
Master thesis

Bloom Filters for ReduceBy, GroupBy
and Join in Thrill

Alexander Noe

Date: 12. January 2017

Supervisors: Prof. Dr. Peter Sanders
Dipl. Inform. Dipl. Math. Timo Bingmann

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KITopen

https://core.ac.uk/display/197507358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Thrill is a prototype of a high-performance general purpose big data processing frame-
work. In the Reduce operation, which is similar to Reduce in MapReduce, Thrill performs
an all-to-all hash based data shuffle of large amounts of data. Elements only occuring on
a single worker could however be reduced locally without shuffling them. To find these
elements, we propose a detection algorithm based on distributed single-shot Bloom filters
to efficiently detect a large portion of these elements.
Additionally, we implemented an SQL-style InnerJoin operator for Thrill. For the Inner-
Join operator it is not possible to perform local reduction before the hash based data shuffle.
Therefore we implemented an augmented version of our detection algorithm, which detects
the worker with the highest number of total occurences for each key. In order to reduce the
amount of total network traffic, this worker is determined as the shuffle target for that key.
We use multiple algorithmic micro-benchmarks on the AWS EC2 computing cluster to
benchmark the performance of our implementations in the Thrill framework.
In communication-heavy benchmarks, such as median computation and the TPC-H4 database
join query, we can improve the running time by a factor of 1.5 up to 10 by using duplicate
detection. In the WordCount and PageRank algorithms performed on real world data we
can lower the amount of network traffic while keeping a comparable running time.

Acknowledgments

We would like thank the AWS Cloud Credits for Research program for making the experi-
ments in Chapter 7 possible.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
habe.

Karlsruhe, den 12.01.2017

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 1
1.3 Structure of Thesis . 2

2 Related Work 3

3 An Introduction to Thrill 5
3.1 Overview . 5
3.2 Distributed Immutable Array . 7
3.3 Operations in Thrill . 7

3.3.1 Source Operations . 8
3.3.2 Local Operations . 8
3.3.3 Distributed Operations . 9
3.3.4 Actions . 10
3.3.5 Data Flow Graph . 11
3.3.6 Data, Network, and I/O Layer . 13

3.4 Algorithms . 15
3.4.1 WordCount . 15
3.4.2 Page Rank . 16
3.4.3 TPC H4 . 21
3.4.4 Percentiles / Median . 22
3.4.5 Triangle Counting . 23

4 Bloom Filters 27
4.1 Counting Bloom Filter . 28
4.2 Compressed Bloom Filter . 29

4.2.1 Golomb Encoding . 30
4.3 Distributed Bloom Filters . 31

5 InnerJoin in Thrill 33
5.1 Overview . 33

vii

5.2 Implementation . 33
5.2.1 Link Phase . 34
5.2.2 Main Phase . 34
5.2.3 Push Phase . 35

6 Distributed Bloom Filters in Thrill 37
6.1 Overview . 37
6.2 Duplicate Detection in Reduce . 37
6.3 Location Detection . 40

7 Experimental Evaluation 43
7.1 Implementation . 43
7.2 Experimental Setup . 43

7.2.1 Environment . 43
7.2.2 Tuning Parameters . 44

7.3 Experimental Results . 46
7.3.1 Word Count . 46
7.3.2 Page Rank . 49
7.3.3 TPC-H4 Benchmark . 54
7.3.4 Median . 57
7.3.5 Triangle Counting . 60

8 Discussion 65
8.1 Conclusion . 65
8.2 Future Work . 65

Bibliography 67

1 Introduction

1.1 Motivation

In the last decades, the amount of data generated in many applications increased expo-
nentially. In order to process this ever-increasing amount of data, parallelized computation
quickly became essential. One of the programming paradigms to handle parallel computing
on commodity clusters is MapReduce [14], popularized by Google in 2004. The MapRe-
duce paradigm offers a limited user interface with only two user-defined operations: Map
and Reduce. Frameworks implementing MapReduce aim to provide scalability and fault
tolerance while being easy-to-use. The first step of MapReduce, the Map operation, maps
each input element to a set of key-value pairs. The second step, the Reduce operation, then
groups all elements with equal key and reduces them to a single value.
The widely-used open source framework Apache Hadoop [47] implements the MapReduce
paradigm. While the framework scales very well, Hadoop has low performance especially
in iterative algorithms [9]. Many frameworks, such as Apache Spark [49], Apache Flink /
Stratosphere [3] and Thrill [6] try to enhance the performance of Hadoop while offering
a superset of operations to the user. In sufficiently large clusters, data communication be-
tween machines can become the main performance bottleneck for many applications. Ex-
amples for such communication-bound applications are sorting [36] and PageRank [37] [6].
In applications, where the bottleneck is the communication volume, performance enhance-
ment is mainly possible by lowering this amount of communication. In Reduce this can
be done by trying to detect keys that only appear on a single worker. These keys can be
reduced locally and do not have to be sent to another worker in the network.
A possible approach to detect non-duplicate keys to reduce locally is Bloom filtering [7].
A Bloom filter is a space efficient data structure to detect duplicated elements in a data set.
Bloom filters have a false positive rate but do not contain false negatives. In parallel com-
puting, distributed single-shot Bloom filters (dSBF) [40] implement a single Bloom filter
spread over multiple computation nodes. This dSBF data structure can be used to detect
duplicate elements in a parallel environment.

1.2 Contribution

In this work, we use a dSBF in the Reduce operation of Thrill to probabilistically detect
keys which only occur on a single worker with a small communication overhead. When the

1

1 Introduction

amount of non-duplicate keys is large, the total amount of communication for a program
can be reduced.
As a part of this work, we also wrote a InnerJoin operation in Thrill, which performs an
SQL inner join to join two datasets as defined by the user.
In the operations GroupBy and InnerJoinWith, multiple elements with equal keys all have
to be sent without being able to pre-reduce them locally. Therefore it is beneficial to find
the worker with the highest amount of elements with a certain key. We use an extended
dSBF to find this worker for each key in the datasets and additionally filter out keys which
can’t generate any join results.

1.3 Structure of Thesis

Chapter 2 of this thesis lists related work for big data processing frameworks and Bloom
filters. Chapter 3 gives an overview of the current version of the Thrill framework, which
is basis for this work. Chapter 4 describes the original Bloom filter data structure and
multiple Bloom filter variants which are useful for our purpose. Chapter 5 describes the
InnerJoin operation of Thrill in detail. Chapter 6 describes the application of dSBF to
Thrill to detect duplicate elements. Chapter 7 shows experimental evaluation for InnerJoin
and the duplicate detection with multiple algorithms. Chapter 8 discusses the experimental
results and gives an outlook on potential future work.

2

2 Related Work

In recent decades, many different frameworks were written to handle very large amounts
of data in a highly distributed environment [10]. One of the most heavily used frameworks
is Apache Hadoop [47], which provides an open-source implementation in Java for the
MapReduce [14] programming paradigm. The intended usage of Hadoop is scalable com-
putation on clusters with a large amount of commodity machines. The Hadoop framework
also incldues the Hadoop Distributed File System (HDFS) [42], which is a distributed file
system storing files redundantly on multiple machines of the commodity cluster. HDFS is
used in many big data frameworks.
As Hadoop has a very restricted interface and lackluster performance, many different
frameworks tried to advance the idea. One of these big data frameworks is Apache Spark [49].
The central element of Spark’s interface is a data structure called Resilient Distributed
Dataset (RDD). An RDD is a distributed read-only multiset of elements. It can be gen-
erated from input or other RDDs using the transformations offered by Spark, which are
a superset of MapReduce. Additionally, Spark offers libraries for machine learning (ML-
lib) [32], graph processing (GraphX) [48] and handling of data streams (Spark Stream-
ing) [50].
Another notable big data processing framework is Apache Flink/Stratosphere [3]. Both
Spark and Flink are implemented in Scala.
Pregel [28] offers a system for distributed graph processing. Multiple frameworks such as
GraphLab [27] and Google TensorFlow [2] offer distributed machine learning.
A benchmark comparing Spark and Flink [29] shows that both frameworks have clear
strengths and weaknesses. The benchmark shows that Spark is faster for large prob-
lems, but Flink is faster for batch and small graph workloads. The authors note that both
frameworks have performance problems due to the limitations of the JVM, especially with
garbage collection. Additionally, they observe a very complex optimization process for
Spark.
HiBench [23] is a benchmarking suite that was originally written to benchmark the per-
formance of Hadoop in a set of real-world algorithms. Recent versions of HiBench also
benchmark Spark.

A Bloom filter [7] is a space-efficient data structure for probabilistic membership queries.
A Bloom filter has false positives but no false negatives. There are many different vari-
ants of Bloom filters [8] [46], such as counting Bloom filters [17] and compressed Bloom
filters [33]. Bloom filters can be compressed using Golomb encoding [38] [18]. It is pos-
sible to detect duplicate elements in a distributed dataset with little communication using a

3

2 Related Work

Golomb encoded distributed Bloom filter [40].
Bloom filters are used in databases to improve performance by “preventing unnecessary
searches” [21]. They can also be used to find duplicate entries in databases [30]. Bloom
filters are also used to perform deep packet inspection [15]. Their usage can reduce com-
munication volume in SQL joins in databases [34] [19]. This is especially true when the
amount of elements not participating in the join is large.
Another usage for Bloom filters is the reduction of communication volume when perform-
ing a join in Hadoop [26]. In the TPC-H4 [12] benchmark on Hadoop, the running time is
substantially lowered with usage of replicated Bloom filters.
Thrill [6] is a big data processing framework written in C++ -14. The central data structure
of Thrill is the Distributed Immutable Array (DIA). In contrast to Spark and Flink, DIAs in
Thrill are inherently ordered. In the Thrill introduction paper [6], the performance of the
framework is compared to Spark and Flink on AWS EC2 machines. These machines are
comparable to the machines used in this work. In most algorithms, Thrill can outperform
both Spark and Flink.

4

3 An Introduction to Thrill

3.1 Overview

The amount of raw data generated in many scientific and commercial applications is in-
creasing steadily. Large instances of data analysis problems such as machine learning,
weather forecasting or webpage ranking require many processors or even a whole comput-
ing cluster to solve. Using a computing cluster introduces new problems, as programming
on distributed systems is fundamentally different to single-core programming. Multiple
threads need to be coordinated to ensure a correct result. On larger systems, the memory
is distributed and the processors need to send messages to other processors. To solve these
challenges of distributed programming, multiple different paradigms were introduced.
On the one end of the complexity spectrum, MPI [22] provides a complex and low-level
message passing interface to allow communication between individual processing units.
The user can send messages from one processor to another or perform collective functions.
On the other end, MapReduce [14] provides an easy-to-use high level interface with only
two user-defined procedures. The Map() function maps an input element to zero or more
key-value pairs. This Map() function is applied to each element of the input data set. The
resulting key-value pairs are then shuffled over the cluster and grouped by their respec-
tive key. The user-defined Reduce() function can then iterate through all values associated
with a certain key and generate zero or more output values. MapReduce was popularized
by Google in 2004 [14]. Google Mapreduce is their implementation of the MapReduce
paradigm. It is a proprietary framework written in C++ . A widely used open source alter-
native is Apache Hadoop [47] written in Java.
While this MapReduce interface is useful for many applications, it has its limitations, es-
pecially in iterative algorithms [9]. Apache Spark [49] and Apache Flink / Stratosphere [3]
are frameworks written in Scala which try to alleviate the limitations of MapReduce. They
both have more generalized dataset transformation interfaces, which are supersets of the
MapReduce interface. Both Spark and Flink generally outperform Hadoop on most use
cases [49]. Their performance is however often still lacking [31], mostly due to limitations
of the JVM. In many cases, the CPU performance is also the bottleneck for these frame-
works [35].
Thrill is a framework, which provides an interface similar to these frameworks. Thrill tries
to outperform Flink and Spark by being written in modern C++ 14 and using efficient low-
level memory and data management. This chapter gives an introduction to the interface and
the internals of the Thrill framework to give a basis for the chapters describing InnerJoin

5

3 An Introduction to Thrill

and the duplicate detection.
There are many applications for big data frameworks such as Thrill, Flink, Hadoop or
Spark. The paper introducing the MapReduce paradigm [14] contains two usage exam-
ples: a grep scan of records for a certain string pattern and a sorting example modeled after
the TeraSort [36] benchmark. The WordCount algorithm, which counts the occurences
of each word in a text, is often seen as the ’Hello World’ example for such frameworks.
Section 3.4.1 shows an implementation of WordCount in Thrill. Another popular algorith-
mic use is the website ranking algorithm PageRank [37]. The Thrill implementation of
PageRank is detailed in section 3.4.2. Big data frameworks are also often used for machine
learning [32] and for making database queries [4].

Thrill

Thrill is an open-source framework for distributed batch processing of large amounts of
data. The Thrill core is written completely in C++ 14. Thrill user programs can be writ-
ten in C++ 14 and compiled to a binary exectuable. The intended place of use for Thrill
are commodity clusters with multiple commodity-grade hosts connected by a local area
network. It is however also possible to use Thrill on high-performance clusters or single
machines without needing additional configuration.
When a Thrill executable is executed, an equal program starts on each of the h machines
allocated to this Thrill program. This program launches several worker threads, by default
identical to the hardware concurrency c of the machine. Thrill currently only supports a
uniform amount of workers per host.
The data from input files, by default assumed to be on a network file system, will be par-
titioned equally to all participating worker threads. To ensure good load balancing, the
workers should be nearly identical in performance. The machines are interconnected by a
reliable network backend. Currently supported backends in Thrill are fully-meshed TCP
connections, a MPI backend and TCP/IP over Infiniband.
In the context of Thrill, each machine used is called a host. Each of the threads performing
work is called a worker. The Thrill program has a total of p = h · c workers. Each worker
has a unique identification handle enumerated from 0 to p− 1. On a unique host, the local
workers are enumerated from 0 to c − 1. The hosts are enumerated from 0 to h − 1. In
contrast to Spark and Hadoop, Thrill has no separate master node or driver.
The network subsystem of Thrill additionally provides a set of MPI-style network collec-
tives like reduce and broadcast. These network collectives by default use worker 0 as the
broadcasting source or reduce target. Internally, these collectives use efficient algorithmic
solutions.
Thrill does not yet provide tolerance to hardware failures, however the design of the frame-
work allows addition of snapshots for rollback.

6

3.2 Distributed Immutable Array

3.2 Distributed Immutable Array

The central element of the API of Thrill is the Distributed Immutable Array (DIA). From
the user’s perspective, a DIA can be seen as an immutable array, which is distributed over
all workers in the cluster. As indicated by the name, a DIA has an inherent global order of
elements and each element in a DIA has equal type. A DIA can have an arbitrary type T
and it is denoted as DIA〈T〉. The element type is a template parameter of the DIA.
As a DIA is immutable, it is not possible to insert, delete or change elements in a DIA
directly. Instead, a new DIA can be created by performing transformation operations to
an existing DIA or input files. If we e.g. have a DIA〈Integer〉, we can create a new
DIA〈Integer〉 by mapping each integer to its square. Most operations in Thrill keep the
order of elements in a DIA intact. In most cases, the contents of a DIA are not actually
materialized, they exist only conceptually. This allows multiple optimizations detailed in
Section 3.3.5.
Section 3.3 gives an overview over all operations currently present in Thrill. Section 3.4
shows detailed implementations of different algorithms in Thrill. Section 3.3.6 describes
the data, net and I/O layers of Thrill.

3.3 Operations in Thrill

An operation in Thrill creates a new DIA from either another DIA or an input file. In Thrill,
most operations can be specified by one or multiple User Defined C++ Lambda Functions
(UDFs). The operations in Thrill can be classified in four groups.
Source operations generate a new DIA either from input files or from a generator function.
All other operations have at least one DIA as their input.
Local operations (LOps) are operations, which can be performed without communication
between workers. The UDF further specifying the LOp is applied to every element of the
input DIA. Multiple consecutive LOps are chained into a single function, further denoted
as the LOp Chain.
Distributed operations (DOps) have at least one global communication step and therefore
comprise a global barrier. A DOp is divided into three parts: the Link phase handles the
finalizing local work by applying a function to every element. Usually, the Link phase
stores elements locally or inserts them into a asynchronous network stream. The Main
phase can perform global communication and computes the result DIA of the operation.
The Push phase emits output elements into the following LOp Chain. When the result of a
DIA is required more then once, only the Push phase is called in the subsequent calls.
Actions do not generate a new DIA but return a computed result, for example the sum of
all elements in a DIA, to each worker. Actions consist of a Link phase and a Main phase.
The roles of the phases are similar to the phases in a DOp. The Push phase is not needed
as there are no resulting DIA and therefore no elements to push to the subsequent chain.

7

3 An Introduction to Thrill

Table 3.1: Source Operations of Thrill, from [6]
Operation User Defined Functions
Generate(n) : [0, . . . , n− 1] n : DIA size
Generate(n, g) : [A] g : unsigned→ A
ReadLines() : files→ [string]
ReadBinary〈A〉() : files→ [A] A : data type

3.3.1 Source Operations

Table 3.1 shows a set of source operations implemented in Thrill. These operations gener-
ate DIAs from an input. Available inputs are files from disk and generator functions.
Generate generates a DIA of unsigned integers in the range [0, n). It is also possible to add
a lambda function g, which maps the indices [0, n) to the elements of a generated DIA.
ReadLines takes a file path and creates a DIA〈std::string〉. In this DIA, each line
from the input is one element. The operation internally uses the Linux tool glob to find
all files for the path. The elements in the resulting DIA are ordered by the lexicographical
order of the file names and the order of lines in a file. Thrill generally assumes a distributed
file system, in which every worker can access all files and distributes the data equally on
a global level. If there is no distributed file system, each host reads all of its data locally.
Equal distribution is realized on a byte level, which means that every worker gets roughly
equal amount of text bytes, even if the files or lines have unequal sizes. For an input size
n, worker i reads all lines which start in [n·i

p
, n·(i+1)

p
).

It is also possible to access compressed files with ReadLines. As compressed files generally
do not allow seeking, worker i completely reads all files, where the byte exactly in the
middle of the file is in [n·i

p
, n·(i+1)

p
). ReadLines can also read files from the AWS S3 storage

cloud. These files are read using the libS3 library.
ReadBinary reads binary files from disk. ReadBinary takes the desired element type as a
template parameter.

3.3.2 Local Operations

Table 3.2 shows a set of LOps implemented in Thrill. These operations transform a DIA
into a new DIA without communication.
Map applies a transformation UDF to each element of the input DIA. The type of the output
DIA is hereby - like in most other operations - inferred from the return type of the mapping
UDF.
FlatMap is a generalization of Map, in which the transformation UDF takes an input ele-
ment and maps it to zero or more output elements. For this purpose, the UDF has an emitter
function as a second parameter.
Filter filters a DIA according to a filtering UDF. This filter function maps each input ele-

8

3.3 Operations in Thrill

Table 3.2: Local Operations of Thrill, from [6]
Operation User Defined Functions
Map(f) : [A]→ [B] f : A→ B
FlatMap(f) : [A]→ [B] f : A→ list(B)
Filter(f) : [A]→ [A] f : A→ bool
BernoulliSample(p) : [A]→ [A] p : success probability
Union() : [A]× [A] · · · → [A]
Collapse() : [A]→ [A]
Cache() : [A]→ [A]

ment to a bool. The output DIA contains all elements, which were mapped to true.
BernoulliSample performs an independent Bernoulli Sample with success probability p on
each element of the input DIA. The output DIA contains all sampled elements, the other
elements are discarded.
Union unites multiple DIAs of equal type. In this process the order of elements is disre-
garded.
Cache saves a DIA to avoid recalculation when the DIA is used multiple times.

3.3.3 Distributed Operations

Table 3.3 shows a set of DOps implemented in Thrill. These operations create a new DIA
and have at least one global communication step.
ReduceByKey groups all DIA elements by their key and reduces all elements with equal
key to a single output element. The key extractor function k maps an element to its key.
The associative reduce function r merges two elements to a single element. This function
r is applied to elements with equal key until only a single element with this key remains.
ReducePair is a variant of ReduceByKey, which assumes that the input type is a std::pair
of the key and value. Therefore, ReducePair does not need a key extractor function. The
reduce function in ReducePair reduces two values to a single one. This reduction is per-
formed on elements with equal key until only a single result is left for this key.
GroupByKey performs an equivalent reduction. In contrast to ReduceByKey, the group by
function in GroupByKey maps an iterable of elements to a single element. This lowers
performance and increases network load, but it allows changing element types and compu-
tations, which need all elements at once, for example median. ReduceByKey and Group-
ByKey disregard the order of the DIA and do not give any guarantees about the ordering of
the output DIA.
Both ReduceBy and GroupBy also have a ToIndex variant, in which the key extractor maps
elements to indices in [0, n), where n is an integer defined by the user in the operation. The
output DIA has exactly n elements and is ordered by those indices.
InnerJoinWith performs an inner join of two DIAs. The operation extracts the key of each

9

3 An Introduction to Thrill

Table 3.3: Distributed Operations of Thrill, from [6]
Operation User Defined Functions
ReduceByKey(k, r) : k : A→ K
ReducePair(r) : [(K,A)]→ [(K,A)] r : A× A→ A
ReduceToIndex(i, r, n) : [A]→ [A]
GroupByKey(k, g) : g : iterable(A)→ B
GroupToIndex(i, g, n) : [A]→ [B] i : A→ unsigned
InnerJoinWith(k1, k2, j) : [A]× [B]→ [C] k1 : A→ K

k2 : B → K
j : A×B → C

Sort(c) : [A]→ [A] c : A× A→ bool
Merge(c) : [A]× [A] · · · → [A] c : A× A→ bool
Concat() : [A]× [A] · · · → [A]
PrefixSum(s, i) : [A]→ [A] s : A× A→ A

i : initial value
Zip(z) : [A]× [B] · · · → [C] z : A×B · · · → C
ZipWithIndex(z) : [A]→ [B] z : unsigned× A · · · → B
Window(k, w) : [A]→ [B] k : window size
FlatWindow(k, f) : [A]→ [B] w : Ak → B

f : Ak → list(B)

element and joins all pairs of elements with equal key. As InnerJoinWith was part of this
thesis, the internals of the operation are described in Chapter 5 in detail.
Sort sorts a DIA according to a given comparison function. The operation uses Super
Scalar Sample Sort as the distributed sorting algorithm [41]. To enable external memory
sorting, the local sorting uses external merge sort.
Merge performs a merge step to merge multiple ordered input DIAs while keeping the ele-
ment order intact.
Concat concatenates two DIAs while keeping the order. In contrast to the LOp Union,
Concat keeps the order of elements. Therefore the data needs to be shuffled between work-
ers.
Zip zips two DIAs similar to the zip operation in functional programming languages. Zip-
WithIndex zips each element of a DIA with its global index.
Window and FlatWindow are variants of Map and FlatMap. In contrast to Map, the user-
defined function in Window has a sliding window of k elements as it’s input.

3.3.4 Actions

Table 3.4 shows a set of actions implemented in Thrill. Actions do not result in a DIA
but in an equal result value on each worker. All previously described operations are exe-

10

3.3 Operations in Thrill

Table 3.4: Actions of Thrill, from [6]
Execute()
Size() : [A]→ unsigned
AllGather() : [A]→ list(A)
Sum(s, i) : [A]→ A s : A× A→ A
Min(s) : [A]→ A i : initial value
Max(s) : [A]→ A
WriteLines() : [string]→ files
WriteBinary() : [A]→ files

cuted lazily, only actions actually start computation. This process is further explained in
Subsection 3.3.5, which describes the data flow graph of Thrill.
Execute only executes the previous operations and does not return anything.
Size returns the total number of elements in a DIA.
AllGather returns a DIA as an std::vector on each worker. This is useful in tests but
generally not advisable for large datasets.
Sum returns the sum of all element values. The Actions Min and Max return the smallest
or the largest element in the DIA.
WriteLines writes a DIA to files on disk. In default configuration WriteLines writes mul-
tiple files, it is also possible to write the whole output in a single file. WriteBinary writes
a DIA to binary files. The DIA can then be recreated identically by the Source Operation
ReadBinary. By default, WriteLines and WriteBinary write individual files with a size limit
of 64MiB. The files are in global lexicographical order.

3.3.5 Data Flow Graph

The data flow of the operations in a Thrill program form a directed acyclic graph. Figure 3.1
shows an example data flow graph for the WordCount algorithm. This algorithm counts the
number of occurences for each word in a text and is explained in detail in Section 3.4.1.
In the Thrill data flow graph, source operations are root nodes, e.g. nodes with an indegree
of 0. An edge in this graph denotes that data flows directly from parent to child and thus
the parent node needs to be computed before the child can be.
All non-source nodes have an indegree of at least 1, as all operations need at least one input
DIA. Figure 3.1 was created from the Thrill JSON output using a Python script included in
Thrill and the GraphViz [16] dot tool.
The Thrill data flow graph is executed lazily. In Thrill, only actions actually trigger compu-
tation. When an action is found in the program, the framework performs a reverse breadth-
first search to find all operations which need to executed. These operations are then exe-
cuted in topological order.
The result of an action usually is identical on each worker. This is important to ensure

11

3 An Introduction to Thrill

ReadLines.1

FlatMap.2

ReduceByKey.3

Map.4

WriteLines.5

Figure 3.1: Data Flow Graph for WordCount Algorithm

program integrity, as action results are often break conditions for loops. Otherwise it could
be possible to leave a loop on some workers while other workers reenter the loop resulting
in undefined program flow.
In the example in Figure 3.1, computation is triggered as soon as the WriteLines action is
encountered. The reverse breadth-first search finds all upstream operations, which are then
executed from top to bottom.

Function Chaining

For the end user, a DIA can be seen as an actual array. In reality, the DIA exists only
conceptually and the data is usually not materialized. This data flow concept makes some
run time optimizations possible. In some LOps (Map, FlatMap, Filter, BernoulliSample),
a lambda function is applied to each element of the DIA. Multiple consecutive LOps there-
fore form a chain of functions where the output of one function is the input of the next
function.
Thrill combines this LOp chain to a single function which is applied to each element. The
Link phase of the subsequent DOp or action is also inserted to the LOp chain. This chain-
ing reduces the total number of operations and reduces memory overhead, as each element
is only accessed once. Additionally this also renders storage for the intermediate results
unnecessary.
In the example in Figure 3.1, the FlatMap node is chained with the Link phase of the
ReduceByKey node. Each input element of the FlatMap node, which is a line of text, is
splitted into words and each of these words is directly inserted into the hash table used for
ReduceByKey. Therefore the words do not need to be stored intermediately. If we were
to filter the words, e.g. only count proper names, the Filter node between FlatMap and
ReduceByKey would be also a part of the LOp chain.

12

3.3 Operations in Thrill

This chaining is performed by the C++ compiler on an assembly level to reduce the number
of indirections to a minimum. In the resulting binary, a LOp chain is only a single function
call, regardless of the number of chained LOps.

Template Types

The function type of a DIA consists of the element type and the function stack. This func-
tion stack contains all functions in the LOp chain up to this DIA and their types. As this
quickly becomes a very complex type, DIAs should therefore be instantiated with C++ -
11 auto function type instead of using DIA〈T, f1, f2〉. Additionally, if the type is added
manually, the lambda functions have to be wrapped in std::function, which is an un-
necessary indirection. The auto type of the DIA can be inferred by the compiler.
The function chain being in the DIA type is a problem in iterative or recursive algoithms,
as DIAs need to updated, e.g. link to new data after an iteration.
As the function chain of the updated DIA might be different, Thrill has the LOp Collapse,
which flushes the LOp chain and creates a new DIA node with an empty function stack. As
this interrupts assembler-level optimization of the LOp chain, it induces additional over-
head and should therefore only be used when necessary. A missing Collapse will result in
compilation errors due to type mismatch.

3.3.6 Data, Network, and I/O Layer

Under the hood of the Thrill framework, the data is not actually handled in form of a mate-
rialized distributed array for each DIA. Multiple layers handle data storage, communication
and operation execution. The lower layers of Thrill consist of the data, net and io layers.
Additionally Thrill also has common and core layers which offer useful program utilities.

Data Storage

Internally, items in Thrill are stored as a serialized byte-sequence. In the Thrill serial-
izer, fixed-length elements such as basic types or fixed-length structs of basic types are
stored with no overhead as the sequence of their data bytes. Variable length elements such
as strings or vectors are prepended with their size. Thrill serialization has an API which
allows users to define the serialization for their own types when there is no way to au-
tomatically serialize them. Elements can also be serialized using the cereal serialization
framework [20], which is an open-source serialization framework written in C++ .
In the lower levels of Thrill, data is always handled as serialized byte sequences. In order
to be handled by the user-defined functions from the API, the stream of data is deserialized
into actual elements. Directly after leaving the user-defined function, the data is serialized
again.

13

3 An Introduction to Thrill

The stream of items in a DIA is stored without separators or other overhead in Blocks.
These Blocks have a default size of 2MiB. Apart from the raw data a Block contains only
four integers of overhead. These integers are a pointer to the begin, a pointer to the end, a
pointer to the first element in the Block and the number of total elements.
The pointer to the first element is necessary, as single elements can span over multiple
Blocks. The start of the Block therefore does not need to be equal to the first element actu-
ally starting in the Block. In debug mode, every item is preceded with it’s typecode. This
typecode is verified on deserialization.
Blocks are organized in a File. A File is a sequence of Blocks and can be either stored in
memory or disk. API operations can open as many Files as they deem necessary. Opera-
tions can also request data readers from a File. Offered reader types are ConsumeReader
and KeepReader. The ConsumeReader destroys all elements in the File and frees the mem-
ory. KeepReader keeps the File intact and thus does not free the memory. A usage example
for both reader types can be seen in the PageRank algorithm in Section 3.4.2.
Blocks in Thrill are handled by the Block Pool. The Block Pool manages Block reference
counting and automatically deletes Blocks which are not referenced by any File. The mem-
ory consumption for data is also handled by the Block Pool. When a user-defined memory
soft limit is exceeded, the least recently used Blocks are asynchronously written to disk.
It is possible for the program to pin Blocks in order to keep them in memory or prefetch
them from disk. When a hard limit is exceeded, the Block Pool does not allow new Block
allocation.

Network

Elements can be transmitted between workers asynchronously using Streams. A Stream is
a fully meshed net of communication streams between all workers. It allows a communi-
cation step between all workers, in which every worker can asynchronously send data to
all other workers.
A Stream offers a vector of Writers, one Writer per worker. The Writers for workers on
other hosts send elements in bulk through the network backend. The local Writers have the
same API, but they do not send data through the network. The intra-host communication is
instead executed by using shared memory.
Thrill has two types of Streams. In a CatStream, the items are delivered in worker rank or-
der. In a MixStream, the order of recieved Blocks is arbitrary. A MixStream has potentially
better performance but a CatStream guarantees element order and allows access a vector of
individual Readers for each worker.
By default, the available memory is splitted in three equally large parts: BlockPool memory,
DIA operation memory and heap memory for user objects. A DIA operation can request
memory space by overloading MemoryUse functions. Thrill allocates space fairly between
all operations which request them. If an operation exceeds the amount of memory granted,
it can transfer data to external memory.
Thrill offers a multitude of stats. When logging is enabled, each File and Stream prints

14

3.4 Algorithms

performance metrics such as running time and size in JSON format on destruction. The
JSON log files can be used to create profiles.

File I/O

In read and write Operations, Thrill opens a virtual file, which offers a basic file interface
with reading, writing and seeking. The data read and written is a Block of uncompressed
data with a defined size. Internally, the virtual file actually reads and writes the data and
potentially calls a compression algorithm to compress or uncompress the data.
When the file is stored in Amazon S3 Cloud Storage, Thrill uses the libS3 [1] C library to
read and write data from S3. Thrill reads data from S3, when the file name starts with the
pattern “s3://”.

3.4 Algorithms

The following section describes algorithms and applications for Thrill. The main focus
point are the algorithms used for experiments and benchmarks in Chapter 7. This section
shows Thrill API code and shows some implementation details.

3.4.1 WordCount

WordCount is an algorithm which counts the number of occurences for each word in a text.
This algorithm often serves as a “Hello World!” example for big data frameworks [25].
The complete Thrill code for WordCount is shown in Figure 3.2.
In the WordCount algorithm, we use the input and output file path as string parameters.
In line 3 of the code example in Figure 3.2, we read the input from disk into a DIA of
std::string elements.
We map these lines to single words using the FlatMap operation in lines 3-9. As FlatMap
can’t infer the output type from the UDF, we need to define the output type as seen by the
template parameter in line 3. The output type of this FlatMap is a std::pair<std::string,
size_t>. In the FlatMap function in lines 5-8, we use common::Split provided by
the common layer in Thrill. common::Split splits a line into single words. For each of
these words, the lambda function in line 7 is called. For each word, we emit a std::pair
of the word and a 1. The DIA word_pairs consists of pairs of the form (word, 1).
We reduce the pairs with ReduceByKey in lines 10-16. In the ReduceByKey operation,
we define two lambda functions: the key-extractor function is shown in line 12. This func-
tion defines that the key of each element is the word, which is the first element of the pair.
The reduce function in line 15 defines how we reduce two pairs with equal key (same
word). To perform the reduction, we add the counters of the words. In ReduceByKey, we
first perform a local reduction of all pairs with equal words. Afterwards, we shuffle all pairs

15

3 An Introduction to Thrill

1 void WordCount(thrill::Context& ctx, std::string input, std::string output) {
2 using Pair = std::pair<std::string, size_t>;
3 auto word_pairs = ReadLines(ctx, input).template FlatMap<Pair>(
4 // flatmap lambda: split and emit each word
5 [](const std::string& line, auto emit) {
6 common::Split(line, ’ ’, [&](std::string_view sv) {
7 emit(Pair(sv.to_string(), 1));
8 });
9 });

10 word_pairs.ReduceByKey(
11 // key extractor: the word string
12 [](const Pair& p) { return p.first; },
13 // commutative reduction: add counters
14 [](const Pair& a, const Pair& b) {
15 return Pair(a.first, a.second + b.second);
16 })
17 .Map([](const Pair& p) {
18 return p.first + ": " + std::to_string(p.second); })
19 .WriteLines(output);
20 }

Figure 3.2: Complete WordCount Example in Thrill, from [6]

by a hash of their key and reduce the local counters. In the Push phase of ReduceByKey,
we emit pairs of words and their global counter.
In order to store the result on disk, we map each of these pairs to a std::string in lines
17-18. In line 19, we write the result strings to disk.
The data flow graph for WordCount can be seen in Figure 3.1.

3.4.2 Page Rank

Google PageRank [37] is an algorithm famously used by Google to rank the importance
of websites in the internet. The algorithm is based on the model of the random web surfer
who starts surfing on a random site and then switches sites by following a random link on
this site.
PageRank is an iterative algorithm. In each iteration of the algorithm, the rank of a page is
evenly "pushed" through all outgoing edges. The rank of a page after the step is the sum of
ranks from all ingoing edges. After each step, a dampening factor is used to represent new
users surfing to a random page.

Implementation in Thrill

Figure 3.3 shows the complete implementation in C++ for the PageRank algorithm in
Thrill. Algorithm 1 depicts PageRank in pseudo code. Each line of Algorithm 1 is an-
notated with corresponding code lines in Figure 3.3.

16

3.4 Algorithms

In lines 5-10 of the algorithm in Figure 3.3, we read the input from disk. We map each line
of the input to a link, which is equal to a directed edge. A link consists of the source and
the target of the edge. We assume that the input file has one line per link, which are in the
format "SourceID TargetID". We could also use different graph storage formats by
replacing the Map function in lines 6-10, which creates the links.
In lines 11-13 of the algorithm we compute the total number of pages. By default, a Thrill
operation consumes the data of it’s parent DIA. As we still need the input, we use Keep in
line 11 to increment the consume counter from 1 to 2. This counter disables consuming
if it is larger than 1 at the begin of the operation. In the Map function, we map each link
to the maximum of it’s source and target. Due to this function, the consume counter is
decremented to 1.
With the Max action we compute the maximum of all page IDs. As the pages start at 0, the
number of total pages is higher than the maximum index by 1.
With the GroupByKey operation in lines 14-20, we create pairs of a page and a std::vector
of all outgoing links from this page. In contrast to the previous Map, this operation con-
sumes the DIA input, as the consume counter is now 1. The key extractor groups all links
by their source. The GroupBy function has an iterator for all elements with equal key. This
iterator implements the functions Next() and HasNext(). In the GroupBy function,
we form a std::vector of all outgoing links and return a pair of the source and this
std::vector. We cache this DIA and set its consume counter to infinite with the Thrill
operation KeepForever.
We then generate the initial ranks for all pages with the Generate operation in lines 21-23.
Initially, each page has the rank of 1

num_pages .
Lines 23-43 of the algorithm are the iterative main part. First, in lines 24-29, we join the
linked pages with the ranks, which we previously generated. Both key extractors each ex-
tract the page ID. We join all pairs with identical keys - in this algorithm one rank link pair
per page - by the join function. The join function returns a pair of the link list with the
according page rank.
With the FlatMap LOp in lines 30-36 we distribute the page rank evenly to all outgoing
links. When there is any outgoing link (line 32), we compute the contribution per link and
emit a pair of target ID and rank contribution per outgoing link (line 35).
We reduce these contributions with the ReducePair operation in lines 37-39. In this opera-
tion, we group all target contribution pairs by their target ID and reduce the contributions
by adding them up. Following this reduction, we apply the dampening factor, which repre-
sents new users who go to a random page. We start iteration steps with the Execute action
in line 42.
We repeat this iteration for a fixed amount of iterations, by default 10. Afterwards, the DIA
ranks contains the page rank for each page in the network. In lines 43-45, we map each
of these ranks to an std::string and write the strings to disk at a user defined output
path.

17

3 An Introduction to Thrill

1 using PagePageLink = std::pair<size_t, size_t>;
2 using LinkedPage = std::pair<size_t, std::vector<size_t>>;
3 using RankedPage = std::pair<size_t, double>;
4 auto input = ReadLines(ctx, input_path)
5 .Map([](const std::string& input) {
6 char* endptr;
7 size_t src = std::strtoul(input.c_str(), &endptr, 10);
8 size_t tgt = std::strtoul(endptr + 1, &endptr, 10);
9 return std::make_pair(src, tgt); });

10 size_t num_pages = input.Keep(/*1*/).Map([](const PagePageLink& ppl) {
11 return std::max(ppl.first, ppl.second);
12 }).Max() + 1;
13 auto links = input.GroupByKey<LinkedPage>(
14 [](const PagePageLink& p) { return p.src; },
15 [all = std::vector < size_t > ()](auto& r, const size_t& p) mutable {
16 all.clear();
17 while (r.HasNext()) { all.push_back(r.Next().second); }
18 return std::make_pair(p, all);
19 }).Cache().KeepForever();
20 DIA<RankedPage> ranks = Generate(ctx,[num_pages](size_t page) {
21 return std::make_pair(page, 1.0 /(double) num_pages);
22 }, num_pages);
23 for (size_t iter = 0; iter < iterations; ++iter) {
24 auto outs_rank = links.template InnerJoinWith(
25 ranks, [](const LinkedPage& lp) { return lp.first; },
26 [](const RankedPage& r) { return r.first; },
27 [](const LinkedPage& lp, const RankedPage& r) {
28 return std::make_pair(lp.second, r.second);
29 });
30 auto contribs = outs_rank.template FlatMap<PageRankPair>(
31 [](const std::pair<std::vector<size_t, double>& p, auto emit) {
32 if (p.first.size() > 0) {
33 double rank_contrib = p.second / (double) p.first.size();
34 for (const PageId& tgt : p.first)
35 emit(std::make_pair(tgt, rank_contrib));
36 }
37 });
38 ranks = contribs.ReducePair([](const double& p1,
39 const double& p2) { return p1 + p2; })
40 .Map([num_pages](const PageRankPair& p) {
41 return std::make_pair(p.first, dampening * p.second +
42 (1 - dampening) / (double) num_pages);
43 }).Execute();
44 };
45 ranks.Map([](const RankedPage& rp) {
46 return std::to_string(rp.first) + ": " + std::to_string(rp.second);
47 }).WriteLines(output_path);

Figure 3.3: PageRank Example in Thrill

18

3.4 Algorithms

Algorithm 1: Pseudo code for PageRank Algorithm in Thrill
1 function PageRank(input, output, iterations)
2 S := ReadLines(input) // Read input files (4)
3 I := S.Map("i0 i1" 7→ (i0, i1)) // Map each line to an edge (5-9)
4 n := I.Keep().Map((i0, i1) 7→ max(i0, i1)).Max() + 1 // Find max index (10-12)
5 L := I.GroupByKey((i0, i1) 7→ i0, (i,iter(r)) 7→ (i, [r])) // Create link vector

(13-18)
6 L.Cache().KeepForever() // Cache Links and set consume counter to infinite (19)
7 R := Generate(p 7→ (p, 1

n
), n).Collapse() // Generate initial ranks (20-22)

8 for i← 0 to iterations do
9 O := L.InnerJoinWith(R, (i, [l]) 7→ i, (p, r) 7→ p, ((i, [l]), (p, r) 7→ ([l], r)))

// Join links and ranks (24-29)
10 C = O.FlatMap(([l0, l1, . . .], r) 7→ l0

r
vec_len

, l1
r

vec_len
. . .) // Compute contributions

(30,36)
11 R1 = C.ReducePair((r0, r1) 7→ r0 + r1) // Add up contributions (37-38)
12 R = R1.Map((p, r) 7→ (p, r · α + 1

n
· (1− α))).Execute() // Use dampening

factor α (39-42)

13 R.Map((p, r) 7→"p r").WriteLines(output) // Write ranks to disk (43-45)

Example

Figures 3.4 shows an example graph with 5 nodes and 7 undirected edges. The dampening
factor is set to 0.25. The number of iterations is 2.

0.2 0.2

0.20.2 0.2

Figure 3.4: Example graph

Before the first iteration, each page has a rank of 1
5
= 0.2. We push these ranks evenly

through all outgoing edges of a note. After the iteration, we add all up all incoming ranks
on each of the nodes. The resulting rank graph can be seen in Figure 3.5.

19

3 An Introduction to Thrill

0 0.27

0.470.07 0.2

Figure 3.5: Ranks after Iteration 1

Afterwards we apply the dampening factor of 0.25. Therefore, we multiply each of the
ranks with 1− 0.25 = 0.75 and add 0.25 · 1

5
. The resulting ranks can be seen in Figure 3.6.

0.05 0.25

0.40.1 0.2

Figure 3.6: Ranks after applying dampening factor

In the next iteration, we push these ranks through the outgoing edges again. This results in
Figure 3.7.

0 0.22

0.370.02 0.4

Figure 3.7: Ranks after Iteration 2

We apply the dampening factor again like in the previous step. This rank graph in Figure 3.8
is the end result of the algorithm. Generally, the number of iterations should be larger than
2. A possible number of iterations is 10. It is also a good idea to perform iteration steps
until the ranks converge.

20

3.4 Algorithms

0.05 0.22

0.330.06 0.35

Figure 3.8: Final ranks

3.4.3 TPC H4

Algorithm 2: Pseudo code for modified TPC-H4 benchmark.
1 function TPCH4(input)
2 Li := ReadLines(input/lineitem.tbl) // Read lineitems
3 L := Li.Map("lineitem" 7→ lineitem).Cache().Execute() // Map line to struct

item
4 Oi := ReadLines(input/orders.tbl) // Read orders
5 O := Oi.Map("order" 7→ order).Cache().Execute() // Map line to struct lineitem
6 net.Barrier()
7 timer.Start()
8 J := L.InnerJoinWith(O, lineitem 7→ id, order 7→ id, (lineitem, order) 7→ joined)

// Join all lineitems with orders where ID is equal
9 n := J.Size()

10 net.Barrier()
11 timer.Stop()
12 return n

The Transaction Processing Performance Council (TPC) [11] is an organisation, which
defined several database benchmarks. The TPC-H benchmark is comprised of a suite of
decision support queries for a fictional business. One of the queries in the TPC-H suite,
the TPC-H4 query, was used to benchmark a repliacted Bloom filter implementation for
Hadoop MapReduce [26].
The TPC-H4 query joins a table of lineitems with a table of orders. Tables of any size can
be auto-generated using a script offered by the TPC. Database specifications for the TPC-H
database can be seen in the official documentation [12].
Lee et al. [26] use a slightly modified version of TPC-H4 to benchmark their Bloom filter
implementation, which is also used as a benchmark in this thesis, see Algorithm 2.
The TPC-H database generation script creates a set of tables forming a database of orders

21

3 An Introduction to Thrill

Algorithm 3: Pseudo code for Median in Thrill
1 function Median(size)
2 I := Generate(size, i 7→ ((i%128), (i/719)) // Generate input data
3 E.Execute() // Execute input before timer start
4 net.Barrier()
5 timer.Start()
6 G := E.GroupByKey((k, v) 7→ k, iter(v) 7→ median(v)) // Group pairs by key,

compute median of values
7 G.Size()
8 timer.Stop()

with total size of n GiB. This database contains a table of 6.000.000 · n lineitems and a
table of 1.500.000 ·n orders. In the evaluation of TPC-H4 we read the database tables from
AWS S3.
In lines 1-4 of algorithm 2, we read the tables from AWS and map each row to a fixed size
struct item. As we do not want to benchmark reading from AWS, we Execute caching of
these items. When all workers reached the following global barrier, we start the program
timer.
This timer only measures the InnerJoinWith in line 6. In this join operation, we extract the
id of each lineitem and order and join them by creating a joined struct, which contains of
all data of both lineitem and order.
The size of a lineitem is 169 byte, the size of an order is 145 byte and the size of a joined
element is 306 byte.

3.4.4 Percentiles / Median

A default benchmark for GroupByKey is median computation. The median of a data popu-
lation is the value separating the higher half and the lower half of the sample. To compute
the median of a population, all elements need to be available at the same time.
In the evaluation, we generate a large set of key-value pairs comprising of two integers.
The first integer represents the key and the second integer represents the value of the pair.
The generator creates 128 pairs for each key, all following each other.
Algorithm 3 groups the pairs by their key and day and computes the value median for each
key.

In line 2 of Algorithm 3, we generate the input DIA with a user-defined number of elements.
We cache this DIA and start the evaluation timer.
We group the elements in the input DIA by their key and compute the median for each
of these groups. We insert all values with equal key to a std::vector, and we use
std::nth_element to compute the median of this data vector.

22

3.4 Algorithms

Algorithm 4: Psuedo code for Triangle Counting Algorithm in Thrill
1 function TriangleCounting(input)
2 I := ReadLines(input) // Read graph from input files
3 E := I.FlatMap("i0 i1 i2..."7→ (i0, i2), . . .) // Map input line to edges, only

emit edges where targetID > sourceID
4 E := E.Execute() // Execute input before timer start
5 net.Barrier()
6 timer.Start()
7 E2 := E.InnerJoinWith(E, (s, t) 7→ t, (s, t) 7→ s, ((s0, t0), (s1, t1) 7→ (s0, t1))

// Create all edges of length 2
8 T = E.InnerJoinWith(E2, (s, t) 7→ (s, t), (s, t) 7→ (s, t), ((s0, t0), (s1, t1) 7→ 1)

// Count triangles
9 n = T.Size()

10 timer.Stop()
11 return n

3.4.5 Triangle Counting

Triangle counting is an algorithm which counts the triangles in an undirected graph. The
implementation of triangle counting uses InnerJoinWith. The general idea is using Inner-
JoinWith twice to join the list of edges with the list of edges, which have a length of 2.
Algorithm 4 shows pseudo code for our implementation to count triangles.

In line 2 of Algorithm 4, we read the graph from the input files specified by the user. The
graph format in this algorithm is one line per node, starting with id of the node followed by
a list of all nodes which are adjacent. Every edge is therefore in two lines of the input file.
Following the reading process, we use FlatMap to map each line of the input into all edges
in which the target id is larger than the node id. Each edge of the graph is emitted once, in
the line of the node with lower id.
As the algorithm is used to benchmark InnerJoinWith, we execute this input operation and
then perform a global barrier.
When every processor reaches the global barrier, we start a timer. In line 7 of the algortihm,
we perform a self-join on the DIA containing all edges. One key extractor is the edge source
and the other is the key target. The join result is an edge with the source of the first edge
and the target of the second edge. The resulting DIA is a list of all edges with length two,
in which the target id is larger than the source id.
Then we join these length 2 edges with the DIA of edges. In this join, the key extractor
is the identity function and the join function returns 1. For every triangle in the original
graph, there is one 1 in the output DIA of that join function. In line 8, we return the total
number of triangles in the graph.
In order to enumerate triangles instead of just counting them, the InnerJoinWith in line

23

3 An Introduction to Thrill

7 has to include the id of the intermediate node to the edge of length 2. In the second
InnerJoinWith, the join function returns the ids of all three nodes present in the triangle.

Example

Figures 3.9 shows an example graph with 4 nodes and 5 undirected edges. We perform the
Triangle Count Algorithm as detailed in Algorithm 4 on this graph. All intermediate DIAs
are shown as lists of edges.

1 2

34

Figure 3.9: Example graph

After the map step in line 3, DIA E contains all edges with targetID > sourceID. Figure 3.10
shows these edges for the example graph. For every undirected edge in Figure 3.9, there is
one directed edge in DIA E.

1 2 1

3

1

4

2

3 34

Figure 3.10: List of all directed edges with increasing index

The DIA E2 with all index-increasing edges of length 2 is seen in Figure 3.11. In total there
are two edges in DIA E2. The source edges for the length-2-edges can be seen as dashed
edges in the Figure.

1 2

3

1

34

Figure 3.11: List of all directed edges of length 2 with increasing index

24

3.4 Algorithms

Figure 3.12 shows all triangles found by joining the DIAs E and E2.

1 2

3

1

34

Figure 3.12: List of all triangles found in the example graph from Figure 3.9

25

3 An Introduction to Thrill

26

4 Bloom Filters

A Bloom filter [7] is a space-efficient probabilistic data structure used to resolve member-
ship queries. They were originally introduced by Burton H. Bloom in 1970. Bloom filters
have a non-zero false positive rate but guarantee that there are no false negatives. A Bloom
filter allows addition of new elements but no deletion.
On the data level, a Bloom filter is a bit array with a total size of m bits. When the Bloom
filter is empty, each of the m bits is set to zero. The capacity of the Bloom filter is n el-
ements S0, S1, . . . , Sn−1 for a small factor c = m

n
. Additionally, the Bloom filter uses k

independent hash functions H0, . . . , Hk−1, each with hash ranges in {0, . . . ,m− 1}.
When a new value x is inserted into the filter, all hash result bits H0(x), . . . , Hk−1(x) are
set to 1. To answer a membership query for a value y, all bits H0(y), . . . , Hk−1(y) are
checked. If each bit is set to 1, the data structure has a positive answer, if at least one bit is
0, the answer is negative.

1

0

0

1

1

2

1

3

0

4

0

5

0

6

1

7

0

8

1

9

0

10

three example words

membership query

Figure 4.1: Bloom Filter Example with m = 11, n = 3, k = 2

Figure 4.1 shows an example Bloom filter with m = 11, k = 2 and n = 3 with three
example words, which are “three”, “example”, “words”. The hash functionsH0 andH1 are
truly random functions.
In the beginning, all bits in the Bloom filter are set to 0. The hash functions hash “three”

27

4 Bloom Filters

to the values 0 and 9. After entering the word to the empty filter, bits 0 and 9 are set.
“example” is hashed to the values 3 and 7, which are also set by inserting the word. “words”
is hashed to 2 and 7. Bit 7 is already set to 1, so inserting “words” only sets bit 2.
In the example filter, there are two membership queries for the words “membership” and
“query”. The word “membership” is hashed to the values 0 and 6. As bit 6 is not set, the
query returns that the word is definitely not in the dataset. The word “query” is hashed to
3 and 9. Both bits are set, therefore the membership query returns that the word might be
in the dataset. This is a false positive.
Multiple words being hashed to the same value is the reason why element removal is not
possible in a standard Bloom filter. If the word “example” were to be removed from the
filter and bits 2 and 7 are unset, a membership query of the word “words” would return
false. As a Bloom filter guarantees a false negative rate of zero, element removal can not
be allowed.
The false positive rate (FPR) p of a Bloom filter is the probability of a positive query
response for a word not present in the data set. If the hash functions are assumed to be
truly random functions, in a Bloom filter with m bits, n elements and k hash functions the
probability for randomly chosen bits of the Bloom filter being set is approximately [33]:

(1− 1

m
)kn (4.0.1)

Equation 4.0.1 follows from the fact that k bits are set for each of the n input elements. In
total the bitset has m bits. If m

n·k is too small, the amount of hash collisions is large and the
amount of total bits set is lower. Equation 4.0.1 holds approximately true for a bitset with
large enough size. In this case, the FPR for a Bloom filter is approximately:

p = (1− (1− 1

m
)kn)k (4.0.2)

Each of the hash results for a non-member has a probability of (1− (1− 1
m
)kn) to be unset,

which is one minus the rate of set bits from Equation 4.0.1. As the Bloom filter has k
random hash functions in total, the FPR is as seen in Equation 4.0.2.
For set values for m and n, the FPR of an uncompressed Bloom filter can be minimized by
using a total of k = ln(2) · m

n
hash functions [33], which results in a set bit rate of ≈ 0.5.

Multiple Bloom filters can be united by performing a bitwise OR on all Bloom filters.

4.1 Counting Bloom Filter

A variant of the Bloom filter is the counting Bloom filter [17]. A counting Bloom filter
uses c bits for each of the m values. A Counting Bloom filter thus has a total size of c ·m.
When inserting an element x to the Bloom filter, all hash results H0(x), . . . , Hk−1(x) are
incremented by one. When one of the hash results is already 2c − 1, the result value

28

4.2 Compressed Bloom Filter

can not be incremented and remains at 2c − 1. Membership queries are equal to a stan-
dard Bloom filter: for an element y, the query has a positive result when each hash result
H0(y), . . . , Hk−1(y) is at least 1. Alternatively membership queries can also be answered
with the smallest integer in H0(y), . . . , Hk−1(y) to denote the upper bound of elements
which are equal to y. This mostly makes sense in the case k = 1.

1

0

0

1

1

2

1

3

0

4

0

5

0

6

2

7

0

8

1

9

0

10

three example words

Figure 4.2: Counting Bloom Filter for Example from Figure 4.1

In a counting Bloom filter, removing elements from the filter is possible. When removing
an element z, all hash results H0(z), . . . , Hk−1(z) are decremented by one. False negatives
are only possible when a hash result has been incremented more than 2c − 1 times and
the counter is afterwards decremented to zero. Fan et al. [17] deemed that scenario very
unlikely in real world examples.

4.2 Compressed Bloom Filter

In standard Bloom filters, the number of hash functions k is optimized to achieve a set bit
rate of approximately 0.5. This minimizes the FPR for a given bitset size m and capacity
n. According to information theory, a bit rate of 0.5 maximizes the information rate to 1
bit per data bit of the Bloom filter. The bitset thus can not be compressed, as it already has
the smallest possible size.
If the bitsets may be compressed, a lower information rate might result in a lower com-
pressed size for a different k. Mitzenmacher [33] showed that the FPR for a given com-
pressed size and n can be minimized by using 0 or infinite hash functions for optimal
compression algorithms. As the number of hash functions needs to be an non-zero integer,
k = 1 has the lowest FPR in the compressed Bloom filter.
Using only a single hash function also increases the performance of the filter, as only a
single hash function needs to be evaluated for each insert or query.
On a bitset with uniformly distributed 1 bits, the distance between 1 bits is geometrically
distributed. A possible compression algorithm for the bitset is Golomb encoding [18] of

29

4 Bloom Filters

distances between set bits, described in Section 4.2.1. Golomb encoding is near-optimal for
geometrically distributed integers and therefore well suited for the compression of Bloom
filters [38]. The Golomb encoded bitset is static, it is not easily possible to insert new
elements after compressing the bitset.

4.2.1 Golomb Encoding

Golomb encoding [18] is a variable length encoding for small integers. A Golomb code
has a parameter M . To encode an integer N , it is split into two parts: q = bN

M
c and r, the

remainder of the division N
M

.
The Golomb encoding of N is the unary encoding of q followed by the truncated binary
encoding of r.
Truncated binary encoding is a generalization of binary encoding for alphabet sizes M 6=
2N. When M is not a power of two, let k = blog2Mc and let u = 2k+1−M be the distance
to the next power of two. The truncated binary encoding of x ∈ {0, u − 1} is equal to the
binary encoding of x. For x ∈ {u,M − 1}, the truncated binary encoding of x is mapped
to the last M −u values of length k+1. The truncated binary encoding of x is equal to the
binary encoding of x+ u.

0

0

0

1

0

2

0

3

0

4

0

5

1

6

0

7

0

8

0

9

1

10

0

11

0

12

0

13

0

14

0

15

0

16

1

17

1

18

0

19

0

20

0

21

Figure 4.3: Example Bitset for Golomb Encoding

Example In Figure 4.3, we have a bitset with m = 22 and 4 bits set. The Golomb
Encoding of the bitset with parameter M = 5 can be found as follows:
The first set bit is bit 6. q1 = b6

5
c = 110(ternary encoding) = 101 (unary encoding) and

r1 = 5− 5 = 010 = 01t2 (truncated binary encoding). The golomb encoding of 6 is 1001.
The next set bit is 10, therefore the delta is 10− 6 = 4. q2 = b45c = 010 = 01 and r2 = 410.
In the bitset, u = 23 − 5 = 3. The remainder 4 is ≥ u, therefore the truncated binary
encoding of r2 = 111t2. The encoding of 4 is 0111.
The next bit is 17, therefore the delta is 17 − 10 = 7. q3 = b7

5
c = 110 = 101 and

r3 = 210 = 10t2. The encoding of 7 is 1010.
The next bit is 18, therefore the delta is 18−17 = 1. q4b15c = 010 = 01 and r4 = 110 = 01t2.
The encoding of 001.
The whole bitset in Figure 4.3 is encoded with the bitset 100101111010001.

30

4.3 Distributed Bloom Filters

4.3 Distributed Bloom Filters

Most Bloom filter variants are sequential data structures which run on a single machine. A
recent survey by Tarkoma et al. [46] shows a multitude of sequential Bloom filter variants
but no real distributed Bloom filter structure. In several works that use distributed Bloom
filters, each processor builds a local Bloom filter for all local data [26] [44]. The Bloom
filters are combined by perfoming bitwise OR. This replication increases the amount of
necessary communication and storage.
The distributed single-shot Bloom filter [40] (dSBF) is an actually distributed Bloom filter
with a single hash function. The dSBF uses only a single hash function to minimize the
structure size while compressed.
The basic structure of a dSBF with p processors is a Bloom filter with a total size of m bits,
split into p equally large parts. Processor i is responsible for the range of bits from i·m

p
to

(i+1)·m
p
− 1. When the dSBF is initialized, all bits in the distributed bitset are unset.

In order to construct the dSBF data structure, each processor computes the hash valueH(x)
for each local element x. These hash values are then sorted. In the communication step,
each worker sends a compressed bitset to each other worker. These bitsets consist of the
golomb encoded deltas of the hash values in the range of the receiving processor.
The received elements are decompressed and each processor can build the global Bloom
filter for it’s local range by inserting all hash values into a bitset. In a dSBF, membership
queries for an element y can be answered by sending H(y) to the responsible worker. The
performance is higher when queries or inserts are performed in batches.
In the original paper [40], the dSBF data structure is used to perform distributed duplicate
detection. For this purpose, each worker builds his local hash bitsets and sends them to
the other workers. Each worker then checks the incoming bitsets for hash values which
occur on more than one processor. These hash values are signalled back to their source
processor.
Only the elements, which hash values were signalled back, are sent to the processor re-
sponsible for their hash value. This algorithm greatly reduces communication volume and
running time for low replication factors compared to a hash repartition algorithm which
repartitions all elements.

31

4 Bloom Filters

32

5 InnerJoin in Thrill

5.1 Overview

InnerJoin is a Distributed Operation (DOp) in Thrill implemented as a part of this thesis.
The operation performs an inner join on two input DIAs with arbitrary types. Inner join,
also known as join, is a keyword in the SQL standard [13]. The inner join operation joins
elements with matching keys from two database tables.
In Thrill, InnerJoin is called on two DIAs with types DIA〈A〉 and DIA〈B〉, where A can be
equal to B. InnerJoin is further specified by three user defined functions with the following
function types:

k1 : A→ K (5.1.1)
k2 : B → K (5.1.2)

j : A×B → C (5.1.3)

The key extractor functions k1 and k2 map each element from input DIAs to it’s key of type
K. For a certain key x, xA denotes the list of elements from the first DIA with key x and
xB denotes the list of elements from the second DIA with key k.
The join function j is applied to each element of the cross product xA × xB. The output
DIA of type DIA〈C〉 consists of all elements emitted by j.
As InnerJoinWith performs an inner join, no element is emitted for key x when at least one
of the lists xA and xB is empty. In outer joins, the unmatched elements would be emitted
as is. Outer joins would restrict the DIA types, as output and input need to be equal. They
are not yet implemented in Thrill, but could be implemented similar to InnerJoinWith. It is
also possible to implement left and right outer joins, which emit all unmatched elements in
either DIA A or B.

5.2 Implementation

This Section shows the implementation of InnerJoinWith in Thrill. This is the imple-
mentation without Bloom Filters, the variant using Bloom Filters to reduce communi-
cation value is shown in Chapter 6. The different phases of the algorithm are also de-
tailed in an example performing the InnerJoinWith of two small example DIAs. The
types of these input DIAs are A := std::pair<int, std::string> and B :=

33

5 InnerJoin in Thrill

Worker 0 Worker 1

DIA〈A〉

DIA〈B〉

17− apple 20− orange 17− pear 24− apple

21− 3.5 20− 2.1 17− 6.4 99− 1.7

Figure 5.1: Link Phase of InnerJoinWith Example

std::pair<int, double>. The type C of the output DIA is std::tuple<int,
std::string, double>.

5.2.1 Link Phase

The Link phase of InnerJoinWith is linked with the previous LOp chain. On construction
of the JoinNode, we open two mix data streams and writers to these streams. We use these
data streams to shuffle the input elements by their key.
In the Link function, we apply the according key extractor function k1 or k2 to each input
element. We hash these keys and send each element to the worker with global worker
ID H(key) (mod p). As both the key extractor and hash function are deterministic, all
elements with a certain key are sent to the same worker.
After all elements of an input DIA passed the Link phase, we close the stream writers.
Figure 5.1 shows the Link phase of a graphical example for InnerJoin.
The type A of DIA〈A〉 is a pair of integer and string. The key extractor function k1 emits
the integer. The type B of DIA〈B〉 is a pair of integer and floating-point number. The key
extractor function k2 also emits the integer.
To simplify the example, the hash function for target worker selection is just the identity
function. Therefore, all elements with even key are sent to worker 0 and all elements with
uneven key are sent to worker 1.

5.2.2 Main Phase

In the Main phase of InnerJoin, all elements of both DIAs are received on their target
workers. For each DIA, we add all recieved elements to an std::vector until either
the stream is empty or the memory soft limit is reached. Then we sort the std::vector
using std::sort by key.

34

5.2 Implementation

Worker 0 Worker 1

std :: sort std :: sort

Stream A Stream B Stream A Stream B

20− orange 24− apple

20− 2.1

17− apple 17− pear

17− 6.4 21− 3.5

99− 1.7

File A

File B

Figure 5.2: Main Phase of InnerJoinWith Example

The sorted std::vector is written to a Thrill File. This File is potentially written to ex-
ternal memory when the internal memory is exhausted. After the Main phase, each worker
holds one or more sorted Files for each of the two input DIAs.
According to our execution model, we only perform this phase once. Reruns of the JoinN-
ode node only call the Push phase.
The example from Figure 5.1 is continued in Figure 5.2. In the example, each worker has
only a single File per input DIA. All elements received from the streams are sorted and
inserted into Files.

5.2.3 Push Phase

After the Main phase, every worker has a list of Files sorted by element keys, potentially in
external memory. In order to perform the actual join process, the Files need to be merged to
a single sorted data stream. For this purpose, the lower layers of Thrill provides a multiway
merge tree. This merge tree takes the list of all sorted Files and provides a single iterator
for all data.
Internally, the smallest elements of all Files are stored in a buffered loser tree [39]. The
loser tree is a data structure for k-way-merging. Removing the smallest element from the
loser tree has a complexity of O(log(m)), where m is the number of Files. We read each
Block only once from disk. The implementation of the loser tree was taken from the Multi-
core Standard Template Library [43].
In the actual joining process, we compare the smallest elements from both iterators. If they
are not equal, we discard the smaller element and update the iterator to the next smallest
element.

35

5 InnerJoin in Thrill

Worker 0 Worker 1

File A File B File A File B

20− orange 20− 2.1

20− orange− 2.1

17− apple

17− pear

17− 6.4

17− apple− 6.4

17− pear − 6.4

Emit()

Figure 5.3: Push Phase of InnerJoinWith Example

If the elements are equal, we add all elements with equal key to two std::vectors, one
per merge tree. After we gathered all elements, the join function j is called for every pair in
the cross product of the std::vector. We emit each joined elements to the subsequent
operations.
Figure 5.3 continues the example from Figure 5.1 and Figure 5.2. As the example is small,
every worker only has a single File per input DIA. There is no need for merging as the
loser tree only has a single input File. In the example, only the keys 17 and 20 occur in
both input DIAs. For each pair of elements with that key, we emit one element. The join
function j joins the pairs to a tuple of integer, std::string and floating point number.
Note that in this example, elements with keys not equal to 17 and 20 do not result in emitted
elements. It is preferable both in running time and communication volume to discard these
elements as early as possible, if possible before data transmission in the Main phase. It is
also beneficial to send elements to the worker which already has most elements with that
key. For this purpose, Thrill uses dSBF to eliminate unique items. These Bloom filters and
their use are described in Chapter 6.

36

6 Distributed Bloom Filters in Thrill

6.1 Overview

One of the possible bottlenecks for big data frameworks is the network bandwidth be-
tween individual computing nodes. If we can reduce the communication volume in our
programs, this can increase the general performance of our framework. This is especially
true in commodity clusters such as the Amazon Elastic Compute Cloud (AWS EC2) [24],
as commodity clusters generally have lower communicaton bandwidth than super comput-
ing clusters.
In several DOps in Thrill (Reduce, InnerJoin, GroupBy), all data in the DIA is shuffled
by hash in a global communication step. When there is no information about the data,
this complete communication step is necessary. However, it is potentially beneficial to use
some computation and communication to find elements which can be excluded from this
communication step.
The optimization examined in this thesis uses a dSBF [40] as described in Section 4.3 in
these operations to find elements which do not need to be sent to other workers.
In order to find these elements, a dSBF is distributed over all workers. Every worker hashes
all available keys, sorts the hashes and builds a dSBF out of these hashes. The dSBF parts
are shuffled between workers to find unique elements and the prevalent location of ele-
ments.
This process introduces additional work and communication but may yield a net positive
for the whole program runtime and reduce total network traffic volume, depending on the
algorithm and the input.

6.2 Duplicate Detection in Reduce

In the ReduceByKey DOp, elements are grouped by their key and each key group is reduced
with an associative reduce function. The key extractor function returns the key of each
element. The associative reduce function defines how two elements with equal key are
reduced to one element.
In the Link phase of ReduceByKey, each worker creates a custom hash table to perform
local reduction. This table contains the key and value of each element and immediately
applies the reduce function on key collision. After the Link Phase is finished, each worker
has a set of locally reduced key value pairs. By default, all of these pairs are shuffled by

37

6 Distributed Bloom Filters in Thrill

Algorithm 5: Pseudo code for duplicate detection in Thrill
1 function DetectDuplicates([hashes])
2 U := net.AllReduce(hashes.size()) // Find global upper bound of distinct keys
3 B := U · 1

FPR
// Define dSBF size with U and false positive rate

4 hashes 7→ hashes (mod B) // Compute modulo B for each hash value
5 Sort(hashes) // Sort the array of hash modulos
6 GBF := WriteGolombCodes(hashes) // Create golomb encoded Bloom filters
7 Shuffle(GBF) // Global shuffle of Bloom filter parts
8 LT := CreateLoserTree(GBF) // Create loser tree with all incoming Bloom filter

parts
9 GU := [] // Create empty Golomb encoded bitset for each worker

10 while LT.HasNext() do
11 if LT.Next() is unique then
12 GUsrc.Insert(next) // Insert unique element to bitset for source worker of

element

13 Shuffle(GU) // Global shuffle of unique bitsets
14 return Concat(GU) // Return concatenated Bloom filter bitset

hash of their key.
Some elements only occur on a single worker. These elements do not need to be sent
through the network in the shuffling process. The duplicate detection uses a dSBF to find
most of these unique elements. When the amount of unique elements is high, the total
communication volume can be reduced.

Algorithm 5 depicts the duplicate detection in ReduceByKey in pseudo code. The duplicate
detection has a std::vector of all hashes of keys as its input parameter.
In the duplicate detection algorithm, we start with the global communication primitive
AllReduce to find the upper bound of distinct keys. This upper bound is the sum of all local
counts of distinct keys. The size of the dSBF is equal to the upper bound of distinct keys
multiplied with the inverse of the desired FPR of the dSBF. The default value for the FPR
is 1

8
.

Afterwards, we apply the modulo operator to each hash value with the modulus being the
dSBF size and sort the hashes, which are now in [0, B).
We can write the encoded Bloom filter parts from the elements in the std::vector of
hashes. Each worker builds a golomb Encoded bloom filter part for each worker. The part
for destination worker i contains all elements in [B·i

p
, B·(i+1)

p
). As the first element in the

bitset is possibly very large, it is not encoded. The deltas of all subsequent elements are
Golomb encoded.
We perform a global shuffle step, in which we interchange the Bloom filter parts. After this
shuffle step, each worker has p Bloom filter parts with the hash values it is responsible for.

38

6.2 Duplicate Detection in Reduce

Worker 0 Worker 1

Input 1 4 10 3 10 13

(mod 12)
Sort 1 4 10 1 3 10

GBF 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0

GU 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Uniques 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 6.1: Example for Duplicate Detection

We insert these parts in a loser tree which provides an iterator to all elements, sorted from
smallest to largest.
We iterate over all elements to find the elements which appear only on a single worker. If
we find such a unique element, we insert it into a golomb encoded bitset for it’s source
worker. In a second global shuffling step, we again interchange these bitsets and each
worker can concatenate its bitsets to a single bitset. A bit set to true in this bitset indicates
that only this worker holds elements with this key.
These elements, which appear only on a single worker, do not need to be distributed but
can be kept on this worker. Due to hash collisions in the Bloom filter it is however possible
to overlook uniques. This FPR is in a trade off with the Bloom filter size.
Good applications for duplicate detection are those, in which the number of elements only
occuring on a single worker and the size of elements is large.

Figure 6.1 shows an example for the duplicate detection. In the example, each of the 2
workers has an input of 3 hashed keys. To keep the example reasonably small, the target
FPR is 1

2
. Thus the dSBF size is 6 · 2 = 12. We also omitted Golomb encoding of bitsets

for ease of understanding. In reality, each of the bitsets communicated in GBF and GU is
Golomb encoded as described in Section 4.2.1.
In the duplicate detection example, the dSBF correctly detects that 10 is a duplicate and
falsely detects 1 as a duplicate. The output bitset for worker 0 shows that the value 3 only
occurs on this worker, the bitset for worker 1 shows that the value 4 only occurs on this
worker.

39

6 Distributed Bloom Filters in Thrill

Algorithm 6: Pseudo code for Location Detection in Thrill
1 function DetectMaxLocation(HashTable ht)
2 hashes := ht.Emit() // Emit all elements from table into array
3 U := net.AllReduce(hashes.size()) // Find global upper bound of distinct keys
4 B := U · 1

FPR
// Define dSBF size with U and False Positive Rate

5 hashes 7→ hashes (mod B) // Compute modulo B for each hash value
6 Sort(hashes) // Sort the array of hash modulos
7 GBF := WriteGolombCodesOccurences(hashes) // Create golomb encoded Bloom

Filters with number of occurences
8 Shuffle(GBF) // Global shuffle of Bloom Filter parts
9 LT := CreateLoserTree(GBF) // Create Loser Tree with all incoming Bloom Filter

parts
10 GU := [] // Create one empty golomb encoded bitset
11 while LT.HasNext() do
12 while LT.Next().Key() is equal do
13 GU .Insert(key, worker) // Insert pair of key and optimal worker into

bitset

14 net.AllGather(GU) // Broadcast location bitset, recieve other worker’s bitsets
15 return unordered_map(GU) // Return concatenated Bloom Filter bitset

6.3 Location Detection

In contrast to ReduceByKey, local pre-reduction is not possible in InnerJoin and GroupBy.
Therefore, it is not only important to detect whether an element occurs only on a single
worker but also on which worker it occurs most. We choose the worker with the highest
occurence count as the target worker for this element. As only the elements not already
on this worker need to be communicated, this processor is the optimal target in terms of
expected communication volume, if we assume all elements to have equal size.

The Algorithm 6 for location detection can be seen as an extended version of the Algo-
rithm 5 for duplicate detection. When location detection is disabled in InnerJoin or Group-
ByKey, we shuffle elements by hash of the key in the Link phase.
When location detection is enabled, this is not possible, as the optimal location for the
elements is not yet known at this point. Therefore we have to store incoming elements in
a File. Additionally, the keys are inserted into a hash table. This hash table counts the
occurences of each key in the local data set.
In Algorithm 6, we first have to emit all data from the table into a std::vector. This is
done with a custom emitter function which emits data by pushing it to the std::vector.
The following steps are similar to duplicate detection: we compute the dSBF size, apply
modulo dSBF on size on each hash values and sort the results.

40

6.3 Location Detection

Worker 0 Worker 1

Input

Emit()

1 4 25 3 11 13

(mod 12)
Sort 1 1 4 1 3 11

GBF 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

GU × 0 × 1 0 × × × × × × 1

Results × 0 × 1 0 × × × × × × 1 × 0 × 1 0 × × × × × × 1

Figure 6.2: Example for Location Detection

In the Golomb code step, we use the bitset to store both the values and their number of
occurences. Therefore we append a non-encoded 8 bit counter to each element. In our use
case, this is preferable to a counting Bloom filter, as described in Section 4.1, because we
use compressed Bloom filters. Therefore the fill rate, which is the rate of set bits in the
bitset, is considerably lower than in non-compressed Bloom filters.
Let f be the fill rate of the Bloom filter and B be the number of buckets in the filter. We set
the bucket sizes to 8 bits to be able to count up to 255 elements per key. A counting Bloom
filter with bucket sizes of 8 bits has a total size of 8 · B. The Golomb encoded counting
Bloom filter has a total size <B + 8 · f · B bits. The first part is the non-counting Golomb
encoded filter, the second is a 8 bit counter for each filled bucket. For fill rates f < 1

2
the

Golomb encoded variant is more space efficient. By default, we limit the bucket size to 8
bit and truncate values of 28 and higher to 255(28 − 1).
In InnerJoin, we also use 2 additional bits to label whether a key appeared in DIA A and /
or DIA B. This can be used to discard elements which do not appear in both DIAs, as they
can’t have any join partners.
The bitset GU is also a counting Golomb encoded bitset. For each key, we insert a
pair of the key and the optimal worker into the bitset. For the worker ID we use log2 p
bits. After these bitsets are broadcast similar to MPI AllGather, each worker builds a
std::unordered_map to map keys to their target worker.
In the Main phase of InnerJoin and GroupByKey, each element in the file is then sent to
the worker indicated by the map. In InnerJoin, elements not appearing in the map are

41

6 Distributed Bloom Filters in Thrill

discarded, as they did not appear in both DIAs. In GroupByKey, each hash of key should
appear in the map.
Figure 6.2 shows an example for the location detection. In the example, each of the 2
workers has 3 elements, the desired FPR is 1

2
. For ease of understanding, the bitsets are

not compressed. The resulting map is displayed as an array, in which integers denote the
optimal processors and × denotes a value which did not appear in the bitset. In InnerJoin,
the buckets 3, 4 and 11 would be discarded as they only appeared on a single worker. Only
bucket 1 would be in the resulting map.

42

7 Experimental Evaluation

This chapter uses multiple algorithms described in Section 3.4 to evaluate the performance
of duplicate and location detection in the Thrill framework. This evaluation is performed
using the wall clock time of algorithms and algorithm parts. Additionally, the total amount
of network traffic in the cluster is recorded.

7.1 Implementation

In order to evaluate the performance of our location and duplicate detection, we com-
pare wall clock time and total network traffic of Thrill implementations with and without
Bloom filters. All of these performance benchmarks are run on the AWS EC2 computing
cluster [24].
We selected five different algorithmic micro-benchmarks: WordCount, PageRank, TPC-
H4, Triangle Counting and Medians. For each of these micro benchmarks, we performed
weak and strong scaling experiments with multiple workload sizes. The implementations
of the micro-benchmarks are equal to the implementations in the Thrill introduction pa-
per [6]. Each of the micro-benchmarks is performed on 1 to 32 nodes from the AWS EC2
cluster.

7.2 Experimental Setup

7.2.1 Environment

The benchmarks were performed on multiple nodes of the AWS EC2 computing cluster
using r3.xlarge instances. Each of these instances contains 4 vCPU cores of an Intel Xeon
E5-2670 v2 with 2.5 GHz, 30.5 GiB RAM and a local 80 GB SSD storage.
These machines are smaller versions of the machines used in the Thrill introduction paper.
Therefore, the results from this work can be generalized to the results in that paper. It
therefore allows comparison of the performance with the frameworks Apache Spark and
Apache Flink, as the Thrill introduction paper evaluates the performance of Thrill com-
pared against those frameworks.
We implemented an AWS S3 reader for Thrill as part of this work. This reader reads data
directly from AWS S3 into a Thrill program without caching it on disk.

43

7 Experimental Evaluation

The machines are interconnected using a fully-meshed TCP/IP backend. The binary, which
contains the micro-benchmark, is placed on each of the machines before the program is
called. All IP addresses and their according ports are given as parameters to the Thrill pro-
gram.
Every experiment is performed three times, we plot the median of the three result values.

7.2.2 Tuning Parameters

We assume that the tuning parameters of the Thrill framework are already optimized well.
In general, Thrill does not even have a lot of tuning parameters. The available tuning
parameters, such as block sizes, hash table fill rates, etc. were optimized in previous devel-
opment steps.
The location and duplicate detection each contain distributed single-shot Bloom filters.
Most of the optimization parameters are inherited from the paper introducing the dSBF [40].
This section looks at the parameters for the golomb encoder and shows throughput and data
structure size for different values of the golomb parameter M .

20 22 24 26 28

4.74

4.76

4.78

elements [log2(i)]

fil
te

rs
iz

e
pe

ri
nt

eg
er

[b
]

Size of Bloom filter

20 22 24 26 28

90

92

94

96

elements [log2(i)]

da
ta

th
ro

ug
hp

ut
[M

iB
/s

]

Data throughput on insert

M=5
M=6
M=7
M=8
M=9

Figure 7.1: Size and throughput of golomb encoded bitset

Figure 7.1 shows the results for a micro-benchmark, in which small random integers are
inserted. The benchmark generates random integers in range [1, 19]. We chose this range,
as it is close to the expected range of deltas between hash values in the actual dSBF with a
FPR of 1

8
. These integers are inserted into a golomb encoded bitset with FPR 1

8
. We plotted

insert throughput and bitset size for golomb parameter(M) values from 5 to 9. The number
of integers inserted are in a range of 220 to 228.
For values M = 6, 7, 8, the average size of the bitset is 4.73b per element, for M = 5, 9
the size of the bitset is 4.79b per element. The data throughput is highest when M = 8,
followed by M = 7 and M = 9, which have 3% less data throughput.
Therefore we chose M = 8, as it both has the lowest bitset size and the highest throughput.

44

7.2 Experimental Setup

Presumably the throughput is highest, because divisions by 8 can be performed as a simple
bit shift.

20 22 24 26 28
1.113

1.114

1.115

1.116

1.117

elements [log2(i)]

si
ze

fa
ct

or
Size of Bloom filter divided by total entropy

Figure 7.2: Factor of bitset size to total entropy

Figure 7.2 plots the factor of bitset size to total entropy, which is the theoretical minimum
size for the bitset. The bitset has a golomb parameter of M = 8. The size factor is plotted
for 220 to 228 random integers in range [1, 19].
The size factor of the bitset is between 1.115 and 1.116, independent of the bitset size. All
following experiments are performed on bitsets with M = 8 and FPR 1

8
.

The results of this synthetic micro-benchmark are very positive, as the factor of bitset size
to total entropy is lower than 9

8
.

To check real-world data, we also performed the same benchmark with the WordCount al-
gorithm on data from the CommonCrawl data corpus.
Figure 7.3 shows this size factor with real-world data on a single AWS r3.xlarge node with
4 CPU cores. The duplicate detection in the reduce step in WordCount uses Golomb en-
coded bitsets on two separate occasions. In step 1, all elements are shuffled. In step 2, only
the elements unique to a single worker are shuffled. Therefore the deltas between elements
in step 2 are larger than in step 1.
When the number of files is 1 or 2, not every processor has an input file, as the Common-
Crawl corpus is in compressed data files. When each processor has input, the size factor in
step 1 is approximately 1.17 and the size factor in step 2 is approximately 1.51. It is larger
in step 2, as the values inserted are substantially larger on average.

45

7 Experimental Evaluation

1 2 4 8 16

1.05

1.1

1.15

files

si
ze

fa
ct

or
Complete data shuffle (Step 1)

1 2 4 8 16
1

1.1

1.2

1.3

1.4

1.5

files

Unique Shuffle (Step 2)

Figure 7.3: Factor of bitset size to total entropy in CommonCrawl WordCount

7.3 Experimental Results

We performed each micro-benchmark with detection set to on and off on 1 to 32 AWS
EC2 r3.xlarge nodes, so in total with a cluster size of 4 to 128 CPU cores. In the results,
we show data throughput and total net traffic in the Thrill program, as well as speedup
and communication volume ratios. We performed each experiment 3 times and used the
median result.

7.3.1 Word Count

In the WordCount benchmark, we used data from the CommonCrawl data corpus. Each of
the files in the CommonCrawl data corpus contains 392MiB of text data, which is stored
on the AWS S3 storage.
The upper half of Figure 7.4 shows weak scaling results as well as speedup for WordCount
for 4, 16 and 32 files per host. We can see that the use of duplicate detection only yields
a small speedup when the amount of files is large and the total amount of hosts is 16 or
lower.
In the lower half of Figure 7.4, which depicts the total amount of net traffic in the program,
we can see the reason for this problem. Due to the large amount of processors, the upper
bound for the number of unique elements in the Duplicate Detection becomes very large.
Therefore communication of the large bloom filters yields a large amount of additional
traffic, even more than the traffic for the words which can be marked unique.
While the volume ratio of communication is below 0.4 for 2 hosts and 32 files per host, it
increases on larger host sizes and reaches 1.32 with 32 hosts and 32 files per host.

46

7.3 Experimental Results

12 4 8 16 32

20

30

40

50

host count [h]

da
ta

th
ro

ug
hp

ut
[M

iB
/s

]

Throughput per host 4 Files

detection=OFF
detection=ON

12 4 8 16 32

30

40

50

60

host count [h]

Throughput per host 16 Files

12 4 8 16 32

30

40

50

60

host count [h]

Throughput per host 32 Files

12 4 8 16 32

0.7

0.8

0.9

1

host count [h]

sp
ee

du
p

Speedup 4 Files

12 4 8 16 32

0.7

0.8

0.9

1

host count [h]

Speedup 16 Files

12 4 8 16 32

0.7

0.8

0.9

1

1.1

host count [h]

Speedup 32 Files

12 4 8 16 32

0

0.2

0.4

0.6

host count [h]

ne
tt

ra
ffi

c
pe

rh
os

t[
G
B

]

Net Traffic 4 Files

0 5 10 15 20 25 30 35

0

0.5

1

1.5

2

host count [h]

Net Traffic 16 Files

0 5 10 15 20 25 30 35

0

1

2

3

host count [h]

Net Traffic 32 Files

2 4 8 16 32
0.4

0.6

0.8

1

1.2

1.4

1.6

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio 4 Files

2 4 8 16 32

0.4

0.6

0.8

1

1.2

1.4

host count [h]

Volume Ratio 16 Files

2 4 8 16 32

0.4

0.6

0.8

1

1.2

1.4

host count [h]

Volume Ratio 32 Files

Figure 7.4: Weak Scaling of WordCount algorithm for 4,16 and 32 files per host

47

7 Experimental Evaluation

1 2 4 8

45

50

55

host count [h]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per host 32 Files

detection=OFF
detection=ON

4 8 16 32

20

30

40

50

host count [h]

Throughput per host 128 Files

1 2 4 8

0.95

1

1.05

host count [h]

sp
ee

du
p

Speedup 32 Files

4 8 16 32

0.7

0.8

0.9

1

host count [h]

Speedup 128 Files

1 2 4 8

0

1

2

3

host count [h]

ne
tt

ra
ffi

c
[G
B

]

Net Traffic 32 Files

4 8 16 32

0

5

10

15

20

host count [h]

Net Traffic 128 Files

2 4 8

0.4

0.6

0.8

1

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio 32 Files

4 8 16 32
0.4

0.6

0.8

1

1.2

1.4

1.6

host count [h]

Volume Ratio 128 Files

Figure 7.5: Strong Scaling of WordCount algorithm for 32 and 128 files

48

7.3 Experimental Results

20 40 60 80 100 120 140 160 180
0
20
40
60
80
100

C
PU

U
til

iz
at

io
n

[%
]

WordCount with location detection

0

50

100

150

N
etw

ork/D
isk

T
hroughput[M

iB
/s]

20 40 60 80 100 120 140 160 180
0
20
40
60
80
100

C
PU

U
til

iz
at

io
n

[%
]

WordCount without location detection

0

50

100

N
etw

ork/D
isk

T
hroughput[M

iB
/s]

CPU Utilization Network Throughput Disk Throughput

Figure 7.6: CPU, disk and network stats for WordCount algorithm, h = 4, files = 100

Figure 7.5 shows the same metrics for strong scaling in the WordCount algorithm. Again,
we can see that scaling with duplicate detection is worse than without duplicate detection.
Again the main reason is the Bloom Filter data structure growing large.
Figure 7.6 shows CPU, network and disk utilization stats for WordCount on 4 hosts with
100 files in total. It is notable that overlap of communication and reduction is not possible
when duplicate detection is enabled, as the detection has to be performed before data can
be shuffled. Therefore, all communication is performed only after the pre-reduction is
finished. The total amount of communication is lower than without Duplicate Detection.
The solution for this problem is shrinking the Bloom filter, as the total number of unique
hashes is usually way lower than the upper bound, which is the sum of all uniques for each
processor.
Figure 7.7 shows throughput and total net traffic for 512 files on 32 hosts, which is a total
of 128 workers. The total net traffic is already lower than without Duplicate Detection,
when the dSBF size is halved.
The minimum amount of network traffic is reached with a shrinking factor of 8, which is
30% lower than without duplicate detection. Higher shrinking rates increase the FPR by
a large margin. Therefore they have higher total net traffic. On shrink factors of 8 and
higher, the throughput is less than 5% below the baseline, it does however not overtake the
baseline.

7.3.2 Page Rank

In the PageRank benchmark, we performed the PageRank algorithm on hyperbolic graphs
generated by the NetworKIT [45] suite. Each of these graphs is generated using an average
degree of 40, a gamma of 3 and a temperature of 0. The PageRank algorithm used 10

49

7 Experimental Evaluation

124 8 16 32 64

25

30

35

reduction factor [f]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]
Throughput on reduced Bloom filter size

Detection=ON
Detection=OFF

124 8 16 32 64

30

40

50

60

reduction factor [f]

to
ta

ln
et

tr
af

fic
[G
B

]

Net Traffic on Reduced Bloom Filter Size

Figure 7.7: Data throughput and network traffic on shrinked Bloom filter

iterations to compute the PageRank of the graph network. Additionally we performed the
PageRank algorithm on a real world web graph, uk2002, which is a part of the 10. DIMACS
graph partitioning challenge [5].
Figure 7.8 shows the CPU, network and disk utilization stats for PageRank on 4 hosts
with 221 pages, both using the PageRank implementation with InnerJoin. In this graph we
can see that in both variants the average CPU utilization is very high. Communication is
therefore presumably not the bottleneck of the algorithm.

5 10 15 20 25 30 35 40 45 50
0
20
40
60
80
100

C
PU

U
til

iz
at

io
n

[%
] PageRank with Location Detection

0

100

200

300

400 N
etw

ork/D
isk

T
hroughput[M

iB
/s]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0
20
40
60
80
100

C
PU

U
til

iz
at

io
n

[%
] PageRank without Location Detection

0

100

200

300

N
etw

ork/D
isk

T
hroughput[M

iB
/s]

CPU Utilization Network Throughput Disk Throughput

Figure 7.8: CPU, Disk and Network Stats for PageRank Algorithm, h = 4, 221 Pages

50

7.3 Experimental Results

12 4 8 16 32
1.5

2

2.5

3

3.5

host count [h]

da
ta

th
ro

ug
hp

ut
[M

iB
/s

]

Throughput per host 218 Pages

detection=OFF
detection=ON

12 4 8 16 32
2

3

4

5

6

host count [h]

Throughput per host 219 Pages

12 4 8 16 32

4

6

8

10

host count [h]

Throughput per host 220 Pages

12 4 8 16 32
0.6

0.7

0.8

0.9

1

host count [h]

sp
ee

du
p

Speedup 218 Pages

12 4 8 16 32

0.6

0.7

0.8

0.9

1

host count [h]

Speedup 219 Pages

12 4 8 16 32

0.6

0.7

0.8

0.9

1

host count [h]

Speedup 220 Pages

12 4 8 16 32

0

0.5

1

1.5

host count [h]

ne
tt

ra
ffi

c
pe

rh
os

t[
G
B

]

Net Traffic 218 Pages

0 5 10 15 20 25 30 35

0

1

2

3

host count [h]

Net Traffic 219 Pages

0 5 10 15 20 25 30 35

0

2

4

6

host count [h]

Net Traffic 220 Pages

2 4 8 16 32

0.8

0.9

1

1.1

1.2

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio 218 Pages

2 4 8 16 32

0.8

0.9

1

1.1

1.2

host count [h]

Volume Ratio 219 Pages

2 4 8 16 32

0.8

0.9

1

1.1

1.2

host count [h]

Volume Ratio 220 Pages

Figure 7.9: Weak Scaling of PageRank algorithm for graphs with 218, 219 and 220 nodes per host

51

7 Experimental Evaluation

1 2 4 8

2

4

6

host count [h]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per host 219 Pages

detection=OFF
detection=ON

12 4 8 16 32

0

2

4

6

8

10

host count [h]

Throughput per host 220 Pages

1 2 4 8

0.8

0.9

1

host count [h]

sp
ee

du
p

Speedup 219 Pages

12 4 8 16 32
0.7

0.8

0.9

1

host count [h]

Speedup 220 Pages

1 2 4 8

0

0.5

1

1.5

2

host count [h]

ne
tt

ra
ffi

c
[G
B

]

Net Traffic 219 Pages

12 4 8 16 32

0

2

4

6

host count [h]

Net Traffic 220 Pages

2 4 8

0.8

0.85

0.9

0.95

1

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio 219 Pages

2 4 8 16 32

0.8

0.9

1

1.1

1.2

host count [h]

Volume Ratio 220 Pages

Figure 7.10: Strong Scaling of PageRank algorithm for 219 and 220 nodes

52

7.3 Experimental Results

12 4 8 16 32

5

10

15

20

host count [h]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per host

detection=OFF
detection=ON

12 4 8 16 32

0

20

40

60

80

100

120

host count [h]
ne

tw
or

k
tr

af
fic

[G
B

]

Network traffic

12 4 8 16 32

0.6

0.8

1

1.2

host count [h]

sp
ee

du
p

Speedup

2 4 8 16 32

0.7

0.8

0.9

1

1.1

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio

Figure 7.11: Results of PageRank algorithm for uk2002 web graph

Figure 7.9 shows the weak scaling of PageRank with and without location detection. In
every experiment, location detection has no speedup but slows the program down. This
can be explained due to the increased computation necessary. As communication does not
seem to be the bottleneck, the reduced communication volume does not reduce the running
time.
With less than 16 hosts in total, the total communication volume is reduced when using
location detection. With 32 hosts, the communication volume ratio rises to 1.25. This
happens due to the large upper bound of elements, which is way larger than the actual
number of individual keys. Figure 7.10 shows the according strong scaling results for
PageRank with 219 and 220 pages in total. The results are similar to the results from the
weak scaling experiments.

53

7 Experimental Evaluation

5 10 15 20 25 30 35 40 45
0
20
40
60
80
100

C
PU

U
til

iz
at

io
n

[%
]

TPC-H4 with Location Detection

0

50

100

150 N
etw

ork/D
isk

T
hroughput[M

iB
/s]

5 10 15 20 25 30 35 40 45 50 55 60 65
0
20
40
60
80
100

C
PU

U
til

iz
at

io
n

[%
]

TPC-H4 without Location Detection

0

100

200

300

N
etw

ork/D
isk

T
hroughput[M

iB
/s]

CPU Utilization Network Throughput Disk Throughput

Figure 7.12: CPU, Disk and Network Stats for TPC-H4, h = 4, 16 GiB Input Size

Figure 7.11 shows PageRank results for the uk2002 web graph with 1 to 32 hosts. With 2 to
8 hosts, duplicate detection lowers the total running time of the algorithm with a speedup
factor of up to 1.16.

7.3.3 TPC-H4 Benchmark

We performed the TPC-H4 Benchmark on the database generated from the official gener-
ator script. In the micro-benchmark, we only measure the running time of the actual join
operation. Per GiB of table size, the tables used for the TPC-H4 benchmark take up 880
MiB.
In Figure 7.12 detailing CPU, network and disk utilization stats, we can see that without
location detection we have a large step in which only communication is performed and all
CPU cores are idle. This does not happen when this communication volume is reduced.
In Figure 7.13 we can see that the throughput with location detection on is signifcantly
higher for each number of hosts benchmarked.
The peak speedup factor is reached at 4 hosts and it is above 10.5 for each workload size.
At 32 hosts, the speedup is at 2.2 - 2.7 depending on the workload size.
The main reason for this speedup is that the table elements are large and nearly all elements
can be kept locally. Without location detection, table elements are shuffled by hash. Due
to the network traffic being the bottleneck for TPC-H4, this results in significantly higher
throughput for all workload sizes. Strong scaling for the TPC-H4 micro-benchmark is
shown in Figure 7.14. Like in the weak scaling experiment, we see large speedups at 2-8
hosts, which grow smaller as the number of hosts increases. This is due to the increasing
size of the dSBF.

54

7.3 Experimental Results

12 4 8 16 32
0

200

400

600

800

host count [h]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per Host (1 GB)

detection=OFF
detection=ON

12 4 8 16 32
0

200

400

600

800

host count [h]

Throughput per Host (2 GB)

12 4 8 16 32
0

200

400

600

800

host count [h]

Throughput per Host (4 GB)

12 4 8 16 32

2

4

6

8

10

host count [h]

sp
ee

du
p

Speedup 1 GB

12 4 8 16 32

2

4

6

8

10

host count [h]

Speedup 2 GB

12 4 8 16 32

2

4

6

8

10

host count [h]

Speedup 4 GB

12 4 8 16 32

0

0.5

1

host count [h]

ne
tt

ra
ffi

c
pe

rh
os

t[
G
B

]

Net Traffic 1 GB

12 4 8 16 32

0

0.5

1

1.5

2

2.5

host count [h]

Net Traffic 2 GB

0 1 2 3 4 5

0

1

2

3

4

5

host count [h]

Net Traffic 4 GB

2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio 1 GB

2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

Volume Ratio 2 GB

2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

Volume Ratio 4 GB

Figure 7.13: Weak Scaling of TPC-H4 algorithm for 1,2 and 4 GiB per host

55

7 Experimental Evaluation

2 4 8 16 32
0

200

400

600

800

host count [log2(h)]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per Host (8 GB)

detection=OFF
detection=ON

8 16 32

100

200

300

400

500

host count [h]

Throughput per host (32GB)

2 4 8 16 32

2

4

6

8

10

host count [h]

sp
ee

du
p

Speedup 8 GB

8 16 32

2

4

6

8

host count [h]

Speedup 32 GB

2 4 8 16 32

0

2

4

6

8

10

host count [h]

ne
tt

ra
ffi

c
[G
B

]

Net Traffic (8 GB))

8 16 32

0

10

20

30

40

host count [h]

Net Traffic (32GB)

2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio 8 GB

8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

Volume Ratio 32 GB

Figure 7.14: Strong Scaling of TPC-H4 micro-benchmark with 8 and 32 GiB

56

7.3 Experimental Results

5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

Median with Location Detection

0

50

100

150

N
etw

ork/D
isk

T
hroughput[M

iB
/s]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

Median without Location Detection

0

200

400

600

800

N
etw

ork/D
isk

T
hroughput[M

iB
/s]

Figure 7.15: CPU, Disk and Network Stats for Median, h = 4, 109 Elements

7.3.4 Median

In the Median micro-benchmark, we group 128 consecutive elements in a DIA and apply a
median function on them. We performed weak scaling experiments with a total of 226, 227

and 228 elements per host as well as strong scaling experiments with 229 and 231 elements
in total.
In Figure 7.15 we can see the long communication step in GroupBy due to all elements
being shuffled over the network. The CPU utilization is only at 100% when we perform
the actual grouping in the push phase of the GroupBy operation.

The weak scaling results are shown in Figure 7.16, the strong scaling results are shown in
Figure 7.17.
The results of the benchmarks are similar to the results of the TPC-H4 micro-benchmark.
On a single host, the speedup factor is at 0.46 - 0.61 depending on input size. The peak
speedup factor is 2.15 for 231 elements on 8 hosts. As seen in other benchmarks, the
speedup is bad when the amount of elements per host is small and improves on larger
amounts of data per host.
The total speedup is lower than in the TPC-H4 benchmark, as individual elements in the
Median benchmark are smaller than elements in the TPC-H4 benchmark. The amount of
reduced communication is therefore much lower.

57

7 Experimental Evaluation

12 4 8 16 32

100

200

300

400

host count [h]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per Host (226 Elements)

detection=OFF
detection=ON

12 4 8 16 32

100

200

300

400

host count [h]

Throughput per Host (227 Elements)

12 4 8 16 32

100

200

300

400

host count [h]

Throughput per Host (228 Elements)

12 4 8 16 32

0.5

1

1.5

host count [h]

sp
ee

du
p

Speedup (226 Elements)

12 4 8 16 32

0.5

1

1.5

2

host count [h]

Speedup (227 Elements)

12 4 8 16 32
0.5

1

1.5

2

host count [h]

Speedup (228 Elements)

12 4 8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

ne
tt

ra
ffi

c
pe

rh
os

t[
G
B

]

Net Traffic (226 Elements)

12 4 8 16 32

0

0.5

1

1.5

2

host count [h]

Net Traffic (227 Elements)

12 4 8 16 32

0

1

2

3

4

host count [h]

Net Traffic (228 Elements)

2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio (226 Elements)

2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

Volume Ratio (227 Elements)

2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

Volume Ratio (228 Elements)

Figure 7.16: Weak Scaling of Median micro-benchmark for 226, 227 and 228 elements per host

58

7.3 Experimental Results

2 4 8 16

120

140

160

180

200

220

240

host count [h]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per Host (229 Elements)

detection=OFF
detection=ON

8 16 32

50

100

150

200

host count [h]

Throughput per Host (231 Elements)

2 4 8 16

1

1.2

1.4

1.6

1.8

host count [h]

sp
ee

du
p

Speedup (229 Elements)

8 16 32

1

1.2

1.4

1.6

1.8

2

2.2

host count [h]

Speedup (231 Elements)

2 4 8 16

0

2

4

6

8

host count [h]

ne
tt

ra
ffi

c
[G
B

]

Net Traffic (229 Elements))

8 16 32

0

10

20

30

host count [h]

Net Traffic (231 Elements))

2 4 8 16

0

0.2

0.4

0.6

0.8

1

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio (229 Elements

8 16 32

0

0.2

0.4

0.6

0.8

1

host count [h]

Volume Ratio (231 Elements

Figure 7.17: Strong Scaling of Median computation for 229 and 231 elements

59

7 Experimental Evaluation

5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

Triangle Count with Location Detection

0

50

100

150 N
etw

ork/D
isk

T
hroughput[M

iB
/s]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

Triangle Count without Location Detection

0

200

400 N
etw

ork/D
isk

T
hroughput[M

iB
/s]

CPU Utilization Network Throughput Disk Throughput

Figure 7.18: CPU, Disk and Network Stats for Triangle Count, h = 4, 220 Vertices

7.3.5 Triangle Counting

Triangle Counting is performed on random graphs with an average vertex degree of 40.
These graphs were generated using the graph generator in the Thrill framework. We per-
formed weak scaling experiments with 215, 216 and 217 vertices per host and strong scaling
experiments with 219 and 220 vertices in total.
As the number of intermediate edges is very large and every edge usually appears only
once, the performance of location detection is very poor in the Triangle Counting experi-
ment.
The Triangle Counting experiment was mainly conducted to measure the performance of
InnerJoin, which is tested with a large amount of elements in the DIA storing all edges
with length 2.
Figure 7.18 shows CPU, Network and Disk stats for Triangle Counting in a graph with 220

vertices. Without location detection, the shuffle step for the intermediate edges takes up a
large portion of the total running time.
In Figures 7.19 and 7.20 we can see that location detection does not work well within the
triangle count algorithm.
The algorithm using InnerJoin without location detection has good strong scaling results
and has reasonable weak scaling of ≈ 0.5 between 1 and 32 hosts.
The total running time with location detection is largely dominated by the large amount of
accesses in the table which stores the best targets for elements.

60

7.3 Experimental Results

12 4 8 16 32

0

2

4

6

8

host count [h]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per Host (215 Vertices)

detection=OFF
detection=ON

12 4 8 16 32

0

2

4

6

8

host count [h]

Throughput per Host (216 Vertices)

1 2 4 8 16
0

2

4

6

8

host count [h]

Throughput per Host (217 Vertices)

12 4 8 16 32
0

0.2

0.4

0.6

0.8

1

host count [h]

sp
ee

du
p

Speedup (215 Vertices)

12 4 8 16 32

0.2

0.4

0.6

0.8

1

host count [h]

Speedup (216 Vertices)

1 2 4 8 16
0.2

0.4

0.6

0.8

1

host count [h]

Speedup (217 Vertices)

12 4 8 16 32

0

2

4

6

8
·10−2

host count [h]

ne
tt

ra
ffi

c
pe

rh
os

t[
G
B

]

Net Traffic (215 Vertices)

12 4 8 16 32

0

5 · 10−2

0.1

0.15

host count [h]

Net Traffic (216 Vertices)

1 2 4 8 16

0

0.1

0.2

0.3

host count [h]

Net Traffic (217 Vertices)

2 4 8 16 32

0.5

1

1.5

2

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio (215 Vertices)

2 4 8 16 32

0.5

1

1.5

2

host count [h]

Volume Ratio (216 Vertices)

2 4 8 16
0.2

0.4

0.6

0.8

1

1.2

host count [h]

Volume Ratio (217 Vertices)

Figure 7.19: Weak Scaling of Triangles micro-benchmark for 215, 216 and 217 vertices per host

61

7 Experimental Evaluation

2 4 8 16 32
0

5 · 10−2

0.1

0.15

0.2

host count [h]

th
ro

ug
hp

ut
pe

rh
os

t[
M
iB
/s

]

Throughput per Host (220 Vertices)

detection=OFF
detection=ON

4 8 16 32

5 · 10−2

0.1

host count [h]

Throughput per Host (221 Vertices)

2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

host count [h]

sp
ee

du
p

Speedup (220 Vertices)

4 8 16 32

0.2

0.4

0.6

0.8

1

host count [h]

Speedup (221 Vertices)

2 4 8 16 32

0.5

1

1.5

2

2.5

host count [h]

ne
tt

ra
ffi

c
[G
B

]

Net Traffic (220 Vertices))

4 8 16 32

1

2

3

host count [h]

Net Traffic (221 Vertices))

2 4 8 16 32

0.5

1

1.5

2

host count [h]

vo
lu

m
e

ra
tio

Volume Ratio (220 Vertices

4 8 16 32

0.5

1

1.5

2

host count [h]

Volume Ratio (221 Vertices

Figure 7.20: Strong Scaling of triangle count algorithm for 220 and 221 vertices

62

8 Discussion

8.1 Conclusion

In this thesis we implemented the InnerJoin operation and duplicate detection using dis-
tributed single-shot Bloom filters in the Thrill framework. We measured the performance
of these parts in multiple algorithmic micro-benchmarks within the Thrill framework.
We can see that using dSBF can reduce the total network traffic by a large margin in some
algorithms while it has no traffic benefits in others. In algorithms which are network bound
- such as the TPC-H4 database query benchmark, this can also decrease the total running
time of the program.
In algorithms, which are not network bound or do not have a large amount of removable
network traffic, the addititonal computation time does not yield a reduced total running
time but slows the program down.
It is however nearly always possible to reduce the amount of total network traffic, at least
when the upper bound of unique hashes is close to the real amount of unique elements.

8.2 Future Work

On a large number of hosts, the network traffic in the detection step becomes too large.
This happens due to the high upper bound of unique hashes in the whole program, which
is the sum of all uniques from each worker.
In the evaluation of WordCount in Section 7.3.1 we could see that reducing the upper bound
and consequently the dSBF size lowers network traffic and running time of the algorithm.
The correct shrinkage factor depends on the algorithm and the underlying dataset. It could
be beneficial to apply heuristics or sampling to see how many elements appear on multiple
workers. As the sweet spot in WordCount is relativiely wide, even rough heuristics could
be beneficial.
It can also be beneficial to introduce the concept of hosts to the duplicate and location de-
tection, as inner-host communication is significantly faster than intra-host communication.
This could additionally lower intra-host network traffic.
The Triangle Counting benchmark that the std::unordered_map used for the map-
ping of keys to workers can become the bottleneck. A custom map could be able mitigate
this bottleneck. In addition to InnerJoin, other join operations such as left outer join, right

63

8 Discussion

outer join or outer join could be implemented similarly. These operations could be useful
for several applications.

64

Bibliography

[1] libs3. https://github.com/bji/libs3. Accessed: 2016-11-16.
[2] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow. org, 1, 2015.

[3] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,
Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, et al.
The stratosphere platform for big data analytics. The VLDB Journal, 23(6):939–964,
2014.

[4] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. Spark
sql: Relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 1383–1394. ACM, 2015.

[5] David A Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea
Kappes, and Dorothea Wagner. Benchmarking for graph clustering and partition-
ing. In Encyclopedia of Social Network Analysis and Mining, pages 73–82. Springer,
2014.

[6] Timo Bingmann, Michael Axtmann, Emanuel Jöbstl, Sebastian Lamm, Huyen Chau
Nguyen, Alexander Noe, Sebastian Schlag, Matthias Stumpp, Tobias Sturm, and Pe-
ter Sanders. Thrill: High-performance algorithmic distributed batch data processing
with c++. arXiv preprint arXiv:1608.05634, 2016.

[7] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[8] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A
survey. Internet mathematics, 1(4):485–509, 2004.

[9] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. Haloop: efficient
iterative data processing on large clusters. Proceedings of the VLDB Endowment, 3(1-
2):285–296, 2010.

[10] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data. Information Sciences, 275:314–347,
2014.

[11] Transaction Processing Performance Council. Transaction processing performance
council. Web Site, http://www.tpc.org, 2005.

65

https://github.com/bji/libs3
http://www.tpc.org

Bibliography

[12] Transaction Processing Performance Council. Tpc-h benchmark specification. Pub-
lished at http://www. tcp. org/hspec. html, 2008.

[13] Chris J Date and Hugh Darwen. The sql standard. SQL/92 mit den Erweiterungen
CLI und PSM, 1993.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[15] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John Lockwood.
Deep packet inspection using parallel bloom filters. In High performance intercon-
nects, 2003. proceedings. 11th symposium on, pages 44–51. IEEE, 2003.

[16] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphviz—open source graph drawing tools. In International Symposium
on Graph Drawing, pages 483–484. Springer, 2001.

[17] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a scal-
able wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking
(TON), 8(3):281–293, 2000.

[18] Solomon W Golomb. Run-length encoding. IEEE Trans Info Theory, pages 399–401,
1966.

[19] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys (CSUR), 25(2):73–169, 1993.

[20] Shane Grant and Randolph Voorhies. cereal – a c++11 library for serialization.
http://uscilab.github.io/cereal/. Accessed: 2016-10-24.

[21] Lee L Gremillion. Designing a bloom filter for differential file access. Communica-
tions of the ACM, 25(9):600–604, 1982.

[22] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the mpi message passing interface standard.
Parallel computing, 22(6):789–828, 1996.

[23] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hibench
benchmark suite: Characterization of the mapreduce-based data analysis. In New
Frontiers in Information and Software as Services, pages 209–228. Springer, 2011.

[24] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc.,
http://aws.amazon.com/ec2/#pricing, 2008.

[25] Shahan Khatchadourian, Mariano P Consens, and Jérôme Siméon. Having a chuql at
xml on the cloud. In AMW. Citeseer, 2011.

[26] Taewhi Lee, Kisung Kim, and Hyoung-Joo Kim. Join processing using bloom filter
in mapreduce. In Proceedings of the 2012 ACM Research in Applied Computation
Symposium, pages 100–105. ACM, 2012.

[27] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed graphlab: a framework for machine learning and
data mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

66

http://uscilab.github.io/cereal/

Bibliography

[28] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 135–146. ACM, 2010.

[29] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, and María S Pérez.
Spark versus flink: Understanding performance in big data analytics frameworks. In
Cluster 2016-The IEEE 2016 International Conference on Cluster Computing, 2016.

[30] Robert E Martin. Filter for checking for duplicate entries in database, October 12
2004. US Patent 6,804,667.

[31] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what cost?
In 15th Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[32] Xiangrui Meng, Joseph Bradley, B Yuvaz, Evan Sparks, Shivaram Venkataraman,
Davies Liu, Jeremy Freeman, D Tsai, Manish Amde, Sean Owen, et al. Mllib: Ma-
chine learning in apache spark. JMLR, 17(34):1–7, 2016.

[33] Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on Net-
working (TON), 10(5):604–612, 2002.

[34] James K. Mullin. Optimal semijoins for distributed database systems. IEEE Trans-
actions on Software Engineering, 16(5):558–560, 1990.

[35] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. Making sense of performance in data analytics frameworks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), pages
293–307, 2015.

[36] Owen O’Malley. Terabyte sort on apache hadoop. Yahoo, available online at:
http://sortbenchmark. org/Yahoo-Hadoop. pdf,(May), pages 1–3, 2008.

[37] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: bringing order to the web. 1999.

[38] Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-and space-efficient
bloom filters. In International Workshop on Experimental and Efficient Algorithms,
pages 108–121. Springer, 2007.

[39] Peter Sanders. Fast priority queues for cached memory. In Workshop on Algorithm
Engineering and Experimentation, pages 316–321. Springer, 1999.

[40] Peter Sanders, Sebastian Schlag, and Ingo Müller. Communication efficient algo-
rithms for fundamental big data problems. In Big Data, 2013 IEEE International
Conference on, pages 15–23. IEEE, 2013.

[41] Peter Sanders and Sebastian Winkel. Super scalar sample sort. In European Sympo-
sium on Algorithms, pages 784–796. Springer, 2004.

[42] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage sys-
tems and technologies (MSST), pages 1–10. IEEE, 2010.

67

Bibliography

[43] Johannes Singler, Peter Sanders, and Felix Putze. Mcstl: The multi-core standard
template library. In European Conference on Parallel Processing, pages 682–694.
Springer, 2007.

[44] Haoyu Song, Fang Hao, Murali Kodialam, and TV Lakshman. Ipv6 lookups using
distributed and load balanced bloom filters for 100gbps core router line cards. In
INFOCOM 2009, IEEE, pages 2518–2526. IEEE, 2009.

[45] Christian Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: An
interactive tool suite for high-performance network analysis. arXiv preprint
arXiv:1403.3005, 2014.

[46] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory and prac-
tice of bloom filters for distributed systems. IEEE Communications Surveys & Tuto-
rials, 14(1):131–155, 2012.

[47] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.
[48] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. Graphx: A

resilient distributed graph system on spark. In First International Workshop on Graph
Data Management Experiences and Systems, page 2. ACM, 2013.

[49] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. HotCloud, 10:10–10, 2010.

[50] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Discretized
streams: an efficient and fault-tolerant model for stream processing on large clusters.
In Presented as part of the, 2012.

68

	Abstract
	Introduction
	Motivation
	Contribution
	Structure of Thesis

	Related Work
	An Introduction to Thrill
	Overview
	Distributed Immutable Array
	Operations in Thrill
	Source Operations
	Local Operations
	Distributed Operations
	Actions
	Data Flow Graph
	Data, Network, and I/O Layer

	Algorithms
	WordCount
	Page Rank
	TPC H4
	Percentiles / Median
	Triangle Counting

	Bloom Filters
	Counting Bloom Filter
	Compressed Bloom Filter
	Golomb Encoding

	Distributed Bloom Filters

	InnerJoin in Thrill
	Overview
	Implementation
	Link Phase
	Main Phase
	Push Phase

	Distributed Bloom Filters in Thrill
	Overview
	Duplicate Detection in Reduce
	Location Detection

	Experimental Evaluation
	Implementation
	Experimental Setup
	Environment
	Tuning Parameters

	Experimental Results
	Word Count
	Page Rank
	TPC-H4 Benchmark
	Median
	Triangle Counting

	Discussion
	Conclusion
	Future Work

	Bibliography

