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Abstract

We present parallel lightweight algorithms to construct rank and select structures, wavelet
trees and suffix arrays in a shared memory setting. In experiments the presented wavelet
tree algorithms achieve a speedup of 2-4x over existing parallel algorithms while reducing
the asymptotic memory requirement. The suffix array construction algorithm presented
is the first parallel algorithm using the induced copying approach. It only uses a small
amount of extra space while staying competitive with existing parallel algorithms. Finally,
we show how our algorithms can be used to build compressed full-text indexes, such as
the FM-index, in parallel.
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1. Introduction

The amount of digitally available information grows rapidly. To process and store this data
efficiently new methods are needed. In recent years compressed full-text indexes [NM07]
have become more and more popular as they provide an elegant way of compressing data
while still supporting queries on it efficiently. The most popular indexes all rely on three
basic concepts: succinct rank and select on bitvectors, wavelet trees and suffix arrays. For
modern applications, construction algorithms for these data structures are needed that are
fast, scalable and memory efficient. The succinct data structure library (SDSL) [Gea14] is
a sequential state of the art library. Additionally, in recent years wavelet-tree construction
[Shu15] and suffix-array construction [KS03] has been successfully parallelized. However,
so far most implementations are not memory efficient. The goal of this work is to develop
algorithms which are memory efficient and scale well, so that they are applicable for
libraries such as SDSL.

For wavelet-tree construction we adapt the algorithm by Shun [Shu15] to only use n log σ+
o(n) bits additional space beyond the input and output while remaining O(log n log σ)
depth and O(n log σ) work. In our experiments the changes to the algorithm result in a
speedup of 2-4x on the original algorithm. Additionally, we propose a variation of the
domain-decomposition algorithm by Fuentes et al. [Fea14] designed for small alphabets.
When σ

log σ ∈ O(log n) holds for the alphabet size, the algorithm requires same space and
time as the variation of Shun’s algorithm.

For suffix-array construction there are three main approaches: prefix doubling, recursive
algorithms and induced copying [PST07]. Algorithms using prefix-doubling [LS07] and re-
cursive algorithms [KS03], have been parallelized. However, the sequential algorithms that
are lightweight and perform best in practice all use induced copying. The problem is that
these algorithms use sequential loops with non-trivial data dependencies which are hard
to parallelize. In this work we first use parallel rank and select on bitvectors to reduce the
memory requirement of the parallel implementation of prefix doubling from the problem
based benchmark suite (PBBS) [Sea12]. Then we show how to parallelize induced sorting
for byte alphabets in polylogarithmic depth. Finally we combine both techniques to gen-
erate a parallel version of the two-stage algorithm [IT99]. In the experimental evaluation
we will see that the proposed algorithm uses very little additional space and is one of the
fastest parallel suffix array construction algorithms on byte alphabets. Finally, we use
our algorithms to construct FM-indexes [FM00] in parallel and make our implementations
available as part of the SDSL. In experiments we show that our algorithms scale well on
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2 1. Introduction

a shared memory machine on real-world inputs.
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2. Preliminaries

2.1 Strings

A string S is a sequence of characters from a finite ordered set Σ called the alphabet. The
length of S is denoted as n = |S|. The size of the alphabet is denoted as σ = |Σ| and
the alphabet will often be interpreted as the integers [0, σ − 1]. The i-th character of S is
denoted as S[i] (zero based) and S[i..j] denotes the substring from position i to position
j (inclusive S[i] and S[j]). S[0..j] is called prefix of S and S[i..(n − 1)] is called suffix
of S. By appending two strings A and B we get the concatenation denoted as AB. As
every character can be seen as a string of length 1, we use the same notation cS to append
a string S to a character c. As the characters of Σ are ordered with <, we can define
the lexicographical order < of strings. Let X,Y be strings and a,b be characters. Then
aX < bY , iff a < b or a = b and X < Y . The empty string ε is defined to be smaller then
all other strings.

2.2 Bitvectors

A bitvector B is a special string where the alphabet is restricted to zeros and ones, Σ =
{0, 1}. Bitvectors can be used for many different applications. For example a bitvector of
length n can be used to represent a subset A of some ordered set B = [0..(n− 1)]. Then
B[i] = 1 iff i ∈ A. There are three queries we typically want to answer on bitvectors in
constant time.

• B[i]: Access the i-th element

• rankb(B, i): Return the number of appearances of bit b in B[0..(i− 1)]

• selectb(B, i): Return the position of the i-th appearance of bit b in B

Note, if we can answer rank1 queries in constant time, then we can use the relation
rank0(B, i) = i− rank1(B, i) to answer rank0 queries. However, we cannot use select1 to
answer select0 queries and vice versa.

Jacobson [Jac89] first showed that rank could be answered in constant time with a data
structure occupying only o(n) bits additional space. Later Munro [Mun96] and Clark
[Cla96] introduced the first select structure using only o(n) bits of memory and answering
select queries in constant time.

3



4 2. Preliminaries

2.3 Wavelet Trees

Wavelet trees can be seen as a data structure to generalize functionality of bitvectors to
general alphabets. However, since they first appeared in 2003 [GGV03] they have been
applied to all kinds of problems. As described by Navarro [Nav14], wavelet trees can used
for point grids, sets of rectangles, strings, permutations, binary relations, graphs, inverted
indexes, document retrieval indexes, full-text indexes, XML indexes, and general numeric
sequences. In this work we will focus on the construction of wavelet trees. The construction
is handled for both byte and integer alphabets which covers all listed applications.

Let S be a string over an alphabet Σ with |Σ| = σ. We assume that σ ≤ n, otherwise
we could map each the alphabet to an alphabet with at most n different characters. By
using wavelet trees we can answer access, select and rank queries on S in Θ(log σ) time.
We first give the definition of the standard wavelet tree and then go into some interesting
variations.

2.3.1 Balanced Binary Shaped

The wavelet tree of the string S over the alphabet Σ = [0, (σ−1)] can be defined recursively.
Let [a, b] ⊆ [0, (σ− 1)] be a section of the alphabet. The wavelet tree of S over [a, b] has a
root node v. If a = b, v is a leaf labeled with a. Otherwise, v has a bitvector Bv defined
as:

Bv[i] =

{
0, if S[i] ≤ (a+ b)/2,

1, else
(2.1)

Let Sl be the string of all the characters S[i] where Bv[i] = 0 and Sr the string of all
characters S[i] with Bv[i] = 1. The left child vl of v is the wavelet tree of the string Sl over
the alphabet [a, ba+b

2 c] and the right child vr of v is the wavelet tree of the string Sr over

the alphabet [ba+b
2 c+ 1, b]. In order to answer queries on the wavelet tree the bitvector of

each node is augmented with rank and select structures. With the algorithms described
Claude and Navarro [CN09], we can then answer general access, rank and select queries
on the wavelet tree. In practice we concatenate all bitvectors of the nodes in breadth-first
left to right order to one large bitvector. Then we only need to build one rank and two
select structures on this bitvector and still have the full wavelet tree functionality. For
most applications the nodes with pointers to the children are omitted. Only the bitvector
with the rank and select structure is needed to traverse the tree.

2.3.2 Different Variations

There are two main techniques to compress wavelet trees. Either, one can compress the
bitvector and the rank/select structures directly. Or, one changes the shape of the wavelet
tree in order to achieve better space usage. Here we will focus on the latter. The standard
wavelet tree is a balanced binary tree, at each node the alphabet is exactly split in half.
Thus, the wavelet tree has log2 σ levels and each character is represented by exactly one
bit in each level. The wavelet tree then has a total space requirement of n log2 σ bits.
As proposed by Mäkine and Navarro [MN05], we can instead use Huffman-shaped wavelet
trees. In a Huffman-shaped wavelet tree the leaf representing a character has exactly the
depth of the number of bits in the Huffman code of the character. We can easily observe
that the Huffman-shaped wavelet tree of S has the same size as the Huffman encoding of
S. Thus, the Huffman-shaped wavelet tree of S compresses to the zero order entropy of S
while still remaining fully functional.

4



2.4. Suffix Arrays 5

acbgfgdehdeb

000111011010

acbddb

010110

abb

011

[a, b]

cdd

011

[c, d]

[a, d]

gfgehe

101010

fee

100

[e, f ]

ggh

001

[g, h]

[e, h]

Bitvector of Wavelet Tree:

000111011010 010110101010 011011100001

Figure 2.1: Example of a balanced binary wavelet tree over the string acbgfgdehdeb.

1 serialWT (S, Σ = [a, b]):
2 if a = b: return leaf labeled with a
3 v := root node
4 v.bitvector := bitvector of size |S|
5 for i := 0 to |S| − 1:

6 v.bitvector[i] =

{
0, if S[i] ≤ (a+ b)/2,

1, else

7

8 (S0 , S1) = pack(S, v.bitvector)
9 v. left child = serialWT(S0, [a, ba+b

2
c])

10 v. right child = serialWT(S1, [ba+b
2
c+ 1, b])

11 return v

Figure 2.2: Sequential wavelet-tree construction algorithm

2.3.3 Construction Algorithms

For the standard wavelet tree it is easy to devise a Θ(n log σ) construction algorithm
directly from the recursive definition . pack(S,B) in line 8 of figure 2.2 describes the basic
method inserting all S[i] with B[i] = 0 into S0 and all S[i] with B[i] = 1 into S1. It is easy
to see that the work done in each recursive step is linear in |S|. For the recursive calls
|S0|+ |S1| = |S| holds. As we have log σ levels in the resulting tree the total, work sums up
to n log σ. Note that by changing line 6 of the algorithm it is possible to construct wavelet
trees of different shapes. For example we can fill v.bitvector with the corresponding bit of
the Huffman code of the characters in S to construct the Huffman shaped wavelet tree.

To keep the descriptions concise, we will mostly leave out the construction of the actual
nodes and concentrate on the construction of the bitvector.

2.4 Suffix Arrays

Suffix Arrays, first introduces by Manbers and Myers in 1990[MM93], are a space efficient
alternative to suffix trees. Suffix arrays have a wide range of applications in text-indexing,
bioinformatics or compression algorithms. Especially in recent years we have seen interest-
ing developments towards compressed full-text indexes. These indexes use less space than

5



6 2. Preliminaries

i T[i] SA[i] ISA[i] BWT T[SA[i] . . . (n-1)]

0 a 4 1 c aaabcabc
1 a 0 4 c aabcaaabcabc
2 b 5 7 a aabcabc
3 c 9 10 c abc
4 a 1 0 a abcaaabcabc
5 a 6 2 a abcabc
6 a 10 5 a bc
7 b 2 8 a bcaaabcabc
8 c 7 11 a bcabc
9 a 11 3 b c
10 b 3 6 b caaabcabc
11 c 8 9 b cabc

Table 2.1: Example of a suffix array over the string aabcaaabcabc.

the actual text, while at the same time replacing it and providing efficient search function-
ality. Most compressed full-text indexes use suffix arrays as an underlying concept. For a
comprehensive study of compressed full-text indexes see [NM07].

2.4.1 Definition

The i-th suffix of a string S of length n is the substring S[i..(n − 1)]. The suffix array
(SA) of S is the array with the starting positions of all suffixes of S in lexicographic order.
Thus, S[SA[i− 1], n] < S[SA[i], n] holds for all i ∈ [1, (n− 1)]. We can easily see that SA
is a permutation of the integers [0, (n− 1)]. The inverse permutation of SA is referred to
as inverse suffix array (ISA).

2.4.2 Construction Algorithms

Suffix Array can be constructed in linear time by first constructing the suffix tree and use
a depth-first traversal to build the suffix array. However, this approach is impractical for
most applications because of the increased size of suffix trees compared to suffix arrays.
Algorithms constructing the suffix array without prior constructing the suffix tree can be
divided into three main approaches.

• Prefix-Doubling computes in each step the approximated SA and ISA, where the
suffixes are only sorted by a prefix of certain length. In the following step the ap-
proximated SA and ISA is refined by doubling the prefix length used for comparison.
Each refinement step can be done in linear time using the information given by the
approximated ISA of the last step. After log n refinement steps the suffixes are sorted
by their complete length, thus resulting in a worst case runtime of O(n log n).

• Recursive algorithms recursively construct the suffix array SA′ for a subset of suffixes
of S. Then use SA′ to infer the suffix array of the remaining suffixes. In the last step
the two suffix arrays are merged into the final suffix array. Usually, the reduction in
each recursive step is at least 2

3 and takes linear time. Thus resulting in linear time
algorithms.

• Induced Copying, as the recursive approach, uses the fact that a sorted subset of
suffixes can be used to induce a sorting of the remaining suffixes. The subset is
chosen in such a way, that after sorting the subset, the remaining suffixes can be
inserted into the suffix array by scanning the suffix array sequentially. This technique
is often referred to as induced sorting. SA-IS algorithm [NZC09] uses induced sorting

6



2.5. FM-Index 7

to also sort the selected suffixes in linear time. The SA-IS algorithm applies induced
copying recursively, resulting in a linear time algorithm. Other, in practice fast,
induced copying algorithms use string sorting as a subroutine resulting in O(n log n)
or even O(n2 log n) worst case run-times.

For further reading about different suffix array construction algorithms we refer to “A
Taxonomy of Suffix Array Construction Algorithms” [PST07].

2.4.3 Notable Implementations

As there are many different SA construction algorithms, there are also many different
implementations. However, here we want to point out two implementations which are
lightweight, fast in practice and are often used for comparison purposes in benchmarks.

• DivSufSort by Yuta Mori is an optimized implementation of the two-stage algorithm[IT99].
DivSufSort is one of the fastest SACA for byte alphabets. It makes use of the induced
copying approach in combination with optimized string sorting routines. This imple-
mentation uses constant additional space and has a worst-case runtime of O(n log n).
For more details see https://github.com/y-256/libdivsufsort.

• SA-IS is an implementation of the SA-IS algorithm[NZC09] also implemented by
Yuta Mori. Remarkable is that the algorithm has linear worst-case runtime, is
space efficient and performs well in-practice. https://sites.google.com/site/

yuta256/sais

2.4.4 DivSufSort

DivSufSort uses the notion of A-type, B-type and B∗-type suffixes. In the description of
SA-IS [NZC09] similar definitions are used only named L, S and LMS types.

Let T be a text of size n. A suffix T [i..(n−1)] is of type A if T [(i+1)..(n−1)] < T [i..(n−1)]
and of type B otherwise. B∗ suffixes are all B-type suffixes that are followed by an A-type
suffix. The suffix only containing the last character of T is defined to be of type A. The
string between two starting positions of B∗-type suffixes is referred to as B∗ substring.

DivSufSort uses an optimized implementation of multikey quicksort to sort all B∗ sub-
strings. Then, a reduced text is formed by concatenating the ranks of all the B∗ substrings
in text order. By solving the reduced problem with an optimized suffix sorting routine,
the final positions of the B∗ suffixes are calculated. Then, induced sorting is used to insert
the remaining B-type suffixes into the suffix array. Finally, with a second traversal of the
suffix array, the A-type suffixes are put into the suffix array. For more details on induced
sorting see the description of the SA-IS algorithm [NZC09].

2.5 FM-Index

The FM-index is a compressed full-text index. It was invented by Paolo Ferragina and
Giovanni Manzin [FM00]. The FM-index uses the Burrows-Wheeler transform (BWT) to
answer count and locate queries on strings.

The Burrows-Wheeler transform of a string S is a permutation of the input characters
of S. Using the suffix array of S we can define the Burrows-Wheeler transform with
BWT [i] := S[SA[i]− 1] for i ∈ {0, · · · , n− 1} and S[−1] = S[n− 1]. For a brief example
of the Burrows-Wheeler transform see table 2.1 .

The count query on a string S returns the number of occurrences of a pattern P in S.
The locate query additionally returns the positions of the occurrences of P in S.

7
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8 2. Preliminaries

To answer count and locate queries the FM-index has a data structure answering rankα(BWT, i)
for all α ∈ Σ efficiently. For a pattern P , the so called backward-search, see figure 2.3,
gives us an interval [s, e] for which SA[s..e] holds all occurrences of P in S. If the FM-

1 backwardSearch(P):
2 i = |P | − 1
3 e = 0
4 s = n− 1
5 while (s ≤ e and i ≤ 0 ):
6 s = rankP [i](BWT, n− 1) + rankP [i](BWT, s− 1) + 1
7 e = rankP [i](BWT, n− 1) + rankP [i](BWT, e)
8 i−−
9 return [s, e]

Figure 2.3: Finding all occurrences SA[s, e] of a pattern P with backward-search.

index also needs to support locate queries, then samples of the suffix array are stored. In
this work we use wavelet trees to store the Burrows-Wheeler transform and to support the
rank queries in O(log σ).

2.6 Parallel Computation Model

Our focus lies on shared memory machines, even though some algorithms described in this
work can be applied to a distributed memory setting. The computation model we choose
is the PRAM (Parallel Random Access Machine) model allowing concurrent reads and
special atomic write operations.

For complexity analysis of our algorithms we use the work-depth model. Work W is the
number of total operations required by the algorithm and depth D is the number of time
steps required. Brent’s scheduling theorem [JaJ92] states that if we have P processors
available we can bound the running time by O(WP +D).

A parallel algorithm is work efficient if the work matches with the time complexity of the
best sequential algorithm. The goal of this work is to design parallel algorithms which are
work efficient while achieving polylogarithmic depth.

2.7 Parallel Primitives

In the described algorithms we will make use of the parallel primitives prefix sum, filter
and pack.

2.7.1 Prefix Sum

Prefix sum takes an array A of n elements of type T , an associative binary operator
⊕ : T × T → T and an identity element 0 with 0⊕ x = x for all x. Prefix sum calculates
the array {0, 0 ⊕ A[0], 0 ⊕ A[0] ⊕ A[1], · · · , 0 ⊕ A[0] ⊕ A[1] · · · ⊕ A[n − 2]} and returns
0⊕ A[0]⊕ A[1]⊕ · · ·A[n− 1]. We mostly use prefix sum in such a way that it writes the
output to the input array. Prefix sums can be implemented with O(n) work and O(log n)
depth [JaJ92].

2.7.2 Filter

Filter takes an array A of n elements of type T and a predicate function f : T → {0, 1},
which can be evaluated in constant time. Filter returns all elements A[i] with f(A[i]) = 1.
In pseudocode filter sometimes has three arguments were the first is the input array, the
second is the output array and the third is the predicate function. Using prefix sums, filter
can be implemented in O(n) work and O(log n) depth [JaJ92].

8



2.7. Parallel Primitives 9

2.7.3 Pack

For our purposes pack is a primitive taking an array A[0..(n−1)] of elements and a function
fA : {0, .., (n − 1)} → {0, 1} which can be evaluated in constant time. As a result pack
returns two arrays A0 and A1. Ak holds all elements A[i] where fA(i) = k. The relative
order between the elements in A0 and A1 remain unchanged.

As an example pack([1, 3, 6, 5, 3, 2, 7], i 7→ A[i] mod 2) returns [6, 2]) and [1, 3, 5, 7].

The algorithm described in figure 2.4 calculates pack in O(n) work and O(log n) depth.
The pack method uses additional n bits of space for the array S.

1 pack (A, fA) :
2 S := Array of n

logn
integers

3 block {0, .., (n− 1)} into groups of size logn
4 parfor S[b] := sum over all fA(i) of group b
5 perform exclusive prefix sum over S with total sum m
6 A0 ,A1 := Arrays of size m−n and m
7 parfor b := 0 to n

logn
:

8 pack block b serial to correct positions in A0 and A1 using S[b]
9 return (A0, A1)

Figure 2.4: Parallel-pack algorithm computing A0 and A1 where Ak holds all elements A[i]
with fA(i) = k.
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3. Related Work

3.1 Parallel Rank and Select Structures on Bitvectors

Recently Shun[Shu15] described how the construction of succinct rank and select structures
can be done in parallel. Additionally, there are different practical implementations of rank
and select structures [GP14, Vig08, Cla96]. Especially the numbers of cache misses play
an important role for the performance of these structures on modern machines. So far we
know, at the time, there is no implementation constructing one of the mentioned structures
in parallel. Even though some of the proposed rank and select structures are very straight
forward to implement in parallel.

3.2 Parallel Wavelet-Tree Construction

Fuentes et al. [Fea14] introduced two different algorithms to build wavelet trees in parallel.
Both algorithms perform O(n log n) work and O(n) span. However, two very different
concepts are applied. The first algorithm uses the observation that on the i-th level,
the node index in which a character s is represented in, can be calculated by simply
taking the first i bits of the binary representation of s (this only works with the standard
balanced wavelet tree). Thus, the levels can be constructed independently. In the described
algorithm the l-th level is build by scanning the input sequentially and using the first l
bits of each character to assign the character to the corresponding node of the level. Then,
with a second scan, the bitvectors of the nodes can be calculated. The second algorithm
splits the input string S into p parts and then builds a wavelet tree on each of the parts.
In the final step the p wavelet trees are merged by concatenating the bitmaps of each level
sequentially. The second approach is referred to as domain decomposition because of the
initial decomposition of the input string.

Recently, Shun introduced two algorithms with polylogarithmic depth [Shu15]. The first
algorithm, we will refer to it as levelWT, builds the wavelet tree in a top-down level by
level approach. Each level is build in parallel by first writing the bitvectors of all nodes
of the level in parallel. Then the characters of the input string are reordered using prefix
sums over the bitvectors of the nodes. This approach basically performs a parallel binary
radix sort starting with the most significant bit.

The second algorithm again uses the before mentioned observation to build the levels of
the wavelet tree independently. Additional parallelism is introduced by using a parallel

11



12 3. Related Work

integer sorting algorithm to order the elements by their top bits. The second algorithm is
referred to as sortWT.

Both levelWT and sortWT achieve very good speedups on shared memory machines and
there are implementations available in the problem based benchmark suite [Sea12]. So far,
levelWT is in practise the fastest parallel implementation we are aware of [Shu15].

3.3 Parallel Suffix-Array Construction

Since suffix arrays have been introduced by Manber and Myers [MM93], many differ-
ent suffix-array construction algorithms (SACA) have been published. Some of the most
important ones are the difference cover algorithm (DC3)[KS03] and the induced sorting
algorithm (SA-IS) [NZC09]. DC3 was one of the first linear time SACAs. It can be paral-
lelized well in all kinds of computational models. For example there are numerous parallel
implementations for distributed memory [KS07] or GPUs available [Osi12, DK13, WBO15].

SA-IS is a lightweight linear work algorithm and one of the fastest SACAs in practice.
However, it is hard to parallelize, as induced sorting consists out of multiple sequential
scans with non-trivial data dependencies.

For some compressed SA applications only the burrows wheeler transformation is needed
(BWT), so there has been significant work on constructing the BWT in parallel [HT13,
Lea15]. These algorithms first construction the BWT over parts of the input and then
merge these parts in parallel. Many bioinformatics applications use compressed SA, thus
there are frameworks with parallel SACA implementations especially optimized for DNA
input [Lea13, Hea09]. For example, PASQUAL [Lea13] has a fast implementation using a
combination of prefix doubling and string sorting algorithms.

12



4. Parallel Wavelet-Tree Construction

We first describe how to parallelize the construction of rank and select structures on
bitvectors. Then two algorithms are introduced to build wavelet trees in parallel.

The first rank and select structures for bitvectors were introduced by Jacobson[Jac89].
Since then many different variations were described. Here we focus on two in practice fast
data structures which already have sequential implementations in the SDSL. Especially a
cache friendly query pattern is in practice important for good performance.

4.1 Parallel Rank on Bitvectors

There are numerous different implementations of rank support structures on bitvectors.
One of the simplest, and in practice fastest, is the broadword implementation suggested
by Vigna [Vig08]. The corresponding SDSL implementation is called rank support v. The
answers to the rank queries are precomputed and stored in a first and second level lookup
table. The tables are packed into memory such that in most cases at most one cache miss
is needed to answer a rank query. This method uses 25% additional space to the bitvector.

The construction algorithm for this data structure can trivially be parallelized by using
prefix sums. By temporary storing the values for the prefix sums in the output array no
additional memory is needed.

4.2 Parallel Select on Bitvectors

For select support queries we parallelized the SDSL implementation of the structure pro-
posed by Clark [Cla96]. In the SDSL the implementation is referred to as select support mcl.
First, the range of possible queries is blocked into large blocks. Then, a case distinction is
made. If a block spans more than log4 n bits (where n is the size of the bitvector), then the
block is a long block. Otherwise, the block is called short block. For long blocks simply
the answers to all queries are stored explicitly. For short blocks the answer to every 64th
query is stored. In practice this structure only uses small amount of additional space. For
a more precise analysis see [Cla96] and the SDSL documentation.

Using multiple parallel for-loops with prefix sums the blocks can be categorized into long
and short blocks. After categorizing the blocks, they can be initialized independently. As
small blocks are only of logarithmic size, they can be initialized sequentially while staying

13



14 4. Parallel Wavelet-Tree Construction

in logarithmic depth. Long blocks are again initialized by multiple parallel for-loops and
prefix sums.

Using the parallel rank and select structure implementations, we can now parallelize
wavelet-tree construction.

4.3 Domain Decomposition Algorithm

1 ddWT (S, Σ, P):
2 decompose S into P strings SP

3 parfor p := 0 to P−1:
4 (Bp , Nodes[p]) = serialWT(Sp)
5 offsets := array of size 2 · |Σ| · P
6 parfor n := 0 to 2 · |Σ| − 1:
7 parfor p := 0 to p−1:
8 offsets [n · P + p ] = Nodes[p][n].length
9 perform prefixsum on offsets

10 parfor p := 0 to p−1
11 parfor n := 0 to 2 · |Σ| − 1:
12 // destination : bitvector and offset , source: bitvector and offset , number of bits to

copy
13 copy(B, offsets [n · P + p ], Bp , Nodes[p][n ]. start , Nodes[p][n ]. length)
14 return B

Figure 4.1: Domain decomposition algorithm for parallel wavelet-tree construction.

The domain decomposition algorithm described in figure 4.1 is an modified version of the
algorithm described by Fuentes et al. [Fea14]. The first part of the algorithm (line 2-4)
remains unchanged. Here the string is split into P chunks for which P WTs are built.
We observe that merging the WTs essentially is a reordering of the bitvectors. Initially,
the bitvectors of the P WTs are stored consecutevly in the bitmaps Bp. We reorder the
lengths of the bitvectors of the nodes into their final order (line 6-8). After calculating
the prefix sum (line 9), offsets stores the starting positions of all nodes in the resulting
bitvector in increasing order. The result bitvector B can now be written in parallel.

Through the modification the algorithm has O(logPσ+ n log σ
P ) depth and O(Pσ+n log σ)

work. With P = n
logn we get O(log n log σ) depth and O( nσ

logn + n log σ) work. For small
alphabet sizes with σ

log σ ∈ O(log n) ddWT, has O(n log σ) work and the memory require-
ment beyond the input and the output is n log σ bits for the bitmaps of the wavelet trees
generated in the first part of the algorithm. Additionally, O(σ log n) bits per processor
are needed to store the node offsets of the wavelet trees. ddWT can also be adapted to
construct different shapes of wavelet trees by simply adapting the serialWT algorithm
accordingly.

Note, if implemented carefully, all writes to bitvectors by a single thread in the ddWT
algorithm are consequtive. This makes ddWT very cache efficient. Additionally, it can
make sense to slightly change the merging step to avoid multiple threads from writing to
the same word. One way to do so is to assign each thread a block B[start..end] of the
output bitvector. Then, for example with a binary search on the offset array, each thread
can determine the wavelet tree index n and the node index p on which the first bit to copy
lies. Then each thread writes to B[start..end] just as described in the pseudocode.

4.4 Recursive Algorithm

The levelWT algorithm proposed by Shun [Shu15] uses prefix sums over the bitvectors of
a level of the WT as subroutine. As a result the algorithm has a memory requirement

14



4.4. Recursive Algorithm 15

of at least n log n bits. We can reduce the memory requirement by using the parallel
pack operation. Additionally, the recursive approach reduces the memory overhead by
implicitly passing the node boundaries as described in figure 4.2. Especially when dealing
with large alphabets, this additionally saves memory. This algorithm has O(log n log σ)

1 recursiveWT (S, Σ = [a, b]):
2 if a = b: return leaf labeled with a
3 v := root node
4 v.bitvector := bitvector of size |S|
5 parfor i := 0 to |S| − 1:

6 v.bitvector[i] =

{
0, if S[i] ≤ (a+ b)/2,

1, else

7

8 (S0 , S1) = parallelPack(S , v.bitvector[i])
9 v. left child = recursiveWT (S0, [a, ba+b

2
c]) // async call

10 v. right child = recursiveWT (S1, [ba+b
2
c+ 1, b]) // async call

11 return v

Figure 4.2: Recursive construction algorithm for parallel wavelet-tree construction.

depth and O(n log σ) work, matching that of the original levelWT. However, it only needs
additional n log σ bits for the output of the parallel pack routines. Thus we reduce the
memory consumption from at least n log n to n(1 + log σ) bits of additional space, plus
O(log n log σ) bits stack space per processor.

Note both ddWT and recursiveWT can be easily adapted to build wavelet trees of different
shapes by changing line 6 in serialWT or in recursiveWT. We provide implementations of
recursiveWT building different-shaped wavelet trees in the parallel branch of the SDSL.
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5. Parallel Suffix-Array Construction

In this chapter we describe a new parallel suffix-array construction algorithm. So far all
parallel SACAs either use the recursive approach [KS03] or use prefix doubling[LS07].
Both approaches can be parallelized well because their most time consuming step relies
on integer sorting. We first describe a simple parallel prefix doubling algorithm which in
practice needs n(2 + log n) + o(n) bits of additional memory. Then we introduce a parallel
algorithm which uses induced copying and in practice uses 2n + o(n) bits beyond input
and output.

5.1 Parallel Range

One simple, but in practice very scalable, suffix-array construction algorithm uses the
prefix doubling approach. ParallelRange from PBBS is a parallel version of the algorithm
described by Larsson and Sadakane [LS07]. The algorithm, described in figure 5.1, starts

1 parallelRange (T,n):
2 SA, ISA := integer arrays of size n
3 parfor i := 0 to n−1:
4 ISA[i ] = T[i]
5 SA[i] = i
6 ranges = {(0,n−1)}
7 offset := 1
8 while ranges not empty:
9 nranges = {}

10 parfor (s,e) in ranges:
11 sort SA[s..e] by the values at ISA[SA[s..e]+offset ]
12 parfor (s,e) in ranges:
13 scan SA[s..e] in parallel update ISA and add equal ranges to nranges
14 ranges = nranges
15 offset = min(1,offset)
16 offset ∗= 2
17 return SA

Figure 5.1: Parallel range algorithm for parallel suffix-array construction.

with an approximate SA and ISA, in which the suffixes are only sorted by their first
character. The idea is to refine SA and ISA in each round. In each refinement step
groups of suffixes with the same ISA value are sorted. These groups are referred to as
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18 5. Parallel Suffix-Array Construction

range. In the following round suffixes can be sorted by twice as many characters by using
the approximated ISA for comparison. More precisly in step d the suffix i is sorted by
ISA[SA[i] + 2d]. After at most log n rounds all suffixes have a distinct ISA value and thus
have been sorted correctly.

In the PBBS implementation of parallelRange the data structure used to store and update
the ranges is two simple array of integer pairs. However, this approach uses at least
2n log n bits additional space. To save space we can tag the start and end of each range
with a bitflag in a bitvector. By using the parallel rank and select structures we can
then efficiently navigate through all ranges. This approach then only needs 2n+ o(n) bits
managing the ranges. Additionally, parallelRange uses n log n bits space for the ISA array
plus the space needed for the sorting routine. The space needed for the sorting routine
depends on the size of the ranges that are sorted. In practice this space requirement can be
reduced drastically by presorting the suffixes directly by their first characters into buckets
and initializing ranges accordingly.

If we use a sorting algorithm withO(nε) depth andO(n) work, parallelRange hasO(nε log n)
depth and O(n log n) work (for ε > 0).

5.2 Parallel DivSufSort

Using parallelRange we can parallelize the DivSufSort implementation by Mori of the two-
stage algorithm [IT99]. In this section we will first give an overview over our parallel
DivSufSort algorithm. Then we will explain in detail how to parallelize induced sorting,
the key concept used by most state-of-the-art suffix-array construction tools.

5.2.1 Overview

First we give a general overview over the algorithm in figure 5.2. In the first step the

1 parallelDivSufSort(T,n):
2 categorize A, B and BStar suffixes
3 sort BStar substrings to get reduces SA problem
4 use parallelRange to solve reduced SA problem
5 induce positions of B−type suffixes
6 induce positions of A−type suffixes

Figure 5.2: Overview over the parallel DivSufSort algorithm.

suffixes are categorized into A, B and B∗ suffixes. A suffix T [i..(n − 1)] is of type A if
T [(i + 1)..(n − 1)] < T [i..(n − 1)] and of type B otherwise. B∗ suffixes are all B-type
suffixes that are followed by an A-type suffix. This step can be parallelized using two
parallel loops and prefix sums in O(log n) depth and linear work.

The second step is string sorting all the B∗ substrings lexicographically. B∗ substrings are
all strings formed by the characters between two consecutive B∗ suffixes. Then each B∗

substring can be replaced by its rank among the B∗ substrings, forming a reduced text.
Note that there are very efficient parallel string sorting algorithms available [BES14]. Our
implementation, however, only parallelizes an initial bucket sort and uses the sequential
multikey quicksort for the resulting buckets. This is sufficient for our purpose.

The third step is to construct the suffix array of the reduced text. As the text size has
reduced by at least half, the unused part of the SA array can be used for the ISA array,
thus parallelRange can be applied with only n+ o(n) bits additional space, plus the space
needed for the sorting routine.

18



5.2. Parallel DivSufSort 19

In the final step the sorting of the B∗ suffixes is used to induce the sorting of the remaining
suffixes. This step is non-trivial to parallelize. We introduce a polylogarithmic depth
algorithm for induced sorting for constant alphabet size.

5.2.2 Parallelizing Induced Sorting

Induced sorting is a concept used in most of the fastest suffix-array construction algorithms
like SA-IS or DivSufSort. DivSufSort uses induces sorting in the last two steps to induce
positions of the A and B-type suffixes from the positions of the B∗ suffixes. The sequential
algorithm shown in figure 5.3 consists of two sequential loops, one sorting the B suffixes
and one sorting the A suffixes. The order in which the suffix array is traversed is crucial

1 bucketA := Starting positions of the A buckets
2 bucketB := Ending position of the B buckets
3 for i := n−1 to 0:
4 if SA[i] has been initialized and SA[i]−1 is B−type suffix:
5 SA[bucketB[T[SA[i]−1]]] = SA[i]−1
6 bucketB[T[SA[i]−1]]−−
7 for i := 0 to n−1:
8 if SA[i]−1 is A−type suffix:
9 SA[bucketA[T[SA[i]−1]]] = SA[i]−1

10 bucketA[T[SA[i]−1]]++

Figure 5.3: Induced sorting all A and B-type suffixes by using the already sorted B∗-type
suffixes.

to guarantee a correct sorting. B-type suffixes are defined in such a way that if a B-type
suffix is directly preceded (in text order) by another B-type suffix, then the preceding
suffix has to be lexicographical smaller. This is the key observation used here. For A-type
suffixes the observation is analogous. For the full proof that this algorithm induces the
correct suffix array we refer the reader to the SA-IS paper [NZC09]. At first sight induced
sorting is inherent sequential. Now we describe how to parallelize the induced sorting of
the B-type suffixes. Sorting the A-type suffixes can be done analogously.

i 0 1 2 3 4 5 6 7 8 9 10 11

T[i] a a b c a a a b c a b c

type B B B* A B B B B* A B B* A

T[SA[i]] a a a a a a b b b c c c
SA[i] 4 0 5 9 1 6 10 2 7 11 3 8

Table 5.1: Example of induced sorting B∗ suffixes

In line 5 we say that SA position bucketB[T [SA[i] − 1] is being initialized by position i.
To perform the iteration i of the scan independently from the other iterations, we need to
know the value of SA[i] and of bucketB[T [SA[i]− 1]. Assuming an interval of SA values
have already been initialized. The scan over this interval can then be executed in parallel
using prefix sums to calculate the number of writes to buckets before a distinct position.

For the sake of simplicity let us first only consider special inputs. Assuming that con-
secutive characters are always different in the input string, then the invariant in line 5
T [SA[i] − 1] < T [SA[i]] holds. Hence, no B-type suffix is initialized by a suffix in the
same bucket. Thus, once the loop has been executed for all B-type suffixes with lexico-
graphical larger first characters than α, all B-type suffixes starting with character α have
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20 5. Parallel Suffix-Array Construction

been initialized. This gives us a way to parallelize induced sorting for the special case
where there are no repetitions in the input string with depth O(σ2 log n). The algorithm
is described in figure 5.4. The depth is dominated by calculating the σ prefix sums in each

1 bucketB := Ending position of the B buckets
2 for α := σ−1 to 0:
3 [ s ,e] := interval in SA of all suffixes starting with α
4 bucketSums:= Arrays to count number of suffixes put into buckets
5 parfor i := e to s :
6 if SA[i] has been initialized and SA[i]−1 is B−type suffix:
7 bucketSums[T[SA[i]−1]][i]++
8 parfor α := 0 to σ−1:
9 perform prefix sum on bucketSums[α]

10 parfor i := e to s :
11 if SA[i] has been initialized and SA[i]−1 is B−type suffix:
12 b := T[SA[i]−1]
13 SA[bucketB[b] − bucketSums[b][i]] = SA[i]−1

Figure 5.4: Parallel induced sorting all B-type suffixes for inputs with no repetitions of
characters.

iteration. Each prefix sum can be calculated in O(log n) depth resulting in a total depth
of O(σ2 log n). By executing the parallel for-loops in blocks of size σ log n sequentially, the
overall depth remains O(σ2 log n). However, by using blocks of size σ log n only the prefix
sums over every σ log n bucketSums entry is needed. However, then only the prefix sums
over every σ log n bucketSums entry is needed, thus reducing the overall work to O(n).

5.2.3 Dealing with Repetitions in the Input

In general inputs there are of course repetitions of characters. The first approach we
present in this section leads to an overall algorithm with depth O(σ log n

∑
α∈ΣRα), where

Rα is the longest run (consecutive repetitions of the same character) of the character α in
T . With an additional technique presented afterwards, the depth can be brought down to
O(σ2 log n+ σ log2 n).

For general texts the invariant T [SA[i]−1] < T [SA[i]] is relaxed to T [SA[i]−1] ≤ T [SA[i]]
in line 5 of the induces sorting algorithm. This in turn means that even after executing
the loop for all B-type suffixes with lexicographical larger first character than α, not all
SA values in [s, e] have been initialized. More precisely, all B-type suffixes with multiple
repetitions of α have not been initialized. We observe that the B-type suffixes that begin
with multiple repetitions of α are lexicographical smaller than those with only a single
α. Thus [s, e] can be devided into two contiguous parts [s, e′ − 1] and [e′, e] where all SA
values in [e′, e] are already initialized and all values [s, e′ − 1] still need to be initialized.
The algorithm descibed in figure 5.5 initializes in the i-th iteration of the while loop all
suffixes which have (i + 1) repetitions of α. At most Rα iterations of the while loop in
line 3 are needed until all B-type suffix starting with α are initialized. Calculating k and
the filter primitive have depth log n. In total the algorithm then has O(σ log n

∑
α∈ΣRα)

depth.

The depth can be reduced by first initializing all suffixes in [s, e] which have 2k (k ∈ N)
repetitions of the character α. This can again be done with at most log n executions of
the filter primitive. Then the suffixes which have p repetitions of α can be initialized by
filtering the suffixes with at least 2blog2 pc repetitions. Note that to use the filter primitive
in linear work, the number of repetitions of the character α have to be pre calculated. A
suffix with p repetitions of α is part in at most 2p filter calls. This ensures that in total
only constant work per initialized SA value is spent.
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5.2. Parallel DivSufSort 21

1 [ s ,e] := interval of SA values that already are initialized
2 α := first character of all the suffixes in SA[s,e]
3 while [s,e] not empty:
4 m := |{i ∈ [s, e]|T [SA[i]− 1] = α}|
5 filter (SA[s,e ], SA[s−m−1,s−1], T[SA[i]−1] = α)
6 s := s−m−1
7 e := s−1
8 parfor i := s to e:
9 SA[i]−−

Figure 5.5: Parallel induced sorting all B-type suffixes for general inputs.

Thus the B-type suffixes starting with a character α can actually be initialized in O(log2 n)
depth and constant work per suffix. In total this results in a depth of O(σ2 log n+σ log2 n)
and linear work.

For constant alphabet size this results in a polylogarithmic-depth and linear-work paral-
lelization of the induced sorting approach used by DivSufSort or by the SA-IS algorithm.
Note that in practice

∑
α∈ΣRα typically is small. Our fastest implementation actually

uses the simpler O(σ log n
∑

α∈ΣRα) depth algorithm.

With the O(σ2 log n+σ log2 n) depth and linear-work parallelization of induced sorting the
first iteration of the SA-IS algorithm can be parallelized. As σ may grow our paralleliza-
tion cannot be applied recursively. However, it can be used to reduce any SA problem
with constant σ to a SA problem with half the size and general σ in linear work and
polylogarithmic depth.
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6. Parallel FM-Index Construction

In this chapter we show how the algorithms introduced in the previous chapters can be
used to construct FM-Indexes in parallel.

In the experimental evaluation of this work our implementation of recursiveWT performs
best under all other parallel wavelet-tree construction implementations. For suffix-array
construction our implementation of parallelDivSufSort performs best. Thus we choose re-
cursiveWT, parallelDivSufSort and our parallel implementations for rank/select support
on bitvectors for parallel FM-index construction. Figure 6.1 gives an overview over the
parallel FM-index construction. First the suffix array of the input is constructed using

1 fm index (S,n):
2 SA := parallelDivSufSort(S,n)
3 parfor i := 0 to n−1:
4 BWT[i] := S[SA[i]−1]
5 WT := recursiveWT(BWT,n)
6 selectSupport0(WT)
7 selectSupport1(WT)
8 rankSupport(WT)

Figure 6.1: Parallel FM-index construction.

parallelDivSufSort. Then, using the suffix array, the Burrows-Wheeler transform is con-
structed. Then we use recursiveWT to construct the wavelet tree of the Burrows-Wheeler
transform. Note, for convenience we define S[−1] = S[n− 1]. In the final steps the bitvec-
tor of the wavelet tree is augmented with two select structures (one to support select0 and
one to support select1 queries) and one rank structure.

To support locate queries efficiently with the FM-index often a sampling of the suffix
array is stored. We added our parallel algorithms to a parallel version of the SDSL so they
can be easily adapted for different purposes. For example the wavelet-tree shape can be
changed to balanced, Huffman shaped or Hu-Tucker shaped. Additionally, in the future the
implementation of parallelDivSufSort can also be used to construct the Burrows-Wheeler
transform directly without first constructing the suffix array. This will most likely be
faster than first constructing the suffix array and then constructing the Burrows-Wheeler
transform.
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7. Experimental Evaluation

7.1 Setup

7.1.1 Hardware

All experiments are run on a 64-core NUMA AMD machine which was generously provided
by the research group of Guy Blelloch at Carnegie Mellon University. The machine has 4
× 2.4 GHz 16-core AMD Opteron(tm) 6278 processors with each 64GiB of RAM. In total
the machine thus has 64 physical cores and 256GiB RAM. The memory access from a CPU
to it’s local memory bank is typically faster than access to the other memory banks. This
effect is called non-uniform memory access (NUMA). Our implementations are unaware of
the NUMA architecture. However, we use a so called interleaved allocation policy. This
means that memory is allocated in a stripped fashion over the different memory banks. In
practice this NUMA policy showed good results when using 64 threads.

7.1.2 Compiler

The code is compiled with the GCC 4.8.0 cilkplus branch with the -O2 flag, as we use
CilkPlus to express parallelism. Most of the code can also be compiled with OpenMP.
However compiling it with CilkPlus showed better results on our machine.

7.1.3 Input Files

Two sets of input files were used for the benchmarks. For byte alphabets the Pizza&Chili
corpus http://pizzachili.dcc.uchile.cl was used. Note that for the experiments the
1GiB version of the file “english” was used. The bigger version would have required the
64bit version of DivSufSort which would make comparing timings and memory usage more
complicated. For integer alphabets randomly chosen integer sequences with alphabet sizes
2k were used. All integer sequences consists out of 100 million non-negative integers. The
benchmarks of the rank and select structures were run on the bitvectors of the balanced
wavelet trees of the corresponding input files.

7.1.4 Methodology

To minimize variance the code of each benchmark was run multiple times and the fastest
time was recorded. Reading the input and allocating memory were excluded from the
reported times as good as possible. Memory consumption was measured with rusage from
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26 7. Experimental Evaluation

the GNU C library. We reported the maximum used memory over all runs of the code on
a specific input file. Memory usage includes the space needed for the input and output.
All algorithms are non-destructive regarding the input.

7.2 Results

7.2.1 Select/Rank on Bitvectors

The parallelized rank structure implementation scales well to 64 cores, as can be seen
in Table 7.1. The parallel implementation uses two passes over the bitvector, while the
sequential implementation only uses one pass. This explains why the parallel implemen-
tation, run with a single thread, is almost twice as slow as the sequential implementation.
For some reason the parallel implementation of the select structure, run on a single thread,
is around 3 times faster than the sequential implementation. Presumably, pipelining or
cache effects could be the reason for this speedup. However, the parallel select implemen-
tation does not scale to more than 36 threads as can be seen in Figure 7.1. This is probably
due to cache invalidation caused by the memory layout of the resulting select structure.
In future work maybe better speedups can be achieved by first writing to buffers and then
reorganising the memory layout.

rank serRank select serSelect
Input T1 T64

T1

T64
T1 T1 T64

T1

T64
T1

sources 0.93 0.028 33.0 0.5 2.5 0.22 11.0 4.42
pitches 0.24 0.0077 31.0 0.134 0.67 0.061 11.0 1.1
proteins 3.4 0.09 37.0 1.81 13.0 0.88 14.0 48.2
dna 0.88 0.027 33.0 0.493 3.9 0.3 13.0 24.4
english 4.9 0.13 36.0 2.69 13.0 1.2 12.0 27.7
dblp.xml 1.1 0.034 34.0 0.628 3.4 0.3 11.0 7.09

Table 7.1: Running times (in seconds) sequential, parallel and self-relative speedup of rank
and select structure construction algorithms on 64 cores.
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Figure 7.1: Speedup over serial construction algorithm for rank and select as function of
number of threads on input file english
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7.2.2 Parallel Wavelet-Tree Construction

In Table 7.2 we can see that the proposed memory efficient algorithms recursiveWT and
ddWT outperform the levelWT implementation on all byte alphabet inputs and all but
one integer alphabet input. Especially recursiveWT achieves very high speedups on all
inputs. Shun’s implementation of levelWT only achieves self-relative speedups of around
×20. One reason could be the higher memory usage of levelWT. Shun uses smaller input
files and a machine with more modern and thus faster memory system in his benchmarks
[Shu15]. Hence, there were probably less issues with memory bandwidth in his benchmarks.
If run on a single thread, the recursiveWT implementation is only slightly slower than the
fastest sequential implementation. This leads to outstanding absolute speedups as shown
in Figure 7.2.

levelWT recursiveWT ddWT serWT
Input T1 T64

T1

T64
T1 T64

T1

T64
T1 T64

T1

T64
T1

sources 19.0 0.88 21.0 12.0 0.26 47.0 16.0 0.45 35.0 9.21
pitches 4.7 0.23 20.0 2.8 0.068 41.0 3.7 0.1 35.0 2.17
proteins 72.0 2.9 25.0 56.0 1.1 51.0 69.0 1.7 40.0 38.6
dna 16.0 0.72 22.0 12.0 0.24 49.0 15.0 0.47 33.0 8.65
english 99.0 4.4 22.0 65.0 1.3 49.0 110.0 2.2 49.0 49.5
dblp.xml 24.0 1.1 23.0 16.0 0.34 48.0 20.0 0.57 35.0 12.1
rnd-28 10.0 0.58 17.0 9.9 0.27 37.0 13.0 0.45 28.0 6.37
rnd-210 13.0 0.74 17.0 13.0 0.33 37.0 16.0 0.53 29.0 7.97
rnd-212 14.0 0.84 17.0 15.0 0.38 40.0 19.0 0.61 30.0 9.62
rnd-214 17.0 0.92 18.0 18.0 0.43 41.0 22.0 0.71 31.0 11.2
rnd-216 20.0 1.0 19.0 20.0 0.48 43.0 25.0 0.81 31.0 12.9
rnd-218 22.0 1.1 20.0 23.0 0.53 44.0 28.0 0.99 29.0 14.5
rnd-220 24.0 1.2 21.0 27.0 0.61 44.0 32.0 1.4 22.0 16.1

Table 7.2: Running times (in seconds) sequential, parallel and self-relative speedup of
wavelet-tree construction algorithms on 64 cores.
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Figure 7.2: Speedup over serialWT as function of number of threads on input file english

7.2.3 Parallel Suffix-Array Construction

In our experiments the proposed parallelDivSufSort(Dss) algorithm performs best on all
but the dna input file, as shown in Table 7.3. The used implementation probably scales
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badly on very small alphabets, as the dna file, because only the initial bucket sort of the
string sorting is parallelized. In future work this issue can be fixed by using a parallelized
string sorting algorithm. On the larger input files, as proteins and english, all algorithms
achieve good self-relative speedups. As depicted in Figure 7.3 parallelDivSufSort achieves
substantial speedup even compared to the sequential version of DivSufSort. In Figure 7.3
all implementations only partially scale past 24 threads. We account this to the complex
memory access patterns of the algorithms and the low memory bandwidth of the used
machine. In Table 7.4 the maximal memory consumption of the implementations during
the construction is stated. ParallelDivSufSort uses multiple times less memory than the
other parallel implementations and slightly more memory than the original DivSufSort.
For example on the bigger input files, proteins and english, parallelDivSufSort uses less
than 5% more space than the sequential in-place algorithm.

KS Range Dss serDss serKS
Input T1 T64

T1

T64
T1 T64

T1

T64
T1 T64

T1

T64
T1 T1

sources 220 11 19 190 7.9 24 99 4.8 21 28 180
pitches 42 2.5 16 50 2.1 24 23 1.4 17 6.2 36
proteins 1900 65 29 1800 49 37 1100 34 32 300 1900
dna 480 20 24 280 10 27 190 13 15 80 440
english 1900 62 30 2700 78 35 1300 41 32 230 1800
dblp.xml 310 15 21 210 11 20 130 7.0 19 42 250

Table 7.3: Running times (in seconds) sequential, parallel and self-relative speedup of
suffix-array construction algorithms on 64 cores.
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Figure 7.3: Speedup over DivSufSort as function of number of threads on input file english

7.2.4 Parallel FM-Index Construction

In the final experiments we show how the presented algorithms are used in the parallel
version of the SDSL. We use the parallel rank/select structures, parallelDivSufSort and
recursiveWT to construct the FM-index for the input files. In opposition to the experi-
ments on wavelet-tree construction, here the Huffman-shaped wavelet tree is constructed.
In Table 7.5 we see similar timings as in the suffix-array construction benchmarks. This
is not surprising because the suffix-array construction is the most timing consuming step
of the FM-index construction. Figure 7.4 shows the absolute speedup on different inputs
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Input KS Range Dss serDss serKS

sources 21.4 28.5 5.2 5.0 32.7
pitches 21.3 28.1 5.7 5.0 32.2
proteins 20.1 26.3 5.1 5.0 30.1
dna 21.4 27.8 5.5 5.0 32.8
english 21.5 28.9 5.2 5.0 32.9
dblp.xml 21.5 28.7 5.6 5.0 31.9

Table 7.4: Memory consumption (in byte per input character) of suffix-array construction
algorithms on 64 cores.

in direct comparison with the sequential SDSL. Table 7.6 shows that the memory con-
sumption of the parallel implementation is around one byte per input character higher
than of its sequential counterpart. However, in this measurement the suffix array, the
Burrows-Wheeler transform and the wavelet tree of the FM-index is included. To save
memory most applications do not keep all the components in-memory throughout the
construction. Typically, the suffix-array construction poses the memory bottleneck.

Input T1 T64
T1

T64
T1

sources 180.0 7.5 24.0 45.2
pitches 42.0 2.0 21.0 10.7
proteins 1600.0 49.0 33.0 415
dna 290.0 17.0 17.0 114
english 1700.0 53.0 32.0 362
dblp.xml 240.0 10.0 24.0 72.1

Table 7.5: Running times (in seconds) sequential, parallel and self-relative speedup of FM-
index construction algorithms on 64 cores.
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Figure 7.4: Speedup over SDSL implementation of FM-index construction as function of
number of threads on input file english
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Input fm-index fm-index-ser

sources 8.0 6.9
pitches 7.9 6.8
proteins 7.6 6.6
dna 7.2 6.1
english 7.7 6.6
dblp.xml 8.0 6.8

Table 7.6: Memory consumption (in byte per input character) of FM-index construction
algorithms on 64 cores.
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8. Future Work

There are numerous open questions and issues we have not addressed due to time con-
straints. Here we list possible implementation improvements, additional applications of
the techniques presented and general ideas for future research in this field.

8.1 Implementation Improvements

As we have seen in the experimental evaluation, the parallel select implementation does
not scale optimally to many cores. We assume this is due to cache invalidation as all
threads write to rather small output arrays in parallel. This can probably be improved by
changing the memory access pattern of the algorithm, for example by using intermediate
buffers to write to. Additionally, on small alphabets the proposed parallel suffix-array
construction algorithm has slight scaling issues. This is most likely due to the lack of
parallelism in the string sorting implementation. There are two possible solutions to solve
this issue. First, one can use a parallel string sorting implementation, for example as
engineered by Bingmann, Eberle and Sanders [BES14]. Another solution is to use induced
sorting, as used in the SA-IS algorithm [NZC09]. By design induced sorting does not use
additional space and can be parallelized just like described in this work.

8.2 Additional Applications of the Techniques Presented

Even though this work focuses on shared memory architecture, some algorithms presented
can be adapted to a distributed memory setting. For example the ddWT construction
algorithm for wavelet trees can easily be implemented for distributed memory machines.
If the input already is distributed among all nodes, then only the prefix sums and one
all-to-all communication step is needed. Also, it may be beneficial to implement a hy-
brid approach combining ddWT and recursiveWT. For example if the algorithm is run
on multiple distributed nodes where each node itself is a shared memory machine with
multiple CPUs. First, ddWT can be used to decompose the input and distribute it to the
nodes. Then, with recursiveWT each node builds a local wavelet tree on part of the input.
Finally, ddWT again is used to combine the local wavelet trees to a final result.

For many applications only the Burrows-Wheeler transform (BWT) is needed. There are
algorithms which directly compute the BWT from the text using less space than needed
to store the suffix array. Again the fastest algorithms in practice use induced sorting. For
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32 8. Future Work

example the algorithm by Okanohara and Sadakane [OS09] uses induced sorting. As with
the SA-IS algorithm, the techniques described in this work can be applied if the alphabet
size is small enough.

8.3 General Ideas

This work is only a first step towards utilizing modern multi-core architecture in the field of
compressed indexes and succinct data structures. There are still many different rank and
select structures on bitvectors with different properties with no parallel implementation
available. For example compressed representations designed for sparse bitvectors. Even
though our parallel implementation for wavelet trees can be used for all kind of different
alphabet sizes and different shapes of wavelet trees, there are still variations of wavelet trees
not covered. For example multiary wavelet trees or wavelet matrices were not covered.
Additionally, no experiments were made on how the shape of the wavelet tree effects the
performance of the proposed algorithms. Concerning parallel suffix array-construction,
it would be a major breakthrough if induced sorting could be parallelized also for non-
constant alphabet size. Then the lightweight linear work SA-IS algorithm could fully be
parallelized. However, it remains uncertain if induced sorting, for non-constant alphabet
size, can be parallelized in linear work and polylogarithmic depth.
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9. Conclusion

In this work, we show how to parallelize a number of basic construction algorithms needed
for compressed full-text indexes. We cover rank and select structures on bitvectors, wavelet
trees and suffix arrays. Additionally, we show how to use the parallelized algorithms to
construct FM-indexes in parallel. We implement all algorithms presented in this work,
evaluate them experimentally, and make the implementations available to the public as
part of the Problem Based Benchmark Suits (PBBS) and the Succinct Data Structure
Library (SDSL).

We implement parallel construction algorithms for two rank and select structures used in
practice as part of the SDSL. Our implementations scale well and thus are further used in
our wavelet-tree and suffix-array implementations.

We reduce the memory requirement of the so far fastest parallel wavelet-tree construction
algorithm from O(n log n) to O(n log σ) bits. Two algorithms are introduced, ddWT and
recursiveWT. ddWT is a variation of the domain decomposition algorithm proposed by
Fuentes [Fea14]. We show how to adapt the domain decomposition approach to achieve
polylogarithmic depth for small alphabets. In our experiments we show that our memory
efficient algorithms both perform very well on real world inputs. Especially recursiveWT
turns out to be very applicable in practice, as it is up to 4 times faster than existing
parallel algorithms and can be used for all alphabet sizes. We provide an implementation
of recursiveWT for different-shaped wavelet trees as part of the SDSL.

As suffix arrays are the basis of most compressed indexes, parallel lightweight contruction
algorithms are needed. We propose parallelDivSufSort, which is a parallel version of the
two-stage algorithm using induced sorting. As part of parallelDivSufSort, we show how
to parallelize induced sorting for byte alphabets in polylogarithmic depth. Additionally,
in our implementation the sequential tandem repeat sort is replaced with a parallel prefix
doubling algorithm. We show how to implement prefix doubling fast and memory efficient,
using the parallel select structure on bitvectors. With experiments on real world datasets
we show that parallelDivSufSort is lightweight and fast. More precisely, on large input files
our parallelDivSufSort implementation only uses around 5% more memory, while achieving
speedups of up to 8 fold, compared to the highly optimized sequential counterpart.

All in all, the parallel implementations provided through this work can be used to build
compressed indexes as the FM-Index fully in parallel. All algorithms and implementations
are designed to be memory efficient. Our work shows that a focus on memory efficiency
can also improve the performance of algorithms.
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