
A Practical Implementation of Parallel
Ordered Maps and Sets with just Join

Bachelor Thesis of

Daniel Ferizovic

At the Department of Informatics
Institute for Theoretical Computer Science

Reviewer: Prof. Dr.rer.nat. Peter Sanders
Second reviewer: Prof. Dr. Dorothea Wagner
Advisor: Prof. Dr.rer.nat. Peter Sanders
Second advisor: Prof. Guy Blelloch

Duration: December 15th, 2015 – March 10th, 2016

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, March 14, 2016

. .
(Daniel Ferizovic)

Contents

1. Introduction 3

2. Acknowledgements 5

3. Preliminaries 7
3.1. Binary Search Tree . 7

3.2. Balanced Binary Search Trees . 8

3.2.1. AVL Tree . 8

3.2.2. Weight-Balanced Tree . 8

3.2.3. Red-Black Tree . 8

3.2.4. Treap . 9

3.3. Basic Operations on BSTs . 9

3.3.1. Tree rotations . 9

3.4. Ordered Set . 10

3.5. Ordered Map . 10

3.6. Lockfree Data Structures . 10

3.7. Persistence . 11

3.8. Garbage Collection . 11

3.9. Parallel Computation Model . 11

4. Related Work 13

5. The Join Operation 15
5.1. AVL Trees . 16

5.2. Red-Black Tree . 16

5.3. Weight-Balanced Tree . 17

5.4. Treap . 18

5.5. Operations using Join . 19

5.5.1. Split . 19

5.5.2. Union . 20

5.5.3. Intersect . 20

5.5.4. Difference . 21

5.5.5. Insert . 22

5.5.6. Delete . 22

5.5.7. Range . 22

5.5.8. Filter . 22

5.5.9. Build . 23

6. Implementation Details 25
6.1. Our library . 25

6.2. Persistence . 26

v

vi Contents

6.3. Memory management . 27
6.3.1. Reference count collection . 27

7. Library Interface 29
7.1. Method Summary . 30

8. Evaluation 33
8.1. Setting . 33
8.2. Comparing different trees . 33
8.3. Comparing functions . 34
8.4. Comparing to STL . 36
8.5. Comparing to parallel implementations . 38

9. Conclusion 41

Bibliography 43

Appendix 45
A. Examples . 45

vi

Contents 1

1

1. Introduction

Modern programming languages nowdays offer support for a variety of data types. Maps,
also refered as dictionaries or associative arrays are one of them. Some languages have
them built in as part of the language, while other offer support through libraries. Along
with maps, libraries often provide implementations of the set data type. Since sets can
be viewed as a special kind of an associative container (with unit value associated with
each key), they are often implemented as maps. For this reason, from now on we will
direct our focus on maps, but note that most things we say also apply for sets. The map
data type usually comes in two distinct flavours, it can be either ordered or unordered.
An ordered map has a total ordering imposed on the key set of its entries. This can be
very useful in practice, since it allows various types of queries based on the key ordering.
For example functions like range, rank, select, next/previous-key are usually supported by
ordered maps. They are often implemented using some kind of balanced binary search tree
as their underlying data structure. This makes most of the operations offered by ordered
maps take O(log n) time. Unordered maps on the other hand have no ordering imposed
on their key set. They are usually implemented using hash tables, such that operations
like insert and remove take expected O(1) time. The faster time for insertion and removal
is favourable for unordered maps, but it often pays off only for a large number of such
operations.

In this paper we describe and implement a parallel library for ordered maps and sets.
We compare four different balanced binary search trees (BBST) to see which achieves
the best performance. This includes AVL trees, weight-balanced trees, red-black trees and
treaps. All core library functions are implemented around a single function called join3. It
takes two balanced binary search trees T1 and T2, and an additional key k as arguments,
and returns a balanced binary search tree T such that K(T) = K(T1) ∪ {k} ∪ K(T2),
where K() stands for the key set of a tree. For each BBST we only have to provide an
implementation of join3 in order to gain support for all other library functions. The
main reason to implement the interface around join3 wasn’t solely the minimal effort
for supporting multiple BBSTs. Aggregate set functions, such as union, intersect and
difference can be highly paralellized for ordered trees if implemented using join3. The
algorithms we use for union, intersect and difference achieve a work of O(n log(mn + 1))
and a depth of O(logm log n), where m is the size of the larger tree. We note that this
work is optimal in the comparsion model. These set operations are usually implemented
by finger tracing through two sorted sequences simultaneously. This approach is fast in
practice and takes O(n + m) time. However, this complexity is worse than ours when it

3

4 1. Introduction

comes to merging smaller with larger trees. Our experiments (see Chapter 8) also confirm
that. Another issue with this approach is that it returns a sorted sequence and not a tree.
We note that those issues only occur in the naive sequential implementation. A lot of work
has been done in parallelizing bulk operations for certain search trees. Bulk insertions,
for example, can be viewed as the union of one tree with another, since it achieves the
same effect. To see which of these approaches is more efficient we also compare ourself
to state of the art parallel search trees (see Chapter 4). Among other functions that we
parallelized are build, filter and forall. In order for our library to be useful in practice
we made all operations persistent. That is, taking the union of two maps does not side
effect the input maps. Persistence can be useful in many applications. For example, if we
have two tables in our database, we probably don’t want them to be completly destroyed
after taking a single intersection or union of them.

In Chapter 4 we talk more about related research and the work which has been done in
this area. Chapter 5 describes the join3 operation and how it can be realized for the
different types of balanced search trees. We also talk about how other operations can be
implemented by using only join3. Chapter 6 describes the implementation details of our
library. We talk about the memory management and how exactly we achieved persistance
for the data structures. An overview of our library interface can be found in Chapter 7.
and at last, in Chapter 8 we show the experimental results we have performed with our
library.

4

2. Acknowledgements

I would like to thank Prof. Guy Blelloch from the Carnegie Mellon University for giving
me useful advice and guidance during my work on this thesis. Thanks also goes to Yihan
Sun for providing proofs for the running times of several algorithms.

5

3. Preliminaries

3.1. Binary Search Tree

A binary search tree (BST) is a rooted tree in which every node has at most two children,
refered as left and right child. A node without a left and right child is called leaf node.
We refer with the left (right) subtree of a node to the rooted tree starting at its left (right)
child. Each node of a binary search tree has an unique key k ∈ Ω associated with it. We
require Ω to be a totally ordered set. Additionaly, each node is able to store some extra
information, refered as value.

From now, if not otherwise stated, we will use the large capital letter T to denote a BST
and lowercase letters u, v ∈ T , to refer to nodes. Let v ∈ T be a node of T. We introduce
the following notation:

• v.left represents the left child (or subtree) of v.

• v.right represents the right child (or subtree) of v.

• v.key represents the key associated with v.

In general, if we intruduce a property prop to nodes we will refer to it as v.prop.

Every binary search tree has to satisfy the so called BST-property. It states that for every
node v ∈ T the following holds:

∀u ∈ v.left : v.key ≥ u.key ∧ ∀u ∈ v.right : v.key ≤ u.key

The height of a binary search tree is defined as the length of the longest path from the
root to any other node in T. Similary, the height of a node v ∈ T is defined to be equal
to the height of the tree rooted at v. For convinience we introduce the following notation
for a BST:

• T.root represents the root of T.

• T.height represents the height of T.

• T.prop will be used as a short form for T.root.prop.

• K(T) is the set of all keys present in T .

• V(T) is the set of all values present in T .

7

8 3. Preliminaries

3.2. Balanced Binary Search Trees

Most operations on a BST are in worst case proportional to the longest path in the tree.
To reduce the cost of such operations we want to have BSTs with a height as small as
possible. The best we can hope for a BST with n nodes is a height of dlog(n)e.

A balancing scheme is a set of restrictions (or invariants) which ensures that the height of
a tree is within a constant of its optimal height. We define a balanced binary search tree
(BBST) as a BST which is able to maintain a balacing scheme. That is, any modification
of the tree should not lead to a violation of the balancing scheme. Most BBSTs achieve
this through the use of tree rotations (see section 3.3.1). In the following we introduce
four different balanced search trees: AVL trees, weight-balanced trees (or BB[α] trees),
red-black trees and treaps.

3.2.1. AVL Tree

An AVL tree is a BBST in which the height of the left and right subtree of each node
differ by at most one. As shown in the original paper [AVL62] this property represents a
balancing scheme. It is also shown how the balance can be manitained across insert and
delete operations on the tree.

3.2.2. Weight-Balanced Tree

Weight-balanced trees were introduced the first time by Nievergelt and Reingold [NR72].
Unlike AVL or red-black trees, they don’t maintain balance with a height constraint, but
with a restriction on the number of nodes in each subtree. We define a weight function on
the nodes of a weight-balanced tree tree as follows:

• w(∅) = 1

• ∀v ∈ T : w(v) = w(v.left) + w(v.right)

We say that a weight-balanced tree is of bounded balance α if the following holds:

∀v ∈ T : α ≤ w(v.left)
w(v) ≤ 1− α

It has been proven by [BM80] that the bounded balance criterion for 2
11 < α ≤ 1 − 1

2

√
2

is sufficient for the tree to be balanced. Futhermore, it has been shown that single and
double rotations can reestablish the balance in the case of insert and delete operations.

3.2.3. Red-Black Tree

A red-black tree is a BBST in which we distinguish between two types of nodes, red and
black nodes. We define the black height at each node to be equal to the maximum number
of black nodes on a path from that node to a leaf node. The balancing scheme of a
red-black tree contains the following properties:

• The root of the tree is black

• Every red node in the tree has only black children

• The black height of the left and right subtree at each node is the same

Red-black trees were introduced the first time in [GS78]. Just like the other trees, they
maintain their balance with the use of tree rotations.

8

3.3. Basic Operations on BSTs 9

3.2.4. Treap

Treaps are randomized binary search trees [SA96]. Each node has an number assigned to
it, which we call priority. The nodes of a treap must statisfy the heap property:

∀v ∈ T : v.priority ≥ v.left.priority ∧ v.priority ≥ v.right.priority

If the priorities are assigned uniformly at random, it can be shown that such a tree has
an expected height of O(log n).

3.3. Basic Operations on BSTs

There are three basic operations that a BST is required to support: find, insert and
delete. They are are implemented using a tree traversal on the key order. We describe
the algorithm for find below:

1 Procedure find (key)
2 return search(root, key)
3

4 Procedure search(curr, key)
5 if curr ==⊥: then False;
6 else if curr.key < key: then search(curr.right, key)
7 else if curr.key > key: then search(curr.left, key)
8 else True ;

Algorithm 3.1: Finding a key in a BST

Insert is implemented by finding the proper position in the tree where the key needs to be
placed, similar to the find algorithm. If the key is already present we do nothing, otherwise
we create a new node.

Delete is a bit more complicated, since we can’t just remove a node from the middle of a
tree. The problem is that we don’t have a place to reattach the subtrees from the deleted
node. We observe the following cases:

• The node has no childrern. The node can be immediately removed.

• The node has one child. We delete the node and assign the child to the parent of
the removed node.

• The node has two childrern. We find the in-order successor of the node which should
be removed and swap the keys of the two nodes. We then procceed by deleting the
successor node at the lower level until we reach one of the first two base cases.

We note that insert and delete as described above are quite general. Applying them to
any of the mentioned BBSTs will most likely lead to a violation of the defining properties.
For example, the height of the subtree in which the node is inserted might increase by one.
This could violate the balancing scheme of AVL trees. Similary, the key inserted into a
treap following only the key order might violate the heap property. This is usually solved
by applying one or more tree rotations.

3.3.1. Tree rotations

Tree rotations are often performed in conjunction with other operations. Either to simplify
them or to fix the balance condition which might have been violated. There are two types
of rotations, single (Figure 3.1) and double (Figure 3.2) rotations. It’s easy to see that
a double rotation consist of two single rotations, i.e. in Figure 3.2 (a) we first perform a
single right rotation on node C, and then a single left rotation on node A.

9

10 3. Preliminaries

C

A E

B D

b d

e

A

B C

D E

d e

b

single left

(a) Single Left Rotation

C

A E

B D

single right

b d

e

A

B C

D E

d e

b

(b) Single Right Rotation

Figure 3.1.: Single rotations on a binary search tree

A

B C

D E

e

b

double left

F G

f g

D

A C

G E

e b

F

f g

B

(a) Double Left Rotation

A

B

E D

d
F G

f g

E

B A

G C

c d

F

f g

D

C

c

double right

(b) Double Right Rotation

Figure 3.2.: Double rotations on a binary search tree

3.4. Ordered Set

An ordered set is an abstract data structure which contains each element at most once.
The elements of an ordered set are totally ordered. They are often used for testing set
membership of elements, while being able to add new and remove existing elements. If im-
plemented using a balanced binary search tree, most operations on them can be performed
in O(log n) time.

3.5. Ordered Map

An ordered map is an abstract data structure which contains tuples as elements. The first
member of an tuple, refered as key, imposes a total ordering on the elements of a map. The
second member represents a value which is associated with the given key. The problem of
associating information with a given identifier occurs very often. Just like sets, they can
be implemented using a balanced binary search tree. Operations like insert, delte and find
all take O(log n) time.

3.6. Lockfree Data Structures

In a multithreaded environment we often encounter the problem of accessing shared data
from multiple threads simultaneously. This usually gives raise to race conditions. A
common approach to get rid of them is to serialize the access on shared data by the use
of mutexes or locks. While this approach is popular because of its simplicity, it has its
drawbacks. Some of them include deadlocks, convoying, priority inversion, threads being
not kill tollerant and more [Mic04b].

10

3.7. Persistence 11

Lockfree data structures don’t suffer from any of the mentioned drawbacks. They provide
thread-safe access without making use of synchronization primitives like mutexes. A lock-
free data structure guarantees that at any time at least one thread accessing it is making
progress. Lock-based data structures fail to satisfy this requirement. Making a data struc-
ture lockfree is however more difficult. The reason for this is that we are restricted to a
small set of atomic hardware instructions in order to make the structure thread safe. One
of the weidely used atomic instruction for this purpose is the compare-and-swap (CAS)
primitive. It compares the contents of a memory location to a given value and, only if
they are the same, modifies the contents of that memory location. Most hardware nowa-
days supports a double word compare-and-swap. Lockfree algorithms based on the CAS
primitive have been developed for many common data structures, including linked lists,
queues, deques and stacks.

3.7. Persistence

When we modify a data structure we usually get a new modified version of it, without
being able to reflect on its previous state. Such data structures are called ephemeral. All
modifications on an ephemeral data structure apply to the latest and only version of it.
Persistence allows us to keep track of old versions of a data structure. It allows us to
lookup older versions, and in some cases to even modify them. Depending on what kind of
updates are supported by the different versions of a data structure, we distinguish between
three types of persistence:

Partial persistence allows updates only on the latest version of the data structure (Linear
versioning).

Full persistence allows updates on any version of the data structure (Tree versioning).

Confluent persistence allows updates on any version. Additionally it allows melding dif-
ferent versions together. (DAG versioning)

3.8. Garbage Collection

A garbage collector (GC) is usually implemented as part of automatic memory manage-
ment. It is responsible for reclaiming the memory of objects which are not used by a
program anymore. We distinguish between two different types of garbage collectors:

• Reference count GC – keeps a reference count to each object in the program. When
the reference count to an object becomes zero, the GC immediately reclaims the
object’s memory.

• Tracing GC – maintains a set of root objects, which includes all objects referenced
by the call stack and global variables. The GC reclaims memory by periodically
tracing all objects which are reachable from the root set. Everything that was not
reached from the root set is considered garbage.

3.9. Parallel Computation Model

The computation model we use is the parallel random access machine (PRAM). It consist
of a collection of processors operating on a shared memory. All comunication between the
processors is done via the shared memory. Our PRAM model is concurrent-read/exclusive-
write (CREW) PRAM, which means that multiple threads are allowed to read simultane-
ously from the same memory location, but only one thread is allowed to write a memory

11

12 3. Preliminaries

location at the same time. This can be achieved using various synchronisation mecha-
nisms. We avoid the use of locks as much as possible and rely on atomic instructions like
compare-and-swap and test-and-set.

We use the work/depth model to express the running times of our algorithms. Work is
the total number of operations performed by an algorithm, while depth represents the
longest strongly sequential chain of operations that an algorithm needs to perform. In this
sense, work is equivalent to the sequential time of an algorithm, and depth is equal to the
running time of an algorithm on a machine with an unlimited number of processors.

12

4. Related Work

Implementing a join operation for balanced binary search trees has been studied before.
Blelloch and Miller [BRM98] describe how join can be implemented for treaps. They
introduce parallel algorithms for union, intersect and difference based on the join operation.
All of them take O(n log(mn +1) time, which is optimal in the comparsion model. Similary,
in his work [Tar82], Tarjan gives an efficient join-algorithm for red black trees.

A lot of reasearch has been done in the field of concurrent and parallel operations on
binary search trees. Kung and Lehman gave in their work [KL80] a generic approach on
how to implement concurrent safe binary search trees. They study in great detail how
to build a concurrent safe system which would support the basic BST operations. In
order to achieve this, they make use of locks, node copying and back pointers. Some of
the later research on concurrent search trees includes the work of [BCCO10] and [BE13].
Bronson et al. describe a concurrent safe AVL tree which uses hand-over-hand optimistic
validation along with a relaxed balancing criteria, which reduces the contention on the tree
by postponing rebalancing operations. Among other balanced binary search trees which
have been studied for concurency are red-black trees. Some of the later research in this
area has been done by Besa [BE13]. He describes a fast implementation of a concurrent
red-black tree, which outperforms the previously introduced AVL tree by Bronson.

Besides providing concurrent access, attention has also been given to the parallelization of
certain operations. Park and Park [PP01] give a highly theoretical description of parallel
red-black trees for the PRAM model, including bulk insertion/removal and tree contruc-
tion. However, they do not consider implementation related issues, nor they provide an
actual implementation of the trees. Later on, Frias and Singler [FS07] have described and
implemented a parallel version of red-black trees. They included their implementation as
part of the MCSTL (Multi Core Standard Template Library), which is to our knowledge
one of the only libraries providing parallel sets and maps for C++. They parallelize bulk
updates by initialy splitting the tree by the update sequence, and then in parallel insert the
remaining sequences into the right subtrees. Another interesting library available for C++
is the HPC++ which includes the PSTL (Parallel Standard Template Library) [JGB97].
The PSTL supports maps and sets, however, it is designed for the distributed setting as
opposed to shared memory.

Parallelizing certain operations has not only been limited to binary search trees. Erb et
al. introduce in their work [EKS14] a parallelized weight-balanced B-tree. They make
use of the property that partial reconstruction of weight-balanced B-trees can be done

13

14 4. Related Work

in constant amortized time. This way they avoid the overhead of frequent rebalancing
operations during bulk insertions. Similar work has been done by Akhremtsev et al.
[AS15], who studied parallel bulk operations on (a, b)-trees. They parallelize bulk updates
by splitting the input tree into p distinct trees, where p denotes the number of processors.
Then they insert the corresponding sequence parts into the individual trees, after which
all of the trees are joined back together. Based on our experimental results, and those of
Akhremtsev, the (a, b)-tree implementaion is the fastest among the parallel search trees
we tested.

When it comes to persistence, groundbreaking work has been done by Driscoll, Sarnak,
Sleator and Tarjan [DSST89]. They describe general transformations on how to make any
pointer based structure fully persistent. They achieve persistence using O(1) additional
space per operation with only a constant slowdown. This is however only true for full
and partial persistence. Confluent persistence turned out to be more difficult. Based on
the prior work of DSST, Fiat and Kaplan [FK01] describe the first general transformation
for making any pointer based strcuture confluently persistent. The bounds they achieve
are not as good as those of DSST. It is still open if better methods exist in achieving
confluent persistence for specific data strucutres, i.e. BSTs. Due to the lack of efficient
(and practical) transformations for confluent persistence, a common and simple way to
achieve it is by path copying [ST86]. There are several benefits in this approach: the data
structures are by default safe for concurrency, there is only a constant overhead per access
and it is simple to realize in practice. However, it is not the most space efficient solution.
Our maps and sets make use of this approach, as we describe in more detail in Chapter 6.

14

5. The Join Operation

As stated earlier, common operations such as insert, delete and lookup are usually im-
plemented using a tree traversal on the key order. In this chapter we introduce the join
operation and argue that it is sufficient to implement all other set operations. This makes
it possible to provide a variety of generic operations on many different balanced search
trees by implementing just join for each tree. One big advantage of using join is that oper-
ations such as union, intersect and difference can be efficiently parallelized if implemented
with join.

We desribe two variations of the join primitive, join2 and join3.

• join3(TL, k, TR) takes two BBSTs and one key as an argument, such that K(TL) <
k < K(TR). It returns a BBST T , such that K(T) = K(TL) ∪ {k} ∪K(TR). If we
wouldn’t care about working with balanced trees, join3 could simply create a new
node with key k and attach TL and TR to the left and right of it. This obivously,
will not work in the case of BBSTs. We will show how join3 can be implemented
for AVL trees, red-black trees, treaps and weight-balanced trees.

• join2(TL, TR) is similar to join3 except that it does not take a middle key as
an argument. It accepts two BBSTs and returns a BBST T such that K(T) =
K(TL) ∪K(TR). join2 can be implemented using join3 as described below.

1 Procedure join2 (TL, TR)
2 if TL ==⊥ return TR;
3 if TR ==⊥ return TL;
4

5 return join3(join2(TR.left, TL), TR.key, TR.right)

Algorithm 5.1: join2

Theorem 5.0.1 The work of join2 is O(TL.height+TR.height) for all of the below men-
tioned implementations of join3.

Proof See [SFB16].

15

16 5. The Join Operation

5.1. AVL Trees

For AVL trees join3 is performed as follows: first we check if TL and TR differ in height
by at most 1. If that is the case, we create a new node with the key k and assign TL and
TR to be its left and right subtree respectively.

If not, let us assume WLOG that TL.height > TR.height + 1. We traverse along the
right spine of TL as long as T ′

L.height > TR.height + 1, where T ′
L is the current subtree

at the right spine of TL. Since TL is a valid AVL tree, at each step the height of T ′
L

decreases by 1 or 2. This guarantees that the moment we stop the height constraint
|T ′
L.height−TR.height| ≤ 1 is satisfied. We then create a new node with key k and assign

T ′
L and TR as its left and right subtree. The parent of T ′

L becomes the parent of k.

We note that this might increase the height of the subtrees along the right spine of TL.
If violations of the height constraint occured, we can fix them by doing single and double
rotations from bottom up. The algorithm is described below. For convinience we just show
the rebalacing for the case when TL.height ≥ TR.height + 1, the other case is performed
analoguosly. The rebalancing rules we use are the same as for insertion – in both cases
the height of a subtree increases by at most 1.

1 Procedure isSingleLeft (T)
2 return T.left.height < T.right.height
3

4 Procedure rebalanceRight (T)
5 if |TL.height− TR.height| ≤ 1
6 return T
7 else if isSingleLeft(T.right)
8 return singleLeftRotation(T)
9 else

10 return doubleLeftRotation(T)
11

12 Procedure join3 (TL, k, TR)
13 if |TL.height− TR.height| ≤ 1
14 return new Node(TL, k, TR)
15

16 if TL.height > TR.height
17 TL.right = join3(TL.right, k, TR)
18 return rebalanceRight(TL)
19 else
20 TR.left = join3(TL, k, TR.left);
21 return rebalanceLeft(TR)

Algorithm 5.2: join3 for AVL trees

Theorem 5.1.1 The work of join3 for AVL trees, as described in 5.2, is O(|TL.height−
TR.height|).

5.2. Red-Black Tree

The join3 operation for red-black trees is performed similar to the case of AVL trees. If
TL and TR already have the same black height we simply attach them as the left and right
subtree of a new node with key k. Since the root of a red-black tree has to be black, the
newly created node is colored black.

If TL and TR are not of the same black height, we assume WLOG that TL has a larger
black height. We descend along the right spine of TL until we reach a subtree that has the

16

5.3. Weight-Balanced Tree 17

same black height as TR. If the node we reach this way is colored red, we keep descending
until we hit the first black node. Since at each step the black height either decreases by
one (current node was black) or stays the same (current node was red), this will take
O(TL.height − TR.height). This is due the fact that the number of red nodes can be at
most twice the number of black nodes on any path in the tree.

After we find the right subtree T ′
L, we merge it with TR by attaching both of them to a

new red node with key k. This might lead to problems, since the parent of the new node
might be red as well. This can be easily fixed by repainting the parent node to black and
increasing its black height by one. This, however, will lead to inconsistent black heights in
the tree, since the black parent will now have the same height as the black grandparent.
This is fixed by applying a single rotation as show in algorithm 5.3. Since those two cases
might occur multiple times along the way back up, we keep applying those steps when
necessary. It is easy to see that the result of these steps will be a valid red-black tree. We
describe the algorithm below. The code for the case when TR has a larger black height
than TL is left out, but it should be clear that this case works analogously.

1 Procedure rebalanceRight (T)
2 if color(T) == RED ∧ color(T.right) == RED
3 return Black(T);
4

5 if color(T) == BLACK ∧ color(T.right) == BLACK ∧ T.height == T.right.height
6 T ′ = rotateSingleLeft(T)
7 T ′.color = red
8 T ′.left.color = black
9 return T ′

10

11 return T
12

13 Procedure joinLeft (TL, k, TR)
14 if TL.height == TR.height ∧ color(TL) == BLACK
15 return Red(new Node(TL, k, TR))
16

17 TL.right = joinLeft(TL.right, k, TR)
18 return rebalanceRight(T)
19

20 Procedure join3 (TL, k, TR)
21 if TL.height ≥ TR.height
22 return Black(joinLeft(TL, k, TR))
23 else
24 return Black(joinRight(TL, k, TR))

Algorithm 5.3: Join3 for red-blak trees. For simplicity we assume that the black heights
change appropriately with any color changes or rotations.

Theorem 5.2.1 The work of join3 for red-black trees, as described in 5.3, is O(|TL.height−
TR.height|).

5.3. Weight-Balanced Tree

We first check if the two trees in question TL and TR are weight-balanced in respect to each
other. If so, we can simply attach them as the left and right subtree of a newly created
node with key k. Otherwise let us assume WLOG that |TL| > |TR|. We descend along
the right spine of TL until we reach a subtree T ′

L that is weight-balanced to TR. It can be
shown that this case has to occur, i.e. it is not possible that we suddenly get a subtree that
is so much smaller than TR that we have an imbalance in the opposite direction. We note

17

18 5. The Join Operation

that the restriction of the weight parameter α guaranntes this. At each step the weight of

the current subtree decreases at least α-times. It is easy to show that
⌈
logα

|TL|
|TR|)

⌉
steps

are needed until we find the right subtree. In [BM80] it has been shown that a single or
double rotation is always sufficient to fix an imbalance after inserting or deleting a node.
The case of inserting a whole tree was not considered. However, as shown in [SFB16], the
same rebalancing rules still hold true. The algorithm for joining two weight-balanced trees
is shown in 5.4.

1 Procedure singleLeft (T)
2 return (1− α)T.left.weight ≤ (1− 2α)T.weight
3

4 Procedure rebalanceRight (T)
5 if weightBalanced(T.left, T.right)
6 return T
7 else if singleLeft(T.right)
8 return singleLeftRotation(T)
9 else

10 return doubleLeftRotation(T)
11

12 Procedure join3 (TL, k, TR)
13 if weightBalanced(TL, TR)
14 return new Node(TL, k, TR)
15

16 if TL.weight > TR.weight
17 TL.right = join3(TL.right, k, TR)
18 return rebalanceRight(TL)
19 else
20 TR.left = join3(TL, k, TR.left);
21 return rebalanceLeft(TR)

Algorithm 5.4: join3 for weight-balanced trees

Theorem 5.3.1 The work of join3 for weight-balanced trees is O(logα
|TL|
|TR|), where |TL| ≥

|TR|.

5.4. Treap

Treaps have the simplest algorithm for join3. This is because no rebalancing or fixing is
required after we find the right place to join the trees. We first create a new node v with
key k and assign it a random priority. If this priority is larger than those of TL and TR we
simply attach TL and TR as the left and right subtree of the newly created node. If not,
we take the tree with the root of higher priority and descend to its left or right subtree.
We repeat this until both trees in question have a root with priority less than v.priority.
When this is the case we can attach the trees to the left and right subtree of v. The new
parent of v must have a priority higher than v. This is due to the fact that at each step at
least one node of TL and TR had a priority higher than v, and we always chose to descend
along the node with higher priority. The argument applies inductively back up the tree.
This means that this approach will lead to a valid treap. We note that the structure of a
treap only depends on the priorities assigned to each node, that is, inserting every node of
the result tree, one by one, into a new empty treap would lead to the exact same structure.
We present the pseudocode below:

18

5.5. Operations using Join 19

1 Procedure nodeJoin(TL, u, TR)
2 if v.priority > TL.priority ∧ v.priority > TR.priority
3 v.left = TL

4 v.right = TR

5 return v
6 else if TL.priority > TR.priority
7 TL.right = nodeJoin(TL.right, v, TR)
8 return TL

9 else
10 TR.left = nodeJoin(TL, v, TR.left)
11 return TR

12

13 Procedure join3 (TL, k, TR)
14 v = new Node(k)
15 u.priority = random()
16 return nodeJoin(TL, u, TR)

Algorithm 5.5: join3 for treaps

Theorem 5.4.1 The work of join3 for treaps, as described in 5.5, is O(TL.height +
TR.height).

5.5. Operations using Join

In this section we will show how to implement other set operations using only the join3
primitive. This means that all operations we are going to describe can be generically used
for all BBSTs we have mentioned. Split is probably the most important operation of them,
since it is used as a subroutine in many other set operations.

5.5.1. Split

Split is a function which takes a BST T and a key k as arguments and returns two
BSTs, one containing all nodes with keys less than k, and one containing all nodes with
keys greater than k. Fromally speaking, split(T, k) is a function which returns a triple
(TL, f lag, TR), such that K(TL) < k < K(TR). The trees TL and TR contain all nodes
from T except the node with key k, if it was present at all. The return value of flag
is a boolean value indicating whether a node with key k was present in the tree or not.
split works recursively by making usage of join3. We do a search for the key on the tree.
Lets assume the key is in the left subtree of T , and (TL, f lag, TR) is the result of splitting
the left subtree of T . A split of the whole tree according to the key k would simply be
(TL, f lag, join3(TR, T.key, T.right). We give an example of the pseudocode below.

1 Procedure split (T , k)
2 if T.key == k
3 return (T.left, true, T.right)
4 else if T.key > k
5 (TL, r, TR) = split(T.left, k)
6 return (TL, r, join3(TR, T.key, T.right)
7 else
8 (TL, r, TR) = split(T.right, k)
9 return (join3(T.left, T.key, TL), r, TR)

Algorithm 5.6: split

Theorem 5.5.1 The work of split as described in 5.6 is O(T.height) for all mentioned
BBSTs.

Proof See [SFB16].

19

20 5. The Join Operation

5.5.2. Union

Union is one of the set operations which can be paralelized using join3. union(T1, T2)
takes two BSTs T1 and T2 and returns a new BST T such that K(T) = K(T1) ∪K(T2).
We note that this is different than join2 since no restriction on the key sets are made.
In the case that the same key is present in both trees we need a policy to decide which
node to keep, since in the case of a map we have an additional value associated with the
key. For sets it is irrelevant which node we take. Our implementation uses by default the
values of the left tree, but it makes it possible to pass a binary operator which calculates a
new value for the given key in the result tree. The binary operator takes two value types
as arguments and returns a new value type.

Union works as follows: we first split T2 by T1.key and obtain the trees (TL, TR) such
that K(TL) < T1.key < K(TR). We now compute in parallel T ′

L = union(T1.left, TL)
and T ′

R = union(T1.right, TR). Since it also holds that K(T ′
L) < T1.key < K(T ′

R), we can
return the join of T ′

L and T ′
R using the key of the root of T1. We give an pseudocode in 5.7.

1 Procedure union(T1, T2)
2 if T1 ==⊥
3 return T2

4 if T2 ==⊥
5 return T1

6

7 (TL, , TR) = split(T2, T1.key)
8

9 T ′L = spawn union(T1.left, TL)
10 T ′R = union(T1.right, TL)
11 sync
12

13 return join3(T ′L, T1.key, T
′
R)

Algorithm 5.7: Union of binary search trees

Theorem 5.5.2 The work of union as listed in 5.7 is O(n log(mn +1)) where m is the size
of the larger tree and n is the size of the smaller tree. The depth of union is O(logm log n).

Proof See [SFB16]

5.5.3. Intersect

Intersect can also be parallelized using join3. intersect(T1, T2) takes two BSTs T1 and
T2 and returns a new BST T such that K(T) = K(T1) ∩K(T2). Loosely speaking, it re-
turns the intersection of its two input trees. Just like union it needs a policy for selecting
which node should go into the result tree. We use the same strategies as in union. The
algorithm first splits T2 by the root of T1, obtaining the tripple (TL, f lag, TR). Since we
know that K(TL) < T1.key < K(TR) it holds that K(T1.left) ∩ K(TR) = ∅, as well as
K(T1.right) ∩K(TL) = ∅. This makes it possible to compute the intersection of T1 and
T2 by computing T ′

L = intersect(T1.left, TL) and T ′
R = intersect(T1.right, TR). This step

is done in parallel. If flag was true we know that T1.key was also in the other tree, so we
should include it in the result. This is done by returning join3(T ′

L, T1.keyT
′
R). Otherwise

we return join2(T ′
L, T

′
R). We state the algorithm in 5.8.

20

5.5. Operations using Join 21

1 Procedure intersect (T1, T2)
2 if T1 ==⊥
3 return ⊥
4 if T2 ==⊥
5 return ⊥
6

7 (TL, r, TR) = split(T2, T1.key)
8

9 T ′L = spawn intersect(T1.left, TL)
10 T ′R = intersect(T1.right, TL)
11 sync
12

13 if r == true
14 return join3(T ′L, T1.key, T

′
R)

15 else
16 return join2(T ′L, T

′
R)

Algorithm 5.8: Intersection of binary search trees

Theorem 5.5.3 The work of intersect as listed in 5.8 is O(n log(mn + 1)) where m is
the size of the larger tree and n is the size of the smaller tree. The depth of intersect is
O(logm log n).

Proof See [SFB16].

5.5.4. Difference

The last binary operator we are going to describe for BSTs is difference. The algorithm
is similar to those of union and intersect. difference(T1, T2) is taking two BSTs T1 and
T2 as its arguments and returns a new BST T such that K(T) = K(T1) \K(T2). Since
we are only keeping those nodes in T1 which have a key that is not present T2, there is
no ambiguity which node to keep. The algorithm is almost the same as for intersect. The
pseudocode is given in 5.9.

1 Procedure difference(T1, T2)
2 if T1 ==⊥
3 return ⊥
4 if T2 ==⊥
5 return T1
6

7 (TL, r, TR) = split(T2, T1.key)
8

9 T ′L = spawn difference(T1.left, TL)
10 T ′R = difference(T1.right, TL)
11 sync
12

13 if r == true
14 return join2(T ′L, T

′
R)

15 else
16 return join3(T ′L, T1.key, T

′
R)

Algorithm 5.9: Difference of Binary search trees

Theorem 5.5.4 The work of difference as listed in 5.9 is O(n log(mn + 1)) where m is
the size of the larger tree and n is the size of the smaller tree. The depth of difference is
O(logm log n).

Proof See [SFB16].

21

22 5. The Join Operation

5.5.5. Insert

Insertion can also be realized with the use of join3. If we want to insert a new key k into
T we first split T into TL and TR by k, and then join them back using k as the middle
key. The pseudocode is given in 5.10.

1 Procedure insert (T , k)
2 (TL, f lag, TR) = split(T, k).
3 return join3(TL, k, TR).

Algorithm 5.10: Insertion into Binary search trees

5.5.6. Delete

Removing an entry with a given key k from a BST is done similary to inserting. We first
split the tree T into TL and TR by k, but instead of calling join3 we call join2 in order
to merge the trees back.

1 Procedure delete(T , k)
2 (TL, f lag, TR) = split(T, k).
3 return join2(TL, TR).

Algorithm 5.11: Deletion from binary search trees

5.5.7. Range

Range accepts two keys as its arguments klow and khigh and returns a new tree containing
all nodes with keys between klow and khigh. Depending on the implementation klow and
khigh can be included or not. For clearity, the pseudo code we describe in 5.12 does not
include the boundary keys.

1 Procedure range(T , klow, khigh)
2 (TL, f lag, TR) = split(T, klow).
3 (T ′L, f lag

′, T ′R) = split(TR, khigh)
4

5 return T ′L

Algorithm 5.12: Range on Binary search trees

5.5.8. Filter

Many functional languages provide a filter function for their data structures. In the case
of BSTs, it is taking a BST T and a boolean function f : K(T)× V (T) −→ {true, false}
as its input, and it returns a new BST T ′ with nodes that have key-value pairs satisfying
the condition of f . In 5.13 we describe how to implement filter for BSTs. We note that
we consider the general case here, that is, those of ordered maps.

1 Procedure filter (T , f)
2 if T ==⊥
3 return ⊥
4

5 TL = spawn filter(T.left, f)
6 TR = filter(T.right, f).
7 sync
8

9 if f(T.key, T.value)
10 return join3(TL, (T.key, T.value), TR)
11 else
12 return join2(TL, TR)

Algorithm 5.13: Filter for binary search trees

22

5.5. Operations using Join 23

Theorem 5.5.5 The work of filter as listed in 5.13 is O(n) where n is the number of
nodes in the tree. The depth of filter is O((log n)2).

5.5.9. Build

Building a BST from an array of keys can be achieved in different ways. One way to build
a BST is to insert each key one by one into the tree, yielding a complexity of O(n log n).
Another way to build a BST is to make use of union, as described in 5.14. We note that
this recursive algorithm even works if the array of keys is not sorted. In the general case
the running time of 5.14 is also O(n log n), but if the array of keys is already sorted the
running time becomes O(n). If we assume that the input array is already sorted, we can
replace the union call with a join3, by always taking the middle key of the current array
as the middle key for join3. This also leads to a complexity of O(n), however with a lower
constant. We give an exaple of the build variant for presorted keys in 5.15.

1 Procedure build ({k1, ..., kn})
2 if n == 0
3 return ⊥
4 if n == 1
5 return new Node(k)
6

7 TL = spawn build({k1, ..., kbn2 c})
8 TR = build({kbn2 c+1, ..., kn})
9 sync

10

11 return union(TL, TR)

Algorithm 5.14: Building binary search trees

Theorem 5.5.6 The work of build as listed in 5.14 is O(n log n) where n is the number
of keys to build a tree from. The depth of build is O((log n)3).

1 Procedure buildSorted ({k1, ..., kn})
2 if n == 0
3 return ⊥
4 if n == 1
5 return new Node(k)
6

7 m =
⌊
n
2

⌋
8 TL = spawn buildSorted({k1, ..., km−1}
9 TR = buildSorted({km+1, ..., kn})

10 sync
11

12 return join3(TL, km, TR)

Algorithm 5.15: Building binary search trees from a presorted sequence

Theorem 5.5.7 The work of buildSorted as listed in 5.15 is O(n) where n is the number
of keys to build a tree from. The depth of buildSorted is O(log n).

23

6. Implementation Details

6.1. Our library

We designed and implemented a library for ordered sets and maps around the join opera-
tion. The implementation was done in C++. For each BBST we only had to implement
the join3 primitive in order to support the other operations mentioned in Chapter 5. In
our experiments we compared the performance of the different trees with each other. The
AVL tree turned out to be the best choice, but only by a small amount. We decided to
fix the AVL tree for our containers, since allowing the user to provide a tree as additional
template argument would lead to less readable code. A more complete overview of the
library interface is described in Chapter 7, while in the following we talk more about imple-
mentation relevant details. Some features worth noting are that our library is persistent,
parallel and concurrent.

The concurrency of our library is a side effect of the persistence and differs from concur-
rent access in the traditional sense. Inserting n elements concurrently into an empty map
produces in our case n distinct maps, each with one element. As opposed to common con-
currenct search trees, where all elements are inserted into the same map. For parallelism
we use Intel’s Cilk-Plus extension for C++, which makes it possible to express dynamic
nested parallelism for shared memory. To achieve confluently persistent data structures
we use a path copying approach, which is also used in many functional languages. We
note that having full persistence is not enough in our case, since set operations like union
effectively meld different data structure versions together. In conjunction with path copy-
ing we use a referene counting scheme. Each node stores a reference count which denotes
to how many objects it belongs to. This can be useful in multiple ways as we will see
later. A problem which arises is that of allocating new nodes and deleting nodes which do
not belong to a tree anymore. This is because our aggregate set operations allocate and
free memory from multiple threads simultaneously. The conventional memory allocation
mechanisms of C++ (new and delete) were not designed for this setting and scale very
poorly. The reason for this is that they lock the heap on each call. We tested several
scalable memory allocators (hoard and Intel’s tbb) which were available, but did not
get too good results either. For this reason we implemented our own shared memory al-
locator with garbage collection. In the next section we will describe how we made our
data structures persistent. Following that, in section 6.3, we talk more about the memory
management of our library.

25

26 6. Implementation Details

6.2. Persistence

What we want from persistence is to retain BSTs across various operations on them. That
is, inserting elements into an existing tree T should produce a new tree T ′ but without
destroying the old tree T . Similary, taking the union of two trees should produce a new
tree without having any visible effect on the input trees. One way to achieve persistence is
to copy the entire input trees before an operation and apply the operation on the copies.
This however can be more costly than the operation being performed. Inserting into a
tree wouldn not take O(log n) time but O(n).

One way to improve the idea of copying the whole input is to only create copies along
the modification path(s) of an operation. This approach is usually called path copying.
By doing so we only copy those nodes which would have otherwise been modified by an
operation. Nodes which are adjacent to the modification path will be pointed to by their
old parent nodes as well as the newly created copy. This leads to the fact that large
parts of the input tree(s) are going to be shared with the created result tree. Figure 6.1
illustrates an example of path copying in the case of insert. Since nodes can be shared
across multiple trees, we keep track of a reference count at each node. This is necessary,
since our garbage collection needs to know when it is safe to reclaim a node. This is not
the only benefit, however. Depending on the reference count of a node we distinguish
between 3 actions:

• Reference count = 0 – node does not belong to any tree; it is safe to reclaim it by
the garbage collection. As the node is recollected, the reference counts of its children
are decreased recursively.

• Reference count = 1 – node belongs to only one tree. If we detect this during an
operation we can safely use in-place updates instead of creating copies – destructive
operations.

• Reference count ≥ 2 – node belongs to more than one tree. If we detect such a
node during an operation we have to create a copy of it, otherwise we would be also
modifying a tree which was not meant to be part of the operation. The copy initialy
has a reference count of 1 (it belongs to the result tree). The reference counts of its
children are increased accordingly. This way we ensure that once we detect a shared
node, the whole subtree must also be shared.

Making any tree operation persistent becomes very simple. The only thing we have to
do before we start modifying a tree is to increase the reference count of its root. This
will trigger the path copying right from the root of the tree and copy all nodes which are
affected by the operation. The reference counts also give us the freedom to actively choose
whether we want to use persistence or in-place (destructive) updates. Not increasing
the reference count before an operation would modify the tree destructively as much as
possible. That is, until it detects a node which is shared with another tree. From that
point on a path copying would be performed. Being able to perform both persistent and
destructive operations is useful, since the later one are more performant. To see how costly
the path copying really is, we performed an experiment with both versions. The results
can be found in Chapter 8. Our library makes it possibe to choose between persistance
and destructive updates. It provides an final wrapper for this case, which we describe in
Chapter 7.

26

6.3. Memory management 27

5

3 8

1

5

3

5

3 8

1 4

5

3 8

1

5

3

4

4

Figure 6.1.: The figure shows the insertion of a node with key 4 into a tree which is shared
among two sets. Since the root has a reference count of 2 the copying of
nodes is propagated along the insertion path. On the last figure we fix the
reference counts of the nodes which have been copied and adjust the pointers
accordingly.

6.3. Memory management

We implemented a concurrent reference counting memory management for our library.
We decided to use a refernce counting mechanism because it is simple to realize in a
multithreaded environment. Maybe even more relevant was the fact that we already kept
track of the reference count at each node in order to support destructive operations. One
benefit over reference tracing is that nodes can be reclaimed as soon as they are not
referenced anymore. This can also be a drawback, since operations can get more costly
due to the work of the GC. On the other hand we do not need a ”stop the world” phase
to reclaim nodes, which would be expensive if triggered in the middle of an operation. A
disadvantage of reference counting is that it suffers from poor locailty. This is because the
memory map of nodes gets more and more scattered as nodes get recollected and allocated
again. To improve the cache performance one could occasionally copy the global memory
pool to another memory location. This is however left as a posibility for future work.

6.3.1. Reference count collection

Each node keeps track of the number of references pointed to it. Once the reference count
drops to zero, we reclaim the node and add it to the pool of free nodes. The thread which
recollects a node recursively decrements the reference counts of its children (if present).
This is done in parallel using a nested fork-join. Before we recollect a node we copy all
the fields we may possibly access after it has been reclaimed. To be concurrent safe all
modifications of the reference counts are performed using a compare-and-swap primitive.

The memory allocator is concurrent, parallel and lockfree1. We maintain a memory pool
of nodes, of which all free nodes are assigned to several free stacks of equal size. The
stacks are implemented as linked lists. Our implementation uses a default stack size of
216. Initialy when constructing a memory pool all nodes are ”free”, so we place all the
nodes into free stacks. We do this construction step in parallel. For each thread we keep
a local stack of free nodes. If a thread allocates a new node, it takes it from its own local
stack, likewise, if a thread recollects a node it places it back on its own local stack. This
way we greatly reduce the contention on the shared memory pool. Beside the local stacks,
we maintain a global stack of free stacks. The global stack implementation is lockfree.

1This is only partially true. The construction of the shared memory pool still needs to be performed
under a lock

27

28 6. Implementation Details

We use a double-word-compare-and-swap (16B) primitive on the head-pointer and its
version number in order to avoid common concurrency pitfalls such as the ABA problem
and memory corrucption. We also tested a version with hazard pointers, as described in
[Mic04a]. Both of them compared equaly good.

Let s denote the maximum size of a free stack. If the local stack of a thread gets empty
it pulls a new stack of nodes from the global stack. However, if the local stack reaches
the size of 2s, we cut the stack in two and place one half back into the global stack. This
way we ensure that after we acess the global stack by a thread, at least s allocations or
recollections need to be done till the next access. If the global stack runs out of memory,
the first thread detecting it will initiate the construction of a new memory pool. New free
stacks will be constructed in parallel and placed into the global stack. This is the only time
a thread can actually block during an operation. However, as other threads repeatedly
pull for new stacks while the global stack is being refilled, the allocator provides reasonable
scalability even in this scenario.

28

7. Library Interface

Our library offers two kinds of ordered maps and one ordered set, all of which are persistent
and safe for concurency:

• tree_map<K, V>

• tree_set<K>

• augmented_map<K, V, Op>

where K denotes the key type, V the value type for maps, and Op a binary operator taking
two value types, and returning a value type. The generic types were expressed using C++’s
templates. The augmented map differs from the common ordered map by accepting an
additional binary operator. Each node of an augmented map stores the application of the
binary operator on the values of the tree rooted at itself. This can be an useful feature in
many applications. In table 7.1 we list the core functions supported by all of our containers
along with their cost.

Function Work, Depth

insert, delete, find log n

union, intersect, difference n log(mn + 1), log2 n

forall* n, log n

acumulate* log n

filter n, log2 n

build n log n, log3 n

split, range log n

next, previous, first, last log n

rank, select log n

Table 7.1.: The core functions in our map and set library and their asymptotic costs in big-
O notation. acumulate is only supported by augmented maps, while forall

only by tree maps.

29

30 7. Library Interface

7.1. Method Summary

We will not go in much detail explaining each function in table 7.1. Most of them were
already introduced in Chapter 5 in the setting of BSTs. All functions except union,
intersect and difference (and final) are member functions. Functions always return
their result, however for the different containers some of the functions return a different
result type. For example, map insertion returns a new map, but the set insertion returns a
new set. In the the following we describe some of the functions from table 7.1, along with
functions we did not mention. For clarity the descripton will refer to the map variants of
functions.

assigment operator (m1 = m2) – is performed in O(1) time. The reference count of the
root of m2 is increased by one. A new pointer to it is passed to m1, but prior to
that we invoke clear (see below) on m1.

m.content(out_iterator) – accepts an output iterator and appends all map entries to
it. The resulting sequence is sorted in an ascending key order.

m.forall(f) – takes a function f : V → Vnew, and returns a new map where each value
v of the old map is replaced by f(v). We note that Vnew can also be a different data
type from V . Since sets do not have values stored in their nodes, we do not provide a
forall method for sets. We also choose not to add it to the interface of augmented
maps. The reason for this is the additional binary operator of augmented maps.
Changing the value type of a map by forall would make the old binary operator
meaningles.

m.acumulate(k) – only supported by augmented maps. Takes a key k and returns the
application of the map specific binary operator on all values whose entries have a
key less or equal than k.

m.filter(f) – takes a boolean function f : K×V → {true, false} and returns a new map
with all entries satisfying f . The key-value pairs are expressed using the std::pair
type.

m.split(k) – takes a key k and returns a pair of maps. The first map contains all entries
with keys comparing less than k, while the second map contains all entries with keys
greater than k. The result is returned as a std::pair of maps.

m.range(l, r) – takes two keys l and r and returns a new map containing all entries
with keys in the interval [l, r].

final(m) – can be used as a wrapper for maps. Functions accepting a map wrapped with
final will operate destructively on the map.

map_union(m1, m2), map_intersect(m1, m2), map_difference(m1, m2) – take two maps
as arguments and return a new map which represents the union, intersection and dif-
ference respectively. Can be used in conjuction with the final wrapper. Wrapping a
map argument with final tells the function to perform the operation destructively.
We achieve this by not increasing the reference count before the operation starts. For
example, m = map_union(final(a), b) will destroy the first map, but the second
map will remain unaffected by the operation.

m.clear() – empties the map. All nodes owned solely by the map are recollected by
garbage collecting threads. The collection is done in parallel using a nested fork-
join.

tree_map<K, V>::init() – used to initialize the memory allocator. Needs to be called
once at the program start before any other operation has been performed.

30

7.1. Method Summary 31

tree_map<K, V>::reserve(n) – accepts a number n and allocates space for n additional
nodes. The allocation is concurrenct safe and done in parallel. The function call is
also non-blocking – the allocation is performed asynchronously to the program flow.
Unlike init, calling this function can also be ommited. If the memory allocator runs
out of memory it will allocate a predefined amount of space automatically.

tree_map<K, V>::finish() – counterpart of init. Destroys the memory allocator and
returns all the reserved memory to the operating system.

One thing worth noting is that the memory allocator is not bound to individual objects,
as it’s commonly implemented. It’s bound to a whole class instance. This is due to the
fact that nodes are shared among multiple maps and sets. For this reason init, reserve
and finish are implemented as static methods.

The maybe<T> type

Some of our functions may or may not return a valid result. In the case of maps, find
accepts a key k and only if k is present in the map it returns the value associated with
it. But what should find return if no such key was present? For this reason we imple-
mented a generic maybe type which wraps its result. The maybe object is convertible to
a boolean, and as such it indicates whether it contains a valid value or not. To access a
value wrapped inside a maybe we use the star operator (*).

31

8. Evaluation

To test our library we performed several experiments, both sequential and parallel. This
includes comparing various functions and the join based BBST implementations with each
other. We also compare our library to the STL implemenations of ordered sets and maps,
as well as their generic implementation of set_union. Since the STL only offers sequential
implementations, we could not use it for any parallel experiments. To see how well our
library performs against other parallelized search trees, we compared it against several
available implementations, including: MCSTL’s red black trees [FS07], weight-balanced
B-trees [EKS14] and (a, b)-trees [AS15].

8.1. Setting

For our experiments we use a 64-core machine with 4 x AMD Opteron(tm) Processor 6278
(16 cores, 2.4GHz, 1600MHz bus and 16MB L3 cache). The library was compiled using the
g++ 4.8 version with the Cilk-Plus extension for nested paralleism. The only compilation
flag we used was the -O2 flag. For testing purposes we choose our tree_map, but we note
that our tree_set and augmented_map would lead to similar results. To construct the
maps in our experiments we generate multiple sets of key-value pairs varying in size from
104 to 108. All keys and values are 32-bit unsigned integers choosen uniformly at random.
In a single data set the keys are required to be unique, whereas the same value may occur
multiple times. In all of our experiments, for union, intersect and difference, n will
denote the size of the larger tree, while m will denote the size of the smaller tree.

8.2. Comparing different trees

To compare the various BBSTs we choose union as the representative operation. Other
operations would lead to similar results since all operations except join3 are generic across
the trees. The experiments we performed showed that the trees are competitive with each
other. This may be due to the fact that the cost of cache misses dominates over the
other operations we perform. Despite the similarities, the AVL tree gave the overall best
results. It is about 15% better than the red black tree, which had the slowest times in our
experiments. Table 8.1 shows the timings of all our BBSTs across different thread counts
for n = m = 108, while table 8.2 shows the results for n = 108 and m = 107. It is evident
that our union algorithm performs work proportional to the smaller input tree.

33

34 8. Evaluation

Tree
Number of Threads

1 2 4 8 16 32 64

AVL 34.69 17.75 8.86 4.51 2.29 1.17 0.80

WB 35.37 18.30 9.40 4.79 2.41 1.23 0.87

Treap 37.35 19.40 10.03 5.08 2.57 1.30 0.86

RB 40.91 21.02 10.85 5.54 2.79 1.41 0.97

Table 8.1.: Timings for union across different trees (n = m = 108).

Tree
Number of Threads

1 2 4 8 16 32 64

AVL 3.37 1.75 0.91 0.46 0.23 0.12 0.085

WB 3.60 1.85 0.94 0.49 0.24 0.12 0.089

Treap 3.71 1.95 1.01 0.50 0.25 0.13 0.088

RB 4.46 2.19 1.14 0.55 0.28 0.14 0.1

Table 8.2.: Timings for union across different trees (n = 108,m = 107).

In Figure 8.1 we show the speedup of union across different trees for n = m = 108. We
get a 40-fold speedup on our machine. For smaller input trees we get less speed up, which
is due to the lack of paralelism. In the case of n = m = 105 we get a speedup of 25. Figure
8.2 illustrates the timings of union as a function of size where n = m = 10i.

0 20 40 60

0

20

40

60

Threads

S
p
ee
d
u
p

Union, n = m = 108

AVL
RB

Treap
WB

Figure 8.1.: Speed up for union across different trees (n = m = 108).

8.3. Comparing functions

We use the AVL tree as the representative tree to compare different functions with each
other. As one can see from the previous experiments, choosing any other tree would
not have a significant impact on our timings. In Figure 8.3 we give a comparison of

34

8.3. Comparing functions 35

104 105 106 107 108

101

102

n,m

T
im

e
[n
s]
p
er

el
em

en
t

threads=64

AVL
WB
Treap
RB

Figure 8.2.: Timings of union across different trees as a function of size n = m = 10i, i ∈
{4..8}.

various functions, including union, intersect, difference and filter. For the first
three operations the size of the larger tree is fixed, while the size of the smaller tree is
varied from 104 to 108. Since filter only operates on a single tree, it uses the smaller
tree as its input. For the filter condition we choose to keep all entries with an even value.
This way every node has an equal probability of making it into the result set. The first
three operations compare very similar, while filter is a bit faster. This is due to the less
work it has to perform. In another experiment we tested different approaches of building
a map from a sequence of random key-value pairs. The first approach is making use of the
union-based build as introduced in Chapter 5. The second approach is first presorting its
input using the parallel sort implementation of the STL. In contrast to the union-based
build we use join3 to merge the subtrees together as we go back up the recursion tree.
This is more efficient than calling union, which effectively also ends up calling join3.
Both approaches take O(n log n) time. The dominant cost for the second appraoch is
the presort, while the actual build takes O(n) time. The comparison of different build

methods is given in Figure 8.3. It shows that from an input size of 105 the union-based
build compares worse against the join-based. We think that the worse time for smaller
sizes is because the parallel sort of STL is not well suited for smaller input sizes. In our
library we make use of the join-based variant. We argued in the section about persistance
that we support both persisting and non-persisting (destructive) operations. We expect
that a destructive operation is less costly than its persisting counterpart. The reason for
this is that destructive operations omit the cost of copying nodes entirely. To see how
much of the cost falls to persistance we performed an experiment with union. The code
for both variants is the same, the only difference is that the destructive union takes its
arguements wrapped in a final statement. Figure 8.3 gives a comparison of a persisting
and a destructive union. The results show that the destructive version is about 40% faster
across all input sizes. This supports the fact that destructive operations can be useful in
practice.

35

36 8. Evaluation

104 105 106 107 108

101

101.5

m

T
im

e
[n
s]
p
er

el
em

en
t

n = 108, threads=64

union
intersect
difference

filter

Figure 8.3.: Comapring different functions on AVL trees. (n = 108,m = 10i for i ∈ {4..8}).

104 105 106 107 108

101

102

103

m

T
im

e
[n
s]
p
er

el
em

en
t

threads=64

join-build
union-build

Figure 8.4.: Comparing different versions of building a map.

8.4. Comparing to STL

The STL has implementations of an ordered map and set. Both are implemented using a
red-black tree as the underlying structure. Many operations that we offer are not supported
by the STL. One of the things we tested is the insertion into a map. We were inserting
elements in a random key-order into the maps. Since our implementation of insert is
making use of join and split, it is expected to be slower than a direct implementation.
To see how big the difference is between a join-based and a conventional implementation,
we implemented and tested both version. We illustrate a comparison in Figure 8.6 (a).
Our join-based insertion is by a factor of 2 slower than our direct implementation. The
STL map was a bit faster than our direct implementation which is most likely due to the
fact that we do extra work in order to check for shared nodes. The second experiment
we performed with the STL was about taking the union of two containers. The STL

36

8.4. Comparing to STL 37

104 105 106 107 108

101

101.5

n,m

T
im

e
[n
s]
p
er

el
em

en
t

threads=64

persistent
destructive

Figure 8.5.: Persistent vs. Destructive union.

offers for this the set_union function, which takes two sorted containers and returns their
union. It is implemented by finger tracing both input sequences simultaneously, yielding
a running time of O(n + m) in the worst case. However, this is only true for random-
access containers. set_union can be also used to compute the union of maps or sets, but
it will do so by inserting all the elements into the result container. This will lead to a
worst case complexity of O((n+m) log(n+m)). We give a comparison of set_union with
std::vector and std::map along with our union implementation in Figure 8.6 (b). It is
evident that our union is a lot faster in merging smaller with larger trees. Our union is
up to 4 magnitudes faster than the vector-based set_union for n = 104 and m = 108 The
worst case for our union algorithm is when both trees are of equal size. At this point we
get worse than the linear time union.For n = m = 108 we are about 8 times slower than
the vector-based set_union and about 8 times faster than map-based set_union.

104 105 106 107 108

102.5

103

103.5

n

T
im

e
[n
s]
p
er

el
em

en
t join-based

conventional
std::map

(a) Map insertion

104 105 106 107 108

102

103

104

105

106

107

m

T
im

e
[n
s]
p
er

el
em

en
t

n = 108

join-based
std::set

std::vector

(b) Sequential Union

Figure 8.6.: Comparing our library to the STL

37

38 8. Evaluation

8.5. Comparing to parallel implementations

We compare our library against several parallel search trees, which include parallel red-
black trees from the Multi Core Standard Template Library (MCSTL), weight balanced B-
trees, as described in [EKS14], and parallelized (a, b)-trees [AS15]. To compare the various
implementations we use union as the representative operation. All of the mentioned search
trees provide a parallel implmenetation of union or offer support for bulk insertions. Since
both operations achieve the same effect, we will simply refer to them as union. To get
times which would reflect the most accurate performance in practice, we measured the
time across a sequence of incremental union operations. That is, we first construct a main
tree and then iterate over a sequence of newly constructed trees (bulks) and merge them
one by one to the main tree. This scenario is likely one for which the union operation
would be commonly used in practice. We report the average time over the sequence of
updates. In order not to overuse the main memory when performing this experiment with
larger input trees, we restrict the number of iterations to be 100.

0 20 40 60

101

102

103

threads

T
im

e
[n
s]
p
er

el
em

en
t

n = 108,m = 107

tree-map
mcstl

wb-trees
ab-trees

Figure 8.7.: Comparision of union on parallel search trees. All times represent the avarage
time taken over 100 consecutive union operations.

In Figure 8.7 we give an comparsion on how well the various implementation perform for
the case n = 108 and m = 107. We note that n here indicates the size of the main tree,
while m stands for the bulk size. The times show that our algorithm compares worse
than the other search trees, except from the MCSTL. Although it has a slower sequential
time, it achieves a far greater speedup. From a thread count of about 20 and onwards our
algorithm outperforms the MCSTL by up to a factor of 2 on 64 threads. The B-tree and
(a, b)-tree implementations turned out to be superior over the binary search trees. The
(a, b)-trees achieved the best times. Compared to our implementation on 64 threads, they
are by a factor of 7 faster, while the weight balanced B-trees are faster by a factor of 4.
On another figure 8.8 we show the same experiment but across different tree sizes. We
fix the main tree size to be 108 and set the thread count to 64. The figure illustrates the
times as a function of the bulk size, from 104 to 108. The figure shows that the binary
search trees get barely better at processing single elements as the bulk size increases on
64 cores. The (a, b)-trees, on the other hand, get about 10 times faster in processing
an element when the bulk size changes from 104 to 108. Overall our implementation
turned out to be competitive with the MCSTL’s red-black trees, but not with the other

38

8.5. Comparing to parallel implementations 39

104 105 106 107 108

101

102

m

T
im

e
[n
s]
p
er

el
em

en
t

n = 108, threads=64

tree-map

mcstl

wb-trees

ab-trees

Figure 8.8.: Comparision of union on parallel search trees. All times represent the average
time taken over 100 consecutive union operations.

implementations. Some reasons might include their high cache efficency, but also overall
lower height compared to the binary search trees.

39

9. Conclusion

We implemented a parallel and persistent C++ library for ordered maps and sets. For
the underlying structure we compared the performance of four different balanced binary
search trees, including AVL trees, red-black trees, weight-balanced trees and treaps. The
implementation of a single tree is fully captured by the join operation. We describe efficient
join algorithms for all of our trees. They are work efficient and construct a balanced result
tree. With the use of only join we show how to implement many other tree operations.

Based on the experiments we performed our library achieves its best results with the
AVL tree. Some reasons for this might be the stricter balacing condition and the simpler
implemenation. We demonstrated that the join-based algorithms for union, intersect and
difference can be up to several magnitudes faster (on a single core) in merging smaller with
larger trees, compared to a naive sequential implementation. However, our implementation
did not turn out to be the best option when it comes to the parallel setting. Despite being
comparable to the MCSTL, our implementation was outperformed by weight-balanced
B-trees and (a, b)-trees. Our parallel algorihms achieve a speedup of up to 44 on 64
cores. On larger input files the speedup is almost linear when using less than 32 threads,
beyond we achieve a parallel slowdown. We do not think that the reason for this is the
lack of parallelism. It is more likely due to the memory communication, which seems
to be a bottleneck. Our implementation was designed to be persistent and concurrent
safe. Despite the additional work we do to achieve this, our implementation compared
reasonably well to the STL implementation of ordered sets and maps. Persistence can be
useful in many applications. We use a version of path copying which makes it possible to
use to use persistence at will. We have shown that it can be useful in practice to support
destructive operations as well. It would be interesting to see how our implementation would
perform with other persistence techniques, which are more memory efficient. Another
thing we left as a possibility for future work was the implementation of a tracing garbage
collector. It would improve the cache locality and reduce the time overhead of recollecting
nodes immediately.

41

Bibliography

[AS15] Y. Akhremtsev and P. Sanders, “Fast parallel operations on search trees,” 2015.

[AVL62] G. M. Adelson-Velsky and E. M. Landis, “An algorithm for the organization
of informaiton,” Soviet Mathematics Doklady, 1962.

[BCCO10] N. Bronson, J. Casper, H. Chafi, and K. Olukotun, “A practical concurrent
binary search tree,”PPoPP ’10 Proceedings of the 15th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 2010.

[BE13] J. Besa and Y. Eterovic, “A concurrent red-black tree,” Journal of Parallel and
Distributed Computing, 2013.

[BM80] N. Blum and K. Mehlhorn, “On the avarage number of rebalacing operations
in weight-balanced trees,” Theoretical Computer Science 11, 1980.

[BRM98] G. Blelloch and M. Reid-Miller, “Fast set operations using treaps,”10th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA’98), 1998.

[DSST89] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” Journal of Computer and System Sciences, 1989.

[EKS14] S. Erb, M. Kobitzsch, and P. Sanders, “Parallel bi-objective shortest paths
using weight-balanced b-trees with bulk updates,” Proceedings of the 13th In-
ternational Symposium on Experimental Algorithms, 2014.

[FK01] A. Fiat and H. Kaplan, “Making data structures confluently persistent,” Pro-
ceedings of the 12th Annual Symposium on Discrete Algorithms, 2001.

[FS07] L. Frias and J. Singler, “Parallelization of bulk operations for stl dictionar-
ies,” Proceeding Euro-Par’07 Proceedings of the 2007 conference on Parallel
processing, 2007.

[GS78] L. Guibas and R. Sedgeweick, “A dichromatic framework for balanced trees,”
Proceedings of the 19th Annual Conference on Foundations of Computer Sci-
ence, 1978.

[JGB97] E. Johnson, D. Gannon, and P. Beckman, “Hpc++: Experiments with the par-
allel standard template library*,” ICS ’97 Proceedings of the 11th international
conference on Supercomputing, 1997.

[KL80] H. T. Kung and P. L. Lehman, “Concurrent manipulation of binary search
trees,” ACM Transactions on Database Systems (TODS), 1980.

[Mic04a] M. M. Michael, “Hazard pointers: Safe memory reclamation for lock-free ob-
jects,” IEEE Transactions on Parallel and Distributed Systems, 2004.

[Mic04b] ——, “Scalable lock-free dynamic memory allocation,” ACM SIGPLAN 2004,
Conference on Programming Language Design and Implementation (PLDI),
2004.

43

44 Bibliography

[NR72] J. Nievergelt and E. M. Reingold, “Binary search trees of bounded balance,”
STOC ’72 Proceedings of the fourth annual ACM symposium on Theory of
computing, 1972.

[PP01] H. Park and K. Park, “Parallel algorithms for red–black trees,” Theoretical
Computer Science, 2001.

[SA96] R. Seidel and C. R. Aragon, “Randomized search trees,” Algorithmica, 1996.

[SFB16] Y. Sun, D. Ferizovic, and G. Blelloch, “Just join for parallel ordered sets and
maps,” 2016.

[ST86] N. Sarnak and R. E. Tarjan, “Planar point location using persistent search
trees,” Communications of the ACM, 1986.

[Tar82] R. E. Tarjan, “Data structures and network algorithms,” SIAM, 1982.

44

Appendix

A. Examples

Set union example

1 #include <iostream>
2 #include <vector>
3 #include ”tree set .h”
4

5 tree set<int> read set() { ... }
6

7 int main() {
8 tree set<int>::init() ;
9

10 // construct sets
11 tree set<int> a = read set();
12 tree set<int> b = read set();
13

14 tree set<int> c = set union(a, b);
15

16 vector <int> output;
17

18 c.content(std :: back inserter(output));
19 for (vector<int>::iterator it = output.begin(); it != output.end(); ++it) {
20 std :: cout << ∗it << endl;
21 }
22

23 tree set<int>::finish() ;
24 return 0;
25 }

Filter exaple

1 #include <iostream>
2 #include <vector>
3 #include ”tree map.h”
4

5 tree map<int, int> read map() { ... }
6

7 int main() {
8 tree map<int, int>::init();
9

10 // construct map
11 tree map<int, int> m = read map();
12

13 tree map<int, int > res = m.filter([&] (pair p) {return (p.second % 2 == 0);});
14

15 vector <int> output;

45

46 9. Appendix

16 res .content(std :: back inserter(output));
17 for (vector<int>::iterator it = output.begin(); it != output.end(); ++it) {
18 std :: cout << ∗it << endl;
19 }
20

21 tree map<int, int>::finish() ;
22 return 0;
23 }

Find example

1 #include <iostream>
2 #include ”tree map.h”
3

4 tree map<int, int> read map() { ... }
5

6 int main() {
7 tree map<int, int>::init();
8

9 // construct map
10 tree map<int, int> m = read map();
11

12 maybe<int> sol = m.find(42);
13

14 if (sol) {
15 cout << ”The solution is: ”<< ∗sol << endl;
16 } else {
17 cout << ”No solution was found”<< endl;
18 }
19

20 tree map<int, int>::finish() ;
21 return 0;
22 }

46

	Contents
	1 Introduction
	2 Acknowledgements
	3 Preliminaries
	3.1 Binary Search Tree
	3.2 Balanced Binary Search Trees
	3.2.1 AVL Tree
	3.2.2 Weight-Balanced Tree
	3.2.3 Red-Black Tree
	3.2.4 Treap

	3.3 Basic Operations on BSTs
	3.3.1 Tree rotations

	3.4 Ordered Set
	3.5 Ordered Map
	3.6 Lockfree Data Structures
	3.7 Persistence
	3.8 Garbage Collection
	3.9 Parallel Computation Model

	4 Related Work
	5 The Join Operation
	5.1 AVL Trees
	5.2 Red-Black Tree
	5.3 Weight-Balanced Tree
	5.4 Treap
	5.5 Operations using Join
	5.5.1 Split
	5.5.2 Union
	5.5.3 Intersect
	5.5.4 Difference
	5.5.5 Insert
	5.5.6 Delete
	5.5.7 Range
	5.5.8 Filter
	5.5.9 Build

	6 Implementation Details
	6.1 Our library
	6.2 Persistence
	6.3 Memory management
	6.3.1 Reference count collection

	7 Library Interface
	7.1 Method Summary

	8 Evaluation
	8.1 Setting
	8.2 Comparing different trees
	8.3 Comparing functions
	8.4 Comparing to STL
	8.5 Comparing to parallel implementations

	9 Conclusion
	Bibliography
	Appendix
	A Examples

