying be-
havior on the scale of the lattice spacing d are relevant: this is equivalent to having functions with a Fourier spectrum
whose non-zero components satisfies k < 1/d.

5For this we must impose µ̄ → 0 (that is µ → 1) and ωk → 0: these requirements consistently select the superfluid to
vacuum transition.
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Figure 4.2: The particle density (left) and the density-density correlator (right) in the presence of a
harmonic potential at µ = +1 for some values of the trap size l at τ = 2 and τ = 8 with τ ≡ T l. The
full lines show the trap-size scaling functions.

Its trap-size scaling limit can be written in terms of the eigensolutions of equation (4.16) as

〈c†xcy〉 = l−θ
∞∑

k=0

ϕk(X)ϕk(Y )

1 + exp[(ek + µr)/τ)
, (4.20)

where we have introduced the scaling variable

τ ≡ T l2θ , (4.21)

since in this case z = 2 while θ still depends on p. Then straightforward calculations allow us to obtain

ρ(x) = l−θD(µ̄l2θ, T l2θ, xl−θ) , (4.22)

D(µr, τ,X) =

∞∑

k=0

ϕk(X)2

1 + exp[(ek + µr)/τ ]
, (4.23)

and

G(x, y) = l−2θG(µ̄l2θ, T l2θ, xl−θ, yl−θ) , (4.24)

G(µr, τ,X, Y ) = −
[

∞∑

k=0

ϕk(X)ϕk(Y )

1 + exp[(ek + µr)/τ ]

]2
, (4.25)

which holds for x 6= y.6 The above scaling functions describe the asymptotic large trap-size behavior
and corrections are suppressed by a further l2θ power. Practically exact results for the trap-size
scaling functions of the harmonic potential and the hard-wall limit, for any µr and τ , can be easily
obtained using equations (4.17, 4.18) because the series are rapidly converging. We observe that our
computation naturally leads to results of the form (4.6, 4.7) for the density and the density-density
correlation function, from which we can infer freg ≡ 0.

4.1.2 Low-density transition

As already mentioned, in order to verify the correctness of the trap-size scaling theory, we must
simulate systems for some values of the parameters which make the arguments of the scaling functions
stay constant. For this purpose we rewright equations (4.6, 4.7) as

l1/2ρ(x) = D̂(T l,X) , (4.26)

lG(0, x) = Ĝ(T l,X) , (4.27)

6Note that G(x, y) < 0 for x 6= y but G(x, x) ≡ 〈n2

x〉 − 〈nx〉
2 > 0 and indeed

∑
xy G(x, y) > 0.
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Figure 4.3: The particle density (left) and the density-density correlator (right) in the limit p → ∞
at µ = +1 for some values of the trap size l at τ = 2 with τ ≡ T l2. The full lines show the trap-size
scaling functions.

where we used the values θ = 1/2 for the harmonic potential and z = 2, X = xl−1/2 is the scaling
coordinate and for the density-density function we considered only the correlation with the center of the
trap. We thus see that the constraint on the scaling variable τ = constant now reads T l = constant.

In figure 4.2 we show the behavior of the density profile and the correlator plotted against the
analytic prediction: it is apparent that, apart from scaling corrections for low values of l, the data
nicely collapse on a universal curve, thus demonstrating the correctness of trap-size scaling for the
neighborhood of this transition.

To further check the theory, we considered the hard-wall limit. This limit is obtained with the
substitution p→ ∞ in equation (3.52) which sets θ = 1. Since still z = 2 at the low-density transition,
simulations are made at T l2 = constant. In figure 4.3 we show that the agreement with the analytic
prediction still persists also in the hard-wall limit.

4.1.3 Local density approximation

Before discussing the behavior of the superfluid and the n = 1 Mott phases in the presence of the
trap, we address the important question of the local density approximation. Since in these phases we
know that, even in the large-l limit, a non zero filling contribution arises, a nontrivial influence of the
mean density on the transition is expected.

Let us consider a homogeneous system whose ground state density as a function of a certain
parameter (in our case the chemical potential µ) is known. Turning on a local interaction, we want
to obtain the ground state density profile in the new context. When the external coupling is slowly
varying, we expect to get a slowly varying density profile too. We assume that the region around a
certain point is characterized by a substantially constant density whose mean value depends on how
strong is the potential in that neighborhood. The final result is that the local region we are focusing
on is equivalent to a locally homogeneous system whose mean density is not given by µ only but also
by the value of the external interaction. On these footings the local density approximation estimates
the density at position x in a trapped system as the density of the unconfined one provided with an
effective chemical potential given by

µeff(x) ≡ µ+
(x
l

)p
. (4.28)

The local density approximation of the particle density thus reads

〈nx〉LDA ≡ ρLDA(xl
−1) =





0 for µeff(x) > 1 ,
1/π arccosµeff(x) for −1 ≤ µeff(x) ≤ 1 ,
1 for µeff(x) < −1 ,

(4.29)
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Figure 4.4: The particle density at µ = −1 in the presence of a harmonic potential for some values of
the trap size l at τ = 2 (left) and τ = 8 (right) with τ ≡ T l.
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Figure 4.5: The subtracted particle density at µ = −1 in the presence of a harmonic potential for
some values of the trap size l at τ = 2 (left) and τ = 8 (right) with τ ≡ T l.

Equation (4.29) makes it possible to obtain an insight into the particle distribution of the inhomo-
geneous system. We see that in a region near the center of the trap things are not very much distorted
and a substantially homogeneous filling is expected. At fixed µ, starting from the origin, we have a
density which equals the one of the homogeneous system and moving outwards we see a decrease until
zero. This would imply the presence of a plateau at n = 1 when µeff ≤ −1 for x ≤ l(−1− µ)1/p and a
vanishing particle density when µeff ≥ 1 for x ≥ l(1− µ)1/p.

We want to study the emergence of criticality as we remove the trapping potential and to this end
we must take the l → ∞ limit. We first observe from equation (4.6) that only the analytic contribution
freg(x) in this case survives. Moreover, working at fixed τ , implies T → 0 so that the particle density
should approach the T = 0 result. It has been verified that, for the one dimensional system, the T = 0
density in the trap-size limit is exactly given by (4.29); thus we conclude that freg(x) = ρLDA(x/l).

4.1.4 Mott insulator to superfluid transition at n = 1

We recall that the quantum critical behavior around µ = −1 of the homogeneous hard-core Bose-
Hubbard model without trap is essentially analogous to that at µ = +1 because of the invariance
under the particle-hole exchange. At the n = 1 Mott-insulator to superfluid transition the critical
exponents ν and z and the trap-size exponent θ are the same as those at for µ = +1 and consequently
simulations have been made keeping T l = constant. However the particle-hole symmetry does not
hold in the presence of the trapping potential and the asymptotic trap-size dependence at T = 0
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appears more complicated at the n = 1 Mott transition, the main difference being the existence of a
non zero analytic contribution to the particle density.

In figure 4.4 we can see that the trapped model at µ = −1 indeed approaches its local density
approximation in the large-l limit but there are corrections that are suppressed as the trap size increases
and, as we will show below, present a nontrivial trap-size scaling behavior. In two regions differences
from a pure local density approximation are observed: near the origin, where the observed density is
less than the expected one, and near the point x =

√
2l, where peculiar peaks arise. In the l → ∞

limit the peaks disappear, living only the profile close to the center of the trap. We will study the
criticality around the peaks in the following Section 4.1.5 and we now analyze the particle density
near the origin.

The scaling laws for the density and the correlator which we derive putting the critical exponents
for the present case are

l1/2∆ρ(x) = D̂(T l,X) , (4.30)

lG(0, x) = Ĝ(T l,X) . (4.31)

where X = xl−1/2 and ∆ρ ≡ ρ− ρLDA is the subtracted density and corresponds to the scaling part
of the particle density. In figure 4.5 we show how these relations are nicely verified.

In Ref. [60] it was observed that the spatial dependence of the particle density and its correlator
turns out to be described by the following scaling behavior at large trap size:

ρ(x) = ρLDA(xl
−1) + l−θf(X,φ) , (4.32)

G(0, x) = l−2θg(X,φ) , (4.33)

where X = xl−θ while f and g are universal scaling functions. The phase-like variable φ measures

the distance from the closest even level crossing and is defined as φ = (l − l
(k)
0 )/(l

(k+1)
0 − l

(k)
0 ). An

interesting question is whether this scenario persists at finite temperature, where the effects of the
level crossings of the lowest states are expected to be weaker. The same figures 4.4 and 4.5 give a
clear evidence that trap-size scaling is fully verified, in its simplest form without periodic corrections,
for the finite temperature one-dimensional hard-core Bose-Hubbard model. In particular we conclude
that the modulation phenomenon observed at zero temperature, due to an infinite number of level
crossings, is effectively averaged out by thermal fluctuations.

In order to further verify the trap-size scaling theory, we considered the hard-wall limit (p → ∞
and θ = 1). Simulations are made with the scaling variable fixed to τ ≡ T l2 = constant (recall z = 2).
Moreover, since V (x) = 0 in all the sites, we get ρLDA = 1. In figure 4.7 we show that also for the
µ = −1 transition the theory is in good agreement with numerical results.

Finally we mention that there is an unexpected similarity between the scaling of the µ = +1 and
µ = −1 correlation functions. In fact the functions of µ = −1 collapse on the same analytic curves of
µ = +1 and this can be considered a manifestation of the old (homogeneous) particle-hole symmetry.

4.1.5 Superfluid phase

We now analyze the trap-size dependence within the gapless superfluid phase, whose corresponding
continuum theory is a conformal field theory with z = 1. We stress that no phase transition is expected
to be seen and we are only testing how the predictions of trap-size scaling can be generalized. The
asymptotic behavior within the superfluid phase turns out to be characterized by two length scales
with different power-law divergence in the large trap-size limit [60]: the first scales as ξ ∼ l (θ = 1) and
describes the behavior of observables related to smooth modes, such as the half-lattice entanglement;
the second scales as ξ ∼ lp/(1+p) (θ = p/(p+ 1)) and it is found in observables involving the modes at
the Fermi scale kF = πf , where f is the filling of the homogeneous system.
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values of the trap size l at τ = 2 with τ ≡ T l.

In figure 4.8 we show results for the particle density and various values of the trap size with T l = 2.
We choose this scaling of the temperature because the trap exponent associated with the smooth modes
is expected to be θ = 1. The main feature of the results is that they are clearly converging toward the
corresponding local density approximation. Only around x = l we observe some significant differences
which decrease with increasing l. Finally, we see that the density-density correlator does not show
any evidence of scaling and it vanishes in a few lattice spacing.

We now study the origin of the transition-like peaks we found in figures 4.5 and 4.8. When µ < 1,
the region where the particle density appears to rapidly vanish corresponds to the region where the
effective chemical potential µeff(x) = µ+V (x) approaches the value µeff = 1, which is the value of the
chemical potential corresponding to the transition between the superfluid phase and the empty state,
where the particle density of the ground state gets suppressed. We thus expect that, for generic values
of µ and p, the region around xc = l(1 − µ)1/p, where µeff(xc) = 1, develops critical modes related
to the superfluid to vacuum transition. Substituting µ = −1 and µ = 0 into the expression for the
critical distance xc we obtain respectively xc =

√
2l and xc = l, which are in perfect agreement with

the observed pictures. The effective chemical potential can be expanded around xc as

µeff(x) = 1 + p(1− µ)1−1/p x− xc
l

+O[(x− xc)
2] . (4.34)

Therefore the behavior around xc is essentially analogous to that arising at µ = +1 in the presence
of a linear potential Vl ∼ (x − xc)/l. This means that the effective critical exponents, even in this
superfluid phase, should be z = 2 and ν = 1/2. Around xc the trap exponent governing critical modes,
putting p = 1 into equation (3.52), turns out to be θ = 1/3. We then expect that around x = xc

l1/3∆ρ(x) = D̂(T l2/3, Y ) , (4.35)

l2/3G(xc, x) = Ĝ(T l2/3, Y ) , (4.36)

where Y = (x − xc)l
−1/3. Figure 4.10 fully supports this scenario, as expected without evidence

of modulations, both because of finite-temperature effects and because of the relationship with the
low-density transition.

4.2 Two-dimensional model

In this section we analyze the scaling behavior of the two-dimensional hard-core Bose-Hubbard model
at finite temperature in a neighborhood of the two Mott-insulator to superfluid phase transitions at
µ = +2 and µ = −2. The analyses of this section will closely follow those of Section 4.1. We saw in
Section 4.1.1 that for the one-dimensional system the particle density and the density-density correlator
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Figure 4.11: The rescaled particle density at µ = +2 with τ = 2 and τ = 8 where τ ≡ T l for different
values of the trap size l.

could be treated analytically, both at zero and finite temperature, so that numerical outcomes could
be compared with their analytical values. Instead, for the two-dimensional case, no exact solution is
available and we must completely rely on numerical results.

4.2.1 Low-density transition

We start with the results for the superfluid to vacuum transition where the density vanishes. Since
we are dealing with a two-dimensional system where the external potential has a radial symmetry,
our scaling relations involving only one coordinate will be functions of r = |x|. After setting d = 2,
introducing the scaling coordinates R = rl−θ, X = xl−θ, Y = yl−θ and considering the system at
criticality (µ̄ = 0), equations (4.6) and (4.7) can be rewritten as

l2θρ(r) = D̂(τ,R) , (4.37)

l4θG(x,y) = Ĝ(τ,X,Y) , (4.38)

being τ ≡ T l2θ the scaling variable that controls the critical behavior of the system (recall z = 2 for
this transition). Simulations at τ = constant are performed working at fixed T l since the presence of
a quadratic p = 2 confinement implies θ = 1/2. For the scaling of the density we put the analytical
contribution to zero because, if the local density approximation is correct, as we expect from the
one-dimensional case, then freg must vanish also in two dimensions.
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Figure 4.13: Numerical outcomes for ρ∗(µ) vs. µ for different values of the lattice extent L and
temperature T : data were collected in the homogeneous system with periodic boundary conditions.
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Figure 4.11 shows the rescaled particle density. Data in it are divided into two groups corresponding
to simulations performed with fixed τ = 2 and τ = 8. Since τ ≡ T l and since the values of l are
essentially the same in both groups, sets with τ = 2 are generally related to lower temperatures than
those with τ = 8. While the latter shows scaling corrections at small l, it is evident that the former
have a more pronounced tendency to collapse on a universal curve. This comes with no surprise, since
universality is a feature appearing in proximity of a phase transition, which occurs at T = 0 when
working with chemical potential fixed at µ = +2 as in the present case.

Figure 4.12 contains the rescaled density-density correlator at fixed τ = 2 and τ = 8 as a function
of R. In this case we are considering the correlation with the center of the trap so that G(r, 0) =
l−4θĜ(τ,R). In analogy with the particle density, also for this observable, numerical outcomes after the
prescribed rescaling display a tendency to collapse on a unique curve when increasing l, in agreement
with the Ansatz in equation (4.38). Once again, corrections can be noticed only at small values of the
trap size.

4.2.2 Local density approximation

Throughout the study of the Bose-Hubbard model, the local density approximation has played a
dominant role, both for T = 0 and for T > 0. In the previous cases analytical results were obtained and
this was heavily used in extracting the scaling part of observables whose behavior would be otherwise
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obscured by the leading non-critical order. For the present two-dimensional situation, however, exact
results are not available and so, to proceed further, we are forced to consider numerical simulations
in order to test to which extent the reliability of the local density approximation works also in the
two-dimensional case at finite T .

In analogy with the one-dimensional model, we assume that the local density approximation of
the two-dimensional trapped system equals

ρLDA(r) =





0 for µeff(r) > 2 ,
ρ∗(µeff) for −2 ≤ µeff(r) ≤ 2 ,
1 for µeff(r) < −2 ,

(4.39)

where ρ∗(µ) is the unknown T = 0 density of the two-dimensional homogeneous system provided with
a given value of the chemical potential µ. In order to obtain an estimate for ρ∗(µ), we performed
simulations of the two-dimensional system without the trap and with periodic boundary conditions,
since this is expected to reduce finite-size corrections, in the low-temperature regime for different
values of the chemical potential. In particular we employed a set of equally-spaced values covering
the range from −2 to +2. This setup is easily obtained by setting to zero the trap parameter v in
our quantum Monte Carlo code and by implementing the specific topology, all other features of the
simulation remaining the same.

More specifically, we performed simulations with L = 8 at T = 1/64, with L = 16 at T = 1/128
and with L = 32 at T = 1/256, being L the extent of a square lattice. Following the same criteria of
[75], we checked that the data were consistent within errorbars so that we could safely assume that
the results at T = 1/256 correspond effectively to the zero-temperature values. Figure 4.13 displays
ρ∗(µ) for the three sets of simulation parameters mentioned above: data basically overlap.

Finally, we fitted the T = 1/256 outcomes to a generic polynomial function of degree n:

ρ∗(µ) =

n∑

i=0

ci µ
i , (4.40)

where n was chosen by truncating this Taylor expansion when the χ2 of the fit stabilized. This was
the case with n = 7 (the reduced χ2 being approximately 1.5), though truncations at higher order
were also considered without showing meaningful deviations. As expected on theoretical grounds, it
turned out that the constant term c0 read 1/2 (within 10−7) while even terms were negligible; thus,
the only non-trivial contributions are given by the odd powers for which the following estimates were
obtained:

c1 = −0.20779(1) , c3 = −0.01323(1)

c5 = +0.00441(1) , c7 = −0.00093(1) . (4.41)

The function in equation (4.40) with n = 7 and coefficients as given above is plotted in figure 4.13
and was used for the data analysis reported in the following sections.

4.2.3 Mott-insulator to superfluid transition with n = 1

As in one dimension, the invariance under the particle-hole exchange entails a similar behavior of the
homogeneous model at the transitions with µ = +2 and µ = −2. However the trap-size scaling at
the n = 1 transition is expected to be different than in the superfluid to vacuum one because the
particle-hole symmetry does not hold for a trapped system.

In analogy with the previous results for the one-dimensional system, we expect the density profile
to approach in the large-l limit its local density approximation, so that (θ = 1/2 and z = 2)

ρ(r) = ρLDA(rl
−1) + l−dθD̂(T lθz, rl−θ) =

= ρLDA(rl
−1) + l−1D̂(T l,R) , (4.42)
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Figure 4.14: The particle density at µ = −2 with τ = 2 (left) and τ = 8 (right) where τ ≡ T l for
different values of the trap size l. The dotted line shows the numerical estimates of the local density
approximation.

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0

r/l
1/2

−1,2

−0,8

−0,4

0,0

0,4

0,8

1,2

1,6

l∆
ρ(

r)

l=10
l=20
l=30

µ=−2, τ=2

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0

r/l
1/2

−1,2

−0,8

−0,4

0,0

0,4

0,8

1,2

1,6

l∆
ρ(

r)

l=10
l=20
l=30

µ=−2, τ=8

Figure 4.15: The rescaled particle density at µ = −2 with τ = 2 (left) and τ = 8 (right) where τ ≡ T l
for different values of the trap size l.
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τ ≡ T l for different values of the trap size l.
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Figure 4.17: The density (left) and the substracted density (right) at µ = 0 with τ = 2 where τ ≡ T l.

leading to

l∆ρ(r) = D̂(T l,R) (4.43)

for the scaling quantity. Figure 4.14 shows how the particle density converges to the local density
approximation in the two-dimensional model. Since τ ≡ T l as in Section 4.2.1, once again data sets
with τ = 2 correspond to temperatures lower than those of the sets with τ = 8, given the common
values of the trap size. Besides improving with increasing l, in agreement with equation (4.42), the
convergence to the local density approximation is better at small T , since local density approximation
itself is approached at T → 0.

Figure 4.15 illustrates the behavior of ∆ρ(r) for τ = 2 and τ = 8 after the rescaling suggested by
equation (4.43) has been performed: a tendency to collapse on a universal curve is evident in a region
close to the origin while some transition-like peaks appear at a distance r ≈ 2l from the center (in
the large-l limit only the region with the universal curve is left). The deviations from the expected
scaling at finite l will be treated in Section 4.2.4.

Finally, figure 4.16 show the rescaling for the density-density correlation function according to
equation (4.38). Within the precision of the data and besides scaling corrections at small trap size,
results for τ = 2 and τ = 8 show the universal expected behavior. Moreover we recall that in the
one-dimensional hard-core Bose-Hubbard model a striking result was the universality for the correlator
between the Mott-insulator to superfluid transitions with n = 0 and n = 1. A closer inspection at
figures 4.12 and 4.16 reveals how this feature seems to hold also for the two-dimensional system.

4.2.4 Superfluid phase

We now study the model at µ = 0. Since this corresponds to the deep interior of the superfluid phase,
no transition is expected.

In figures 4.17 (left) and 4.18 we show the behavior of the particle density and its correlator and
we observe a trivial situation where non particular scaling appears: the density profile collapse on the
local density function while the correlation vanishes after a few lattice spacing. The scaling variable
τ = T l was determined by choosing z = 1 and ν = 1 for the same reasons explained in Section 4.1.5.
The only relevant signal, disappearing in the large trap limit, is seen in the density profile near the
distance r =

√
2l, as shown in figure 4.17 (right). An analogous evidence has already appeared in

Section 4.2.3. We now conjecture that this anomalous behavior has the same origin of that observed
in Sections 4.1.4 and 4.1.5 for the one-dimensional model.

Following the same steps of Section 4.1.5, we define the critical distance rc as µeff(rc) = 2, since
now the Mott-insulator to vacuum transition takes place at µc = +2. Substituting µ = −2 and µ = 0
we get exactly the values rc = 2l and rc =

√
2l where the peaks appear, see figures 4.15 and 4.17

(right). In order to study the scaling near the critical distance, the expansion of µeff(r) around rc is
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Figure 4.18: The density-density correlator at µ = 0 with τ = 2 where τ ≡ T l.
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Figure 4.19: The subtracted density and the density-density correlator at µ = 0 with T l2/3 = 1 around
the distance rc where µeff = 2.

needed:

µeff(r) = 2 + p(2− µ)1−1/p r − rc
l

+O[(r − rc)
2] . (4.44)

The appearance of the critical modes is effectively driven by the superfluid to vacuum transition in
the presence of a linear potential for which p = 1. Thus the exponent ruling the divergence of the
correlation length, from (4.2), is θ = 1/3. The final scaling law (using z = 2) is

l2/3∆ρ(r) = D̂(τ,R) , (4.45)

l4/3G(r, rc) = Ĝ(τ,R) , (4.46)

where R and τ correspond now to R = (r− rc)/l
1/3 and τ ≡ T l2/3. Figure 4.19 shows the behavior of

∆ρ(r) and G(r, rc) vs. (r − rc)/l
1/3 at T l2/3 = 1 after these observables have been rescaled according

to equations (4.45) and (4.46). The collapsing of both quantities on a single curve proves the foreseen
scaling clearly right.

4.3 Relationship with experiments

In this chapter we studied how the theory of trap-size scaling predicts the behavior of typical observ-
ables in the neighborhood of a quantum phase transition. Before discussing how this study can be
used to understand possible experimental results, we mention that the low-dimensional systems here
considered have been experimentally realized [94, 97, 99, 106].
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First of all, we considered the Bose-Hubbard model in its hard-core limit U → ∞. This fact does
not constitute a restriction for the following reason. In the spirit of the renormalization group theory,
we are interested in describing the universal features of the model, that is critical parameters and
scaling functions. What determines the universal behavior is not the detailed form of the hamiltonian
but some general aspects (as the range and the symmetries of the interactions, the dimensionality,
the coupling of external fields, . . . ). In the context of the Bose-Hubbard model the relevant aspect is
the competition between an hopping term and a repulsive one, whose strength is expected not to play
any role in determining the universal behavior. So, as long as the interaction remains repulsive, that
is as long as U > 0, we expect that the universal observables can be described by the same scaling
laws. Thus, working in the hard-core limit make us get the desired results. Of course, when studying
the general Bose-Hubbard model at finite U , we must recall that the universal behavior settles only
in a neighborhood of the transition, so that our results apply near the critical value µc(U), which is a
function of the on-site energy.

The particle density and the density-density correlator are standard observables that are routinely
measured with great accuracy, for example using in situ imaging techniques, both in the case of
finite-temperature and quantum transitions [40, 41, 45, 46, 65, 68, 102, 104, 105]. We stress that the
leading (non-universal) contribution to the particle density depends on the repulsion U and, before
using equation (4.6) and its specializations to the various transitions, the analytical contribution must
be subtracted: in turn this requires a very precise determination of the density profile. The scaling
equations reported in this chapter are expected to describe the universal behavior near the center
of the trap, in particular the interplay of temperature and trap effects. They can be used to infer
the experimental parameters of the system simply by probing the collapse of experimental data on
the universal scaling functions. This procedure is tightly connected with the analogous one used in
homogeneous systems where the finite-size scaling theory is used to get accurate estimates of the
system parameters [48].
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Chapter 5

Scaling of the normal to superfluid

transition

In this chapter we study the phase transition from a normal fluid to a superfluid present in the three-
dimensional Bose-Hubbard model, which belongs to the 3D XY universality class, and the effects that
arise from the confinement of an external potential. In particular we will use the trap-size scaling
theory to determine the physical parameters of the system.

5.1 U(1)-symmetry breaking transitions

The content of this chapter is taken from Ref. [81] and the details of the quantum Monte Carlo results
here presented are discussed in the Appendix. The hamiltonians for the unconfined and confined
systems are still given respectively by equations (3.20) and (4.1).

We start recalling the phase diagram of the homogeneous three-dimensional hard-core model in
figure 5.1. The T = 0 line is characterized by two quantum critical points at µ = +3 and µ = −3,
separating the superfluid phase from the Mott-insulating ones respectively at filling n = 0 and n = 1.
For chemical potential values in the range −3 < µ < +3, there exists a finite-temperature region
where superfluidity still persists and then a phase transition to a normal fluid state occurs. As already
explained in Section 3.1.2, the phenomenology of such a transition can be accounted for by the classical
theory, and we now discuss this point in more detail.

We know from Chapter 2 that, under appropriate physical conditions, a finite (macroscopic) num-
ber of particles can accommodate in a single quantum state. When this happens, we can identify a

T/J

µ/J
−3 32

superfluid

normal f luid

vacuumMott

Figure 5.1: A qualitative sketch of the phase diagram of the three-dimensional hard-core Bose-Hubbard
model in the µT plane.
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wave function Φ(r) = n(r)eiθ(r) whose modulus squared gives the particle density ρ(r) = |n(r)|2 while
the phase θ(r) is substantially related to the kinematic properties of the ensemble. However we can
think to the existence of the phase as the manifestation of the coherence of the occupation of a single
quantum state: this would be impossible if n(r) = 0, that is in the absence of macroscopic occupation.
Thus, when a Bose-Einstein condensate is formed, the mechanism which drives the transition leads to
the appearance of a well defined phase: this can consistently be interpreted as the order parameter
for the transition. In the spirit of the renormalization group theory, the main consequence is that
all systems having a form of order accounted for by an angle belong to the same universality class.
Since our transition is characterized by a common angle in each point of a three-dimensional space,
the universality class is clearly the one of the classical 3D XY spin model.

The critical behavior described by the 3D XY universality class is characterized by the two relevant
parameters τ and h, associated with the temperature T , that is τ ∼ T/Tc− 1, and the external field h
coupled to the order parameter. Their renormalization group dimensions, yτ = 1/ν and yh = (5−η)/2
respectively, are related to the critical exponent ν of the correlation length and to the exponent η
describing the power-law decay of the two-point function of the order parameter at Tc. The critical
exponents ν and η are known with great accuracy from theoretical calculations [32, 48] and experiments
at the 4He superfluid transition [76, 90]. Recent theoretical estimates of the critical exponents are
[77, 78]

ν = 0.6717(1) , η = 0.0381(2) . (5.1)

In order to obtain the critical exponent θ, which rules the emergence of the critical modes in the
presence of the trap, we follow the same reasoning of Section 3.3. We start from the well known 3D Φ4

quantum field theory which represents the 3D XY univerality class [11]. The coupling of the complex
field with the confining potential is ∫

d3rV (r)|Φ(r)|2 (5.2)

and the scaling dimension yn of the density/energy operator |Φ(r)|2 is yn = 3 − 1/ν. We eventually
obtain

θ =
pν

1 + pν
(5.3)

and, using our value of ν for a harmonic confinement (p = 2), we get

θ = 0.57327(4) . (5.4)

The observables that will be used to investigate the scaling properties of the transition are the
following.

• The local density
ρ(x) ≡ 〈nx〉 (5.5)

for the trapped system, which is of course site-dependent, and the mean density

ρ ≡ 〈N̂ 〉
V

(5.6)

for the homogeneous system, where N̂ =
∑

i ni is the total particle number operator and V is
the total volume.

• The density-density correlation function

Gn(x,y) ≡ 〈nxny〉 − 〈nx〉〈ny〉 (5.7)

and the one-particle density matrix (or Green function)

Gb(x,y) ≡ 〈b†xby〉 . (5.8)
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In homogeneous conditions, due to translational invariance, Gn and Gb only depend on x−y, so
that we can write them as G(x,y) ≡ G(x−y). It is then possible to write the Fourier transform
for the homogeneous model as

G̃b(k) =
∑

x

eikxGb(x) . (5.9)

• The homogeneous compressibility

κ ≡ −∂ρ
∂µ

. (5.10)

The sign is needed to make κ a positive definite quantity. In fact, recalling the sign convention
for µ in equation (3.20), κ can be rewritten as

κ =
1

L3

(
〈N̂2〉 − 〈N̂〉2

)
. (5.11)

Moreover, taking advantage of translational invariance, we get

κ =
∑

x

Gn(x) , (5.12)

which is the space integral of the density-density correlator.

• The susceptibility for the homogeneous system

χ =
∑

x

Gb(x) , (5.13)

which is the zero-momentum component of the Fourier transform of the Green function. Instead,
for trapped systems, we consider the trap susceptibility defined as

χt =
∑

x

Gb(0,x) . (5.14)

We note that χt is related only to the integral of the correlation with the center of the trap.

• The second moment correlation length for the homogeneous system

ξ2 ≡ 1

4 sin2(π/L)

G̃b(0)− G̃b(p)

G̃b(p)
, (5.15)

where p = (2π/L, 0, 0). The analogous quantity in the presence of the trap is

ξ2t =
1

6χt

∑

x

|x|2Gb(0,x) . (5.16)

• The helicity modulus Υ, which is related to the winding number (see Appendix), defined as

Υ ≡ − 1

L

∂2Z

∂φ2
(φ)|φ=0 , (5.17)

where Z is the partition function under a twist φ of the boundary conditions in one direction.
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5.2 Scaling relations for three-dimensional systems

In order to study the phenomenology of the transition, we will apply to the previous observables the
theory of finite-size scaling (in the homogeneous case) and trap-size scaling (in the trapped case).
First of all we fix the value of the chemical potential at µ = +2, which lies in the region where
a phase transition is possible.1 Then we determine with great accuracy the critical temperature
Tc(µ = +2) according a standard to finite-size analysis of quantum Monte Carlo data, moving along
the dashed line of figure 5.1 We verify that this transition of the Bose-Hubbard model lies in the
expected universality class. Finally we investigate a neighborhood of Tc when the external confinement
is turned on. Improving the trap-size scaling analysis of Chapter 4 to the new observables, we give
evidence of the reliability of the theory in extracting critical parameters from a matching with scaling
predictions. The experimental relevance of our approach will be discussed in Section 5.5.

Let us now discuss the theoretical predictions. First of all, finite-size scaling predicts the following
asymptotic scaling laws of the one-particle and particle density correlation functions for r ≡ |x| > 0:

Gb(x) = L−1−ηGb(r/L, τL
1/ν) + . . . , (5.18)

Gn(x) = L−2ynGn(r/L, τL
1/ν) + . . . , (5.19)

where τ ≡ T/Tc − 1. Thus, the susceptibility χ behaves as

χ = L2−η
[
g(τL1/ν) + L−ωgω(τL

1/ν) + ...
]
, (5.20)

where we have also included the leading O(L−ω) scaling corrections, and ω = 0.785(20) is the critical
exponent controlling the leading scaling corrections in the 3D XY universality class. The dots indicate
further scaling corrections suppressed by higher powers of 1/L. The scaling functions g and gω are
universal apart from a multiplicative constant (since χ is not invariant under the renormalization
group, g(0) is not universal) and a rescaling of the argument.

We consider the dimensionless renormalization group invariant quantities

Rξ ≡ ξ/L , RΥ ≡ ΥL . (5.21)

According to the finite-size scaling theory they behave as [78]

R = f(τL1/ν) + L−ωfω(τL
1/ν) + . . . (5.22)

around Tc and in the large L limit. f and fω are scaling functions. In particular the leading one f is
universal (although it depends on the shape of the volume and the choice of the boundary conditions),
that is it is independent of the particular model within the universality class, apart from a trivial
rescaling of the argument; thus, R∗ ≡ f(0) is universal. For cubic-shaped lattices with periodic
boundary conditions, the universal infinite-volume limit of Rξ and RΥ at T = Tc are known with great
accuracy [78]:

R∗
ξ = 0.5924(4) , R∗

Υ = 0.516(1) . (5.23)

Moving to trap-size scaling, the equations for the observables and correlation functions provide
an effective description of the critical behavior around the center of the trap and in particular of
the interplay between the temperature and the confining potential. At the superfluid transition and
around the center of the trap the one-particle correlation function Gb behaves as

Gb(x,y) = l−(1+η)θGb(xl
−θ,yl−θ, τ lθ/ν) + . . . (5.24)

and the particle-density correlation Gn as

Gn(x,y) = l−2ynθGn(xl
−θ,yl−θ, τ lθ/ν) + . . . , (5.25)

1We could have chosen a negative value as well: the main line of reasoning would have been the same, even if a bigger
computational effort is expected in this case. A different approach instead is needed when considering the transition at
the tip of the phase boundary, as explained in Ref. [82].
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Figure 5.2: Data of Rξ ≡ ξ/L (left) and RΥ ≡ ΥL (right) for the homogeneous model with periodic
boundary conditions. The vertical dotted line shows our final estimate of Tc = 0.7410(1). The
horizontal segments around the crossing point indicate the universal asymptotic values [78] R∗

ξ =
0.5924(4) and R∗

Υ = 0.516(1) at Tc.

where yn is the renormalization group dimension of the density operator

yn = 3− 1/ν = 1.5112(2) . (5.26)

Analogous scaling relations can be inferred for other correlations. According to trap-size scaling, the
trap susceptibility and the second moment correlation with the center of the trap are expected to
behave as

χt = l(2−η)θX (τ lθ/ν) + . . . , (5.27)

ξt = lθR(τ lθ/ν) + . . . . (5.28)

Note however that any length scale ξ extracted from the critical modes is expected to show the same
trap-size scaling as ξt.

The above trap-size scaling equations provide the asymptotic dependence on the trap size l. Scaling
corrections are generally expected to beO(l−ωθ) where ω = 0.785(20) is the scaling-correction exponent
of the 3D XY universality class, thus

ωθ = 0.45(1) . (5.29)

5.3 Finite-size scaling of the homogeneous model

5.3.1 Invariant quantities

In figure 5.2 we show the quantum Monte Carlo results for Rξ and RΥ. Their sets of data for different
lattice sizes show a clear evidence of a crossing point, whose location is expected to converge to Tc
in the large-L limit, according to equation (5.22). Moreover, the values of Rξ and RΥ at the crossing
point are consistent with the asymptotic universal values R∗

ξ and R∗
Υ reported above. The small

deviations appear to decrease with increasing the lattice size; they are explained by the presence of
O(L−ω) corrections, according to equation (5.22).

In order to derive an estimate of Tc, we fit the data to the Ansatz

R = R∗ +

n∑

i=1

aiτ
iLi/ν + L−ω

m∑

j=0

bjτ
jLj/ν, (5.30)

obtained by expanding equation (5.22) around τ = 0. The best estimate of Tc is obtained from the
data of RΥ. Sufficiently close to Tc, the first terms of the sums, that is setting n = 1 and m = 0 in
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Figure 5.3: Data of RΥ, Rξ and χ/L2−η at Tc vs. L−ω with ω = 0.785. In the case of RΥ and Rξ we
also show (by full symbols) their universal L → ∞ limit: R∗

Υ = 0.516(1) and R∗
ξ = 0.5924(4). The

dotted lines show linear fits of the data of RΥ and χ/L2−η . In the case of Rξ, higher-order scaling
corrections appear also important.
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1/ν with τ ≡ T/Tc−1 and Tc = 0.7410 for the homogeneous

model with periodic boundary conditions.
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Figure 5.5: L1+ηGb(x) vs. r/L (where r ≡ |x|) at T = Tc for homogeneous Bose-Hubbard systems
with periodic boundary conditions. The data show the expected scaling behavior (5.18).

equation (5.30), provide already good fits keeping the known universal quantities ν, ω, R∗
Υ fixed: in

this respect the O(L−ω) scaling correction term is necessary to achieve fits with acceptable χ2/dof.
For example the fit of the data for L ≥ 10 gives Tc = 0.74103(1) with χ2/dof ≈ 1.4. We consider

Tc = 0.7410(1) (µ = +2) (5.31)

as our final estimate of Tc, where the error includes the statistical errors of the fits, and takes into
account the dependence of the results on the choice of the Ansatz and the interval of values of T around
the transition allowed in the fit. Further subleading scaling corrections are controlled by increasing
the minimum value Lmin of L of the data allowed in the fits. The analysis of the data of Rξ gives
consistent results, but less precise because they are apparently affected by larger scaling corrections.

Figure 5.3 shows data of Rξ, RΥ and χ/L2−η at Tc = 0.741 plotted versus L−ω, which is the
expected order of the leading scaling corrections. As expected Rξ and RΥ converge to their universal
values R∗

Υ and R∗
ξ . The approach of RΥ and χ/L2−η is approximately linear with respect to L−ω,

while in the case of Rξ also higher-order scaling corrections appear significant for the available lattice
sizes. Figure 5.4 reports the data of RΥ, Rξ and χ/L2−η versus τL1/ν with τ ≡ T/Tc − 1. They show
the asymptotic collapse of the data along a universal curve, apart from small scaling corrections which
get suppressed with increasing L.

Figure 5.5 shows the data of the one-particle correlation function Gb at Tc, which are consistent
with the expected asymptotic scaling behavior reported in equation (5.18). In conclusion, the above
finite-size scaling analysis of the quantum Monte Carlo data of the homogeneous hard-core Bose-
Hubbard model at µ = +2 definitely confirms that its superfluid transition belongs to the 3D XY
universality class and provides an accurate determination of the (non-universal) critical temperature,
given by equation (5.31).

5.3.2 Compressibility, particle density and its correlator

The behaviors of the particle density, the compressibility and the density-density correlator around
the transition are particularly interesting because they can be directly investigated experimentally
[123], for example by in situ density image techniques.

The behavior of the mean particle number around the transition point is analogous to that of the
energy density in spin systems, so that2

ρ = fa(τ) + L−ynfs(τL
1/ν) (5.32)

2In the following, unless explicitly written, higher order scaling corrections will be omitted.
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Figure 5.6: The particle density at Tc of the homogeneous model. The dashed line shows a linear fit
of the data to ρ0 + cL−yn , with ρ0 = 0.16187(1) and c = 0.140(1).
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Figure 5.7: L2ynGn(x) vs. r/L at T = Tc for homogeneous systems with periodic boundary conditions.
The dotted line sketches the expected asymptotic behavior Gn(x) ∼ r−2yn at small r ≡ |x|.
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Figure 5.8: Data of the compressibility κ (5.10).

at fixed chemical potential, where fa is a nonuniversal analytic function of τ (and µ), yn is the
renormalization group dimension of the particle density operator nx of equation (5.26) and fs is a
universal function apart from a factor and a rescaling of its argument. This behavior is clearly shown
by the data at Tc, which are well approximated by the asymptotic formula

ρ = ρ0 + cL−yn , (5.33)

as shown in figure 5.6. A linear fit to equation (5.33) gives ρ0 = 0.16187(1).
Figure 5.7 reports data of the particle-density correlation function at Tc. They show the expected

scaling behavior, obtainable from equation (5.19) setting τ = 0. Note that it develops for positive
values of Gn, while the negative data at small distance are pushed toward the origin, not contributing
to the scaling behavior.

The scaling behavior of the compressibility (5.10) is complicated by the sum around x = 0, which
gives rise to a nonuniversal analytic contribution, analogously to the specific heat in 4He [48]. Indeed,
we expect

κ = ga(τ) + Lα/νgs(τL
1/ν), (5.34)

where α is the specific heat exponent α = −0.0151(3), ga is a nonuniversal analytic function of τ
and gs is a universal function apart from a factor and a rescaling of the argument. Notice that, since
α < 0, the nonuniversal analytic term provides the leading behavior for L→ ∞. Figure 5.8 shows the
data of the compressibility. They hint at the typical λ shape expected in the infinite-volume limit,
which also characterizes the specific heat at the superfluid transition of 4He [120]. At Tc they show
the asymptotic scaling behavior

κ = a+ bLα/ν , (5.35)

as shown in figure 5.9. Linear fits of the available data at Tc, up to L = 32, gives a ≈ 0.90 and
b ≈ −0.80.

5.4 Critical parameters from trap-size scaling

We now consider the three-dimensional Bose-Hubbard model in the presence of a trapping potential,
as described by the hamiltonian (4.1). We present results of our simulations of the hard-core model
at µ = +2 for several values of the trap size l.

5.4.1 Finite-size effects with the trap

We start analyzing the finite-size effects in the presence of the trap, that is when considering the trap
within a finite box of size L (with open boundary conditions). They can be taken into account by
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Figure 5.9: Data of the compressibility κ at Tc. The dashed line shows a linear fit to the predicted
asymptotic behavior a+bLα/ν . Data for L ≥ 8 give a = 0.90(1) and b ≈ −0.80(1) with χ2/d.o.f. ≈ 1.1.
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trap from simulations keeping L/lθ = 2 fixed and using open boundary conditions.
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Figure 5.11: Finite-size scaling curves of the trap susceptibility χt and correlation length ξt at Tc
equations (5.38) and (5.39).

adding a further dependence on Ll−θ in the trap-size scaling predictions of equations (5.24, 5.25) [87].
For example the finite-size and trap-size scaling of the trap susceptibility χt and the correlation length
ξt of equations (5.14, 5.16) can be written as

χt = L2−ηX (τL1/ν , L/lθ) , (5.36)

ξt = LR(τL1/ν , L/lθ) . (5.37)

The above scaling is confirmed by the data of χt shown in figure 5.10, obtained by quantum Monte
Carlo simulations keeping L/lθ = 2 fixed.

For the future analysis, that is in order to study pure trap-size effects, the lattice size L must be
taken sufficiently large to effectively reproduce the infinite-volume limit, that is so that the residual
finite-size effects can be considered negligible compared with the statistical errors. In this respect,
we start noting that finite-size and trap-size scaling also implies that at Tc the ratio of quantities
computed in box of size L and for L→ ∞ becomes a function of L/lθ only, that is

sχ ≡ χt(l, L)

χt(l, L → ∞)
= fχ(L/l

θ) , (5.38)

sξ ≡
ξt(l, L)

ξt(l, L → ∞)
= fξ(L/l

θ) . (5.39)

Their data at Tc support this scaling behavior, as shown in figure 5.11.
Finally, they tell us that around the transition the finite-size effects on χt and ξt get smaller than

one per mille when L/lθ > 7. All data reported in Section 5.4.2, which were supposed to correspond
to the infinite size limit, were obtained by simulations of systems satisfying this condition.

5.4.2 Trap-size scaling analyses of the Monte Carlo data

We now show that a trap-size scaling analysis of the data for trapped systems allows us to determine
the critical parameters, analogously to the finite-size scaling analysis presented in the previous section.

In order to determine the critical temperature from the trap-size scaling predictions (5.27, 5.28),
we may exploit the fact that at T = Tc, that is for τ = 0, the ratios χt/l

θ(2−η) and ξt/l
θ become

independent of the trap size l in the large-l limit. Therefore, we expect that sets of data for different
trap sizes cross each other at one value of the temperature (apart from scaling corrections), providing
an estimate of Tc. This is indeed observed in figure 5.12, which shows the available data of χt/l

θ(2−η)

and ξt/l
θ versus T . The apparent crossing point of the trap-size scaling data indicates Tc ≈ 0.74. A

more accurate estimate is achieved by fitting the data to the simple Ansatz

a+ b(T − Tc)l
θ/ν , (5.40)
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Figure 5.12: Data of ξt/l
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line indicates the critical temperature Tc = 0.7410 obtained from the FSS analysis of Section 5.3.
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τ ≡ T/Tc − 1 and Tc = 0.741.
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Figure 5.14: The one-particle correlation function Gb(0,x) at Tc. The dashed line shows the expected
small-distance behavior Gb(0,x) ∼ r−(1+η).

considering data sufficiently close to the crossing point to avoid higher powers of τ lθ/ν .
We obtain Tc = 0.741(2) and Tc = 0.742(2) respectively from the data of ξt/l

θ and χt/l
(2−η)θ (in

both cases from data for l ≥ 8). The error takes also into account results from different intervals
of values of T around Tc. The expected O(l−ωθ) scaling corrections of equation (5.29) appear quite
suppressed, at least for l ≥ 8. Although the available data come from moderately large trap sizes,
their analysis shows a clear evidence of the expected trap-size scaling, which allows us to accurately
estimate the critical temperature Tc with a precision of a few per mille, in good agreement with the
estimate of Tc by the standard finite-size scaling analysis of Section 5.3, that is Tc = 0.7410(1). In
figure 5.13 we plot the data of of χt/l

θ(2−θ) and ξt/l
θ versus τ lθ/ν . They are consistent with the scaling

behavior predicted by equations (5.27) and (5.28), approaching a universal curve in the large-l limit.
The trap-size scaling of the one-particle correlation function Gb(0,x) at Tc, that is

Gb(0,x) = l−(1+η)θgb(X) , X ≡ r/lθ , (5.41)

is nicely reproduced by the data shown in figure 5.14. At small distance r the two-point function Gb

is expected to show the power-law behavior of the homogeneous system, tha is Gb(0,x) ∼ 1/r1+η .

5.4.3 Trap-size dependence of the particle density

Finally, we discuss the trap-size dependence of the particle density, which has been considered in the
literature as a possible probe of critical behavior, due to the experimental capability of measuring it
quite accurately. Analogously to the finite-size scaling of homogeneous systems, the scaling behavior
of the particle density is more involved, because it is dominated by an analytical contribution. In the
presence of the trap, its behavior is further complicated by the fact that the particle density depends
on the distance from the center of the trap. To begin with, we consider the particle density at the
center of the trap, that is at x = 0. Its asymptotic trap-size dependence is expected to be

ρ(0) = ga(τ) + l−ynθgs(τ l
θ/ν) , (5.42)

where ynθ = 0.8664(3), ga is a nonuniversal analytical function and gs is a scaling function. Moreover
the local-density approximation suggests that the leading analytical term ga(τ) is identical to that of
equation (5.32) for homogeneous systems. This is supported by the data at Tc shown in figure 5.15,
which are consistent with the asymptotic formula

ρ(0) = ρ0 + b l−ynθ (5.43)

with ρ0 equal to the leading constant term of homogeneous systems of equation (5.33) with ρ0 =
0.16187(1). Indeed, a linear fit of the data to equation (5.43) gives ρ0 = 0.1617(3) and b = −0.027(1)
with χ2/dof ≈ 0.4.
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Figure 5.15: The particle density at Tc and at the center of the trap. The full circle along the y-axis
shows the value ρ0 = 0.16187 of the leading asymptotic term obtained for homogeneous systems,
see figure 5.6. The dotted line shows a linear fit to ρ0 + b l−θyn , which gives ρ0 = 0.1617(3) and
b = −0.027(1).

0 1 2
r/l

0.0

0.1

ρ(x)

l=6
l=8
l=10
l=14

T=0.741

Figure 5.16: The space dependence of the particle density ρ(x) at Tc in the presence of the trap.
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Concerning the space-dependence of the particle density and using rotational invariance, we expect
that its large trap-size behavior is

ρ(x) = fa(rl
−1, T ) + l−ynθfs(r/l

θ, τ lθ/ν) , (5.44)

where fa is again an analytic function. Its analytic dependence on the ratio r/l is quite natural,
because we expect it to be a smooth function of

µeff(rl
−1) ≡ µ+ V (r) = µ+

(r
l

)2
, (5.45)

as suggested by the local density approximation. The asymptotic dependence on r/l is shown by the
plot of figure 5.16. We expect that the leading analytic function fa(rl

−1, T ) is provided by the local
density approximation, that is by the particle density ρhomo(µeff , T ) of the homogeneous system in the
infinite-volume limit. The asymptotic validity of the local density approximation was also found at
the T = 0 quantum transitions of one-dimensional and two-dimensional models (see Chapter 4).

The above results show that the behavior of the particle density around the center of the trap and
across the transition is quite nontrivial. We finally write it as

ρ(x) = ρhomo[µeff(rl
−1), T ] + l−ynθfs(r/l

θ, τ lθ/ν) . (5.46)

Let us consider the trap-size scaling limit at T = Tc (that is τ = 0) of this asymptotic behavior, in other
words the l → ∞ limit while keeping the ratio X ≡ r/lθ fixed. In this limit we get r/l = X/l1−θ → 0
so that

µeff = µ+

(
X

l1−θ

)2

(5.47)

and we can expand the analytical term near the point of value µ. We finally obtain

ρ(x) = ρhomo(µ, Tc)− l−2(1−θ)κhomo(µ, Tc)X
2 +O(l−4(1−θ)) + l−ynθfs(X) +O(l−(yn+ω)θ) , (5.48)

where κhomo(µ, Tc) ≡ −∂ρhomo(µ, Tc)/∂µ and the critical temperature corresponds to the specific value
of µ. Note that the O(l−2(1−θ)) term cannot be neglected with respect to the scaling term because

2(1− θ) < ynθ < 4(1− θ) . (5.49)

Indeed 2(1 − θ) = 0.8535(1) and ynθ = 0.8664(3). Therefore, in order to determine the universal
scaling term, we must subtract the terms containing ρhomo(µ) and κhomo(µ). They may be evaluated
from calculations within the homogeneous model at µ and T fixed, for example considering their
large-L limit using periodic boundary conditions. Using the corresponding results at Tc for the finite-
size scaling of homogeneous systems (see Section 5.3.2), we estimate ρhomo(µ = 2, Tc) ≈ 0.16187 and
κhomo(µ = 2, Tc) ≈ 0.90. Then we define the subtracted particle density

ρsub(x) ≡ ρ(x) + ρhomo(µ, T )− l−2(1−θ)κhomo(µ, T )X
2

= l−ynθfs(X) + . . . , X ≡ r/lθ . (5.50)

Its scaling behavior is nicely confirmed by the corresponding data plotted in figure 5.17.

Finally in figure 5.18 we show our data for the density-density correlation Gn, which vanish at
relatively small distance and do not apparently show scaling behaviors, likely because the trap size
of the available data is still too small. Indeed the finite-size scaling data of figure 5.7 begin showing
scaling at relatively large values of the size, essentially because the correlation function is significantly
nonzero only at small distance.
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Figure 5.17: The subtracted particle density ρsub(x) at Tc, cf Eq. (5.50). The data of lynθρsub versus
r/lθ for different trap sizes collapse toward a unique curve, confirming the scaling behavior (5.50).
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Figure 5.18: The density-density correlation Gn(0, x) at Tc.
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5.5 Relationship with experiments

In this chapter, as we have done in Chapter 4, we have shown that a good determination of the critical
parameters and a precise study of the critical behavior of systems that are made inhomogeneous by the
presence of an external space-dependent field can be achieved by matching the trap-size dependence
of appropriate observables with the scaling laws predicted by the theory. Our approach is clearly
similar to experiments probing the finite-size scaling behavior of homogeneous 4He systems at the
superfluid transition [120]. We stress that the main advantage of this approach is that it is supposed
to exactly converge to the critical parameters in the large trap-size limit. Since no further assumption
or approximation, such as the local density approximation or mean field theory, is used, our method
provides a scheme to improve the results, in particular with respect to the problem of controlling the
various sources of uncertainty.

A few comments are now in order concerning the optimal observables to determine the critical
parameters in trapped systems. Of course, they are those which are closely related to the critical
modes around the center of the trap. In particular, the most convenient quantities are those whose
leading behavior in the large trap-size limit is given by the universal trap-size scaling associated with
the critical modes.

The dominant contribution to the particle density, as already noted in Chapter 4, in the large
trap-size limit is given by an analytical background, which is related to the non-critical modes. Our
numerical analysis of Section 5.4.3 shows that such leading background is well approximated (actually
we conjecture that it is exactly given) by the corresponding local density approximation; thus trap-size
scaling provides the leading behavior of the deviations. Of course this requires very precise data before
one can apply the scaling relations, in order to observe the genuine critical term.

In the case of the superfluid transition or Bose-Einstein condensation, the optimal quantities are
related to the one-particle correlation function of the bosonic field around the center Gb(0,x). In
particular we considered the susceptibility and the trap correlation length defined from the second
moment of the Green function. Note that any length scale ξ extracted from the critical modes is
expected to show the same trap-size scaling behavior as ξt and therefore to be effective to deter-
mine the critical parameters. Considering the trap susceptibility, we should note that χt is not
proportional to the zero-momentum component of the momentum distribution, which is given by
n(k) ≡ ∑

x,y e
ik·(x−y)Gb(x,y), even in the presence of the trap, and which can be experimentally

related to the interference patterns of absorption images after a time-of-flight period in the large-time
ballistic regime [119]. Simple considerations show that n(k), and in particular its zero-momentum
component, is largely dominated by the non-critical regions of the trap, while the contribution of the
critical modes are suppressed, roughly by a total volume factor of the system. Its critical scaling in
trapped system in not clear, at least in the trap-size scaling framework, thus the global momentum
distribution of the system does not appear promising to accurately determine the critical parame-
ters. For a discussion of methods based on the measurement of the momentum distribution, see Refs.
[68, 98, 104].

Finally, the particle-density correlations and compressibility are also working optical lattice observ-
ables [46, 97] An analogous trap-size scaling applies also to the connected particle-density correlation,
for which we have Gn(0,x) = l−2θyn Ĝn(rl

−θ, τ lθ/ν). Thus, information on the critical behavior, can be
achieved by matching the experimental data to this trap-size scaling formula. However, our numerical
analysis shows that the universal scaling of Gn at the superfluid transition turns out to appear at
relatively small distance, as shown in figures 5.7 and 5.18, which may make an accurate determination
of its scaling quite hard.
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Appendix A

Quantum Monte Carlo simulations

Numerical techniques are very powerful tools in obtaining results about physical models when an an-
alytic solution is not available, for example due to the complexity of the interactions. Such techniques
can roughly be divided into two classes: (i) exact numerical computations and (ii) Monte Carlo simu-
lations. The first class gives results which coincide with theoretical ones (if one would be able to get a
solution in closed mathematical form) up to machine precision; the second class instead gives results
which are affected by a statistical error, much like a real experimental measurement.

In this work all numerical results reported in the main chapters are obtained through Monte Carlo
simulations. The general setting of a Monte Carlo simulation is now briefly reviewed. Let us consider
a classical system which is defined by a given phase space and a given hamiltonian function. We select
at random a state of the system and we define a set of rules according to which a new configuration
is chosen, so that a dynamical sequence of states is generated. Of course this dynamics has nothing
to do with the real dynamics of the system. The usefulness of this picture is that the phase space
of the system is sampled according to a probability distribution which reflects the properties of the
transition rules. If we are able to create a sequence whose distribution is exactly the one given by the
Boltzmann probabilities then we can identify the thermal average of any observable with the mean
of that observable computed on the states belonging to the dynamical sequence. A peculiarity of
this scheme is that the generation of the dynamical sequence and the computation of the value of an
observable are completely decoupled. This picture is very general and the great variety of classical
Monte Carlo algorithms resides only in the particular set of transition rules chosen.

The system we are going to study is instead a quantum system. The main consequence is that the
measurements of a general observable cannot be separated by the creation of the sequence of states,
implying that we loose the great generality described for the classical situation, so that we must rely on
more specific algorithms. In the following we describe the stochastic series expansion method, which
is very useful for the simulations of quantum spin systems and bosonic particle models. It was first
introduced by Kurkijärvi and Sandvik [31, 71] and then improved by Sandvik and Syljuasen [74, 84].
A general account of this method is given in the review article of Sandvik [21]. We mention that
important extensions of this method have been explored in the literature [85, 86]. A review of recent
developments in Monte Carlo methods in the field of ultracold gases has been given by Pollet [110].

The numerical code used for the present quantum Monte Carlo simulations has been developed in
collaboration with Christian Torrero. The simulations were performed at the INFN Pisa GRID DATA
center, using also the cluster CSN4.

A.1 Stochastic series expansion

The starting point of our analysis is the exact partition function

Z = Tr
(
e−βH

)
=
∑

α

∞∑

n=0

βn

n!
〈α|(−H)n|α〉 , (A.1)

67
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where {|α〉} is a basis. It is now convenient to rewrite the hard-core Bose-Hubbard hamiltonian in a
more symmetric way as a sum over the bonds:

H = −J
2

∑

〈ij〉

(b†i bj + b†jbi) + µ
∑

i

ni +
∑

i

V (ri)ni

=
∑

〈ij〉

(
−J
2
(b†i bj + b†jbi) + (µ+ Vi)

ni
κi

+ (µ+ Vj)
nj
κj

)

≡ −
∑

b

Hb , (A.2)

where κi is the number of links merging to site i and we used the notation Vi ≡ V (ri) for the trapping
potential. In equation (A.2) we have implicitly defined the single bond hamiltonians Hb. Moreover,
since every hamiltonian is given up to an additive constant, we can use

H̄ = H − CNbonds = −
∑

b

(Hb + C) ≡ −
∑

b

H̄b , (A.3)

where the constant C has been added to each Hb. In equation (A.3) we now further decompose the
single bond hamiltonians H̄b as the sum of a part H̄1b which has only diagonal matrix elements and
a part H̄2b which has only off-diagonal matrix elements on the basis {|α〉}:

H̄b = H̄1b + H̄2b , (A.4)

where

H̄1b = C − ni
κi

(µ+ Vi)−
nj
κj

(µ+ Vj) , (A.5)

H̄2b =
J

2
(b†i bj + b†jbi) , (A.6)

and where we have chosen the standard basis of the occupation numbers (|0〉i and |1〉i where i is the
lattice site). Thus, there are only the following six non-zero matrix elements:

〈0, 0|H̄1 ij |0, 0〉 = C (A.7)

〈0, 1|H̄1 ij |0, 1〉 = C − µj −mj (A.8)

〈1, 0|H̄1 ij |1, 0〉 = C − µi −mi (A.9)

〈1, 1|H̄1 ij |1, 1〉 = C − µi − µj −mi −mj (A.10)

〈1, 0|H̄2 ij |0, 1〉 = J/2 (A.11)

〈0, 1|H̄2 ij |1, 0〉 = J/2 (A.12)

where the numbers in the bras and the kets refer to the occupancy of the sites i and j which are
connected by the bond b and we defined µi ≡ µ/κi and mi ≡ Vi/κi. These formula for the matrix
elements are valid (i) for any external coupling, (ii) in any dimension and (iii) with any topology (all
these informations being accounted for by the κi).

Now observe that the power expansion in n of the partition function (A.1), inserting equation
(A.3), can be expressed as a sum of products of bond operators (A.5, A.6) of variable length. We
denote as Sn one of the sequences with n operators (both diagonal and off-diagonal) and write it in
the form

Sn = [a1, b1][a2, b2] · · · [an, bn] , (A.13)

where ai corresponds to the type of operator (1, diagonal; 2, off-diagonal) and bi to the bond. The
number n is called order of the expansion term, each term being an ordered string of non-commutating
bond hamiltonians. The final form for the partition function is thus

Z =
∑

α

∞∑

n=0

∑

Sn

βn

n!
〈α|

n∏

i=1

Hai bi |α〉 . (A.14)
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We now see the rationale for the sings of equations (A.2, A.3, A.4): it is evident that the expansion for
(A.1) is written as a sum of matrix elements which are positive (like H̄2b) or can be made positive by
a suitable choice of the constant C (like H̄1b). In order to sustain a probabilistic interpretation of the
partition function, our matrix elements must be non-negative and the constant C is thus constrained.

Until now we have only rewritten the partition function and no approximation has been made.
Since equation (A.1) is a converging series, we can truncate it at an enough high value M for n, so
that the truncation error be negligible with respect to the statistical error which will emerge from the
Monte Carlo simulation. Thus we can insert (M−n) fill-in identity operators in the operator products
in all possible ways, denoting them as H0 0 and adding the label ai = 0 when a unit operator is placed
at level i in the operator sequence: this has the advantage of dealing with operator expansions of
the same length. Taking into account the combinatorics factors stemming from the arbitrariness of
placing the H0 0 among the Hb, we finally obtain

Z =
∑

α

∑

SM

βn(M − n)!

M !
〈α|

M∏

i=1

Hai bi |α〉 , (A.15)

where now n, which depends on the particular operator string SM , is the number of bond operators,
that is the number of elements [ai, bi] 6= [0, 0].

At this point we can describe the Monte Carlo procedure. For the moment let us forget of com-
puting observables and think only to a stochastic sampling of Z: there are a lot of contributions
arising from (A.15) and we want to select a dynamical sequence whose frequencies reflect the thermal
probability distribution. The terms contributing to (A.15) are given by a state |α〉 and an operator
string SM that, after its application, gives back the same state |α〉. The stochastic sampling which
gives rise to the Monte Carlo dynamics is made of rules that select a new basis state |α′〉 and a new
operator string S′

M : thus, it naturally takes place in the extended space {|α〉}⊗{SM }, and we will call
the pair of a system state and an operator string a configuration. The configuration changes cannot be
completely arbitrary but must satisfy some constrains: (a) the new state and string must contribute to
(A.15); (b) the sequence must be ergodic, that is all possible (contributing) terms must be reachable;
(c) the dynamics must visit the configuration space consistently with the Boltzmann distribution.

The next question is then how to generate the required Monte Carlo sequence. Of course there
are a lot of possibility to explore our configuration space. We now describe the prescriptions of
the algorithm used in our simulations. Given a term contributing to (A.15), two types of updating
are performed: (A) identity operators are replaced by diagonal operators and vice versa; (B) bond
operators of different types are replaced by each other. Moreover, the consistency of the update implies
that at the end also the state |α〉 is changed. Constrains (a) and (b) are easily seen to be verified
while, to satisfy (c), the equations of the detailed balance principle must be fulfilled every time an
operator substitution takes place.

Type (B) can be realize both in a local form [31] or in a global form [74]: in the latter case it is
called operator loop and the efficiency of the algorithm is greatly enhanced. However, there are still
many solutions for the equations of detailed balance, even for the operator loop case, and they can
be classified according to their bouncing probabilities. A bounce is an attempt to change a particular
bond operator which fails and takes the algorithm a step behind. Minimizing the bouncing processes
will generally improve the efficiency of creating decorrelated configurations. The present case of the
hard-core Bose-Hubbard model can be resolved recalling the equivalence with the XXZ-model treated
in Section 3.2.1; thus, we can use the procedure described in detail in Section III of Ref. [84]. The
most simple way of solving the detailed balance equations is using the so-called heat-bath solution
while a more involved solution is needed to minimize bounces; in the latter case the loop is called
directed operator loop.

Using the symmetry properties of the matrix elements, it possible to divide all the detailed balance
equations into eight independent groups, with three possible bounces for each group. Within each
group we set the value of C in such a way that the bouncing probabilities are minimized; in turn this
is another constrain on C. For some values of the system parameters it is possible to eliminate all
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bounces while in other cases some bouncing processes must be allowed. As a result, we allow for one
bounce within each group for positive µ and µ = 0 and two bounces for negative µ, independently of
the dimensionality.

A quantum Monte Carlo simulation of the hard-core Bose-Hubbard model starts choosing at ran-
dom a state |α〉 and the sequence SM filled only with identity operators, which of course give a
non-zero contribution to Z. In homogeneous systems it is known that the average expansion order is
〈n〉 ∼ βNbonds|H̄b|, where H̄b is a sort of mean of the matrix elements of the (unique) bond operator.
Thus, for our trapped systems, we fix the value of M at a ·βNbonds|H̄max|, where |H̄max| is the highest
(in absolute value) bond matrix element and a is a control parameter (of order unity) which ensures
that the configuration order n does never exceed M . For our simulations we find 1.0 ≤ a ≤ 1.3. Of
course, during a simulation, we check that the order is safely less than M and that its distribution is a
gaussian with variance 〈n〉1/2, as expected on theoretical grounds. Then we define a Monte Carlo step
in the standard way as one Monte Carlo sweep of type (A) followed by Nloops updates of type (B). The
number Nloops is fixed at run time in such a way that, at the end of a Monte Carlo step, the number
of bond operators that have been touched by the updating loops is roughly 2M . We stress that the
choice of the above parameters a and Nloops is not a fundamental point, as long as the consistency
conditions are satisfied, since they act on the fine details of the efficiency of the algorithm. The only
relevant point is that, during a simulation, any Monte Carlo step must have the same number of loops.

In our simulations the parameters can be divided into two groups: (i) the parameters that are
related to the physical conditions of the system (the temperature T , the chemical potential µ, the
linear extension L of the d-dimensional lattice, the trap size l) and (ii) the parameters that are related
to the details of the stochastic sampling (the length of the series expansion M , the number Nloops of
operator loops, the value for the additive constant C, the frequency of bouncing processes). In tables
A.1, A.2, A.3, A.4, A.5, A.6 we give the values of the Monte Carlo parameters corresponding to some
physical values of the system parameters. The chosen values for the system parameters approximately
cover the range of the ones used in the simulations. According with the previous considerations, the
values for the Monte Carlo parameters are approximated (within 10%). Of course, when simulating a
homogeneous system, the parameter l is absent while, for a trapped system, we must be sure that the
ratio L/l is sufficiently large so that finite-size effect are negligible. To this end, we give the values of
L for which finite-size effects for trapped systems of trap size l can be considered negligible: (i) for
one-dimensional systems at µ = +1, 0 we take L = 4l+1 while at µ = −1 we have L = 9l+1; (ii) for
two-dimensional systems at µ = +2, 0 we take L = 3l + 1 while at µ = −2 we have L = 5l + 1; (iii)
for the three-dimensional case the details are given in Section 5.4.1.

A.2 Observables

Until now we have described how to change the configurations of the system. When the expectation
value of an observable is needed, the quantity to be sampled is not Z but

〈O〉 ≡ Tr
(
Oe−βH

)

Z
. (A.16)

This would result in a completely different sampling procedure, since in expansion (A.15) also the
operator O must enter together with Ha b in the operator strings. However there are some operators
for which it is possible to compute expectation values only from the knowledge of Z: these are operators
that are diagonal in the basis {|α〉} or operators that are a combination of the bond hamiltonians (in
particular the total energy) [21, 71].

• The particle density and the density-density correlator are given by

〈nx〉 = 〈α(x)|n̂|α(x)〉 , (A.17)

〈nxny〉 = 〈α(x)|n̂|α(x)〉 〈α(y)|n̂|α(y)〉 , (A.18)
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where α(x) is the ket of site x. It is clear that only the local occupancies are involved and these
expectation values can be computed simply from the knowledge of the state |α〉, so that the
problem is substantially equivalent to a classical one.

• The mean value of the bond operator Hb is

〈Hb〉 = C − 〈nb〉
β

, (A.19)

where nb is the number of Hb present in a given operator string and C is the additive constant.
Consequently the total energy of the system is given by

E = CNbonds −
〈n〉
β

, (A.20)

where n is the order of the actual configuration.

• One observable of great importance in homogeneous quantum systems is the linear winding
number, which is defined as

Wi =
N+

i −N−
i

L
, (A.21)

where, for the present case of bosonic systems, N+
i and N−

i are respectively the number of
off-diagonal operators which move a particle in the positive and negative ith direction [73]. The
winding number is related to the spin stiffness ρs of spin models [78] and to the helicity modulus
Υ of particle systems [69] by the following relation:

Υ =
〈W 2

i 〉
Ld−2

. (A.22)

Taking advantage of the homogeneity of the system, Υ is independent of i.
Since no temperature factor enters in (A.22) (as sometimes is found), we note that Υ has
dimension of length in one dimension, is a pure number in two dimensions and is a linear density
in three dimensions.

• Finally, we consider the one-particle density matrix defined by

Gb(x,y) = 〈b†xby〉 . (A.23)

This observable is non-diagonal in the basis of occupation numbers and it is not reducible to a
combination of operators which enter the system hamiltonian, thus an ad hoc algorithm for its
computation must be considered. The details for the stochastic sampling of Gb are explained by
Dorneich and Troyer [83]. We mention that the great advantage of this sampling is that Gb is
computed simply taking track of the details of the dynamics of operator loops, so that no new
construction is needed.

A.3 Sampling and statistics

We now discuss the statistics of our sampling. After each Monte Carlo step we take a measure of an
observable. In order to save hard disk memory, after Nblock Monte Carlo steps we record on an output
file the mean value of these Nblock measurements. In the simulations we took 100 ≤ Nblock ≤ 10000.
This was repeated Nmeas times (the number of printings), so that the final number of Monte Carlo
steps of a single run was Nrun = Nblock ·Nmeas.

We checked the thermalization of a single run basically in two different (but equivalent) ways,
depending on the specific observable. First, dividing the run in n parts and computing the mean
within single blocks (each block being made of ν = Nmeas/n printings and corresponding to ν ·Nblock
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Monte Carlo steps): we checked that the block values were all consistent within error bars; this
implies that the thermalization time, in Monte Carlo steps units, is less than ν ·Nblock (in our checks
2 ≤ ν ≤ 10). Second, computing the mean values obtained excluding part one, two, . . . of the
simulation and observing that the final estimates do not change within error bars.

Then, for each set of the system parameters, we launched a number Nsim of simulations which
differ only for the seed of the random number generator. The number Nsim was chosen compatibly
with the computing resources and so that the final statistical error was sufficiently small. In this way
the total number of Monte Carlo steps is given by

NMCS = Nsim ·Nrun = Nsim ·Nblock ·Nmeas . (A.24)

Of course, the effective independent measurements are Neff = NMCS/τauto , where τauto is the autocor-
relation time at equilibrium. If we suppose that τauto is of the same order of the thermalization time
then we have the rough constrain τauto ≤ Nblock , where we must remember that significant differences

can occur for different observables. The statistical error scales as ǫrel ∼ N
−1/2
eff and, taking for instance

τauto ∼ 10 as expected from previous studies [21], we get ǫrel ∼ 10−3 for NMCS ∼ 107 .
However, we observe that the mean values of an observable computed on two different simulations

of length Nrun can be considered as independent from a statistical point of view, due to the difference
of the random seed. This implies that we can avoid a detailed study of autocorrelation and, in order to
compute the expectation value of an observable and its statistical error for fixed values of the system
parameters, we use the standard jackknife method, where in each bin we put the mean of a single run
(or more suns).

Finally, we give the values of the statistics.

• 1D. Simulations made at µ = +1, 0,−1 ranges from 106 to 3 · 106 Monte Carlo steps in the
presence of harmonic confinement while in the hard-wall limit we have 15 · 106. The total CPU
time is about 40 years.

• 2D. Simulations made at µ = +2,−2 have typical statistics of order 2.5 ·106 Monte Carlo steps
while for µ = 0 we have 7.5 · 106. The total CPU time is about 30 years.

• 3D. Simulations of the homogeneous system have statistics of order 106 Monte Carlo steps
while for the trapped system we have 5 · 106. The total CPU time is about 50 years.
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T l µ C M Nloops bounce

1 10 +1 7.66 360 50 7
0.1 10 +1 7.66 3700 100 5
0.1 100 +1 7.73 37000 1000 5
0.01 100 +1 7.73 370000 2500 4
1 10 0 6.06 300 40 4
0.1 10 0 6.06 3000 20 2
0.1 100 0 6.23 30000 180 2
0.01 100 0 6.23 300000 80 2
1 10 -1 30.2 3300 140 3
0.1 10 -1 30.2 33000 100 2
0.1 100 -1 30.6 330000 1500 2
0.01 100 -1 30.6 3300000 700 2

Table A.1: Parameters of the simulations for one-dimensional systems in the presence of harmonic
confinement.

T L µ C M Nloops bounce

0.02 10 +1 1.75 950 20 15
0.001 40 +1 1.75 82000 100 15
0.02 10 -1 0.25 540 20 20
0.001 40 -1 0.25 47000 85 20

Table A.2: Parameters of the simulations for one-dimensional systems in the hard-wall limit.

T l µ C M Nloops bounce

1 10 +2 5.57 13000 1000 8
0.1 10 +2 5.57 130000 4000 6
0.1 30 +2 5.63 1100000 12000 5
0.05 30 +2 5.63 2200000 14000 5
1 10 0 3.90 8700 450 4
0.1 10 0 3.90 87000 10 3
0.1 30 0 3.97 750000 20 3
0.05 30 0 3.97 1500000 10 3
1 10 -2 10.5 65000 2000 6
0.1 10 -2 10.5 650000 1500 5
0.1 30 -2 10.6 5800000 15000 5
0.05 30 -2 10.6 11600000 8000 5

Table A.3: Parameters of the simulations for two-dimensional systems in the presence of harmonic
confinement.
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T L µ C M Nloops bounce

0.1 8 +2 1.9 3000 35 13
0.01 32 +2 1.9 470000 250 13
0.1 8 +1 1.1 1700 5 11
0.01 32 +1 1.1 270000 5 11
0.1 8 0 0.25 1500 10 0
0.01 32 0 0.25 246000 10 0
0.1 8 -1 0.25 1300 10 16
0.01 32 -1 0.25 238000 150 16
0.1 8 -2 0.25 1300 70 21
0.01 32 -2 0.25 238000 900 21

Table A.4: Parameters of the simulations for two-dimensional homogeneous systems.

T L C M Nloops bounce

1 8 1.42 2600 75 12
0.741 8 1.42 3500 15 12
0.5 8 1.42 5200 10 12
1 16 1.42 21000 600 12

0.741 16 1.42 28000 30 12
0.5 16 1.42 42000 10 12
1 32 1.42 170000 4600 11

0.741 32 1.42 230000 55 11
0.5 32 1.42 330000 10 11

Table A.5: Parameters of the simulations for three-dimensional homogeneous systems at µ = 2.

L l C M Nloops bounce

17 4 8.18 180000 5800 4
21 6 6.15 260000 6500 4
25 8 5.26 380000 7700 5
29 10 4.78 550000 9400 5
33 12 4.47 760000 11000 5

Table A.6: Parameters of the simulations for three-dimensional systems in the presence of harmonic
confinement at µ = 2 and at the critical temperature Tc = 0.7410.
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[52] C. Kollath, U. Schollwöck, J. von Deft, W. Zwerger, Phys. Rev. A, 69 (2004) 031601 .

[53] L. Pollet, S. Rombouts, K. Heyde, J. Dukelsky, Phys. Rev. A, 69 (2004) 043601 .

[54] M. Rigol, A. Muramatsu, Phys. Rev. A, 70 (2004) 031603 .

[55] S. Wessel, F. Alet, M. Troyer, G.G. Batrouni, Phys. Rev. A, 70 (2004) 053615 .

[56] B. De Marco, C. Lannert, S. Vishveshwara, T.-C. Wei, Phys. Rev. A, 71 (2005) 063601 .

[57] M. Rigol, A. Muramatsu, Phys. Rev. A, 72 (2005) 013604 .

[58] O. Gygi, H.G. Katzgraber, M. Troyer, S. Wessel, G.G. Batrouni, Phys. Rev. A, 73 (2006) 063606.

[59] M. Rigol, G.G. Batrouni, V.G. Rousseau, R.T. Scalettar, Phys. Rev. A, 79 (2009) 053605 .

[60] M. Campostrini, E. Vicari, Phys. Rev. A, 81 (2010) 023606 .

[61] M. Campostrini, E. Vicari, Phys. Rev. A, 81 (2010) 063614 .

[62] M. Campostrini, E. Vicari, Phys. Rev. A, 82 (2010) 063636 .

[63] I. Hen, M. Rigol, Phys. Rev. A, 82 (2010) 043634 .

[64] F. Crecchi, E. Vicari, Phys. Rev. A, 83 (2011) 035602 .

[65] S. Fang, C.-M. Chung, P.-N. Ma, P. Chen, D.-W. Wang, Phys. Rev. A, 83 (2011) R031605 .

[66] G. Ceccarelli, C. Torrero, E. Vicari, Phys. Rev. A, 85 (2012) 023616.

[67] G. Ceccarelli, C. Torrero, Phys. Rev. A, 85 (2012) 053637 .

[68] J. Carrasquilla, M. Rigol, Phys. Rev. A, 86 (2012) 043629 .

[69] E.L. Pollock, D.M. Ceperley, Phys. Rev. B, 36 (1987) 8343 .

[70] M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B, 40 (1989) 546 .

[71] A.W. Sandvik, J. Kurkijärvi, Phys. Rev. B, 43 (1991) 5950 .

[72] D.S. Rokhsar, B.G. Kotliar, Phys. Rev. B, 44 (1991) 10328 .

[73] A.W. Sandvik, Phys. Rev. B, 56 (1997) 11678 .

[74] A.W. Sandvik, Phys. Rev. B, 59 (1999) R14157 .

[75] K. Bernardet, G.G. Batrouni, J-L. Meunier, G. Schmid, M. Troyer, A. Dorneich, Phys. Rev. B,
65 (2002) 104519 .

[76] J.A. Lipa, J.A. Nissen, D.A. Stricker, D.R. Swanson, T.C.P. Chui, Phys. Rev. B, 68 (2003)
174518 .

[77] E. Burovski, J. Machta, N. Prokof’ev, B. Svistunov, Phys. Rev. B, 74 (2006) 132502 .



82 BIBLIOGRAPHY

[78] M. Campostrini, M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B, 74 (2006) 144506 .

[79] B. Capogrosso-Sansone, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. B, 75 (2007) 134302 .

[80] K.W. Mahmud, E.N. Duchon, Y. Kato, N. Kawashima, R.T. Scalettar, N. Trivedi, Phys. Rev.
B, 84 (2011) 054302 .

[81] G. Ceccarelli, C. Torrero, E. Vicari, Phys. Rev. B, 87 (2013) 024513 .

[82] G. Ceccarelli, J. Nespolo, A. Pelissetto, E. Vicari, Phys. Rev. B, 88 (2013) 024517 .

[83] A. Dorneich, M. Troyer, Phys. Rev. E, 64 (2001) 066701 .

[84] O.F. Syljuasen, A.W. Sandvik, Phys. Rev. E, 66 (2002) 046701 .

[85] O.F. Syljuasen, Phys. Rev. E, 67 (2003) 046701 .

[86] F. Alet, S. Wessel, M. Troyer, Phys. Rev. E, 71 (2005) 036706 .

[87] S.L.A. de Queiroz, R.R. dos Santos, R.B. Stinchcombe, Phys. Rev. E, 81 (2010) 051122 .

[88] C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G.Hulet, Phys. Rev. Lett., 75 (1995) 1687 .

[89] K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ket-
terle, Phys. Rev. Lett., 75 (1995) 3969 .

[90] J.A. Lipa, D.R. Swanson, J.A. Nissen, T.C.P. Chui, U.E. Israelsson, Phys. Rev. Lett., 76 (1996)
944 .

[91] M.B. Dahan, E. Peik, J. Reichel, Y. Castin, C. Salomon, Phys. Rev. Lett., 76 (1996) 4508 .

[92] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett., 81 (1998) 3108 .

[93] G.G. Batrouni, V. Rousseau, R.T. Scalettar, M. Rigol, A. Muramatsu, P.J.H. Denteneer, M.
Troyer, Phys. Rev. Lett., 89 (2002) 117203 .
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