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Abstract
The present thesis briefly reviews the history of the Minimum Spanning Tree (MST)
Problem and a number of known algorithms to solve it. Furthermore, a new simple,
elegant and practical algorithm based on Borůvka’s algorithm for parallel MST
computation on shared-memory machines is developed. The algorithm utilizes a
parallel primitive called priority write that is easily and efficiently implementable
with atomic compare-and-swap (CAS) instructions. The parallelism in the algorithm
is coarse-grained and no explicit locks other than in the implementations of usual
parallel primitives are needed. Experiments show that the algorithm is efficient
on both synthetic and real-world graphs and is invulnerable to adversarial inputs.
In our tests, it performs faster than or as fast as state-of-the-art implementations,
which often perform poorly or even sequentially on particular classes of graphs. The
new algorithm offers good performance even with few processors and therefore can
be used as a sole universal implementation.



Acknowledgments
I feel fortunate and grateful for receiving joint supervision from Prof. Peter Sanders at the
Karlsruhe Institute of Technology (KIT) and Prof. Guy E. Blelloch at the Carnegie Mellon
University (CMU) for this thesis. I would like to thank the interACT program and the IGEL
scholarship at KIT for their financial and organizational support for my stay at CMU, where
most of the work in this thesis was finished. I am also sincerely grateful to Yan Gu at CMU
and Dr. Julian Shun at the University of California, Berkeley for their help and all the valuable
discussions.



Contents

1 Introduction 1

2 Previous Work 3
2.1 Classical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Borůvka’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Prim’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Kruskal’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Modern Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Yao’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Cheriton-Tarjan Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Variants of Kruskal’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Other Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Parallel algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Borůvka’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Prim’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Kruskal’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 The New Algorithm 22
3.1 Priority Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Compaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Experimental Results 29
4.1 Benchmark Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Graphics and Tables for the Experiments . . . . . . . . . . . . . . . . . . 33
4.2.2 Analysis for Sequential Algorithms . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Analysis for Parallel Algorithms . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusions and Outlooks 49

References 50

List of Figures
1 A graph and its MSF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 A graph and the pseudo-forest formed during a Borůvka step. . . . . . . . . . . 6
3 Path compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Union-by-size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Benchmark results for randLocal_20M graph. . . . . . . . . . . . . . . . . . . . 33
6 Benchmark results for rMat_20M graph. . . . . . . . . . . . . . . . . . . . . . . . 34
7 Benchmark results for 2Dgrid_20M graph. . . . . . . . . . . . . . . . . . . . . . 34

i



8 Benchmark results for 3Dgrid_20M graph. . . . . . . . . . . . . . . . . . . . . . 35
9 Benchmark results for stars_20M graph. . . . . . . . . . . . . . . . . . . . . . . 35
10 Benchmark results for chain_20M graph. . . . . . . . . . . . . . . . . . . . . . . 36
11 Benchmark results for delaunay_20M graph. . . . . . . . . . . . . . . . . . . . . 36
12 Benchmark results for delaunay_20M-n graph. . . . . . . . . . . . . . . . . . . . 37
13 Benchmark results for delaunay_20M-2n graph. . . . . . . . . . . . . . . . . . . 37
14 Benchmark results for delaunay3d_10M graph. . . . . . . . . . . . . . . . . . . . 38
15 Benchmark results for delaunay3d_10M-2n graph. . . . . . . . . . . . . . . . . . 38
16 Benchmark results for delaunay3d_10M-4n graph. . . . . . . . . . . . . . . . . . 39
17 Benchmark results for uniform_20M_20M graph. . . . . . . . . . . . . . . . . . . 39
18 Benchmark results for uniform_2M_20M graph. . . . . . . . . . . . . . . . . . . . 40
19 Benchmark results for uniform_200K_20M graph. . . . . . . . . . . . . . . . . . 40
20 Benchmark results for uniform_20K_20M graph. . . . . . . . . . . . . . . . . . . 41
21 Benchmark results for nlpkkt240 graph. . . . . . . . . . . . . . . . . . . . . . . 41
22 Benchmark results for USA graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
23 Benchmark results for livejournal graph. . . . . . . . . . . . . . . . . . . . . . 42

List of Tables
2.1 MST algorithms on PRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 System specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Sizes of the test graphs and the numbers of MST edges. . . . . . . . . . . . . . 32
4.3 Running times of sequential algorithms. . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Running times of parallel algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Relative and absolute speedups of parallel algorithms. . . . . . . . . . . . . . . . 45

List of Algorithms
1 Borůvka Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Borůvka’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Priority Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Compare-and-Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Priority Write with Compare-and-Swap . . . . . . . . . . . . . . . . . . . . . . . 23
6 Pointer Jumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 New Parallel MST/MSF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



1 Introduction

1 Introduction
Given a connected weighted undirected graph G “ pV, Eq where V and E are the set of vertices
and edges, respectively, and an edge weight (or cost) function w : E Ñ R`, the Minimum
Spanning Tree (MST) of G is defined as a connected subgraph T “ pV, E0q such that E0 Ď E and
the total weight of the chosen edges,

ř

ePE0
wpeq, is minimized. T must be a tree because fewer

edges will disconnect the graph while more edges will introduce cycles in T and removing any
edge on a cycle will reduce the total weight while keeping T connected. Some authors explicitly
require acyclicness in the definition of MST.

The definition can be extended to unconnected G. In that case, we define the Minimum
Spanning Forest (MSF) to be the set of the MSTs of all the connected components of G. We
may also allow non-positive weights in the definition of MST by explicitly requiring T to be a
tree with the lowest total weight. A graph with marked MSF edges is given in Figure 1.
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Figure 1: A graph and its MSF. The boldface edges are in the MSF.

The Minimum Spanning Tree (Forest) Problem is to find an MST (MSF) for a given graph
G “ pV, Eq. Note that there can be more than one MST (MSF) for a graph with the same
minimum total weight. Any single one is a valid solution to the problem.

Minimum spanning trees have many theoretical and practical applications. The most direct
and obvious one is network design, e.g. road network or electrical grid construction. The goal
of the former is to connect all cities with roads and we would like to minimize the cost for
the construction. MST problem also occurs as the critical part of other algorithms. Notable
examples include an approximation algorithm to the NP-Hard Metric Traveling Salesman
Problem (Metric TSP)1 that is no worse than twice of the optimal cost (see e.g. [1]). The MST
problem is also closely related to the concept of matroids [1].

Largely due to physical limitation, the clock frequency of a CPU and its computing power
cannot rise arbitrarily. In contrast, however, the data volume of modern information processing
is growing faster than ever. This motivates the study of parallel computation.

1The problem is defined as follows: given n points with a distance function dp¨, ¨q satisfying the triangle
inequality, i.e. dpa, cq ď dpa, bq ` dpb, cq for all a, b and c, find a tour with the minimum total traveled
distance that visits every point exactly once and then leads back to the starting point.

1



1 Introduction

In this thesis, we develop an efficient coarse-grained parallel algorithm for the MST problem
for shared-memory architectures. The algorithm is applicable on multi-core computers that are
ubiquitous nowadays. Experimental results indicate that, at least for the MST problem, even
consumer-grade PCs can handle huge graphs efficiently.

The thesis is outlined as follows. The next section, Section 2, introduces some fundamental
properties of MSTs that enable their efficient computation and then briefly presents some known
algorithms, both classical and modern ones, serial and parallel ones, for MST computation.
Section 3 focuses on the main result of the thesis, a new parallel algorithm for the MST problem
based on Borůvka’s algorithm introduced in Section 2. The new algorithm is evaluated on
synthetic and real-world graphs in Section 4 together with some of the known algorithms in
Section 2. Section 5 concludes the thesis with a summary and some outlook on future research.

Throughout this thesis, we use n “ |V| and m “ |E| to denote the number of vertices
and that of edges, respectively. Vertices are uniquely numbered and identified from 0 to n´ 1
and edges from 0 to m ´ 1. An edge is represented by a tuple e “ pu, v,wq where u and
v are the two endpoints and w the weight. We use e.u, e.v and e.w to denote the three
components of the tuple of edge e. We also assume that the edge weights are distinct. Ties
can be broken by any deterministic property of the edges, e.g. unique edge indices. For graphs
with distinct edge weights, the MST is also unique. This is easily proved by contradiction
using the Cycle property described in Section 2. Unless otherwise noted, “graphs” in this thesis
are assumed to be connected, undirected and weighted. The thesis focuses on MST instead
of MSF. This does not incur loss of generality because all of the presented algorithms can be
easily adapted for MSF computation without raising their asymptotic time complexities. For
sequential algorithms, one can first perform a breadth-first search and run the MST algorithms
on each connected component. Most parallel MST algorithms can handle unconnected graphs
natively because of the way they work. We can otherwise always resort to a parallel algorithm
to the connectivity problem2 which is intuitively an easier problem (see e.g. [2]). Since most of
the algorithms discussed in this thesis can trivially be implemented with O pm` nq space which
is asymptotically optimal3, space complexity is generally omitted throughout the thesis unless
noteworthy.

2The connectivity problem is the problem of identifying all connected components of a given graph.
3This holds as long as the input is also taken into account.
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2 Previous Work

2 Previous Work
The Minimum Spanning Tree Problem is one of the fundamental problems of algorithmics and
therefore has been extensively studied. In this section we briefly introduce some of the known
algorithms for solving the MST problem. We first look at some classic serial algorithms and
then later parallel ones.

MSTs have various properties that can be exploited to compute them. The following
are some of the most frequently used ones. All of those properties have simple proofs by
contradiction which are omitted here (see e.g. [1, 3]).
Property 2.1 (Cycle property). If G contains a cycle C and there is only one edge e on C
whose weight is strictly higher than edges on C, then e cannot be in an MST.
Definition 2.2 (cut, cut edge). A cut C of a graph G is a partitioning of its vertices into two
disjoint sets V0 and V1. A cut edge with respect to C is an edge that connects a vertex in V0
and another in V1.
Property 2.3 (Cut property). If a cut edge e with respect to cut C “ tV0, V1u is strictly
lighter than any other cut edges with respect to C, then e belongs to an MST. In the case where
all edges have distinct weights, e belongs to the MST.
Property 2.4 (uniqueness). If all edges in graph G have distinct weights, then G has a unique
MST.

2.1 Classical Algorithms

2.1.1 Borůvka’s Algorithm

The earliest explicit formulation of the MST problem and an efficient MST algorithm is believed
to be due to Borůvka in 1926 [4, 5, 6]. His algorithm has been re-discovered several times
during the next decades by others, e.g. Sollin [6], and therefore bears many names, most notably
“Borůvka’s algorithm” and “Sollin’s algorithm”. We call it “Borůvka’s algorithm” throughout
the thesis.

Borůvka’s algorithm runs in phases. It maintains the set of found connected components,
denoted S, during the process. It starts with n trivial components, each containing a single
vertex. We then iteratively reduce the number of components in the set by so-called Borůvka
steps in each phase until there is only one connected component in the set.

A Borůvka step basically tries to find safe edges and add them to the MST by exploiting the
Cut property. It does so by finding the minimum outgoing edge4 for every connected component
in the set S. By the Cut property (by choosing the cut C “ pT, V Tq for each component T P S),
those edges must be in the MST. After adding those edges to MST, it joins the respective
connected components of the two endpoints of every found MST edge.

It is easy to prove that no more than O plognq5 Borůvka steps are needed. That is because
the number of vertices in the smallest connected component at least doubles after each step
and a connected component cannot contain more than n vertices. The total time complexity of
Borůvka’s algorithm is therefore O plogn ¨Tborsteppm,nqq, where Tborsteppm,nq depends on the

4Though the graph is undirected, we sometimes assign conceptual directions to the edges. No actual modification
of the edges is performed.

5logn is always base-2 logarithm and lnn is e-based throughout this thesis. Logarithms of other bases are
given explicitly.
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2.1 Classical Algorithms

concrete implementation of Borůvka steps. Borůvka steps can be implemented in O pmq time so
that the total running time of Borůvka’s algorithm is O pm lognq. One such implementation is
described below.

The implementation assumes an edge-list representation6 of graphs and connected compo-
nents are implicitly defined by recording the representative of the connected component of every
vertex. Let Rrus, u P V, denote the representative of the connected component in which vertex
u lies. The implementation works in three steps: find-min, grafting and then shortcutting.

Find-Min Step. The find-min step enumerates all edges that connect two different con-
nected components and updates the current lightest outgoing edge for both connected compo-
nents. By using R values to check whether both endpoints are in the same component, it is easy
to see find-min works in O pmq time.

Grafting Step. After finding the minimum edges, they are added to the MST. The grafting
step merges the two connected components joined by any such minimum edge e “ pu, v,wq by
“grafting” one component to the other, i.e. setting Rris Ð j where i “ Rrus and j “ Rrvs are
the representatives of the components of u and v, respectively. Note that after this step, the
meaning of R changes slightly so that the true representative of the component containing a
non-representative vertex u is found by following the path defined by those R values, i.e. by
iteratively setting uÐ Rrus until it stops changing. However, this may never stop when there is
a cycle. This issue is discussed later. This grafting step takes O pnq time because every connected
component has no more than one minimum outgoing edge and we only do an assignment for
each such edge.

Shortcutting Step. The final shortcutting step then fully “shortcuts” all such paths by
finding the true representative of i’s component and then setting the R values for all vertices
along this path to this representative. This step takes O pnq time because each transition from i

to Rris will only be processed at most twice — once while trying to find the true representative
and once while shortcutting along the path — and there are only O pnq such transitions.

The total running time of this Borůvka step implementation is therefore O pmq, implying
an O pm lognq-time implementation of Borůvka’s algorithm. Algorithm 1 details this implemen-
tation of Borůvka step and Borůvka’s algorithm is given in Algorithm 2.

As mentioned before, there is a caveat in the grafting step: an edge could be chosen as the
minimum edge by the components of both its endpoints. It is thus important not to add an
edge to the MST twice in line 8 of Algorithm 1 on the one hand. On the other hand, careful
analysis reveals that the relation “Ñ” where “AÑ B” means the minimum edge for connected
component A goes to component B, forms a pseudo-forest, meaning there is no cycle except for
roots, where every root also points back via the same minimum edge, forming cycles of length 2
(see Figure 2). This situation results in an infinite loop in the shortcutting step. This can be
solved by breaking the symmetry during the grafting: before setting Rris Ð j we check if the
minimum edge for the current (i’s) component is also the minimum for j’s and, if so, we only
graft i to j when i ą j. This decision is arbitrary as long as it is deterministic — we may also
choose to graft when i ă j. The solution is reflected in line 13.

There are other popular implementations of Borůvka’s algorithm assuming different graph
representations. The edge-list representation is given in detail because it is particularly suitable
for the new algorithm in this thesis and enables a more elegant parallelization. A asymptotically
faster variant of Borůvka’s algorithm by Yao [7] is given in Section 2.2.1.

6In this representation, the edge tuples are stored in a simple array of length m, denoted as Er0..m´ 1s.
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2.1 Classical Algorithms

Algorithm 1: Borůvka Step
Data: Graph G “ pV, Eq

Array Rr0..n´ 1s, where Rrus is the representative of the connected component in
which vertex u lies

Result: Updated array of representatives

1 begin
2 bestris Ð sentinel, i P V /* assuming sentinel is an edge of weight 8 */

/* find-min step */
3 foreach e P E where Rrus ‰ Rrvs do
4 if e.w ă bestrRre.uss.w then
5 bestrRre.uss Ð e

6 if e.w ă bestrRre.vss.w then
7 bestrRre.vss Ð e

/* bestris is now the lightest edge leaving i’s component if i is a
representative and there are still valid edges connecting i’s
component and another; otherwise bestris “ sentinel. */

8 Add those minimum edges to the MST (e.g. by marking these edges).

/* grafting step */
9 foreach i P V do

10 if bestris ‰ sentinel then /* i is a representative */
11 uÐ the endpoint (of edge bestris) in the other component
12 jÐ Rrus

13 if bestris “ bestrjs and i ă j then
14 Do nothing /* break symmetry; Rris stays i */
15 else
16 Rris Ð j /* graft i to j */

/* shortcutting step */
17 foreach i P V do
18 rÐ i

19 while r ‰ Rrrs do
20 rÐ Rrrs

/* r is now the representative of i’s component */
21 jÐ i

22 while Rrjs ‰ r do
23 pRrjs, jq Ð pr, Rrjsq /* simultaneous assignments */

5



2.1 Classical Algorithms

Algorithm 2: Borůvka’s Algorithm
Input: Graph G “ pV, Eq
Output: The MST of G

1 begin
2 Rris Ð i, i P V /* initialization */
3 ccÐ n /* number of connected components implicitly defined by R */
4 while cc ą 1 do
5 Invoke Borůvka step (Algorithm 1)
6 ccÐ |ti P V | i “ Rrisu| /* every component has a representative */

7 return MST edges found during Borůvka steps
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Figure 2: A graph and the pseudo-forest formed during a Borůvka step. The
dashed arrows define the pseudo-forest. Note that three 2-cycles are
formed. All of them must be broken to prevent infinite loops in the
shortcutting step.
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2.1 Classical Algorithms

2.1.2 Prim’s Algorithm

Prim’s algorithm [8] (independently by Dijkstra [9] at around the same time), a three-decade
later re-discovery of Jarník’s algorithm [6], is another classical algorithm on the MST problem.
It, together with Kruskal’s algorithm discussed later, has received better coverage in standard
texts on algorithms than Borůvka’s algorithm, perhaps because the most recent re-discovery of
Borůvka’s algorithm by Sollin (that aroused renewed interest therein [6]) appeared a couple of
years later than these two.

The algorithm works by choosing an arbitrary vertex as the starting MST and then growing
the tree gradually by finding the nearest vertex to the current tree which has not been added to
it. The correctness of the algorithm follows from the Cut property.

The running time of Prim’s algorithm depends on how fast the nearest vertex can be found.
For a dense graph (m “ Θ pn2q), it suffices to maintain the minimum distance between each
vertex and the MST in an array D (initialized with 8s). This way, the next vertex can be found
by a loop in time O pnq. After adding the vertex, the minimum distances stored in array D are
updated for its neighbors, which again takes O pnq time. The algorithm terminates after n´ 1
steps and thus has a time complexity O pn2q, which is asymptotically optimal.

The running time can be improved for sparse graphs with priority queues. A priority queue is
an abstract data type that supports insert, delete, find-min, delete-min and decrease-key
operations. find-min finds the smallest element in the priority queue and delete-min removes
it. decrease-key takes a pointer to a present element in the priority queue and decreases its
key by a given (non-negative) difference. General delete operation can be implemented by a
decrease-key with a sufficiently large difference followed by a delete-min.

If we maintain the vertices in a priority queue with their respective minimum distances
as the keys, finding the nearest vertex reduces to finding (and deleting) the minimum in
the priority queue. After adding the minimum edge and the nearest vertex u to the MST,
we update the distances for u’s neighbors as before or add a neighbor if it has never been
present in the priority queue. Because we only need to update vertex v’s distance if the weight
between u and v is smaller than the current distance of v, the update can be implemented
by a decrease-key operation. Thus we need pn´ 1q delete-min operations, pn´ 1q inserts
and O pmq decrease-keys. The running time of Prim’s algorithm then fully depends on the
concrete priority queue implementation. For binary heaps (see e.g. [1]), all three operations have
complexity O plognq where n is the number of elements in the heap, giving an O ppm` nq lognq
implementation of Prim’s algorithm. Advanced priority queues like Fibonacci heaps [10] and
thin heaps [11] offer constant amortized time complexity for all standard operations except for
deletions which take O plognq time, enabling an O pm` n lognq time implementation of Prim’s
algorithm, though the constant factor hidden in the complexity limits their usefulness [12, 13]. On
the contrary, a data structure named pairing heap [14] proves to be fast also in practice [12, 13],
though its decrease-key operation is now known to be Ω plog lognq [15], i.e. not optimal after
a decade of being conjectured so. A modified version of pairing heaps achieving this lower bound
is also known [16].

An interesting aspect of Prim’s algorithm with binary heaps is its expected time complexity
when the edge weights are random. [17] proves that the expected running time in this case is
O pm` n logn logp1`m{nqq “ O pm` n logn log lognq7 even when an adversary gets to choose

7The reduction to the latter is proved by discussing the two cases m ě n logn log logn and m ă n logn log logn.
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2.1 Classical Algorithms

the graph topology as long as the weights are random. This justifies the efficiency of this simple
implementation demonstrated in practice [12, 13].

2.1.3 Kruskal’s Algorithm

Another standard algorithm for computing MSTs in sequential settings is Kruskal’s algorithm [18].
It maintains the set of connected components starting with n trivial ones just as in Borůvka’s
algorithm. However, it does not locally choose the minimum edge for each component, but
globally finds the minimum edge connecting two different components and then joins them in
one step. The procedure is executed until the number of connected components is reduced to
one. The most prevailing way to implement the searching procedure is to first sort all edges
by their weights in ascending order and inspect every edge in the sorted order to see whether
both endpoints are in the same component. If they are, the edge is skipped; otherwise both
components are joined and the edge is marked to be in the MST.

If we abstract the needed operations from the algorithm, we in fact need the so called
disjoint set or union-find abstract data type that supports

• make-setpxq: making a singleton set containing x,
• findpxq: finding the representative of the set in which x lies, and
• unitepx, yq: joining the sets containing two given elements x and y.

The most suitable union-find data structure for Kruskal’s algorithm is similar to the R array
used in Borůvka’s algorithm. Each set is represented as a tree that is implicitly defined by
those R values where Rris is the parent of i in its tree. The representative of i’s set is found by
following R until we reach the top (where Rris “ i). Merging is done by grafting the root of one
tree to that of the other.

This representation looks simple but inefficient. However, it can be proven that, when two
techniques called path compression and union-by-size are employed, the total time for executing
any sequence of operations containing m finds and n make-sets (thus at most pn´ 1q unites)
is O pn`mαpm` n,nqq, where αpm,nq is a very slow-growing function called the inverse
Ackermann function 8 that is no larger than 4 for all practical inputs [19]. Path compression is
almost what we did in the shortcutting step in Borůvka’s algorithm: for every findpxq operation,
after finding the root r, we set the parent of every element y on the path from x to r also to r,
i.e. Rrys Ð r. Intuitively, this makes future find operations on those elements much cheaper
without increasing the complexity of the present one. Union-by-size adds an attribute to every
root representing the size (number of elements) in its tree. When doing an unite operation,
we only graft the tree of smaller size to the larger one, breaking ties arbitrarily, and update
the size attribute of the new root. The size field of the smaller tree will never be used again
thereafter and can be discarded if necessary. Both techniques are depicted in Figure 3 and
Figure 4. They are very easy to implement yet the analysis is highly non-trivial and out of the
scope of this thesis. [19] offers a complete analysis and more techniques that can be used to
replace path compression and/or union-by-size and are asymptotically equally fast. Furthermore,
it has been also proven in [19] that the time bound is tight in a sense: any implementation of
the union-find data structure needs Ω pn`mαpm` n,nqq time in the worst case to execute a

8Formally, αpm,nq :“ minti ě 1, i P Z | Api, tm
n

uq ě log2 nu where the Ackermann function is defined to be
Ap1, jq “ 2j for j ě 1, Api, 1q “ Api´ 1, 2q for i ě 2, and Api, jq “ Api´ 1,Api, j´ 1qq for i, j ě 2. The latter
has an explosively fast growth, which is why the growth of its inverse is extremely slow.

8



2.2 Modern Algorithms

sequence containing m finds and n make-sets for pointer machines9 under certain technical
assumption. For m ě n, which is the case in Kruskal’s algorithm, a simpler lower and upper
bound of Θ pmαpm,nqq can be proven.

0

1 2

3

4

(a) A union-find tree.

0

3 4 1 2

(b) After findp4q.

Figure 3: Path compression

4 0

5 1 2

3

(a) A union-find data structure.

0

4 1 2

5 3

(b) After unitep4, 0q. The sizes of
of both trees are 2 and 4 respectively,
thus 4 is grafted to 0.

Figure 4: Union-by-size.

Kruskal’s algorithm can be efficiently implemented using this union-find data structure.
Sorting the edges costs O pm logmq time. After that, we have to inspect every edge in the
worst case, involving two find operations per edge, and possibly join both components which
are pn´ 1q unite operations in total. Thus we need O pmαpm,nqq time in the worst case. In
summary, Kruskal’s algorithm has a time complexity of O pm logmq or, if the edges are already
given in sorted order, O pmαpm,nqq.

2.2 Modern Algorithms
On top of the discussed classical algorithms, many more algorithms that are theoretically or
practically more efficient have been proposed. In this section we give a brief introduction to
some of them. We start with variants of these classical algorithms and then look at some of the
more recent and advanced ones.

9Informally, pointer machines are a model of computation where no direct memory addressing is allowed.
Memory cells must be found by following pointers and not by arithmetic.
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2.2.1 Yao’s Algorithm

Borůvka’s algorithm makes local decisions during each Borůvka step. If we can speed up these
local decisions, we can then accelerate Borůvka step. A natural direction to try is to avoid
inspecting every edge during each Borůvka step somehow. It should be possible to implement
Borůvka step in less than Θ pmq time if we can manage this because other steps in a Borůvka
step only takes O pnq time in contrast to O pmq.

Yao’s algorithm [7] is the first MST algorithm that achieves an O pm log lognq time bound
in the worst case. It assumes an adjacency array10 (or list) representation of graphs. The
outbound edges for every vertex are first partitioned into k “ logn equal-sized groups such that
every edge in a later group is at least as heavy as all edges in earlier groups for the same vertex.
Edges within the same group are not sorted. This can be done in O pm log kq “ O pm log lognq
time if we recursively apply the classical linear selection algorithm (see e.g. [1]). The goal of the
partitioning is to make sure later groups do not have to be checked before all earlier ones are
fully exhausted. Therefore only one group, i.e. only 1

k
of all edges for each vertex have to be

checked to determine the minimum edge for this vertex. We remember the current group ID for
every vertex across the Borůvka steps. After determining the minimum edge for a vertex, we
mark it or (lazily) remove it. If exhausting the whole group did not yield any usable edge, we
increment the group ID for the vertex and search again in the next group. The total cost for
failed searches of the groups for an unused edge is bounded by the number of edges across all
Borůvka steps and is therefore O pmq. We still have O plognq stages, so the total time for all
stages is O

´

m` logn ¨
řn

i“1

Q

|neighborspiq|
k

U¯

“ O
`

m` logn ¨ p2m
k
` nq

˘

which is O pm` n lognq
for k “ logn. For m “ Ω pn lognq this is a linear time algorithm. In order to eliminate the
n logn term for the case m “ O pn lognq, we first run normal Borůvka steps (with k “ 1, i.e.
no partitioning) for log logn stages to reduce the number of vertices by a factor of logn. This
preprocessing takes O pm log lognq time, which is also the running time of the whole algorithm.
Yao’s algorithm is often considered impractical because it involves the linear selection algorithm
which has a high constant factor [20].

2.2.2 Cheriton-Tarjan Algorithm

Another O pm log lognq algorithm for MST is due to Cheriton and Tarjan [21]. The algorithm
also maintains a set of connected components implicitly represented by the representatives of
every component, just as in Borůvka’s algorithm. For every component it manages a meldable
priority queue, i.e. a priority queue that supports efficient merging of two queues, of all edges
having exactly one endpoint inside the component. Edge weight is the key of the priority queues.

The algorithm works in a round-robin fashion. At the beginning we have n trivial connected
components in a (normal, first-in first-out) queue. At each step, the algorithm pops the first
element from the queue and then the minimum edge from its priority queue. We find the
other endpoint of the edge (the one that is not in this component) and its corresponding
component and remove it from the queue. We then merge the two connected components and
their associated priority queues. Finally the merged component is appended to the queue. The

10An adjacency array representation has an edge list sorted by their starting vertex (thus every undirected edge
is stored twice in the list), and an array of length n representing the index of the first outgoing edge for every
source index. This way, we can efficiently find all neighbors of any given vertex.
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steps are repeated until we have only one connected component in the queue. This connected
component represents the MST of the original graph.

Components can be represented by the same union-find data structure as in Kruskal’s
algorithm. Therefore the merging of two connected components can be efficiently implemented.
It remains to find a priority queue implementation that supports efficient merging. Cheriton
and Tarjan chose a variant of so-called leftist heaps invented by Crane [22]. A leftist tree is a
binary tree such that, for every node in the tree, the right path from the node (the path along
the pointers of the right children until there is none) is the shortest among all paths from the
node to the bottom. Another way to characterize leftist trees is to define a function rankpxq for
every node x as

rankpxq “
#

0, if x is an external node
1`mintrankpleftpxqq, rankprightpxqqu, otherwise

where leftpxq and rightpxq are the left and right child of x, respectively. A leftist tree is defined as
a binary tree satisfying rankpleftpxqq ě rankprightpxqq for every internal node x, hence its name.
A leftist heap is then a leftist tree satisfying the heap order as in binary heaps. In addition
to insert and delete-min, leftist heaps also support merge operations that merge two leftist
heaps in O plognq time, where n is the total number of elements in both trees, in contrast to
ordinary binary heaps, for which it would take O pnq time. The variant used in Cheriton-Tarjan
algorithm uses lazy deletion and lazy merging to achieve the claimed O pm log lognq time bound.
The running time of this algorithm can be improved slightly further to O

`

m log log2`m{n n
˘

by
doing some cleanup operations that remove duplicate or self edges (edges that connect vertices
in the same connected component) at appropriate intervals. Further details can be found in [21]
and [20]. This algorithm is also deemed impractical because the small speedup over classical
algorithms does not overweigh the constant factors due to the use of more complicated pointer
based data structures.

2.2.3 Variants of Kruskal’s Algorithm

The bottleneck of Kruskal’s algorithm resides in the sorting step. Intuitively, the number of
connected components is often reduced to one (thus the MST has already been found) long
before every edge is inspected. A result from the theory of random graphs states that the
expected number of edges that need to be checked is about 1

2
n lnn for large enough n [23],

much fewer than m for dense graphs.
A method to incorporate this observation is to build a priority queue on the edges instead

of sorting and then use delete-min to get the next lightest edge until the MST has been
built. Building a priority queue takes O pmq time for many implementations, e.g. binary
heaps (see e.g. [1]). Each subsequent delete-min needs O plogmq time. The worst-case time
complexity is therefore O pm`m logm`mαpm,nqq “ O pm lognq just as the original algorithm,
but the average case is now only O pm` n lnnplogm` αpm,nqqq “ O

`

m` n log2 n
˘

. This
implementation is called Kruskal’s algorithm with demand-sorting by some authors [12].

Another algorithm demonstrating this early-stopping idea works like Quick-sort. If the
number of edges is small enough (e.g. m “ Θ pnq), we run a normal Kruskal’s algorithm with
union-find. Otherwise, we choose a pivot edge (uniformly at random or the median) and
partition the edges into two sets: E1 “ te | e.w ď pivot.wu and E2 “ te | e.w ą pivot.wu. We

11
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then recurse with only the edges in E1. After returning from the recursion, we check if the
MST has already been built and only recurse with edges in E2 if it has not. During the whole
algorithm, a global union-find data structure is used. This algorithm, sometimes called the
Quick-Kruskal algorithm [24], has the same average time complexity as Kruskal’s algorithm with
demand-sorting, i.e. O

`

m` n log2 n
˘

[25].
The above two algorithms with early-stopping only work well for random graphs with

random weights as early stopping is of no use even if the MST contain a single heavy edge. If
the topology is fixed and can be chosen by an adversary, random weights alone cannot guarantee
the above average time complexity [24]. An example given in [24] is a “lollipop graph” that
consists of a random graph and a tail (a chain) connected to one node. Obviously, all of the
edges on the tail must be in the MST, and the probability that an edge is in the heavier half of
all edges is 1

2
, implying about half of the edges on the tail are in the heavier half, rendering the

early-stopping ineffective.
A simple remedy of the Quick-Kruskal algorithm called the Filter-Kruskal algorithm is

given in [24]. It adds a filtering step which removes the edges that have endpoints in the
same components after recursing processing the lighter half of the edges, before recursing
with the heavier half. This filtering is done with help of the global union-find data structure.
Experiments show that his heuristic is indeed much more robust than early-stopping alone.
From a theoretical point of view, they proved that the expected running time of Filter-Kruskal
algorithm is O

`

m` n logn log m
n

˘

“ O pm` n logn log lognq for arbitrary graph with random
weights. Note the same bound is also achieved by Prim’s algorithm with binary heaps under
the same condition as mentioned before in Section 2.1.2.

The filtering idea can be used without recursive partitioning. We simply do a one-time
partitioning with Quick-select (see e.g. [1]) to find the (e.g. Θ pnq) lightest edges, run Kruskal’s
algorithm (or any other MST algorithm that return a union-find data structure) with those edges,
do a filtering on the heavier edges, and invoke Kruskal’s algorithm on the remaining heavier
edges. This is what the parallel implementation of Kruskal’s algorithm in the Problem Based
Benchmark Suite (PBBS) [26] does. More details on that algorithm is given in Section 2.3.4.

2.2.4 Other Algorithms

In the last few decades, a couple of algorithms that are asymptotically faster than Yao’s and
Cheriton and Tarjan’s O pm log lognq have been proposed. Most of them are highly complicated
and thus deemed impractical, or are only applicable to graphs with certain special properties.
We only give an incomplete listing here.

Fredman and Tarjan [10] gave an O pm log˚ nq time algorithm for the MST problem that
invokes Prim’s algorithm implemented with Fibonacci heaps iteratively, where the iterated
logarithm log˚ n :“ minti | log log ¨ ¨ ¨ log

loooooomoooooon

i times

n ď 1u and log˚ n ď 5 for all practical input. The

rationale of the algorithm is to limit the number of elements that coexist in the priority queue
to reduce the n logn term in the time complexity of Prim’s algorithm (which is O pm` n lognq).
The algorithm runs in passes, each of which executes Prim’s algorithm until the number of
elements in the priority queue exceeds a certain threshold k or after it just added a vertex
into the priority queue that has been marked by a previous Prim instance, at which point it
starts a new instance of Prim’s algorithm in another vertex. The pass ends when every vertex
belongs to the tree of an instance of Prim’s algorithm. Every tree found by a Prim instance
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is contracted into a super-vertex. The i-th pass can be implemented in time O pm` ni log kq
where ni is the number of vertices before the pass. If we set k “ ki “ 2

2m
ni , that would be

O

´

m` ni logp2
2m
ni q

¯

“ O

´

m` ni ¨
2m
ni

¯

“ O pmq. Furthermore, it can be shown that no more
than 2m

ki
super-vertices remain after pass i, because the total degree of every Prim tree after

the pass is at least ki and the total degrees of the whole graph is 2m. Therefore we have
ki`1 “ 2

2m
ni`1 ě 2

2m
2m{ki “ 2ki . Thus the sequence of ki increases tetrationally, indicating the

number of passes is O plog˚ nq, proving a total time complexity O pm log˚ nq for the algorithm.
This algorithm is then (very) slightly improved by Gabow et al. [27] to O pm log log˚ nq shortly
thereafter.

The bound for deterministic algorithms for the MST problem was again lowered by
Chazelle [28] to O pmαpm,nqq by utilizing an interesting data structure called soft heaps also
invented by him [29]. A soft heap is a meldable priority queue implementation that may corrupt
elements stored in it by increasing their keys. Soft heaps support delete-min and merge in
constant amortized time and insert in O

`

log 1
ε

˘

, satisfying the additional property that no
more than εn elements in the data structure are corrupted at any time, where 0 ă ε ď 1

2
is

the error rate. The errors are introduced to break the information-theoretic lower bound on
priority queues because otherwise insertions and deletions could be used to do comparison-based
sorting in opn lognq time. A similar algorithm with the same bound has also been independently
proposed by Pettie [30].

Pettie and Ramachandran [31] ultimately have broken the bound again by providing an
asymptotically optimal deterministic comparison-based algorithm for the MST problem on
pointer machines. An intriguing fact about the algorithm is that although the running time of
their algorithm is proven to be matching the decision tree lower bound for pointer machines, this
bound itself is not known. The best upper and lower bound of the running time of the algorithm
to date are O pmαpm,nqq (achieved by Chazelle [28] as mentioned above) and Ω pmq, respectively.
They have also proved that their algorithm works in linear time with high probability for random
graphs even if the lower bound should later be shown to be superlinear. Roughly, their algorithm
first generates optimal decision trees for graphs of no more than r “ log log logn vertices in O pnq

time. Then it partitions the graph into subgraphs of about r vertices in O pmq time. After that,
the MST for each subgraph is calculated by using the optimal decision trees, for which we do
not know the exact time bound. The found MSTs are contracted into individual super-vertices
in linear time. The remaining graph is dense because the number of vertices is reduced to
n
r
. For such a graph, the MST can be found in linear time by invoking previous algorithms

(e.g. Fredman and Tarjan’s O pm log˚ nq time algorithm). Therefore the total running time is
dominated by the application of the decision trees and other steps take linear time in total.

Note that the lower bound for the MST problem, should it prove to be superlinear, does
not necessarily hold for models other than pointer machines. For example, on the so-called
trans-dichotomous model, a unit-cost RAM model where a word cannot hold unreasonably
much data, the MST can be found in deterministic linear time for integral edge weights [32].
Deterministic linear time can also be achieved for special graphs. For example, the MST problem
for planar graphs can be solved in O pnq time and for dense graphs (wherem “ Ω pn1`εq for some
ε ą 0) in O pmq time [21]. The limit on the density can be relaxed to m “ Ω pn log log lognq
while retaining a linear time bound for all asymptotically faster algorithms described in this
section [31]. This fact is exploited in the optimal algorithm described above.

If we have access to a stream of perfectly random bits with uniform distribution, the MST
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problem can be solved in expected linear time by an algorithm given by Karger et al. [33]. Their
algorithm relies on a linear verification algorithm, an algorithm that verifies the minimality of a
spanning tree in linear time and returns witnesses for edges that do not belong in the true MST.
One such verification algorithm on word RAM model is given by King [34] and one for pointer
machines by Buchsbaum et al. [35]. With the latter, this MST algorithm can be completely
implemented on pointer machines. The MST algorithm first executes Borůvka step twice to
reduce the number of vertices by a factor of 4. It then chooses a random sample of all edges by
including each edge with 1

2
probability and finds the MSF F of the chosen subgraph recursively.

The heavy edges with respect to the found MSF F are then filtered out with help of the verification
algorithm. This is an application of the Cycle property. If we denote the remaining light edges
as L, the algorithm finally returns the MST of FY L with a recursive call. The key observation
that leads to the claimed running time is that L has an expected size of only n

2
. Therefore

the expected running time is Tpm,nq “ Tpm
2
, n
4
q `Opn`mq ` Tpn

2
` n
4
, n
4
q “ Opn`mq where

Tpm,nq denotes the running time of the algorithm on a graph with m edges and n vertices.
Katriel et al. [36] focused on a practical modification of the randomized linear time algorithm

for dense graphs by ignoring the Borůvka steps, selecting a sample of edges of size
?
mn instead

of m
2
, utilizing Prim’s algorithm instead of recursion and reducing the verification step to range

minimum queries (RMQ) that make use of a byproduct of the first Prim instance, namely the
order in which vertices are added into the MST. The resulting algorithm has expected time
complexity O pm` n logn`

?
mnq if Prim’s algorithm is implemented with Fibonacci heaps.

They reported favorable performance with pairing heaps.
There are more algorithms that are based on the Cycle property. For example, the

so-called reverse-delete algorithm that Kruskal described in the same paper as Kruskal’s
algorithm [18] works by looking at the edges in descending order by weight and delete an edge
if it does not disconnect the graph. As a practical implementation would need an efficient
algorithm for dynamic connectivity supporting edge deletion which is highly non-trivial, this
algorithm is not usually used. An implementation by Thorup [37] achieves a running time of
O pm lognplog lognq3q.

2.3 Parallel algorithms
This section discusses some parallel algorithms for the MST problem. For that, we first give
some fundamental definitions and constructs in parallel computing.

2.3.1 Preliminaries

Models of Computation The most-used computation models in shared-memory parallel
computation are the Parallel Random-Access Machine (PRAM) models, an analogy to the RAM
model for sequential algorithms. On a PRAM, we have a set of p processors identified by unique
indices called processor IDs. The number of processors may depend on the problem size. All
processors have access to a global shared memory and have their own private registers and
memory that others cannot access. All processors work synchronously and each can perform
a standard arithmetic or logic operation on a memory cell within one clock cycle. There
are multiple PRAM variants that differ in the way they handle concurrent memory accesses
to the same memory cell within the same clock cycle: Exclusive-Read Exclusive-Write
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(EREW): No concurrent reads or writes to the same memory location are allowed; Concurrent-
Read Exclusive-Write (CREW): Processors may read a memory cell concurrently and will
receive the same value, but no concurrent writes by multiple processors are allowed; and
Concurrent-Read Concurrent-Write (CRCW): Processors may read or write to the same
memory location at the same time. Technically it is also possible to define an Exclusive-Read
Concurrent-Write (ERCW) PRAM, but this is rarely used because write access is generally
assumed to imply read access. In the case of CRCW PRAM, it is important to define the
result of concurrent writes. Again here are several variants given in the increasing order of
ability: CRCW-Common where all processors writing to the same cell in the same clock cycle
must write the same value and this value is stored into the cell; CRCW-Arbitrary where
processors may write different values and an arbitrary (random) processor would succeed in
writing its value into the cell while the values other processors want to write are ignored;
CRCW-Priority where the processor with the smallest ID (thus highest priority) succeeds;
and CRCW-Reduction where an associative operator (a reduction) somehow combines the
written values the processors attempt to write into a single one and writes it into the cell, e.g.
taking the sum, minimum or maximum. Although the latter two seem much stronger than
CRCW-Common, which in turn looks stronger than EREW PRAM, it is possible to simulate
a concurrent memory access of CRCW-Reduction or CRCW-Priority PRAM on an EREW
PRAM within only O plog pq parallel time by exploiting the fact that sorting n elements can be
done on EREW PRAM in O plognq time (see [38]).

Within PRAM models, we can define quantities that characterize the performance of
algorithms. Basically we have the depth which is the number of clock cycles that have elapsed
before all processors (hence the program or algorithm) terminate, and work which is the sum
of clock cycles of every processor in which the processor performed operations (in contrast
to being idle). The main advantages of using depth and work to specify the complexity of a
PRAM algorithm is the simplicity to translate them into the running time of the algorithm
on a real-world computer via Brent’s theorem. Brent’s theorem, also called the Work-Time
Scheduling Principle, states that we can simulate a PRAM algorithm of time Tpnq and work
Wpnq with unlimited number of processors on p processors within Tppnq “ O

´

Wpnq

p
` Tpnq

¯

time on the same PRAM model [38].
In order to describe parallel algorithms, the following well-studied fundamental operations

are defined and used as primitives later for describing parallel algorithms.
Parallel Map. Perhaps the simplest parallel construct is the map function. mappf, Lq

applies a function f to every element in the sequence L and returns a sequence containing the
results. Formally, mappf, Lq :“ tfpxq | x P Lu. map is normally required to return the sequence
of new values in the same order as their corresponding values in L. If the function f is pure,
i.e. it does not have any side-effect and its value only depends on the argument, fpxq can be
evaluated for every x P L in parallel. Due to the simplicity to parallelize such a map operation,
it is sometimes called “embarrassingly parallel”. If function f does not have a return value,
but does something to the environment based on its argument like writing to an array, map is
also called parallel foreach or parallel for-loop. map is present in most functional programming
languages, though it is not always executed in parallel.

Parallel Reduction (Fold). Another frequently used primitive is reduction or fold. For a
pure associative binary function f and a sequence L, reduce applies f to the first two elements in
L, and then successively applies f to the last function value and the next element of L. Formally,
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its functionality is defined as reducepf, Lr0..n ´ 1sq :“ fpreducepf, Lr0..n ´ 2sq, Lrn ´ 1sq and
reducepf, Lr0..1sq :“ fpLr0s, Lr1sq. Often, we also define the result of reduce on an one-element
list to be the list itself. Though any associative f can be used, the most frequently used ones by far
are min, max and sum. The associativity of f comes into play when we try to implement reduce
in sub-linear time. Since reducepf, Lr0..n´1sq “ fpreducepf, Lr0..n

2
sq, reducepf, Lrn

2
`1..n´1sqq

by associativity and both arguments of the outer application of f are independently computable,
reduce can be implemented in depth O plognq on EREW PRAM. By Brent’s theorem, we can
simulate the algorithm in O

´

n
p
` logn

¯

time on a machine with p processors. If p ă logn,

we can achieve a depth of O
´

n
p
` p

¯

easily by breaking the list into p part and letting each
processor compute the sum of one sublist. A single processor computes adds the sums of the
sublists together to produce the final result.

Parallel Prefix-Sum (Scan). Prefix-sum, also called scan, is a stronger primitive than
reduction and is present in many parallel algorithms. It also forms the foundation of other
parallel primitives. This operation computes all prefix sums of a given sequence. Two versions
of prefix-sum exist, namely inclusive and exclusive prefix-sums. They differ in whether Lris
is included in the prefix-sum of position i. Prefix-sum is stronger than reduction because the
last value of an inclusive prefix-sum is exactly the reduction. At first glance, it is not obvious
that prefix-sum can be computed efficiently in parallel because its definition seems inherently
sequential. However, it can also be computed in O plognq time too by a two-phase algorithm
sometimes called Blelloch scan [39]. Prefix-sums can also be generalized to any associative
operators besides addition.

Parallel Filtering. With help of prefix-sum, we can implement another useful primitive:
filtering. filterppred, Lq gives a sequence containing the elements of L for which the predicate
pred gives true in their original relative order, i.e. filterppred, Lq :“ tx P L | predpxq “ trueu.
For an efficient implementation of filter, we first use a parallel map to compute an array flags
of 0 or 1 where flagsris “ 1 if and only if predpLrisq is true. An exclusive prefix-sum of flags
is calculated. This gives the count of elements before Lris where the predicate gives true, and
is thus the final position of Lris in the resulting sequence if predpLrisq is true. A final parallel
for-loop copies these values to the corresponding position of the target array. A special case of
filtering, packpflags, Lq, simply stores elements of L whose flag values are 1 into another array.
If we also want to get those elements with flags of 0, we may use a partition or split which
is slightly more efficient than two filtering operations because it can reuse some intermediate
computations.

Parallel Sorting. As in sequential computation, sorting is also a fundamental building
block of parallel algorithms. Many efficient algorithms exist for PRAM (see e.g. [38]). On
real-world multi-core CPUs, people seem to prefer sample sort which proves to be efficient [40].
The algorithm chooses a sample of the original array, sorts the sample, chooses m´1 equidistant
values as splitters and partitions the original array into m disjoint buckets with those splitters.
Buckets are recursively sorted and then concatenated to form the sorted array. We omit the
details here.

The most natural choice of classical algorithm for parallelization is Borůvka’s algorithm
because of the way it makes decisions: every Borůvka step finds the minimum outgoing edge for
a component locally, thus can be executed for all components in parallel. That is probably why
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Borůvka’s algorithm received far more attention in the era of parallel computation than Prim’s
and Kruskal’s in the literature. We first look at some implementations of Borůvka’s algorithm
and then a few of Prim’s and Kruskal’s algorithm.

2.3.2 Borůvka’s algorithm

Bader and Cong [41] gave several parallel implementations of Borůvka’s algorithm and are
among the first that reported reasonable speedup on shared-memory multiprocessors. All of
these implementations do a true graph compaction (also known as contraction) after grafting
in a Borůvka step, i.e. contract every component to a super-vertex, instead of the implicit
one given in Algorithm 1. They use different representations of graphs and thus have slightly
different implementations of Borůvka steps.

Variant 1. One implementation (called Bor-EL) uses an edge-list representation as in
Algorithm 2 but every edge is stored twice in the list (one for each direction). The contraction
step is simply sorting the edge list with the super-vertex (or representative as in Algorithm 2)
of the first endpoint as the primary, that of the second endpoint as the secondary and the edge
weight as the tertiary key. Self-loops within the same component and multi-edges between
components are removed with a subsequent parallel prefix-sum.

Variant 2. A second implementation (Bor-AL) uses adjacency array as the graph represen-
tation where every edge is again in both lists of outgoing edges of its endpoints. The contraction
step is accomplished by sorting the array of vertices by their representatives, which is equivalent
to sorting all the edges by the representatives of their first endpoints, and then concurrently
sort the outgoing edges for every vertex by the representatives of the second endpoints with
a sequential sorting algorithm (insertion sort for short lists and merge sort for longer ones).
Redundant edges are then removed with prefix sums.

Variant 3. A last implementation of Borůvka’s algorithm which is perhaps more inter-
esting uses a flexible adjacency lists (array) representation of graphs (denoted Bor-FAL). This
implementation reduces the cost for compaction by allowing every vertex to hold a list of
adjacency lists (arrays). After grafting, every vertex plugs its list of adjacency arrays to that
of its representative and edges themselves do not have to be moved around. The find-min
step has to check for redundant edges because self and multi-edges are not removed with this
representation.

A fundamental problem with all these implementations is that their find-min steps are done
concurrently for all vertices but sequentially for each vertex. That means there can be massive
load imbalance if the degrees of the vertices differ too much, as is the case for graphs containing
star-shaped subgraphs. Furthermore, the first two implementations uses the expensive parallel
sort to build the contracted graph. The Bor-FAL implementation does not have this problem,
but may degenerate to the cache-unfriendly adjacency-list representation if vertex degrees are
evenly distributed.

Another implementation of Borůvka’s algorithm using adjacency-array representation is
given by da Silva Sousa et al. [42]. In the contraction step, the implementation uses atomic
incrementing instructions to count the new number of outgoing edges to get the index of the
first edge for each vertex. Subsequently it copies edges between to the new edge array, again
using atomic increments. Self-edges within a component are removed but multi-edges between
components are not. This implementation also suffers from the load-imbalance problem in the
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find-min step and in the contraction step due to atomic increments.
A very recent work of Cong and Tanase [43] aims to reduce the cost for memory accesses

and improve locality in Borůvka’s algorithm, generalizing ideas proposed in [44]. Their imple-
mentation (independently) exploits some ideas similar to the present thesis. We feel this thesis
is still justified because the new algorithm proposed here has other new ideas and the design
was finalized prior to the publication of their work. When describing the new algorithm we will
give reference to their work that demonstrates the same or similar idea.

2.3.3 Prim’s algorithm

Prim’s algorithm is apparently inherently sequential and hard to scalably parallelize. Known
algorithms run several instances of Prim’s algorithm starting from different vertices simulta-
neously and stop to do some kind of merging when two trees touch. Such algorithms can be
fast on many graphs, but are vulnerable to adversarial or non-random input in which case the
algorithms can be forced to run sequentially. One implementation by Bader and Cong [41] that
combines Prim’s algorithm with Borůvka’s is given here.

The algorithm works by running multiple instances of Prim’s algorithm with binary heaps
simultaneously with different starting vertices. Every Prim instance performs sequentially as
normal and colors the found vertices to its unique color when they are first added into its heap.
It runs until the heap becomes empty or it extracts a vertex from its heap that is colored by
another processor or has any neighbor that is.

After all Prim instances are stopped, we add the found trees to the MST. For every vertex
that is not removed from the heap by any Prim instance, we also add its shortest outgoing edge
to the MST. Then we shrink the components induced by the MST edges to super-vertices in
parallel. Super-vertices with no outbound edges are removed because they represent connected
components of the original graph.

After the shrinking we start over again with multiple Prim instances. The whole process is
repeated until the number of remaining super-vertices goes below a threshold, at which point
we find its MST by executing Prim’s algorithm sequentially.

Since every processor running a Prim instance may visit different number of vertices during
an iteration, load-imbalance may occur. This is remedied with a work-stealing technique. They
also noted that the algorithm may make no progress during an iteration for very special graphs.
This can be solved if vertices are shuffled in advance. A definite worst-case for this algorithm is
star-shaped graph where almost no progress can be made in the Prim instances and they loop
through all neighbors of a vertex by a single processor, essentially sequentializing the algorithm.
This problem is not easily solvable by work-stealing in their algorithm as stated.

2.3.4 Kruskal’s algorithm

Of the two main phases of Kruskal’s algorithm, sorting is very well parallelizable (see e.g. [38]).
In the contrary, the second part is hard to scalably parallelize because whether to accept or to
reject an edge depends on the decisions made earlier. Known implementations can be forced to
run sequentially by an adversary and will do more work than the sequential implementation.
However, a good speedup on graphs that arise in practice is still achievable. One such practical
implementation is given by Blelloch et al. [26] and included in the PBBS.

18



2.3 Parallel algorithms

Blelloch et al.’s algorithm utilizes a technique called deterministic reservation. First, the
following structures and operations are introduced as building blocks of the algorithm:

Priority write. For a memory cell x, a priority write, denoted x. pwritepvq, sets the value
in x to v if v is smaller than the original value stored in x (thus having a higher priority). If
multiple processors perform this operation on the same memory cell simultaneously, the memory
cell will contain the smaller of the original value stored in the cell and the smallest value of
all those write operations. On modern shared-memory architectures, this operation can be
implemented with the atomic compare-and-swap (CAS) instruction within a loop. More on that
is given later in Section 3.

Priority reserve. A data type (called a reservation station) is introduced which supports
three operations: priority reserve (x. reserveppq), check (x. checkppq) and check-and-release
(x. checkRppq), where p is conceptually the priority of the operation. x. reserveppq reserves
the memory location x with priority p. This reservation fails (or will be canceled) if other
reservations with higher priority have reserved (or should reserve later) the same location. The
function returns whether the reservation was successful. x. checkppq checks if x is reserved with
priority p. x. checkRppq checks if x is reserved with priority p and cancels the reservation if so.
Cancellation is done by storing a sentinel priority K to the cell to denote the cell is now not
reserved. This value is also used to initialize the data type.

We now describe their algorithm. Edges are first sorted into nondecreasing order using a
parallel sample sort. An array of reservation stations is initialized with K. A union-find data
structure for the n vertices is initialized to contain singletons. The algorithm takes a prefix
of the array of edges, and for an edge between u and v of index i in the sorted order, it tries
to reserve stations u and v with priority i if u and v do not belong to the same connected
component according to the current union-find structure. This can be done with a parallel
for-loop. After all reservations are submitted, a commit step performs a parallel loop over that
prefix to check if the respective edge successfully reserved at least one of u and v. If so, it
releases the reservation on the other station, marks the edge as an MST edge, and merges the
components of u and v as in the normal Kruskal’s algorithm by linking the smaller of u and v
to the larger. This ensures no cycle is formed. Note that we lose the benefit of union-by-size
by doing this. After that, a prefix-sum is used to move the unsettled (neither discarded nor
successfully committed) edges together to the front of the remaining unprocessed edges and a
new iteration is started with another prefix of the same length of the unsettled edges and some
new edges.

Another optimization mentioned before can also be used. Namely we only choose a small
number (say 4

3
n) of the lightest edges and run the algorithm on this reduced list of edges. After

that we filter out the heavy edges with respect to the current spanning forest and run the
algorithm on the remaining edges. They reported a relative speedup of 18 and absolute speedup
of 10 (against an optimized serial implementation of Kruskal’s algorithm with the same filtering
optimization) on a machine with 32 cores (64 threads with hyper-threading). This algorithm is
used as the main rival of the new algorithm introduced in Section 3.

Another parallel algorithm based on Kruskal’s algorithm is the Filter-Kruskal algorithm
described in Section 2.2.3. The parallelism resides in the base case where m “ O pnq, where a
parallel sorting algorithm can be used, the partitioning and the filtering. In fact, the base case
can be any other parallel MST algorithm as long as it maintains the global union-find data
structure in the Filter-Kruskal algorithm. This algorithm with the above parallel Kruskal’s
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algorithm of PBBS as the base case is also included in the experiments in Section 4.
Katsigiannis et al. [45] tried to speed up Kruskal’s algorithm using helper threads that

discard heavy edges on cycles while the main threads executes the normal Kruskal’s algorithm.
The edges are still considered by the main thread in non-decreasing order. Helper threads
examine the edges that have not yet been checked by the main thread and mark discarded the
edges forming cycles in the present forest with help of the union-find data structure. The main
thread first consults an boolean array that the helper threads write to to see whether the edge is
already discarded before checking for cycle itself. Because multiple helper threads are running,
one may hope that many edges are already discarded when the main thread comes to those
edges. Though they reported a speedup of 5 on 8 cores on some synthetic graphs, it can be seen
this algorithm does not scale well as the number of threads goes up because of low utilization of
the helper threads. In fact, it even demonstrated slow-down when the number of helper threads
increases to some (not very high) point.

Apart from parallel implementations of originally sequential algorithms, there are also
algorithms designed to be parallel, especially on PRAM models. We give an incomplete summary
of the results in Table 2.1. Many of these PRAM algorithms share strong similarities with the
classical sequential algorithms, especially Borůvka’s algorithm.

A notable example is due to Awerbuch and Shiloach [46]. The algorithm exploits a variant
of the CRCW-Priority PRAM model where the priority of processors are not defined by their
IDs, but by another fixed attribute. The algorithm needs one processor for each edge and one
for each vertex. That priority attribute of the processors representing edges is edge weight. Each
iteration of the algorithm is also roughly divided into find-min, grafting and breaking symmetry,
and shortcutting where the find-min is implicitly performed by exploiting the concurrent write
capability. The difference from Algorithm 1 is that the shortcutting step only does one linking
step for each vertex instead of a full compression of the trees. The number of iterations can
still be proven to be O plognq. Zaroliagis [47] modifies this algorithm by incorporating the
partitioning idea in Yao’s algorithm and achieves the same depth within the CRCW-Common
PRAM model. The algorithm is more complicated and calls the above algorithm to reduce the
number of vertices for sparse (m ă n log2 n) graphs. It also makes use of a number of other
algorithms for different tasks, notably a algorithm that simulates CRCW-Priority PRAM on
CRCW-Common PRAM.

Both algorithms and most of the other algorithms in Table 2.1 do not permit easy efficient
implementation on real-world machines because simulating CRCW PRAM on computers is
generally not practical, and the partitioning would incur large constant factor anyway. The
EREW ones are often complicated. In retrospect, the ideas in the present thesis (priority writes)
might be applicable to implement these algorithms on real computers. This could be a direction
for future work.

There are also algorithms designed for other architectures. For example, [48, 49, 50, 51, 42]
aim at GPUs and [52, 53, 54] at distributed-memory architectures. These are out of the scope
of this thesis.
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Algorithm Depth – Work Note※

Chin et al. [55], 1982 O
`

log2 n
˘

– O pn2q EREW

Cole and Vishkin [56], 1986 O plognq – O ppm` nq log log lognq CRCW-P

Awerbuch and Shiloach [46], 1987 O plognq – O ppm` nq lognq CRCW-P

Karger [57], 1992 O plognq – O pm` n1`ε lognq EREW

Johnson and Metaxas [58], 1992 O

´

log3{2 n
¯

– O

´

pm` nq log3{2 n
¯

EREW

Cole et al. [59], 1994 O
`

2log˚n logn
˘

– O pm` nq CRCW-A,
randomized

Cole et al. [60], 1996 O plognq – O pm` nq CRCW-A,
randomized

Poon and Ramachandran [61], 1997 O
`

2log˚n logn log logn
˘

– O pm` nq EREW,
randomized

Zaroliagis [47], 1997 O
`

log2 n
˘

– O ppm` nq lognq EREW

(same as above) O plognq – O ppm` nq lognq CRCW-C

Pettie and Ramachandran [62], 1999¤ O plognq – O pm` nq EREW,
randomized

Chong et al. [63], 2001 O plognq – O ppm` nq lognq EREW

Chong et al. [64], 2003 O plognq – O
`

pm` nq
?
logn

˘

EREW

(same as above) O plognq – O ppm` nq log lognq CRCW-A

Table 2.1: MST algorithms on PRAM.

※ CRCW-P stands for CRCW-Priority, CRCW-A for CRCW-Arbitrary, CRCW-C for CRCW-
Common.

¤ A preliminary version of the work appeared in 1999. The referenced version was published
in 2002.

21



3 The New Algorithm

3 The New Algorithm
In this section we describe a new parallel algorithm based on Borůvka’s algorithm. The main
steps of the algorithm do not differ from the original Borůvka’s algorithm: we still have an
outer loop that keeps invoking Borůvka step until we have a single connected component. The
Borůvka step still has three main steps, i.e. find-min, grafting and shortcutting as in Algorithm 1.
We first describe the necessary building blocks of the algorithm and then describe the new
algorithm incorporating these building blocks.

3.1 Priority Write
A main ingredient of the new algorithm is priority write or priority update. This primitive is
used in Blelloch et al.’s parallel implementation of Kruskal’s algorithm and briefly described in
Section 2.3.4. Priority write of the value v to a memory cell identified by x (thus x is a pointer
or address) is denoted x. pwritepvq or pwritepx, vq. The operation replaces the value at the
destination of x with v if v is smaller than the original value stored there. More formally, the
operation is functionally equivalent to Algorithm 3:
Algorithm 3: Priority Write
1 Function pwrite(x: pointer to value, v: value)
2 if ˚x ą v then /* “˚x” is the value stored in the destination of x */
3 ˚xÐ v

Problems arise when this operation is used in parallel settings. When multiple processors do
this operation simultaneously, data race will occur. Take the following processor interleaving as
an example where ˚x is initialized to 5 and Processor 1 and 2 call pwritepx, 3q and pwritepx, 1q,
respectively:

// *x is initialized to 5.
Processor 1: if 5 > 3 then // true
Processor 2: if 5 > 1 then // true
Processor 2: *x <- 1 // *x is now 1
Processor 1: *x <- 3 // *x is now 3
// *x = 3 at the end

Here ˚x is incorrectly set to 3 after both pwrites. We therefore require pwrite to be
atomic. On modern shared-memory architectures, pwrite is not readily available but can be
easily implemented with atomic compare-and-swap (CAS) instructions. A CAS operation is
functionally equivalent to Algorithm 4, but guaranteed to be atomic by the hardware (see
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e.g. [65]):
Algorithm 4: Compare-and-Swap
1 Function cas(x: pointer to value, old: value, new: value): boolean
2 if ˚x “ old then
3 ˚xÐ new

4 return true /* success */
5 else
6 return false /* failure */

With help of CAS instruction, the priority write operation can be implemented free of data
race as follows in Algorithm 5:
Algorithm 5: Priority Write with Compare-and-Swap
1 Function pwrite(x: pointer to value, v: value)
2 do
3 oldÐ ˚x

4 while v ă old and caspx, old, vq “ false /* short-circuiting in effect */

This piece of code repeatedly reads the current value of ˚x to a variable old, checks if the
intended new value v is still smaller than old, and does a CAS to store v into ˚x if it is. The
loop ends when at some point the newly read value old is no larger than the intended new value
v or a CAS has succeeded. Note that the second condition is checked only if the first is true
because of short-circuiting. From now on, pwrite denotes this version of priority write.

Priority writes may be defined for any value type with a total ordering. Due to hardware
limitation on atomic compare-and-swap instruction, however, the size of supportable value types
is normally restricted to that the largest supported primitive integral type, e.g. 16 bytes on
current mainstream 64-bit processors (see e.g. [65, 66]).

Priority writes have been first introduced in [26] and extensively analyzed by Shun et al. [67].
They may seem very inefficient at first glance due to the presence of the loop and CAS instruction.
More careful reasoning reveals that the CAS (and a potential write) only occurs when the present
value in ˚x is larger than the intended new value and the loop is broken immediately when this
is not the case. Therefore the performance of the primitive depends on how often a new value is
written by the CAS instruction by all processors. Intuitively, this does not happen all that often
because a written value will prevent many future writes. In fact, if every of p processors attempts
to call pwritepx, viq where vi is drawn uniformly at random from a range or vi is the i-th value
in a random permutation of values, the expected number of writes is only lnp` O p1q. That is
because a random permutation of length p only has Hp :“

řp

i“1
1
i
“ lnp` O p1q prefix-minima

in average with high probability, where Hp is the p-th harmonic number [68]. This is also the
expected running time if p processors write to a single location with random values at the same
time. The worst case happens when the values are written in decreasing order. This is extremely
unlikely because that would mean the CAS supporting hardware somehow orders all writes
in the hardware queue in descending order. Because it is the operating system that schedules
concurrent processes invoking pwrite, and perfect synchronization, which does not exist in real
world, would be needed for an adversary to forge such a situation, we may safely assume the
expected running time is O plnpq regardless of the input. If we use p processors to make n
pwrites and we assume the n operations are divided into batches of size p as is roughly the
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case with parallel for-loop, each of the batch takes O plog pq time. Thus the expected total time
for all operations is O

´

n
p
log p

¯

. Shun et al. [67] gave a result of O
´

n
p
` c logn` cp

¯

where c
is a constant characterizing the cost of the ensuring cache-coherence.

The situation becomes more obscure when p processors execute n pwrites to m different
locations. If the pwrites are made to random locations, we can expect the contention on a
single cell to reduce. The exact running time seems to be open at this time. Shun et al. [67]
gave a bound of O

´

n
p
` cm log n

m
` pcpq2

¯

. This result seems unfavorable, especially because
of the second and third terms which do not decrease or even rise as p goes up. That is probably
because their result makes a pessimistic assumption that a successful CAS by a processor results
in a full invalidation of the cache of all other processors incurring time cost c. This is pessimistic
because other processors do not have to be aware of the write unless they want to write to the
same location. Despite the imperfect theoretical bound, they demonstrated good performance
in practice, as we will also see later in the context of the new MST algorithm.

Note that there is a similarity between priority writes and the PRAM model with concurrent
writes by priority (CRCW-Priority). The difference is that the argument defines the priority of
a pwrite operation and not the processor ID which is the case with CRCW-Priority. Therefore
pwrite is intuitively more flexible. On the other hand, CRCW-Priority can simulate pwrite,
too, by first sorting the sequence of operations by their priorities and let the processor with the
ID corresponding to the rank of the arguments perform the write. This, however, incurs extra
cost due to the sorting.

3.2 Compaction
The new algorithm is based on Borůvka’s algorithm, therefore it also has a shortcutting step
that compacts the found connected components into super-vertices. We discuss this compaction
step in this section.
Definition 3.1 (compaction). Formally, the compaction operation receives the array of
parents Rr0..n´ 1s as input and is supposed to shortcut the trees implicitly defined by the values
so that at the end of the compaction process, every vertex i is either a root (characterized by
Rris “ i) or is the child of a root (RrRriss “ Rris).

This can be solved in parallel on CREW PRAM with a pointer jumping (or path doubling)
technique within O plognq depth and O pn lognq work [38] as shown in Algorithm 6.

Algorithm 6: Pointer Jumping
Input: Parent array Rr0..n´ 1s
Output: Compacted parent array: a node is either a root or a child of a root

1 foreach 0 ď i ă n do in parallel
2 while Rris ‰ RrRriss do /* if i’s parent is not i’s grandparent */
3 Rris Ð RrRriss /* graft i to its grandparent */

Note that for parallel loops on PRAM, program code within the loop body is run by all
processors simultaneously with perfect synchronization. That means all processors run line 2 at
the same time and, after all processors are done checking the condition, all processors for which
the condition holds run line 3 simultaneously. The synchronization is crucial for the correctness
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of the theoretical time bound O plognq. Indeed, consider a chain: if we let all processors wait
until the processor representing the leaf node finally reaches the root, the time is already Ω pnq.

There are more efficient algorithm for this compaction problem that only needs O pnq

operations in total (see e.g. [38]), but it turns out that this step only takes a marginally small
proportion of the time of our MST algorithm, so we do not go further optimizing it. In fact,
we may even run line 2 and line 3 without synchronization in practice because the operating
system normally schedules processes more or less evenly so that every process benefits from the
shortcutting work of other processes thanks to cache-coherency protocols. This way, we can
also relieve ourselves of costly locks.

3.3 The Algorithm
On a high level, the new algorithm described here does not differ much from the sequential
Borůvka’s algorithm given in Algorithm 2. The difference resides in how the Borůvka step
is implemented. Assuming the same edge-list representation, we run through every edge in a
parallel loop in the Borůvka step to determine the best edge for every current super-vertex,
namely the representative of its current connected component. This is done by performing a
priority write to each of the endpoints of every edge with the weight and ID as the argument.
By the definition of priority writes, we will have the best edges for every connected component.
After that we graft trees along the best edges, breaking symmetry just like in the sequential
version, but this time in parallel. After that we perform a full compaction. A new set of active
super-vertices is found with a filter operation. To improve locality of memory accesses, we
change the endpoints of every edge to their corresponding representatives. Self-edges are filtered
out at the end of the Borůvka step.

Now we describe our MST algorithm using the edge-list representation in detail. We say
a tuple pa1, a2, . . . , akq is smaller than another tuple pb1, b2, . . . , bkq if there is an i, 1 ď i ď k,
so that @1ďjăi : aj “ bj and ai ă bi. This also known as the lexicographical order. Two edges
can be compared according to the lexicographical order of their corresponding pweight, indexq
pair, where index is the position of the edge in the original edge list. Operator “ par

Ð−−” stands
for parallel assignment, i.e. all available processors divide the intended assignments evenly
and execute their own portion in parallel. The full algorithm in given in Algorithm 7. Note
that before every Borůvka step, V always only holds vertices that are representatives of their
components.

As we can see, the algorithm does not differ much from the sequential implementation in
Algorithm 1 and Algorithm 2. The first main difference is the use of pwrite in the find-min step
in line 7 and line 8. Conceptually, those pwrites try to store the edge into the locations for both
its endpoints in best array. This solves the load-imbalance issue with known implementations
which loop through all vertices in a parallel but process all edges for a vertex sequentially. Since
CAS instructions and thus pwrites have limit on the size of the operands, we actually write
the pair pweight, indexq of the edge with pwrite. This is well suitable for double-precision or
64-bit integral weights (both are 8 bytes) and 4 to 8-byte indices since most of current 64-bit
architectures support CAS instructions on 16-byte operands. This is also better than only
storing the index because we save two random memory accesses when comparing an edge with
the two present in the best array (for both endpoints).

The grafting step almost stays the same except that it is now parallel. If bestris “ sentinel
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Algorithm 7: New Parallel MST/MSF Algorithm
Input: Graph G “ pV, Eq
Output: The MST of G

1 begin
2 Rris

par
Ð−− i, i P V /* initialization */

3 MST ÐH /* all the MST/MSF edges */
4 while |V| ą 1 and |E| ą 0 do

/* loop invariant: V only contains root vertices. */
/* loop invariant: E contains no self-loops. */

5 bestris
par
Ð−− sentinel, i P V /* sentinel is an edge of weight 8 */

/* find-min step */
6 foreach e P E do in parallel
7 bestre.us. pwritepeq
8 bestre.vs. pwritepeq

/* bestris is now the lightest edge leaving i’s component;
bestris “ sentinel if there is none. */

/* grafting step */
9 foreach i P V do in parallel

10 indexÐ index of i in the current V
11 if bestris “ sentinel then /* no edge found for component i */
12 Rris Ð ´1 /* inactivate that component */
13 mst_edgerindexs Ð sentinel

14 else
15 jÐ the other endpoint of edge bestris
16 if bestris “ bestrjs and i ă j then
17 Do nothing with Rris /* break symmetry; Rris stays i */
18 mst_edgerindexs Ð sentinel

19 else
20 Rris Ð j /* graft i to j */
21 mst_edgerindexs Ð bestris

22 MST ÐMST ` tmst_edgerjs ‰ sentinel | 0 ď j ă |V|u /* filtering */

/* shortcutting step */
23 Perform pointer jumping (Algorithm 6) on R for vertices in V to compact trees.

/* relabeling step */
24 EÐ tpRre.us, Rre.vs, e.wq | e P Eu

/* filtering step */
25 EÐ te P E | e.u ‰ e.vu /* filtering */
26 V Ð ti P V | Rris “ iu /* new set of vertices; filtering */

27 return MST

26



3.3 The Algorithm

for some vertex i (recall that i is always a representative), that means the component of i did
not get any edge in the find-min step. Thus we inactivate the component by setting the parent
of i to a negative value in line 12. If we graft a component to another, we also mark the edge
we just used to be in the MST (line 21). Subsequently, all those marked edges are added to the
set of MST edges in line 22 with a parallel filtering.

As in the sequential case, we perform a shortcutting step to make every vertex either a
root or a child of a root in line 23. Note we should only do this for roots vertices that are not
inactivated in line 12 (i.e. those with Rris ě 0).

In order to further improve locality in the find-min step, we relabel the endpoints of the
edges by changing the endpoints of every edge to their parents in line 24. This way, the find-min
step in the next iteration does not have to consult the R array to determine the representative
of the endpoints for an edge, saving two random memory accesses. Cong and Tanase [43] have
independently come up with the same idea and applied to their variant of Borůvka’s algorithm
very recently.

Finally, a filtering step takes place to remove self-edges, reducing the length of the edge list
and saving time in the find-min step. The vertex set is also updated to the new set of roots
(thus removing exhausted components and components that are grafted to other components).
The loop invariant is restored this way and wo start the loop over unless the edge set becomes
empty or only a single vertex remains.

Note that this algorithm also computes the minimum spanning forest if the original graph
is not connected. That is because a component is inactivated in line 12 if it is exhausted, and it
will be removed from the vertex set, so it will not prevent further progress of the algorithm.

An important remark is that the parallelism in this algorithm is very coarse-grained: we
are only using data parallel primitives and no locks or other manual synchronization are needed
within each such construct. This is favorable because locks are too expensive to guarantee good
performance.

Since the algorithm is essentially Borůvka’s algorithm, we still have O plognq iterations
where the number of active vertices at least halves after every iteration. In every iteration, the
grafting takes O

´

ni
p
`minpp, logniq

¯

time where ni is the number of vertices at the beginning

of the i-th iteration and p is the number of available processors. Shortcutting takes O
´

ni logni
p

¯

time if we implement pointer jumping with synchronization. In the practice, however, we do not
have to (and want to) use expensive locks to ensure synchronization, as discussed in Section 3.2.
The parallel filtering and parallel for-loops take time O

´

mi

p
`minpp, logmiq

¯

in total, where
mi is the number of edges at the beginning of the iteration. The running time of the find-min
step is still open as discussed in 3.1, but we conjecture it to be expected O

´

mi logmi

p

¯

. In practice
it runs very fast and is invulnerable to adversarial inputs. Summing up all terms, noticing
ni`1 ď

ni
2
, the MSF algorithm is conjectured to finish in expected O

´

n logn`m logm logn
p

¯

time
regardless of input, assuming n " p. The m logm logn

p
term looks too large and does not seem to

match the performance in practice. It is of theoretical interest to prove the bound or even a
better one, but in practice, it appears that we can safely use pwrite without much thoughts on
performance. Note that if the algorithm is run with a single thread, it degenerates to normal
Borůvka’s algorithm. The running time in that case becomes deterministically O pm lognq
because each Borůvka step does no more than O pmq work. This makes the algorithm favorable
for situations where we do not always have the full computing resources of the system.
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3.3 The Algorithm

Other optimizations can be applied to the algorithm to improve the performance even
further for some graphs. One such optimization has been introduced in Section 2.3.4, namely we
can run the algorithm on the lightest portion of all the edges, run a filtering on the remaining
edges with help of the acquired information during the first run and run the algorithm for a
second time on the edges surviving the filtering. Finding the lightest edges can be done with
ideas similar to a parallel sample sort: we take a sample of all edges, sort them with a sample
sort, and take the respective value in the sample according to the portion we want, and do a
partitioning/splitting with that value as the pivot. The lightest edges are thereby moved to
the beginning of the array. Note that we have to reactivate the inactivated components after
the first run by setting Rris Ð i for all i with negative Rris because they are inactivated only
because we exhausted edges in the lightest portion. Cong and Tanase [43] have gone even further
by partitioning the edges into many buckets (instead of two) where edges in earlier buckets
are lighter than all edges in later buckets and always doing a filtering on the edges in a bucket
before running their MST algorithm on it.
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4 Experimental Results
We have introduced the new algorithm for computing minimum spanning trees in Section 3. In
this section, we compare the new algorithm with some of the existing sequential and parallel
algorithms introduced in Section 2 on synthetic and real-world graphs and present experimental
results that demonstrate the practical performance of our new algorithm.

4.1 Benchmark Configuration
Experiments are conducted on a workstation with the following technical characteristics:

Name Value
OS Ubuntu 14.04.5 64-bit
CPU Intel(R) Xeon(R) CPU E7-8867 v4 @ 2.40GHz
Sockets 4
Cores per socket 18
Threads per core 2
Cache line size 64 bytes
Cache alignment 64-byte boundary
L2 cache size 256 KB/core
L3 cache size 45 MB/socket
RAM 1 TB

Table 4.1: System specifications.

The test programs and benchmark are based the Problem Based Benchmark Suite (PBBS) [69].
It is a framework that offers various data parallel primitives and can be used to compare different
solutions to the same problem by their performance. Correctness can be checked against a
reference implementation in a black-box manner.

The following implementations are included in the benchmark:
seq_pbbs_kruskal. A sequential implementation of Kruskal’s algorithm provided

in PBBS. It uses union-find with path-compression and union-by-size to maintain
the current components.

seq_pbbs_filtering_kruskal. Same as above, but it uses the filtering technique
described in Section 2.3.4 and Section 3, i.e. we first uses a partitioning algorithm
to get the lightest edges, run Kruskal’s algorithm on it, filter out self-edges with
the current union-find data structure, and execute once more Kruskal’s algorithm
on the remaining edges.

par_pbbs_kruskal. The parallel Kruskal’s algorithm provided in PBBS, introduced
in Section 2.3.4, without filtering.

par_pbbs_filtering_kruskal. Same as above but with filtering.
par_filter_kruskal. An implementation of the recursive Filter-Kruskal algorithm

described in [24] and briefly introduced in Section 2.2.3. The parallel Kruskal’s
algorithm with filtering from PBBS serves as the base case of the algorithm and
the needed partition and filter primitives are provided by PBBS.

seq_prim_binary. An implementation of Prim’s algorithm with binary heaps.
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4.1 Benchmark Configuration

seq_prim_pairing. An implementation of Prim’s algorithm with pairing heaps.
The pairing heaps are from the Policy-Based Data Structures included in the
GNU C++ compiler [70].

seq_boruvka. An implementation of Borůvka’s algorithm given in Algorithm 2.
par_boruvka_d. A variant of Borůvka’s described in Section 2.3.2 and [42]. Small

changes were made to make it suitable for the PBBS framework including support
for double-precision weights and graph format conversion. Time for conversion is
not counted towards its running time.

par_new_boruvka. An implementation of the new Borůvka’s algorithm presented
in this thesis.

par_new_filtering_boruvka. Same as above but with filtering.
All source codes are written in C++ and are compiled using GNU C++ compiler Version

5.4.1 with relevant compilation flags -O3 -march=native. Parallelization is generally achieved
with the Cilk++ [71] except for par_boruvka_d, which uses OpenMP and partly Intel Threading
Building Blocks (TBB) for parallelization.

Various synthetic and real-world graphs are used in the benchmarks. These are listed below:
randLocal_20M. A random local graph with 20 million vertices and degree 5 for

each vertex. The 5 edges for each vertex is chosen uniformly at random. This is
generated with the graph generation utility provided in PBBS.

rMat_20M. A graph generated with the Recursive Matrix (R-MAT) algorithm pro-
posed in [72]. The algorithm models real-world graphs like social networks nicely
and produces ones with small diameter and power-law degree distributions. This
is generated with the graph generation utility provided in PBBS.

2Dgrid_20M. A regular square 2-D grid with 20 million vertices. The side length,
i.e. the number of vertices on a side, is therefore

?
20 million. The vertices on the

borders are also adjacent to their counterparts on the other side of the grid. This
is generated with the graph generation utility provided in PBBS.

3Dgrid_20M. A regular 3-D grid with 20million vertices with side length 3
?
20 million.

The same edge-wrapping as above is also present. This is generated with the
graph generation utility provided in PBBS.

stars_20M. A graph consisting of stars with 20 million edges. This is generated
with the graph generation utility provided in PBBS.

chain_20M. A graph containing a single chain of increasing 20 million vertex IDs
and edge weights. This is generated with the graph generation utility provided in
PBBS.

delaunay_20M. A graph generated by randomly scattering 20 million points onto the
unit square and building the Delaunay triangulation of the point set. The number
of edges is roughly 60 million because Delaunay triangulations are in a sense
planar graphs with the maximum number of edges and connected simple planar
graphs never have more than 3n´6 edges (see e.g. [73]). The edge weights are the
Euclidean distances of the endpoints. This graph is generated with MathWorks
Matlab [74].

delaunay_20M-n. Same as above, but n (which is 20 million) random edges of the
triangulation are removed. This is to model a planar graph of “half fullness”.

delaunay_20M-2n. Same as above but with 2n edges removed. The resulting graph
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4.1 Benchmark Configuration

only has about n edges.
delaunay3d_10M. Similar to delaunay_20M-n, but now 10 million points instead

of 20 are drawn from a unit cube and the edges are those formed by a three-
dimensional Delaunay triangulation.

delaunay3d_10M-2n. Same as above, with 2n edges removed.
delaunay3d_10M-4n. Same as above, with 4n edges removed. Note the resulting

graph still has about 40 million edges since the graph is not planar anymore and
hence does not satisfy the same 3n´ 6 upper bound as in the two-dimensional
case.

uniform_20M_20M. A graph uniformly drawn from the universe of all graphs of 20
million vertices and 20 million edges. The generation is done with the readily
available functions RandomGraph and UniformGraphDistribution of Wolfram
Mathematica [75].

uniform_2M_20M. Same as above but with 2 million vertices and 20 million edges,
so that the density of the graph slightly increases.

uniform_200K_20M. Same as above but with only 200 thousand vertices.
uniform_20K_20M. Same as above but with only 20 thousand vertices.
nlpkkt240. A graph from the SuiteSparse Matrix Collection, formerly The Univer-

sity of Florida sparse matrix collection [76].
USA. A real-world road network of the USA, provided by the 9th DIMACS Imple-

mentation Challenge [77]. Weights are the physical distances.
livejournal. A graph taken from the Stanford Network Analysis Platform (SNAP) [78]

representing the friendship network of the LiveJournal social network.
Unless noted otherwise, the edges weights in the graphs are uniformly random. Table 4.2

summarizes the used graphs, their sizes and the final MST (MSF) edges.
All time measurements are calculated by executing the respective implementations ten times

and taking the average of the running times after removing the minimum and the maximum.
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4.1 Benchmark Configuration

Name Vertices Edges MST edges
randLocal_20M 20 000 000 100 000 000 19 999 999

rMat_20M 33 554 432 100 000 000 29 355 409

2Dgrid_20M 19 998 784 39 997 568 19 998 783

3Dgrid_20M 19 902 511 59 707 533 19 902 510

stars_20M 20 000 004 20 000 000 20 000 000

chain_20M 20 000 000 19 999 999 19 999 999

delaunay_20M 20 000 000 59 999 950 19 999 999

delaunay_20M-n 20 000 000 39 999 943 19 932 186

delaunay_20M-2n 20 000 000 19 999 961 17 214 746

delaunay3d_10M 10 000 000 77 586 968 9 999 999

delaunay3d_10M-2n 10 000 000 57 587 804 9 999 991

delaunay3d_10M-4n 10 000 000 37 593 541 9 997 509

uniform_20M_20M 20 000 000 20 000 000 16 762 252

uniform_2M_20M 2 000 000 20 000 000 1 999 999

uniform_200K_20M 200 000 20 000 000 199 999

uniform_20K_20M 20 000 20 000 000 19 999

nlpkkt240 27 993 601 746 478 752 27 993 599

USA 23 947 347 28 854 312 23 947 346

livejournal 4 036 538 34 681 189 3 997 961

Table 4.2: Sizes of the graphs included in the benchmark and the number of
MST edges in these graphs. If the number of MST edges is smaller than
|V| - 1, the value is then the number of MSF edges.
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4.2 Benchmark Results

4.2 Benchmark Results
The results of the benchmark are presented in this subsection. We first list the graphics of
the benchmarks and then provide a detailed analysis. The x-axis of the graphics is always the
number of used threads, and y the speedup over the fastest sequential implementation for that
particular graph. Note that the y-axis has an unusual scaling to enhance the contrast below the
y “ 1 line.

For a more precise reference, the running times for 1 and 144 threads are also tabulated
after the graphics in Table 4.3 and Table 4.4. The relative and absolute speedups are given in
Table 4.5.

4.2.1 Graphics and Tables for the Experiments
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Figure 5: Benchmark results for randLocal_20M graph. The lines for
seq_boruvka and seq_prim_pairing overlap.
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Figure 6: Benchmark results for rMat_20M graph.
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Figure 7: Benchmark results for 2Dgrid_20M graph.

34



4.2 Benchmark Results

1 3 9 18 36 72 144

number of threads

1

5

10

15

20

25

0
0.2
0.4
0.6
0.8

sp
ee
du

p
3Dgrid_20M

seq_pbbs_kruskal
seq_pbbs_filtering_kruskal
seq_prim_binary
seq_prim_pairing
seq_boruvka
par_pbbs_kruskal
par_pbbs_filtering_kruskal
par_filter_kruskal
par_boruvka_d
par_new_boruvka
par_new_filtering_boruvka

Figure 8: Benchmark results for 3Dgrid_20M graph. The lines for seq_boruvka,
seq_prim_binary and seq_prim_pairing are closely next to each other.
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Figure 9: Benchmark results for stars_20M graph. Prim’s algorithm performs
very poorly on this graph because it needs O pn lognq time to execute
n inserts or decrease-keys. Par_boruvka_d is excluded because the
code the authors provide online [42] seems to contain a bug and did not
terminate for stars.
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Figure 10: Benchmark results for chain_20M graph. Kruskal’s algorithm works
badly here. The lines for seq_boruvka and seq_prim_binary overlap
and these for seq_pbbs_kruskal and seq_pbbs_filtering_kruskal
overlap.
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Figure 11: Benchmark results for delaunay_20M graph.
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Figure 12: Benchmark results for delaunay_20M-n graph.
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Figure 13: Benchmark results for delaunay_20M-2n graph. Kruskal’s algo-
rithm, with or without filtering, is the fastest sequential algorithm.
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Figure 14: Benchmark results for delaunay3d_10M graph.

1 3 9 18 36 72 144

number of threads

1

5

10

15

20

25

0
0.2
0.4
0.6
0.8

sp
ee
du

p

delaunay3d_10M-2n

seq_pbbs_kruskal
seq_pbbs_filtering_kruskal
seq_prim_binary
seq_prim_pairing
seq_boruvka
par_pbbs_kruskal
par_pbbs_filtering_kruskal
par_filter_kruskal
par_boruvka_d
par_new_boruvka
par_new_filtering_boruvka

Figure 15: Benchmark results for delaunay3d_10M-2n graph.
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Figure 16: Benchmark results for delaunay3d_10M-4n graph.
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Figure 17: Benchmark results for uniform_20M_20M graph. Kruskal’s algo-
rithm with and without filtering share the same straight line as the
fastest sequential algorithms.
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Figure 18: Benchmark results for uniform_2M_20M graph.

1 3 9 18 36 72 144

number of threads

1

5

10

15

20

25

0
0.2
0.4
0.6
0.8

sp
ee
du

p

uniform_200K_20M

seq_pbbs_kruskal
seq_pbbs_filtering_kruskal
seq_prim_binary
seq_prim_pairing
seq_boruvka
par_pbbs_kruskal
par_pbbs_filtering_kruskal
par_filter_kruskal
par_boruvka_d
par_new_boruvka
par_new_filtering_boruvka

Figure 19: Benchmark results for uniform_200K_20M graph.
Seq_pbbs_kruskal is slow for this graph because of the full
sorting, but it works better with filtering.
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Figure 20: Benchmark results for uniform_20K_20M graph.
Seq_pbbs_kruskal is slow for this graph because of the full
sorting, but filtering remedies a bit.
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Figure 21: Benchmark results for nlpkkt240 graph. Kruskal’s algorithm with-
out filtering is slow because of the full sorting. With filtering, it becomes
the fastest sequential algorithm.
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Figure 22: Benchmark results for USA graph. Lines for seq_pbbs_kruskal,
seq_boruvka and seq_prim_binary overlap.
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Figure 23: Benchmark results for livejournal graph.
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seq
pbbs

kruskal

seq
pbbs

filtering
kruskal

seq
prim
binary

seq
prim

pairing

seq
boruvka

randLocal_20M 18.300 11.450 33.041 46.291 43.638

rMat_20M 18.813 13.500 51.646 79.168 44.280

2Dgrid_20M 8.404 6.246 16.844 15.138 22.585

3Dgrid_20M 11.963 7.798 26.658 28.791 31.948

stars_20M 3.285 3.110 25.281 47.348 1.891

chain_20M 1.315 1.311 0.246 0.645 0.247

delaunay_20M 13.113 11.538 15.670 14.292 22.692

delaunay_20M-n 8.535 7.668 14.935 13.591 25.060

delaunay_20M-2n 3.930 4.073 7.905 8.519 14.501

delaunay3d_10M 14.375 13.213 13.943 11.987 20.353

delaunay3d_10M-2n 10.325 8.410 12.267 11.798 22.965

delaunay3d_10M-4n 6.828 4.708 10.417 10.844 15.587

uniform_20M_20M 3.700 3.700 12.520 15.063 8.365

uniform_2M_20M 2.986 1.360 1.776 3.729 2.627

uniform_200K_20M 3.050 0.942 0.519 0.690 1.632

uniform_20K_20M 2.730 0.888 0.219 0.298 0.778

nlpkkt240 152.125 45.700 53.995 66.692 59.181

USA 6.086 5.370 6.159 5.033 6.089

livejournal 5.459 2.430 4.112 7.656 4.815

Table 4.3: Running times of sequential algorithms in seconds. The best time
for each particular graph is underlined.
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par
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par
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par
pbbs
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kruskal

par
filter
kruskal

par
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d

par
new

boruvka

par
new

filtering
boruvka

#threads 1 1 1 1 1 1 144 144 144 144 144 144

randLocal_20M 34.500 19.800 17.238 88.823 30.600 12.400 0.765 0.544 0.636 20.075 1.026 0.624

rMat_20M 37.400 25.800 22.788 83.999 26.400 16.900 0.809 0.663 0.735 18.229 0.887 0.776

2Dgrid_20M 16.563 13.625 14.288 30.317 11.025 8.019 0.396 0.351 0.458 2.564 0.389 0.366

3Dgrid_20M 22.513 15.500 14.988 44.499 18.000 9.296 0.503 0.419 0.507 5.382 0.626 0.460

stars_20M 8.143 7.890 7.779 – 2.290 2.305 0.176 0.173 0.191 – 0.080 0.080

chain_20M 1.623 1.590 1.836 1.475 0.660 0.665 0.163 0.159 0.211 0.592 0.039 0.038

delaunay_20M 23.688 20.938 19.688 39.243 12.813 11.600 0.541 0.532 0.582 3.207 0.417 0.441

delaunay_20M-n 16.988 15.300 16.188 30.872 10.400 9.730 0.411 0.420 0.461 2.570 0.370 0.384

delaunay_20M-2n 9.369 9.223 9.155 16.709 5.333 5.355 0.236 0.233 0.250 1.822 0.200 0.200

delaunay3d_10M 24.063 20.600 9.584 42.447 15.500 12.800 0.515 0.573 0.434 5.708 0.501 0.509

delaunay3d_10M-2n 18.363 14.900 8.680 33.764 14.100 11.375 0.413 0.407 0.398 4.506 0.485 0.444

delaunay3d_10M-4n 13.263 9.320 8.085 23.375 9.601 6.858 0.299 0.265 0.312 3.103 0.347 0.286

uniform_20M_20M 9.369 9.411 8.620 18.509 5.569 5.650 0.242 0.239 0.265 2.292 0.207 0.210

uniform_2M_20M 5.340 2.061 1.440 11.752 3.070 1.016 0.155 0.097 0.144 5.691 0.133 0.086

uniform_200K_20M 5.170 0.544 0.566 8.822 2.210 0.403 0.141 0.032 0.080 6.309 0.095 0.035

uniform_20K_20M 4.500 0.268 0.496 5.013 1.200 0.259 0.128 0.024 0.060 6.395 0.081 0.026

nlpkkt240 264.375 89.713 39.988 278.142 59.100 22.588 5.423 2.325 2.046 72.458 3.129 1.498

USA 12.213 12.300 12.488 11.025 3.645 4.448 0.329 0.321 0.358 2.022 0.171 0.253

livejournal 10.575 3.919 2.848 14.941 3.600 1.830 0.234 0.148 0.215 6.504 0.153 0.129

Table 4.4: Running times of parallel algorithms with 1 and 144 threads in
seconds. Underlined numbers mark the best times for the particular
graph and particular number of threads. If the time for a parallel algo-
rithm executed with one thread is even faster than the best sequential
algorithm, that time is doubly underlined.
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relative/absolute rel rel rel rel rel rel abs abs abs abs abs abs
randLocal_20M 45.091 36.405 27.098 4.425 29.817 19.864 14.965 21.053 18.000 0.570 11.157 18.342

rMat_20M 46.259 38.943 31.025 4.608 29.763 21.782 16.698 20.377 18.380 0.741 15.220 17.400

2Dgrid_20M 41.838 38.845 31.230 11.824 28.333 21.916 15.778 17.808 13.653 2.436 16.052 17.072

3Dgrid_20M 44.768 36.960 29.547 8.268 28.754 20.193 15.506 18.593 15.372 1.449 12.456 16.937

stars_20M 46.366 45.673 40.699 – 28.580 28.948 10.767 10.946 9.893 – 23.599 23.747

chain_20M 9.946 9.992 8.703 2.490 16.910 17.545 1.509 1.547 1.167 0.416 6.312 6.499

delaunay_20M 43.805 39.356 33.849 12.237 30.707 26.304 21.336 21.687 19.837 3.598 27.651 26.162

delaunay_20M-n 41.345 36.407 35.095 12.011 28.118 25.355 18.661 18.245 16.623 2.983 20.730 19.980

delaunay_20M-2n 39.635 39.645 36.565 9.170 26.696 26.842 16.626 16.894 15.696 2.157 19.675 19.699

delaunay3d_10M 46.689 35.943 22.082 7.437 30.915 25.154 23.259 20.915 27.620 2.100 23.908 23.556

delaunay3d_10M-2n 44.421 36.632 21.789 7.493 29.050 25.605 20.345 20.676 21.111 1.866 17.327 18.931

delaunay3d_10M-4n 44.338 35.236 25.933 7.533 27.639 23.956 15.738 17.798 15.100 1.517 13.552 16.445

uniform_20M_20M 38.714 39.357 32.513 8.077 26.870 26.953 15.289 15.473 13.956 1.615 17.853 17.651

uniform_2M_20M 34.563 21.223 10.000 2.065 23.126 11.783 8.803 14.003 9.444 0.239 10.245 15.768

uniform_200K_20M 36.699 17.059 7.105 1.398 23.263 11.429 3.682 16.272 6.514 0.082 5.460 14.714

uniform_20K_20M 35.294 11.093 8.308 0.784 14.907 9.806 1.721 9.093 3.671 0.034 2.725 8.317

nlpkkt240 48.755 38.586 19.543 3.839 18.889 15.083 8.428 19.656 22.335 0.631 14.606 30.518

USA 37.120 38.273 34.857 5.452 21.363 17.596 15.298 15.661 14.049 2.489 29.498 19.914

livejournal 45.144 26.523 13.244 2.297 23.529 14.159 10.374 16.447 11.302 0.374 15.882 18.801

Table 4.5: Relative and absolute speedups of parallel algorithms. Underlined
numbers mark the best relative and absolute speed-ups for the particular
graph with 144 threads.
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4.2.2 Analysis for Sequential Algorithms

For sequential algorithms, seq_pbbs_filtering_kruskal is almost always the fastest. Notable
exceptions include:

• stars_20M (Figure 9). Borůvka’s algorithm only needs a single Borůvka step here
because the leaves of the star will choose their only outgoing edge as the minimum edge,
connecting the graph in one step. Thus Borůvka’s algorithm runs in linear time here. Kruskal’s
algorithm needs a full sorting of random weights, and Prim’s algorithm has to perform n

decrease-keys or inserts, therefore both algorithms have a running time of Θ pn lognq. Note
that m “ O pnq for stars. The highly optimized sorting implementation from the standard
library of GCC has a much lower constant factor, making Kruskal’s algorithm considerably
faster than Prim’s algorithm and even comparable to the linear-time Borůvka’s algorithm here.
The case would be slightly different if Prim’s algorithm first builds a priority queue in linear
time and then calls n constant-time decrease-keys. However, a large constant factor would be
inevitable.

• chain_20M (Figure 10), where seq_boruvka and seq_prim_binary are equally fast. On
chains with increasing weights, Borůvka’s algorithm finds the MST in a single Borůvka step
and requires only linear time. Prim’s algorithm is also fast because the priority queue only
has a single element in it during the whole execution. Seq_prim_pairing is slower because of
the hidden constants in its time complexity. Kruskal’s algorithm needs a sorting and is thus
slower. However, because the edge weights are already in increasing order, the sorting is much
cheaper than sorting random numbers, which is why its running time is less than half of that
for stars_20M.

• Dense uniform graphs like uniform_200K_20M (Figure 19) and uniform_20K_20M (Fig-
ure 20). That is because the number of vertices is too small compared to the number of edges,
which makes sorting of the edges too costly. Prim’s algorithm excels here because it does not
even have to process all the edges before finding the MST. As mentioned before in Section 2.1.2,
Prim’s algorithm with binary heaps has an expected running time of O pm` n logn log lognq
for graphs with random weights, which is O pmq for denser graphs like these two.

On real-world graphs like nlpkkt240 (Figure 21) and livejournal (Figure 23), the effect
of filtering is well demonstrated because vertices have a larger average degree and hence the
graphs are relatively dense. Sorting the whole set of edges is too costly, but sorting only a
portion and then doing a filtering reduces the total time to only one third to one half.

It is also interesting to note that Prim’s algorithm with pairing heaps is generally slower than
with binary heaps except on several graphs. That is because the effect of a faster decrease-key
is only visible when it is needed many times due to larger constant hidden in the Big-Oh
notation.

Due to the lack of removal of used edges, Borůvka’s algorithm generally does not work
well with the sole exceptions of stars_20M (Figure 9) and chain_20M (Figure 10) where the
Borůvka step is executed a single time anyway. However, with filtering and removal of self-edges,
the new parallel algorithm works quite well with one thread. That is because the algorithm
only does linear work in each Borůvka step when it is executed with a single thread. As
shown in Table 4.4, the new parallel algorithm with or without filtering even beats the fastest
sequential algorithm on all three real-world graphs and two uniform graphs. On other graphs,
par_new_boruvka and par_new_filtering_boruvka also have comparable performance to the
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fastest sequential implementation. This suggests the new algorithm can be applied even when
the number of available processors is small. Other algorithms do not have such a property. The
only graphs where other parallel algorithms perform better with one thread are delaunay3d_10M
(Figure 14) and delaunay3d_10M-2n (Figure 15), where par_filter_kruskal excels because
its multi-stage filtering removes most of the edges.

4.2.3 Analysis for Parallel Algorithms

We now turn to the analysis of the running times of parallel algorithms.
par_boruvka_d [42] does not perform well on our test graphs. On randLocal_20M (Fig-

ure 5), rMat_20M (Figure 6), nlpkkt240 (Figure 21) and livejournal (Figure 23), the parallel
algorithm with all available cores even runs longer than most of the sequential algorithms. Read-
ing through the detailed logs reveals that more than 2

3
of the time is spent on the compaction

step where atomic instructions are used in an unavoidably inefficient manner as described
in Section 2.3.2, in contrast to our new parallel algorithm where most of the atomic instructions
are only reads rather than writes. Even on graphs where par_boruvka_d exhibits speedup
against sequential algorithms, the speedup comes quite late, namely when at least 9 cores are
used where 3 are enough for other algorithms most of the times. Even when a speedup is visible,
the algorithm is not as fast as other algorithms. For example, on graph USA (Figure 22), the
algorithm needs 1.344 seconds with 72 cores, but all other algorithms are at least twice as fast.
Its bottlenecks seem to be the compaction and, surprisingly, a step that marks MST edges.
The latter involves a parallel for-loop of length n with one random read and one random write
memory access in each Borůvka iteration.

The effect of filtering manifested itself also in the parallel settings: Borůvka’s algorithm
and Kruskal’s algorithm with filtering are generally faster than without. The only notable
exceptions are delaunay3d_10M (Figure 14) for Kruskal’s algorithm and USA (Figure 22) for
Borůvka’s. The former is because the filtering only removes about half of the edges and thus
does not justify the extra cost for partitioning and filtering. The latter is because USA is very
sparse so that the first partition already contains most of the edges. Therefore the cost for this
partitioning does not pay off.

As shown in the graphics, par_new_filtering_boruvka or par_new_boruvka are the
fastest parallel implementation on more than half of the graphs, especially on stars_20M
(Figure 9) and chain_20M (Figure 10), where the difference is large due to the reasons described
above in the sequential part. On real-world graphs, i.e. nlpkkt240 (Figure 21), USA (Figure 22)
and livejournal (Figure 23), the new algorithm leads by a remarkable margin and reaches
an absolute speedup of more than 30. The sole exceptions where the new algorithm loses
by a noticeable margin are delaunay3d_10M (Figure 14) and delaunay3d_10M-2n (Figure 15).
Par_filter_kruskal is faster on these graphs due to the random weights and the graph
topology. The progressive multi-stage filtering of par_filter_kruskal works in its full ability
and removes most of the edges. Par_pbbs_filtering_kruskal only does one filtering and
cannot achieve the same effect.

A remark on par_pbbs_filtering_kruskal and par_pbbs_kruskal is that they even need
slightly more time on the union-find loop than the sequential implementation on chain_20M
(Figure 10) because the algorithm is forced to run sequentially after the sorting step by the
structure and weights of the graph. Though this behavior would unlikely cause problems on
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graphs of practical size, it is of theoretical interest to note that this implementation can be
forced to run sequentially by an adversary. The remarkable relative speedups shown in Table 4.5
are due to the highly efficient sample sort implementation in PBBS and the slowness of the
algorithm with one thread.

The experiments have demonstrated that our new algorithm, together with filtering, is
indeed efficient on a wide range of graphs. Unlike other parallel algorithms, the algorithm is
also very efficient when only a small number of processors are available. The same even holds
when only a single processor is present.
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5 Conclusions and Outlooks
In the present thesis we have briefly described known sequential and parallel algorithms for
computing minimum spanning trees (MST) and forests (MSF) on shared-memory architectures.
We also have presented a new conceptually quite simple yet remarkably efficient parallel algorithm
for MST/MSF computation based on Borůvka’s algorithm. The algorithm utilizes priority
writes (pwrite) as a primitive to achieve its simplicity and reduced contention. pwrites can
be easily and efficiently implemented with atomic compare-and-swap (CAS) which is widely
supported by modern processors. Coarse-grained and balanced parallelism is realized nicely this
way. Several optimizations that aim at improving locality of memory accesses are applied to
achieve further speedup.

Experimental results on a rich set of synthetic and real-world graphs have demonstrated
the extraordinary efficiency of the new algorithm. The new algorithm is faster than or as
fast as its rivals on almost every graph in the benchmark. A reasonable speedup with respect
to classical sequential algorithms is achieved even with only a few processors. The parallel
algorithm outperforms many sequential implementations even with a single processor.

Though the algorithm proved to be efficient on many graphs, there is still room for
improvement and future work. The following list gives some possible directions for future
research:

Outlook 1. Theoretical time bound of the find-min step. The algorithm exhibits simplicity
and excellent performance in practice. However, not much is known about its theoretical efficiency.
Though we conjecture stars are the worst case for the find-min step, it remains to be carefully
analyzed.

Outlook 2. Applying priority writes to other algorithms or problems. Priority writes
(pwrites) are the key to the efficiency of the new MST algorithm. They seems to have the
potential to be utilized to implement some known algorithms for the CRCW-Priority PRAM
model on real computers. Whether this is possible or beneficial stays open for future research. It
is also conceivable that they can be used in other algorithms that involve finding some minimum
across multiple processors. It would be interesting to see more such examples.

Outlook 3. More thorough experiments. We have conducted benchmarks with a number
of classical algorithms and state-of-the-art parallel ones. The new algorithm works very well
on a wide range of test graphs. Yet the experiments did not, and could not, cover all known
algorithms. An interesting future work might be a more thorough benchmark that includes
more algorithms and more graphs.

Outlook 4. Generalization to other architectures. The algorithm is targeted at shared-
memory architectures and achieves good performance there. It would be natural to ask whether
it can be generalized to other architectures like distributed-memory ones. At first glance it is
not obvious how this can be done because synchronization is harder and more expensive on
these architectures and atomic instructions are virtually nonexistent.
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