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Abstract

This thesis presents an optimal algorithm that solves the longest path problem for
undirected graphs. The algorithm makes use of graph partitioning and dynamic
programming. It’s performance was evaluated in a number of benchmarks and
compared to other known algorithms. The runtime of the algorithm was shown to
be significantly faster on the tested graphs.

Deutsche Zusammenfassung

Diese Arbeit präsentiert einen optimalen Algorithmus, der das Längest Wege Problem
(longest path problem) für ungerichtete Graphen löst. Der Algorithmus macht sich
dabei die Partitionierung von Graphen und dynamische Programmierung zu Nutzen.
Seine Laufzeit wurde anhand von mehreren Experimenten evaluiert und mit anderen
bekannten Algorithmen vergleichen. Dabei stellte sich der Algorithmus auf den
getesteten Graphen als wesentlich schneller heraus.
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1. Introduction

1.1 Problem/Motivation
The shortest path problem (SP) is a well known problem of finding a path of minimum
length between two given vertices of a graph. The minimum length can be defined by the
number of edges that the path consists of. Another possibility with a weighted graph is to
try to minimize the summed up weight of the path’s edges. SP can be solved optimally
and in polynomial time with Dijkstra’s Algorithm [Dij59] if the graph is unweighted or
only contains non-negative edge-weights or with the Bellman-Ford-Algorithm if the graph
contains negative weights [Bel58] [For56].
A similar problem to SP is the longest path problem (LP), which is often used (also in
this thesis) as a synonym to the more accurate longest single path problem (LSP). LP is
identical to SP except that a simple path of maximum length is searched for. A path is
called simple if it doesn’t contain a vertex of the graph more than once. While being very
similar, LP is NP complete [GJ79]. LP for example has applications in the design of circuit
boards, where the length difference between wires has to be kept small [OW06] [?]. LP
manifests itself when the length of shorter wires is supposed to be increased. Additionally
the longest path is relevant to project planning/scheduling as it can be used to determine
the least amount of time that a project could be completed in [Bru95]. There are also
applications in the information retrieval in peer-to-peer networks [WLK05] and patrolling
algorithms for multiple robots in a graph [PR10].

1.2 Content
This thesis concentrates on the longest path problem (LP) for undirected graphs. An
optimal algorithm for LP based on using graph partitioning and dynamic programming is
presented. The partitioning was done with KaHIP - Karlsruhe High Quality Partitioning
- [SS13]. Oriented at a paper from Stern, Kiesel, Puzis, Feller and Ruml [SKP+14], that
provided a large amount of optimal and suboptimal algorithms for LP, experiments and
benchmarks were created. The algorithm was compared with paper’s algorithms and turned
out to be significantly faster than the other optimal algorithms for the tested instances.
Additionally the algorithm’s runtime was compared with different partition-qualities to find
a balance between the time spent partitioning and the runtime of the actual algorithm.
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2. Preliminaries

2.1 Definitions
Vertex

A fundamental unit that graphs are made of. Here a vertex will be represented by a
(natural) number. Other name: node.

Edge
Connection between two vertices x and y.
An edge that serves as a two way connection between x and y is called an undirected
edge and is represented as the set {x, y}.
An edge that only serves as a one way connection from x to y is called a directed
edge and is represented as the tuple (x, y).

Graph := (V, E)
A graph represents a set of vertices V whose elements are interconnected by the edges
in the set E. If E ⊂ { (x, y) | x, y ∈ V }, meaning directed edges/vertex tuples, G is
a directed graph. While G is called an undirected graph if E ⊂ { {x, y} | x, y ∈ V }.
Additionally a graph can be weighted if its edges have weights associated with them.
This can be represented with a weight function w: E 7→ X, where X is a set of
numbers. In this thesis the weight function will usually not be explicitly stated and
weights are considered to be real numbers, X := R.

Path
A way to traverse a graph G := (V, E) from a start- to an end-vertex. For a directed
graph G a path P can be defined as a sequence of directed edges: P := (e1,e2,...,ek),
where ei := (vi,vi+1) and ei ∈ E. A path can be defined the same way for an undirected
graph G, where {vi,vi+1} has to be element of E instead of ei.
A path is called simple if it does not contain a vertex more than once, meaning
vi 6= vj holds if i 6= j.

Longest path problem (LP)
The longest path problem for a given graph G := (V, E) and the start and target
vertices s, t ∈ V is to find the longest simple path from s to t. Also, more accurately,
called longest simple path problem (LSP). The length of a path is either defined
as the number of its edges or the sum of their weight.
Another definition of LP is to find the longest simple path in a graph G between any
two of its vertices. Any instance of this definition of LP can also be made into an
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2. Preliminaries

instance of the previous definition by introducing a s and t vertex and edges with
weight 0 from them to all other vertices in G.

Partitioning
A graph G := (V, E) is partitioned by dividing its vertices V into the subsets
V1,V2,...,Vk. These subsets are disjointed (∀ i 6= j : Vi ∩ Vj = ∅) and contain all

vertices of the graph (
k⋃

i=1
Vi = V). The subsets are a partition of G.

Usually the intent is to distribute the vertices of a graph evenly amongst a certain
number of subsets while trying to minimize the number or the combined weight of
the edges between vertices of different subsets.

Clique
A subset of an undirected graph’s vertices is called a clique if the graph contains an
edge between every two distinct vertices of the subset.

Matching
A matching is a subset of the edges of a graph where no two edges have vertices in
common.

Array
An array is a collection of elements that can be identified with an index. The size of
an array is the number of its elements. arrayName[i] describes the (i+1)th element
of the array arrayName where i ∈ {0..size − 1}. An empty bracket [] behind a
variable’s name can indicate that it is an array (arrayName[]).

Hash table/map
An array basically stores (key, value) pairs, where the key is the index. Arrays can
be an ineffective way of storage if the keys do not already represent valid indices. A
hash table can be used in these cases. A hash table consists out of a large array of
"buckets" and a hash function H. A (key, value) pair is stored in the bucket with the
index H(key). A value can then be looked up in the table through its key. With
certain assumptions about the hash table, like that the function H almost uniformly
and randomly distributes the pairs over the array, the hash table can present an
effective way to store and look up arbitrary (key, value) pairs.

2.2 Related Work
The paper with the title "Max Is More than Min: Solving Maximization Problems with
Heuristic Search" from Stern, Kiesel, Puzis, Feller and Ruml [SKP+14] mainly focuses on
the possibility of applying the algorithms that are normally used to solve the shortest
path problem (SP) on the longest path problem (LP). [SKP+14] first makes clear why
LP is so difficult compared to SP. Then a number of algorithms are presented that are
frequently used to solve SP or other minimization search problem, which are then modified
in order to be able to solve LP. The search algorithms can be said to be part of three
categories. The, for this thesis, most important category is the one of the heuristic searches.
A heuristic can provide extra information about the graph or the type of graph. The
heuristic searches of [SKP+14] require a heuristic function that can estimate the remaining
length of a solution from a given vertex of the graph. This can give important information
that helps to speed up the search depending on the heuristic. It was shown that heuristic
searches can be used efficiently for LP. The algorithms Depth-First-Branch-and-Bound
(DFBnB) and A* that were modified in order to solve LP and which heuristics were used
will be explained in more detail below, since they were used in the experiments of this
thesis as comparison. Another category represents the "uninformed" searches, which don’t
require any information other than what is already given in the definition of the problem.
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An example for these algorithms were Dijksra’s algorithm or DFBnB without a heuristic.
Modifying these algorithms to fit LP basically lead to brute force algorithms, which means
that they still had to look at every possible path in the search space. No uninformed
search strategy was found that could be used beneficially for LP. The last category are
the suboptimal searches. [SKP+14] looked at a large number of these algorithms that only
find approximations of a longest path. They are not that important to this thesis since the
presented algorithm is an optimal algorithm.
Grids and roads are the two graph types that are also used in this thesis. The only thing
that currently matters is that roads-graphs are weighted and grids are not. A road-graph
also can only have edges with a positive weight. A more detailed explanation is in section
4.1.1. The heuristic searches of the paper use following heuristic to estimate the remaining
length of a longest path from a given vertex.

Grids:
Gv describes a subgraph of G for a path v = (v1,v2,...,vk). Gv only contains the vertices
that could be part of a path that starts from vk and ends in the goal vertex. This path
also cannot intersect with v itself (except for vk). The vertices of Gv can be calculated
with a Depth-First-Search starting from vk. It can easily be seen that Gv for the current
search path of an algorithm only contains the vertices that could be part of a longest path
(except for vk). In the best case a longest path starting with v connects all vertices of Gv,
which would require |Gv|-1 edges. The heuristic returns this value as an estimation of the
remaining length of a longest path from vk, since grids are unweighted/only contain edges
of the weight 1. This estimation always upper bounds the highest possible remaining length.

Roads:
A similar heuristic is used for road-graphs. The heuristic function cannot simply return
|Gv|-1, because the graphs edges are not all weighted 1. Furthermore the edge-weights
are always positive. The length of the remaining longest path is estimated by calculating
the weight of the maximum spanning tree of Gv. A spanning tree is a subgraph of Gv

that represents a connected, acyclic graph that contains all vertices of Gv. This means
that there exists one and only one path between any two vertices of the subgraph. The
maximum spanning tree is the one with the highest combined weight of its edges. The
weight of this maximum spanning tree also represents an estimation that upper bounds
the highest possible remaining length of a longest path.

Depth-First-Branch-and-Bound (DFBnB) basically represents a Depth First Search (DFS)
that continues after the goal has been found and keeps a record of the best current solution.
Once the search is finished the incumbent solution represents the longest path. DFBnB
additionally uses a heuristic function h(.) to prune paths during the search. Let curLength
be the length of the current search path and bestLength the length of the incumbent solu-
tion. The heuristics from above always represent an upper bound to the remaining length
of a longest path, which is why every search path with curLength + h(.) 6 bestLength
does not have to be pursued any further and can be pruned.

A* defines an f value for a path that equals the length of the path plus the value of
the heuristic function h(.). A* keeps a priority queue of all "open" paths, which initially
contains a single path consisting of the start vertex. In each step A* removes the path
(v1,v2,...,vk) with the highest f value, meaning the path with the highest estimated length,
from the queue. It inserts a path (v1,v2,...,vk,vk+1) back into the queue, for each vertex
vk+1 that has an edge to vk and also isn’t already part of the original path. This continues,
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2. Preliminaries

if a path to the goal even exists, until a path gets removed from the queue where vk is the
goal vertex. This is a longest path, which is returned as the result of the algorithm. Since
the used heuristic’s value is 0 for this path, f equals the actual length of the path. All
remaining paths in the queue have an f-value equal or lower to this path. They could never
result in longer paths and have effectively been pruned since the used heuristic always
upper bounds their longest remaining length.

We are not aware of any recent work other than [SKP+14] about this topic.
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3. Our Algorithm (LPDP)

Our algorithm will be called "Longest Path Dynamic Programming" or LPDP as it is based
on principles of dynamic programming. LPDP solves the longest path problem (LP) for
undirected graphs. The graphs are exclusively weighted, since an unweighted, undirected
graph can simply be seen as a graph that only contains edges with a weight equal to 1.
The start and target vertex are called s and t. Since

3.1 The Basic Approach
The naive way to solve the longest path problem is something called exhaustive depth-first
search by [SKP+14]. Normal depth-first search (DFS) is started from a root vertex in the
graph and every visited vertex is marked as such. DFS recursively calls itself for each
unmarked vertex that is reachable by an edge from the current vertex v. Additionally v is
said to be the parent of these vertices. Once it has done this it backtracks to its parent.
The search is finished once DFS tries to backtrack to the parent of the root vertex.
Exhaustive DFS is simply DFS that unmarks a node upon backtracking. In that way
every simple path in the graph starting from the root vertex is explored. LP can be solved
with exhaustive DFS by starting it from the start vertex. During the search the length of
the current search path is stored and compared to the previous best solution if the target
vertex is found. If the current length is greater than that of the best solution, it is updated
accordingly. If the search is done, a path with maximum length from s to t is found.
The idea of LPDP is to partition the graph G := (V, E) (with V:={0, 1, ..., |V|-1}) into
multiple subsets, run a search similar to exhaustive DFS on them and then combine the
results into a single longest path for G.

3.1.1 Step 1 - Partitioning and preprocessing

The graph’s vertices are partitioned into different subsets like shown in Fig.3.1. Then
every edge {x,y} running between different subsets is replaced by introducing a new node
k and the edges {x,k} and {k,y} (Fig.3.2). Only one of these edges retains the original’s
weight, the other’s is set to 0. Additionally a new node with an edge to the start vertex is
created. This edge also has a weight of 0. The same is done again for the target vertex.
All newly generated vertices are called border-nodes, since they, except for the latter two,
resemble the borders between different subsets. Now new graphs Gi := (Vi, Ei) can be
created with Vi being the vertices of subset i and all border-nodes connected to them and
Ei all edges that run between Vi in G. All graphs Gi that are created from the graph in
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3. Our Algorithm (LPDP)

Figure 3.1: Example graph. A partition of the graph is shown by the different colors. An
edge’s weight is only shown if it connects two different parts of the partition.
Vertex 2 and 25 are the start and target vertices for the longest path problem
and are marked with the letters s and t.

Figure 3.2: Example of how edges that run between different components of a partition
are split
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3.1. The Basic Approach

Figure 3.3: Graph from Fig.3.1 split into multiple graphs according to its partition like
shown in Fig.3.2

9



3. Our Algorithm (LPDP)

Figure 3.4: Higher level graph. Every vertex v corresponds to the border-node v in Figure
3.3. Every graph Gi is represented as a clique of its border-nodes. A vertex
also stands for a connection of two subsets. This connection is shown as a pair
(x,y) near the vertex, where x and y are the numbers of the subsets that are
connected. The vertices that represent the previous start and target vertices
are seen as connecting their subset to itself, which means x = y.

Fig.3.1 are shown in Fig.3.3. As seen the border-nodes have the numbers |V|, |V|+1, ...
with the border-node of the start- and target-vertex having the lowest and highest number
respectively.
Now we are looking for example at the blue Gi graph in Fig.3.3. For the calculation of
the longest simple path in G these border-nodes function as entry and exit points for their
subset of the partition. A longest simple path from s to t can only enter and exit this
subset through its border-nodes or more specifically the original edge that is associated
with this node. Since neither s nor t lie within the blue subset, it is clear that every time
the path enters this subset, it also has to leave it again, connecting its border-nodes in pairs
of two. This means, without knowing anything about the rest of the graph, that a longest
simple path from s to t can connect the border-nodes pairs {{30,31}}, {{30,32}}, {{30,33}},
{{31,32}}, {{31,33}}, {{32,33}}, {{30,31},{32,33}}, {{30,32},{31,33}}, {{30-33},{31,32}}
or none of them {}. These sets of border-node-pairs for any subset s are equivalent to
the matchings that exist for a clique-graph that consists of the border-nodes of s. The
pairs would have to be connected by non-intersecting simple paths. The longest of these
connections for each of the cases can be found through a modified version of exhaustive
DFS, which will be shown later. The same will be done for all other graphs Gi. The
fact that the border-nodes that represent the start- or target-vertex always have to be
connected to another border-node won’t matter for the algorithm.

3.1.2 Step 2 - Combining the paths

Now it is possible to search for the longest (simple) path of G in a graph that only contains
its border-nodes. In this graph two border-nodes are connected with an edge if they
belonged to the same graph Gi. Every subset of the original partition is now represented
by a clique of its border-nodes. The border-nodes are seen as regular vertices of the new
graph. An example of this graph can be seen in Fig.3.4.
Every vertex in this graph represents a connection between two subsets. In the case of start-
and target-border-node they will be seen as a connection to their own subset. The connection
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3.1. The Basic Approach

of a vertex v is shown in Fig.3.4 as two values (a,b) (=:connection(v)) near the node. An
edge {v,w} can be said to be part of a subset s if s ∈ connection(v) ∧ s ∈ connection(w).
This edge than represents a path located in subset s or rather in Gs that connects its
two corresponding border-nodes. While this condition for an edge could be true for two
different subsets, it is only allowed to be part of one subset at the same time. Otherwise
the edge would represent a circle.
In order to solve the longest path problem another modified version of exhaustive DFS,
which starts from the lowest numbered vertex as it represents the original start vertex, can
be used. Broadly speaking this version creates a set of border-node-pairs for every subset
s, which is called Pairss, from its search path. In order to do this it sees every edge in the
current search path as a part of a fixed subset/Gi graph. If the edge {v,w} belongs to
the search path as part of the subset s, the pair {v,w} is an element of Pairss. The pair
{v,w} ∈ Pairss represents a connection of the corresponding border-nodes of v and w in
Gs through a simple path. The simple paths of all these pairs in Pairss cannot intersect
with each other. The best possibility to do this and the combined length of these paths
has already been calculated in step 1 for the different Gs. To only receive valid Pairss the
following conditions are followed while trying to append new edges to the current search
path:

• For every subset s a solution for Pairss has to exist. This can simply be looked up,
since the best possible solutions were already calculated in step 1.

• The new edge has to be part of a different subset than the previous edge. Otherwise
{a,b},{b,c} ∈ Pairss would be possible, which would mean that the two paths in Gs

would intersect since they share the border-node b (and the vertex of Gs that has an
edge to b)

Every time the highest numbered vertex, the border-node of the original target-vertex, has
been found, the paths in Gs for every Pairss are looked up and their weight summed up.
At the end the different Pairss with the highest combined weight are returned. This weight
is the weight/length of the longest simple path in G. The actual longest simple path can
be constructed by looking up all the precalculated paths in Gs for the given connections
of its border-nodes Pairss. All of these paths, now called segments, start and end with a
border-node. The start- and target-border-node appears exactly once, the others twice.
The paths can be concatenated the following way (since G is an undirected graphs, paths
can be reversed at will):

• a-v1-...-vk-b and b-w1-...-wk-c ⇒ a-v1-...-vk-w1-...-wk-c

• a-v1-...-vk-b and c-w1-...-wk-b ⇒ a-v1-...-vk-wk-...-w1-c

This is done until only a single segment a-v1-...-vk-b, with a being the start- and b the
target-border-node, is left. Now v1-v2-...-vk is a longest simple path in G.

3.1.3 Improvement through hierarchical partitioning

While the calculations for the different Gi graphs maybe can be done fast and even in
parallel, the graph of border-nodes from the second step of the algorithm still has to be
searched as one complete piece with a variant of the naive brute-force approach. This
means that the possible acceleration is relatively limited, once this graph becomes more
complex. The next logical step is to try to avoid this by applying the same principles
that we used to accelerate exhaustive DFS on this variant of it. Of course it isn’t possible
to split up edges like on a normal graph. The cliques representing the different subsets
have to stay intact. Nodes now serve as dividers instead of edges. New border-nodes are
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3. Our Algorithm (LPDP)

Figure 3.5: Example of how border-nodes would be introduced in the graph of Figure 3.4
in order to create two new subsets according to the next partitioning level. The
first is created by combining the lower level subsets 0 and 1. 2 and 3 for the
second subset. Since 1 and 2 will be part of different subsets, border-nodes
have been introduced for the two vertices that represent a connection (1,2).
The same was done for the vertices 27 and 34 since they represent the start
and goal vertices.

Figure 3.6: Even higher level graph consisting out of the border-nodes of the graph of
Figure 3.5. Only two subsets, named 0 and 1, exist. The only two border-nodes
are the start and target vertex, combining the last two subsets into one. A
search in this graph will determine the longest path and complete the algorithm.

12
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connected directly to them and to the start and target vertices like it is shown in Fig.3.5.
The point is to combine a group of subsets and the paths that were calculated for them
into a single new subset. This is again done with a variant of exhaustive DFS between
the new subsets border-nodes. Fig.3.5 shows the subsets 0 and 1 got combined into one,
also 2 and 3. For simplicity we did not actually split the graph into multiple parts like
we did with G, but it was made sure that only vertices and edges of the subsets, that are
supposed to be combined, are used during the search. When this is done another graph like
in Fig.3.6 can be created. In this way Step 2 becomes a recursive call on its own resulting
graph. To achieve this the partitioning of the original graph G has to be hierarchical. The
partitioning specifies a high number of small subsets that the original graph is partitioned
into. These smaller subsets are subsequently combined step by step into larger ones, until
only one is left and a longest path of G is calculated.

3.2 Implementation
3.2.1 Data structures

The graph G = (V, E) is the given, undirected and weighted graph for the algorithm in
which the longest simple path is calculated. As defined previously V is its set of vertices
and E its set of edges. The vertices are represented and named sequentially with the
numbers 0 to |V|-1. Meaning: V = {0, 1, ..., |V|-1}. s and t are vertices of G and are the
start- and target-node of the longest simple path.
The hierarchical partitioning of G is given through a two-dimensional array partitions[][],
which is built up as follows: The first array (partitions[0]) represents the lowest, finest
level of partitioning, assigning single vertices to the subsets that the graph is partitioned
in. That means if v ∈ V then partitions[0][v] is the number of the subset that v is a part
of. These subsets are numbered similar to the vertices with 0,1,2,... . Each higher level of
partitions[][] combines the subsets of the previous level. This leads to a hierarchical parti-
tioning of G. Level 0 represents the underlying partition. Its subsets get combined further
and further with higher levels, until only a single "subset" is left that contains all vertices.
The highest level of partitions[][] always is an array containing a single element 0. For
level l the subset that a given vertex v is part of can be calculated with the following function:

p(l, v) :=
{

partitions[l][p(l − 1, v)] for l > 0
partitions[0][v] for l = 0

Example used for the graph in Figure 3.1 throughout this thesis:
partitions[0] = [0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,2,3,3,3,3]
partitions[1] = [0,0,1,1]
partitions[2] = [0,0]
partitions[3] = [0]

The algorithm uses two major custom data structures. The different paths between the
border-nodes of a subset are stored in a map. There is a map for every subset. This
data structure is implemented as a hash table and is simply called map. This map stores
instances of a Key and a Paths data structure as key-value-pairs.
The Paths data structure stores paths between border-nodes, but also has a length at-
tribute for the combined length of all the paths associated with it. How paths are stored
changes in the algorithm. In the first step of the algorithm Paths stores the actual paths
in a subset. A path is stored as the sequence of its vertices, starting and ending in a
border-node.
In the second step of the algorithm Paths are stored differently. If a step of the al-
gorithm combines subset 1, 3 and 5 into one, it also combines the paths in the maps
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3. Our Algorithm (LPDP)

1: function LPDP(G = (V, E); s,t ∈ V; partitions[][])
2: initialize Gi graphs, borderNodes and pathMaps
3: for i ← 0 to partitions[1].size() do
4: for each bNode ∈ borderNodes[i] do
5: searchLowestLevel(Gi, borderNodes[i], pathMaps[i], bNode)
6: Paths result := solveHigherLevels(partitions, borderNodes, pathMaps, 1)
7: combine paths from result into one valid path of G
8: return combined path & weight of result

Figure 3.7: Basic pseudocode of LPDP. The used variables and methods are explained in
the text.

pathMapi (i ∈ {1, 3, 5}) into one new map keyMap. To do this keyMap doesn’t save the
actual paths, but the identifiers under which the paths can be looked up in the different
pathMaps. This means Paths still stores paths, but only as their identifier or key (Key).
Key is a unique identifier of a Paths instance. Key is a sequence of nodes that resembles
the Pairss from the section above, meaning the set of border-node-pairs that are connected
through the Paths instance. The elements of the sequence Key[2i] and Key[2i+1] resemble
a pair {Key[2i],Key[2i+1]} ∈ Pairss for all possible i ≥ 0. To keep Key unique, one could
for example swap Key[2i] and Key[2i+1] without changing the Pairss set it resembles, the
following conditions are introduced for a valid Key instance:

• Key has to have an even number of elements (0 included)

• Key[i] 6= Key[j] for i 6= j

• Key[2i] < Key[2i+1] for i ≥ 0

• Key[2i] < Key[2i+2] for i ≥ 0

3.2.2 Pseudocode

The first part of the algorithm (Figure 3.7) splits the given graph G into the different Gi

graphs, based on the partitions[0] array, like it was explained in section3.1.1 and shown
in Fig.3.1 and Fig.3.3. borderNodes[i] describes an array of the border-nodes of Gi in
ascending order. It then calls the searchLowestLevel() function for every border-node of a
graph Gi, which completes the first step of the algorithm (section 3.1.1) by filling up the
graphs pathMap. Once this has been done for all Gi, the second step of the "improved"
algorithm (section 3.1.2 and 3.1.3) is executed by calling the solveHigherLevels() function.
Its result is a set of path segments selected from all pathMaps that can form a longest
simple path in G. Additionally the result contains the combined weight of all segments.
All of this can also be saved in the Paths data structure. These path segments are then
combined into the single path in G as shown at the end of section 3.1.2.
searchLowestLevel() describes a modification of exhaustive DFS, that is run with a

border-node as root. The search algorithm divides its current search path into different
path segments. It traverses the vertices of the graph as normal with the exception of
the border-nodes. The first segments starts from the root border-node. The segment is
completed once a different border-node is reached. If this happens, the algorithm starts a
new segment by jumping to an other border-node, as if they were connected by an edge,
and continues traversing the graph as before. This way each segments starts and ends in
a border-node. The start- and endpoints of all segments resemble the border-node pairs
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Key Paths
Segments/Nodes Length

(30,31) (30,14,17,20,22,19,18,16,15,13,31) 9
(30,32) (30,14,13,15,16,17,18,19,22,32) 8
(30,33) (30,14,13,15,16,18,17,20,22,19,32) 8
(31,32) (31,13,14,15,16,17,18,19,22,32) 9
(31,33) (31,13,14,15,16,18,17,20,22,19,33) 9
(32,33) (32,22,20,17,14,13,15,16,18,19,33) 9

(30,31,32,33) (30,14,15,13,31)
(32,22,20,17,16,18,19,33) 9

(30,32,31,33) (30,14,17,20,22,32)
(31,13,15,16,18,19,33) 9

Table 3.1: Example of a finished pathMap of the blue subset from Figure 3.3

Pairsi. The best current result for each possible Pairsi is stored and updated if necessary
every time a path segment is completed. To avoid unnecessary traversal of the graph a path
segment is only allowed to end in a node higher than its start. Additionally a path segment
can only start from a border-node, if this node is higher than all other starting nodes in
the current search path. This way the border-nodes in the search path also automatically
induce a valid Key instance, which is unique for every possible Pairsi. The longest way of
connecting each possible Pairsi can be looked up in the pathMap under its corresponding
Key, once solveLowestLevel() is completed. An example of the pathMap for the blue
subset of the graph in Figure 3.3 can be seen in Table 3.1.

3.2.2.1 Solving the higher levels

The self-recursive method seen in Figure 3.8 takes the pathMaps[] calculated for the subsets
of lowest partitioning level 0 and combines them step by step until only one subset/map
is left. The method is initially called with level = 1, upon which it combines the results
of level 0 into a valid result for the partition given through the array partitions[1]. After
this the method increases the level by 1 and recursively calls itself, until only one map is
left. level ∈ {1,2,...}. partitionNodes[][] is the borderNodes[][] array of the previous level.
This means that partitionNodes[i] is an array that contains all border-nodes of the subset
i (in ascending order).
The method creates a new graph G := (V, E) as follows:
V is the set of all vertices that occur in partitionNodes[][]. An edge between two vertices
only exists if an i exists, where partitionNodes[i] contains both vertices. E := { {v,w} ∈
V2 | ∃ i : v,w ∈ partitionNodes[i] }
The currently lowest and highest vertex are representatives of the start- and goal-vertex.
Every vertex, except these two, is an element of exactly two subsets i and j. This means
that the vertex stands for a connecting edge between those two subsets. This connection
is shown in the example graph in Figure 3.5 as the pair (i,j). A start- or goal-vertex
only occurs in a single partitionNodes[i], which is represented as a connection (i,i). The
connection for every vertex v is stored in connectionsPerNode[v]. Now new border-nodes
are introduced. A new border-node with an edge to the start-vertex is created. Then
the same is done for the goal-vertex and every vertex with the connection (i,j), where
partitions[level][i] 6= partitions[level][j]. These border-nodes are numbered in such a way
that the lowest border-node is the one that is connected to the start-vertex and the highest
border-node connected to the goal-vertex.
searchHighLevel() is version of searchLowestLevel() that is slightly modified in order to
work on the higher level graphs. searchHighLevel() can only search the graph in a way
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3. Our Algorithm (LPDP)

1: function solveHigherLevels(partitions[][], partitionNodes[][], pathMaps[], level)
2: if pathMaps.size() == 1 then
3: if pathMaps[0] is not empty then
4: it can only contain a single entry (Key,Paths)
5: return the Paths instance
6: else
7: return empty Paths instance with weight = 0
8:
9: initialize graph G, borderNodes and keyMaps

10: for all i ← 0 to partitions[level+1].size() do
11: for each bNode ∈ borderNodes[i] do
12: searchHighLevel(G, borderNodes[i], pathMaps, keyMaps[i], bNode)
13:
14: Paths keys := solveHigherLevels(partitions, borderNodes, keyMaps, level+1)
15: Paths result
16: result.weight = keys.weight
17: for i ← 0 to keys.size() do
18: for j ← 0 to keyMaps[i].get(keys[i]).size() do
19: if keyMaps[i].get(keys[i])[j] not empty then
20: result[j] = keyMaps[i].get(keys[i])[j]
21: return result

Figure 3.8: solveHigherLevels() recursively combines the paths that were calculated for the
partition of the lowest level, finds the longest path and returns it. The used
variables and methods are explained in the text.
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Key Paths Key Paths
Keys Length Keys Length

(35,36)

(27,28)
(28,30)
()
()

6
5
0
0

=11 (36,37)

()
()
(30,31)
()

0
0
9
0

=9

(35,37)

(27,28)
(28,31)
()
()

6
6
0
0

=12 (36,38)

()
()
(30,32)
(32,34)

0
0
8
3

=11

(36,37)

()
(30,31)
()
()

0
7
0
0

=7 (37,38)

()
()
(31,32)
(32,34)

0
0
9
3

=12

Table 3.2: Example of the keyMaps from Figure 3.5. The left table is keyMaps[0] and
combines the pathMaps 0 and 1 of the previous level. The right table shows
keyMaps[1], which combines the subsets/pathMaps 2 and 3. pathMaps[3] can
be seen in Table 3.1

that induces correct paths in the original, underlying graph. To achieve this the edges of
the graph have to be treated differently. The following only applies to edges {v,w} where
neither v nor w is a border-node, while all other edges are treated as before.
An edge {v,w} can be said to be part of a subset s if s ∈ connectionsPerNode[v] ∧ s ∈
connectionsPerNode[w]. This edge than represents a path located in subset s that connects
the two corresponding border-nodes of the graph that lies one level below. Each edge in the
current search path has to be assigned a valid subset. It also has to be made sure that two
successive edges in the search path cannot be part of the same subset. Since the search is
done on the whole graph and not on separate parts like with searchLowestLevel(), one also
has to make sure that edges can only be assigned to those subsets that searchHighLevel()
is currently trying to combine. Section 3.3 explains how it could be done in a different
manner, but this is the way the algorithm was implemented.
Additionally the Key-Paths-map, called keyMap, that searchHighLevel() creates is build
up differently. While the Keys are created as before, Paths now contains Keys of
pathMaps from the previous partitioning level. If the previous level had n pathMaps every
Paths value in the keyMap consists of n different segments. The xth segment represents
a Key in the xth pathMap or subset. As before the Key of a subset s represents the
connected border-node-pairs (Pairss). During the search Pairss equals the set of all edges
in the search path that are assigned to subset s. Additionally a search path does not have
to be further pursued once a subset s exists whose pathMap doesn’t contain a entry for the
current Pairss. If it is impossible to connect Pairss in subset s, it will also be impossible
for all pairs X with Pairss ⊂ X.
An example for the two keyMaps of Figure 3.5 can be seen in Table 3.2

3.3 Parallelization
This section only contains considerations and thoughts for the future. They or parallelization
in general were not actually implemented.
The way it is currently presented, the algorithm could be easily parallelized by simply
parallelizing the loops that call the searchLowestLevel()/searchHighLevel() methods for
the different subsets. This is because all subsets of a level can be solved independently
from each other. This could also be done without having to know the complete graph. At
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Figure 3.9: Example of how the graph from Figure 3.5 could be split into separate graphs,
where each one represents a new subset. The left one combines the subset 0 and
1 into one. The right does the same with 2 and 3. The vertices that they have
in common and the edges between those vertices have been duplicated. These
vertices also had their (x,y)-pairs adjusted. The duplicate of the vertex in the
graph that combines x now connects, similar to start- or goal-vertices, (x,x). A
(y,y) connection is ascribed to the equivalent of this vertex in the other graph.

the lowest level the graph was already split into a Gi-graph for each subset i, which is
the only thing that is needed to gather the possible paths for a subset. This wasn’t done
for the higher partitioning levels. The algorithm here and the implementation of it used
for the experiments keep a single graph for all subsets of a higher level and simply check
each time an edge is supposed to be traversed if it doesn’t lead out of the current subset.
Splitting these graphs could be done in a way that can be seen in Figure 3.9.
The current algorithm also has to wait for all the calculations of a level to finish until the
next can be started. It could be changed in a way that would allow a higher level subset to
be calculated once the subsets that it is combined from are finished, instead of having to
wait for all of them.

3.4 Partitioning procedure and the xN-solver
xN (where N is a number, which will be explained later) will describe our LP-solver that
was created based on the LPDP algorithm. LPDP needs a previous partitioning of the
graph. This was done with a bottom up approach and KaHIP - Karlsruhe High Quality
Partitioning - [SS13]. KaHIP partitions a graph G = (V, E) into a given number of subsets
n. It tries to create subsets of a similar size ( |V |

n ), while trying to minimize the total
number of edges running between different subsets or these edge’s combined weight. How
the number of subsets n was chosen will be explained later in the experiments. After
the original graph is partitioned, we combine its subsets step by step, also with the help
of KaHIP. For this a graph that represents the partition is created. Each of its vertices
represents a subset. Edges between two subsets are represented by an edge between their
corresponding vertices in the new graph. The weight of this edge is the total number of
edges between the subsets in the original graph. This new graph is again partitioned by
KaHIP. After that a new graph is created in a similar manner as above and the process is
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3.4. Partitioning procedure and the xN-solver

repeated. This is done until only one partition is left. This process induces the hierarchical
partitioning that is needed for the algorithm. While the original graph is partitioned in n
subsets, the others are always partitioned into numberOfNodes

2 subsets. This means that the
total number of subsets gets halved with every step and that most of the subsets of a higher
level get created by combining 2 subsets of the lower level. Halving the number of subsets
with every step gave decent results in almost all previous tests, which is why it was used
for all experiments. In this way the only change between the different experiments is the
starting number of subsets n that the solver uses. Additionally, KaHIP has an option to
set a time limit that it will spend to search for a partition. Giving a higher time limit than
the normal runtime of the KaHIP-call should give a partition of a higher quality. In the
following experiments the time limit is given as a multiple of the standard KaHIP-call "xN",
which means N-times as much time as a standard call. Thus the partitioning procedure of
the "xN"-solver simply calls KaHIP once without time limit and measures its runtime. The
KaHIP-call that actually determines the partitioning is then simply run with a time limit
of "N * measured runtime". This of course isn’t the case for the solver without time limit,
called "x1".
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4. Evaluation

4.1 Experiments
The experiments were run on computers that had two Intel R© Xeon R© Processors X5355
(2.66 GHz with 4 cores) and 24 GB RAM. The computers ran the 64-bit version of Ubuntu
14.04.4 LTS.

4.1.1 Benchmarks

4.1.1.1 Grids

A grid represents a maze like it is shown in Fig 4.1. The maze is a NxN grid of square
fields with a given start and target field. One can only move to adjacent fields horizontally
or vertically. Fields of the maze can be obstacles that cannot be navigated through. They
are marked as black in Fig 4.1. The goal is to find the longest simple path from the start
field to the target field. A grid can be represented by a so called grid graph. It contains
a vertex for every free field in the grid. There exists an edge between any two vertices,
whose fields in the grid are horizontally or vertically adjacent to each other. All edges have
a weight of 1.
In [SKP+14] Stern, Kiesel, Puzis, Feller and Ruml used grids for some of their benchmarks
and had solvers for them. Grids were also used here. Not only to allow an easy comparison
to [SKP+14], but also since it was assumed that grids could be easily partitioned in a
way that is suited for the LPDP algorithm. The grids for these experiments were also
generated in the same manner. The top left and bottom right field are the start and
target fields. Then random fields of the grid are consecutively made into obstacles until a
certain percentage of all fields is reached. Afterwards a path between the start and target
is searched for to make sure that a solution of the longest path problem exists.

4.1.1.2 Roads

Roads are subgraphs of a large weighted graph that represents the road network of the USA.
These are also adopted from the benchmarks of [SKP+14]. They are created by appointing
a random vertex as start-vertex and part of the road instance. A breadth-first search from
the start-vertex finds other members of the road instance until a certain number of vertices
is reached. One of them is declared the target-vertex. The road-instance for the longest
path problem consists of these vertices and all the edges that run between them in the
road network graph.
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s

t

Figure 4.1: An example of a 10x10 grid. 40% of its fields are obstacles (black). s and t are
the start and target vertices. The longest path between them has a length of
28.

4.1.2 Used plots and tables

The following is an explanation of the plots and tables that are used to illustrate the results
of the experiments.

Scatter plot:
See Figure 4.3 for an example.
Scatter plots were used to compare the runtimes of two different solvers. The horizontal
axis at the bottom is the x-axis and shows the time scale for the first solver. The vertical
(y-)axis to the left does the same for a second solver. The axes are restricted to a time
interval [a, 600 sec] (with a < 600 seconds). a can differ per axis. 600 seconds or 10 minutes
is the time limit used for the experiments. A problem was considered to be unsolved by a
certain solver if it took longer. The time limits form the right and upper border of the
plot. A mark with the coordinates (x,y) in this coordinate system stands for a problem
that the first solver solved in the time x and the other in the time y. If x or y is 600
seconds, meaning directly on the upper or right border, it is unsolved by the respective
solver. Additionally the line x = y is plotted, which divides the plot into two parts. Each
mark (x,y) in the top part represents a problem where the x-axis-solver was superior, since
x < y. The opposite is true for the bottom part.

Cactus plot:
See Figure 4.2 for an example.
A cactus plot has an axis for the number of problems in the experiment, which is plotted
against the runtime-axis. The plot shows the runtimes of the problems, which were sorted
in ascending order. The point (x, t) on a curve means that the xth fastest solved problem
was solved with the runtime t. Problems that were not solved within the time limit are not
shown.

Table of runtime averages:
See Table 4.1 for an example.
This table shows runtime averages of NxN grid graphs. The first column to the left contains
values of N. The first row from the top contains the name of the algorithms. Any other
field of the table that is in column c and row r corresponds to the size class NxN with N
being given in row r of the first column and the algorithm given in column c of the first
row. The field contains two values. The first value is the runtime average for all grids of
size NxN that could be solved with the corresponding algorithm within the time limit of
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4.1. Experiments

10 minutes. The other value is the number of these problems that could be solved by the
algorithm.

4.1.3 Solvers

The xN solvers work as specified in the section 3.4, which mentions the number of subsets
n that the graph is partitioned in. The variable nodesPerSubset describes the average
number of nodes that a subset should consist of. Once we choose this number, n can be
calculated with n = |V |

nodesP erSubset . nodesPerSubset was simply set to 10 for all of the
road-graphs. The nodesPerSubset for grids were calculated with an interpolation between
two given values based on the grid’s "edge-density" compared to an obstacle-free grid of the
same size. This led to about 15 nodes per subset for grids with 40% obstacles and 12/13
for grids with 30%.
Partitioning the grids with less obstacles into smaller subsets stems from the idea that
these grids contains larger, in both dimensions more "open" regions, which quickly increase
the number of possible paths through these areas. Decreasing the size of the subsets could
at least limit the calculation time of the lowest level partition. Subsets of the same size
in a grid with a higher percentage of obstacles mostly should have fewer edges between
vertices and also fewer edges connecting it with the rest of the grid, which would allow
these grids to be partitioned into larger subsets. Aside from this the exact numbers that
have been chosen as subset-sizes have also been shown to lead to decent results in early test-
ing. This was less of the case for road-graphs, since a good n-value was harder to determine.

Exhaustive DFS is the naive brute-force approach that was talked about in 3.1. This
algorithm simply looks at all simple paths starting from the start-vertex and returns the
path with the highest cost ending in the target-vertex. The implementation of the solver
was taken from [SKP+14].

The A*- and DFBnB-solvers also were taken from [SKP+14] and represent heuristic
searches. They and their heuristics are explained in section 2.2.

4.1.4 Results

4.1.4.1 Grids (40%)

These experiments are NxN grids with 40% of its fields being obstacles. The benchmark’s
data consists of the grid sizes 10x10, 15x15, ..., 120x120 with N increasing in steps of five.
There are 10 grid instances per size class, which leads to 230 grids in total.
First the LPDP-solver was tested with the different partitioning times x1, x5, x10, x15
and x20. This was done to evaluate the performance of the algorithm with higher quality
partition (in respect to the partitioning procedure and its parameters). The runtime of the
solver for the grid instances that were solved within an upper time limit of 10 minutes or
600 seconds per instance can be seen in the first plot of Fig.4.2 in ascending order. The
second plot of Fig.4.2 only shows the runtime of the actual LPDP-algorithm (without
counting the partitioning time). A trend can be seen in Figure 4.2 that, maybe except
for the x15-results, an increased time spent on partitioning results in a faster runtime
for the algorithm. This validates the used partitioning procedure to some degree. It can
be assumed from Figure 4.2 that a higher partitioning time only yields a profit for the
overall runtime of the solver with larger or in general more difficult grids, while the basic
solver (x1) is faster for a majority of the problems. Additionally it can be seen that the xN
solvers with a higher N-number only have a slowly increasing runtime with sudden peaks
at the end. Since the runtimes are ordered in ascending order, these peaks could simply be
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Figure 4.2: Cactus plots (see section 4.1.2) for the 230 grid problems that were solved
with the LPDP-solver. The different curves show the runtime with different
partitioning times that the solver used. The first plot shows the complete
runtime (including the time spent partitioning). The second plot is only
the runtime of the actual algorithm as if the partitioning was already given
(excluding the partitioning time).
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Figure 4.3: Scatter plot (see section 4.1.2) of the x1 and x20 for the grid (40%) instances.

outliers. An outlier could either be a grid that simply is especially difficult to solve by the
algorithm compared to most randomly generated instances of the same size or a grid that
could be solved faster through the right partitioning, but the used partitioning procedure
was ill-suited.
Figure 4.3 is used to further examine the runtime difference between different partitioning
times. Figure 4.3 compares x1 and x20. Each mark in the top left half of the plot shows a
grid that x1 could solve faster than x20. It is the other way around for the bottom right
half. This figure clearly shows that the runtime profit of x20 only exists for high runtimes
and with this larger more difficult grids. This acceleration might not look that impressive
because of the logarithmic scale, but still means that x20 could solve a lot of instances in
under 100 seconds that took x1 between 100 and 600 seconds. In general it has to be said
that the results are still pretty similar and the overall number of solved instances didn’t
change that much. This can be seen more clearly in the following table:

solver x1 x5 x10 x15 x20 A* DFBnB exh.DFS
solved problems 220 221 222 223 223 24 24 20

This difference in 3 grids between x1 and x20 can also be seen more clearly in Fig.4.3.
Markings at the top and/or right border represent grids that couldn’t be solved within the
time limit of 600 seconds. x20 was able to solve 10 more grids in time, because of the better
partitioning, while it also couldn’t solve 7 grids that x1 could, because the acceleration of
the actual algorithm didn’t make up for the additional time spent partitioning.
Furthermore Figure 4.3 doesn’t have a mark on the intersection of the top and right border.
Which means that x1 and x20 together were able to solve all grids of this benchmark set,
proving that the algorithm would be able to solve all instances with the right partitioning
procedure.

Figure 4.4 shows the runtimes of the x1 solver and the optimal algorithms from [SKP+14]
in ascending order. x1 not only solves far more instances than the other solvers, but its
runtime also increases slower with larger grid sizes. A* and DFBnB seem to perform almost
the same and only slightly better than the "naive" brute force approach of exhaustive DFS.
Additional information about the runtime of the algorithms can be seen in Table 4.1.
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Figure 4.4: Cactus plot (see section 4.1.2) for the different optimal algorithms that were
evaluated. The LPDP-solver is only represented with x1, as the other xN are
pretty similar to it and would only reduce the clarity of the plot. The runtime
of x1 includes the time that was spent partitioning the graph.
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Figure 4.5: Scatter plot (see section 4.1.2) of the x1 and A* for the grid (40%) instances.
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x1 x5 x10 x15 x20 A* DFBnB exh.DFS

10 0,046251
10

0,125383
10

1,02198
10

0,125245
10

2,02575
10

0,0125595
10

0,0135098
10

0,0164589
10

15 0,103686
10

0,273619
10

0,299249
10

0,274637
10

2,17323
10

40,4125
10

43,4765
10

46,9462
9

20 0,212964
10

0,487714
10

1,38576
10

0,455555
10

4,24751
10

37,0106
4

44,4601
4

186,371
1

25 0,223155
10

2,19029
10

2,40384
10

6,19008
10

6,30692
10

N/A
0

N/A
0

N/A
0

30 0,349825
10

2,09939
10

4,50234
10

5,11015
10

8,49127
10

N/A
0

N/A
0

N/A
0

35 0,642843
10

3,17047
10

6,54547
10

8,11579
10

14,4023
10

N/A
0

N/A
0

N/A
0

40 0,624812
10

3,90416
10

5,12334
10

9,96432
10

11,0545
10

N/A
0

N/A
0

N/A
0

45 1,06923
10

3,503
10

5,51139
10

13,0241
10

13,2416
10

N/A
0

N/A
0

N/A
0

50 1,1688
10

6,80114
10

10,7783
10

14,8612
10

21,6473
10

N/A
0

N/A
0

N/A
0

55 1,24492
10

5,95532
10

7,37345
10

13,7989
10

17,8037
10

N/A
0

N/A
0

N/A
0

60 15,2127
10

11,7823
10

15,7523
10

14,3927
10

21,6463
10

N/A
0

N/A
0

N/A
0

65 22,6005
10

48,0453
9

51,5173
10

23,9584
9

30,9666
9

N/A
0

N/A
0

N/A
0

70 44,2266
10

38,1816
10

28,3478
10

31,9899
10

39,0062
10

N/A
0

N/A
0

N/A
0

75 52,7414
10

12,0956
9

23,2856
10

27,0736
9

38,145
8

N/A
0

N/A
0

N/A
0

80 3,2441
10

11,4768
10

23,3298
10

34,6903
10

41,3709
10

N/A
0

N/A
0

N/A
0

85 25,5702
9

39,3021
9

39,4046
10

45,3084
10

48,0658
10

N/A
0

N/A
0

N/A
0

90 35,1536
9

25,3597
10

56,48
9

116,298
10

80,267
10

N/A
0

N/A
0

N/A
0

95 108,499
10

47,3925
10

60,8619
10

69,8176
9

53,2011
10

N/A
0

N/A
0

N/A
0

100 130,142
9

59,9476
9

59,8605
9

119,78
9

112,296
9

N/A
0

N/A
0

N/A
0

105 62,2706
8

50,0802
9

114,649
8

95,1448
8

165,909
9

N/A
0

N/A
0

N/A
0

110 36,1491
8

54,6478
10

46,2932
9

82,5595
10

72,3537
10

N/A
0

N/A
0

N/A
0

115 118,364
7

107,262
9

56,3912
9

163,928
9

103,418
9

N/A
0

N/A
0

N/A
0

120 118,496
10

48,0512
7

88,904
8

113,035
10

129,429
9

N/A
0

N/A
0

N/A
0

Table 4.1: Table of runtime averages (see section 4.1.2) for all NxN-grid (40%) instances
and the different algorithms.
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4.1.4.2 Grids (30%)

This benchmark is similar to the one before, but used grids that had 30% of its fields
converted to obstacles instead. This results in a higher number of possible paths compared
to the previous benchmark’s grids of the same size. The benchmark only consists of the
grid sizes 10x10, 15x15, ..., 40x40 because of this. There are again 10 grids per size class,
which leads to 70 grids in total.
First the LPDP-solver was tested with the different partitioning times x1, x5, x10, x15
and x20. This was done to evaluate the performance of the algorithm with higher quality
partition (in respect to the partitioning procedure and its parameters). The runtime of the
solver for the grid instances that were solved within an upper time limit of 10 minutes or
600 seconds per instance can be seen in the first plot of Fig.4.6 in ascending order. The
second plot of Fig.4.6 only shows the runtime of the actual LPDP-algorithm (without
counting the partitioning time). These figures show very similar results compared to the
previous benchmark with 40% grids. Higher partitioning time tends to slightly accelerate
the algorithm, but there are no major changes in the overall runtime of the solver. It can
also be seen that the 30% grids are much harder to solve than the previous ones, since
the xN-solvers could still solve 120x120 grids in the previous benchmark, while they are
now having trouble with 40x40 sized grids. The number of solved problems for the tested
algorithms can be seen in the following table.

solver x1 x5 x10 x15 x20 A* DFBnB exh.DFS
solved problems 54 61 63 60 62 11 11 10

Increased partitioning time made the algorithm solve a lot more problems compared to the
previous benchmark. The x1 solver was only able to solve 54 of 70 problems. This number
increased by 6-9 with longer partitioning times. This stands in contrast to the 220 of 230
problems that could be solved in the previous benchmark, where higher partitioning times
only increased this number by 1-3. This could be because the quality of the partitioning is
far more important for grids with a lower percentage of obstacles and with this also for
graphs with a higher density of edges in general. Another possibility would be that the
maximal grid size of 120x120 was not large enough and the 10 unsolved problems from
previous benchmark were outliers, especially hard grids were better partitioning wouldn’t
necessarily make a difference. Maybe the higher partitioning times would make more of a
difference for even larger grids. A point that speaks against this is that x1 and x20 together
were able to solve all 230 problems of the previous benchmark. This means that the longer
partitioning times did make a lot more instances solvable (than just 1-3), while others
were rendered unsolvable since the partitioning took much longer, while only insufficiently
accelerating the algorithm.

Figure 4.7 again illustrates the runtimes for different optimal algorithms. The LPDP-
algorithm is represented by x10 since it solved the most problems. The x10 solver is again
much better than all other algorithms from [SKP+14]. A* and DFBnB perform even
more similar than in the previous benchmark. It can be seen in the [SKP+14] paper that
A* and DFBnB are related algorithms. A* basically is a Best-First-Branch-and-Bound
algorithm compared to Depth-First-Branch-and-Bound (DFBnB). While they work in a
different manner, they most likely traversed nearly all the same paths at the end of the
search. Something noteworthy, which is further shown in Figure 4.8, is that A* (and also
DFBnB) exclusively performed better than the brute force approach that is exhaustive
DFS. Previously exh.DFS was faster for the smallest grid sizes. Now this has changed,
further showing the difficulty of these grids compared to the previous ones.

Additional information about the runtime of the algorithms can be seen in Table 4.2.

28



4.1. Experiments

��

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ���

�
��
�

�
��

�
�
�
�
�
�
�
�

������������������

��
��
���
���
���

��

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ���

�
��
�

�
��

�
�
�
�
�
�
�
�

������������������

��
��
���
���
���

Figure 4.6: Cactus plots (see section 4.1.2) for the 70 grid problems that were solved with the
LPDP-solver. The different curves show the runtime with different partitioning
times that the solver used. The first plot shows the complete runtime (including
the time spent partitioning). The second plot is only the runtime of the actual
algorithm as if the partitioning was already given (excluding the partitioning
time).
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Figure 4.7: Cactus plot (see section 4.1.2) for the different optimal algorithms that were
evaluated. The LPDP-solver is only represented with x10, as the other xN are
pretty similar to it and would only reduce the clarity of the plot. The runtime
of x10 includes the time that was spent partitioning the graph.
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Figure 4.8: Scatter plot (see section 4.1.2) of the A* and exhaustive DFS for the grid (30%)
instances. A* exclusively performed better.
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x1 x5 x10 x15 x20 A* DFBnB exh.DFS

10 0,0890115
10

1,03739
10

1,13457
10

0,236855
10

2,13764
10

5,10719
10

5,20982
10

51,2043
10

15 0,200694
10

0,434824
10

1,32732
10

1,83663
10

2,34593
10

275,837
1

485,575
1

N/A
0

20 0,998142
10

3,13388
10

3,72064
10

1,93556
10

8,91817
10

N/A
0

N/A
0

N/A
0

25 13,2708
9

40,1293
10

36,6412
10

38,0422
10

39,3882
10

N/A
0

N/A
0

N/A
0

30 40,4099
9

28,9649
10

26,6574
10

45,3826
10

31,7437
9

N/A
0

N/A
0

N/A
0

35 60,9708
6

79,5184
8

173,16
9

54,0274
8

47,0712
7

N/A
0

N/A
0

N/A
0

40 N/A
0

289,876
3

147,096
4

220,06
2

227,576
6

N/A
0

N/A
0

N/A
0

Table 4.2: Table of runtime averages (see section 4.1.2) for all NxN-grid (30%) instances
and the different algorithms.

4.1.4.3 Roads

The road benchmark consists of 150 random subgraphs of a large, weighted graph that
represents the road network of the USA. The first subgraph only consists of 2 vertices. The
next subgraph always contains two more vertices than the previous one until 300 vertices
are reached.

solver x1 x5 x10 x15 x20 A* DFBnB exh.DFS
solved problems 132 135 132 134 133 76 76 65

Even less of a difference in the actual runtime of the algorithm can be seen in Figure 4.9.
The only big difference exists between x1 and the others. Any xN with N > 1 seems to give
partitions of a similar quality, which practically doesn’t increase further with higher N.
Additionally Figure 4.10 suggests that the advantage that LPDP or at least the xN-solver
has over the other solvers from [SKP+14] has gotten smaller. In fact the xN could only
solve about twice as many instances as the others. This could have a multitude of reasons.
The first is that road-instances are random subgraphs of the US road network. This means
that the number of its vertices is rather insignificant to the overall difficulty of an instance,
which was seen in the benchmark as, for example, x1 solved some of the biggest instances
(300,290,286,...) in less than a second, while others of similar size were unsolvable in the
complete 10 minutes. This occurs because random subgraphs consisting of n vertices vary
far more in their overall difficulty. This is less of an issue for grids since its obstacles get
distributed at random and uniformly over the whole grid. Any area in the grid can be
expected the have the same percentage of obstacles as the whole grid. The road graph’s
unpredictability is a problem for the partitioning procedure that is used. First off KaHIP
itself, which is the program that is used to partition a graph, could be less fit to partition
road graphs. Grid graphs have useful characteristics (each vertex can only have up to 4
edges, ...) that could help to partition it and also make sure that better partitions exist.
This isn’t the case for the road graphs. An additional problem is that KaHIP tries to
partition the graph into subsets of a similar size, while minimizing the number or weight
of the edges between them. The wanted size has to be given to KaHIP as a parameter
beforehand. This parameter was simply set to 10 for all roads. This is obviously not
optimal. A better approach would be to determine this number based on the specific
graph’s properties (e.g. edge density). Additionally the partitioning procedure surrounding
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Figure 4.9: Cactus plots (see section 4.1.2) for the 150 road graphs that were solved with the
LPDP-solver. The different curves show the runtime with different partitioning
times that the solver used. The first plot shows the complete runtime (including
the time spent partitioning). The second plot is only the runtime of the actual
algorithm as if the partitioning was already given (excluding the partitioning
time).
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Figure 4.10: Cactus plot (see section 4.1.2) for the road graphs that were evaluated. The
LPDP-solver is only represented with x1, as the other xN are pretty similar to
it and would only reduce the clarity of the plot. The runtime of x1 includes
the time that was spent partitioning the graph.

KaHIP, as explained in section 3.4, could also be flawed (which would also affect grid
graphs).
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Figure 4.11: Scatter plot (see section 4.1.2) of the x1 and A* for the road instances.
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5. Conclusion

Longest Path Dynamic Programming (LPDP), the optimal algorithm for the longest path
problem that was presented in this thesis, is based upon graph partitioning and dynamic
programming. A hierarchical partition has to be precalculated and given to the algorithm.
The acceleration of the algorithm compared to a brute force approach is dependent on the
quality of this partition. LPDP was tested on certain graph types and has been shown
to be significantly faster than other known algorithms. This was the case even though
the partitioning procedure certainly didn’t use KaHIP to the fullest extend that would
have been possible. The parameters used in the current procedure could be calculated in a
better way. Additionally other partitioning programs and approaches could be tested.
The graphs that were tested all had a rather low amount of edges compared to their number
of vertices and allowed for a fitting partitions. The algorithm’s usefulness could strongly
vary if such good partitions do not exist or are harder to find. Other types of graphs,
especially ones for which practical applications of the longest path problem exist, could still
be tested. The algorithm could be suitable for most planar graphs as grid graphs also are
planar and all graphs of the benchmarks had around 2 to 3 times as many edges as vertices
(a planar graph with n vertices can only have a maximum of 3n− 6 edges). Additionally
planar graphs are probably easier and better to partition in a manner that is fitting for the
algorithm.
Possible improvements to the algorithm in regards to parallelization have already been
given in the section 3.3. Another improvement might be to cull unreachable parts of the
graph before the partitioning. This could be useful for graphs that consist of many separate
components. Unnecessary calculations take place if a component of the graph that is
unreachable from the start or goal vertices is divided into multiple subsets. The algorithm
then calculates possible longest paths between their borders only to discard them later.
This was the case for grid graphs. Road graph were constructed in a way that always
resulted in a single connected component. Certain calculations for subsets that contain the
start or target vertex are also unnecessary, since the start and target vertices always have to
be connected with another border-node. The algorithm, as it was implemented, calculates
all possible connections within a subset, even if they don’t include the start/target vertex.
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