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Outline	

Identification	 is	 an	 essential	 part	 of	 developing	 virtual	 models	 of	 dynamic	

systems.	 For	 nonlinear	 systems	 the	 number	 of	 describing	 parameters	 per	

degree	of	freedom	and	the	difficulty	of	finding	the	proper	describing	functions	

increases	 with	 the	 complexity	 of	 the	 underlying	 nonlinearities.	 Therefore,	

nonparametric	 identification	 approaches	 have	 some	 significant	 advantages	

over	parametric	techniques	in	case	of	nonlinear	systems.	

The	present	thesis	proposes	a	nonparametric	 identification	method	for	highly	

nonlinear	 systems	 that	 is	able	 to	 reconstruct	 the	underlying	nonlinearities	 in	

form	 of	 three-dimensional	 generalized	 restoring	 force	 surfaces	 between	 de-

grees	of	freedom,	which	are	arbitrary	functions	of	two	state	variables,	without	a	

priori	knowledge	of	the	describing	nonlinear	functions.	There	are	some	known	

methods	for	this	purpose	such	as	the	Restoring	Force	Surface	Method	(RFSM)	

or	 techniques	 that	 utilise	 the	 Hilbert-Huang	 Transform.	 The	 current	 study	

explores	 the	 promising	 approach	 of	 using	master-slave	 synchronisation	 be-

tween	the	virtual	model	and	the	real	system,	which	to	the	author’s	knowledge	

has	not	yet	been	investigated	in	the	literature.	The	synchronization	is	realized	

via	nonlinear	Kalman	Filter	algorithms,	which	are	optimal	observers	in	a	least-

squares	sense.	Using	the	well-known	state	augmentation	technique,	the	Kalman	

Filter	can	be	 turned	 into	 a	dual	state	and	parameter	estimator	 to	 identify	pa-

rameters	of	 a	priori	 characterised	nonlinearities.	The	present	 study	proposes	

an	extension	of	this	technique	towards	nonparametric	identification.	A	general	

nonlinearity	model	 is	 introduced	by	describing	 the	 restoring	 forces	via	 time-

variant	 linear	 coefficients	 of	 the	 state	 variables,	which	are	 estimated	as	aug-

mented	states.	The	estimation	procedure	is	followed	by	an	a	posteriori	proba-

bilistic	analysis	that	reconstructs	noisefree	restoring	force	characteristics	using	

the	estimated	states	and	 their	estimated	covariance	matrices.	Observability	 is	
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provided	 using	 only	 one	 measured	 quantity	 per	 degree	 of	 freedom,	 which	

makes	this	approach	less	demanding	in	the	number	of	necessary	measurement	

signals	compared	with	other	nonparametric	solutions	such	as	the	RFSM.	Due	to	

the	statistical	rigour	of	the	procedure,	it	successfully	addresses	signals	corrupt-

ed	 by	 significant	 measurement	 noise.	 Thanks	 to	 the	 general	 Kalman	 Filter	

algorithm,	 the	 approach	 can	 be	 integrated	 in	 a	 full	 identification	workflow,	

where	 the	parametric	estimation	of	 a	priori	known	functions	of	 the	system	 is	

carried	out	as	well.	

In	 the	 present	 thesis	 the	method	 is	 described	 in	 detail.	 This	 is	 followed	 by	

virtual	and	real-life	identification	examples	of	one	and	three	degree	of	freedom	

nonlinear	mechanical	systems	to	demonstrate	the	effectiveness	of	the	proposed	

technique.	Based	on	 these	examples	several	 implementation	properties	of	 the	

approach	are	investigated	and	advantages	as	well	as	challenges	in	comparison	

to	state	of	the	art	methods	are	discussed.	



	

	

Abstract	

A	nonparametric	identification	method	for	highly	nonlinear	systems	is	present-

ed	 that	 is	able	 to	 reconstruct	 the	underlying	nonlinearities	 in	 form	 of	 three-

dimensional	 generalized	 restoring	 force	 surfaces	 using	 vibration	 measure-

ments	without	 a	priori	knowledge	of	 the	describing	nonlinear	 functions.	The	

approach	is	based	on	nonlinear	Kalman	Filter	algorithms	using	the	well-known	

state	augmentation	technique	that	turns	the	filter	into	a	dual	state	and	parame-

ter	 estimator,	 of	which	an	 extension	 towards	nonparametric	 identification	 is	

proposed	 in	the	present	thesis.	A	general	nonlinearity	model	 is	 introduced	by	

describing	 the	restoring	 forces	via	 time-variant	 linear	coefficients	of	 the	state	

variables,	which	are	 estimated	 as	 augmented	 states.	Due	 to	 the	probabilistic	

rigour	 of	 the	 procedure,	 noisefree	 restoring	 force	 characteristics	 are	 recon-

structed	even	in	the	presence	of	significant	measurement	noise.	Thanks	to	the	

Kalman	 Filter	 algorithm,	 observability	 is	 provided	 using	 only	 one	measured	

quantity	per	degree	of	 freedom,	and	 the	approach	 can	be	 integrated	 in	 a	 full	

identification	workflow,	where	the	parametric	identification	of	a	priori	known	

functions	of	the	system	is	carried	out	as	well.	The	effectiveness	of	the	proposed	

technique	 is	 demonstrated	 on	 virtual	 and	 real-life	 identification	 examples	 of	

one	and	three	degree	of	freedom	nonlinear	mechanical	systems.	





	

	

Kurzfassung	

In	 der	 vorliegenden	 Arbeit	 wird	 eine	 nichtparametrische	 Identifika-

tionsmethode	für	stark	nichtlineare	Systeme	entwickelt,	welche	in	der	Lage	ist,	

die	Nichtlinearitäten	basierend	auf	Schwingungsmessungen	in	Form	von	allge-

meinen	 dreidimensionalen	 Rückstellkraft-Flächen	 zu	 rekonstruieren	 ohne	

Vorkenntnisse	über	deren	 funktionale	Form.	Die	Vorgehensweise	basiert	 auf	

nichtlinearen	 Kalman	 Filter	 Algorithmen,	 welche	 durch	 Ergänzung	 des	

Zustandsvektors	 in	 Parameterschätzer	 verwandelt	werden	 können.	 In	 dieser	

Arbeit	 wird	 eine	 Methode	 beschrieben,	 die	 diese	 bekannte	 parametrische	

Lösung	zu	einem	nichtparametrischen	Verfahren	weiterentwickelt.	Dafür	wird	

ein	allgemeines	Nichtlinearitätsmodell	eingeführt,	welches	die	Rückstellkräfte	

durch	 zeitvariable	 Koeffizienten	 der	 Zustandsvariablen	 beschreibt,	 die	 als	

zusätzliche	Zustandsgrößen	geschätzt	werden.	Aufgrund	der	probabilistischen	

Formulierung	der	Methode,	können	trotz	signifikantem	Messrauschen	störfreie	

Rückstellkraft-Charakteristiken	 identifiziert	werden.	Durch	den	Kalman	Filter	

Algorithmus	 ist	 die	 Beobachtbarkeit	 der	Nichtlinearitäten	 bereits	 durch	 eine	

Messgröße	 pro	 Systemfreiheitsgrad	 gegeben.	 Außerdem	 ermöglicht	 diese	

Beschreibung	 die	Durchführung	 einer	 vollständigen	 Identifikation,	wobei	 die	

restlichen	konstanten	Parameter	des	Systems	zusätzlich	geschätzt	werden.	Die	

Leistungsfähigkeit	des	entwickelten	Verfahrens	wird	anhand	von	virtuellen	und	

realen	 Identifikationsbeispielen	 nichtlinearer	mechanischen	 Systeme	mit	 ein	

und	drei	Freiheitsgraden	demonstriert.	
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1 Introduction	and	literature	
overview	

1.1 Motivation	
Virtual	 models	 and	 numerical	 simulation	 have	 become	 crucial	 parts	 of	 the	

development	 of	 nearly	 all	 human-made	 structures.	 Their	 importance	 is	 ever	

growing	as	the	computational	power	of	modern	computers	is	increasing	expo-

nentially	 and	 the	 related	 hardware	 costs	 are	 decreasing	 rapidly.	 Software	

development	of	the	past	few	decades	 led	to	a	wide	variety	of	simulation	envi-

ronments	 that	enable	 the	engineers	 of	 today	 to	model	 complex	dynamic	 sys-

tems	 (Dresig	 &	Fidlin,	2014).	This	development	makes	 virtual	models	highly	

attractive	to	replace	costly	physical	models	and	experiments.	Such	models	are	

however	 not	 ready	 to	 be	 employed	 for	 the	 prediction	 of	 the	 real	 system’s	

behaviour	until	their	properties	(i.e.	parameters	and	characteristics)	have	been	

tuned	 to	 appropriate	 values.	 Therefore,	 system	 identification	 is	 an	 essential	

part	 of	 developing	 virtual	 models	 (Kerschen,	 Worden,	 Vakakis,	 &	 Golinval,	

2006),	(Kerschen,	Worden,	Vakakis,	&	Golinval,	2007).	

For	 linear	systems	well-defined	 frameworks	provide	straightforward	method-

ologies	to	solve	the	identification	problem	(Ljung,	2013),	(Okuma	&	Oho,	1997).	

Linear	consideration	of	dynamic	systems	is	very	popular.	It	is	and	most	certain-

ly	will	 remain	an	 important	domain	of	virtual	model	development.	However,	

"most	of	everyday	 life	 is	nonlinear"	(Strogatz,	1994),	since	"the	world	around	

us	and	we	ourselves	are	inherently	nonlinear"	(Fidlin,	2006).	Simply-sounding	

properties	 of	 dynamic	 systems	 such	 as	 the	 presence	 of	 friction	 or	 end-stop	

(Fidlin,	2006)	or	time-delay	(Stépán,	1989)	can	lead	to	extremely	complex	and	

exotic	behaviour.	Unfortunately	there	are	no	general	identification	solutions	for	
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nonlinear	 systems.	Numerous	 approaches	are	 available,	 each	 of	 them	having	

their	advantages	and	drawbacks	depending	on	the	specific	system	of	interest.	

There	are	some	general	requirements	 that	should	be	 fulfiled	by	an	 identifica-

tion	procedure:	

· The	necessary	measurement	 setup	 should	be	as	 simple	as	possible.	

(Decreasing	experiment	complexity	to	develop	 less	costly	methodol-

ogies	for	determining	system	properties	is	an	important	trend	in	test	

rig	development	(Klöpper,	Okuma,	&	Krüger,	2013).)	

· The	procedure	should	be	robust	against	measurement	noise.	If	possi-

ble	the	engineer	should	receive	a	quantification	of	the	uncertainty	of	

the	identified	properties	caused	by	the	noisiness	of	the	measurement	

signal.	(Although	the	accuracy	of	available	experimental	equipment	is	

increasing	 rapidly,	 measurement	 noise	 is	 still	 unavoidable	 and	 in	

most	situations	can	not	be	neglected.)	

· The	procedure	should	be	computationally	as	fast	and	simple	as	pos-

sible.	(Although	 the	capacity	of	 today’s	computers	 is	 increasing	 fast,	

the	demand	on	fast	and	flexible	product	development	is	increasing	as	

well.)	

In	 comparison	 to	 linear	 systems	 there	are	 some	additional	difficulties	arising	

from	nonlinearities:	

· The	number	of	system	describing	parameters	per	DoF	increases	lead-

ing	 to	 higher	 computational	 demand	 and	 sometimes	 convergence	

problems	during	the	identification.	

· The	 recognition	 of	 the	 type	 of	nonlinearities	 in	 order	 to	define	 the	

system	parameters	prior	 to	 the	 identification	procedure	 is	 in	 some	

cases	very	difficult.	
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· Nonlinear	phenomena	(such	as	bifurcations,	 limit	cycles	and	chaotic	

behaviour)	are	highly	sensitive	to	model	parameters,	which	 leads	to	

an	increased	necessity	of	identification	accuracy.	

Under	 these	 conditions	nonparametric	 identification	approaches	 (q.v.	Section	

1.4.2)	 have	 some	 significant	 advantages	 over	 parametric	 techniques	 (q.v.	

Section	1.4.1),	since	for	a	wide	class	of	nonlinearities	(q.v.	Section	1.2)	they	do	

not	require	the	a	priori	definition	of	the	nonlinear	functions.	Hence,	there	 is	a	

great	need	 of	nonparametric	 identification	methods	 that	 fulfil	 the	 aforemen-

tioned	requirements.	

1.2 Nonlinearities	in	dynamic	systems	
A	general	nonlinear	system,	whose	dynamics	are	governed	by	ordinary	differ-

ential	equations	(ODEs),	is	given	by	two	vector	functions	(a	and	h)	of	the	state	

vector	x	and	the	input	vector	u	that	define	the	system	consisting	of	the	process	

equation	(1.1)	and	the	measurement	equation	(1.2)	of	the	form	

̇ = ( , , ),	 (1.1)

= ( , ),	 (1.2)

where	 y	 denotes	 the	 vector	 of	measured	 quantities	with	 a	 size	 of	 ny,	which	

defines	the	number	of	measurement	signals.	Let	the	number	of	states	(the	size	

of	x)	and	the	number	of	inputs	(the	size	of	u)	be	denoted	by	n	and	nu	respective-

ly.	Processes	given	by	differential-algebraic	equations	(DAEs)	and	delay	differ-

ential	 equations	 (DDEs)	 (Stépán,	 1989)	 are	 not	 considered	 explicitly	 at	 this	

point.	However,	in	Section	1.6.3	and	2.2.3	it	is	shown	that	the	presented	proce-

dure	can	accommodate	DAEs	as	a	general	form	of	nonlinearity	and	at	the	end	of	

Section	 3.4.1	 the	 possibilities	 of	 extending	 the	 approach	 towards	 DDEs	 are	

briefly	discussed.	
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In	most	cases	 it	 is	possible	to	separate	a	set	of	time-invariant	functions	of	the	

state	variables,	denoted	by	 the	vector	of	 functions	c,	 inside	 the	 system	equa-

tions,	which	are	then	given	as	

̇ = ( , , ( ), ),	 (1.3)

= ( , , ( )).	 (1.4)

In	 the	 special	 case,	 when	 each	 of	 these	 functions,	 denoted	 by	 cj,	 are	 two-

dimensional	(i.e.	their	values	depend	on	two	independent	variables,	denoted	by	

zj	and	vj),	the	vector	c	has	the	form	

= ( , ), … , , ,	 (1.5)

where	each	independent	variable	is	an	arbitrary	function	of	the	state	variables:	

= ( ),	 (1.6)

= ( ).	 (1.7)

Such	functions	can	not	describe	explicitly	time-dependent	sources	of	nonlinear-

ities,	 e.g.	parametric	 excitation	 (Insperger	 &	 Stépán,	2002),	however,	 a	huge	

domain	of	nonlinearities	are	 covered	by	 this	 formulation.	 In	 the	physical	do-

main	of	mechanical	systems	such	functions	mostly	represent	general	restoring	

forces	(force	or	torque)	between	DoFs	of	the	system.	These	functions	are	called	

force-state	 maps	 (Crawley	 &	 Aubert,	 1986)	 and	 their	 representing	 three-

dimensional	 surfaces	 are	 called	 restoring	 force	 surfaces	 (Kerschen,	Worden,	

Vakakis,	&	Golinval,	2006),	(Link,	Boeswald,	Laborde,	Weiland,	&	Calvi,	2011),	

denoted	by	RFS.	If	e.g.	zj	and	vj	are	 two	relative	displacements	 inside	 the	sys-

tem,	then	RFSj	(defined	by	cj)	represents	a	nonlinear	coupled	stiffness	charac-

teristic.	 Such	 characteristics	 are	 used	 e.g.	 to	model	 nonlinear	 clutch	 compo-

nents	(Tikhomolov,	2015).	However,	the	most	typical	RFSs	represent	nonlinear	

spring-dampers,	where	zj	is	the	deformation	and	vj	is	the	rate	of	deformation	of	
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the	spring-damper.	A	well	known	example	is	a	Liénard	system	(Strogatz,	1994),	

where	the	RFS	is	of	the	form	

( , ) = ( ) + ( ) .	 (1.8)

In	this	particular	RFS	a	coupled	(z-	and	v-dependent)	term	is	to	be	found.	Such	

RFSs	are	called	a	“coupled	RFS”,	denoted	by	cRFS.	On	the	other	hand	if	an	RFS	

can	 be	 given	 as	 the	 sum	 of	 a	 z-dependant	 “elastic”	 part	 and	 a	 v-dependant	

“dissipative”	part,	 it	 is	called	an	additive	RFS,	denoted	by	aRFS,	which	has	the	

form	

( , ) = ( ) + ( ).	 (1.9)

Let	 cE	and	 cD	be	 called	elastic	and	dissipative	 restoring	 force	 curves	with	 the	

abbreviations	 eRFC	 and	 dRFC	 respectively.	 If	 possible,	 one	 tries	 to	 model	

systems	with	additive	RFSs,	since	their	analytical	investigation	is	less	complex.	

Nonlinearities	such	as	progressive	and	degressive	stiffness,	backlash,	end-stop	

and	 friction	 can	be	described	by	 such	models.	Many	 experimental,	 analytical	

and	numerical	investigations	of	such	systems	can	be	found	in	the	literature,	e.g.	

(Ineichen,	2013),	(Tikhomolov,	2015),	(Ing,	Pavlovskaia,	&	Wiercigroch,	2011),	

(Viguie	&	Kerschen,	2010).	For	an	 extensive	 overview	of	 such	nonlinearities,	

incl.	 their	 advantages	 and	 undesirable	 effects	 in	 engineering	 structures,	 the	

reader	 is	 referred	 to	 (Fidlin,	 2006),	 (Dresig	 &	 Fidlin,	 2014)	 and	 (Ibrahim,	

2008).	

The	importance	of	RFSs	lies	in	the	fact	that	they	can	be	identified	in	a	nonpara-

metric	way,	 to	which	 the	present	study	aims	 to	offer	a	synchronisation-based	

solution.	Although	 the	 term	RFS	 originates	 from	 the	physical	domain	 of	me-

chanics	and	the	current	thesis	concentrates	on	the	identification	of	mechanical	

systems,	no	restrictions	will	be	made	that	would	not	allow	one	to	transfer	the	

investigated	methods	to	other	physical	domains.	(E.g.	in	Section	3.2	the	identifi-

cation	 of	 a	 Van	 der	 Pol	 system	 is	 taken	 as	 an	 example	 that	 originates	 from	

electronics.)	
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1.3 Problem	formulation	
For	 the	derivation	 of	 the	 synchronisation-based	nonparametric	 identification	

procedure	a	particular	class	of	mechanical	structures	is	considered	that	repre-

sents	a	special	subclass	of	the	systems	defined	by	(1.3)	and	(1.4).	Except	for	the	

excitation	 (input)	u	 the	 system	has	no	explicit	 time-dependence.	The	 consid-

ered	 structures	 have	N	DoFs	 connected	 via	N	RFSs	 in	 a	way	 that	 the	 defor-

mation	and	the	rate	of	deformation	coordinates	of	these	RFSs	(i.e.	zj	and	vj)	can	

be	defined	as	state	variables,	which	 leads	to	a	state	vector	of	 length	2N	 in	the	

form	

= ×
×

,	 (1.10)

where	z	 is	 the	vector	of	 the	deformation	coordinates	and	v	 the	vector	of	 the	

rate	of	deformation	coordinates	of	the	N	RFSs	respectively.	In	the	current	study	

many	load	cases	will	be	presented,	where	the	excitation	u	is	of	kinematic	type.	

In	such	situations	the	above	choice	of	state	space	coordinates	is	advantageous,	

since	no	integrals	or	derivatives	of	the	time	series	of	u	will	appear	in	the	system	

equations.	The	above	assumptions	 lead	to	the	following	particular	form	of	the	

process	equation:	

̇ ×
̇ ×

=

×

− ×

( , )
⋮

( , ) ×

+ × ×
,	 (1.11)

where	M	denotes	the	inertia	matrix.	The	input	matrix	B	defines	how	the	excita-

tion	u	 is	acting	 on	 the	mechanical	 system.	 If	 the	 system	 is	 excited	by	 forces,	

then	the	input	matrix	consists	of	specific	elements	of	the	inverse	inertia	matrix.	

In	case	of	a	kinematic	excitation	 in	the	form	of	acceleration	the	elements	of	B	

directly	 assign	 the	 components	 of	 u	 to	 the	 corresponding	 rows	 of	 equation	

(1.11),	i.e.	Bij∊{-1,0,1}.	
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The	primary	aim	of	the	present	study	is	to	investigate	a	nonparametric	identifi-

cation	method	based	on	(1.4)	and	(1.11)	that	reconstructs	the	N	RFSs	(i.e.	the	

functions	 cj)	 based	 on	 the	 time	 history	 of	 u	 and	 noisy	 measurements	 of	 y.	

Throughout	 the	 derivation	 of	 the	 nonparametric	 approach	 in	 Chapter	 2	 the	

matrix	M	(and	 therefore	B	also)	 is	assumed	 to	be	known.	This	assumption	 is	

relaxed	 later	in	Chapter	4,	where	the	additional	parametric	identification	of	M	

is	investigated.	

1.4 Identification	methods	of	nonlinear	
systems	

In	(Kerschen,	Worden,	Vakakis,	&	Golinval,	2007)	the	identification	of	nonline-

arities	 is	 defined	 to	 consist	 of	 three	 phases:	 detection,	 characterisation	 and	

parameter	 identification.	Possible	solutions	 to	 the	detection	problem	are	out-

side	 the	 scope	 of	 the	 current	 thesis.	 Answering	 the	 question,	 whether	 the	

system	 of	 interest	 exhibits	 a	 nonlinear	 behaviour	 that	 can	 not	 be	 neglected	

(linearised),	i.e.	the	detection,	is	considered	to	be	already	done.	We	assume	the	

case,	where	nonlinear	identification	is	necessary.	Therefore,	only	characterisa-

tion	and	parameter	identification	are	discussed	in	the	present	study.	Still	it	can	

be	mentioned	that	also	 in	situations,	where	detection	results	are	uncertain	or	

simply	not	 available,	 it	 is	 safer	 to	 start	with	nonlinear	methods,	 since	 linear	

behaviour	is	a	special	case	of	nonlinearity.	Although	the	current	thesis	is	dedi-

cated	 to	explore	 a	nonparametric	 technique	 that	allows	 the	resignation	of	 the	

parameter	 identification	 phase,	 it	 is	 important	 to	 point	 out	 that	 a	 method	

containing	this	phase	can	by	definition	still	be	a	nonparametric	approach.	This	

will	become	clear	later	on	in	this	section.	

The	 characterisation	 of	 mechanical	 systems	 described	 by	 (1.4)	 and	 (1.11)	

requires	the	approximation	of	the	RFSs	by	a	particular	function	of	the	form	
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, ≈ ̂ , , ,	 (1.12)

where	 pj	 denotes	 a	 vector	 of	 parameters	 that	 is	 to	 be	 estimated	 during	 the	

parameter	 identification	 phase.	 The	 purpose	 of	 system	 identification	 is	 to	

extract	 the	highest	possible	amount	of	global	 information	 from	 the	measure-

ment	signals	and	to	assign	the	gained	 information	to	the	 local	system	proper-

ties.	This	always	implies	the	assumption	of	an	a	priori	model	of	the	system.	The	

procedure	is	then	carried	out	by	fitting	this	model	to	the	measurements	in	the	

time-	or	frequency-domain	using	least-squares,	maximum	likelihood,	nonlinear	

optimization	 approaches	 or	 explicit	 formulas.	 Whether	 the	 a	 priori	 model	

requires	 the	 characterisation	 of	 the	 nonlinearities,	 i.e.	 the	 definition	 of	 the	

approximating	 functions	 (1.12),	 or	 not	 is	 an	 essential	 property	 of	 nonlinear	

identification	 techniques	 that	 leads	 to	 their	 classification	 into	 two	 groups:	

"parametric"	 or	 "nonparametric".	 In	 the	 following	 a	 brief	 overview	 of	 such	

techniques	 for	 nonlinear	 systems	 is	 given	 in	 order	 to	 place	 the	 investigated	

approach	in	the	multitude	of	existing	methods.	

1.4.1 Parametric	approaches	

In	these	techniques,	the	characterisation	of	the	RFSs	is	included	in	the	a	priori	

model	assumptions.	In	this	case,	the	fusion	of	the	a	priori	model	with	the	meas-

urement	data,	i.e.	the	fitting	procedure,	directly	estimates	the	best	fitting	values	

of	{p1,	p2,	…	,pN}.	

Optimisation	based	approaches	

Possibly	the	most	straightforward	way	of	nonlinear	 identification	 is	to	choose	

an	 appropriate	 function	 of	 the	 parameter	 vectors,	 denoted	 by	 eO,	 and	 use	 a	

suitable	 optimisation	 algorithm	 to	 find	 its	 global	minimum.	 This	 function	 is	

called	the	“objective	function”	that	should	represent	the	error	between	the	real	
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system	and	the	model.	Typically	the	mean	square	(MS)	error	is	chosen	for	this	

purpose,	which	leads	to	

( , , … , ) = ( − ) ( − )	,	 (1.13)

where	 	denotes	the	estimate	of	the	measurement	generated	by	the	model	and	

nS	 is	 the	 number	 of	 measurement	 samples.	 This	 approach	 is	 presented	 in	

(Kunath,	Niemeier,	 Schlegel,	 &	Will,	2014)	 in	 its	 classical	 form,	 the	 so	 called	

Single	Shooting.	In	this	approach	a	complete	simulation	of	the	model	is	done	at	

each	iteration	step	using	the	whole	time	series	of	u	and	one	set	of	parameters.	

eO	is	only	analysed	between	the	simulation	runs.	This	formulation	often	results	

in	objective	functions	with	several	local	minima,	which	implies	the	use	of	global	

optimisation	techniques	such	as	genetic	algorithms	(Charbonneau,	2002).	Such	

solutions	have	the	drawback	that	they	can	easily	end	up	in	an	enormous	num-

ber	of	iterations,	which	often	leads	to	unacceptable	identification	time.	Another	

difficulty	of	single	shooting	is	that	the	initial	error	is	cumulated	throughout	the	

whole	 integration,	which	 can	 even	 result	 in	 failed	 simulation	 runs	 for	 “bad”	

parameter	 sets	 (Michalik,	Hannemann,	&	Marquardt,	2009).	These	difficulties	

motivated	 several	 techniques	 that	 aim	 to	 form	 eO	 into	 a	 function	with	 one	

(global)	minimum.	In	this	case	much	faster	local	optimisation	algorithms	can	be	

applied	 such	 as	 the	 derivative	 based	 Newton’s	 method	 (Nocedal	 &	 Wright,	

1999)	or	 the	bit	 slower	but	derivative	 free	Simplex	algorithm	 (Charbonneau,	

2002),	(Lagarias,	Reeds,	Wright,	&	Wright,	1998).	

One	approach	dedicated	to	avoid	several	local	minima	is	called	Multiple	Shoot-

ing	 (Voss,	Timmer,	 &	Kurths,	2004).	Here	 the	measurement	 time	 is	 split	 into	

multiple	simulation	runs.	The	initial	states	of	the	time	segments	are	introduced	

as	 additional	 parameters,	 which	 increases	 the	 number	 of	 parameters	 to	 be	

optimised.	However,	due	 to	small	 integration	periods	 the	estimated	measure-

ment	is	always	kept	near	to	the	measured	signals,	which	results	in	a	beneficial	
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objective	 function.	 The	 Incremental	 Single	 Shooting	 (ISS),	 proposed	 in	

(Michalik,	Hannemann,	&	Marquardt,	2009),	aims	to	combine	the	advantages	of	

both	the	Single	and	the	Multiple	Shooting	technique.	

Another	solution	of	this	kind	is	the	Homotopy	method	that	modifies	the	system	

model	into	an	observer	of	the	form	

̇ = ( , , , , … , ) + ( − ),	 (1.14)

Where	the	“hat”	symbol	denotes	the	estimates	of	the	specific	quantities	and	K	

denotes	the	so	called	“synchronisation	gain”	that	recursively	forces	the	model	

to	 stay	 near	 to	 the	 measured	 behaviour.	 Successful	 implementation	 of	 this	

technique	for	multiple	DoF	vehicle	models	is	presented	in	(Vyasarayani,	Uchida,	

Carvalho,	&	McPhee,	2012)	and	the	application	to	identify	nonlinear	oscillators	

and	a	clutch	actuation	system	with	nonlinear	characteristics	 is	investigated	 in	

(Gunnarsson,	 2014).	 In	 these	works	 a	multi-step	 version	 of	 the	 approach	 is	

used,	where	multiple	optimisation	 steps	are	 carried	out	by	 reducing	 the	 syn-

chronisation	gain	from	step	 to	step	until	 the	final	result	 is	reached.	 In	(Sun	&	

Yang,	2010)	and	(Carlsson	&	Nordheim,	2011)	a	promising	single-step	version	

of	 this	 idea	 is	 implemented.	 For	 the	 calculation	 of	 K	 the	 recursive	 optimal	

approach	of	Unscented	Kalman	Filtering	(UKF)	is	used	and	the	classical	eO	from	

equation	(1.13)	is	replaced	by	the	maximum	likelihood	function.	These	modifi-

cations	aim	 to	result	 in	 the	optimal	solution	 in	 the	 first	step	of	 the	homotopy	

algorithm	making	the	further	iteration	steps	with	decreasing	K	unnecessary.	

Frequency	domain	parametric	approaches	

Frequency	 domain	 techniques,	 such	 as	 Experimental	Modal	 Analysis	 (EMA),	

provide	perhaps	 the	most	 convenient	way	 to	 identify	 linear	 systems.	One	 of	

their	important	advantages	is	their	ability	to	reconstruct	the	complete	underly-

ing	 linear	system	under	specific	measurement	conditions	without	 the	a	priori	

knowledge	 of	 the	 inertia	matrix	M.	 See	 e.g.	 in	 (Kletschkowski,	 2013),	where	
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acoustic	measurements	 are	 used	 for	 this	 purpose	 or	 in	 (Richardson,	 1977),	

where	the	general	theory	of	EMA	based	linear	system	identification	is	summa-

rised.	The	extension	of	these	techniques	towards	nonlinear	systems	motivated	

several	 investigations	with	fruitful	results.	Different	approaches	are	discussed	

in	(Worden	&	Tomlinson,	2001)	that	aim	to	adapt	the	theory	of	EMA	to	nonlin-

earities.	 In	(Peeters,	2010)	an	extensive	study	on	 the	usefulness	of	Nonlinear	

Normal	Modes	 (NNM)	 in	 the	 investigation	of	nonlinear	 systems	 is	presented.	

The	 same	 theory	 is	 applied	 in	 (Laxalde	 &	 Thouverez,	 2009)	 for	 the	 modal	

investigation	of	turbo	machinery	blades.	In	(Platten,	Wright,	Cooper,	&	Sarmast,	

2002)	the	underlying	multiple	DoF	linear	system	is	identified	at	low	excitation	

level.	Then	at	high	excitation	 level	the	nonlinear	modes	are	detected	and	sub-

sequently	excited	by	appropriate	 force	vectors	 in	order	 to	separately	 identify	

the	nonlinearities	of	each	mode	in	frequency	domain.	Mode	couplings	are	also	

identified	using	the	Nonlinear	Resonant	Decay	Method	(NL-RDM).	Similarly	 in	

(Zanotti	Fragonara,	et	al.,	2012)	well	separated	nonlinear	modes	of	a	bridge	are	

identified	considering	one	modal	DoF	at	a	time.	The	Frequency-domain	Nonlin-

ear	 Subspace	 Identification	method	 (FNSI)	 is	 successfully	 applied	 to	 a	 high-

dimensional	nonlinear	real-life	structure	in	(Noël	&	Kerschen,	2013).	

Another	 powerful	 tool	 for	 nonlinear	 parameter	 identification	 in	 frequency	

domain	is	the	Hilbert-Huang	Transform	(HHT),	which	approaches	the	problem	

from	a	different	point	of	view	than	the	previous	techniques.	It	can	be	classified	

as	time-frequency	method	(Kerschen,	Worden,	Vakakis,	&	Golinval,	2006),	since	

it	reconstructs	time-varying	frequency	domain	properties	of	measured	signals.	

It	is	based	on	the	Hilbert	Transform	(HT)	that	enables	the	determination	of	the	

instantaneous	amplitude,	phase	and	 frequency	of	monocomponent	oscillatory	

signals	 as	 time-series.	 The	 HHT	 extends	 this	 algorithm	 to	 multicomponent	

signals	using	the	empirical	mode	decomposition	(EMD)	to	extract	the	periodic	

components	 (Barnhart,	2011).	Based	 on	 the	 results	 of	 the	HHT	different	 ap-

proaches	have	been	proposed	that	allow	the	parametric	identification	of	multi-
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ple	DoF	 nonlinear	 systems.	One	 of	 these	 algorithms,	 the	 so	 called	 slow-flow	

model	identification	(SFMI),	is	proposed	in	(Kerschen,	Vakakis,	Lee,	McFarland,	

&	Bergman,	2008).	

Time-series	analysis	

In	time-series	analysis	the	system	model	is	formulated	in	difference	equations	

instead	of	ODEs.	The	goal	of	the	procedure	is	to	identify	the	coefficients	of	these	

equations	by	fitting	in	time	domain.	In	(Gelb,	Kasper,	Nash,	Price,	&	Sutherland,	

2001)	the	basic	models	for	 linear	systems	are	derived.	A	very	effective	exten-

sion	of	 the	approach	 to	nonlinear	 systems,	called	NARMAX	modelling,	 is	pre-

sented	in	(Kerschen,	Worden,	Vakakis,	&	Golinval,	2006).	

Observer-based	methods	

Observer-based	methods	 include	stochastic	approximation	discussed	 in	(Gelb,	

Kasper,	Nash,	 Price,	 &	 Sutherland,	 2001)	 and	 optimal	 estimation	 algorithms	

such	as	the	Kalman	Filter	(KF).	These	methods	rely	on	the	modification	of	the	

process	equation	into	(1.14).	The	basic	idea	that	enables	this	state	observer	to	

be	 applied	 for	 parameter	 identification	 is	 the	 so	 called	 state	 augmentation	

technique,	where	unknown	parameters	are	introduced	as	additional	state	space	

coordinates,	which	 leads	to	the	so	called	dual	state	and	parameter	estimation.	

This	approach	requires	nonlinear	extensions	of	 the	Kalman	Filter	such	as	 the	

Extended	KF	(EKF),	the	Unscented	KF	(UKF)	or	the	Particle	Filter	(PF).	See	e.g.	

in	 (Simon,	 2006).	 Since	 this	 approach	 plays	 an	 essential	 role	 in	 the	 current	

study,	a	more	detailed	description	of	these	algorithms	is	given	in	Section	1.6.	In	

this	section	the	attention	is	paid	to	successful	applications	in	the	literature.	The	

dual	state	and	parameter	estimation	of	mechanical	structures	is	carried	out	in	

(Wu	&	Smyth,	2007),	(Chatzi	&	Smyth,	2009)	and	(Li,	Suzuki,	&	Noori,	2004)	to	

estimate	 coefficients	 of	 strongly	 nonlinear	 hysteretic	 characteristics,	 and	 in	

(Kolansky	&	Sandu,	2012)	to	estimate	inertia	properties	of	ground	vehicles.	In	
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(Bessa,	Hackbarth,	Kreuzer,	 &	Radisch,	2014)	 the	 identification	of	an	electro-

hydraulic	servo	system	is	carried	out	and	the	implementation	of	the	augmented	

UKF	 is	presented	 in	 (Sitz,	 Schwarz,	Kurths,	 &	Voss,	2002)	 on	 the	 example	 of	

various	academic	nonlinear	systems	exhibiting	 limit	cycles	and	chaotic	behav-

iour.	A	robust	modification	of	the	KF,	the	H∞	 ilter,	is	proposed	in	(Kiriakidis	&	

O’Brien	 Jr.,	 2004)	 to	 handle	 uncertainties	 in	 the	 a	 priori	 model.	 A	 globally	

iterated	KF	can	be	used	to	overcome	the	problem	of	insufficient	convergence	of	

parameters	e.g.	due	to	short-time	measurement	signals.	This	idea	is	investigat-

ed	 in	 (Hoshiya	 &	Saito,	1984)	and	 in	 (Voss,	Timmer,	 &	Kurths,	2004).	 In	 the	

latter	 the	performance	 of	 the	 technique	 is	 shown	 to	be	 similar	 compared	 to	

Multiple	Shooting.	

DoF	identification	

A	special	parametric	identification	method	that	should	be	mentioned	 is	the	so	

called	Phase	Space	Reconstruction.	Its	aim	is	outside	the	scope	of	the	problem	

formulated	 in	Chapter	1.3,	 since	 it	deals	with	 the	 identification	of	 the	 funda-

mental	system	property	of	the	number	of	DoFs,	i.e.	N,	based	on	measurements	

of	nonlinear	attractors	of	 the	system.	An	explanation	of	 the	method	 including	

some	academic	examples	can	be	found	in	(Prahs,	2011).		

Estimation	of	the	time	history	of	varying	parameters	

Some	 of	 the	 aforementioned	methods,	 namely	 the	 ones	 that	 give	 parameter	

estimates	 for	each	measurement	 time	 step,	enable	 the	estimation	of	 the	 time	

history	 of	 varying	 parameters,	 i.e.	 the	 identification	 of	 time-variant	 systems.	

These	methods	 represent	 a	 bridge	 to	 nonparametric	 identification,	which	 is	

discussed	in	the	next	section.	

The	reconstruction	of	the	excitation	time-series	acting	on	the	system,	denoted	

by	u	in	equation	(1.1),	based	on	a	priori	system	models	and	measured	system	

responses	 is	 an	 important	 field	 of	 system	 monitoring,	 see	 e.g.	 (Sturm,	
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Moorhouse,	Kropp,	&	Alber,	2013).	This	topic	is	outside	the	scope	of	the	current	

study,	 however,	 many	 of	 the	 techniques	 applied	 to	 solve	 this	 problem	 can	

straightforwardly	be	applied	 to	 identify	 time-series	of	 varying	parameters	as	

well.	The	previously	mentioned	KF	 is	 often	used	 for	 this	purpose	 in	 its	 aug-

mented	form	with	u	 introduced	as	state	variable,	since	 it	gives	an	estimate	of	

the	model	 states	 recursively	 at	 every	 time	 step.	This	 technique	 is	 applied	 in	

(Zeile	&	Maione,	2015),	(Lourens,	Reynders,	De	Roeck,	Degrande,	&	Lombaert,	

2012)	 and	 (Lourens,	 et	 al.,	 2012)	 for	monitoring	 of	 system	 loads	 based	 on	

response	measurements.	In	such	applications	of	the	KF	a	new	challenge	arises	

regarding	the	convergence	of	the	augmented	states.	In	this	case	it	is	not	enough	

to	get	 a	converged	parameter	value	at	 the	end	of	 the	measurement	sequence.	

The	convergence	has	to	be	fast	enough	to	track	the	time-variance,	which	on	the	

other	 hand	 leads	 to	 increased	 noisiness	 of	 the	 results,	 since	 the	 observer	

somewhat	 starts	 to	 follow	 the	measurement	noise	 as	well.	This	 trade-off	be-

tween	 bias	 (phase	 shift)	 and	 variance	 (noisiness)	 is	 discussed	 in	 (Hansen,	

1992)	by	means	of	the	L-curve	in	general	mathematical	form.	The	L-curve	point	

of	view	has	 found	 its	application	 in	 the	above	mentioned	papers	as	well.	 If	 a	

priori	knowledge	about	the	expected	form	of	the	time-variance	is	available,	this	

can	be	integrated	in	the	estimation	procedure	in	order	to	reduce	the	phase	shift	

without	 increasing	the	noisiness	of	the	estimation	results.	This	idea	 is	used	 in	

(Jakubek	&	Fleck,	2009)	for	the	estimation	of	combustion	engine	 inner	torque	

using	an	augmented	Kalman	Filter.	Here	the	estimation	of	rapidly	varying	time	

signals	 is	replaced	by	the	estimation	of	constant	or	slowly	varying	coefficients	

of	specially	designed	basis	functions.	If	the	mentioned	a	priori	knowledge	is	not	

available	 one	 can	 introduce	 additional	 state	 variables,	which	 represent	 time	

derivatives	of	the	augmented	state	that	we	are	actually	interested	 in.	This	can	

also	drastically	reduce	phase	shift,	however,	on	the	cost	of	increasing	observer	

complexity.	These	methods	originate	from	the	theory	of	target	tracking	and	are	

discussed	 in	 (Simon,	2006)	and	 (Wu,	Lin,	Han,	 &	Li,	2010).	The	 resulting	dy-
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namic	models	of	 the	augmented	states	are	often	referred	 to	as	Random	Walk	

(RW)	models	(Young,	2000).	

The	 capability	 of	 the	KF	 to	 identify	 time-varying	 systems	 enables	 its	 on-line	

(real	 time)	 implementation.	 Such	 an	 application	 is	 presented	 in	 (Garcia	 &	

Antsaklis,	2009),	where	an	augmented	EKF	 is	 integrated	 in	 the	algorithm	of	a	

model	based	control	circuit	in	order	to	update	the	virtual	model	parameters	in	

real	time.	

The	aforementioned	HHT	approach	also	enables	 the	estimation	of	 time-series	

of	system	parameters.	Such	a	procedure	is	investigated	in	(Hu	&	Proppe,	2011)	

and	(Hu	&	Proppe,	2012),	where	nonlinear	 time-varying	1DoF	and	2DoF	sys-

tems	are	identified	based	on	noisy	measurements.	

General	parametric	functions	

An	extension	of	parametric	 techniques	 for	cases,	where	 a	priori	characterisa-

tion	 is	not	possible	due	to	a	 lack	of	information,	 is	the	 introduction	of	general	

parametric	approximations	of	 the	RFSs	 instead	of	using	physical	parameters.	

This	 can,	 for	 instance,	 require	 the	 application	 of	 power	 series	 polynomials,	

splines,	Chebyshev	series	or	Volterra	series.	An	implementation	of	the	latter	in	

frequency	 domain	 is	 presented	 e.g.	 in	 (Németh,	Kollár,	 &	 Schoukens,	 2001).	

Confusingly	 this	extension	 is	often	called	"nonparametric".	This	 is	 the	case	 in	

(Noël	 &	 Kerschen,	 2013),	where	 cubic	 splines	 are	 used,	 and	 also	 in	 (Masri,	

Chassiakos,	 &	 Caughey,	 1992),	where	weighting	 parameters	 of	 a	 neural	 net-

work	are	 identified.	Technically,	 these	solutions	are	still	parametric,	since	 the	

applied	general	 functions	are	 indeed	 a	 form	of	 a	priori	characterisation.	Here	

we	pay	with	increased	model	complexity	for	not	having	to	deal	with	the	charac-

terisation	 for	 specific	 applications.	Because	 of	 this,	 the	 actual	nonparametric	

solutions	 are	 called	 "truly	 nonparametric"	 in	 (Kerschen,	Worden,	 Vakakis,	 &	

Golinval,	2006)	for	the	sake	of	distinguishability.	
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Summary	of	parametric	methods	

Although	 parametric	 approaches	 are	 powerful	 solutions	 that	 can	 effectively	

address	high-dimensional	problems,	 they	still	have	one	drawback:	an	a	priori	

knowledge	of	 the	nonlinearities	 is	needed	 to	achieve	 a	quality	 result	without	

computational	problems.	Using	general	mathematical	models	that	can	describe	

arbitrary	nonlinearities	requires	a	large	number	of	parameters	that	can	lead	to	

difficulties	 during	 the	 identification	 process.	 Further	 specific	 problems	 can	

occur	in	case	of	strong	nonlinearities.	If	the	nonlinear	function	is	e.g.	piecewise	

continuous,	 identifyability	problems	 can	arise.	Such	 a	difficulty	 is	 revealed	 in	

(Bessa,	Hackbarth,	Kreuzer,	&	Radisch,	2014).	

1.4.2 Nonparametric	approaches	

In	 comparison	 to	 the	 previously	 discussed	 techniques,	 in	 nonparametric	 ap-

proaches	the	a	priori	model	assumptions	do	not	include	the	characterisation	of	

the	 RFSs,	 i.e.	 (1.12).	 While	 the	 measurement	 signals	 are	 processed,	 a	 point	

cloud	of	samples	is	generated	that	represents	the	RFSs	of	the	system.	Depend-

ing	on	 the	 specific	 technique	 these	 samples	can	 represent	different	measure-

ment	 load	 cases	 or	 different	 time	 instances	 of	 the	 same	measurement	 time-

series.	For	cRFSs	the	 ith	sample	of	the	 jth	RFS	 is	given	by	a	coordinate	triplet	

{zj,vj,fj}i	with	fj	denoting	the	jth	restoring	force.	In	case	of	an	aRFS	two	separate	

coordinate	pairs,	 {zj,fE,j}i	 and	 {vj,fD,j}i,	 are	 generated	 representing	 the	 jth	 eRFC	

and	dRFC	respectively,	where	 fE,j	denotes	the	 jth	elastic	and	 fD,j	the	 jth	dissipa-

tive	restoring	force.	From	(1.9)	it	follows	that	

, = , , + , , .	 (1.15)

The	local	characterisation	and	parameter	estimation	can	be	performed	a	poste-

riori	 using	 the	 generated	 sampling	 points,	 which	 is	 the	 main	 practical	 ad-

vantage	of	nonparametric	methods.	During	the	fusion	of	the	a	priori	model	with	

the	measurements	only	a	few	fitting	parameters	are	introduced,	also	known	as	
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“instrumental	variables”,	which	represent	 the	coordinates	of	 the	RFS	samples	

or	some	other	parameters	directly	related	to	them	(e.g.	instantaneous	stiffness	

and	damping	coefficients).	

It	is	important	to	distinguish	this	definition	from	another	wide-spread	interpre-

tation	 of	 “nonparametric”	 system	 representation,	 where	 the	 identification	

consists	of	 capturing	 frequency	 response,	 step	 response	or	 impulse	 response	

functions	by	a	set	of	response	coefficients,	instead	of	describing	the	process	in	a	

physical	form	(Wang,	Gawthrop,	&	Young,	2005).	

Frequency	domain	nonparametric	methods	

A	group	of	nonparametric	identification	methods	is	based	on	frequency	domain	

a	priori	models	with	time-varying	or	load-case-varying	modal	parameters.	For	

a	1DoF	autonomous	system	this	leads	to	a	process	equation	of	the	form	

̈ + ( ) ̇ + ( ) = 0,	 (1.16)

where	δ(i)	represents	a	mass-normalised	varying	damping	coefficient	and	α(i)	

denotes	the	varying	undamped	natural	angular	frequency	of	the	oscillator.	The	

measured	time-domain	quantities	are	also	transformed	into	frequency	domain	

quantities,	such	as	frequency	and	amplitude,	and	so	the	fitting	is	carried	out	in	

the	 frequency	domain.	In	 the	1DoF	case	 the	modal	parameter	samples	can	be	

transformed	 a	posteriori	 into	RFS	samples	by	explicit	 formulas.	E.g.	using	 the	

mass	of	the	oscillator	a	sample	of	α	can	be	transformed	 into	an	effective	stiff-

ness	sample,	which	can	be	further	transformed	into	fE	using	the	current	vibra-

tion	 amplitude.	From	 this	 it	 follows	 that	 such	 approaches	 imply	 the	 a	priori	

knowledge	of	the	oscillating	mass.	The	main	restriction	of	these	techniques	 is	

that	for	time	domain	models	they	can	only	be	applied	in	case	of	1DoF	systems.	

It	is	possible	to	identify	modal	RFSs	of	multiple	DoF	systems	if	they	only	exhibit	

well	 separated	 resonance	 ranges	 without	 mode	 coupling	 effects.	 However,	

these	modal	RFSs	can	not	be	 transformed	 to	physical	coordinates,	and	 there-
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fore	only	a	frequency	domain	nonlinear	model	can	be	established.	On	the	other	

hand	working	 in	 frequency	domain	 leads	 to	 two	major	 advantages.	The	 first	

one	is	that	one	measured	quantity	(e.g.	displacement)	is	enough	for	the	identifi-

cation	of	an	RFS,	since	the	others	(e.g.	velocity	and	acceleration)	can	be	calcu-

lated	analytically	using	simple	laws	of	harmonic	oscillations.	The	second	one	is	

the	good	robustness	against	measurement	noise.	

In	(Link,	Boeswald,	Laborde,	Weiland,	&	Calvi,	2011)	an	approach	of	this	kind	is	

investigated,	where	the	different	RFS	samples	belong	to	separate	experimental	

modal	 analysis	 (EMA)	 load	 cases	 with	 different	 vibration	 amplitudes.	 The	

method	is	based	on	the	quasi-linearisation	of	nonlinear	systems	in	a	particular	

operating	 point.	 Since	 the	 EMA	 is	 an	 experimental	 methodology	 for	 linear	

systems,	 its	 application	 to	 a	 strongly	 nonlinear	 frequency	 response	 is	 not	

trivial.	As	 a	 solution	 to	 this	problem	 the	 so	 called	Controlled	Response	 tech-

nique	is	presented	in	the	above	paper.	In	this	technique	the	excitation	signal	is	

specially	 controlled	during	 the	experiment,	which	 results	 in	 linear	 resonance	

characteristics.	Due	to	this	the	nonlinearity	is	only	observable	as	the	shifting	of	

the	 quasi-linear	 eigenfrequency	 depending	 on	 the	 different	 vibration	 ampli-

tudes	between	different	test	runs.	The	related	theory	of	the	so	called	Describing	

Functions,	which	approximately	describe	the	transfer	characteristics	of	nonlin-

earities,	can	be	found	in	(Gelb	&	Van	der	Velde,	1968).	

It	has	been	mentioned	in	Section	1.4.1	that	the	Hilbert	Transform	(HT)	enables	

the	 identification	of	the	time	series	of	time-varying	parameters.	This	property	

has	the	fruitful	outcome	that	the	HT	approach	can	be	formulated	in	a	nonpara-

metric	form	as	well	 if	the	time-varying	values	are	 linked	together	to	form	RFS	

samples.	This	is	proposed	in	(Feldman,	1994)	for	forced	vibration	experiments	

and	 in	(Feldman,	1997)	for	measurements	of	free	oscillations	 in	a	generalised	

form	for	strong	nonlinearities	with	fastly	varying	frequency	domain	character.	

In	 (Kerschen,	Worden,	Vakakis,	 &	Golinval,	2006)	 the	basic	 equations	 of	 this	

algorithm	are	summarised,	which	are	briefly	reviewed	in	the	following.	Consid-
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er	 the	 1DoF	 system	 from	 (1.16).	 Suppose	 that	we	 directly	measure	 the	 dis-

placement	of	the	system	during	free	oscillation,	and	that	this	time	series	can	be	

described	 in	 form	 of	 a	 monocomponent	 harmonic	 signal	 with	 time-varying	

parameters.	The	oscillation	is	then	defined	by	

( ) = ( ) cos ( ) 				and				 ̃( ) = ( ) sin ( ) ,	 (1.17)

where	 ̃( )	is	the	Hilbert	Transform	of	 ( ).	Λ(t)	and	Ψ(t)	denote	the	instanta-

neous	amplitude	and	instantaneous	phase	respectively	that	can	both	be	analyt-

ically	calculated	using	the	equations		

( ) = + ̃ 				and				 ( ) = tan
̃

.	 (1.18)

The	instantaneous	angular	frequency,	denoted	by	ω(t),	is	defined	analytically	as	

well	by	the	expression	

( ) = ̇ ( ) =
̃̇ − ̇ ̃
+ ̃ 	.	

(1.19)

Using	these	quantities	the	time-varying	coefficients	from	(1.16)	can	be	calculat-

ed	by	the	equations	

( ) = −2
̇
−

̇
				and				 ( ) = −

̈
−

̇
	.	 (1.20)

This	 finally	 leads	 to	 the	 instantaneous	 samples	 of	 the	 elastic	 and	dissipative	

restoring	force	in	the	form	

( ) = 				and				 ( ) = ,	 (1.21)

where	m	denotes	the	mass	of	the	oscillator	that,	as	previously	mentioned,	has	

to	 be	 available	 a	 priori.	 The	 forced	 vibration	 version	 of	 the	 HT	 approach	

(Feldman,	1994)	 is	 in	 contrast	 to	 the	above	discussed	 free	 vibration	method	

restricted	 to	 symmetric	 nonlinearities.	 For	 general	 nonlinearities	 the	HT	 ap-

proach	is	only	applicable	if	free	oscillation	measurements	are	available.	
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Restoring	Force	Surface	Method	

The	 idea	 of	 the	Restoring	 Force	 Surface	Method	 (RFSM)	 is	 very	 simple	 and	

intuitive.	Based	on	equation	(1.11)	the	restoring	forces,	denoted	by	fj(t)	for	the	

jth	DoF,	can	explicitly	be	calculated	at	every	measurement	time	step	using	the	

formula	

( )
×

= − ̇ + 	.	 (1.22)

Using	the	time	signal	of	the	state	vector	x,	RFS	sampling	points	can	be	directly	

generated	for	every	time	step.	Due	to	its	simplicity	and	the	fact	that	it	introduc-

es	 no	 restrictions	 regarding	 the	 RFSs	 that	 are	 identifiable,	 this	 method	 has	

found	 numerous	 implementations	 in	 the	 literature.	 In	 (Crawley	 &	 Aubert,	

1986)	 and	 (Peifer,	 Timmer,	 &	 Voss,	 2003)	 the	 RFSM	 based	 identification	 of	

1DoF	 structures	 is	 presented.	 The	 latter	 paper	 also	 addresses	 the	 optimal	

choice	 of	 smoothing	 for	 the	 a	 posteriori	 parametric	 fitting	 of	 the	 RFS.	 The	

errors-in-variables	(EIV)	problem,	 that	arises	 from	 the	noisiness	of	 the	meas-

ured	 x,	 is	mentioned	 as	well,	however,	without	 taking	 it	 into	 account	 in	 the	

analysis.	The	RFSM	 is	used	 for	 the	 identification	 of	 a	nonlinear	wire	 rope	 in	

(Kerschen,	Lenaerts,	&	Golinval,	2001).	In	(Park	&	Kim,	1994)	the	performance	

of	the	RFSM	is	compared	to	a	frequency	domain	method	based	on	substructur-

ing	 for	 two	mechanical	 structures	 including	Coulomb	 friction.	The	method	 is	

applied	 for	 a	multiple	DoF	 spacecraft	 in	 (Noël,	Kerschen,	 &	Newerla,	 2012),	

where	 the	underlying	 linear	 system	 is	 identified	prior	 to	 the	RFSM.	The	 im-

portance	of	proper	experiment	load	case	for	the	identification	of	coupled	RFSs	

is	revealed	in	(Link,	Boeswald,	Laborde,	Weiland,	&	Calvi,	2011).	Measurements	

of	monocomponent	harmonic	oscillation	only	cover	a	single	ellipse	of	the	state	

space.	 To	 overcome	 this,	 sine	 wave	 excitation	 with	 consequently	 increased	

magnitude	 or	 stochastic	 excitation	 are	 suggested.	 In	 (Lenaerts,	 Kerschen,	

Golinval,	Ruzzene,	&	Giorcelli,	2004)	the	RFSM	is	compared	to	a	Wavelet	Trans-
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form	(WT)	based	parametric	approach	for	the	identification	of	nonlinear	damp-

ing	characteristics	of	a	single	mass	oscillator.	

A	more	empirical	nonparametric	representation	of	the	system	nonlinearities	is	

called	 the	 Expanded	 Phase	 Space,	 where	 the	 three-dimensional	 trajectories,	

given	 by	 displacement	 (z),	 velocity	 (v)	 and	 acceleration	 ( ̇),	 are	 considered	

(Volkova,	 2013),	 (Volkova,	 2011),	 (Volkova,	 2010).	 These	 trajectories	 are	

strongly	related	to	the	RFSs	and	for	the	free	oscillations	of	a	1DoF	system	they	

directly	result	in	a	mass-proportional	RFS.	

The	main	 challenge	 of	 this	method	 is	 obvious:	 it	 implies	 that	 time	 signals	 of	

both	the	complete	state	vector	(z	and	v)	and	all	accelerations	( ̇)	are	available.	

This	can	be	achieved	by	either	measuring	all	mentioned	quantities	or	by	gener-

ating	the	missing	values	through	numerical	integration	or	differentiation.	While	

the	latter	can	cause	significant	calculation	errors,	the	former	leads	to	complex,	

expensive	 or,	 in	 many	 cases,	 technically	 impossible	 measurement	 setups.	

Parallelly	 measuring	 all	 required	 signals	 can	 also	 cause	 relative	 phase	 shift	

between	 different	 quantities	 due	 to	 the	 necessary	 application	 of	 different	

sensor	types.	A	restriction	of	the	RFSM	arises	from	equation	(1.22),	namely	that	

only	one	equation	per	DoF	 is	provided	by	 the	algorithm.	From	 this	 it	 follows	

that	only	one	RFS	per	degree	of	freedom	is	identifiable,	i.e.	the	approach	is	only	

applicable	 to	 processes,	 where	 coupling	 between	 DoFs	 is	 restricted	 to	 the	

inertia	matrix	M,	q.v.	equation	(1.11).	Furthermore,	 the	method	 implies	 the	 a	

priori	 knowledge	 of	 M.	 Detailed	 discussions	 on	 these	 difficulties	 and	 re-

strictions	can	be	found	in	the	previously	cited	literature	on	the	RFSM.	

Optimal	Transformations	

In	(Voss,	Rust,	Horbelt,	&	Timmer,	2003)	a	nonparametric	approach	based	on	

the	 Optimal	 Transformations	 technique	 is	 presented.	 This	 is	 a	 probabilistic	

method,	where	the	RFCs	and	RFSs	are	determined	in	form	of	so	called	“optimal	
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transformations”	 of	 the	 states	 and	 their	 derivatives,	which	 are	 found	 by	 the	

maximisation	of	 the	 correlation	between	 the	 transformed	 states.	These	maxi-

miser	functions	can	be	estimated	in	a	nonparametric	way	using	the	Alternating	

Conditional	Expectation	algorithm	(ACE).	A	weakness	of	this	method	arises	 in	

case	of	strong	noise	contamination	of	the	measurements	(Voss,	Rust,	Horbelt,	&	

Timmer,	 2003).	 This	 is	 mainly	 due	 to	 the	 fact	 that	 the	 nonmeasured	 state	

derivatives	have	to	be	generated	numerically,	which	leads	to	the	same	difficul-

ties	as	 in	case	of	the	RFSM.	The	technique	 is	 implemented	 in	a	two-step	algo-

rithm	in	(Voss	&	Kurths,	1997)	for	time-delay	systems,	where	multiple	process	

time-delays	are	determined	in	addition	to	the	nonlinear	RFSs.	

Method	of	State	Dependant	Parameters	

The	 State	Dependant	Parameter	 (SDP)	 technique,	which	 is	based	 on	 optimal	

recursive	estimation,	is	proposed	in	(Young,	2000).	The	method	is	derived	as	an	

extension	of	 the	 technique	of	Time	Variable	Parameters	 (TVP).	The	 restoring	

forces	are	described	by	time-varying	 linear	coefficients	and	their	time	deriva-

tives,	 called	 “instrumental	 variables”,	 which	 are	 introduced	 as	 augmented	

states.	 Similar	 to	 the	 case	 of	 the	HHT	 algorithm	 the	 time-varying	 parameter	

values	are	linked	to	the	corresponding	system	state	values	to	form	RFS	samples	

at	every	measurement	 time	step.	The	approach	addresses	systems,	where	 the	

dynamics	can	be	given	by	an	implicit	algebraic	equation	of	the	form	

( ) = ( − 1), … , ( − ), ( − 1), … , ( − ) 	,	 (1.23)

where	the	system	is	defined	as	a	relationship	between	the	current	and	previous	

values	of	 the	measurement.	Therefore,	 the	only	 internal	states	of	 the	 a	priori	

model	 are	 the	 additionally	 introduced	 instrumental	 variables,	which	 are	 de-

scribed	by	a	Generalised	Random	Walk	(GRW)	model.	To	avoid	the	necessity	of	

fast	parameter	convergence,	previously	discussed	in	Section	1.4.1,	an	appropri-

ate	iterative	sorting	of	the	measurement	time	series	is	carried	out	prior	to	the	

identification.	This	solution	crucially	implies	a	system	model	in	form	of	algebra-
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ic	equations,	 i.e.	 (1.23).	 In	 (Young,	2000)	 the	method	 is	 implemented	 for	 the	

identification	of	the	RFCs	of	single	 input	single	output	systems.	The	capability	

of	 the	 technique	 to	 identify	 coupled	RFSs	 is	mentioned	 in	 (Young	 &	Garnier,	

2006).	

Summary	of	nonparametric	methods	

The	main	practical	advantage	of	nonparametric	approaches	can	be	described	as	

follows.	On	the	one	hand,	if	one	prefers	to	determine	models	to	gain	insight	to	

the	underlying	mechanisms	in	the	system,	the	model	selection	is	much	easier	in	

the	case	of	nonparametric	methods.	For	the	selection,	one	has	to	answer	ques-

tions	regarding	the	nonlinearity,	such	as	"Does	it	affect	the	elastic	or	the	dissi-

pative	behaviour?",	"Is	 it	symmetric	or	asymmetric?"	or	"Is	 it	smooth	or	non-

smooth?".	 It	 is	much	 easier	 to	 provide	 answers	 by	 looking	 at	 a	 point	 cloud	

representing	the	local	RFS	than	by	looking	at	the	global	system	behaviour	in	the	

form	of	measurement	signals.	On	the	other	hand,	if	one	 is	satisfied	with	black-

box	models	given	by	general	mathematical	functions,	a	relatively	high	number	

of	 parameters	 can	 be	 used	 to	 achieve	 quality	 results	without	 computational	

problems	because	the	global	parameter	estimation	is	now	reduced	to	separate	

curve	or	surface	fitting	problems.	As	an	extreme	case	one	can	completely	resign	

the	 a	 posteriori	 characterisation,	which	 results	 in	Model	 on	Demand	 (MOD)	

solutions	(Ljung,	2010).	During	the	fusion	of	the	a	priori	model	with	the	meas-

urements	 only	 a	 few	 time-varying	 fitting	 parameters	 are	 introduced.	 The	

number	of	these	parameters	does	not	depend	on	the	complexity	of	the	nonline-

arities	 involved	 in	 the	RFSs	 that	are	 to	be	estimated.	This	results	 in	general	 a	

priori	system	models	that	are	typically	simpler	than	the	ones	needed	 in	para-

metric	algorithms.	

There	 is	 a	 risk	 of	 over	 fitting	during	 the	 a	posteriori	 characterisation	 of	 the	

RFSs	due	to	the	high	resolution	and	possible	noisiness	of	the	RFS	point	clouds	
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representing	 them.	 This	 can	 be	 overcome	 by	 applying	 proper	 probabilistic	

fitting	and	smoothing	algorithms,	which	is	discussed	in	Section	2.3.	

1.5 Objective	of	the	thesis	
In	 the	previous	sections	several	aspects	of	 the	 identification	of	nonlinear	sys-

tems	have	been	discussed.	It	has	been	shown	that	nonparametric	methods	have	

some	 noticeable	 advantages	 compared	 to	 parametric	 ones	 especially	 if	 no	 a	

priori	 knowledge	 of	 the	 system	 nonlinearities	 is	 available.	 However,	 from	

Section	1.4.2	 it	becomes	 clear	 that	 there	 is	no	 state	of	 the	art	nonparametric	

approach	 that	 is	 both	 suitable	 for	 the	 identification	 problem	 formulated	 in	

Section	1.3	without	restrictions	and	fulfils	the	requirements	from	Section	1.1	at	

the	 same	 time.	 The	 frequency	 domain	 techniques	 require	 specific	 kinds	 of	

excitation	of	the	system	during	the	experiments	and	have	difficulties	in	case	of	

multiple	 DoF	 systems.	 The	 SDP	 approach	 is	 not	 compatible	 with	 dynamic	

systems	given	by	differential	equations.	The	RFSM	fits	the	problem	formulation	

from	 Section	 1.3,	 it	 can	 be	 deployed	 for	 arbitrary	 types	 of	 excitation,	 it	 can	

identify	general	coupled	RFSs	and	it	is	computationally	simple	at	the	same	time,	

which	makes	it	an	extremely	powerful	technique.	Unfortunately,	the	fact	that	it	

requires	the	time	series	of	both	the	state	vector	and	its	derivatives	and	that	it	

offers	 no	 possibility	 for	 the	 additional	 identification	 of	 the	 inertia	 matrix,	

represents	a	major	drawback.	

Using	master-slave	 synchronisation	 between	 the	 virtual	 model	 and	 the	 real	

system	for	parametric	identification	of	nonlinearities	(in	form	of	an	augmented	

nonlinear	 Kalman	 Filter)	 is	 a	 well	 known	 technique	with	 several	 published	

implementations	(q.v.	Section	1.4.1).	However,	the	potential	of	this	method	for	

nonparametric	 identification,	 to	 the	 author’s	 knowledge,	 has	 not	 yet	 been	

investigated	 in	 the	 literature.	 The	 current	 study	 is	 dedicated	 to	 explore	 this	

possibility	with	 the	objective	of	establishing	an	 identification	 framework	 that	
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exhibits	all	the	advantageous	properties	of	the	RFSM	but	does	not	suffer	from	

its	drawbacks	described	above.	

1.6 Kalman	Filter	
The	current	thesis	presents	a	synchronisation-based	nonparametric	identifica-

tion	framework.	It	is	based	on	the	theory	of	nonlinear	Kalman	Filters,	which	is	

briefly	summarised	in	the	current	section.	It	begins	with	the	general	theory	of	

observers	in	Subsection	1.6.1,	which	is	followed	by	a	short	overview	of	nonlin-

ear	 probabilistic	 transformations	 in	 Subsection	 1.6.2.	 These	 are	 crucial	 ele-

ments	 of	 nonlinear	 Kalman	 Filters	 that	 are	 briefly	 presented	 in	 Subsection	

1.6.3.	

1.6.1 Observers	and	synchronisation	

The	 observation	 of	 dynamic	 systems	 is	 an	 important	 field	 of	 control	 theory.	

Without	knowing	 the	 initial	state,	an	observer	 is	able	 to	reconstruct	 the	 time	

history	of	 a	dynamic	system’s	state	vector	based	on	 the	given	system	 input	u	

and	 the	measured	output	y.	An	observer	realises	 a	master-slave	synchronisa-

tion	using	the	system	model	given	by	(1.1)	as	the	slave	and	the	measured	real	

system	as	 the	master.	Such	observers	are	essential	parts	of	model	predictive	

control	 and	 synchronisation	 algorithms	 of	mechatronic	 systems	 (Nijmeijer	 &	

Angeles,	2003).	The	 crucial	 relationship	between	observers	and	 synchronisa-

tion	 is	discussed	 in	(Nijmeijer	&	Mareels,	1997).	 In	(Santoboni,	Pogromsky,	&	

Nijmeijer,	2003)	 similar	 theory	 is	presented	 for	partially	observable	 systems.	

An	observer	is	generated	through	the	modification	of	the	process	equation	(1.1)	

by	 the	 introduction	of	 the	error	between	 the	real	measurement	signal	and	 its	

estimated	value	given	by	(1.2).	This	error	is	called	the	synchronisation	residual.	

The	most	convenient	way	of	introducing	this	residual	is	using	an	additive	linear	

correction	term,	which	leads	to	a	nonlinear	observer	of	the	form	
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̇ = ( , ) + × ( − ),	 (1.24)

= ( , ),	 (1.25)

where	 K	 is	 the	 synchronisation	 gain	 matrix,	 and	 the	 "hat"	 symbol	 denotes	

estimates	of	the	specific	values.	The	gain	matrix	has	to	be	chosen	as	a	function	

of	time	in	a	way	that	the	state	estimation	error	converges	to	zero	over	time,	i.e.	

( ) ∋ lim
→

( )− ( ) = 	.	 (1.26)

The	existence	of	a	time	sequence	of	K	that	fulfils	(1.26)	implies	the	observabil-

ity	of	 the	system.	This	 is	ensured	by	 the	observability	criterion,	which	can	be	

formulated	as	a	criterion	for	the	rank	of	the	observability	matrix	O	(Hedrick	&	

Girard,	2013),	(Nijmeijer	&	Mareels,	1997):	

, ≔
∂L (ℎ )
∂ ,⋯ ,

∂L ℎ
∂ ,⋯ ,

∂L (ℎ )
∂ ,⋯ ,

∂L ℎ
∂ ,	 (1.27)

where	 Lia	 denotes	 the	 Lie	 derivative	 of	 order	 i	with	 respect	 to	 the	 process	

vector	function	a	(q.v.	Appendix	A),	and	hj	denotes	the	jth	element	of	the	meas-

urement	vector	function	h.	If	O	has	a	full	rank	n,	then	the	system	given	by	(1.1)	

and	(1.2)	is	locally	observable	at	{x0,u0}.	According	to	(Hedrick	&	Girard,	2013)	

a	physical	explanation	of	this	criterion	is	given	by	the	Taylor	series	

̇
⋮

( )
,

=
̇
⋮

( )
,

+ , ( − ) + 	,	 (1.28)

where	eHOT	refers	to	the	error	due	 to	non-zero	higher	order	terms.	Therefore,	

the	observability	criterion	ensures	that	(1.28)	can	approximately	be	solved	for	

x	in	a	local	neighbourhood	of	x0.	Practically	speaking	this	means	that	x	can	be	

extracted	from	the	time	history	of	y.	Notice	that	according	to	(1.28)	the	estima-

tion	of	x	is	possible	using	less	measurement	signals	than	its	dimension,	i.e.	for	
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n>ny,	because	an	observer	takes	advantage	of	the	expected	dynamic	behaviour	

of	the	system	given	by	(1.1).	In	case	of	linear	time-invariant	(LTI)	systems	O	is	a	

constant	matrix.	Hence,	 for	 such	 systems	 the	 local	 criterion	 directly	 ensures	

global	observability.	

1.6.2 Probabilistic	transformation	of	random	variables	

Since	real	life’s	measured	signals	are	inevitably	corrupted	by	noise	(q.v.	Section	

2.2.1),	the	probabilistic	variation	of	the	injected	measurement	y	is	carried	over	

to	the	estimated	state	variables	and	the	estimated	measurements	through	the	

observer	equations	(1.24)	and	(1.25)	respectively.	Hence,	in	order	to	be	able	to	

calculate	 the	optimal	 time	 sequence	of	K	 that	 takes	 into	account	 the	 random	

nature	of	the	observer,	the	theory	of	transforming	the	mean	and	the	variance	of	

random	 variables	 has	 to	be	 discussed	 first.	The	 problem	 to	 be	 solved	 is	 the	

calculation	of	the	mean	vector	y	and	covariance	matrix	PY	of	a	random	vector	Y	

based	on	 the	known	mean	vector	x	and	 covariance	matrix	PX	of	 the	 random	

vector	X,	where	Y	 is	 given	by	 a	general	nonlinear	 transformation	 as	Y=h(X).	

(Without	 the	 loss	of	generality	 the	chosen	notation	corresponds	 to	 the	meas-

urement	equation	 (1.25).)	For	 the	 sake	of	 convenience	 a	 compact	notation	 is	

proposed	in	the	current	thesis	that	represents	a	general	probabilistic	transfor-

mation,	denoted	by	Φ,	which	gives	an	approximate	 solution	 to	 the	above	de-

fined	problem:	

[ ] = Φ ( , ).	 (1.29)

The	 additional	 result	 PXY	 is	 the	 cross-covariance	 matrix	 that	 describes	 the	

stochastic	correlation	between	X	and	Y.	The	superscript	k	indicates	the	type	of	

the	algorithm	that	is	used	to	carry	out	the	above	transformation.	A	great	num-

ber	of	such	algorithms	have	been	developed	in	the	past	sixty	years.	For	a	gen-

eral	 function	h	all	of	 them	can	only	provide	an	estimate	of	 the	exact	solution,	

which	 is	 indicated	by	the	“hat”	symbol	 in	the	notation	of	the	resulting	quanti-
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ties.	In	the	following	the	three	most	widespread	algorithms	are	briefly	summa-

rised,	two	of	which	play	a	major	role	in	the	current	study.	

The	most	 intuitive	and	general	algorithm	 is	 the	Monte	Carlo	Transformation,	

denoted	by	k=MCT.	 In	 this	 technique	a	 finite	number	nMC	of	samples,	denoted	

by	 ,	are	generated	randomly	according	to	x	and	PX.	These	samples	are	then	

transformed	 into	samples	of	Y,	denoted	by	 ,	using	(1.30).	Given	these	sam-

ples	the	equations	(1.31),	(1.32)	and	(1.33)	are	used	to	estimate	the	quantities	

of	interest	(Meyer,	2003).	

= 	 (1.30)

=
1

	 (1.31)

=
1
− 1 − − 	 (1.32)

=
1
− 1 − − 	 (1.33)

The	MCT	 is	 a	 universal	 algorithm.	 The	 samples	 of	X	 can	 be	 generated	 from	

arbitrary	 probability	 distributions,	 not	 only	 from	 those	 that	 can	 be	 approxi-

mately	described	by	x	and	PX	(i.e.	approximately	Gaussian	distributions).	As	nMC	

increases,	the	estimates	converge	to	the	exact	solutions	for	any	kind	of	h,	even	

for	 those	 that	 represent	 complex	black-box	algorithms.	The	only	drawback	 is	

the	 slow	 statistical	 convergence	 that	 requires	 a	 large	 number	 of	 samples	 to	

achieve	good	result	quality,	which	makes	this	approach	computationally	expen-

sive.	
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In	contrast	to	the	MCT	the	Linearised	Transformation,	denoted	by	k=LinT,	is	an	

extremely	 simple	 algorithm.	 Using	 the	 equations	 (1.34),	 (1.35),	 (1.36)	 and	

(1.37)	it	performs	a	direct	transformation	without	generating	random	samples	

(Simon,	2006).	

= 	 (1.34)

= ( )	 (1.35)

= 	 (1.36)

= 	 (1.37)

If	h	is	a	linear	function	and	the	distribution	of	X	is	Gaussian,	then	this	approach	

gives	the	exact	solution	to	the	transformation.	The	less	these	two	assumptions	

hold,	the	 less	accurate	the	technique	becomes,	therefore,	 it	 is	only	suitable	for	

weak	nonlinearities.	Supposing	that	the	Jacobian	matrix	of	h,	denoted	by	H,	 is	

easy	 to	calculate	(e.g.	can	be	given	analytically	 instead	of	being	approximated	

via	 finite	differences),	 then	 the	LinT	 is	computationally	very	 cheap,	 since	 the	

function	h	is	only	calculated	once	in	contrast	to	the	MCT,	where	it	is	calculated	

nMC	times.	

The	Unscented	Transformation	(Julier	&	Uhlmann,	1997),	denoted	by	k=UT,	is	a	

relatively	new	approach	that	managed	to	fill	 in	the	gap	between	the	LinT	and	

the	MCT.	It	is	suitable	for	much	stronger	nonlinearities	than	the	LinT.	Similar	to	

the	MCT	it	is	derivative	free	(computation	of	H	is	not	needed)	and	is	also	based	

on	 samples	 of	 the	 distribution	 of	 X.	 However,	 these	 samples,	 the	 so	 called	

“sigma	points”,	are	given	by	 the	deterministic	 formula	(1.38)	 instead	of	being	

generated	randomly,	which	enables	a	much	faster	statistical	convergence.	The	

number	of	sigma	points	is	fixed	to	nUT=2n+1,	where	n	is	the	dimension	of	X.	The	

rest	of	the	algorithm	consists	of	the	transformation	of	the	sigma	points	(1.39)	

and	the	analysis	of	the	sampled	statistics	via	(1.40),	(1.41)	and	(1.42)	similar	to	
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the	MCT.	The	coefficients	 . 	are	essential	tuning	parameters.	Their	calculation	

is	summarised	in	Appendix	D.	

[ ⋯ ] ≔ 	 − + 	 	 (1.38)

= 	 (1.39)

	 = . ∙ 	 (1.40)

= . − − 	 (1.41)

= . − − 	 (1.42)

1.6.3 Kalman	Filters	for	nonlinear	systems	

If	one	has	 to	address	measurements	 corrupted	by	 significant	noise,	 the	algo-

rithm	of	choice	for	the	calculation	of	the	synchronisation	gain	K	is	the	Kalman	

Filter	 (KF).	This	observer	 takes	 into	account	 the	uncertainty	 in	 the	measure-

ment	 equation	 (1.2)	 characterised	by	 the	measurement	 covariance	matrix	 of	

size	ny×ny,	denoted	by	R,	as	well	as	the	uncertainty	of	the	process	equation	(1.1)	

given	by	 the	discrete	 time	process	 covariance	matrix	Q,	which	 is	of	 size	n×n.	

This	turns	the	observer	into	a	stochastic	estimator	that	estimates	the	state	and	

measurement	vectors	as	probabilistic	quantities	X	and	Y.	These	are	described	

by	 their	mean	values	x	and	y,	 their	covariance	matrices	PX	and	PY	as	well	as	

their	 cross-covariance	matrix	PXY	given	as	 a	 joint	distribution	 in	 the	compact	

form	
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~ , 	.	 (1.43)

If	finding	the	most	probable	time	sequence	of	x,	i.e.	the	minimisation	of	tr(PX),	

is	chosen	as	objective,	then	the	Kalman	gain,	defined	as	

= , , 	,	 (1.44)

is	the	optimal	solution	to	the	estimation	problem.	The	easiest	way	of	deriving	

this	 elegantly	 simple	 formula	 is	 from	 a	 least	 squares	 point	 of	 view	 (Simon,	

2006),	 however,	 a	 dynamic	 programming	 formulation	 is	 also	 possible	 (Cox,	

1964).	The	so	called	continuous-time	Kalman	Filter,	also	known	as	the	Kalman-

Bucy	filter	(Kalman	&	Bucy,	1961),	 is	of	 the	form	(1.24).	However,	due	 to	 the	

additive	 correction	 term,	 the	observer	 equations	 can	also	be	 formulated	 in	 a	

two-step	predictor-corrector	form,	which	is	of	practical	importance.	In	real	life	

applications,	 the	measurement	signal	 is	only	available	at	discrete	 time	points.	

To	account	for	this,	equation	(1.24)	is	split	into	two	recursively	repeated	steps.	

The	 first	 step	 is	 the	 time	update	 (1.45)	 (also	 known	 as	 the	prediction	 step),	

where	the	system	state	is	integrated	from	the	measurement	time	step	i-1	to	the	

time	 step	 i	using	equation	 (1.1)	and	an	appropriate	 integration	 scheme.	This	

results	 in	 the	 a	priori	 state	 estimate,	denoted	by	 .	The	 second	 step	 is	 the	

measurement	update	(1.48)	(also	called	the	correction	step),	where	the	current	

synchronisation	residual	( − )	is	used	to	correct	the	predicted	state,	result-

ing	 in	the	a	posteriori	state	estimate	 ,	which	 is	the	final	observer	result	for	

the	 ith	 time	 step.	 This	 approach	 is	 the	 so	 called	 discrete-time	Kalman	 Filter	

(Kalman,	1960),	which	(using	 the	notation	proposed	 in	Section	1.6.2)	 is	given	

by	the	following	compact	recursive	algorithm:	

, , = Φ
∫

, , + [ ]	 (1.45)

, , = Φ , , + [ ]	 (1.46)
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= , , 	 (1.47)

, = + ( − ) , − , 	 (1.48)

In	order	to	start	the	algorithm	the	initial	a	posteriori	distribution	of	X	has	to	be	

defined	via	 	and	 , .	Furthermore,	Q	and	R	need	to	be	given	according	to	the	

expected	uncertainties.	The	proper	choice	of	these	four	user	defined	quantities	

is	discussed	 in	Chapter	2.2.4.	The	 recursion	 is	 continued	until	 the	 last	meas-

urement	time	step	is	processed.	Although	the	main	result	of	the	KF	is	the	esti-

mated	mean	of	the	state	vector	 ,	the	additional	covariance	output	 , 	can	be	

used	 as	 well	 as	 an	 indicator	 of	 the	 expectable	 error	 and	 further	 statistical	

properties	of	the	estimated	state	(q.v.	Section	2.3.1).	

If	the	system	functions	(a	and	h)	are	nonlinear,	the	accuracy	of	the	KF	depends	

on	the	type	k	of	the	probabilistic	transformation	Φ,	for	which	only	approximate	

solutions	exist	 for	general	nonlinearities	 (q.v.	Section	1.6.2).	Several	different	

solutions	to	this	problem	have	been	developed	over	the	past	five	decades	since	

the	Kalman	Filter	was	proposed.	 In	 (Gelb,	Kasper,	Nash,	Price,	&	 Sutherland,	

2001),	(Simon,	2006)	and	(Hartikainen,	Solin,	&	Särkkä,	2011)	different	selec-

tions	of	these	algorithms	are	derived,	discussed	and	compared	and	in	(Moreno	

&	 Pigazo,	 2009)	many	 advanced	 application	 studies	 and	 special	KF	 formula-

tions	are	reported.	Due	to	their	simple	formulation	combined	with	good	estima-

tion	 accuracy,	 two	 specific	 algorithms	 have	 gained	 notable	 attention	 in	 the	

literature	and	in	practical	applications.	The	first	one	is	the	"classical"	Extended	

Kalman	Filter	 (EKF)	 that	uses	 k=LinT.	 It	 is,	 therefore,	 only	 suitable	 for	weak	

nonlinearities	 and	 approximately	 Gaussian	 distributions	 (q.v.	 Section	 1.6.2).	

The	 second	 one	 is	 a	 relatively	 new	 technique	 called	 the	 Unscented	 Kalman	

Filter	(UKF)	(Julier	&	Uhlmann,	1997),	which	 is	based	on	k=UT.	Hence,	 it	can	

better	account	for	strong	system	nonlinearities	than	the	EKF,	because	they	do	

not	 have	 to	 be	 linearised	 (q.v.	 Section	 1.6.2).	 It	 can	 be	 formulated	 in	 an	 en-
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hanced	square-root	form,	called	the	Square-Root	Unscented	Kalman	Filter	(SR-

UKF).	The	algorithm	remains	the	same	from	the	analytical	point-of-view,	how-

ever,	 the	 SR-UKF	 increases	 the	 numerical	 stability	 of	 the	 UKF	 and	 slightly	

reduces	 its	computational	 time.	For	an	exhaustive	yet	compact	description	of	

the	algorithm	the	reader	is	referred	to	(van	der	Merwe	&	Wan,	2001).	Different	

types	of	Sigma-Point	Kalman	Filters	(SPKF)	are	presented	in	(van	der	Merwe	&	

Wan,	2004)	as	general	formulations	of	the	UKF.	If	the	nonlinearities	become	so	

severe	that	the	accuracy	of	the	UKF	is	not	sufficient	anymore,	the	Particle	Filter	

(PF)	can	be	deployed	as	 a	universal	solution	(Simon,	2006),	(Chatzi	&	Smyth,	

2009).	This	 technique	basically	uses	k=MCT	 (with	 some	additional	algorithm	

refinements),	which	on	the	one	hand	can	handle	arbitrary	nonlinearities,	but	on	

the	 other	 hand	 leads	 to	 an	 enormous	 increase	 of	 computational	 costs	 (q.v.	

Section	1.6.2).	

A	special	offline	extension	of	the	KF,	the	so	called	Kalman	Smoother	(KS),	can	

be	used	 to	enhance	 result	quality	by	 involving	not	only	past	and	present	but	

also	future	measurement	samples	in	the	estimation	algorithm	for	a	given	time	

step	(Hartikainen,	Solin,	&	Särkkä,	2011),	(Simon,	2006),	(Nicklas,	1989).	The	

Fixed-Interval	 RTS	 Smoother	 (named	 after	 Rauch,	 Tung	 and	 Striebel)	 is	 a	

computationally	 efficient	 global	 form	 of	 the	 KS,	 which	 involves	 the	 whole	

available	measurement	 time	 interval	 to	 generate	 an	 optimal	 estimate	 of	 the	

state	vector’s	complete	time	series.	It	 is	defined	as	a	backward	recursion	over	

time	that	is	carried	out	in	addition	to	the	standard	KF	run	based	on	its	results.	

According	to	(Hartikainen,	Solin,	&	Särkkä,	2011)	its	algorithm	is	given	as	

= , , 	 (1.49)

, = + − , + , − , 	 (1.50)
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The	so	called	smoother	gain	 is	 thereby	denoted	by	KS,	whereas	 the	smoothed	

estimates	of	the	state	vector’s	mean	and	covariance	are	denoted	by	 	and	 , 	

respectively.	

One	difficulty	with	the	application	of	KFs	is	their	sensitivity	to	model	accuracy.	

The	 rigorous	 solution	 to	 this	problem	 is	 the	 introduction	 of	 every	uncertain	

model	parameter	as	state	variable,	which	has	been	implemented	in	the	current	

thesis	(q.v.	Section	2.1.2).	Yet,	a	lot	of	research	has	been	invested	in	robustified	

KF	algorithms	that	are	designed	to	handle	model	errors	automatically.	Such	an	

adaptive	KF	is	discussed	in	(Pulido	Herrera	&	Kaufmann,	2010)	that	adjusts	Q	

and	R	based	on	the	statistics	of	the	synchronisation	error.	The	Schmidt-Kalman	

Filter,	which	 can	 compensate	 particular	model	 uncertainties,	 is	 presented	 in	

(McBurney,	1990).	A	more	sophisticated	way	of	robust	 filtering	 is	 the	H∞	ap-

proach	 (Simon,	2001),	 (Simon,	2006).	These	 algorithms	 offer	an	 easy	way	 of	

compensating	 model	 errors,	 hence,	 they	 are	 very	 useful	 in	 monitoring	 and	

target	 tracking	 applications.	 However,	 these	 techniques	 do	 not	 attempt	 to	

identify	 the	model’s	 deviation	 from	 the	 real	 system,	 therefore,	 they	 are	 not	

suitable	for	the	present	study.	

1.7 Curve	and	surface	fitting	
As	discussed	in	Section	1.4.2,	nonparametric	identification	approaches	generate	

a	point	cloud	of	samples	for	each	RFS	while	the	measurement	signals	are	pro-

cessed.	 In	most	 of	 these	 techniques,	 such	as	 the	 one	 that	 is	proposed	 in	 the	

current	thesis,	the	noisiness	of	the	measured	signals	is	carried	over	to	the	RFS	

samples.	 Therefore,	 the	 a	 posteriori	 application	 of	 curve	 and	 surface	 fitting	

approaches	is	required	to	achieve	noisefree	RFCs	and	RFSs.	In	order	to	clarify	

the	advantages	and	challenges	of	the	fitting	algorithms,	which	are	implemented	

in	the	present	study	(q.v.	Section	2.3.2	and	2.3.3),	a	brief	overview	of	existing	

approaches	is	given	in	the	current	section.	



Curve	and	surface	fitting	

63	

To	 illustrate	 the	problem	 let	us	consider	 the	case	of	 fitting	an	elastic	RFC,	 i.e.	

cE(z)	 according	 to	 (1.9),	 using	 noisy	 samples	 given	 by	 the	 coordinate	 pairs	

{zi,fE,i}	(q.v.	Section	1.4.2).	In	general	the	sample	coordinates	are	corrupted	by	

correlated	noise,	which	is	described	by	the	noise	covariance	matrix,	denoted	by	

PcE.	 The	 curve	 fitting	 problem	 can	 be	 formulated	 as	 the	minimisation	 of	 the	

Weighted	Total	Squares	error	eWTS	defined	as	

, =
,
− ̂ ( , )

̂ ( ) 	,	 (1.51)

= , , , 	,	 (1.52)

where	 ̂ 	and	 ̂ 	denote	the	estimate	of	the	true	RFC	and	its	inverse	function	

respectively.	The	 function	 ̂ 	 is	 an	 optimal	 estimate	 in	Weighted	Total	Least	

Squares	(WTLS)	sense	if	it	is	the	minimiser	of	 .	

The	 literature	offers	different	solutions	 to	 the	WTLS	estimation	problem.	 It	 is	

often	referred	to	as	the	Errors-In-Variables	(EIV)	problem,	which	clearly	differ-

entiates	 it	 from	 the	 ordinary	Least	 Squares	 (LS),	where	 the	 abscissas	 (inde-

pendent	variables)	of	 the	observations	are	assumed	 to	be	noisefree.	The	 first	

group	 of	 these	 methods	 are	 parametric.	 They	 imply	 an	 assumption	 of	 the	

analytical	form	of	the	function	of	interest,	whose	parameters	are	estimated	by	

the	procedure.	A	solution	of	this	kind	in	a	standard	TLS	form	based	on	Singular	

Value	Decomposition	 (SVD)	 is	proposed	 in	 (Golub	 &	Van	Loan,	1980),	where	

abscissas	and	ordinates	are	equally	weighted.	(Markovsky	&	Van	Huffel,	2007)	

presents	a	hierarchical	comparison	of	parametric	WTLS	methods	regarding	the	

special	cases	of	weighting	that	they	take	into	account.	The	general	WTLS	prob-

lem	however	has	no	direct	analytical	solution.	An	iterative	technique	based	on	a	

modified	Recursive	Weighted	 LS	 (RWLS)	 formulation	 is	 proposed	 in	 (Amiri-

Simkooei	&	Jazaeri,	2012),	where	the	abscissas	and	the	ordinates	of	the	obser-

vations	are	arbitrary	weighted,	 they	cross-covariance	(i.e.	 they	correlation)	 is	
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however	not	taken	into	account.	The	second	group	of	fitting	methods	carry	out	

a	nonparametric	regression,	i.e.	they	seek	an	optimally	smoothed	version	of	the	

observed	 dataset	without	 the	 assumption	 of	 a	 global	 analytical	 form	 of	 the	

characteristic.	 This	 smoothed	 dataset	 itself	 forms	 the	 solution	 to	 the	 fitting	

problem,	i.e.	 ̂ 	in	the	current	case,	as	a	piecewise	defined	function	that	is	given	

in	form	of	a	lookup	table.	An	overview	of	such	regression	approaches	is	given	in	

(Ljung,	2010).	One	of	them	is	referred	to	as	Local	Polynomial	Regression	(LPR),	

where	the	smoothed	version	of	each	observation	is	generated	via	a	polynomial	

regression	involving	a	weighted	group	of	observations	in	its	neighbourhood.	A	

local	LS	formulation	of	this	technique	is	discussed	and	compared	with	smooth-

ing	splines	in	(Fox,	2002)	for	2D	curves	and	3D	surfaces.	A	TLS	extension	of	the	

approach,	 called	 the	 Improved	Moving	Least	 Squares	 (IMLS)	method,	 is	pro-

posed	in	(Zhang,	et	al.,	2013),	where	however	only	the	special	case	of	uncorre-

lated	error	is	considered.	

1.8 Thesis	outline	
Chapter	 2	 presents	 the	Kalman	 Filter-based	 nonparametric	method	 in	 detail	

that	represents	an	alternative	solution	to	the	identification	problem	defined	in	

Section	1.3.	This	is	followed	by	virtual	identification	examples	of	one	and	three	

DoF	nonlinear	mechanical	systems	 in	Chapter	3	 to	demonstrate	 the	effective-

ness	of	the	proposed	technique.	Based	on	these	examples	several	implementa-

tion	 properties	 of	 the	 approach	 are	 investigated	 and	 advantages	 as	well	 as	

challenges	in	comparison	to	state	of	the	art	methods	are	discussed.	

In	 Chapter	 4	 the	 combination	 of	 the	 proposed	 technique	 with	 parametric	

approaches	is	investigated	in	order	to	carry	out	a	full	system	identification	that	

includes	the	a	priori	defined	uncertain	parameters	of	the	system	as	well.	These	

parameters	are	assumed	to	be	known	in	Chapter	2	and	3.	
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Finally	in	Chapter	5	real-life	implementation	is	presented	on	a	1DoF	and	a	3DoF	

mechanical	 system	 to	 prove	 the	 reliability	 of	 the	 algorithm	 under	 realistic	

conditions.	 The	 main	 outcomes	 of	 the	 thesis	 and	 open	 questions	 are	 then	

summarised	in	Chapter	6.	

	





	

	

2 Nonparametric	identification	of	
RFSs	

In	the	following	a	synchronisation-based	nonparametric	 identification	method	

is	presented	that	allows	the	reconstruction	of	the	noisefree	RFSs	according	to	

the	 problem	 formulation	 in	 Section	 1.3.	 In	 this	 chapter	we	 assume	 that	 the	

inertia	matrix	M	and	the	input	matrix	B	are	a	priori	known.	This	assumption	is	

relaxed	later	in	Chapter	4.	The	main	idea	of	the	current	approach	was	proposed	

in	 (Kenderi	 &	Fidlin,	2014).	This	chapter	presents	 the	 final	 stage	of	 the	com-

plete	workflow	including	the	extension	towards	coupled	RFSs,	detailed	mathe-

matical	descriptions	and	several	algorithm	refinements.	The	workflow	consists	

of	two	major	steps:	

· The	first	step	is	the	fusion	of	the	measurement	signals	with	the	a	pri-

ori	 system	model.	 It	 is	 carried	 out	 by	means	 of	 the	 Kalman	 Filter	

based	 synchronisation	of	 the	virtual	model	 to	 the	 real	 system.	This	

results	in	recursive	optimal	estimates	of	properly	chosen	instrumen-

tal	 variables	 (augmented	 states)	 and	 their	 variances,	which	 are	 di-

rectly	related	to	local	RFS	samples.	The	establishment	of	the	particu-

lar	nonlinear	Kalman	Filter	is	presented	Section	2.1	and	2.2.	

· The	second	step	begins	with	 the	probabilistic	 transformation	of	 the	

estimated	time	series	of	the	augmented	states	into	RFS	samples.	This	

is	 followed	 by	 optimal	 nonparametric	 fitting,	 which	 results	 in	

noisefree	RFCs	and	RFSs.	These	elements	of	the	approach	are	derived	

in	Section	2.3.	

At	the	end	of	the	chapter,	in	Section	2.4,	all	steps	of	the	presented	algorithm	are	

summarised	in	a	compact	form.	
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2.1 Ensuring	observability	

2.1.1 Practical	aspects	

System	 identification	 relies	on	 the	 close	 co-operation	between	virtual	model-

ling	 and	 experiment	design.	Therefore,	 it	 is	 inevitable	 to	 take	 some	practical	

aspects	of	vibration	 testing	 into	account.	Displacement,	velocity	and	accelera-

tion	 (or	 their	 corresponding	 rotational	equivalents)	are	 the	 commonly	meas-

ured	 kinematic	 quantities	 in	 praxis	 for	 mechanical	 structures	 (Chaurasiya,	

2012).	 In	 Section	1.4	 it	 is	discussed	 that	 identification	methods	differ	 in	 the	

necessary	measurement	 setup.	Some	methods	 require	all	measurement	 types	

at	the	same	time.	Other	techniques	have	the	advantage	that	they	allow	the	use	

of	only	one	of	the	mentioned	quantities.	Many	of	these	techniques	(e.g.	frequen-

cy	domain	approaches)	exhibit	the	nontrivial	property	that	they	are	functional	

with	one	arbitrary	measurement	type.	This	chapter	presents	a	synchronisation-

based	 nonparametric	 approach	 that	 provides	 the	 observability	 of	 the	 RFSs	

using	only	one	arbitrary	measured	kinematic	quantity,	 i.e.	 it	exhibits	the	men-

tioned	 advantageous	 property	 as	well.	 In	 order	 to	 point	 out,	why	 this	 is	 so	

important,	 some	basic	aspects	 of	 choosing	 the	proper	measurement	quantity	

for	a	vibration	experiment	are	discussed	in	the	following.	An	overview	of	these	

aspects	can	be	found	e.g.	 in	(Harris	&	Piersol,	2002).	They	can	be	briefly	sum-

marised	as	follows:	

· Displacement	 or	 strain	 measurement	 is	 suitable	 for	 low	 frequency	

range,	where	 the	magnitude	of	velocity	and	acceleration	 is	 typically	

low.	Such	relatively	slow	motions	occur	e.g.	in	civil	engineering	struc-

tures.	This	quantity	should	be	chosen	if	exact	positions	are	particular-

ly	important,	e.g.	possible	collision	of	system	components.	

· Velocity	measurement	is	ideal	for	mid	frequency	range.	It	typically	re-

sults	in	a	more	uniform	spectrum	than	displacement	or	acceleration.	
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This	 quantity	 is	 preferred	 for	 acoustic	 investigations,	 since	 sound	

pressure	 is	proportional	 to	 the	normal	velocity	of	 the	vibrating	sur-

face.	

· Acceleration	measurement	is	the	quantity	of	choice	for	high	frequency	

range,	where	the	magnitude	of	displacement	or	velocity	signals	is	too	

small	to	be	measured	accurately.	This	is	the	case	for	most	oscillation	

phenomena	in	mechanical	engineering,	such	as	noise	issues.	Typically	

this	measurement	type	 is	preferred	 if	a	transducer	of	small	size	and	

small	mass	 is	required,	and	contactless	methods	are	not	deployable,	

since	accelerometers	are	mostly	smaller	than	other	transducers.	Ad-

ditionally,	 typical	 accelerometers	 do	 not	 require	 a	 reference	 point	

and	therefore	usually	lead	to	simple	measurement	setups.	

· Force	measurement	differs	 from	 the	previous	measurement	 types	 in	

that	it	utilises	a	kinetic	quantity.	Such	sensors	have	to	be	placed	into	

the	force	flow	of	the	system.	This	means	that	in	case	of	measuring	re-

sponse	forces	inside	a	structure	the	transducer	itself	becomes	a	part	

of	 the	mechanical	 system	 and	 can	 significantly	 alter	 its	 behaviour.	

Due	to	this	difficulty,	such	sensors	are	mainly	used	to	measure	the	ex-

ternal	 excitation	 force	u	 acting	 on	 the	 structure	during	 the	 experi-

ment.	

It	should	be	mentioned	that	 in	the	vibration	trajectories	of	strongly	nonlinear	

systems,	which	are	of	particular	interest	in	the	present	study,	higher	harmonics	

of	 the	 main	 oscillation	 frequency	 are	 present.	 Due	 to	 this,	 transducers	 for	

higher	 frequency	domains	 can	be	advantageous	 for	 the	 identification	of	 such	

systems	 even	 if	 the	 dominant	 vibration	 frequency	 is	 rather	 low.	 Therefore,	

accelerometers	 have	 specific	 importance	 in	 case	 of	 nonlinear	 mechanical	

structures.	However,	on	the	whole	it	is	clear	that	a	flexible	identification	meth-

od	should	accommodate	all	possible	kinematic	measurement	quantities.	
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Another	 important	practical	aspect	of	system	 identification	 is	the	unavoidable	

presence	of	noise	 in	measured	 signals.	This	natural	 imperfection	of	measure-

ments	has	a	major	 influence	on	the	way	the	estimated	system	states	are	to	be	

handled	in	an	observer	algorithm.	This	topic	is	discussed	later	in	Section	2.2.1,	

since	it	is	not	directly	related	to	observability.	

2.1.2 The	a	priori	model	of	choice	

As	already	proposed	in	the	previous	sections	the	aim	of	the	present	work	is	to	

establish	 an	 observer-based	 approach	 that	 solves	 the	 identification	 problem	

formulated	in	Section	1.3	in	a	nonparametric	form.	To	achieve	this	according	to	

Section	1.6.1	the	process	vector	function	a	in	equation	(1.24)	has	to	be	brought	

into	a	form	that	provides	the	observability	of	RFS	coordinate	triplets	{z,v,f}i	for	

all	 kind	 of	 kinematic	measurement	 types.	 In	 the	 following,	 this	 observability	

problem	is	investigated	for	the	1DoF	case.	Afterwards,	the	results	are	general-

ised	for	multiple	DoF	systems.	That	means,	a	system	of	the	form	

	 ̇
̇ = − ( , ) + ,	 (2.1)

= ℎ( , ), ∈ { , , ̇},	 (2.2)

is	considered	first,	where	z	and	v	are	the	deformation	and	rate	of	deformation	

coordinates	of	the	system’s	RFS	respectively.	The	excitation	in	the	form	of	force	

or	acceleration	 is	denoted	by	u,	and	b	 is	the	 input	coefficient.	The	mass	of	the	

1DoF	oscillator	is	denoted	by	m,	and	is	assumed	to	be	a	priori	known	through-

out	this	chapter.	A	first	idea	could	be	to	make	some	assumptions	about	the	form	

of	c(z,v)	and	hope	that	using	(1.24)	the	system	states	will	synchronise	to	their	

real	values.	In	that	case	the	missing	third	coordinate	of	the	RFS	sample	triplets	

(i.e.	f)	could	be	calculated	using	the	RFSM	method	from	Section	1.4.2.	Unfortu-

nately	this	would	not	be	the	case,	which	becomes	clear	if	we	take	a	look	at	the	

observer	equations	(1.24)	and	(1.25)	 in	detail.	Notice	that	the	system	describ-
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ing	 functions	(a	and	h)	appear	 in	 the	equations	without	 the	 “hat”	symbol,	 i.e.	

the	 basic	 concept	 of	 the	 observer	 implies	 that	 these	 functions	 are	 assumed	

correctly.	Otherwise	the	state	vector	can	not	converge	to	its	real	values	perfect-

ly.	 In	 case	 of	 uncertain	 (unknown)	 parameters	 in	 the	 system	 functions,	 the	

solution	 to	 this	 problem	 is	 the	 so-called	 state	 augmentation	 technique.	 This	

introduces	all	uncertain	parameters	as	additional	 state	variables	 to	achieve	 a	

correct	model	 assumption	 and	 to	 let	 the	 observer	 estimate	 all	 the	uncertain	

values.	Applying	this	approach,	the	augmented	state	vector,	denoted	by	xa,	will	

be	of	 size	na,	where	 the	number	 of	unknown	 system	parameters	equals	na-n.	

This	is	a	well	known	technique	for	parametric	system	identification	and	for	the	

estimation	of	time-varying	system	parameters	with	many	successful	implemen-

tations	 in	 the	 literature	 (q.v.	 Section	 1.4.1).	 Based	 on	 this	 idea	 the	 simplest	

solution	 is	to	 introduce	the	restoring	force	 f	as	a	state	variable	which	 leads	to	

the	process	equation	

	
̇
̇
̇

= − +
0

,	 (2.3)

where	the	augmented	state	vector	directly	represents	the	RFS	sample	triplets.	

Since	no	information	about	the	expected	time-variation	of	the	new	state	varia-

ble	is	available	a	priori,	it	is	modelled	as	a	constant	state.	However,	via	proper	

tuning	of	the	observer,	which	is	discussed	later	in	Section	2.2.4,	the	estimates	of	

such	states	can	be	updated	fast	enough	to	track	their	oscillations.	But	to	ensure	

convergence	 according	 to	 (1.27)	 the	 observability	 has	 to	 be	 verified	 first	by	

taking	a	look	at	the	observability	matrices	of	the	system	for	the	three	possible	

measurement	types:	displacement	(z),	velocity	( )	and	acceleration	( ̇),	which	

are	of	the	following	form:	

| =

1 0 0
0 1 0

0 0 −
1 , | =

0 0 0
1 0 0

0 −
1

0
, | ̇ =

0 0 0
0 0 0

−
1

0 0
.	 (2.4)
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Recall	 from	 (1.28)	 that	 the	 jth	 row	 of	O	 represents	 a	 linearised	 relation	 be-

tween	the	jth	state	variable	and	the	measurement.	This	means	that	according	to	

(2.4)	the	restoring	force	f	remains	observable	for	all	measurement	cases.	How-

ever,	 for	 y= 	 the	 observability	 of	 z	 is	 lost,	 and	 for	 y= ̇ 	both	 z	 and	 v	become	

unobservable.	Therefore,	the	following	conclusion	can	be	drawn	about	directly	

introducing	the	restoring	force	as	state	variable:	

· It	 provides	 observability	 of	RFS	 samples	 for	 the	 special	 case	 of	 dis-

placement	measurements.	

· It	enables	the	observation	of	the	time	history	of	 f	for	all	measurement	

types,	which	is	useful	if	one	is	interested	in	the	internal	forces	of	a	sys-

tem	without	directly	relating	them	to	phase	plane	coordinates.	

However,	according	 to	 the	reasoning	 in	Section	2.1.1	 this	 is	not	a	satisfactory	

result	 in	 the	 current	 case.	 Therefore,	 a	more	 advantageous	 system	model	 is	

needed	that	introduces	no	restrictions	on	the	measured	kinematic	quantity.	As	

a	 solution	 to	 the	problem	 the	 following	 form	 of	 the	process	 equation	 is	pro-

posed:	

̇
̇
̇
̇

= − ( + ) +
0
0

,	 (2.5)

where	 s	 and	 d	 denote	 time-varying	 effective	 stiffness	 and	 effective	 damping	

coefficients	 respectively	with	 a	priori	unknown	 time	history,	which	we	 intro-

duce	as	state	variables	to	be	estimated	by	the	observer.	Due	to	this	modification	

the	f	coordinate	of	the	RFS	samples	is	not	directly	observed	anymore.	So	called	

“instrumental	 variables”	 (Young,	 2000)	 have	 been	 introduced	 instead	 that	

allow	 the	 a	posteriori	reconstruction	of	 the	actual	quantity	of	 interest,	 in	 this	

particular	case	given	by	(2.6).	Notice	that	the	modified	formulation	even	allows	

the	direct	reconstruction	of	the	separate	elastic	and	dissipative	restoring	forces	
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(fE	and	fD	respectively)	in	case	of	additive	RFSs	using	the	equations	(2.7).	This	is	

of	practical	advantage,	which	is	discussed	in	detail	in	Section	2.3.	

= + 	 (2.6)

, = 			, 		 , = 			 (2.7)

In	the	following	further	properties	of	the	defined	model	are	discussed	in	detail,	

which	 starts	 with	 the	 analysis	 of	 the	 observability	 matrices.	 For	 the	 three	

measurement	 types	 the	matrices	 consist	 of	 repeated	 columns.	Therefore,	 for	

the	sake	of	simplicity	their	main	structure	is	given	in	equations	(2.8),	(2.9)	and	

(2.10)	 for	displacement,	velocity	and	acceleration	measurements	respectively,	

while	the	analytical	expressions	of	their	column	vectors	oj	are	listed	separately	

in	equations	(2.11),	(2.12)	and	(2.13).	In	contrast	to	(2.4)	these	matrices	exhibit	

a	 coupled	 structure	with	more	 than	 one	non-zero	 entries	 in	 their	 rows.	This	

makes	the	investigation	of	their	symbolic	rank	difficult.	However,	in	the	single	

measurement	 case	 the	 observability	matrix	 is	 quadratic,	 hence,	 its	 non-zero	

determinant	can	be	used	as	a	proof	of	its	full	rank.	Equations	(2.14),	(2.15)	and	

(2.16)	show	 the	symbolic	determinants	of	 the	matrices	(2.8),	(2.9)	and	(2.10)	

respectively.	

| = [ ]	 (2.8)

| = [ ]	 (2.9)

	 | ̇ = [ ]	 (2.10)

=

1
0
0
0

, =

0
1
0
0

, =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

−

−

− ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, =
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det | = − [ + + − ]	 (2.14)

det | = − 	[( − ) + + − ]	 (2.15)

	det | ̇ = − [( − ) + + − ]	 (2.16)

Due	to	the	modification	of	the	process	model	introduced	in	(2.5),	the	determi-

nant	 is	 symbolically	non-zero	 for	 all	 three	measurement	 types,	which	makes	

observability	 available	 in	 all	 cases.	However,	because	 the	process	model	has	

become	nonlinear,	the	determinants	describe	 local	criteria.	They	are	functions	

of	variables	and	hence	can	become	zero	at	certain	variable	combinations.	The	

right-hand	sides	of	the	equations	are	written	as	products	of	a	mass-	and	effec-

tive	stiffness-dependent	 factor	and	an	expression	within	square	brackets.	The	

first	leads	to	the	criterion	that	s	is	not	allowed	to	be	zero	if	velocity	or	accelera-

tion	is	measured.	The	effect	of	zero	effective	stiffness	becomes	clear	by	taking	a	

look	at	the	first	row	vectors	of	the	observability	matrices,	i.e.	the	first	entries	in	
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the	 column	 vectors	oj.	Except	 for	o1,	which	 only	 appears	 in	O	 for	 y=z,	 these	

entries	become	zero	for	s=0	 leading	to	the	 loss	of	the	displacement’s	observa-

bility.	This	means	that	for	y= 	and	y= ̇ 	the	virtual	model	can	only	synchronise	

with	the	measured	system	as	long	as	a	symbolic	connection	between	the	deriv-

ative	of	the	state	vector	and	z	exists	in	the	process	equation.	On	the	other	hand	

this	 is	actually	 the	 reason	why	 the	 introduced	model	allows	observability	 for	

yϵ{ , ̇},	because	a	symbolic	relationship	between	the	restoring	force	and	z	has	

been	introduced.	

Getting	back	to	the	determinants	of	the	observability	matrices,	the	expressions	

inside	the	square	brackets	still	need	to	be	discussed.	In	order	to	decide	under	

which	conditions	these	expressions	can	become	zero,	a	few	algebraic	manipula-

tions	are	necessary.	Let	us	begin	with	the	case	y=z.	From	the	second	row	of	the	

process	equation	(2.5)	the	equality	(2.17)	can	be	derived.	

= ̇ + + 	 (2.17)

Using	(2.17)	to	replace	mbu	and	carrying	out	some	simplifications	the	symbolic	

determinant	from	(1.19)	becomes	

det | = − [	 − ̇ 	]	.	 (2.18)

For	further	analysis	let	us	assume	that	the	system’s	behaviour	can	be	described	

locally	 as	 a	 harmonic	 oscillation	with	 an	 instantaneous	 amplitude	 Λ	 and	 an	

instantaneous	angular	frequency	ω,	which	leads	to	

= ∙ sin( ),	 (2.19)

= ∙ ∙ cos( ),	 (2.20)

̇ = − ∙ ∙ sin( ).	 (2.21)

This	assumption	 is	only	reasonable	 for	s>0.	Therefore,	 from	 this	point	on	 the	

symbolic	investigation	of	observability	is	restricted	to	the	subclass	of	RFSs	that	
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have	 locally	positive	effective	stiffness	over	 the	phase	plane	range	of	 interest.	

According	to	the	locally	harmonic	assumption	(2.18)	turns	into	

det | = − [	 {sin ( ) + cos ( )}	]	,	 (2.22)

which	 is	 apparently	 never	 equal	 to	 zero	 as	 long	 as	 the	 system	 is	 in	motion.	

Therefore,	 the	 system	 (including	 its	RFS)	 is	 always	 observable	 for	 y=z.	 This	

actually	 satisfies	 a	natural	 requirement,	 since	 the	unmodified	process	model	

(2.3)	already	exhibited	this	property.	

The	other	two	measurement	cases,	i.e.	yϵ{ , ̇},	can	be	analysed	together,	since	

the	expressions	inside	the	square	brackets	in	(2.15)	and	(2.16)	are	the	same.	To	

do	so,	we	take	advantage	of	the	following	two	equality	expressions.	To	get	the	

equality	 (2.23)	 the	 square	of	 the	 second	 row	of	 the	process	equation	 (2.5)	 is	

taken	and	then	rearranged.	The	equality	(2.24)	follows	from	the	same	equation	

after	the	multiplication	of	both	sides	by	dv	and	subsequential	rearrangement	of	

its	terms.	

( − ) = ̇ + 2 − 2 − 	 (2.23)

− − = ̇ 	 (2.24)

After	 successive	 substitution	 of	 the	 right-hand	 sides	 of	 (2.23)	 and	 (2.24)	 for	

their	left-hand	sides	in	the	expression	inside	the	square	bracket	in	the	symbolic	

observability	determinants	for	yϵ{ , ̇},	it	becomes	

̇ + + ̇ 	.	 (2.25)

Applying	again	the	locally	harmonic	system	description	using	(2.20)	and	(2.21),	

the	expression	(2.25)	turns	into	

{	 sin ( ) + cos ( )− cos( ) sin( )	}	.	 (2.26)

Only	the	part	inside	the	curly	bracket	is	discussed	further,	since	the	multipliers	

outside	the	bracket	never	become	zero	as	long	as	the	system	is	in	motion.	After	



Ensuring	observability	

77	

deploying	 some	 trigonometric	 equalities	 (q.v.	 Appendix	 A)	 and	 carrying	 out	

some	symbolic	simplifications,	the	expression	within	the	curly	bracket	becomes	

1
2

( + )−
1
2

( − ) + ( ) sin(2 + )	.	 (2.27)

Since	we	consider	the	case	of	s>0,	the	expression	(2.27)	can	not	become	zero	as	

long	as	the	positive	constant	term	is	greater	than	the	amplitude	of	the	harmonic	

term,	 i.e.	 as	 long	 as	 (2.28)	 holds,	which	 after	 some	 algebraic	manipulations	

reduces	to	the	criterion	(2.29).	

− 2 + + < + 	 (2.28)

4 < 	 (2.29)

This	means	that	for	yϵ{ , ̇}	the	instantaneous	effective	stiffness	is	not	only	not	

allowed	to	be	zero,	but	it	has	to	be	higher	than	a	certain	level,	which	is	defined	

by	(2.29).	The	formula	can	also	be	rearranged	into	a	criterion	for	the	instanta-

neous	effective	damping	as	

| |
2√

< 1	.	 (2.30)

Notice	 that	 the	 left-hand	side	of	(2.30)	 is	 the	 linearised	damping	ratio	and	 its	

maximum	 allowed	 value	 is	 exactly	 the	 “critical	 damping”	 (Harris	 &	 Piersol,	

2002),	which	means	that	in	case	of	yϵ{ , ̇}	observability	is	only	provided	if	the	

locally	linearised	system	can	exhibit	free	oscillation.	

Now	 that	 the	 form	of	 the	general	 a	priori	model	has	been	established	 for	 the	

1DoF	case,	it	can	be	generalised	for	the	multiple	DoF	system	from	Section	1.3,	

which	leads	to	an	observable	(and	hence	by	synchronisation	identifiable)	form	

of	the	NDoF	process	equation:	
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⎣
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̇ ×
̇ × ⎦
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⎤

=

×
− × [diag( × ) × + diag( × ) × ] + × ×

×

×

.	 (2.31)

The	entries	s	and	d	are	the	vectors	of	the	N	time-varying	effective	stiffness	and	

damping	 coefficients	 respectively,	 therefore,	 the	 augmented	 state	 vector,	

denoted	by	xa,	is	of	size	na=2n.	Because	observability	is	a	property	of	the	system	

and	not	of	the	process	equation	alone,	the	measurement	equation	also	has	to	be	

defined	in	a	way	that	allows	the	observation	of	the	augmented	states.	Since	the	

effective	 stiffness	 and	 damping	 coefficients	 are	 unknown	 states,	 the	 a	 priori	

model	has	no	information	about	the	oscillatory	modes	of	the	system.	Due	to	this	

the	process	equation	does	not	carry	 a	clear	connection	between	DoFs,	hence,	

the	necessary	measurement	setup	can	be	formulated	as	

× ≔ [ , … , ] ∋ ∈ , , ̇ ,	 (2.32)

× = ( , ) ∋ rank
∂
∂ = ,	 (2.33)

where	w	 is	an	N	element	vector	consisting	of	wj,	which	can	arbitrarily	be	cho-

sen	to	be	the	0th,	1st	or	2nd	time	derivative	of	the	jth	element	of	the	displace-

ment	(deformation)	vector	z.	The	measurement	vector	y	is	of	size	ny=N,	which	

indicates	 that	 the	necessary	number	of	measurement	signals	 that	ensures	 the	

observability	of	the	augmented	state	vector	 is	equal	to	the	number	of	DoFs	 in	

the	mechanical	 structure.	Additionally,	 the	measurement	 equation	 has	 to	 be	

solvable	for	w,	which	is	guaranteed	by	the	rank	criterion	included	in	(2.33).	

2.1.3 Discussion	on	the	chosen	model	

Considering	 the	 aspects	 from	 Section	 2.1.1	 the	 a	 priori	 system	model	 intro-

duced	in	Section	2.1.2	is	suitable	for	the	nonparametric	identification	of	RFSs.	It	

has	 a	 very	 simple	 structure	 that	 provides	 observability	 using	 one	measured	
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arbitrary	mechanical	 quantity	 per	 DoF.	 Compared	 to	 directly	 observing	 the	

restoring	 force	 (2.3)	 the	 introduced	 model	 (2.5)	 provides	 observability	 for	

velocity	and	acceleration	measurements	as	well.	The	only	price	to	be	paid	for	

this	property	 is	 that	 the	 system	equations	become	nonlinear	 functions	of	 the	

augmented	states.	The	introduced	bilinear	structure	c(z,v):=sz+dv	however	can	

be	considered	as	a	weak	nonlinearity,	which	remains	in	the	same	form	regard-

less	of	 the	 complexity	of	 the	RFS	 that	 is	 to	be	 identified.	Despite	of	all	 these	

fruitful	properties	the	following	three	minor	drawbacks	still	remain:	

(1) The	loss	of	observability	for	velocity	and	acceleration	measurements	in	

case	of	effective	 stiffness	values	 that	does	not	 satisfy	 (2.29)	 requires	

additional	 state	 constraints	 in	 the	 observer	 (q.v.	 Section	 2.2.5),	 and	

causes	complications	for	some	rare	types	of	RFSs,	where	the	effective	

stiffness	changes	its	sign	at	some	points	of	the	phase	plane.	

(2) In	case	of	the	identification	of	coupled	RFSs	two	instrumental	variables	

(s	and	d)	are	used	to	estimate	one	quantity	of	interest	(f).	

(3) The	 fact	 that	 s	 and	 d	 are	 assumed	 as	 constant	 states	 in	 the	 process	

equation	requires	fast	convergence	of	the	observer	over	time.	

Since	the	present	model	choice	seems	rather	intuitive,	the	question	arises	from	

natural	suspicion,	whether	there	is	a	better	model	formulation	that	can	get	rid	

of	the	mentioned	difficulties.	This	topic	is	discussed	briefly	in	the	following.	

(1)	 Is	 it	 possible	 to	 provide	 observability	 for	 zero	 effective	 stiffness	 in	 case	 of	

velocity	and	acceleration	measurements?	

The	difficulty	with	s=0	is	not	a	specific	property	of	the	current	approach.	It	is	a	

consequence	of	the	fact	that	a	state	(in	this	case	z)	can	not	be	directly	observed	

from	the	measurement	of	its	time	derivatives	(in	this	case	 	or	 ̇).	Therefore,	it	

can	be	concluded	that	a	symbolic	connection	between	the	time	derivative	of	the	

state	vector	and	z	is	always	required	for	yϵ{ , ̇}	in	order	for	z	to	be	observable.	



Nonparametric	identification	of	RFSs	

80	

Since	 in	the	current	problem	formulation	(q.v.	Section	1.3)	the	RFSs	carry	the	

only	 connection	between	 the	 internal	 forces	 and	 the	displacements,	 it	 is	not	

possible	 to	 find	another	 form	of	 the	 a	priori	model	 that	would	overcome	 this	

restriction,	because	 the	connection	 is	always	 lost	 if	 the	elastic	restoring	 force	

becomes	zero.	It	might	be	possible	to	find	a	model	structure	that	would	allow	

the	 effective	 stiffness	 to	 get	 nearer	 to	 zero	 than	 (2.29).	However,	 numerical	

investigations	 (q.v.	 Chapter	 3)	 show	 that	 this	 criterion	 can	 successfully	 be	

accounted	for	by	adding	constraints	to	the	observer	algorithm.	Considering	the	

1DoF	 case,	 the	 following	practical	 formula	 can	be	derived	 from	 (2.29)	 to	ap-

proximate	the	lowest	observable	value	of	the	instantaneous	stiffness	s	based	on	

the	approximated	value	of	the	system’s	average	linearised	stiffness	E(s)	and	its	

effective	linearised	damping	ratio,	denoted	by	 :	

∙ E( ) < 	.	 (2.34)

The	dynamic	behaviour	 of	 typical	machines	 and	machine	 components	 corre-

sponds	 to	 averaged	 damping	 ratios	 between	 0.01	 and	 0.1	 (Dresig	 &	 Fidlin,	

2014),	(Schlecht,	2009).	This	means	according	to	(2.34)	that	 in	case	of	typical	

engineering	 structures	 the	 lowest	 allowed	 local	 effective	 stiffness	 s	 of	 the	

nonlinear	RFS	 is	about	0.012	to	0.12	times	the	average	stiffness	of	the	system.	

This	enables	that	even	a	system	including	backlash,	which	 indicates	zero	stiff-

ness	 in	 a	 significant	 amplitude	 range,	 can	 be	 identified	with	 good	 accuracy	

using	 the	 constrained	 observer	 technique	 (q.v.	Section	3.1.2).	Furthermore	 if	

such	minor	drawbacks	are	not	affordable,	one	can	still	use	displacement	meas-

urements	as	an	alternative	for	even	better	result	quality	without	restrictions	on	

the	effective	stiffness.	

(2)	Is	it	possible	to	reduce	the	number	of	instrumental	variables?	

Although	the	initial	a	priori	process	model	(2.3)	only	provides	observability	for	

displacement	measurement,	 it	 seems	 to	have	 an	advantage	 in	 comparison	 to	

the	final	model	structure	(2.5):	It	needs	only	one	augmented	state	f	to	generate	
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samples	of	coupled	RFSs.	This	property	would	indeed	reduce	the	computational	

costs	of	 the	 identification	algorithm.	To	discuss	 this	 topic	 let	us	 consider	 the	

following	 three	alternative	exploratory	RFS	models	with	only	one	augmented	

state:	

( , ) ≔ 	,	 (2.35)

( , ) ≔ 	,	 (2.36)

( , ) ≔ ( + )	,	 (2.37)

where	τ	is	a	positive	time	constant	that	is	necessary	to	match	the	units	of	z	and	

v.	 In	 this	case	s	does	not	represent	an	effective	stiffness	any	more.	 It	 is	an	 in-

strumental	variable	that	relates	the	restoring	force	to	the	other	state	variables	

of	 the	system.	The	models	(2.35)	and	(2.36)	are	of	 the	simplest	 form	one	can	

think	 about.	 Unfortunately	 they	 suffer	 from	 a	 major	 drawback:	 As	 already	

mentioned	in	Section	2.1.2,	the	main	challenge	of	the	presented	nonparametric	

approach	 is	 that	 the	observer	algorithm	has	 to	 track	 the	 fast	variation	of	 the	

augmented	states	over	 time	caused	by	 the	nonlinearities	of	 the	observed	sys-

tem.	Considering	mechanical	structures	with	both	elastic	and	dissipative	prop-

erties	 in	 case	of	 c(z,v):=sz	 the	value	of	 s	approaches	 infinity	every	 time	 z	ap-

proaches	zero	 in	order	to	compensate	the	missing	dissipative	force.	The	same	

holds	for	c(z,v):=sv	as	v	approaches	zero	while	the	elastic	force	 is	not	equal	to	

zero.	 This	 behaviour	 introduces	 undesirable	 artificial	 oscillations	 in	 s,	which	

makes	it	impossible	for	the	observer	to	track	its	value	with	acceptable	accuracy.	

In	 fact	even	 the	direct	estimation	of	 the	restoring	 force,	 i.e.	c(z,v):=f,	 is	disad-

vantageous	in	this	regard,	since,	while	the	oscillations	of	s	and	d	 in	(2.5)	arise	

solely	 from	 nonlinearities,	 the	 time	 history	 of	 f	 is	 already	 oscillatory	 for	 a	

vibrating	 linear	 system.	 To	 avoid	 this	 problem	 one	 can	 take	 the	 RFS	model	

(2.37),	where	s	never	approaches	infinity,	since	the	square	of	the	distance	from	

the	origin	of	the	phase	plane,	i.e.	z2+v2,	remains	positive	as	long	as	the	system	is	

in	 motion.	 However,	 the	 observability	 investigation	 of	 this	 a	 priori	 model	
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structure	 shows	 that	 the	 system	 is	 technically	 unobservable	 for	 yϵ{ , ̇}.	 A	

detailed	symbolic	observability	analysis	of	all	three	exploratory	models	can	be	

found	in	Appendix	C,	which	reveals	that	actually	all	of	them	suffer	from	major	

observability	issues.	There	might	be	some	more	complex	RFS	model	structures	

that	 can	 solve	 these	 issues.	 However,	 complex	 (strongly	 nonlinear)	 a	 priori	

models	 cause	 significantly	 increasing	 computational	 time	 of	 observer	 algo-

rithms,	which	makes	 a	 simple	model	 such	as	 (2.5)	highly	attractive.	This	 im-

portant	aspect	is	discussed	in	Section	1.6.3	and	2.2.3.	

(3)	Is	it	possible	to	support	the	observer	convergence	by	a	better	model?	

The	 chosen	 a	 priori	process	model	 (2.5)	 assumes	 constant	 effective	 stiffness	

and	effective	damping.	This	assumption	 is	obviously	not	true,	since	the	aim	of	

the	current	thesis	is	to	identify	nonlinear	systems.	This	means	that	the	conver-

gence	of	the	augmented	states	to	their	real	values	has	to	be	achieved	complete-

ly	 via	 the	 correction	 term	 of	 the	 observer	 equation	 (1.24),	 which	 requires	

proper	tuning	of	the	observer	algorithm	(q.v.	Section	2.2.4).	Although	this	is	the	

typical	model	choice	for	the	augmented	states	if	no	a	priori	 information	about	

their	variation	over	time	 is	available	(Lourens,	Reynders,	De	Roeck,	Degrande,	

&	Lombaert,	2012),	 the	 literature	on	 target	 tracking	offers	an	alternative	ap-

proach	that	can	enhance	observer	convergence.	The	main	idea	of	this	approach	

is	to	 introduce	higher	order	time	derivatives	of	the	existing	augmented	states	

as	additional	instrumental	variables	(Simon,	2006),	(Wu,	Lin,	Han,	&	Li,	2010),	

(Young,	2000).	Therefore,	 it	needs	to	be	clarified	why	the	current	model	does	

not	utilise	this	option.	The	idea	of	introducing	time	derivatives	of	the	augment-

ed	states	is	based	on	the	expectation	that	the	higher	the	order	of	the	derivative	

is,	the	smoother	 its	time	variation	gets,	and	therefore	the	easier	 it	becomes	to	

track	 its	 values.	 This	 is	 a	 justified	 expectation	 for	 approximately	 polynomial	

time	 variations.	 However,	 the	 current	 augmented	 states	 (s	 and	 d)	 exhibit	

oscillatory	behaviour	in	case	of	vibrating	systems	including	nonlinear	RFSs.	The	

introduction	of	additional	time	derivatives	is	obviously	not	useful	for	oscillato-
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ry	variables,	since	differentiation	does	not	result	in	smoother	characteristics	in	

such	cases.	

The	above	reasoning	aims	to	justify	the	author’s	choice	of	the	a	priori	model.	

2.2 Observer	design	for	nonparametric	
estimation	

In	 Section	 2.1	 an	 appropriate	 form	 of	 the	 system	 equations,	 i.e.	 (2.31)	 and	

(2.33),	has	been	derived	that	ensures	the	observability	of	the	augmented	state	

vector.	 The	 current	 section	 presents	 the	 observer	 algorithm	 that	 is	 able	 to	

synchronise	the	derived	system	model	to	the	measurement	signals	in	order	to	

generate	RFS	 samples.	This	mainly	 consists	of	generating	 a	 time	 sequence	of	

the	synchronisation	gain	K	that	satisfies	(1.26)	using	a	nonlinear	observer	(q.v.	

Section	2.2.3	and	2.2.4),	but	also	 includes	some	further	algorithm	refinements	

(q.v.	 Section	2.2.5	and	2.2.6).	Since	 the	 synchronisation	 of	 a	 virtual	model	 to	

noisy	real-life	measurements	essentially	changes	the	way	the	state	space	model	

needs	 to	 be	 treated,	 some	 supplementary	 discussions	 (q.v.	 Section	 2.2.1	 and	

2.2.2)	are	necessary	prior	to	the	 investigation	of	the	observer	algorithm	 itself.	

These	 discussions	 explain	 the	 author’s	 choice	 of	 the	 implemented	 type	 of	

observer,	 the	 Extended	 Kalman	 Filter,	 and	 they	 introduce	 the	 probabilistic	

point-of-view	that	plays	a	crucial	role	throughout	the	rest	of	the	thesis.	

2.2.1 Probabilistic	aspects	

Recall	 from	 equation	 (1.24)	 that	 due	 to	 the	 correction	 term	 in	 the	 observer	

equation	the	measurement	signal	y	is	embedded	into	the	modified	equation	of	

the	virtual	system,	which	 leads	to	two	main	effects.	On	the	one	hand,	the	pro-

cess	model	 is	 recursively	 corrected	by	 the	 information	about	 the	 real	 system	

that	 is	 carried	 in	 y.	Unfortunately,	 on	 the	 other	hand,	 the	 once	deterministic	
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virtual	model	 is	 also	affected	by	 the	undesired	part	 of	 y,	which	 is	 called	 the	

measurement	noise	vector,	denoted	by	r.	This	undesired	signal	component	 is	

caused	by	 a	 chain	 of	deterministic	processes	 that	 arise	 from	 the	 experiment	

setup	and	are	 in	most	cases	unknown	and	extremely	complex.	Therefore,	 it	 is	

justified	(and	also	convenient)	 to	consider	 them	as	one	overall	random	white	

noise	 process	 that	 is	 described	 by	 its	 bias	 vector	 and	 its	 covariance	matrix.	

Significantly	biased	measurements	can	not	be	handled	by	the	synchronisation	

algorithm.	They	can	drastically	decrease	result	quality	or	even	cause	observer	

divergence.	 In	most	 situations	y	 can	be	kept	unbiased	by	proper	experiment	

setup.	If	it	is	not	the	case,	then	if	the	bias	of	the	noise	is	known	(or	detectable	

based	 on	 a	 priori	 expectations	 on	 the	measurement	 signals),	 then	 it	 can	 be	

compensated	before	y	is	injected	into	the	observer.	Unfortunately	this	does	not	

hold	for	the	covariance,	that	 is	practically	speaking	the	actual	noisiness	of	the	

signal.	 A	priori	noise-filtering	 the	 signal	 can	alter	 the	useful	higher	harmonic	

components,	which	one	 investigating	 strongly	nonlinear	 systems	 is	especially	

interested	 in.	Hence,	unbiased	noise	 is	 an	 inevitable	part	 of	 every	measured	

signal	 and	 has	 to	 be	 accounted	 for	 in	 the	 observer	 algorithm.	 Since	 today’s	

equipment	 record	 digitally	 sampled	 signals,	 the	 superimposed	 noise	 compo-

nent	 is	 considered	 as	 a	 discrete-time	 process	 defined	 by	 its	 discrete-time	

covariance	matrix,	denoted	by	R.	 In	most	cases	 it	 is	sufficient	 to	assume	 a	so	

called	 “white	noise”,	which	 implies	 two	main	properties	of	 the	noise	process:	

The	spatial	distribution	of	its	samples	has	to	be	unbiased	and	normal	(Gaussi-

an),	denoted	as	r~N(0,R),	whereas	the	sequence	of	its	samples	has	to	be	uncor-

related	over	time.	Noise	processes	with	certain	correlation	over	time,	so	called	

“coloured	noise”,	can	also	be	handled	by	the	observer	algorithm	(Simon,	2006),	

however,	this	topic	is	not	considered	in	the	current	thesis.	

The	presence	of	noise	 implies	 a	crucial	change	 in	 the	way	state	variables	are	

handled.	 The	 probabilistic	 variation	 of	 the	 injected	 measurement	 is	 carried	

over	to	the	virtual	system,	hence,	the	augmented	state	vector	 itself	becomes	a	
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probabilistic	(random)	vector	X,	described	by	its	mean	vector	x	and	its	covari-

ance	matrix	PX.	One	single	observed	value	of	X	at	a	certain	time	point	i	is	only	a	

sample	of	its	probability	distribution,	denoted	by	 .	The	mean	and	the	covari-

ance	can	only	be	estimated	based	on	a	finite	number	ns	of	these	samples	using	

the	following	two	formulas	(Meyer,	2003).	

≈
1

	 (2.38)

≈
1
− 1

( − )( − ) 	 (2.39)

The	so	called	statistical	convergence	of	such	a	sampling	procedure	is	illustrated	

in	Figure	2.1	 for	 a	normally	distributed	scalar	state	X	with	a	mean	value	of	1	

and	different	variance	values	PX,	denoted	as	X~N(1,PX).	It	can	be	seen	that	the	

eRS%	error	(q.v.	Appendix	B)	of	the	mean	value	strongly	depends	on	the	true	

value	of	the	variance.	

	
Figure	2.1:	Statistical	convergence	of	the	mean	(left)	and	variance	(right)	of	the	normal-

ly	distributed	scalar	variable	X	for	different	variance	values.	Convergence	is	assessed	by	

the	eRS%	deviation	(q.v.	Appendix	B)	from	the	true	values	averaged	over	30	sampling	

runs.	
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The	error	of	the	variance	is	independent	from	its	true	value,	however,	its	con-

vergence	is	much	slower	than	that	of	the	mean	value.	But	for	all	that,	the	most	

important	message	of	Figure	2.1	 is	 that	 regardless	of	 the	performance	of	 the	

observer	 algorithm	 itself	 the	 expectable	 result	 quality	 (e.g.	 of	 the	 identified	

RFS)	 has	 a	 natural	 lower	 bound	 that	 increases	 as	 the	 number	 of	 available	

samples	decreases.	As	a	rule	of	thumb	at	 least	1000	samples	are	necessary	to	

reach	an	error	 level	of	an	estimated	mean	value	at	 the	order	of	magnitude	of	

1	%.	

2.2.2 Comparison	of	probabilistic	transformations	

In	order	 to	properly	account	 for	noisy	measurement	 signals	according	 to	 the	

requirements	from	Section	1.1,	the	Kalman	Filter	(KF)	is	chosen	in	the	present	

thesis	to	synchronise	the	a	priori	virtual	model	(derived	in	Section	2.1.2)	to	the	

real	 system.	As	discussed	 in	 Section	1.6.2	and	1.6.3,	 the	 choice	 of	 the	 imple-

mented	probabilistic	transformation	Φ	crucially	determines	the	accuracy	of	the	

KF	in	case	of	nonlinear	models,	such	as	the	derived	a	priori	model.	The	current	

section	presents	a	short	comparison	of	the	three	types	of	Φ	from	Section	1.6.2	

to	 justify	 the	author’s	 choice	of	 type	LinT	 for	nonparametric	 identification	 in	

Section	2.2.3.	To	do	so,	 let	us	consider	 a	particular	random	vector	X	with	 the	

following	properties:	

= ~N =
1
2
2

, =
0.15 0.15 0.15
0.15 0.3 0.2
0.15 0.2 0.3

	 (2.40)

The	performance	of	the	three	algorithms	is	compared	in	Figure	2.2	and	Figure	

2.3	 for	 the	 bilinear	 Y=X1X2	 and	 trilinear	 Y=X1X2X3	 nonlinear	 transformations	

respectively	based	on	the	mean	y	and	the	variance	PY	of	the	transformed	ran-

dom	 variable	 Y.	 The	MCT	 curves	 represent	 the	 averaged	 results	 of	 30	 inde-

pendent	Monte	Carlo	sampling	runs.	
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Figure	 2.2:	 Estimation	 error	 of	 the	mean	 (left)	 and	 variance	 (right)	 of	 the	 random	

variable	Y,	given	by	the	transformation	Y=X1X2.	A	MCT	with	3∙105	samples	is	taken	as	the	

reference	for	the	eRS%	deviation	(q.v.	Appendix	B).	

	
Figure	 2.3:	 Estimation	 error	 of	 the	mean	 (left)	 and	 variance	 (right)	 of	 the	 random	

variable	Y,	given	by	the	transformation	Y=X1X2X3.	A	MCT	with	3∙105	samples	is	taken	as	

the	reference	for	the	eRS%	deviation	(q.v.	Appendix	B).	

Notice	that	the	mean	value	of	Y	determined	by	LinT	deviates	from	its	true	value.	

Since	 the	calculation	of	 the	mean	value	 is	completely	deterministic	 in	case	of	

LinT,	 q.v.	 Equation	 (1.35),	 this	 shows	 that	 simply	 ignoring	 the	 noisiness	 of	
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measurement	signals	can	cause	systematic	error	of	the	identified	system	prop-

erties	 in	 case	of	nonlinear	models.	Regarding	 the	comparison	of	 the	different	

algorithms	it	can	be	seen	that	for	the	particular	nonlinearities	the	MCT	requires	

approximately	104	samples	to	reach	the	performance	of	the	UT,	whereas	the	UT	

requires	less	than	10	sigma	points	due	to	the	low	dimension	of	X.	Hence,	it	can	

be	concluded	 that	 for	problems	of	small	and	middle	dimension	(dim(X)<100)	

with	moderate	nonlinearities	 (and	approximately	Gaussian	distributions)	 the	

UT	is	superior	over	the	MCT.	Furthermore,	it	can	be	observed	that,	though	the	

UT	always	provides	better	results	than	the	LinT,	in	case	of	the	bilinear	function	

the	LinT	shows	good	performance	as	well.	This	is	a	very	important	conclusion,	

since	 the	 a	 priori	 system	 model	 introduced	 in	 Section	 2.1.2	 includes	 solely	

bilinear	nonlinear	terms.	

2.2.3 Implementation	of	the	Kalman	Filter	

In	this	section	the	implementation	of	the	KF	(q.v.	Section	1.6.3)	for	the	general	

system	model,	proposed	in	Section	2.1.2,	is	presented.	The	procedure	estimates	

the	probabilistic	augmented	 state	 vector	Xa	 at	 every	measurement	 time	 step	

with	the	following	structure:	

= ~ = , = ∙
∙ ∙
∙ ∙ ∙

	,	 (2.41)

where	 xa	 and	 PXa	 denotes	 the	mean	 vector	 and	 the	 covariance	matrix	 of	Xa	

respectively.	The	 recursive	algorithm	 is	based	on	 the	general	KF	 formulation	

given	 by	 the	 equations	 (1.45),	 (1.46),	 (1.47)	 and	 (1.48).	 Therefore,	 arbitrary	

types	 of	 the	 probabilistic	 transformation	 Φ	 can	 be	 deployed.	 Of	 course	 the	

choice	of	Φ	has	to	be	made	carefully	according	to	the	complexity	of	the	a	priori	

system	model.	In	the	present	study	the	EKF	(i.e.	type	LinT)	and	the	SR-UKF	(i.e.	

type	UT)	have	been	 tested.	 It	 is	shown	 in	 further	chapters,	 that	 the	proposed	

approach	is	designed	to	enable	the	use	of	the	EKF	regardless	of	the	nonlineari-
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ties	involved	in	the	RFSs	that	are	to	be	identified,	as	long	as	the	measurement	

equation	(2.33)	 is	 linear.	This	 is	explained	by	Section	2.2.2,	where	 it	 is	shown	

that	the	bilinear	nonlinearity	of	the	process	model	(2.31)	can	be	described	with	

good	accuracy	using	Φ	of	 type	LinT.	Deploying	 the	EKF	results	 in	 a	computa-

tionally	efficient	algorithm,	which	is	in	accordance	with	the	requirements	from	

Section	1.1.	The	 SR-UKF	 is	 only	used	 as	 a	 reference	 for	 the	EKF	 in	 order	 to	

prove	 its	sufficiency.	Nevertheless,	the	SR-UKF	should	still	be	kept	 in	mind	as	

an	alternative	for	the	cases,	when:	

· the	measurement	function	(h)	is	significantly	nonlinear;	

· the	 a	priori	model	(2.31)	has	 to	be	extended	with	additional	strongly	

nonlinear	terms;	

· the	system	model	is	given	in	form	of	a	black-box	code	(generated,	e.g.,	

by	 some	 software	 for	dynamic	simulation),	which	does	not	allow	 the	

symbolic	calculation	of	the	Jacobians	that	are	needed	for	the	EKF;	

· the	 model	 development	 is	 in	 exploratory	 phase,	 where	 the	 ease	 of	

model	changes	is	more	important	than	computational	time.	

Technically	the	complete	recursive	algorithm	of	the	EKF	is	presented	in	Section	

1.6.2	 and	1.6.3.	However,	 one	 step	 of	 the	 recursion,	namely	 the	 time	update	

(1.45),	 needs	 some	 extra	 discussion.	 Carrying	 out	 the	 probabilistic	 transfor-

mation	of	the	augmented	state	vector	through	the	integral	of	the	process	equa-

tion	(2.31)	has	to	be	treated	carefully.	The	first	non-trivial	task	is	the	transfor-

mation	of	the	mean	vector	(1.35),	i.e.	the	time-integration	itself.	This	integral	in	

general	can	not	be	given	 in	an	explicit	 form	and	 therefore	has	 to	be	approxi-

mated	using	a	proper	integration	scheme.	Though	the	chosen	general	model	is	

linear	between	measurement	time	steps	(since	s	and	d	are	only	changed	in	the	

correction	step),	in	order	to	keep	the	algorithm	flexible	and	consistent	with	the	

simulation	 of	 the	numerically	 generated	measurements	 of	nonlinear	 systems	

(q.v.	Chapter	3	and	4),	 it	 is	reasonable	to	apply	an	 integration	strategy	that	 is	

designed	for	nonlinear	systems.	A	huge	number	of	such	integration	algorithms	
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are	available,	and	the	optimal	choice	depends	crucially	on	the	structure	of	the	

system	model	(Walter,	2014).	As	long	as	the	process	model	is	given	by	relative-

ly	 simple	 ODEs,	which	 holds	 for	 (2.31),	 a	 simple	 explicit	 Runge-Kutta	 (RK)	

algorithm	 is	sufficient	 in	most	cases.	Normally	the	higher	the	order	of	the	RK,	

the	larger	the	affordable	integration	step	size	becomes,	and	one	is	able	to	find	

an	 optimal	 order	 that	 results	 in	 the	 shortest	 possible	 integration	 time.	 This	

principle	can	not	be	applied	for	the	KF,	since	the	maximum	allowed	integration	

time	step	size	is	given	by	the	sampling	frequency	of	the	measurement	signals.	If	

an	experiment	 is	carried	out	with	 the	purpose	of	system	 identification,	 a	 fine	

resolution	of	the	oscillations	 is	advantageous,	which	typically	 leads	to	a	meas-

urement	sampling	rate	that	 is	about	ten	to	twenty	times	the	highest	expected	

frequency	 in	the	signal.	Due	to	this,	 in	most	cases	a	relatively	 low	order	RK	 is	

sufficient	to	achieve	good	 integration	quality.	Additionally	 it	should	be	kept	 in	

mind	that,	since	we	attempt	to	observe	nonlinear	systems,	the	true	value	of	s	

and	d	will	change	over	time.	This	means	that	the	a	priori	model	diverges	from	

reality	during	 the	 integration	 time	 step,	which	 reduces	 the	value	of	 a	precise	

integration	 algorithm.	 Therefore,	 throughout	 the	 current	 study	 a	 third-order	

explicit	 Runge-Kutta	 integration	 scheme	 (RK3)	 is	 used,	 which	 leads	 to	 the	

following	 formula	 for	 the	 time	update	 of	 the	 state	 vector’s	mean	 in	 the	EKF	

algorithm:	

, = , + ( , )d ≈ , +
∆ ( + 4 + )

6 	,	 (2.42)

where	Δt	denotes	the	measurement	sampling	time	and	the	terms	aj	are	given	as	

≔ , 	, 	,	 (2.43)

≔ , + (∆ )/2	, ( + )/2 	,	 (2.44)

≔ , − ∆ + 2∆ 	, 	.	 (2.45)
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The	 second	nontrivial	 task	during	 the	 time	update	 step	of	 the	EKF	 is	 the	ap-

proximation	 of	 the	 transformed	 covariance	 matrix	 of	 the	 augmented	 state,	

which	 requires	 the	 Jacobian	of	 the	 time	 integral	of	 the	process	equation	 that	

(similar	to	the	integral	itself)	in	general	can	not	be	given	exactly	and	therefore	

has	to	be	approximated.	To	do	so,	an	explicit	algorithm	based	on	the	Jacobian	of	

the	 process	 function,	 denoted	 by	A,	 is	 deployed.	According	 to	 the	 current	 a	

priori	process	model	(2.31),	A	is	of	the	form	(2.46).	It	is	apparently	not	a	con-

stant	 matrix.	 Therefore,	 a	 trapezoidal	 formula	 of	 the	 form	 (2.47)	 has	 been	

introduced	 in	 the	 present	 study,	which	 allows	 a	 good	 approximation	 of	 the	

Jacobian	of	the	process	function’s	time	 integral.	This	Jacobian	 is	then	used	for	

the	transformation	of	the	state	covariance	matrix	during	the	time	update	in	the	

EKF	according	to	the	linearised	formula	(1.36).	

= 	 − diag( ) − diag( ) − diag( ) − diag( ) 	 (2.46)

, + ∫ ( , )d
≈ +

∆ , + ,

2 	 (2.47)

If	the	general	process	equation	(2.31)	has	to	be	extended	with	strong	nonline-

arities	 or	 additional	 algebraic	 equations	 (i.e.	 if	 one	 has	 to	 deviate	 from	 the	

problem	 formulation	 from	 Section	1.3)	 then	 the	 integration	 over	 time	might	

require	 more	 sophisticated	 algorithms.	 These	 for	 e.g.	 can	 include	 event-

handling	 (Stamm,	 2011)	 or	 can	 accommodate	DAEs	 (Fischer,	 2013).	 In	 such	

cases	 it	 is	convenient	 to	use	 the	SR-UKF	 (instead	of	 the	EKF)	 in	combination	

with	a	black-box	system	model	that	includes	the	appropriate	integrator	as	well.	

Such	models	can	be	generated	by	most	of	the	state	of	the	art	dynamic	simula-

tion	software.	
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2.2.4 Tuning	for	nonparametric	identification	

So	far	the	adaption	of	the	general	EKF	equations	to	the	particular	a	priori	model	

has	been	presented	(q.v.	Section	2.2.3).	As	mentioned	in	Section	1.6.3,	in	order	

to	run	the	EKF	the	initial	a	posteriori	distribution	of	Xa	has	to	be	characterised	

via	 , 	and	 , ,	and	 the	process	and	measurement	discrete-time	covariance	

matrices,	 i.e.	Q	and	R,	have	 to	be	defined	as	well.	Let	us	start	with	 the	 latter,	

which	 is	a	determinable	property	of	the	measurement	signal.	Ideally	R	should	

be	available	from	specific	noise	analysis	tests	that	have	been	carried	out	on	the	

particular	test	rig.	Since	 it	 is	not	always	the	case,	the	 identification	procedure	

has	 to	be	prepared	 for	 the	determination	of	R	 from	 the	 same	measurements	

that	are	used	for	the	identification	itself,	i.e.	y.	To	do	so,	in	the	current	study	the	

three-point	Central	Moving	Average	 (q.v.	Appendix	E)	of	y,	denoted	by	yCMA3,	

has	been	 subtracted	 from	 its	original	values	 to	generate	an	approximation	of	

the	noise	sequence.	This	is	then	statistically	analysed	using	the	formula	

≈
3

2 − − .	 (2.48)

Although	 this	 is	 a	 quick	 and	 dirty	 solution,	 it	 proved	 to	 deliver	 sufficiently	

accurate	estimates.	The	initial	guess	of	the	state	vector,	i.e.	 , ,	can	be	used	to	

involve	 any	 a	 priori	 knowledge	 about	 the	 states,	 therefore,	 it	 is	 defined	 as	

(2.49),	where	E(…)	denotes	 the	expectation	operator.	Especially	 the	expected	

average	stiffness	and	damping	values,	 i.e.	E(S)	and	E(D),	can	be	advantageous	

to	increase	the	initial	convergence	of	the	synchronisation.	In	case	of	oscillatory	

system	behaviour,	where	 the	 time	average	of	displacements	and	velocities	 is	

approximately	zero,	 it	 is	reasonable	to	define	E(Z0)	and	E(V0)	as	zero	vectors.	

Since	 the	 initial	correlation	between	 the	state	variables	 is	 typically	unknown,	

, 	can	be	defined	as	a	diagonal	matrix	with	variance	values	representing	the	

range	in	which	the	specific	initial	state	values	are	expected	to	be	located.	If	the	

initial	state	is	completely	unknown,	assuming	a	standard	deviation	of	100%	of	
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the	expected	 initial	mean	values	proved	 to	be	 a	good	choice.	This	 leads	 to	an	

initial	state	covariance	matrix	of	 the	form	(2.50),	where	 the	square	operation	

denotes	taking	the	square	of	each	vector	coordinate	element-wise.	Notice	that	

even	 for	 symmetrical	 oscillatory	behaviour	E(Z2)	 and	E(V2)	will	not	be	 zero.	

This	 is	 important	 first,	 because	 the	 state	 covariance	matrix	 is	 per	 definition	

always	positive	definite	 (and	 symmetric),	and	 second,	because	 zero	 variance	

would	mean	completely	certain	initial	values	of	the	corresponding	states.	

, ≔ [	E( ) E( ) E( ) E( ) 	] 	 (2.49)

, ≔ diag([	E( ) E( ) E( ) E( ) 	])	 (2.50)

Finally	the	process	covariance	matrix	Q	has	to	be	defined.	It	remains	as	the	only	

real	tuning	factor	of	the	KF	that	has	a	crucial	 influence	on	the	convergence	of	

the	 synchronisation.	 It	 is	 a	 symmetric	matrix	of	size	na×na	 that	describes	 the	

uncertainty	 of	 the	 corresponding	 na	 equations	 of	 the	process	model	with	 re-

spect	 to	 their	 symbolic	 structure	and	 constant	parameters.	The	 classical	pur-

pose	of	an	observer	(and	therefore	of	the	KF	as	well)	is	to	compensate	the	error	

between	 , 	and	the	a	priori	unknown	real	initial	state	 , .	It	implies	a	system	

model	 that	 is	at	 least	expected	 to	be	 correct	 (regarding	 its	 structure	and	pa-

rameters).	Under	 such	 conditions	Q	 can	 theoretically	be	 set	 to	 zero,	 and	 the	

virtual	model’s	behaviour,	represented	by	 the	estimated	measurement	signal,	

will	converge	to	the	real	system’s	behaviour.	Small	non-zero	diagonal	values	in	

Q	 can	 be	 used	 to	 “keep	 the	KF	 alive”,	 i.e.	 to	 force	 the	 algorithm	 to	 keep	 on	

compensate	 deviations	 that	 are	 caused	 by	 unexpected	modelling	 errors	 and	

measurement	disturbances.	These	classical	 conditions	are	not	 satisfied	 in	 the	

current	case.	The	instrumental	variables,	i.e.	s	and	d,	are	expected	to	vary	very	

quickly	over	time,	which	is	however	not	described	by	the	process	model	due	to	

the	a	priori	unknown	dynamics.	Therefore,	an	unusual	tuning	strategy	has	to	be	

introduced	in	the	present	thesis,	where	the	diagonal	values	of	Q	related	to	the	

augmented	part	of	the	state	vector	are	set	to	high	values	to	indicate	the	uncer-
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tainty	of	 the	corresponding	rows	of	 the	process	model.	These	diagonal	values	

are	 tuned	 by	 the	 exponents	 qs	 and	 qd	 that	 allow	 the	 separate	 convergence	

adjustment	of	the	instantaneous	effective	stiffness	and	damping	respectively.	In	

order	to	make	the	 increase	rate	of	the	process	uncertainty	 independent	of	the	

measurement	 sampling	 frequency,	Q	 is	 set	proportional	 to	 the	 sampling	 time	

step	Δt.	This	leads	to	the	following	formula	for	the	discrete	time	process	covari-

ance	matrix:	

≔ ∆ ∙ diag([	 × × 10 ∙ E( ) 10 ∙ E( ) 	])	.	 (2.51)

In	order	 to	 carry	out	 the	 tuning,	 a	 filter	 convergence	plot	 is	proposed	 in	 the	

current	 study	 as	 a	helpful	 tool	 for	 finding	 the	proper	 values	 of	 qs	and	 qd.	To	

evaluate	 the	convergence	of	 the	KF,	 the	synchronisation	residual	 is	calculated	

over	 time	 in	 a	 normalised	 mean	 square	 (eMS)	 form.	 Due	 to	 the	 predictor-

corrector	 formulation	of	 the	KF,	 two	different	residuals	with	different	results	

can	be	evaluated.	The	“prediction	error”,	denoted	by	ep,	is	calculated	using	the	a	

priori	 estimate	 of	 the	measurement	 ,	whereas	 the	 “synchronisation	 error”,	

denoted	by	es,	is	determined	by	the	a	posteriori	measurement	estimate	 .	As	a	

reference,	 these	errors	are	 compared	 to	 the	 eMS	 form	 of	R,	 called	 “measure-

ment	 error”,	 denoted	 by	 em.	 The	 precise	 definition	 of	 these	 error	 quantities	

according	to	Appendix	B	is	given	as	

≔ ,
, 	, ≔ ,

, 	, ≔ ,
, 	.	 (2.52)

The	measurement	error	is	calculated	a	priori	using	the	complete	measurement	

signal,	whereas	ep	and	es	are	calculated	during	the	KF	run	as	moving	errors	with	

a	sample	window	size	of	ns,	which	should	be	set	wide	enough	to	average	over	

all	dominant	oscillation	frequencies	of	the	measurement	signal.	The	calculation	

of	the	vector	 	is	not	a	standard	component	of	the	KF	algorithm.	It	is	carried	

out	 via	 an	 extra	 call	 of	 the	measurement	 equation	 after	 the	 correction	 step	

(1.48),	which	has	been	 implemented	 in	 the	present	 study	 in	 order	 to	 enable	

some	useful	analysis	features	that	are	presented	in	the	following.	
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If	the	system	model	 is	non-augmented	or	the	state	augmentation	technique	 is	

used	for	the	identification	of	constant	or	slowly	varying	parameters,	the	typical	

tuning	of	the	KF	is	sufficient.	It	results	in	the	synchronisation	error	converging	

to	the	measurement	error,	which	provides	a	smooth	noisefree	estimate	of	the	

augmented	states	(q.v.	Figure	2.4).	The	prediction	error	also	converges	 to	 the	

measurement	error,	since	the	model	is	corrected	over	successive	iterations	and	

hence	 predicts	 accurate	 noisefree	measurement	 values.	 This	 practice	 can	 be	

observed	 in	 (Wu	 &	 Smyth,	 2007),	 (Chatzi	 &	 Smyth,	 2009)	 and	 (Kolansky	 &	

Sandu,	2012),	where	constant	parameters	of	mechanical	systems	are	estimated	

using	different	types	of	nonlinear	KFs.	

	
Figure	2.4:	Classical	tuning	of	the	KF	for	the	estimation	of	constant	augmented	states	on	

the	example	of	a	virtual	 frequency	sweep	measurement	of	a	1DoF	oscillator	with	con-

stant	stiffness	and	damping.	qs	and	qd	have	been	set	to	-2.	

To	demonstrate	the	necessity	of	an	alternative	tuning	strategy	for	the	current	

nonparametric	problem	 formulation	 let	us	 take	 the	numerical	example	of	 the	

1DoF	nonlinear	 oscillator	 from	 Section	3.1.1.	Figure	2.5	depicts	 the	 result	 of	

applying	 the	 classical	 approach,	 i.e.	 tuning	 the	 synchronisation	 error	 to	 the	

level	of	the	measurement	error.	Due	to	a	priori	unknown	time-variation	of	the	

augmented	 states,	 the	model	 is	 invalid	at	every	 time	 step	of	 the	KF	 run,	and	
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therefore	 the	 prediction	 error	 remains	 higher	 than	 the	measurement	 error.	

This	 strategy	works	 as	 a	 low-pass	 filter	 acting	 on	 the	 estimated	 augmented	

states.	In	the	present	case	this	not	only	filters	the	measurement	noise	but	also	

useful	high-frequency	information	about	the	instantaneous	stiffness	and	damp-

ing	(q.v.	Figure	2.5	right).	Therefore,	in	the	current	study	an	optimised	tuning	is	

proposed	to	handle	the	oscillations	of	the	augmented	states.	The	KF	is	tuned	to	

the	highest	stable	synchronisation	gain	possible,	which	results	 in	the	synchro-

nisation	error	 reaching	 a	much	 lower	 level	 than	 the	measurement	error	 (q.v.	

Figure	2.6	left).	This	leads	on	the	one	hand	to	the	synchronisation	of	the	model	

to	 the	measurement	noise,	on	 the	other	hand	 to	a	significant	reduction	of	 the	

instrumental	variables’	bias	(q.v.	Figure	2.6	right).	

In	praxis,	 increasing	qs	and	qd	over	 a	 limit	 leads	 to	an	unstable	observer	as	 a	

result	of	 the	 following	 two	effects.	First,	 it	 leads	 to	 a	bad	conditioning	of	PXa,	

which	can	cause	numerical	problems.	This	can	be	improved	using	square-root	

forms	of	 the	KF	 (such	as	 the	SR-UKF)	or	by	 scaling	 the	augmented	 states	by	

their	expected	mean	values	and	estimating	 their	normalised	 coefficients.	The	

latter	 has	 been	 implemented	 in	 the	 current	 study	 (q.v.	 Chapter	 3).	 Second,	

extremely	high	 values	 of	Q	 lead	 to	 a	 complete	neglect	 of	 the	process	model,	

which	causes	the	numerical	loss	of	observability.	This	forms	a	physical	limit	of	

the	convergence	speed.	Figure	2.7	shows	how	the	bias	and	the	variance	of	s(t)	

changes	as	the	values	of	qs	and	qd	are	increased.	It	is	interesting	that	there	is	not	

only	an	upper	bound	of	 the	convergent	region,	but	 there	 is	also	an	additional	

divergent	 region	 in	 the	middle	 range	 of	 the	 covariance	 exponents.	This	phe-

nomenon	however	has	not	been	deeper	investigated	in	the	present	study,	since	

it	has	no	influence	on	the	preferred	tuning	strategy.	

During	 the	 current	 investigations	 (q.v.	 Chapter	 3	 and	 5)	 finding	 the	 highest	

possible	qs	and	qd	was	carried	out	by	setting	their	values	to	a	 level,	where	the	

synchronisation	 error	becomes	 lower	 than	 the	measurement	 error.	This	was	

followed	by	successively	increasing	the	values	until	the	threshold	of	instability	
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is	 reached.	For	 systems	with	 oscillations	 of	 interest	 in	 the	 range	 of	50	Hz	 to	

500	Hz	the	chosen	values	were	between	2	and	4.	

	
Figure	2.5:	Classical	tuning	of	the	KF	in	case	of	quickly	varying	augmented	states	on	the	

example	of	the	virtual	1DoF	nonlinear	oscillator	from	Section	3.1.1.	qs	and	qd	have	been	

set	to	1.	

	
Figure	2.6:	Optimised	 tuning	 of	 the	KF	 for	quickly	varying	 augmented	 states	 on	 the	

example	of	the	virtual	1DoF	nonlinear	oscillator	from	Section	3.1.1.	qs	and	qd	have	been	

set	to	3.	
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Figure	2.7:	Bias	and	variance	of	s(t)	(based	on	eM%	and	eRMS%	according	to	Appendix	

B)	on	the	example	of	the	virtual	1DoF	nonlinear	oscillator	from	Section	3.1.1	using	the	

EKF.	qs	and	qd	have	been	increased	simultaneously.	

Although	the	introduced	tuning	strategy	enables	the	observation	of	fast	oscilla-

tions	of	the	instrumental	variables	(s	and	d),	it	also	causes	the	estimates	to	be	

significantly	corrupted	by	noise	(q.v.	Figure	2.6	and	Figure	2.7).	This	makes	an	

a	posteriori	 statistical	analysis	of	 the	observed	data	necessary,	which	 is	pro-

posed	in	Section	2.3.	

2.2.5 Constraints	

It	 has	 been	 shown	 in	 Section	 2.1.2	 that	 in	 case	 of	 velocity	 and	 acceleration	

measurements	the	system	 loses	 its	observability	 if	the	estimated	values	of	the	

effective	 stiffness	cross	 a	certain	 lower	bound,	which	 is	given	by	 (2.29)	 for	 a	

1DoF	system.	In	order	to	guarantee	the	convergence	of	the	KF	even	 in	case	of	

small	 instantaneous	 stiffness	values,	additional	 inequality	 constraints	have	 to	

be	 implemented	 in	 the	algorithm.	The	current	general	 a	priori	process	model	

(2.31),	which	 has	 been	 defined	 according	 to	 the	 problem	 formulation	 from	

Section	1.3,	is	given	by	a	set	of	unconstrained	ODEs.	Once	this	model	is	extend-

ed	by	additional	state	constraints,	the	formulation	of	the	KF	from	Section	2.2.3	
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needs	 to	 be	 reviewed.	 It	 has	 been	mentioned	 in	 Section	 2.2.3	 that	 the	most	

general	 and	 convenient	way	 of	 applying	 a	KF	 for	 constrained	 systems	 is	 the	

direct	 implementation	of	 the	 constraints	 in	 the	process	equation	 in	 combina-

tion	with	 the	 SR-UKF	algorithm.	There	 are	 two	 reasons,	why	 this	 solution	 is	

disadvantageous	in	the	current	case.	First,	according	to	the	requirements	from	

Section	 1.1,	 this	 study	 aims	 to	 establish	 a	 computationally	 fast	 algorithm,	

therefore,	 the	 EKF	 should	 remain	 deployable.	 Second,	 the	 necessity	 of	 con-

strained	instrumental	variables	does	not	arise	from	the	physical	model	directly.	

It	 is	 related	 to	 the	 chosen	 identification	 algorithm,	 and	 therefore	 should	 be	

treated	separately	without	the	modification	of	the	process	model.	Fortunately	

there	are	some	techniques	that	allow	the	incorporation	of	simple	equality	and	

inequality	constraints	in	the	KF	(Simon,	2006).	One	of	these	techniques,	the	so	

called	Density	Function	Truncation,	 is	especially	remarkable	due	 to	 its	proba-

bilistic	manner	of	treating	inequality	constraints.	In	this	method	the	probability	

distribution	 of	 the	 concerned	 states	 is	 truncated	between	 the	 lower	 and	 the	

upper	bounds	instead	of	deterministically	applying	the	constraints	to	the	mean	

value	of	the	state	variables.	This	is	much	more	appropriate	in	case	of	stochastic	

estimation,	 since	 the	 state	 covariance	matrix	 is	adjusted	properly	as	well.	An	

exact	 formula	 of	 this	 approach	 for	 Gaussian	 distributions	 is	 presented	 in	

(Simon	&	Simon,	2006).	The	constraining	strategy	that	has	been	 implemented	

in	the	present	thesis	follows	this	idea.	It	is	however	formulated	by	means	of	the	

Unscented	Transformation	 (q.v.	Section	1.6.2)	 in	order	 to	keep	 the	algorithm	

general	and	more	flexible.	

Considering	 the	EKF,	 the	 only	 step	 of	 the	 recursive	 algorithm,	where	 the	 in-

strumental	variables	(s	and	d)	can	change	 their	values,	 is	 the	correction	step	

(1.48),	since	the	a	priori	system	model	assumes	them	to	be	constant.	Therefore,	

it	 is	 reasonable	 to	 include	 the	 constraint	 step	 in	 the	 recursion	 between	 the	

correction	step	(1.48)	and	the	subsequential	prediction	step	(1.45).	The	uncou-
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pled	 inequality	 constraint	 of	 the	 a	 posteriori	 state	 estimate	 	 with	 lower	

bound	xL	and	upper	bound	xU	is	given	by	the	vector	function	κ	as	

∗ = ( , , ) ≔
		, ≥
		, < <
		, ≤

, … ,
		, ≥
		, < <
		, ≤

,	 (2.53)

where	 ∗	denotes	the	constrained	state	estimate.	Applying	this	constraint	 in	a	

probabilistic	manner	can	be	 formulated	as	 the	probabilistic	 transformation	Φ	

of	 the	mean	 and	 variance	 of	 the	 a	 posteriori	 augmented	 state	 ( 	and	 )	

through	 the	 function	κ.	Since	 this	function	can	not	be	 linearised	properly,	 the	

UT	approach	is	deployed	for	the	transformation,	which	is	then	given	as	

∗ ∗ ∗ = Φ 	, 	,	 (2.54)

where	 ∗ 	and	 ∗ 	denote	the	mean	and	variance	of	the	constrained	augmented	

state	respectively.	These	constrained	values	replace	the	a	posteriori	ones	in	the	

prediction	 step	 (1.45)	 in	 the	modified	 KF	 algorithm.	 At	 those	 points	 of	 the	

following	chapters,	where	 the	SR-UKF	 is	used	as	 a	 reference	 for	 the	EKF,	 the	

constraint	equation	(2.53)	 is	directly	 implemented	 in	 the	process	model.	This	

means	that	κ	 is	applied	 in	a	deterministic	way	to	each	a	priori	sigma	point	of	

the	state	vector,	i.e.	 ,	during	the	time	update	step	(1.45).	

Throughout	the	current	thesis	(if	not	explicitly	stated	otherwise)	the	lower	and	

upper	bounds	are	defined	as	

= [−∞ × −∞ × × −∞ × ] 	, = ∞ × 	,	 (2.55)

where	–∞	(and	∞)	denote	vectors	with	entries	 low	(and	high)	enough	for	the	

corresponding	 states	 to	 remain	 unconstrained.	 sL	 denotes	 the	 lower	 bound	

vector	 of	 the	 instantaneous	 stiffness	 vector	 s	 that	 is	 necessary	 in	 order	 to	

maintain	observability	 in	 case	of	velocity	and	acceleration	measurements.	 Its	

values	can	be	determined	according	to	(2.34).	
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2.2.6 Convergence	monitoring	

The	convergence	plot	has	been	proposed	 in	Section	2.2.4	as	a	helpful	 tool	 for	

finding	the	proper	values	of	qs	and	qd,	i.e.	for	the	tuning	of	the	KF.	It	is	however	

not	its	only	possible	application.	It	is	used	for	two	further	important	purposes	

in	the	present	study,	which	are	briefly	discussed	in	this	section.	

In	case	of	complex	systems,	 long	measurement	sequences	or	 large	parameter	

studies	live	monitoring	of	the	KF	during	the	estimation	is	essential.	This	possi-

bility	enables	 the	 reduction	of	unnecessary	 computation	 time	by	 terminating	

the	 process	 as	 soon	 as	 convergence	 issues	 occur.	 The	 convergence	 plot	 is	

perfectly	 suitable	 for	 this	purpose,	 since	 the	prediction	error	 ep	and	 the	 syn-

chronisation	error	 es	 can	be	processed	and	plotted	 recursively	during	 the	KF	

run.	Let	us	take	the	virtual	frequency	sweep	measurement	of	the	1DoF	oscilla-

tor	 from	Section	3.1.3	 to	demonstrate	 this	capability.	This	system	makes	 it	 is	

easy	 to	 induce	 typical	convergence	problems,	due	 to	 its	 strong	nonlinearities	

involving	asymmetric	stiffness	and	Coulomb	friction.	One	possible	reason	of	KF	

divergence	 is	the	wrong	choice	of	the	covariance	exponents	(qs	and	qd),	which	

has	 already	 been	mentioned	 in	 Section	 2.2.4.	 Such	 a	 situation	 is	 depicted	 in	

Figure	2.8,	where	 setting	 the	exponents	 to	qs=qd=5	 results	 in	 a	divergent	KF,	

which	can	be	detected	easily	by	taking	a	look	at	the	convergence	plot.	

Even	if	the	covariance	exponents	are	set	to	proper	values	(in	this	case	qs=qd=3),	

such	a	strongly	nonlinear	system	can	lead	to	further	undesired	behaviour.	This	

is	the	case	e.g.	if	the	lower	bound	constraint	sL	of	the	instantaneous	stiffness	is	

deactivated.	 Such	 a	 situation	 is	 depicted	 in	 Figure	 2.9.	 It	 can	 be	 seen	 that,	

though	the	synchronisation	is	convergent,	the	KF	becomes	 inconsistent	due	to	

the	 loss	 of	 observability.	 The	 stiffness	 converges	 to	 incorrect	 values	 around	

zero.	Again	the	malfunction	is	indicated	clearly	on	the	convergence	plot	by	the	

unrealistically	low	level	of	the	synchronisation	error	es.	
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Figure	2.8:	Convergence	plot	(left)	and	the	time	sequence	of	the	instantaneous	stiffness	

(right)	in	case	of	KF	divergence	due	to	improper	tuning.	Virtual	frequency	sweep	meas-

urement	of	the	strongly	nonlinear	1DoF	oscillator	from	Section	3.1.3.	

	
Figure	2.9:	Convergence	plot	(left)	and	the	time	sequence	of	the	instantaneous	stiffness	

(right)	 in	 case	of	 the	 inconsistence	of	 the	KF	caused	by	 the	deactivation	of	 the	 lower	

bound	constraint	of	the	stiffness.	Virtual	frequency	sweep	measurement	of	the	strongly	

nonlinear	1DoF	oscillator	from	Section	3.1.3.	

The	other	important	purpose	of	the	convergence	plot	is	its	essential	role	in	the	

a	posteriori	analysis	of	the	estimated	time	sequences	of	the	augmented	states.	
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In	 case	 of	 the	particular	nonlinear	 system	 the	KF	 exhibits	 several	 short-time	

convergence	 issues,	 even	 if	 it	 is	 properly	 tuned,	which	 is	 depicted	 in	 Figure	

2.10.	The	estimated	stiffness	values	show	high	deviations	from	the	true	values	

in	 those	 time	 ranges,	where	 the	 synchronisation	error	 es	 reaches	high	 levels.	

Major	 deviations	 occur	 especially	 in	 those	 regions,	where	 es	 becomes	 larger	

than	 the	measurement	error	em.	The	convergence	plot	can	be	used	 to	discard	

the	 low	 quality	 parts	 of	 the	 estimation	 results	 from	 the	 postprocessing	 by	

setting	 a	properly	 chosen	 threshold	 for	 es.	Discarding	all	 state	estimates	 that	

correspond	 to	es>0.5em	proved	 to	be	sufficient	 for	 the	 identification	examples	

that	 are	 presented	 in	 the	 following	 chapters.	 In	 this	 particular	 example	 the	

defined	threshold	results	in	the	exclusion	of	approximately	the	first	0.5	s	of	the	

estimated	time	sequence.	Notice	that	in	the	time	ranges	tϵ[0.5,1]	and	tϵ[1.5,2]	

the	observed	stiffness	still	deviates	significantly	from	the	true	values.	This	error	

is	 however	 nearly	 unbiased	 and	 can	 be	 accounted	 for	 a	 posteriori	 using	 a	

proper	probabilistic	fitting	approach,	which	is	proposed	in	Section	2.3.	

	
Figure	2.10:	Convergence	plot	 (left)	and	the	time	sequence	of	 the	 instantaneous	stiff-

ness	 (right)	 according	 to	 the	 virtual	 frequency	 sweep	measurement	 of	 the	 strongly	

nonlinear	1DoF	oscillator	from	Section	3.1.3.	
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2.3 Reconstruction	of	noisefree	RFSs	
In	 Section	 2.1	 an	 NDoF	 a	 priori	 system	model	 (given	 by	 (2.31),	 (2.32)	 and	

(2.33))	has	been	proposed	that	enables	the	indirect	observation	of	RFS	samples	

via	 instrumental	variables	 (s	and	d)	 in	order	 to	 carry	out	 the	nonparametric	

identification	 according	 to	 the	 problem	 formulation	 from	 Section	 1.3.	 The	

implementation	of	this	model	 in	a	nonlinear	KF	algorithm	has	been	presented	

in	Section	2.2,	which	generates	an	estimated	time	sequence	of	the	augmented	

state’s	mean	vector	xa	and	covariance	matrix	PXa	 in	 the	 form	(2.41)	based	on	

the	excitation	 signal	u	and	 the	measured	global	behaviour	of	 the	 real	 system	

given	by	y.	The	elements	of	 the	estimated	time	series	can	now	be	assigned	to	

the	N	RFSs,	which	results	in	the	jth	local	mean	vector	xC,j	and	covariance	matrix	

PC,j	of	the	form	

, ≔

⎣
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎤

~

⎝

⎜
⎛

, ≔ , , ≔

⎣
⎢
⎢
⎡ , , , , , , , ,
∙ , , , , , ,
∙ ∙ , , , ,
∙ ∙ ∙ , , ⎦

⎥
⎥
⎤

⎠

⎟
⎞
	,	 (2.56)

where	the	mean	and	variance	elements	correspond	to	the	jth	and	j,jth	element	

of	 the	mean	 vector	 and	 covariance	matrix	 in	 (2.41).	Notice	 that,	 though	 the	

“hat”	 symbol	 has	 been	 dropped,	 all	 quantities	 in	 (2.56)	 represent	 estimated	

values.	Throughout	Section	2.3	this	simplified	notation	is	used.	Due	the	assign-

ment	of	the	KF	results	to	local	RFSs,	the	rest	of	the	identification	algorithm	can	

be	split	into	N	independent	RFS	fitting	problems.	Therefore,	for	the	rest	of	the	

current	section	the	indices	“j”	and	“j,j”	are	dropped	for	the	ease	of	notation.	In	

general	 the	deformation	z	and	rate	of	deformation	v	of	the	RFS	do	not	neces-

sarily	equal	 to	particular	coordinates	of	 the	chosen	state-space	of	 the	system,	

but	can	be	given	by	arbitrary	functions	of	the	state	vector	as	z=β(x)	and	v=γ(x)	

(q.v.	 (1.6)	 and	 (1.7)).	 In	 such	 cases	 (that	 deviate	 from	 the	 current	 problem	

formulation	from	Section	1.3)	z,	v	and	their	variances	can	be	generated	using	a	
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properly	 chosen	 type	 of	probabilistic	 transformation	 of	 x	 (q.v.	 Section	1.6.2)	

through	the	functions	β	and	γ.	

In	 Subsection	2.3.1	 the	 reconstruction	 of	probabilistic	RFS	 samples	based	 on	

the	local	augmented	state	vector	is	presented.	This	is	followed	by	the	derivation	

of	an	optimal	curve	fitting	algorithm	 in	Subsection	2.3.2	to	generate	noisefree	

RFCs	 to	describe	additive	RFSs.	Finally	 the	optimal	surface	 fitting	of	 the	sam-

ples	is	discussed	in	Subsection	2.3.3	that	allows	the	reconstruction	of	noisefree	

coupled	RFSs.	

2.3.1 Reconstruction	of	RFS	samples	

Recall	 from	 Section	 1.4.2	 that	 the	 ith	 sample	 of	 eRFCs,	 dRFCs	 and	RFSs	 are	

given	by	the	coordinate	sets	{z,fE}i,	{v,fD}i	and	{z,v,f}i	respectively,	to	which	the	

following	notation	is	introduced:	

, ≔ ,
		,			 , ≔ ,

		,			 ≔ 	.	 (2.57)

According	to	the	a	priori	process	model	(2.31),	the	force	coordinates	(fE,	fD	and	

f)	are	not	estimated	directly	by	the	KF.	They	are	nonlinear	functions	of	the	local	

random	state	vector	XC,	which	is	defined	by	(2.6)	and	(2.7).	The	calculation	of	

the	force	coordinates	has	to	be	treated	as	the	probabilistic	transformation	of	XC	

through	 these	 functions,	 since	 the	 estimated	 state	 vector	 is	 expected	 to	 be	

significantly	 corrupted	by	noise	 (as	discussed	 in	 Section	2.2.4).	 Section	1.6.2	

presented	some	flexible	approximate	solutions	to	this	problem.	However,	since	

the	particular	transformation	is	based	on	functions,	which	are	basic	elements	of	

the	presented	 identification	method	 that	 remain	unchanged	 regardless	of	 the	

system	model,	it	is	worth	deriving	an	exact	solution	that	is	fast	and	accurate.	
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Let	 us	 start	 with	 the	 calculation	 of	 the	 probabilistic	 samples	 of	 eRFCs	 and	

dRFCs	as	a	combined	four-dimensional	vector,	denoted	by	XRFC,	defined	by	the	

vector	function	

≔ = ( ) = ∙

∙

	,	 (2.58)

where	capital	notation	 indicates	probability	distributions	of	 the	related	varia-

bles.	The	mean	vector	xRFC	and	the	covariance	matrix	PRFC	of	the	random	vector	

variable	XRFC	 can	 be	 expressed	 based	 on	 the	 Taylor	 series	 expansion	 of	 λRFC	

around	the	mean	value	of	XC,	which	is	of	the	form	

( ) =

⎣
⎢
⎢
⎡

+ ( − )
∙ + ( − ) + ( − ) + ( − )( − )

+ ( − )
∙ + ( − ) + ( − ) + ( − )( − )⎦

⎥
⎥
⎤
	,	 (2.59)

= E ( ) 	,	 (2.60)

= E([ ( )− ][ ( )− ] )	.	 (2.61)

In	case	of	λRFC,	the	Taylor	series	expansion	(2.59)	gives	an	exact	formula,	since	

after	the	third	term	of	the	series	all	additional	terms	equal	zero.	The	aim	of	the	

current	derivation	is	to	define	xRFC	and	PRFC	as	functions	of	xC	and	PC	to	obtain	

explicit	 formulas	 for	 the	RFC	 samples.	Assuming	 that	 the	 local	 state	vector	 is	

represented	by	a	symmetric	distribution	and	carrying	out	the	algebraic	opera-

tions	defined	by	(2.60)	and	(2.61),	the	following	exact	formulas	are	derived:	

≔ = =
∙ +

∙ +
	,	 (2.62)

≔ 	,	 (2.63)
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	 =
+

⋯ + 2 + + + 	,	 (2.64)

=
+

⋯ + 2 + + + 	,	 (2.65)

= +
+ + + + + + 	,	 (2.66)

where	PσE,	PσD	and	PσEσD	denote	the	covariance	matrices	of	σE	and	σD	and	their	

cross-covariance	matrix	respectively.	The	detailed	derivation	of	these	formulas	

is	summarised	 in	Appendix	F.	Notice	that	the	mean	values	of	the	force	coordi-

nates	in	(2.62)	are	influenced	by	covariance	values.	Neglecting	this	fact	(i.e.	the	

deterministic	calculation	of	the	RFC	samples)	would	produce	a	systematic	error	

of	the	sample	coordinates.		

In	order	to	reconstruct	general	RFSs	(that	can	even	describe	coupled	nonlinear-

ities),	 formulas	 for	 the	 mean	 vector	 σ	 and	 the	 covariance	 matrix	 Pσ	 of	 the	

probabilistic	RFS	samples	have	 to	be	derived	as	well.	According	 to	(1.15)	 the	

total	 restoring	 force	 f	 is	 the	 sum	 of	 the	 elastic	 and	 the	 dissipative	 restoring	

force	components	(fE	and	fD).	Therefore,	the	probability	distribution	of	σ	can	be	

defined	as	a	function	of	XRFC	in	the	form	

= ( ) =
+

	.	 (2.67)

Since	λRFS	is	a	linear	function,	the	probabilistic	transformation	Φ	of	type	LinT	of	

the	form	(2.68)	can	be	deployed	to	get	the	exact	formulas	(2.69)	and	(2.70).	

[ ⋯] = Φ ( , )	 (2.68)

=
∙ + ∙ + +

	 (2.69)
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=
+ + +

⋯ + + +
⋯ ⋯ , , + 2 ∙ , , + , ,

	 (2.70)

The	generated	probabilistic	sample	datasets	{σE,PσE}i,	{σD,PσD}i	and	{σ,Pσ}i	can	

now	be	used	for	the	optimal	fitting	of	the	jth	eRFC,	dRFC	and	cRFS	respectively.	

2.3.2 Optimal	nonparametric	RFC	fitting	

The	 current	 section	deals	with	 the	 reconstruction	 of	 the	noisefree	 eRFC	 and	

dRFC,	 i.e.	 cE(z)	 and	 cD(v),	 based	 on	 the	 noisy	 datasets	 {σE,PσE}i	 and	 {σD,PσD}i	

respectively	that	have	been	derived	in	Section	2.3.1.	These	two	curves	define	an	

additive	RFS	 according	 to	 (1.9).	 They	 can	 be	 calculated	 separately	 using	 the	

same	algorithm.	Therefore,	the	technique	that	is	derived	in	the	following	for	the	

elastic	curve	cE	can	straightforwardly	be	applied	to	the	dissipative	curve	cD	as	

well.	The	dataset	{σE,PσE}i	can	be	treated	as	a	noisy	virtual	measurement	of	the	

real	eRFC	in	the	form	

, ≔ ,
= ,

( , ) + , 	,	 (2.71)

	~	(E( ), )	,	 (2.72)

where	 rσE	 denotes	 the	 random	 noise	 process	 that	 is	 corrupting	 the	 virtual	

measurement.	Although	the	formulas	derived	in	Section	2.3.1	ensure	the	unbi-

ased	transformation	of	the	estimated	state	vector	xC	into	eRFC	samples	σE,	the	

noise	process	rσE	still	includes	bias	caused	by	the	estimation	error	of	the	KF,	i.e.	

by	the	deviation	of	xC	from	its	true	values.	Though	the	tuning	strategy	present-

ed	in	Section	2.2.4	aims	to	minimise	this	error	(for	the	price	of	increased	noisi-

ness	of	the	state	estimates),	the	results	of	the	KF	will	not	be	perfect,	therefore,	

the	bias	of	rσE,	i.e.	E(rσE),	will	not	be	zero.	This	bias	is	however	unknown,	hence,	

it	has	to	be	neglected	 in	the	curve	fitting	algorithm.	Notice	that	(in	contrast	to	

the	usual	noise	vector	of	 real	measurements)	rσE	 is	essentially	 correlated,	 i.e.	
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PσE	 is	not	 a	diagonal	matrix,	since	all	 its	coordinates	originate	 from	 the	same	

noise	process,	namely	 that	 of	 the	 real	measurement	 vector	 y.	Therefore,	 the	

curve	 fitting	problem	can	be	 formulated	as	 the	minimisation	of	 the	Weighted	

Total	Squares	error	eWTS	defined	as	

, = , −
̂ ( , )
̂ ( ) 	,	 (2.73)

= , , , 	,	 (2.74)

where	 ̂ 	and	 ̂ 	denote	 the	estimate	of	 the	 true	RFC,	 i.e.	 cE,	and	 its	 inverse	

function	respectively.	The	function	 ̂ 	is	an	optimal	estimate	in	Weighted	Total	

Least	Squares	(WTLS)	sense	if	it	is	the	minimiser	of	 .	An	RFC	of	a	physical	

system	is	per	definition	always	a	unique	function.	This	however	not	necessarily	

holds	for	its	inverse	function.	Hence,	the	calculation	of	the	total	error	vector	ecE	

can	easily	become	a	nontrivial	task,	which	is	however	efficiently	handled	by	the	

technique	that	is	proposed	in	the	current	section.	

In	the	present	thesis	a	nonparametric	regression	is	applied	to	the	WTLS	fitting	

problem	 of	 the	 RFCs	 in	 order	 to	 keep	 the	 developed	 identification	 method	

completely	nonparametric.	To	do	so,	an	alternative	approach	 is	proposed	that	

has	two	advantages	compared	to	existing	solutions	that	have	been	summarised	

in	 Section	 1.7.	 First,	 it	 is	 suitable	 for	 general	 correlated	 noise,	 i.e.	 for	 non-

diagonal	PσE.	Second,	compared	to	other	nonparametric	algorithms,	such	as	the	

LPR	(q.v.	Section	1.7),	 it	 is	a	computationally	cheaper	algorithm,	because	 it	 is	

based	on	a	smaller	number	of	calls	per	dataset	sample.	It	is	not	a	general	WTLS	

approach,	because	it	crucially	implies	that	the	dataset	{σE,PσE}i	is	given	in	form	

of	 time	signals.	This	however	always	holds	 in	case	of	 the	RFC	samples,	 there-

fore,	it	does	not	represent	any	restriction	to	the	presented	identification	meth-

od.	
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Our	aim	is	to	generate	a	smoothed	(noisefree)	version	of	this	observed	dataset,	

denoted	by	 , ,	which	represents	the	optimal	estimate	of	the	eRFC,	 i.e.	 ̂ ( ),	

that	 is	 a	 minimiser	 of	 .	 To	 do	 so,	 the	 task	 is	 considered	 as	 a	 two-

dimensional	target	tracking	problem,	where	the	non-smooth	dataset	is	consid-

ered	as	the	noisy	measurement	of	a	target’s	movement	on	the	plane	of	the	eRFC	

coordinates	 from	 one	 end	 of	 the	 true	 curve	 cE	 to	 the	 other	 end,	 i.e.	 from	

min(ztrue,i)	 to	max(ztrue,i),	with	 a	 priori	 known	 correlated	measurement	 error	

PσE.	 In	order	 to	make	 the	sample	dataset	 “look	 like”	such	 a	measurement,	 the	

samples	are	sorted	in	ascending	order	of	the	coordinate	z	(i.e.	the	deformation	

of	the	eRFC).	This	idea	is	proposed	in	(Young,	2000)	as	a	part	of	the	method	of	

State	Dependant	Parameters	(SDP).	The	smoothed	path	of	the	imaginary	target	

is	 then	estimated	using	 a	 recursive	0th	order	 random	walk	estimator	 (Young,	

2000),	also	known	as	the	α-filter	(Simon,	2006).	This	is	actually	a	special	case	of	

the	EKF	with	two	state	variables	(z	and	fE),	therefore,	the	formulas	presented	in	

Section	1.6.2	and	Section	1.6.3	can	directly	be	applied	after	defining	the	process	

function	and	the	measurement	function,	i.e.	a	and	h,	as	

( , ) ≔ 0
0 , ( , ) ≔ .	 (2.75)

The	sequence	of	recursion	is	now	defined	by	the	spatial	coordinate	z	instead	of	

time.	The	measurement	covariance	matrix	R	is	replaced	by	PσE,i	that	in	this	case	

has	different	values	at	each	recursion	step.	Due	to	this,	 the	estimation	quality	

feedback	of	 the	KF	 is	directly	 taken	 into	account	 in	 the	 fitting	process,	which	

provides	a	higher	weighting	of	reliable	samples.	The	choice	of	the	discrete	time	

(precisely	 speaking	 “discrete	 spatial	 step”)	process	 covariance	matrix	Q,	here	

denoted	by	QcE,	 is	discussed	 in	detail	 later	on	 in	 this	section.	The	 a	posteriori	

state	estimates	of	this	modified	KF	form	the	smoothed	dataset	 , .	The	a	poste-

riori	covariance	matrix	of	the	state	estimation	error,	denoted	in	this	particular	

case	by	 , ,	which	is	a	standard	result	of	the	KF,	provides	a	quantification	of	

the	estimated	eRFC’s	uncertainty.	It	is	generated	as	a	nonparametric	function	of	
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the	deformation	coordinate	z	and	provides	a	useful	feedback	on	the	estimation	

quality,	which	is	given	separately	for	the	two	coordinates	(z	and	fE)	of	the	eRFCs	

nodes.	This	satisfies	the	corresponding	requirement	from	Section	1.1.	

Notice	that	the	two	ends	of	the	spatial	recursion	have	been	defined	previously	

as	min(ztrue,i)	and	max(ztrue,i),	although	the	true	values	of	z	are	not	known	prior	

to	 the	curve	 fitting.	This	 is	a	key	point	of	 the	proposed	algorithm.	Actually,	 in	

order	 to	 achieve	 a	WTLS	 fit,	not	 only	 the	 two	 ends	 of	 the	 recursion	but	 the	

whole	sorting	of	the	dataset	and	the	subsequential	recursion	has	to	be	carried	

out	over	the	true	values	of	z.	This	can	not	be	realised	perfectly,	but	a	sufficiently	

accurate	approximation	of	ztrue	can	be	given	by	the	Central	Moving	Average	(q.v.	

Appendix	E)	of	the	noisy	z,	denoted	by	zCMA.	Thereby	some	level	of	smoothness	

of	the	noisefree	ztrue	is	assumed.	This	is	the	point,	where	the	current	approach	

implies	the	observed	dataset	to	be	given	by	realistic	time	signals,	which	auto-

matically	ensures	some	natural	smoothness.	Due	to	this	solution,	the	procedure	

has	a	slightly	iterative	manner,	since	a	first	guess	of	the	smoothed	dataset’s	first	

coordinates	 is	 generated	 in	 order	 to	 initiate	 the	main	 fitting	 algorithm.	 The	

procedure	 has	 been	 implemented	 without	 additional	 iteration	 cycles	 of	 the	

main	 fitting	 step,	 which	 is	 (as	 the	 following	 examples	 show)	 sufficient	 to	

achieve	good	results.	

To	illustrate	the	necessity	of	the	discussed	kind	of	sorting,	let	us	take	a	synthet-

ic	example	of	a	highly	nonlinear	eRFC,	where	the	time	series	{σE,PσE}i	is	directly	

generated	and	corrupted	by	artificial	correlated	noise.	This	avoids	the	possible	

effect	of	the	previously	mentioned	bias	of	the	results	of	the	first	KF	run,	 i.e.	 it	

ensures	E(rσE)=0.	The	 true	and	 the	noisy	values	of	 the	 two	eRFC	coordinates	

are	depicted	 in	Figure	2.11,	which	shows	a	0.01	s	time	segment	of	the	dataset	

that	 has	 been	 observed	with	 10	kHz	 sampling	 rate	 over	 1	s.	 The	 true	 defor-

mation	 is	defined	as	a	 two-component	(173	Hz	and	633	Hz)	harmonic	oscilla-

tion.	 Its	 observations	 are	 corrupted	by	 stationary	 zero-mean	Gaussian	white	

noise	with	a	covariance	matrix	of	
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, ≔ 5 ∙ 10−12 1.5 ∙ 10−5

1.5 ∙ 10−5 75
	.	 (2.76)

This	represents	a	higher	noise	level	than	what	can	be	expected	under	realistic	

conditions	(q.v.	Chapter	3	and	5),	which	is	ideal	as	an	extreme	test	of	the	pre-

sented	 technique.	 The	 five-point	 CMA	 of	 the	 observed	 signals	 (denoted	 by	

CMA5)	is	shown	in	Figure	2.11	as	well	to	illustrate	that	(though	zCMA	is	suitable	

as	recursion	coordinate)	 these	signals	could	not	be	directly	used	as	noisefree	

sample	coordinates	due	to	their	deviation	from	the	true	values.	

	
Figure	2.11:	Synthetic	 (directly	generated)	example	of	 the	sample	dataset	of	 a	highly	

nonlinear	eRFC	generated	at	10	kHz	observation	sampling	rate	and	corrupted	by	corre-

lated	Gaussian	white	noise.	

The	effect	of	the	proper	choice	of	the	recursion	coordinate	becomes	clearer	by	

taking	a	look	at	Figure	2.12	that	illustrates	the	simple	sorting	over	z	in	compar-

ison	with	the	enhanced	sorting	over	zCMA	based	on	the	defined	numerical	exam-

ple.	Notice	that	the	observed	samples	represent	a	much	better	image	of	the	true	

signal’s	statistics	in	case	of	the	enhanced	sorting,	which	is	a	crucial	requirement	

for	the	target	tracking	approach	described	above.	
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Figure	2.12:	Sorted	samples	of	a	highly	nonlinear	eRFC	based	on	synthetic	correlated	

noisy	 observations.	 Sorting	 over	 the	 observed	 deformation	 (top)	 is	 compared	 to	 the	

sorting	over	the	CMA5	moving	averaged	deformation	(bottom).	

Now	 that	 the	samples	are	prepared	 for	 the	modified	KF	(q.v.	(2.75)),	 the	 last	

missing	element	of	the	technique	is	the	proper	choice	of	the	process	covariance	

matrix	QcE,	 that	 controls	 the	 smoothness	 of	 the	 identified	RFC.	As	 follows,	 a	

simple	formula	is	suggested	for	choosing	its	values.	To	do	so,	let	us	first	consid-

er	 a	one	dimensional	 tracking	problem,	where	only	 the	 force	 coordinate	 fE	 is	

observed.	The	resulting	formula	 is	then	extended	to	the	two	dimensional	case	

at	the	end.	The	spatial	recursion	axis	zCMA	is	treated	as	if	it	was	time	regarding	

its	nomenclature	throughout	this	short	derivation	in	order	to	keep	the	context	

clearer.	This	means	that	it	is	denoted	by	t	and	derivatives	with	respect	to	it	are	

indicated	 by	 the	 “dot”	 symbol.	 Let	 us	 describe	 the	 true	 characteristic	 of	 the	

elastic	 force	by	an	 average	 slope	 over	 the	 recursion	 axis,	denoted	by	ΔfE/Δt.	

This	can	be	determined	as	the	slope	of	the	rectangle’s	diagonal	that	envelopes	

the	observed	samples	in	the	{zCMA,fE}	plane.	
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Given	a	constant	continuous-time	process	covariance	of	 	the	dynamics	of	

the	smoothed	elastic	force,	denoted	by	 ,	are	approximately	governed	by	the	

differential	 equation	 (2.77)	 except	 for	 a	 short	 initial	 transient	phase	 (Simon,	

2006).	The	average	of	the	continuous-time	measurement	covariance	is	thereby	

denoted	by	 .	Equation	(2.77)	can	be	 transformed	 into	 the	error	equation	

(2.79)	 by	 defining	 the	 normed	 instantaneous	 curve	 estimation	 error	 ec	 as	

(2.78).	By	reformulating	the	stationary	solution	of	the	error	equation,	given	by	

(2.80),	the	value	of	 	is	found	as	a	function	of	the	normed	stationary	curve	

estimation	error,	denoted	by	ec,∞,	given	as	(2.81).	

̇ =
∆
∆ − 	 (2.77)

≔ ∆ − ∆ 	 (2.78)

	 ̇ =
1
∆ − 	 (2.79)

, =
1
∆ 	 (2.80)

=
, ∙ ∆ 	 (2.81)

Using	the	rules	(2.82)	(Simon,	2006)	for	the	transformation	of	the	continuous-

time	variances	into	their	discrete-time	counterparts,	denoted	by	QcE	and	RcE,	the	

formula	(2.81)	becomes	(2.83),	where	QcE	is	a	function	of	the	recursion	step	size	

dt	and	is	therefore	not	constant	over	the	recursion.	

= / 	, = 	 (2.82)
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=
∙

, ∙ ∆ 	 (2.83)

Extending	this	result	to	the	correlated	two	dimensional	case	of	the	RFC	fitting	

problem	and	switching	back	to	the	notation	zCMA	instead	of	t,	the	final	formula	

for	 the	 tuning	matrix	QcE	 is	 given	 for	 the	 ith	 recursion	 step	 as	 (2.84),	which	

provides	a	uniform	smoothing	of	the	identified	RFC.	

≔
∙ E( )

, ∙ ∆
	 (2.84)

Accordingly,	 the	proposed	nonparametric	 curve	 fitting	algorithm	 is	 tuned	by	

the	averaging	window	size	of	the	CMA	and	the	normed	error	ec,∞.	The	optimisa-

tion	of	these	two	tuning	factors	regarding	the	identified	RFC’s	eRMS	error	based	

on	a	group	of	curve	examples	(q.v.	Figure	2.15)	yielded	a	CMA	window	size	of	5	

samples	 (i.e.	 CMA5)	 in	 combination	with	 ec,∞=0.01	 as	 the	 best	 choice.	 These	

settings	are	used	for	RFC	fitting	throughout	the	rest	of	the	current	thesis.	The	

smoothed	dataset	of	the	nonlinear	eRFC	from	the	previously	defined	numerical	

example	 is	depicted	 in	Figure	2.13	 showing	 the	 significant	 increase	 of	 result	

quality	due	to	the	choice	of	zCMA5	instead	of	z	as	the	coordinate	of	recursion.	The	

presented	procedure	obviously	does	not	reduce	the	number	of	samples.	How-

ever,	since	a	noisefree	dataset	has	been	identified,	the	number	of	characteristic	

points	 can	 now	 easily	 be	 reduced	 by	 resampling	without	 significant	 loss	 of	

information	 in	order	 to	generate	compact	 lookup	 tables	 that	are	practical	 for	

simulation	purposes	or	other	types	of	system	analyses.	

In	order	to	indicate	the	local	uncertainty	of	the	smoothed	dataset,	the	a	posteri-

ori	variance	 	of	the	eRFC	samples	can	be	used	to	generate	lower	and	upper	

uncertainty	curves	given	by	the	datasets	 , 	and	 , 	respectively	as	
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, ≔ , +

⎣
⎢
⎢
⎡+ , ,

− , , ⎦
⎥
⎥
⎤
	,	 (2.85)

, ≔ , +

⎣
⎢
⎢
⎡− , ,

+ , , ⎦
⎥
⎥
⎤
	,	 (2.86)

where	 , , 	denote	corresponding	diagonal	elements	of	 	and	pplot	serves	as	

an	optical	tuning	factor	for	the	visualisation	of	the	uncertainty	curves	together	

with	 the	 fitted	eRFC.	Notice	 that	 the	 formulas	(2.85)	and	(2.86)	are	given	 for	

RFCs	with	positive	slope.	The	signs	of	the	variance	dependent	offset	terms	have	

to	be	switched	in	case	of	negative	slope.	For	the	special	case	of	non-monotonic	

RFCs	a	more	complex	formulation	is	necessary.	

As	 the	 final	 step	 of	 the	 presented	 procedure	 the	 unreliable	 samples,	which	

typically	occur	at	the	two	ends	of	the	smoothed	dataset,	are	discarded	from	the	

results.	The	 introduced	uncertainty	curves	are	perfectly	 suitable	 for	 this	pur-

pose,	which	can	be	 seen	 in	Figure	2.14,	where	an	 illustrated	 summary	of	 the	

whole	curve	fitting	algorithm	is	given	from	the	noisy	RFC	samples	to	the	final	

smoothed,	 trimmed	 and	 resampled	 RFC	 (based	 on	 the	 previously	 defined	

numerical	example).	

Further	numerical	examples	of	four	different	RFCs	are	depicted	in	Figure	2.15,	

which	aims	to	prove	the	flexibility	of	the	proposed	technique.	
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Figure	 2.13:	 The	 true	 curve	 of	 a	 highly	 nonlinear	 eRFC	 is	 compared	 to	 the	 WTLS	

smoothed	 samples	based	on	 synthetic	correlated	noisy	observations.	Sorting	over	 the	

observed	deformation	(left)	is	compared	to	the	sorting	over	the	CMA5	moving	averaged	

deformation	(right).	

	

	
Figure	2.14:	 Illustrated	 summary	of	 the	proposed	nonparametric	WTLS	 curve	 fitting	

algorithm	based	on	the	synthetic	correlated	noisy	samples	of	a	highly	nonlinear	eRFC.	
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Figure	2.15:	Different	RFC	fitting	examples	carried	out	using	the	proposed	nonparamet-

ric	WTLS	approach	based	on	synthetic	correlated	noisy	observations.	

2.3.3 Optimal	nonparametric	RFS	fitting	

The	current	section	deals	with	the	direct	reconstruction	of	a	noisefree	RFS,	i.e.	

c(z,v),	based	on	the	noisy	dataset	{σ,Pσ}i	that	has	been	derived	in	Section	2.3.1.	

This	surface	defines	 a	general	coupled	RFS	(cRFS)	 that	 is	useful	 in	situations,	

where	 the	 assumption	 of	 an	 additive	 nonlinearity	 according	 to	 (1.9)	 is	 not	

justified.	The	fitting	of	an	RFS	follows	the	same	logic	as	the	fitting	of	the	RFCs,	

therefore,	at	many	points	of	 the	current	section	 it	 is	referred	 to	Section	2.3.2	

instead	of	repeating	the	same	reasoning.	The	dataset	{σ,Pσ}i	can	be	treated	as	a	

noisy	virtual	measurement	of	the	real	RFS	in	the	form	

≔ =
,
,

( , , , )
+ , 	,	 (2.87)
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	~	(E( ), )	,	 (2.88)

where	rσ	denotes	the	random	noise	process	that	is	corrupting	the	virtual	meas-

urement.	As	discussed	 in	Section	2.3.2,	 the	 results	of	 the	augmented	KF	 (q.v.	

Section	2.2)	will	not	be	perfect,	 therefore,	 the	bias	of	rσ,	 i.e.	E(rσ),	will	not	be	

zero.	This	bias	however	has	to	be	neglected	in	the	fitting	algorithm,	since	it	is	of	

unknown	nature.	As	in	the	case	of	the	RFCs,	rσ	is	essentially	correlated,	i.e.	Pσ	is	

not	a	diagonal	matrix.	Therefore,	the	surface	fitting	problem	can	be	formulated	

as	the	minimisation	of	the	Weighted	Total	Squares	error	eWTS	defined	as	

, = −
̂ , ( , )
̂ , ( , )
̂( , )

	,	 (2.89)

= , , , 	,	 (2.90)

where	 ̂,	 ̂ , 	and	 ̂ , 	denote	the	estimate	of	the	true	RFS,	i.e.	c(z,v),	and	its	two	

reformulated	versions	that	accommodate	{zi,fi}	and	{vi,fi}	as	independent	varia-

ble	pairs	respectively.	The	function	 ̂	is	an	optimal	estimate	in	Weighted	Total	

Least	Squares	 (WTLS)	 sense	 if	 it	 is	 the	minimiser	of	 .	The	values	of	 the	

reformulated	 functions	 ̂ , 	 and	 ̂ , 	 are	 not	 necessarily	 unique	 in	 general,	

hence,	 the	direct	calculation	of	 the	 total	error	vector	ec	can	cause	difficulties.	

This	problem	 is	 efficiently	handled	by	 the	 technique	 that	 is	proposed	 in	 the	

following.	

The	 brief	 literature	 overview	 in	 Section	 1.7	 discusses	 state	 of	 the	 art	 fitting	

approaches	that	can	handle	surface	fitting	as	well.	One	can	conclude	in	compact	

form	 that	 there	are	powerful	nonparametric	 surface	 fitting	 solutions	 that	are	

based	on	Local	Polynomial	Regression	(Fox,	2002),	(Zhang,	et	al.,	2013),	which	

however	do	not	consider	samples	corrupted	by	fully	correlated	noise.	Unfortu-

nately	the	idea	of	considering	the	WTLS	regression	problem	as	target	tracking,	
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as	it	is	applied	for	curve	fitting	in	Section	2.3.2,	can	not	be	applied	for	surfaces,	

since	they	do	not	represent	a	path,	therefore,	 the	definition	of	an	appropriate	

recursion	 coordinate	 is	not	possible.	Accordingly,	 an	alternative	 strategy	has	

been	 implemented	 in	the	present	thesis	that	 is	also	nonparametric	in	order	to	

completely	avoid	functional	assumptions	in	the	developed	identification	meth-

od.	The	approach	has	the	following	two-step	structure:	

· Step	1	 is	 a	 local	WTLS	point	 fitting,	where	 the	observed	RFS	samples	

are	sorted	 into	groups	based	on	 a	predefined	segmenting	of	 the	{z,v}	

plane.	Each	 of	 these	 sample	 groups	 are	 replaced	by	 one	 fitted	point,	

denoted	 by	 ,	which	 represents	 their	 mean	 value	 in	 the	 {z,v,f}	

space	 in	WTLS	 sense	 (q.v.	Figure	2.16	 left	and	Figure	2.17	 left).	This	

simple	case	of	WTLS	fitting	has	an	explicit	solution	for	correlated	noise.	

· Step	2	 is	 a	quadratic	Local	Polynomial	Regression	(LPR)	of	 the	WTLS	

points,	i.e.	of	the	results	of	step	1,	over	a	predefined	uniform	grid	of	the	

{z,v}	plane.	It	provides	the	final	identified	RFS	in	form	of	a	lookup	table	

of	its	smoothed	nodes,	denoted	by	 ,	(q.v.	Figure	2.16	right	and	Figure	

2.17	right).	This	additional	regression	is	necessary	due	to	two	reasons.	

First,	in	step	1	a	fitting	in	all	three	dimensions	of	the	RFS	is	carried	out,	

therefore,	 the	 resulting	points	are	not	arranged	on	 a	uniform	grid	 in	

the	{z,v}	plane,	which	is	disadvantageous	for	the	further	use	of	the	RFS	

as	 a	 lookup	 table.	Second,	 in	 case	of	 insufficient	number	of	observed	

samples	 further	 smoothing	 of	 the	WTLS	points	 is	 reasonable,	due	 to	

the	slow	statistical	convergence	of	nonparametric	surface	 fitting	(q.v.	

Section	3.4.2).	

A	detailed	description	of	these	two	steps	is	presented	in	the	following	including	

the	illustration	of	the	approach	based	on	virtually	generated	examples.	
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Step	1:	local	WTLS	point	fitting	

The	 local	 point	 fitting	 generates	 a	 reduced	 number	 of	 samples,	 denoted	 by	

,	which	are	calculated	in	WTLS	sense.	The	index	j	denotes	the	jth	segment	

of	 the	 {z,v}	plane	 that	 includes	 the	 jth	group	 of	 the	original	 samples,	each	of	

which	are	replaced	by	one	fitted	point	(q.v.	Figure	2.16	left).	In	order	to	create	a	

better	 image	of	the	original	samples’	statistics,	the	sorting	of	the	samples	 into	

the	predefined	segments	of	the	{z,v}	plane	 is	carried	out	based	on	their	CMA5	

averaged	 coordinates	 (zCMA5	 and	 vCMA5).	 This	 explains,	why	 the	 jth	 group	 of	

samples	 in	Figure	2.16	(left)	 is	not	bounded	by	 a	rectangle	 in	 the	 {z,v}	plane.	

This	solution	is	driven	by	the	same	logic	as	in	Section	2.3.2	in	case	of	the	sorting	

of	RFC	 samples.	The	 reason	of	applying	 the	 first	 step	 in	 this	 form	 is	 that	 the	

special	case	of	fitting	a	single	point	in	WTLS	sense	has	an	exact	solution,	which	

according	to	(Simon,	2006)	can	be	formulated	in	a	recursive	algorithm	as:	

, ≔ 	, , , ≔ , 	 (2.91)

≔ , , , , + , 	 (2.92)

, , ≔ − , , − + , 	 (2.93)

, ≔ , + − , 	 (2.94)

The	 jth	 recursion	 is	 carried	 out	 for	 iϵ{1,…,nj–1},	where	 the	 number	 of	 noisy	

samples	 in	 the	 jth	group	 is	denoted	by	nj.	The	 last	values	of	 the	 jth	recursion	

represent	 the	 jth	 fitted	 WTLS	 point.	 These	 points	 build	 the	 dataset	

{ , , },	which	 forms	the	result	of	the	fitting	algorithm’s	first	step.	The	

reason	 of	 implementing	 this	 recursive	 formulation	 is	 that	 the	 also	 available	

explicit	algorithm	turned	out	to	be	computationally	expensive	due	to	the	inver-

sion	of	matrices	of	size	3nj×3nj.	The	WTLS	point	fitting	 is	 illustrated	 in	Figure	

2.17	 (left)	 based	 on	 the	 synthetic	 correlated	 noisy	 samples	 of	 a	 paraboloid	
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surface.	 The	 observations	 are	 based	 on	 the	 two-component	 harmonic	 defor-

mation	time	series	z	from	the	numerical	example	in	Section	2.3.2	and	its	analyt-

ical	time	derivative	as	the	rate	of	deformation	v.	The	signals	are	corrupted	by	

zero-mean	Gaussian	white	noise	with	a	covariance	matrix	of	

, ≔
10−12 10−10 10−6

10−10 10−6 10−4

10−6 10−4 30
	.	 (2.95)

Step	2:	Local	Polynomial	Regression	

During	the	present	study	it	turned	out	that	the	dataset	 	can	not	be	direct-

ly	used	as	a	nonparametric	RFS	due	to	its	insufficient	smoothness.	The	reason	

for	 this	 originates	 from	 the	 statistical	 aspects	 that	 have	 been	 discussed	 in	

Section	2.2.1,	which	 leads	 to	 a	 slow	 statistical	 convergence	of	nonparametric	

surface	 fitting	 (q.v.	Section	3.4.2).	To	overcome	 this	problem,	 the	 current	ap-

proach	is	extended	by	a	quadratic	Local	Polynomial	Regression	(LPR)	in	stand-

ard	Weighted	Least	Squares	(WLS)	sense	in	order	to	achieve	the	smoothed	and	

uniformly	resampled	set	of	surface	points,	denoted	by	 .	These	form	the	end	

result	of	the	RFS	fitting	in	form	of	a	lookup	table.	To	do	so,	the	desired	resolu-

tion	of	the	result	 is	defined	by	generating	a	uniform	grid	of	size	√ × √ 	 in	

the	{z,v}	plane	that	is	given	by	a	set	of	coordinate	pairs	as	

≔
⋯
⋯

×
	,	 (2.96)

to	which	the	nz	smoothed	force	coordinates,	denoted	by	fS,	are	to	be	determined	

by	the	fitting	algorithm.	Based	on	the	theory	presented	in	(Fox,	2002)	the	WLS	

quadratic	LPR	can	be	formulated	as	follows:	

, = diag , , , ⋯ , , , ×
	 (2.97)	
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, =
1 , , , , , ,

⋮
1 , , , , , , ×

	 (2.98)

, = , , , 	 (2.99)

, = , , , , ⋯ , 	 (2.100)

Thereby	the	number	of	WTLS	points	in	the	kth	segment	(q.v.	Figure	2.16	right)	

is	denoted	by	nk,	and	the	specific	elements	of	vectors	and	matrices	have	been	

indexed	using	{z,v,f}	instead	of	{1,2,3}	in	order	to	keep	the	notation	clearer.	The	

dataset	{ , , , }	represents	the	parameters	of	the	kth	locally	fitted	quadratic	

polynomial	surface.	These	are	then	transformed	into	the	locally	smoothed	RFS	

points	over	the	predefined	grid	as	follows:	

, = 1 , , , , , , ×
	 (2.101)

= [ , , , , ] 	 (2.102)

, = , , , 	 (2.103)

This	 second	 step	of	 the	procedure	 is	 illustrated	 in	Figure	2.17	 (right)	 for	 the	

previously	introduced	paraboloid	example.	The	dataset	{ , }k	forms	the	final	

nonparametric	result	of	the	presented	approach.	

The	variance	values	 	provide	useful	information	about	the	uncertainty	of	the	

fitted	RFS’s	nodes,	i.e.	σS.	Plotted	as	a	function	over	z	and	v,	they	can	be	used	as	

a	quality	feedback	of	the	identified	surface.	This	is	illustrated	on	two	nonlinear	

RFS	 examples	 in	 Figure	 2.18	 that	 have	 been	 generated	 based	 on	 synthetic	

correlated	noisy	samples.	
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Figure	2.16:	Illustration	of	the	two	steps	of	the	presented	nonparametric	surface	fitting	

approach	in	the	{z,v}	plane.	Intermediate	samples	are	generated	using	local	WTLS	point	

fitting	(left).	The	intermediate	samples	are	then	used	in	a	subsequential	quadratic	Local	

Polynomial	Regression	(right).	

	
Figure	2.17:	The	 two	 steps	 of	 the	 presented	 nonparametric	 surface	 fitting	 approach	

based	 on	 the	 synthetic	 correlated	 noisy	 samples	 of	 a	 paraboloid	 RFS.	 Intermediate	

samples	are	generated	using	 local	WTLS	point	 fitting	(left).	The	 intermediate	samples	

are	then	used	in	a	subsequential	quadratic	Local	Polynomial	Regression	(right).	
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Figure	2.18:	Comparison	of	the	true	and	the	identified	surfaces	of	two	nonlinear	RFSs.	

Fitting	was	carried	out	using	the	presented	two-step	nonparametric	approach	based	on	

synthetic	correlated	noisy	samples.	

Notice	 that	 the	 three	 coordinates	 (z,	 v	 and	 f)	 of	 typical	 RFSs	 of	mechanical	

engineering	 systems	 (with	 high	 characteristic	 frequencies)	 strongly	 differ	 in	

their	order	of	magnitude,	which	would	 lead	to	bad	conditioning	of	the	surface	

fitting	formulas.	To	account	for	this,	an	appropriate	scaling	of	the	dataset	{σ,Pσ}i	

is	carried	out	prior	to	the	fitting	of	the	RFS	(using	a	proper	probabilistic	trans-

formation	of	type	LinT	from	Section	1.6.2).	The	algorithm	is	however	presented	

without	scaling	in	the	current	section,	in	order	to	keep	the	notations	as	simple	

as	possible.	

2.3.4 Conclusion	of	the	proposed	fitting	approach	

In	 Section	 2.3	 a	 nonparametric	 (approximately)	 WTLS	 fitting	 approach	 has	

been	proposed	 that	allows	 the	reconstruction	of	arbitrary	noisefree	RFCs	and	

RFSs	based	on	the	results	of	the	augmented	KF	given	as	(2.56).	In	accordance	

with	 the	 requirements	 formulated	 in	 Section	 1.1	 the	 presented	 technique	

exhibits	the	following	important	properties:	
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· The	fitted	curves	(RFCs)	and	surfaces	(RFSs)	are	given	nonparametri-

cally	 in	 form	of	 lookup	 tables.	No	assumptions	about	 their	 functional	

form	are	required.	

· Throughout	the	definition	of	the	procedure	great	attention	was	paid	to	

keep	the	algorithm	computationally	as	simple	as	possible.	

· Additional	feedback	 is	given	about	the	quality	(uncertainty)	of	the	fit-

ted	 results	 in	 form	 of	 uncertainty	 plots	 (q.v.	 Figure	 2.14	 and	 Figure	

2.18).	

Since	state	of	the	art	modelling	is	mostly	carried	out	virtually	on	computers,	it	

should	 be	 of	 no	 practical	 disadvantage	 that	 the	 identified	model’s	 RFSs	 are	

given	in	form	of	lookup	tables.	Most	available	virtual	simulation	environments	

directly	support	 this	kind	of	definition	of	nonlinearities.	Should	such	a	defini-

tion	be	disadvantageous	for	some	reason,	one	can	easily	fit	a	parametric	func-

tion	 on	 the	 smoothed	 noisefree	 dataset	 using	 a	 simple	 parametric	 Least	

Squares	Estimator	(LSE).	The	choice	of	the	proper	analytical	form	of	the	RFSs	at	

this	point	should	not	be	a	challenge	anymore.	

2.4 Summary	of	the	nonparametric	
identification	

The	 current	 section	aims	 to	give	 a	 structural	 summary	of	 the	nonparametric	

identification	method	that	has	been	proposed	 in	Chapter	2,	which	can	be	con-

sidered	as	the	core	of	the	present	thesis.	The	summary	is	given	as	a	list	of	the	

main	 steps	 that	are	necessary	 to	 carry	out	 the	proposed	procedure,	which	 is	

supported	by	an	illustrated	overview	of	the	workflow	in	Figure	2.19.	

In	order	to	deploy	the	proposed	synchronisation-based	nonparametric	identifi-

cation	method	for	nonlinear	dynamic	systems,	carry	out	the	following	steps:	
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· Define	the	NDoF	process	model	(i.e.	the	DEs	that	govern	the	dynamics	

of	the	system	of	interest).	According	to	the	subclass	of	mechanical	sys-

tems	defined	 in	Section	1.3,	which	are	given	by	(1.11),	this	means	the	

definition	of	the	inertia	matrix	M	and	the	input	matrix	B.	(Chapter	4	of-

fers	 a	 solution	 to	 identify	 these	matrices	 in	 case	 they	would	 not	 be	

known	a	priori.)	

· Define	 the	measurement	 setup	 (i.e.	 the	measurement	 function	h)	 in-

volving	at	least	N	measurement	signals	that	satisfy	(2.32)	and	(2.33).	

· Carry	out	 the	measurements	 to	generate	 time	sequences	of	 the	 input	

vector	u	and	the	measurement	vector	y.	

· Calculate	 the	quantities	R,	xa,0,	PXa,0	and	Q	using	 the	 formulas	 (2.48),	

(2.49),	(2.50)	and	(2.51)	respectively,	which	are	necessary	 to	run	 the	

Kalman	Filter	(KF).	

· Determine	 the	 lower	 bound	 vector	 sL	 of	 the	 instantaneous	 effective	

stiffnesses	according	to	(2.34)	or	set	it	to	the	general	value	of	10–2E(s)	

to	parametrise	 the	constraints	of	 the	KF	defined	 in	Section	2.2.5.	The	

lower	bound	can	be	set	to	–∞	in	case	of	displacement	measurements.	

· Run	the	nonlinear	KF	algorithm	as	defined	in	Section	1.6.3	and	2.2.3	to	

obtain	the	time	series	of	the	estimates	of	the	augmented	state	vector	xa	

and	 its	 covariance	matrix	 PXa.	 It	 is	 discussed	 in	 Section	 2.2.3	 under	

which	conditions	an	Extended	Kalman	Filter	(EKF)	is	deployable.	

· Assign	the	global	results	of	the	KF	to	the	N	 local	Restoring	Force	Sur-

faces	(RFS)	of	the	system	according	to	(2.56).	

· Transform	 the	 local	KF	results	of	 the	 jth	RFS	 into	probabilistic	elastic	

and	dissipative	Restoring	Force	Curve	(RFC)	datasets,	i.e.	{σE,PσE}i	and	
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{σD,PσD}i,	using	(2.62),	(2.64)	and	(2.65).	Or	generate	the	jth	probabilis-

tic	coupled	RFS	dataset	{σ,Pσ}i	using	(2.69)	and	(2.70).	

· To	 identify	 the	 jth	RFS	as	an	additive	nonlinearity	use	 the	procedure	

described	in	Section	2.3.2	to	generate	the	jth	noisefree	elastic	and	dis-

sipative	RFCs	in	form	of	the	data	vectors	(lookup	tables)	 , 	and	 , 	

based	on	the	datasets	{σE,PσE}i	and	{σD,PσD}i.	Use	the	formula	(2.84)	to	

tune	the	smoothness	of	the	characteristics.	Use	the	uncertainty	curves	

(2.85)	and	(2.86)	to	indicate	the	quality	of	the	identified	RFCs.	

· To	identify	the	jth	RFS	as	a	coupled	nonlinearity	use	the	procedure	de-

scribed	in	Section	2.3.3	to	generate	the	jth	noisefree	RFS	in	form	of	the	

data	vector	(lookup	table)	 	based	on	the	dataset	{σ,Pσ}i.	Use	 , 	de-

fined	as	(2.103)	to	indicate	the	quality	of	the	identified	RFS.	
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Figure	2.19:	Workflow	of	the	proposed	synchronisation-based	nonparametric	 identifi-

cation	method	 for	nonlinear	dynamic	systems:	Based	on	the	measurement	signals	 the	

Kalman	Filter	estimates	the	states	and	the	instrumental	variables	(i.e.	the	instantaneous	

stiffness	and	damping).	These	are	transformed	into	noisy	samples	of	the	RFCs	and	RFSs.	

Noisefree	RFCs	and	RFSs	are	generated	via	optimal	curve	and	surface	 fitting	based	on	

the	noisy	samples.	
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3 Virtual	examples	and	the	
properties	of	the	approach	

The	 current	 chapter	 presents	 the	 nonparametric	 identification	 of	 several	

strongly	nonlinear	dynamic	systems	using	the	synchronisation	based	approach	

that	has	been	proposed	in	Chapter	2.	Each	one	of	the	chosen	examples	aims	to	

point	 out	 some	 particular	 properties	 and	 aspects	 of	 the	 derived	 algorithm.	

Systems	with	1DoF	are	investigated	involving	additive	and	coupled	nonlineari-

ties	in	Section	3.1	and	3.2	respectively,	which	are	followed	by	a	3DoF	mechani-

cal	 structure	 in	Section	3.3.	The	 requirements	of	 the	 technique	on	 the	meas-

urement	signals	and	its	robustness	against	possible	experiment	issues	is	inves-

tigated	 in	 Section	 3.4,	 followed	 by	 a	 brief	 analysis	 of	 the	 method’s	

computational	performance	in	Section	3.5.	

The	experiments	are	simulated	virtually	throughout	this	chapter.	As	long	as	it	is	

not	 explicitly	 stated	 otherwise,	 the	measurement	 signals	 are	 generated	 at	 a	

sampling	 rate	 of	 10	kHz	 and	 are	 subsequently	 corrupted	 by	 5	%	 RMS	 (q.v.	

eRMS%	from	Appendix	B)	uncorrelated	Gaussian	white	noise,	which	represents	

typical	realistic	conditions	for	state-of-the-art	test	rigs	in	mechanical	engineer-

ing.	The	excitation	signal	u	 is	of	kinematic	type,	 i.e.	it	corresponds	to	the	case	

Bij∊{-1,0,1}	(q.v.	Section	1.3).	

The	entire	 identification	algorithm	 including	the	numerically	generated	meas-

urement	 examples	 has	 been	 implemented	 in	 the	MATLAB	 software	 environ-

ment	 (MathWorks,	 www.mathworks.com).	 The	 necessary	 analytical	 expres-

sions	have	been	derived	using	Maple	(Maplesoft,	www.maplesoft.com).	
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3.1 Additive	restoring	force	surfaces	
The	present	section	 investigates	 the	 identification	of	 three	strongly	nonlinear	

1DoF	oscillators	involving	additive	RFSs.	The	motion	of	the	vibrating	mass	m	is	

captured	via	noisy	acceleration	measurements.	The	true	system	equations	are	

therefore	of	the	form	

̇
̇ = − ( ) + ( ) − 	,	 (3.1)

= − ( ) + ( ) 	.	 (3.2)

Notice	that	the	state	variables	(z	and	v)	are	chosen	as	the	deformation	and	the	

rate	of	deformation	of	the	system’s	RFS	according	to	Section	1.3.	The	measure-

ment	equation	(3.2)	however	corresponds	to	the	acceleration	of	the	body	in	the	

global	 coordinate	 system,	 which	 represents	 a	 real-life	 accelerometer.	 The	 a	

priori	system	model	for	the	KF	is	defined	as	

̇
̇
̇
̇

= − ( + ) −
0
0

	,	 (3.3)

= − ( + )	,	 (3.4)

which	is	of	the	form	(2.31)	and	(2.33)	with	one	modification:	The	total	restor-

ing	force	is	scaled	using	the	constant	coefficient	pc	(according	to	Section	2.2.4)	

in	 order	 to	 improve	 the	 conditioning	 of	 the	 state	 estimation	 error	 variance	

matrix	PXa,	which	improves	the	numerical	stability	of	the	KF.	This	modification	

influences	 the	process	 function’s	 Jacobian	 from	equation	 (2.46)	as	well,	as	pc	

appears	 in	the	derivatives	of	 ̇ .	The	constant	 is	chosen	based	on	the	expected	

average	 stiffness	 of	 the	 RFS.	 At	 the	 end	 of	 the	 identification	 procedure	 the	

smoothed	RFCs	are	rescaled	using	 the	same	coefficient.	The	kinematic	excita-

tion	of	the	system,	given	by	u,	 is	carried	out	using	a	forward	frequency	sweep	

with	constant	amplitude	of	5	ms–2.	The	frequency	range	of	the	sweep	is	100	Hz	
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to	400	Hz	in	Subsection	3.1.1	and	3.1.3.	It	is	slightly	reduced	in	Subsection	3.1.2	

to	the	range	of	30	Hz	to	250	Hz.	The	constant	parameters	are	set	to	m=4	kg	and	

pc=5∙106.	The	tuning	of	the	KF	(i.e.	the	choice	of	 , ,	 , ,	Q	and	R)	is	carried	

out	according	to	Section	2.2.4.	

3.1.1 Comparison	of	additive	and	coupled	identification	

Since	the	current	section	includes	the	first	identification	example	in	the	present	

thesis,	 its	major	 aim	 is	 to	 prove	 the	 functionality	 of	 the	 nonparametric	 ap-

proach	proposed	 in	Chapter	2.	Additionally	 the	particular	 virtual	 example	 is	

used	to	compare	the	result	quality	of	additive	and	coupled	identification	and	to	

carry	out	a	brief	investigation	of	possible	fine	tuning	of	the	KF.	The	true	RFCs	of	

the	considered	system	are	given	by	 the	 following	continuous	symmetric	non-

linear	functions:	

( ) = 5 ∙ 10 ∙ + 45 ∙ tanh(4 ∙ 10 ∙ )	 (3.5)

( ) = 50 ∙ + 25 ∙ (100 ∙ ) 	 (3.6)

The	 initial	 augmented	 state	 vector	 is	 set	 to	 , =[0,0,2	Nm–1,4∙10–4	Nsm–1]T,	

where	 the	 scaled	 initial	 stiffness	and	damping	 values	 are	 chosen	 in	 order	 to	

represent	a	linearisation	of	the	true	system	in	the	particular	load	case	based	on	

the	measurement	 signal.	 A	 direct	 simulation	 of	 the	 a	 priori	model	with	 the	

initial	values	of	 the	augmented	states,	 from	here	on	referred	 to	as	 the	 “initial	

model”,	 is	 compared	 to	 the	 true	 system	 in	Figure	3.1	by	means	of	 the	 corre-

sponding	RFSs	and	measurement	time	series.	The	nonparametric	identification	

of	the	system	 is	carried	out	using	the	EKF.	The	 lower	bound	constraint	of	the	

time-varying	stiffness	 is	chosen	based	on	the	 initial	model	that	has	a	damping	

ratio	of	 =0.158,	which	leads	to	sL=0.05	Nm–1	according	to	the	formula	(2.34).	

The	derived	approach	allows	the	estimation	of	the	system’s	nonlinear	charac-

teristics	either	as	an	additive	RFS	(as	the	sum	of	an	eRFC	and	a	dRFC)	or	as	a	

coupled	RFS.	Accordingly,	 the	 identified	 system	 is	 compared	 to	 the	 true	 one	
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based	on	 the	corresponding	RFSs	and	measurement	 time	 series	 in	Figure	3.2	

and	Figure	3.3	for	the	additive	and	the	coupled	identification	case	respectively.	

The	 frequency	response	of	 the	 identified	system	 is	simulated	using	 the	meas-

ured	excitation	signal	u.	

	
Figure	3.1:	Comparison	of	 the	 initial	model	 and	 the	 true	 system	based	on	 the	 corre-

sponding	RFSs	(left)	and	frequency	sweep	response	time	series	(right).	

	
Figure	3.2:	Comparison	of	the	true	and	the	identified	system	based	on	the	correspond-

ing	RFSs	(left)	and	frequency	sweep	response	time	series	(right).	The	identification	has	

been	carried	out	assuming	an	additive	nonlinearity	(aRFS).	
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Figure	3.3:	Comparison	of	the	true	and	the	identified	system	based	on	the	correspond-

ing	RFSs	(left)	and	frequency	sweep	response	time	series	(right).	The	identification	has	

been	carried	out	assuming	a	coupled	nonlinearity	(cRFS).	

By	looking	at	the	frequency	sweep	responses	of	the	identified	systems	it	can	be	

observed	that	both	approaches,	i.e.	the	aRFS	and	the	cRFS,	deliver	good	identi-

fication	quality,	which	is	the	main	conclusion	of	the	present	section.	Comparing	

the	 two	 results	 the	 following	 can	be	 stated:	On	 the	 one	hand,	 only	 the	 cRFS	

managed	 to	reconstruct	 the	superharmonic	resonance	at	 the	beginning	of	 the	

frequency	sweep.	On	the	other	hand,	the	aRFS	results	in	much	smoother	system	

response.	The	eRFCs	and	dRFCs	generated	by	the	two	approaches	are	depicted	

in	Figure	3.4	 in	 order	 to	 allow	 for	 a	more	 precise	 comparison.	Thereby	 two	

different	techniques	have	been	used	to	reduce	the	cRFS	into	an	additive	model.	

In	 the	 first	 case,	 referred	 to	 as	 “cRFS	 slice”,	 simple	 sections	 of	 the	 cRFS	 are	

calculated	at	v=0	and	z=0	 to	generate	 the	eRFC	and	 the	dRFC	respectively.	 In	

the	second	technique,	referred	to	as	“averaged	cRFS	slice”,	multiple	sections	at	

uniformly	distributed	v	and	z	 levels	are	calculated	and	subsequently	debiased	

by	 the	 force	 values	 at	 z=0	 and	 v=0	 respectively.	The	 average	 of	 these	 slices’	

force	coordinates	forms	the	final	RFCs.	It	can	be	seen	that	the	cRFS	provides	a	

significantly	better	estimate	of	 the	dissipative	 forces	 than	 the	aRFS,	however,	
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the	slice	averaging	 technique	 is	necessary	 to	achieve	sufficient	smoothness	of	

the	characteristic.	

	
Figure	3.4:	Comparison	of	additive	and	coupled	identification	based	on	the	eRFCs	(left)	

and	dRFCs	(right)	of	a	1DoF	nonlinear	system	involving	additive	nonlinearity.	

Notice	that	the	identified	cRFS	in	Figure	3.3	is	only	defined	over	the	state	space	

range,	 where	 the	 system’s	 trajectory	 passed	 during	 the	 measurement.	 The	

empty	segments	(“holes”)	on	the	cRFS	occur	over	those	areas	of	the	{z,v}	plane,	

where	 the	 lower	bound	 for	 the	number	of	samples	per	 segment	 in	 the	 fitting	

algorithm	has	not	been	reached.	The	aRFS	 in	Figure	3.2	 is	however	valid	over	

the	whole	rectangular	range	spanned	by	 the	maximum	magnitudes	of	z	and	v	

that	were	reached	during	the	frequency	sweep.	This	validity	range	 is	a	crucial	

property	 of	 the	 identified	 RFSs,	 which	 becomes	 clearer	 by	 considering	 the	

following	 example.	 Let	 us	 slightly	 modify	 the	 previously	 introduced	 virtual	

experiment	setup.	The	eRFC	given	by	(3.5)	 is	kept	unchanged,	while	the	dRFC	

defined	 by	 (3.6)	 is	 replaced	 by	 a	 simple	 linear	 damping	 of	 250	Nsm–1.	 The	

excitation’s	amplitude	 is	modified	to	0.5	ms–2	and	its	frequency	range	 is	set	to	

200	Hz	 to	400	Hz.	The	nonparametric	 identification	 is	 carried	out	 twice:	 first	

based	 on	 a	 forward	 sweep	 load	 case,	 and	 second	 using	 a	 backward	 sweep	

measurement.	The	 corresponding	 reconstructed	RFSs	are	 referred	 to	as	 “for-
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ward	RFS”	and	 “backward	RFS”	 respectively.	The	 response	 time	 series	of	 the	

two	 identified	 systems	 are	 compared	 to	 the	 measured	 responses	 for	 both	

sweep	directions	 in	Figure	3.5.	 It	can	be	observed	 that	 the	 forward	 response	

strongly	differs	from	the	backward	response.	This	is	a	well	known	property	of	

systems	with	nonlinear	eRFCs,	which	has	a	significant	influence	on	the	validity	

range	of	the	two	identified	RFSs.	The	comparison	of	the	results	reveals	that	the	

“forward	RFS”	 is	not	completely	valid	 for	 the	backward	 sweep	 load	 case,	be-

cause	 the	 latter	 covers	 a	 larger	 domain	 of	 the	 state	 space	 than	 the	 forward	

sweep.	The	“backward	RFS”	is	however	suitable	to	reconstruct	both	load	cases	

with	good	accuracy.	

	
Figure	3.5:	Measured	 forward	 (left)	and	backward	 (right)	 frequency	 sweep	 response	

time	 series	 of	 a	1DoF	 nonlinear	 system	 compared	 to	 the	 responses	 of	 two	 identified	

models.	The	first	(top)	has	been	identified	during	the	forward	sweep,	while	the	second	

(bottom)	is	based	on	the	backward	sweep.	Both	sweeps	has	been	carried	out	in	the	same	

frequency	range	of	200	Hz	to	400	Hz.	

0 0.4 0.8

-10

0

10

y	
[m
	s-

2]

forward	sweep,	forward	RFS

measurement
identified	model

0 0.4 0.8

-10

0

10

backward	sweep,	forward	RFS

0 0.4 0.8

-10

0

10

forward	sweep,	backward	RFS

time	[s]

y	
[m
	s-

2]

0 0.4 0.8

-10

0

10

backward	sweep,	backward	RFS

time	[s]



Virtual	examples	and	the	properties	of	the	approach	

138	

Therefore,	it	can	be	concluded	that	the	proper	choice	of	the	excitation	plays	an	

essential	role	in	the	resulting	RFSs’	applicability.	This	topic	is	further	discussed	

on	an	example	involving	coupled	nonlinearity	in	Section	3.2.	

During	 the	 calculation	 of	 the	presented	 results	 the	 process	 covariance	 expo-

nents	(q.v.	Section	2.2.4)	were	set	to	qs=3	and	qd=1.	In	order	to	investigate	the	

influence	of	 fine	 tuning	on	 the	EKF,	 a	parameter	 study	has	been	 carried	out,	

where	the	exponents	have	been	varied	in	the	range	of	qsϵ[2,3.5]	and	qdϵ[0,5.5]	

with	 a	 step	 size	 of	0.5.	The	 effect	 of	 simultaneously	 increasing	 qs	 and	qd	has	

already	been	presented	in	Section	2.2.4	(q.v.	Figure	2.7).	In	the	current	section	

the	balance	between	the	eRFC’s	and	the	dRFC’s	accuracy	is	of	particular	inter-

est.	Therefore,	the	results	of	the	parameter	study	are	depicted	over	the	differ-

ence	between	 the	 two	exponents	 in	Figure	3.6	 in	form	of	 the	eRMS%	error	of	

the	RFCs.	

	
Figure	3.6:	 Results	 of	 the	 parameter	 study	 of	 qs	 and	 qd	 using	 the	 virtual	 frequency	

sweep	measurement	of	a	1DoF	system	with	additive	nonlinearity.	Additive	identification	

(„direct	RFC“)	is	compared	to	coupled	identification	(„averaged	cRFS	slice“)	based	on	the	

eRMS%	error	(q.v.	Appendix	B)	of	the	identified	eRFC	(left)	and	dRFC	(right).	

-3 -2 -1 0 1 2 3

100

10
1

102

q
d
-q

s
	[-]

eR
M

S%
	[%

]

eRMS%	of	the	eRFC

direct	RFC
averaged	cRFS	slice

-3 -2 -1 0 1 2 3

100

10
1

102

q
d
-q

s
	[-]

eR
M

S%
	[%

]

eRMS%	of	the	dRFC

direct	RFC
averaged	cRFS	slice



Additive	restoring	force	surfaces	

139	

It	can	be	concluded	that	setting	qd	to	smaller	values	than	qs	is	advantageous	in	

general.	It	is	however	interesting	that	in	case	of	additive	identification	(referred	

to	as	“direct	RFC”)	the	related	quality	increase	is	restricted	to	the	eRFC.	Where-

as,	in	case	of	coupled	identification	the	quality	of	the	dRFC	increases	as	well.	

3.1.2 Identification	of	backlash	

The	 aim	 of	 the	 current	 subsection	 is	 to	 demonstrate	 that	 the	 implemented	

constrained	KF	algorithm	(q.v.	Section	2.2.5)	allows	the	identification	of	strong-

ly	 nonlinear	 vibro-impact	 systems	 involving	 backlash	 based	 on	 acceleration	

measurements.	 The	 only	 difference	 of	 the	 considered	 virtual	 measurement	

setup	from	the	one	in	Subsection	3.1.1	lies	in	its	RFCs.	They	are	defined	in	form	

of	 lookup	 tables	 and	 are	 depicted	 in	 Figure	 3.8,	which	 shows	 zero	 effective	

stiffness	of	the	eRFC	in	a	significant	deformation	range.	The	 initial	augmented	

state	vector	 is	set	to	 , =[0,0,1	Nm–1,2∙10–4	Nsm–1]T,	which,	similar	to	Subsec-

tion	3.1.1,	 represents	 an	 approximate	 linearisation	 of	 the	 true	 system	 in	 the	

particular	load	case.	The	initial	model	is	compared	to	the	true	system	in	Figure	

3.7.	 The	 identification	 is	 carried	 out	 using	 the	 EKF,	where	 the	 lower	 bound	

constraint	of	s	 is	set	 to	sL=0.0125	Nm–1	according	 to	 the	 formula	(2.34)	based	

on	the	initial	model’s	damping	ratio	of	 =0.112.	The	identified	RFCs	are	depict-

ed	in	Figure	3.8,	which	includes	the	results	of	an	additional	simulation	as	well,	

where	 the	displacement	has	been	chosen	as	 the	measured	quantity.	The	con-

straint	 sL	was	 set	 to	–∞	 in	 this	case,	 since	according	 to	Section	2.1.2	 it	 is	not	

needed	for	y=z.	

It	can	be	observed	in	Figure	3.8	that	despite	the	observability	problem	of	zero	

effective	stiffness	in	case	of	yϵ{ , ̇}	(q.v.	Section	2.1.2),	the	quality	of	the	identi-

fied	RFCs	based	on	acceleration	measurement	is	comparable	to	the	one	that	is	

identified	using	the	displacement	signal.	In	fact	the	accuracy	of	the	eRFC	within	

the	backlash	is	even	higher	in	case	of	y= ̇ .	To	better	point	out	the	high	quality	of	

the	 identified	 characteristics,	 several	 time	 segments	 of	 the	 frequency	 sweep	
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measurement	are	plotted	in	Figure	3.9.	It	compares	the	noisy	measured	signal	

to	the	reconstructed	one,	which	was	simulated	using	the	RFCs	that	were	identi-

fied	from	acceleration	measurement.	

In	order	to	deeper	understand	how	the	constraint	of	the	time-varying	stiffness	

influences	the	estimation	accuracy	of	the	KF,	the	bias	(offset)	and	the	variance	

(noisiness)	of	the	estimated	time	series	of	z	and	s	(with	respect	to	the	true	time	

series)	are	plotted	 in	Figure	3.10	and	Figure	3.11	 for	both	acceleration	 (left)	

and	displacement	 (right)	measurements.	 It	 can	be	 observed	 that	 the	 conver-

gence	 of	 the	 displacement	 z(t)	 is	 indeed	 lost	 if	 sL	 is	 set	 to	 insufficiently	 low	

levels	in	case	of	y= ̇ .	It	is	however	apparent	that	the	chosen	value	of	sL	is	ideal	

in	 the	 sense	 that	 it	provides	 approximately	 the	 smallest	possible	bias	 of	 the	

instantaneous	 stiffness	 s(t)	 for	 acceleration	 measurement.	 Furthermore,	 the	

figures	explain	the	similar	result	quality	of	the	RFCs	in	case	of	the	two	different	

measurement	 types,	 since	 the	 low	 bias	 of	 s(t)	 for	 y=z	 is	 compensated	 by	 its	

significantly	higher	variance	compared	 to	 the	case	of	y= ̇ .	Although	 the	curve	

fitting	algorithm	from	Section	2.3.2	is	designed	to	accommodate	noisy	samples,	

it	has	been	shown	in	Section	2.2.1	that	the	highest	achievable	accuracy	always	

remains	connected	to	the	variance	of	the	samples.	

Notice	 that	negative	 values	 of	 sL	 still	 influence	 the	 results,	 although	 the	 true	

values	of	s	never	become	negative	in	the	current	example.	The	first	reason	for	

this	 is	the	significant	variance	of	the	estimated	time-varying	stiffness	that	can	

lead	to	negative	values	of	the	unconstrained	estimates.	The	second	reason	 lies	

in	 the	 probabilistic	 nature	 of	 the	 implemented	 constraining	 algorithm	 (q.v.	

Section	2.2.5),	which	results	 in	the	truncation	of	the	augmented	state	vector’s	

probability	 distribution	 even	 if	 the	 unconstrained	 mean	 value	 satisfies	 the	

constraint.	
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Figure	3.7:	Comparison	of	 the	 initial	model	 and	 the	 true	 system	based	on	 the	 corre-

sponding	RFSs	(left)	and	frequency	sweep	response	time	series	(right).	

	

	
Figure	3.8:	Comparison	of	the	true	and	the	identified	eRFC	(left)	and	dRFC	(right)	of	a	

1DoF	 nonlinear	 dynamic	 system	 involving	 backlash.	The	 identification	 results	 for	 the	

two	measurement	types,	displacement	and	acceleration,	are	compared.	
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Figure	3.9:	Comparison	of	 the	 true	and	 the	 identified	 system	based	on	 four	different	

time	segments	of	the	corresponding	frequency	sweep	response	time	series.	The	identifi-

cation	has	been	carried	out	using	acceleration	measurement.	

	
Figure	3.10:	Bias	(eM,	q.v.	Appendix	B)	of	the	time	series	of	z(t)	and	s(t)	with	respect	to	

their	 true	 values	 for	 different	 lower	 bound	 levels	 of	 the	 effective	 stiffness	 in	 case	 of	

acceleration	(left)	and	displacement	(right)	measurement.	
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Figure	3.11:	Variance	(eRMS–eM,	q.v.	Appendix	B)	of	the	time	series	of	z(t)	and	s(t)	with	

respect	to	their	true	values	for	different	 lower	bound	 levels	of	the	effective	stiffness	 in	

case	of	acceleration	(left)	and	displacement	(right)	measurement.	
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accuracy	of	the	characteristics.	Regardless	of	the	type	of	the	deployed	KF	it	can	

be	observed	that	the	quality	of	the	identified	dRFC	is	much	lower	than	in	case	of	

the	two	previous	examples	from	Subsections	3.1.1	and	3.1.2.	A	possible	expla-

nation	 for	 this	 is	 that	 the	dissipative	 forces	are	much	 lower	 compared	 to	 the	

elastic	 forces	 in	 the	current	case	 than	 they	were	 in	case	of	 the	other	 two	sys-

tems.	Notice	 that	 the	 absolute	 force	deviation	 of	 the	 characteristics	 is	 of	 the	

same	order	of	magnitude	for	the	eRFC	and	the	dRFC.	

Further	comparison	of	the	two	different	KFs’	accuracy	is	given	by	the	frequency	

sweep	 response	 time	 series	 of	 the	 identified	 systems	 compared	 to	 the	 noisy	

measurement	signal	in	Figure	3.14	for	the	EKF	(left)	and	the	SR-UKF	(right).	It	

can	be	seen	that	the	EKF	in	fact	provides	slightly	better	result	quality	than	the	

SR-UKF	in	this	particular	example.	

	

	
Figure	3.12:	Comparison	of	the	true	and	the	identified	eRFC	(left)	and	dRFC	(right)	of	a	

1DoF	dynamic	 system	 including	 the	 corresponding	uncertainty	 curves	ρL	 and	ρU.	The	

identification	was	carried	out	based	on	acceleration	measurement	using	the	EKF.	
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Figure	3.13:	Comparison	of	the	true	and	the	identified	eRFC	(left)	and	dRFC	(right)	of	a	

1DoF	dynamic	 system	 including	 the	 corresponding	uncertainty	 curves	ρL	 and	ρU.	The	

identification	was	carried	out	based	on	acceleration	measurement	using	the	SR-UKF.	

	

	
Figure	3.14:	 Comparison	 of	 the	 identified	 1DoF	 system’s	 frequency	 sweep	 response	

time	series	to	the	true	measured	response.	The	identification	was	carried	out	using	the	

two	KF	types:	EKF	(left)	and	SR-UKF	(right).	
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3.2 Coupled	restoring	force	surfaces	
Section	3.1	presented	the	nonparametric	identification	of	three	1DoF	dynamic	

systems	 involving	strongly	nonlinear	additive	RFSs.	Although	coupled	 identifi-

cation	has	also	been	 tested	 on	 some	 of	 these	 examples,	 the	 capability	 of	 the	

presented	approach	to	 identify	coupled	nonlinearities	has	not	been	presented	

so	far.	Therefore,	the	current	section	investigates	the	nonparametric	identifica-

tion	of	 the	Van	der	Pol	oscillator,	which	 is	well	known	 for	 its	 limit	 cycle	 that	

arises	from	its	crucially	coupled	nonlinear	nature	(Strogatz,	1994).	The	recon-

struction	of	such	 a	system’s	characteristics	 from	vibration	measurements	has	

already	received	some	attention	in	the	literature.	(Sitz,	Schwarz,	Kurths,	&	Voss,	

2002)	can	be	mentioned	as	an	example,	where	the	parametric	identification	of	

a	Van	der	Pol	system	is	carried	out	using	an	augmented	UKF.	

Compared	 to	Section	3.1	 the	only	change	 in	 the	virtual	measurement	setup	 is	

the	replacement	of	 the	 two	RFCs	by	one	cRFS	 in	 the	system	equations,	which	

are	therefore	of	the	form	

̇
̇ = − ( , )− 	,	 (3.7)

= − ( , )	,	 (3.8)

where	the	considered	particular	nonlinearity	is	given	by	the	analytical	function	

( , ) = 5 ∙ 10 ∙ + 1500 ∙ ((7 ∙ 10 ∙ ) − 1) ∙ 	.	 (3.9)

The	 classical	 academic	 investigation	 considers	 the	 free	 system	 that	 exhibits	

self-excited	oscillation,	which	converges	 to	 a	stable	 limit	cycle.	This	situation,	

i.e.	u(t)=0,	is	investigated	as	the	first	load	case.	In	contrast	to	the	examples	from	

Section	 3.1	 it	 is	 not	 possible	 to	 create	 an	 approximate	 linearisation	 of	 the	

system	based	 on	 the	available	measurement.	The	EKF	 is	 therefore	 initialised	

with	 , =[0,0,1	Nm–1,10–4	Nsm–1]T,	 where	 the	 scaled	 stiffness	 and	 damping	

values	 represent	 typical	 initial	 guesses.	 The	 lower	 bound	 constraint	 of	 s	 is	
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simply	set	to	sL=0.01	Nm–1,	which	proved	to	be	a	good	rule	of	thumb	during	the	

present	 study.	The	 identified	 cRFS	and	 the	 true	 state	 space	 trajectory	 of	 the	

system	during	the	measurement	are	depicted	in	Figure	3.15.	

After	 the	 identification	 the	 adapted	model	 has	 been	 used	 to	 reconstruct	 the	

measured	 behaviour.	 The	 initial	 state	was	 thereby	 set	 to	 the	 small	 nonzero	

values	of	z0=10–6	m	and	v0=10–3	ms–1	 in	order	 to	 introduce	 a	disturbance	 that	

aims	 to	 initiate	 the	 expected	 free	 oscillations.	 Although	 the	 accuracy	 of	 the	

reconstructed	cRFS	 is	very	good,	 the	 free	oscillations	of	 the	 identified	system	

deviate	 significantly	 from	 the	measured	behaviour,	which	can	be	observed	 in	

Figure	3.17	(left).	The	reason	for	this	is	the	general	property	of	nonparametric	

cRFSs	that	they	are	only	valid	over	the	state	space	domain,	where	the	system	

spent	sufficient	time	during	the	measurement.	The	proper	choice	of	the	exper-

iment	load	case,	as	discussed	e.g.	in	(Link,	Boeswald,	Laborde,	Weiland,	&	Calvi,	

2011),	is	therefore	crucial	for	the	nonparametric	identification	of	such	systems.	

The	 forced	 vibrations	 of	 the	 Van	 der	 Pol	 oscillator	 are	 investigated	 in	

(Mohamed,	Karim,	&	Belghith,	2013),	where	the	external	excitation	is	shown	to	

have	significant	 influence	on	 the	system’s	behaviour.	Accordingly,	a	harmonic	

excitation	with	an	amplitude	of	15	ms–2	and	a	constant	frequency	of	100	Hz	has	

been	introduced	as	a	modified	load	case	in	the	current	study	in	order	to	reach	a	

much	wider	 range	 of	 the	 {z,v}	 plane.	 The	 true	 state	 space	 trajectory	 of	 the	

forced	system	during	the	measurement	and	the	identified	cRFS	are	depicted	in	

Figure	3.16.	The	system	that	was	identified	based	on	the	modified	load	case	is	

now	 able	 to	 reconstruct	 the	 true	 trajectories	 of	 the	measured	 system’s	 free	

oscillations	with	good	accuracy,	which	is	depicted	in	Figure	3.17	(right).	
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Figure	3.15:	True	and	identified	cRFS	(left)	of	the	Van	der	Pol	oscillator	and	the	state	

space	 trajectory	 (right)	 of	 the	 measured	 virtual	 system	 during	 a	 load	 case	 without	

external	excitation,	i.e.	u(t)=0.	

	

	
Figure	3.16:	True	and	identified	cRFS	(left)	of	the	Van	der	Pol	oscillator	and	the	state	

space	 trajectory	 (right)	 of	 the	measured	 virtual	 system	 during	 a	 load	 case	 with	 an	

external	excitation	of	u(t)=15sin(2π100t)	ms–2.	
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Figure	3.17:	Comparison	of	 the	 identified	Van	der	Pol	system’s	 free	oscillation	to	 the	

true	limit	cycle	for	the	two	different	identification	load	cases:	free	oscillation	(left)	and	

forced	vibration	(right).	
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and	the	oscillation	of	clutch	components	(Tikhomolov,	2015),	just	to	mention	a	

few	 of	 the	 possible	 applications.	 The	 virtual	 measurement	 setup	 of	 such	 a	

system	 is	 illustrated	 in	 Figure	 3.18,	 on	 which	 the	 identification	 example	 is	

based	in	the	following	subsection.	The	three	DoFs	of	the	depicted	rigid	plate	are	

translation	 in	 ζ	 direction	 and	 rotation	 around	 the	 coordinate	 axes	 ξ	 and	 η,	

denoted	by	φξ	and	φη,	assuming	small	tilting	angles.	The	body	is	mounted	to	the	

ground	 via	 three	 nonlinear	 bipolar	 spring	 elements,	whose	 behaviour	 is	 de-

scribed	by	 their	RFSs	given	by	 the	 functions	cj(zj,vj).	The	connection	points	of	

the	springs	 to	 the	plate	are	given	by	 the	coordinate	 triplets	{ξ1,η1,0},	{ξ2,η2,0}	

and	 {ξ3,η3,0}.	 The	 inertia	 properties	 of	 the	 plate	 in	 the	 (ζ,φξ,φη)	 coordinate	

system	are	given	by	its	diagonal	inertia	matrix	of	the	form	

, , =
0 0

∙ 0
∙ ∙

	,	 (3.10)

where	m	 is	 the	mass	 of	 the	 body	 and	 Jξ	 and	 Jη	 denote	 the	mass	moment	 of	

inertia	around	 the	axes	 ξ	and	η	 respectively.	The	 structure	 is	excited	via	 the	

vibration	of	the	ground	given	by	the	acceleration	signal	u.	According	to	Section	

1.3	 the	deformation	and	 the	rate	of	deformation	of	 the	spring	elements,	 i.e.	zj	

and	vj,	are	chosen	as	the	state	space	coordinates	of	the	 a	priori	system	model	

for	 the	 identification.	 This	 results	 in	 an	 a	 priori	 process	model	 of	 the	 form	

(2.31)	with	12	state	variables,	i.e.	na=12.	The	inverse	inertia	matrix	M–1	and	the	

input	matrix	B	are	given	as	

( , , ) =
1 1 1 1

∙ 1 1
∙ ∙ 1

+
1

∙
∙ ∙

+
1

∙
∙ ∙

,	 (3.11)

( , , ) =
−1
−1
−1

	.	 (3.12)



Multiple	DoF	systems	

151	

The	measurement	vector	y	consists	of	the	acceleration	signals	of	the	connection	

points	 of	 the	 spring	 elements	 in	 ζ	 direction,	 denoted	 yj,	 which	 leads	 to	 the	

measurement	equation	

= =
̇ +
̇ +
̇ +

	.	 (3.13)

This	set	of	signals	satisfies	 the	necessary	measurement	conditions	defined	by	

(2.32)	and	(2.33)	as	 long	as	there	are	no	coinciding	sensor	points.	Notice	that	

for	the	sake	of	clarity	equation	(3.13)	is	given	as	a	function	of	state	derivatives,	

which	however	need	to	be	replaced	by	the	corresponding	rows	of	the	process	

equation	(2.31)	prior	to	the	implementation	in	the	KF	algorithm.	

	
Figure	3.18:	Virtual	 experiment	 setup	of	 a	 rigid	plate	on	 elastic	 foundation	with	one	

translational	DoF	in	ζ	direction	and	two	tilting	DoFs	around	the	ξ	and	η	coordinate	axes.	

The	 three	 bipolar	 spring	 elements	 represent	 general	 nonlinear	 RFSs	 between	 the	

ground	and	the	body.	

3.3.2 Identification	of	mounting	preload	

The	 current	 subsection	 presents	 the	 nonparametric	 identification	 of	 a	 3DoF	

plate	using	the	virtual	experiment	setup	introduced	in	Subsection	3.3.1.	To	give	

x

h

c
1
(z

1
,v

1
)

y
1

y
2

u

c
2
(z

2
,v

2
)

z

M
3x3

y
3

c
3
(z

3
,v

3
)



Virtual	examples	and	the	properties	of	the	approach	

152	

this	example	a	practical	meaning,	 let	us	consider	the	realistic	situation,	where	

the	three	spring	elements	represent	the	mounting	of	the	body	to	the	vibrating	

ground.	Let	us	suppose	that	the	plate	is	a	rigid	body	model	of	a	machine	that	is	

not	allowed	 to	 lift	off	 from	 the	ground	under	some	expected	vibration	condi-

tions.	In	this	case	one	can	use	high	level	excitation	of	the	system	to	identify	the	

effective	preload	in	each	of	the	three	mounting	segments.	To	do	so,	a	backward	

frequency	sweep	input	has	been	applied	to	the	virtual	structure	with	constant	

amplitude	of	7	ms–2	in	a	frequency	range	of	500	Hz	to	100	Hz.	The	properties	of	

the	system	were	set	to:	

( , , ) =
0.408 0.046 0.046
∙ 0.408 0.046
∙ ∙ 0.408

	[kg ]	,	 (3.14)

= 0.13 ∙ cos(0°) cos(120°) cos(240°)
sin(0°) sin(120°) sin(240°) 	[m]	.	 (3.15)

Instead	 of	 the	 approximate	 linearization	 of	 the	 system	 in	 the	particular	 load	

case	 (q.v.	 Section	 3.1)	 the	 EKF	was	 simply	 initialised	with	 the	 typical	 guess	

(3.16).	The	scaling	coefficient	of	 the	RFSs	(q.v.	Section	3.1)	was	set	 to	pc=107.	

Since	the	formula	(2.34)	is	not	convenient	for	multiple	DoF	systems,	the	lower	

bound	constraint	of	s	was	defined	with	general	entries	as	(3.17),	which	proved	

to	be	a	good	rule	of	thumb	throughout	the	current	thesis.	

, ≔

⎣
⎢
⎢
⎢
⎡[			0				 			0				 			0				]
[			0				 			0				 			0				]
[			1				 			1				 			1				]
[10 10 10 ]

	[m]							
	[ms ]	
	[Nm ]
			[Nsm ]⎦

⎥
⎥
⎥
⎤
	 (3.16)

= [10 10 10 ]		[Nm ]	.	 (3.17)

The	additive	 identification	of	 the	 three	nonlinear	RFSs	(including	single-sided	

preload)	has	been	carried	out	using	the	measurement	time	series	y	corrupted	

by	5	%	RMS	(q.v.	eRMS%	from	Appendix	B)	zero	mean	white	noise.	The	results	

are	depicted	in	Figure	3.19.	Apparently	there	is	a	very	good	agreement	between	
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the	true	characteristics	and	the	identified	RFSs.	Hence,	it	can	be	stated	that	the	

estimated	eRFCs	are	suitable	for	the	determination	of	the	effective	local	preload	

in	the	three	mounting	segments.	Furthermore,	it	can	be	observed	in	Figure	3.20	

that	the	identified	model	is	able	to	reconstruct	the	measured	system’s	complex	

nonlinear	response	with	good	accuracy.	

	
Figure	3.19:	Comparison	of	 the	 true	 and	 the	 identified	RFSs	of	 the	3DoF	mechanical	

structure.	The	identification	was	carried	out	in	its	additive	form	using	the	EKF.	

	
Figure	3.20:	Comparison	of	the	measured	behaviour	of	the	3DoF	mechanical	system	to	

the	reconstructed	frequency	sweep	response	using	the	identified	model.	
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3.4 Requirements	on	the	measurement	
In	order	 for	an	 identification	 technique	 to	be	suitable	 for	real-life	application,	

its	stability	under	realistic	measurement	conditions	is	of	high	importance.	The	

current	section	therefore	investigates	the	robustness	of	the	proposed	approach	

against	 typical	 experiment	 issues	 such	 as	 high	 noise	 level	 (q.v.	 Subsection	

3.4.1),	poor	sampling	rate	(q.v.	Subsection	3.4.2)	and	model	uncertainties	(q.v.	

Subsection	3.4.3).	

3.4.1 Noise	level	

It	has	been	discussed	 in	Section	2.2.1	that	noise	is	an	 inevitable	component	of	

every	measured	 signal,	which	 in	most	 cases	 can	 not	 be	 neglected.	 It	 can	 be	

described	by	 its	bias	vector	and	 its	discrete-time	covariance	matrix	R.	Signifi-

cantly	biased	measurements	 can	not	be	handled	by	 the	presented	 technique.	

They	can	drastically	decrease	result	quality	or	even	cause	observer	divergence.	

Fortunately	 in	most	situations	 the	bias	can	either	be	avoided	or	detected	and	

compensated.	 It	 is	 however	 important	 to	mention	 that	 the	 correction	 of	 the	

signal	drift	of	 frequency	sweep	measurements	of	nonlinear	systems	has	 to	be	

treated	carefully.	It	is	shown	e.g.	in	(Tikhomolov,	2015)	that	such	signals	exhib-

it	 a	natural	drift	 of	 their	 time	 average	 in	 case	 of	 strongly	 asymmetric	 elastic	

characteristics,	which	should	not	be	altered	by	the	signal	correction.	In	contrast	

to	 bias,	 the	 a	 priori	 correction	 of	 the	 noise	 covariance,	which	 is	 practically	

speaking	the	actual	noisiness	of	the	signal,	always	corrupts	the	higher	harmonic	

components	of	nonlinear	oscillations.	That	 is	the	reason	why	the	KF	has	been	

chosen	 as	 the	 synchronisation	 algorithm	 in	 the	 present	 study,	 since	 it	 can	

accommodate	noisy	signals	in	a	proper	probabilistic	manner.	

To	show	the	resilience	of	the	technique	to	noise,	the	identification	of	the	virtual	

measurement	example	from	Section	3.1.1	has	been	carried	out	at	different	RMS	

levels	of	the	zero	mean	Gaussian	white	noise	that	is	added	to	the	signal	y.	The	
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noisy	measurements	and	 the	eRFCs,	reconstructed	using	 the	EKF	 in	combina-

tion	with	additive	identification,	are	depicted	in	Figure	3.21.	The	comparison	of	

the	results	for	different	noise	levels	highlights	the	advantage	of	the	probabilis-

tic	manner	 of	 the	 presented	 approach.	 It	 can	 be	 observed	 that	 even	 for	 an	

extremely	high	noise	 level	 of	50	%	 (q.v.	 eRMS%	 from	Appendix	B),	 the	 tech-

nique	still	yields	useful	results.	

	
Figure	3.21:	Comparison	of	the	reconstructed	eRFCs	(right)	of	a	1DoF	nonlinear	system.	

The	 additive	 identification	has	 been	 carried	 out	based	 on	 frequency	 sweep	measure-

ments	(left)	at	different	eRMS%	(q.v.	Appendix	B)	noise	levels	using	the	EKF.	

In	order	to	gain	deeper	insight	into	the	algorithm’s	behaviour	in	the	presence	of	

noise,	a	comparison	of	different	subtypes	of	the	approach	is	presented	in	Figure	

3.22	based	 on	 the	 estimation	 error	 of	 the	 identified	RFS	 of	 the	1DoF	 system	

from	Section	3.1.1.	The	subfigure	on	the	 left	shows	the	results	as	a	function	of	

the	noise	level	applied	to	the	measurement	signal	y.	It	can	be	seen	that	in	case	

of	additive	 identification,	referred	 to	as	aRFS,	 the	noise	has	 a	relatively	weak	

influence	on	 the	accuracy.	However,	 the	quality	of	 the	RFS	based	on	 coupled	

identification,	referred	to	as	cRFS,	is	much	stronger	affected.	It	can	be	observed	

that	the	cRFS	technique	delivers	better	results	for	moderate	noise	levels,	which	

has	 already	 been	 investigated	 in	 Section	 3.1.1.	On	 the	 other	 hand,	 the	 cRFS	
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solution	becomes	less	accurate	than	the	aRFS	for	high	noise	levels.	This	can	be	

explained	by	the	slower	statistical	convergence	of	the	cRFS,	which	is	discussed	

later	in	detail	in	Subsection	3.4.2.	Furthermore,	it	can	be	observed	that	the	SR-

UKF	exhibits	approximately	the	same	dependence	on	the	noise	of	y	as	the	EKF.	

The	effect	of	 the	 input	 signal’s	noisiness	 is	depicted	 in	 the	 right	 subfigure	of	

Figure	3.22.	It	is	to	be	seen	that	the	EKF	has	a	much	weaker	resistance	to	this	

kind	 of	 disturbance	 compared	 to	 the	 noise	 of	 the	measurement	 signal.	 The	

reason	 for	 this	 lies	 in	 the	main	 concept	 of	 the	 proposed	 tuning	 of	 the	 EKF.	

Recall	 from	Section	2.2.4	 that,	 in	order	 to	achieve	 fast	convergence	of	 the	 in-

strumental	variables’	estimates	(s	and	d)	over	time,	all	the	entries	of	Q	that	are	

not	related	to	their	derivatives	has	been	set	to	zero,	q.v.	formula	(2.51).	Hence,	

the	non-augmented	part	of	the	a	priori	process	model,	i.e.	the	describing	ODEs	

of	the	mechanical	system,	are	assumed	to	be	correct,	which	tends	to	ignore	any	

error	of	 the	 input	 signal.	 It	 is	 interesting	however	 that	 the	SR-UKF	 is	able	 to	

compensate	the	noisiness	of	u	nearly	as	good	as	 it	accounts	for	the	noise	 in	y.	

This	 is	probably	 a	 result	of	 the	 fact	 that	 in	 this	 technique	 (in	 contrast	 to	 the	

EKF)	the	 input	signal	has	a	direct	effect	on	the	calculated	covariance	matrices	

through	 the	sigma	points	of	 the	state	vector.	This	shows	 that,	 though	 the	SR-

UKF	is	computationally	more	expensive	than	the	EKF,	it	is	a	much	more	sophis-

ticated	algorithm.	Fortunately	the	noise	content	of	the	excitation	(input)	signal	

is	in	most	cases	relatively	low,	since	it	is	a	characteristic	that	is	typically	direct-

ly	 controlled	 during	 the	 measurement.	 Furthermore,	 in	 case	 of	 frequency	

sweep	 input	the	precise	filtering	of	the	noise	from	the	signal	is	possible,	since	

the	expected	form	of	the	noisefree	time	series	is	well	known.	

The	above	 investigation	considered	zero	mean	Gaussian	white	noise.	This	is	a	

justified	assumption	 in	most	real-life	situations.	More	general	 formulations	of	

the	KF	that	can	account	for	noise	processes	with	certain	correlation	over	time,	

so	 called	 “coloured	 noise”,	 also	 exist	 (Simon,	 2006).	 This	 topic	 is	 however	

outside	the	scope	of	the	present	thesis.	
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Figure	3.22:	Comparison	of	different	subtypes	of	the	proposed	nonparametric	identifi-

cation	algorithm	based	on	the	estimation	error	of	the	identified	RFS	of	the	1DoF	system	

from	Section	3.1.1	as	a	function	of	the	noise	 level	applied	to	the	measurement	signal	y	

(left)	and	to	the	input	signal	u	(right).	

Before	the	 investigation	of	further	measurement	related	aspects,	 let	us	briefly	

discuss	 the	possible	 application	 of	 the	presented	nonparametric	approach	 to	

time-delay	 systems,	 since	 (as	described	 in	 the	 following)	 this	 topic	 is	 closely	

related	 to	 the	 noisiness	 of	 the	 input	 signal.	 The	 complex	 dynamics	 of	 such	

systems	received	notable	attention	in	the	past	decades	(Stépán,	Szalai,	&	Hogan,	

2005),	(Insperger	&	Stépán,	2002),	(Stépán,	1989).	They	can	be	described	via	

delay	differential	equations	(DDEs),	which	in	case	of	a	1DoF	nonlinear	oscillator	

with	a	single	time	delay,	denoted	by	τD,	are	of	the	form	

̇( )
̇( ) =

( )
− ( ( ), ( )) + ( − ) .	 (3.18)

The	 literature	already	offers	some	 identification	 techniques	 that	can	estimate	

both	the	time	delay	and	further	nonlinearities	of	such	systems	(Voss	&	Kurths,	

1997).	The	method	that	is	explored	in	the	present	study	is	not	able	to	identify	

τD.	However,	the	question	arises,	whether	it	can	be	deployed	to	identify	the	RFS,	

i.e.	c(z,v),	of	such	a	system	supposing	that	the	time	delay	is	known	a	priori.	If	we	
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consider	z(t–τD)	as	the	 input	signal	u,	 then	the	structure	of	the	system	 is	cov-

ered	by	 the	problem	 formulation	 from	Section	1.3.	Let	us	assume	 that	a	good	

initial	guess	of	the	time	series	of	z	 is	available	for	the	time	period	tϵ[–τD,0]	 in	

order	to	 initialise	the	KF.	In	this	case	the	only	remaining	critical	aspect	is	that	

instead	 of	 the	 exact	 signal	 of	 u	 only	 its	 noisy	 estimate	 is	 provided,	which	 is	

generated	by	the	KF	itself.	Notice	that	this	leads	to	the	same	problem	that	has	

been	discussed	previously	in	the	current	section,	i.e.	the	noisiness	of	u,	as	long	

as	the	estimates	of	z	remain	approximately	unbiased.	Though	this	topic	 is	not	

further	 investigated	in	the	current	thesis,	it	can	be	stated	based	on	the	results	

depicted	 in	 Figure	 3.22	 that	 the	 application	 of	 the	 presented	 nonparametric	

identification	approach	to	time-delay	systems	seems	possible.	Finally,	it	should	

be	 mentioned	 that	 a	 special	 extension	 of	 the	 KF,	 the	 so	 called	 Fixed-Lag	

Smoother	(Simon,	2006),	could	be	implemented	to	enhance	the	stability	of	the	

algorithm.	This	 technique	 allows	 the	 recursive	 refinement	 of	 the	 estimate	 of	

z(ti–τD)	based	on	the	measurements	in	the	time	interval	tϵ[ti–τD,ti).	

3.4.2 Sampling	

Measurement	 signals	 of	 today	 are	 always	 digitally	 sampled.	 The	 three	most	

important	consequences	of	this	fact	are	the	following:	

· The	value	of	each	sample	has	a	finite	numerical	precision.	

· The	signal	has	a	finite	sampling	rate	over	time.	

· There	are	only	a	finite	number	of	measured	samples	available.	

The	 first	 can	 typically	be	accounted	 for	via	proper	 calibration	of	 the	 sensors	

during	the	experiment.	It	can	therefore	be	treated	as	an	effect	without	potential	

risks	regarding	the	identification	procedure.	The	second,	i.e.	the	finite	sampling	

rate,	however	plays	an	important	role	in	the	accuracy	and	stability	of	synchro-

nisation	based	methods	especially	in	the	current	case	of	nonparametric	identi-

fication.	Due	to	the	time-varying	stiffness	and	damping	coefficients,	the	a	priori	
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system	model	diverges	 from	 the	 true	 system	between	 the	 correction	 steps	of	

the	KF,	i.e.	between	measurement	sampling	times	(q.v.	Section	2.2.3	and	2.2.4).	

The	longer	the	time	step	between	two	measurement	samples,	the	less	accurate	

the	 algorithm	 becomes.	 To	 investigate	 this	 effect,	 the	 1DoF	 oscillator	 from	

Section	3.1	was	considered	with	an	additive	nonlinearity	of	the	form	

( , ) = 2 ∙ 10 ∙ + 2 ∙ 10 ∙ + 1250 ∙ 	.	 (3.19)

The	virtual	 system	has	been	excited	using	 a	harmonic	 input	 signal	with	 con-

stant	amplitude	of	5	ms–2	and	constant	frequency	of	250	Hz.	The	acceleration	of	

the	 oscillating	 mass	 has	 been	 measured	 using	 different	 sampling	 rates	 and	

subsequently	corrupted	by	5	%	(q.v.	eRMS%	from	Appendix	B)	zero	mean	white	

noise.	The	duration	of	the	measurement	variants	has	been	adapted	to	maintain	

104	 time	 steps	 in	 order	 to	 separate	 this	 investigation	 from	 the	 topic	 of	 the	

number	of	samples.	The	estimation	error	of	the	identified	RFSs	(using	additive	

identification)	 is	 depicted	 in	 the	 left	 subfigure	 of	Figure	 3.23	 comparing	 the	

accuracy	of	the	EKF	and	the	SR-UKF.	The	results	are	illustrated	as	a	function	of	

the	sampling	frequency	divided	by	the	main	oscillation	frequency	(i.e.	250	Hz),	

which	 is	 referred	 to	as	 the	 “normed	 sampling	 rate”.	 It	can	be	 concluded	 that	

decreasing	 sampling	 frequency	 leads	 to	 lower	 identification	 quality.	 Drastic	

increase	of	error	can	be	observed	if	the	normed	sampling	rate	becomes	signifi-

cantly	 lower	 than	 20.	 Furthermore,	 the	 results	 show	 that	 there	 is	 no	 clear	

difference	between	the	accuracy	of	the	EKF	compared	to	the	SR-UKF.	However,	

the	 SR-UKF	 remains	 convergent	 for	 such	 low	 sampling	 rates,	where	 the	EKF	

already	exhibits	synchronisation	divergence.	

The	third	consequence	of	digital	sampling,	i.e.	the	finite	number	of	samples,	 is	

also	 essential	 in	 case	 of	 nonparametric	 identification.	 Although	 it	 does	 not	

affect	the	estimation	quality	of	the	KF,	it	does	however	influence	the	accuracy	of	

the	 subsequential	RFS	 fitting.	To	 explore	 this	 influence,	 the	 virtual	measure-

ment	 of	 the	previous	 investigation	has	been	 carried	 out	with	different	dura-
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tions	at	fixed	sampling	rate	of	10	kHz	in	order	to	vary	the	number	of	samples.	

The	excitation	has	been	changed	to	a	forward	frequency	sweep	from	100	Hz	to	

400	Hz	 to	enable	coupled	 identification	as	well	(q.v.	Section	3.2).	Special	syn-

thetic	KF	results	have	been	generated	to	allow	the	separate	analysis	of	the	RFS	

fitting	procedure.	This	means	that	the	synchronisation	bias	of	the	KF	has	been	

artificially	 eliminated	 from	 the	 time	 series	 of	 the	 augmented	 state	 vector.	

Furthermore,	the	estimates	of	the	deformation	and	the	rate	of	deformation	(z	

and	v)	have	been	completely	freed	from	noise	to	enable	the	comparison	of	the	

proposed	approach	to	parametric	Least	Squares	(LS)	fitting	(Amiri-Simkooei	&	

Jazaeri,	 2012),	 which	 can	 not	 take	 the	 noisiness	 of	 the	 RFS’s	 independent	

variables	 into	account.	The	 fitting	quality	of	 the	derived	additive	and	coupled	

nonparametric	approaches	is	compared	to	the	accuracy	of	polynomial	paramet-

ric	LS	fitting	in	the	right	subfigure	of	Figure	3.23	as	a	function	of	the	number	of	

incorporated	samples.	The	resolution	of	the	estimated	RFS’s	 lookup	table	was	

set	to	20	segments	for	both	the	z	and	the	v	coordinate.	

The	 results	 clearly	point	out	an	 important	difficulty	of	nonparametric	 fitting,	

which	can	be	summarised	as	follows.	In	contrast	to	global	regression	(based	on	

an	 assumed	parametric	 function)	 each	node	 of	 the	 generated	nonparametric	

lookup	 table	 is	mainly	defined	by	 a	reduced	 local	group	of	observed	samples.	

This	increases	the	influence	of	the	slow	statistical	convergence	of	such	a	“natu-

ral	Monte	Carlo	sampling”	(q.v.	Section	2.2.1).	In	case	of	the	additive	fitting	of	

RFCs	 the	 number	 of	 the	mainly	 influencing	 points	 for	 one	 local	 fitted	 node	

reduces	 in	 linear	 relation	 with	 the	 increase	 of	 the	 resulting	 lookup	 table’s	

resolution.	This	relation	becomes	quadratic	in	case	of	coupled	surface	fitting	of	

RFSs,	which	further	amplifies	the	undesirable	effect	of	slow	statistical	conver-

gence.	 Of	 course	 the	 gap	 between	 the	 different	 fitting	 techniques’	 accuracy	

reduces	proportionally	to	the	noise	 level	of	the	samples.	The	resolution	of	the	

lookup	 table	 is	 also	 an	 important	 influencing	 factor,	 which	 has	 a	 problem	

specific	optimum	regarding	the	bias	and	the	variance	of	the	results.	As	a	simple	
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guideline	it	can	be	concluded,	that	the	necessary	number	of	samples	to	achieve	

good	fitting	quality	is	about	103	for	additive	and	about	2∙104	for	coupled	non-

parametric	 fitting	 for	 a	 resolution	 of	10	 to	20	 segments	per	dimension.	This	

means	a	measurement	duration	of	at	least	2	to	3	seconds	for	typical	measure-

ments	of	high	frequency	oscillations	for	coupled	fitting.	Finally,	 it	is	important	

to	notice	 that	 this	difficulty	has	nothing	 to	do	with	 the	estimation	of	 the	RFS	

sample	point	clouds	using	the	KF.	These	sample	sets	enable	an	easy	characteri-

sation	of	the	RFSs	for	parametric	fitting	in	case	of	insufficient	number	of	sam-

ples.	

	
Figure	3.23:	Investigation	of	the	influence	of	measurement	sampling	rate	(left)	and	the	

number	of	measured	samples	(right)	on	the	estimation	error	of	the	identified	RFS	based	

on	the	noisy	(5	%	RMS)	virtual	measurement	of	a	1DoF	nonlinear	oscillator.	The	resolu-

tion	of	the	reconstructed	RFS’s	lookup	table	was	set	to	20	segments	per	dimension.	

3.4.3 Model	uncertainties	

It	 has	 been	 discussed	 in	 Section	 1.6.3	 that	 synchronisation	 algorithms	 (and	

therefore	the	KF	as	well)	are	sensitive	to	modelling	uncertainties.	This	means	

that	 the	 deviation	 of	 model	 parameters	 (that	 have	 not	 been	 introduced	 as	

augmented	state	variables)	from	their	true	values	can	reduce	the	accuracy	and	
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the	stability	of	such	techniques.	The	current	subsection	briefly	investigates	this	

effect	 in	 the	particular	 case	 of	nonparametric	 identification	using	 the	 virtual	

3DoF	 example	 from	 Section	 3.3.2.	 To	 do	 so,	 let	 us	 introduce	 the	 following	

notation	for	the	entries	of	the	inverse	inertia	matrix	M–1	given	in	the	coordinate	

system	of	the	deformation	of	the	RFSs,	i.e.	zj:	

( , , ) ≔ ∙
∙ ∙

	.	 (3.20)

Different	kinds	of	errors	of	 the	assumed	values	of	μij	have	been	 introduced	 in	

the	numerical	example	 to	analyse	 their	 influence	on	result	quality.	The	corre-

sponding	identified	eRFCs	of	the	system	are	depicted	in	Figure	3.24	and	Figure	

3.25,	which	show	 a	clear	decrease	of	estimation	accuracy	due	 to	 the	artificial	

modelling	errors.	

There	 are	 several	 further	possibilities	 of	how	 the	 a	priori	model	 can	deviate	

from	reality.	The	unexpected	noisiness	of	the	input	signal	(q.v.	Section	3.4.1)	is	

one	of	these	possibilities.	An	issue	that	can	be	even	more	critical	than	parame-

ter	uncertainty	 is	the	 incorrect	choice	of	the	number	of	DoFs.	Such	errors	can	

lead	to	completely	unrealistic	 identification	results	or	even	to	synchronisation	

divergence.	This	 fact	 increases	 the	 importance	of	developing	 computationally	

efficient	 identification	 algorithms,	which	was	 one	 of	 the	primary	 aims	 of	 the	

present	thesis	(q.v.	Section	1.1).	Short	computation	time	is	essential,	because	it	

allows	 the	 implementation	 of	 the	 algorithm	 inside	 a	 higher	 level	 iteration	

procedure	 that	 successively	eliminates	modelling	errors.	The	 investigation	of	

this	topic	in	general	is	outside	the	scope	of	the	current	study.	Nevertheless,	the	

particular	problem	of	uncertain	model	parameters,	which	is	probably	the	most	

typical	 modelling	 error,	 is	 briefly	 investigated	 in	 Chapter	 4,	 which	 offers	 a	

possible	solution	for	the	identification	of	the	inverse	inertia	matrix	M–1.	
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Figure	3.24:	 Influence	of	 the	 incorrect	values	of	 the	 inverse	 inertia	matrix’s	diagonal	

entries	on	the	estimation	accuracy	of	the	3DoF	virtual	system‘s	three	eRFCs	from	Section	

3.3.2.	

	

	
Figure	3.25:	Influence	of	the	incorrect	values	of	the	inverse	inertia	matrix’s	off-diagonal	

entries	on	the	estimation	accuracy	of	the	3DoF	virtual	system‘s	three	eRFCs	from	Section	

3.3.2.	

-5 0 5 10

eRFC	2

z2	[mm]
-5 0 5 10

-50

-25

0

25

50

z1	[mm]

el
as

tic
	fo

rc
e	

[N
]

eRFC	1

true
identified;	m22	and	m33	correct
identified;	m22	and	m33	with	+10%	error
identified;	m22	and	m33	with	+30%	error

-5 0 5 10

eRFC	3

z3	[mm]

-5 0 5 10

eRFC	2

z2	[mm]
-5 0 5 10

-50

-25

0

25

50

z1	[mm]

el
as

tic
	fo

rc
e	

[N
]

eRFC	1

true
identified;	m12,	m13	and	m23	correct
identified;	m12,	m13	and	m23	with	-50%	error
identified;	m12,	m13	and	m23	set	to	zero

-5 0 5 10

eRFC	3

z3	[mm]



Virtual	examples	and	the	properties	of	the	approach	

164	

3.5 Computational	performance	
A	major	motivation	 to	 the	 proposed	 nonparametric	 identification	 technique	

was	 to	 achieve	 a	 computationally	 efficient	 algorithm	 (q.v.	 Section	 1.1).	 As	

discussed	in	Section	1.4,	there	are	available	parametric	identification	methods	

that	 in	 general	 can	 identify	 nonlinear	 systems	 of	 arbitrary	 complexity.	 This	

however	 can	 lead	 to	enormous	computation	 times	 in	case	of	missing	 a	priori	

knowledge	 on	 the	 nonlinearities	 of	 the	 system	 of	 interest.	Hence,	 numerical	

simplicity	due	 to	simple	general	models,	such	as	 the	one	proposed	 in	Section	

2.1.2,	represents	the	main	advantage	of	nonparametric	methods.	Therefore,	the	

current	section	presents	a	brief	analysis	of	this	topic,	in	order	to	point	out	the	

presented	algorithm’s	computational	performance.	

There	are	 several	possibilities	of	accelerating	 a	numerical	procedure	 that	are	

not	directly	related	 to	 the	algorithm	 itself.	The	most	 trivial	one	 is	 the	deploy-

ment	of	faster	computers.	But	there	are	also	more	sophisticated	solutions	such	

as	 parallel	 computing	 or	 the	 generation	 of	 symbolically	 optimised	 codes.	 In	

order	to	separate	the	current	performance	evaluation	from	these	topics	and	to	

enable	easier	comparison	to	other	methods,	the	“normed	CPU	time”,	denoted	by	

TNC,	 is	 introduced	as	a	measure	of	the	computation’s	duration.	It	 is	defined	as	

the	ratio	between	the	specific	procedures	CPU	time	and	the	duration	of	a	single	

simulation	run	of	the	 initial	a	priori	model	under	the	given	experiment	condi-

tions.	E.g.	in	case	of	an	optimisation	process,	every	call	of	the	objective	function	

corresponds	to	a	normed	CPU	time	of	1.	This	quantity	is	used	in	Figure	3.26	to	

illustrate	 the	computational	efficiency	of	separate	steps	of	 the	proposed	non-

parametric	approach	based	on	 the	virtual	examples	 from	Section	3.1	and	3.3.	

The	indicated	values	are	thereby	independent	from	both	the	sampling	rate	and	

the	duration	 of	 the	 available	measurement	 signals,	 since	 the	CPU	 time	 of	 all	

steps	and	of	the	initial	model	run	are	both	proportional	to	the	number	of	pro-

cessed	samples.	
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Figure	 3.26:	 Computational	 efficiency	 of	 the	 proposed	 nonparametric	 technique’s	

separate	steps	based	on	the	identification	examples	from	Section	3.1	and	3.3.	

Notice	 that	not	all	 four	depicted	steps	are	necessary	 to	carry	out	 a	particular	

identification.	One	application	of	the	algorithm	consists	of	either	the	EKF	or	the	

SR-UKF	followed	by	either	aRFS	fitting	or	cRFS	fitting.	The	TNC	level	of	the	SR-

UKF	 exhibits	 approximately	 linear	 dependency	 on	 the	 number	 of	 DoFs	 and	

shows	 significantly	higher	values	 than	 the	EKF.	This	can	be	explained	by	 the	

necessary	number	of	2na+1	sigma	points	 in	the	algorithm	(q.v.	Section	1.6).	It	

has	been	extensively	discussed	in	Chapter	2	and	3	that	an	important	advantage	

of	the	proposed	nonparametric	method	is	that	it	allows	the	deployment	of	the	

EKF	under	typical	experiment	conditions	despite	the	presence	of	strong	nonlin-

earities	in	the	system	of	interest.	On	the	other	hand,	in	order	to	cover	a	wider	

range	of	possible	measurement	circumstances,	 it	has	also	been	 investigated	in	

detail	under	which	conditions	the	application	of	the	SR-UKF	is	advised.	Taking	a	

look	at	the	CPU	times	of	the	RFS	fitting	reveals	that	the	TNC	of	the	fitting	step	is	

linearly	proportional	 to	 the	number	of	RFSs	and	 is	 less	 than	0.5	per	RFS	 for	

both	approaches.	

Without	 presenting	 any	 particular	 results	 using	 parametric	 identification	

techniques,	the	illustrated	TNC	statistics	can	be	used	to	carry	out	a	rough	com-
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parison	of	the	proposed	approach	to	such	methods.	Let	us	first	consider	the	KF	

based	dual	state	and	parameter	estimation	(q.v.	Section	1.4.1).	In	this	method	

every	describing	parameter	of	 the	 a	priori	characterised	RFS	 is	 introduced	as	

an	additional	augmented	state	variable.	Accordingly,	as	soon	as	 the	nonlinear	

function	requires	more	than	two	parameters,	the	corresponding	KF	algorithm	

will	necessarily	be	slower	then	the	presented	one,	which	uses	only	s	and	d	for	

one	RFS.	The	 computation	 gets	 even	more	 complex	 if	 general	 functions	 (e.g.	

polynomial	series)	have	to	be	deployed	due	to	the	lack	of	a	priori	characterisa-

tion	of	the	RFSs.	Furthermore,	the	introduced	functions	of	the	augmented	states	

are	as	nonlinear	as	 the	RFSs	 that	 they	describe,	which	automatically	 leads	 to	

the	 necessity	 of	 computationally	 expensive	KF	methods	 such	 as	 the	 SR-UKF.	

This	can	be	observed	e.g.	in	(Wu	&	Smyth,	2007).	The	comparison	to	optimisa-

tion	based	methods	 (q.v.	Section	1.4.1)	 is	also	 straightforward.	 In	 these	 tech-

niques	 the	 objective	 function	 of	 the	 optimisation	 is	 based	 on	 the	 simulation	

results	of	the	virtual	model,	whose	parameters	are	to	be	 identified.	Therefore,	

each	 function	 call	 during	 the	 optimisation	 increases	 the	 TNC	 level	 by	 1.	

(Vyasarayani,	Uchida,	Carvalho,	&	McPhee,	2012)	and	(Gunnarsson,	2014)	can	

be	mentioned	as	successful	applications	of	the	Homotopy	optimisation	method.	

In	the	first	a	necessary	number	of	50	and	250	iterations	have	been	reported	to	

reach	convergent	identification	results	for	dynamic	systems	with	two	and	three	

parameters	 respectively.	 In	 the	 latter	 1400	 iterations	 of	 the	 optimiser	were	

needed	to	identify	the	four	coefficients	of	the	describing	third-order	polynomial	

of	a	dynamic	system’s	nonlinear	spring.	The	required	number	of	function	calls	

per	iteration	depends	on	the	specific	optimisation	algorithm.	However,	even	if	

we	assume	 a	TNC	 increase	of	1	per	 iteration,	such	approaches	still	show	 to	be	

computationally	 more	 expensive	 than	 nonparametric	 identification.	 A	 more	

detailed	comparison	of	optimisation	based	techniques	to	observer	based	recur-

sive	methods	can	be	found	in	(Voss,	Timmer,	&	Kurths,	2004).	



	

	

4 Parametric	identification	of	the	a	
priori	model	

The	previous	two	chapters	presented	the	synchronisation	based	nonparametric	

identification	of	a	particular	subclass	of	dynamic	systems	given	by	the	process	

equation	 (1.11).	 Throughout	 these	 chapters	 all	 constant	 parameters	 of	 the	

system,	i.e.	the	entries	of	the	inertia	matrix	M	and	the	input	matrix	B,	has	been	

assumed	 to	 be	 known	 a	 priori.	 In	 real-life	 implementation	 such	 constants	

always	 exhibit	 a	 certain	 level	 of	 uncertainty.	According	 to	 Section	 1.6.3	 and	

3.4.3,	 errors	 in	 the	 assumptions	 of	 these	 parameters	 can	 lead	 to	 drastic	 de-

crease	of	 the	 identified	RFS’s	accuracy.	Hence,	 it	 is	of	practical	 importance	 to	

provide	 proper	 estimates	 of	 these	 constants.	One	way	 to	 achieve	 this	 is	 the	

coupling	of	 the	proposed	nonparametric	approach	with	parametric	 identifica-

tion	 techniques.	 This	 possibility	 is	 briefly	 investigated	 in	 Section	 4.1	 for	 the	

particular	3DoF	virtual	experiment	from	Section	3.3.2.	

In	 situations,	where	 the	 virtual	model	 is	 thought	 of	 as	 an	 image	 of	 the	 true	

system’s	behaviour	in	the	particular	experiment	load	case,	the	determination	of	

the	structure’s	initial	state,	i.e.	z0	and	v0,	is	a	part	of	the	identification	problem.	

This	 gains	 more	 importance	 e.g.	 for	 the	 measurements	 of	 free	 oscillations,	

where	the	reproduction	of	the	measured	behaviour	using	the	adapted	model	is	

impossible	without	the	proper	initial	state	vector.	This	topic	has	been	neglected	

so	far	in	the	previous	chapters,	since	the	KF	(in	contrast	to	optimisation	based	

methods)	 automatically	 compensates	 the	 initial	deviations	 of	 the	 state	 space	

coordinates.	 In	 Section	 4.2	 a	modification	 of	 the	KF	 is	 applied	 to	 the	 virtual	

example	 from	 Section	 3.3.2,	which	 allows	 the	 identification	 of	 the	 system’s	

initial	state.	



Parametric	identification	of	the	a	priori	model	

168	

The	 presented	 solutions	 throughout	 this	 chapter	 point	 out	 an	 important	 ad-

vantage	of	using	the	KF	algorithm	for	synchronisation.	Due	to	its	potential	and	

popularity,	 several	 extensions	 and	 special	 formulations	have	been	developed	

throughout	the	last	more	than	fifty	years	(q.v.	Section	1.6.3).	The	choice	of	the	

KF	makes	all	these	features	available,	which	leads	to	a	more	general	and	flexi-

ble	identification	procedure.	

4.1 Estimation	of	inertia	properties	
Let	us	consider	dynamic	processes	given	by	(1.11)	and	suppose	that	only	rough	

guesses	of	M	and	B	are	available	prior	 to	 the	measurement.	According	 to	 the	

problem	 formulation	 from	 Section	 1.3,	 the	 input	matrix	B	 either	 consists	 of	

specific	entries	of	M–1	(if	u	is	a	force	signal)	or	Bij∊{-1,0,1}	holds	for	its	elements	

(if	u	 is	an	acceleration	 signal).	Hence,	 the	 identification	of	M	 instantly	deter-

mines	B	as	well.	Therefore,	 it	 is	sufficient	 to	concentrate	on	 the	estimation	of	

the	 inertia	 matrix.	 Notice	 that	 the	 proposed	 nonparametric	 system	 model	

(2.31)	can	not	be	fitted	to	the	measured	signals	by	simply	adapting	M	using	a	

parametric	approach.	Only	those	methods	can	be	considered	as	possible	exten-

sions	 that	 can	 accommodate	 the	 complete	 nonparametric	 KF	 algorithm	 (de-

rived	 in	Chapter	2).	This	 is	 crucial	 in	 order	 to	 ensure	 the	 simultaneous	 syn-

chronisation	 of	 s	 and	 d,	while	 the	 parametric	 algorithm	 successively	 deter-

mines	the	entries	of	M.	

One	parametric	technique	that	fulfils	this	criterion	 is	the	Homotopy	optimisa-

tion	approach	(q.v.	Section	1.4.1).	Though	successful	applications	 in	the	 litera-

ture	 show	 its	 good	 reliability	 (Gunnarsson,	 2014),	 (Vyasarayani,	 Uchida,	

Carvalho,	&	McPhee,	2012),	(Carlsson	&	Nordheim,	2011),	(Sun	&	Yang,	2010),	

it	 is	a	computationally	rather	expensive	method	due	to	 its	optimisation	based	

algorithm	 (q.v.	 Section	 3.5).	 Therefore,	 another	 suitable	 technique,	 the	 dual	

state	 and	 parameter	 estimation	 (q.v.	 Section	 1.4.1),	 has	 been	 chosen	 in	 the	
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present	 study,	which	has	 a	higher	potential	 for	 computational	efficiency.	 It	 is	

based	on	the	augmentation	of	the	a	priori	model’s	state	vector	by	the	vector	of	

unknown	 (uncertain)	parameters,	denoted	by	p.	Notice	 that	 this	 is	 the	 same	

solution,	which	has	been	applied	 to	enable	 the	 identification	of	RFSs	 in	Chap-

ter	2	with	 the	difference	 that	p	does	not	consist	of	 instrumental	variables	but	

physical	model	parameters,	and	 that	 its	 true	values	are	not	expected	 to	vary	

over	time.	Accordingly,	the	general	a	priori	system	model,	proposed	in	Section	

2.1.2,	is	now	modified	to	

⎣
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× = ( , ) ∋ rank
∂
∂ = .	 (4.3)

Hence,	 the	 structure	 of	 the	 KF’s	 estimates	 of	 the	 state	 vector’s	 probability	

distribution	properties	also	changes	from	(2.41)	to	
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where	P	denotes	 the	probability	distribution	of	p.	Furthermore,	 the	 initialisa-

tion	 and	 the	 tuning	 of	 the	KF	 also	have	 to	be	 extended.	These	modifications	

follow	 the	same	 logic	 that	has	been	discussed	 in	Section	2.2.4,	which	 leads	 to	

the	formulas:	

, ≔ [	E( ) E( ) E( ) E( ) E( ) 	] ,	 (4.5)

, ≔ diag([	E( ) E( ) E( ) E( ) E( ) 	]),	
(4.6)
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≔ ∆ ∙ diag([	 × × 10 E( ) 10 E( ) 10 E( ) 	]),	 (4.7)

where	qp	is	an	additional	covariance	exponent	that	allows	the	separate	conver-

gence	tuning	of	the	estimates	of	p.	Considering	the	particular	case	from	Section	

3.3.2	the	entries	of	the	inverse	inertia	matrix	M–1	are	defined	as	the	elements	of	

p,	which	using	the	notation	from	Section	3.4.3	leads	to	

≔ [	 	] 	.	 (4.8)

The	 first	diagonal	entry	of	M–1,	 i.e.	μ11,	has	not	been	defined	as	state	variable.	

The	reason	for	this	is	that	the	excitation	is	of	kinematical	type	(acceleration)	in	

the	given	virtual	experiment	setup.	Under	such	conditions	the	inertia	matrix	of	

a	mechanical	 system	 is	 only	 identifiable	 up	 to	 an	 unknown	 coefficient.	 This	

means	 that	an	endless	number	of	 systems	exist	 that	can	 reproduce	 the	given	

measurement	 signals,	which	 are	 therefore	 not	 distinguishable	 based	 on	 the	

particular	 experiment	 setup.	 In	 the	 current	 case	 μ11	 has	 been	 set	 to	 its	 true	

value	and	has	been	kept	 constant,	 in	order	 to	 enable	 the	 convergence	 of	 the	

other	parameters	to	their	correct	values.	In	real-life	one	can	achieve	convergent	

results	 using	 the	 above	model,	 but	 these	will	 not	 necessarily	 be	 consistent.	

However,	 the	missing	coefficient	of	M–1	can	be	determined	e.g.	by	measuring	

the	weight	of	 the	rigid	body.	Further	discussions	on	similar	distinguishability	

issues	 can	be	 found	 in	 (Dresig	 &	Fidlin,	2014),	 (Bessa,	Hackbarth,	Kreuzer,	&	

Radisch,	2014),	and	(Hoshiya	&	Saito,	1984).	

It	 is	 important	 to	mention	 that	 the	defined	 form	of	 the	a	priori	system	model	

from	 Section	3.3	 is	 optimal	 for	 the	handling	 of	possible	model	uncertainties.	

The	following	aspects	have	been	taken	into	account	during	its	design,	which	can	

be	considered	as	general	guidelines	for	the	modelling	of	multiple	DoF	systems	

for	identification:	Though	the	system	has	only	3	DOFs,	the	complete	description	

of	the	experiment	setup	includes	a	relatively	large	number	of	parameters.	The	

rigid	body’s	three	inertia	properties	(m,	Jξ,	Jη)	and	one	{ξ,η}	coordinate	pair	for	

the	position	of	each	sensor	and	each	spring	element	adds	up	to	15	describing	



Estimation	of	inertia	properties	

171	

constants,	all	of	which	can	be	affected	by	some	errors.	Due	to	the	choice	of	the	

spring	elements’	deformations	and	rate	of	deformations	as	state	space	coordi-

nates	and	due	to	the	positioning	of	the	sensors	at	the	spring	elements’	connec-

tion	points,	all	possible	parameter	uncertainties,	i.e.	all	15	constants,	have	been	

“compressed”	 into	 the	6	entries	of	M.	First,	 this	 leads	 to	 a	drastic	decrease	of	

model	 complexity.	Second,	 the	 fact	 that	 this	 “compression”	 is	possible	 shows	

that	the	15	original	constants	are	not	distinguishable	and	would	therefore	lead	

to	convergence	 issues	 in	the	synchronisation	algorithm.	Of	course,	placing	the	

sensors	at	the	spring	positions	might	not	always	be	possible	 in	real-life.	Or,	to	

go	 further,	 there	might	be	 cases,	when	 there	 are	more	 spring	 elements	 than	

DoFs,	which	automatically	leads	to	indistinguishability.	A	simple	and	pragmatic	

solution	 for	 these	 situations	 is	 the	assumption	of	N	 spring	elements	at	 the	N	

sensor	positions	 (q.v.	 Section	5.2.2).	This	 leads	 to	 a	 virtual	 system	 that	 is	 at	

least	able	to	reconstruct	the	measured	behaviour.	The	problem	of	transforming	

the	determined	RFSs	into	properties	of	the	real	spring	elements	can	be	treated	

separately	after	the	identification.	The	second	important	aspect	that	influenced	

the	design	of	the	model	was	the	aim	to	avoid	strong	nonlinearities	in	the	KF	to	

allow	 the	 deployment	 of	 computationally	 simpler	 algorithms,	 i.e.	 the	 EKF	

instead	 of	 the	 SR-UKF	 (q.v.	 Section	 2.2.2).	 The	 choice	 of	 the	 entries	 of	 M–1	

instead	 of	 the	 elements	 of	M	as	augmented	 states	 avoids	 the	 introduction	 of	

strong	 hyperbolic	 nonlinearities	 (e.g.	 zjsjm–1)	 in	 the	model	 and	 leads	 to	 less	

critical	trilinear	expressions	(e.g.	zjsjμij)	instead.	

Unfortunately	 it	 turned	out	 that	both	 the	EKF	and	 the	SR-UKF	are	not	able	 to	

achieve	sufficient	convergence	of	p	in	a	single	KF	run	due	to	the	nonlinearity	of	

the	model	and	the	 large	number	of	17	state	variables	(zj,	vj,	sj,	dj,	μij).	To	over-

come	this	difficulty,	the	global	iteration	of	the	KF	has	been	implemented	in	the	

present	study.	This	is	a	well	known	technique	with	successful	 implementation	

examples	 in	 the	 literature	 (Voss,	Timmer,	 &	Kurths,	2004),	 (Hoshiya	 &	Saito,	

1984).	The	main	idea	is	to	iterate	the	complete	KF	algorithm	by	setting	the	last	
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estimate	of	the	state	vector	from	the	previous	KF	run	as	the	initial	state	of	the	

next	run.	This	procedure	only	makes	sense	in	case	of	dual	state	and	parameter	

estimation	and	 should	not	be	 confused	with	 the	 locally	 iterated	EKF	 (Simon,	

2006),	which	iterates	the	model’s	Jacobians	inside	the	recursion	loop.	Using	the	

notations	 from	 expression	 (4.4),	 the	 precise	 definition	 of	 the	 implemented	

iteration	is	given	by	the	following	simple	algorithm:	

, , =

⎣
⎢
⎢
⎢
⎡

,

,

, ,

, ,

, , ⎦
⎥
⎥
⎥
⎤
	,	 (4.9)
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	,	 (4.10)

where	k	denotes	the	index	of	the	global	iteration,	and	the	recursion	index	of	the	

last	measurement	time	step	is	indicated	by	“end”.	Notice	that	the	initial	guesses	

of	z	and	v	remain	unchanged	throughout	the	global	iteration,	since	their	values	

are	not	getting	refined	by	the	KF.	

The	final	step	 in	the	preparation	of	the	parameter	estimation	algorithm	 is	the	

choice	of	the	KF’s	tuning	coefficients.	An	extensive	parameter	analysis	has	been	

carried	out	using	the	given	measurement	setup,	which	yielded	the	set	of	tuning	

exponents	[qs,qd,qp]=[–4,–6,–4]	as	the	optimal	choice.	These	optimised	settings	

can	 be	 treated	 as	 a	 rough	 general	 guideline,	 since	 the	 introduced	KF	 tuning	

strategy	(4.7)	 is	based	on	a	normed	 formula.	Recall	 from	Figure	2.7	 that	such	

settings	 lead	 to	 a	high	bias	 of	 the	 estimates	 of	 s	 and	d,	 since	 they	 are	 fastly	

varying.	This	 however	 represents	 no	 difficulty,	 because	 the	 only	 aim	 of	 this	

identification	step	 is	 the	estimation	of	 the	parameter	vector	p.	The	 identifica-
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tion	of	 the	RFSs	 is	carried	out	 in	 a	second	step	using	suitable	 tuning	strategy	

according	to	Section	2.2.4.	

Since	M–1	 is	 a	 constant	 linear	 property,	 its	 elements	 do	 not	 depend	 on	 the	

oscillation	amplitude	of	the	system.	Therefore,	it	is	reasonable	to	introduce	an	

additional	 load	case	with	 low	excitation	 level	and	compare	 the	corresponding	

estimation	results	with	the	ones	that	are	achieved	using	the	original	 load	case	

from	 Section	 3.3.2.	 It	 can	 be	 expected	 that	 the	 low	 excitation	 level	 leads	 to	

better	convergence	of	the	parameter	vector	p	due	to	the	reduced	oscillation	of	s	

and	d	over	time.	The	response	of	the	3DoF	plate	to	frequency	sweep	excitation	

is	depicted	in	Figure	4.1	for	the	two	load	cases.	

	
Figure	4.1:	Noisy	measurement	signals	of	 the	virtual	3DoF	system	 from	Section	3.3.2	

with	logarithmic	scaling	in	case	of	frequency	sweep	at	two	different	excitation	levels.	

The	global	iteration	procedure	has	been	carried	out	using	both	the	EKF	and	the	

SR-UKF,	in	order	to	compare	their	performance.	The	initial	guess	of	the	param-

eter	 vector	has	been	 set	 to	p=[0,0,0.3	kg–1,0,0.3	kg–1]T.	The	 convergence	 of	μij	

over	the	number	of	global	 iterations	 is	illustrated	 in	Figure	4.2	and	Figure	4.3	

for	the	low	level	(linear)	and	the	high	level	(nonlinear)	load	case	respectively.	
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Figure	4.2:	Convergence	of	 the	virtual	3DoF	 system‘s	 inertia	properties	 from	Section	

3.3.2.	The	global	iteration	of	the	KF	has	been	carried	out	based	on	the	„linear“	load	case	

with	low	excitation	level.	

	
Figure	4.3:	Convergence	of	 the	virtual	3DoF	 system‘s	 inertia	properties	 from	Section	

3.3.2.	The	global	iteration	of	the	KF	has	been	carried	out	based	on	the	„nonlinear“	load	

case	with	high	excitation	level.	
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First	of	all,	it	can	be	seen	that	the	global	iteration	converges	to	stable	results	in	

10	to	15	steps	in	all	cases.	The	SR-UKF	exhibits	significantly	faster	convergence	

than	 the	 EKF,	which	 can	 be	 explained	 by	 the	 trilinear	 nonlinearities	 in	 the	

model	functions	(q.v.	Section	2.2.2).	Furthermore,	excellent	estimation	accuracy	

of	the	approach	can	be	observed	in	case	of	low	excitation	level	for	both	the	EKF	

and	 the	SR-UKF.	Unfortunately	 this	 can	not	be	 stated	about	 the	original	 load	

case	with	high	excitation	 level,	where	the	converged	parameters	show	signifi-

cant	deviation	 from	 their	 true	values.	For	 this	measurement	case	 the	SR-UKF	

shows	better	average	accuracy	 than	 the	EKF.	Therefore,	 the	 initial	parameter	

guesses	and	the	parameter	estimates	of	the	iterated	SR-UKF	from	the	load	case	

with	high	excitation	 level	has	been	used	 in	 a	 subsequent	nonparametric	RFS	

identification	 (according	 to	 Chapter	 2)	 in	 order	 to	 assess,	 how	 critical	 the	

observed	 error	 of	 the	 identified	 constants	 really	 is.	 The	 comparison	 of	 the	

second	spring	element’s	RFCs,	depicted	 in	Figure	4.4,	reveals	 that	despite	 the	

seemingly	 large	 deviation	 of	 the	 estimated	 inertia	 properties	 a	 significant	

increase	in	the	RFS	identification	quality	could	be	achieved	with	the	identified	

M	compared	to	using	its	initial	guess.	Furthermore,	the	adapted	model	(involv-

ing	the	 identified	M	and	the	 identified	RFSs)	has	been	used	to	reconstruct	the	

true	system’s	response	signals	at	high	excitation	level.	Different	zooms	of	these	

signals	are	compared	to	the	true	noisy	(5	%	RMS)	measurement	time	series	in	

Figure	 4.5.	 A	 very	 good	 agreement	 between	 the	 depicted	 signals	 can	 be	 ob-

served,	which	is	a	positive	though	rather	unexpected	result.	A	possible	explana-

tion	to	this	phenomenon	is	that	the	high	level	excitation	somehow	weakens	the	

distinguishability	of	the	parameter	vector’s	elements.	Expanding	the	frequency	

range	of	the	sweep	did	not	reveal	any	hidden	nonlinear	resonances.	Therefore,	

it	can	be	concluded	 that	 for	both	 low	(linear)	and	high	(nonlinear)	excitation	

levels	 the	 globally	 iterated	 KF	 technique	 delivers	 adapted	 models	 that	 can	

reconstruct	 the	 true	 system’s	 measured	 behaviour	 with	 good	 accuracy.	 If	

however	 the	 consistent	 identification	 of	 the	model	parameters	 is	 of	high	 im-
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portance,	then	 it	 is	advised	to	carry	out	the	 iteration	procedure	based	on	 low	

amplitude	measurements.	

	
Figure	4.4:	Identified	eRFCs	and	dRFCs	of	the	virtual	3DoF	system’s	(q.v.	Section	3.3.2)	

second	spring	element	using	the	initial	guess	of	M	in	comparison	to	using	the	identified	

M	based	on	the	high	amplitude	measurement	with	the	iterated	SR-UKF.	

	
Figure	4.5:	Noisy	(5	%	RMS)	high	amplitude	response	of	the	virtual	3DoF	system	(q.v.	

Section	3.3.2)	compared	to	the	adapted	model’s	response	using	the	identified	RFSs	and	

the	estimated	M	based	on	the	high	amplitude	measurement	with	the	iterated	SR-UKF.	
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Finally,	 it	 has	 to	 be	mentioned	 that	 the	 convergence	 plots	 in	 Figure	 4.2	 and	

Figure	4.3	are	slightly	misleading	regarding	the	computational	performance	of	

the	EKF	compared	 to	 the	SR-UKF,	since	 there	 is	a	significant	difference	 in	 the	

CPU	 time	 of	 one	 iteration	 in	 case	 of	 the	 two	different	 algorithms.	Figure	4.6	

aims	to	clarify	this	comparison	using	the	normed	CPU	time	(q.v.	Section	3.5)	of	

the	 iteration	 instead	 of	 the	 number	 of	 iteration	 steps.	 The	 estimation	 error	

curves	of	the	 inertia	properties	reveal	that	the	EKF	provides	much	faster	con-

vergence	of	 the	 iteration	 than	 the	SR-UKF.	Hence,	 it	 turns	out	 to	be	 superior	

over	 the	 SR-UKF	 in	 the	 low	 excitation	 level	 case,	where	 it	 exhibits	 the	 same	

estimation	accuracy.	Therefore,	 it	can	be	concluded	that	the	 invested	effort	of	

keeping	the	model	equations	as	weakly	nonlinear	as	possible	pays	out	both	 in	

result	quality	and	in	computational	efficiency.	

	
Figure	4.6:	Average	 estimation	error	of	 the	3DoF	 system’s	 (q.v.	Section	3.3.2)	 inertia	

properties	 over	 the	 normed	 CPU	 time	 (q.v.	 Section	 3.5)	 of	 the	 iterated	 EKF	 and	 the	

iterated	SR-UKF	based	on	the	 low	amplitude	(left)	and	the	high	amplitude	(right)	 load	

case.	
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4.2 Estimation	of	the	initial	state	
Recall	 from	 Section	3.3.2	 that	 the	proposed	 nonparametric	 identification	 ap-

proach	yielded	very	good	estimates	of	the	3DoF	system’s	RFSs.	This	resulted	in	

an	adapted	model	that	proved	to	be	a	good	image	of	the	true	structure	based	on	

the	 comparison	 of	 their	measurement	 responses.	However,	 looking	 at	Figure	

3.20	 in	detail	 reveals	 significant	deviation	of	 the	measurement	 signals	 in	 the	

initial	 phase	 of	 the	 frequency	 sweep.	 The	 reason	 for	 this	 is	 that	 the	 virtual	

system’s	true	response	begins	with	realistic	steady	state	oscillatory	conditions,	

just	as	 in	 real-life,	where	one	might	 start	 recording	 the	measurement	 signals	

after	switching	on	the	excitation	of	the	structure.	The	initial	state	of	the	adapted	

system	however	remained	[z0,v0]=[0,0],	since	the	KF	only	compensates	but	not	

adapts	such	 initial	errors.	 In	 this	particular	case	 this	deviation	of	 the	adapted	

model	can	be	neglected,	since	the	 influence	of	the	 initial	state	on	the	system’s	

response	vanishes	 relatively	 fast	 in	 case	of	 stable	mechanical	 structures	with	

typical	damping	levels.	However,	in	situations,	where	purely	transient	respons-

es	 are	 measured	 or	 instable	 systems	 are	 to	 be	 identified,	 determining	 the	

proper	values	of	z0	and	v0	can	gain	notable	importance.	

A	 possible	 solution	 to	 this	 problem	 is	 the	 implementation	 of	 the	 Kalman	

Smoother	(KS),	whose	special	case,	the	Fixed-Interval	RTS	Smoother,	has	been	

presented	 in	Section	1.6.3.	 It	enhances	 the	accuracy	of	 the	 state	estimates	by	

involving	not	only	past	and	present	but	also	future	measurement	samples	in	the	

estimation	of	the	state	vector’s	time	series.	Since	no	past	samples	are	available	

for	the	initial	state,	this	extension	of	the	KF	is	necessary	to	allow	its	adaption.	In	

the	current	example	the	EKF	in	combination	with	the	RTS	Smoother,	referred	to	

as	EKS,	has	been	deployed	for	a	short	 initial	time	period	of	the	3DoF	systems	

high	amplitude	frequency	response	from	Section	3.3.2.	Similar	to	the	case	of	the	

identification	of	M	 in	Section	4.1,	 it	 turned	out	 that	 the	 iteration	of	 the	algo-

rithm	with	 successively	 updated	 initial	 states	 leads	 to	 significant	 further	 in-
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crease	of	result	quality,	which	is	depicted	in	Figure	4.7.	Thereby	a	very	fast	and	

accurate	 convergence	 of	 the	 initial	 velocity	 coordinates	 is	 to	 be	 observed.	

Though,	 the	 relative	 accuracy	 of	 the	 identified	 initial	displacements	 is	 rather	

poor,	it	has	to	be	mentioned	that	their	absolute	values	were	extremely	small	in	

the	particular	example.	

	
Figure	4.7:	Convergence	of	the	virtual	3DoF	system’s	 (q.v.	Section	3.3.2)	 initial	states	

based	 on	 the	 beginning	 interval	 of	 its	 noisy	 high	 amplitude	measurement	 using	 the	

iterated	EKS.	

The	 initial	 time	 interval	 of	 the	 virtual	 system’s	measurement	 signals	 is	 com-

pared	 to	 the	adapted	model’s	 response	 in	Figure	4.8.	Apparently,	 the	deploy-

ment	of	the	iteratively	identified	initial	state	vector	yields	a	drastic	increase	in	

the	agreement	of	the	depicted	time	series.	

Finally,	it	is	worth	mentioning	that	the	KS	technique	is	dedicated	to	refine	state	

variables,	whose	 variation	 over	 time	 is	 symbolically	 described	 by	 the	model	

equations.	Therefore,	 it	 is	not	able	 to	properly	smooth	states	 that	are	varying	

over	time	but	assumed	to	be	constant	in	the	system	model	(Simon,	2006),	such	
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the	 proposed	 nonparametric	 identification	 approach	 did	 not	 show	 notable	

increase	of	accuracy.	It	could	slightly	refine	the	estimated	time	series	of	z	and	v,	

but	unfortunately	the	main	source	of	the	 identified	RFS’s	bias	 lies	 in	the	finite	

synchronisation	convergence	of	s	and	d.	

	
Figure	4.8:	Initial	time	interval	of	the	virtual	3DoF	system‘s	(q.v.	Section	3.3.2)	response	

signals.	The	 true	 noisy	 time	 series	 (black)	 are	 compared	 to	 the	 adapted	model’s	 re-

sponse	involving	initial	states	set	to	zero	(grey)	in	comparison	to	initial	states	adapted	

using	the	iterated	EKS	(green).	

	

0 0.004 0.008

y
2

time	[s]
0 0.004 0.008

-10

-5

0

5

10

15

time	[s]

ac
ce

le
ra

tio
n	

[m
	s-

2]

y
1

measured	noisy	signal
identified	model ¢s	response,	EKF
identified	model ¢s	response,	EKS

0 0.004 0.008

y
3

time	[s]



	

	

5 Real-life	implementation	
The	 two	 identification	case	studies	 that	are	presented	 in	 this	chapter	 investi-

gate	 the	complex	properties	of	 a	Dual	Mass	Flywheel	(DMF).	A	DMF	 is	an	 im-

portant	part	of	combustion	engine	drive	trains.	Its	main	purpose	is	the	shifting	

of	 the	 system’s	 rotational	eigenfrequencies	 in	order	 to	avoid	undesired	noise	

phenomena	 such	 as	 gear	box	 rattle	 or	boom	 in	 the	 inside	 area	 of	passenger	

cars.	However,	 in	 order	 to	produce	DMFs	 of	high	quality,	 several	 further	 as-

pects,	such	as	the	axial	dynamics	of	the	flywheel,	have	to	be	taken	into	account	

as	well.	 As	 the	 pioneer	 of	 the	 DMF,	 LuK	 GmbH	 &	 Co.	 KG,	 a	member	 of	 the	

Schaeffler	Group,	has	a	great	know-how	 in	 its	design,	simulation	and	produc-

tion.	This	also	includes	sophisticated	dynamic	models	that	allow	the	considera-

tion	of	 the	structure’s	behaviour	under	high	 level	axial	excitation	(induced	by	

the	crank	shaft	of	the	combustion	engine)	 in	the	early	stage	of	product	devel-

opment.	The	experiments	that	are	discussed	 in	the	following	were	carried	out	

at	LuK	GmbH	&	Co.	KG	with	the	major	purpose	of	determining	damping	ratios	

under	 realistic	high	 level	 excitation	 in	 order	 to	parametrise	 these	 simulation	

models.	 It	 is	 important	 to	point	 out	 that	 the	 experiments	were	not	 specially	

designed	 to	verify	 the	proposed	nonparametric	 identification	approach.	It	has	

been	deployed	additionally	to	gain	deeper	insight	into	the	structure’s	complex	

dynamics.	This	means	that	the	test	rig	was	not	optimised	to	deliver	ideal	signals	

to	support	nonparametric	 identification,	which	proves	 the	applicability	of	 the	

approach	under	realistic	conditions.	
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5.1 A	1DoF	strongly	nonlinear	system	

5.1.1 Experiment	setup	

The	general	structure	of	a	DMF	is	illustrated	in	Figure	5.1	left.	It	mainly	consists	

of	 the	primary	 flywheel	 (PFW)	and	 the	 secondary	 flywheel	 (SFW),	which	are	

coaxially	linked	together	by	a	set	of	arc	springs	that	define	the	rotational	spring	

characteristic	of	 the	DMF.	All	 further	relative	DoFs	between	 the	PFW	and	 the	

SFW	are	blocked	by	a	bearing,	which	 is	in	the	 investigated	particular	design	a	

compact	combination	of	a	plain	bearing	and	an	axial	end-stop.	The	experiment	

test	 rig,	 depicted	 in	 Figure	 5.1	 right,	 consists	 of	 a	 high	 performance	 shaker	

platform,	on	which	the	PFW	side	of	the	DMF	 is	rigidly	mounted,	which	repre-

sents	its	designed	mounting	conditions.	The	arc	springs	have	been	rotationally	

prestressed,	in	order	to	attain	realistic	damping	values.	Both	the	applied	excita-

tion	and	the	structure’s	response	are	recorded	via	accelerometers.	

	
Figure	 5.1:	 Basic	 components	 of	 a	 dual	 mass	 flywheel	 (left,	 source:	 http:	

//blog.motoringassist.com/	motoring-advice/wp-content/uploads/2013/12	 /dual	 .jpg,	

Accessed:	3rd	March	2016).	The	experiment	setup	on	the	shaker	platform	(right)	with	

adjustable	axial	preload	of	the	secondary	flywheel.	
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The	axial	end-stop	of	the	plain	bearing	acts	only	for	pressing	load.	Therefore,	it	

does	not	block	 against	pulling	 the	 SFW	 and	PFW	apart.	This	 is	however	not	

necessary,	since	under	realistic	operating	conditions	the	SFW	is	always	pressed	

against	the	PFW	through	the	clutch	system.	To	realise	this	condition,	the	test	rig	

includes	 an	 adjustable	 axial	 preload	 unit,	 q.v.	 Figure	 5.1	 right.	 However,	 in	

order	to	generate	an	exotic	load	case,	one	can	remove	the	axial	preload,	which	

allows	 the	 SFW	 to	 lift	 off	 from	 the	 PFW	 if	 a	 sufficient	 level	 of	 excitation	 is	

reached.	 This	 is	 exactly	what	 has	 been	 carried	 out	 in	 the	 current	 example,	

which	resulted	 in	highly	nonlinear	behaviour	of	the	system	that	 is	depicted	 in	

Figure	5.2.	

	
Figure	5.2:	Measured	 axial	 vibration	 of	 the	 SFW	 during	 a	 forward	 frequency	 sweep	

from	200	Hz	 to	400	Hz	without	 axial	preload.	Both	u	and	 y	were	measured	via	 accel-

erometers.	The	signals	were	captured	at	a	sampling	rate	of	20	kHz.	Average	RMS	noise	

levels	of	 8	%	 and	19	%	 (eRMS%,	q.v.	Appendix	B)	have	been	determined	 for	u	 and	 y	

respectively.	

5.1.2 Nonparametric	identification	

The	identification	of	the	experiment	setup,	presented	in	Section	5.1.1,	has	been	

carried	out	using	the	proposed	approach	from	Chapter	2.	The	vibration	of	the	
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SFW	 relative	 to	 the	 PFW	 is	 approximately	 one-dimensional	 due	 to	 the	 plain	

bearing.	Therefore,	its	dynamics	can	be	described	by	the	1DoF	model,	present-

ed	in	Section	3.1.	The	only	constant	parameter	of	the	system	is	the	mass	of	the	

SFW.	It	can	not	be	identified	based	the	available	measurement,	since	the	excita-

tion	is	given	in	form	of	acceleration.	Therefore,	the	nominal	mass	of	4.96	kg	has	

been	 used.	 The	 measured	 signals	 are	 highly	 corrupted	 by	 noise	 due	 to	 the	

impacts	occurring	at	the	end-stop	of	the	plain	bearing	and	at	the	other	end	of	

the	SFW’s	axial	backlash.	This	affects	both	 the	excitation	u	and	 the	 response	

signal	y.	Average	RMS	noise	 levels	of	8	%	and	19	%	(eRMS%,	q.v.	Appendix	B)	

have	been	determined	 for	u	and	y	respectively.	Recall	 from	Section	3.4.1	 that	

the	SR-UKF	is	superior	over	the	EKF	under	such	extreme	conditions,	which	has	

been	confirmed	by	the	current	application.	First	an	additive	identification	of	the	

structure’s	RFS	has	been	carried	out	using	the	SR-UKF.	The	reconstructed	RFCs	

are	depicted	in	Figure	5.3.	First	of	all,	it	can	be	seen	that	the	system’s	character-

istics	are	strongly	nonlinear.	Based	on	the	a	priori	knowledge	of	the	structure	

and	the	form	of	the	measured	response,	the	elastic	RFC	is	expected	to	 include	

backlash.	Though	the	character	of	the	identified	eRFC	is	indeed	progressive,	the	

distribution	of	its	samples	and	the	high	relative	level	of	uncertainty	for	positive	

deformations	 reveal	 that	 the	 particular	RFS	 can	 not	 be	 approximated	 by	 an	

additive	model.	Accordingly,	 the	 simulated	 response	 of	 the	 adapted	 additive	

system	did	not	correlate	with	the	measured	response.	

To	overcome	 this	problem,	 the	derived	coupled	 identification	 technique	 from	

Section	2.3.3	has	been	deployed.	It	led	to	a	complex	strongly	nonlinear	coupled	

RFS,	which	is	depicted	in	Figure	5.4	left.	The	separation	of	single	components	of	

this	 complex	 characteristic	 is	 far	 from	 trivial.	 It	 represents	 the	 sum	 of	 the	

restoring	 forces	 that	arise	 from	 the	arc	springs,	 the	plain	bearing	and	 further	

contacts	between	 the	 PFW	 and	 the	 SFW.	Using	 this	 cRFS	 to	 reconstruct	 the	

measured	oscillations	 showed	 a	much	better	agreement	with	 the	 true	 signal,	

q.v.	Figure	5.4	right.	It	 is	well	known	that	such	nonlinear	frequency	responses	
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exhibit	multiple	stable	orbits	at	a	given	frequency.	The	collapse	of	a	nonlinear	

resonance,	i.e.	the	“jump”	between	these	orbits,	is	extremely	sensitive	to	damp-

ing.	Accordingly,	the	identified	cRFS	has	been	slightly	modified	a	posteriori	via	

the	application	of	an	additional	linear	damping	in	order	to	tune	the	time	point	

of	 the	 resonance’s	collapse.	 It	 is	 interesting	 to	mention	 that	due	 to	noise	dis-

turbances	 in	 the	measured	 excitation	 signal,	 this	 collapse	 tends	 to	 occur	 at	

certain	 impulse	events	 in	 the	virtual	model.	Therefore,	 it	was	not	possible	 to	

perfectly	tune	this	time	point.	To	ensure	that	the	adapted	model’s	trajectory	is	

initiated	on	the	correct	orbit,	the	iterated	EKS	(q.v.	Section	4.2)	has	been	used	

to	identify	proper	entries	of	the	initial	state	vector.	

Compared	to	the	virtual	examples	from	Chapter	3,	the	current	result	in	Figure	

5.4	(right)	might	look	unsatisfactory	at	first	glance.	However,	this	is	an	impres-

sion	that	is	distorted	by	the	high	noise	level	of	the	true	signal.	Taking	a	look	at	

the	reconstructed	time	series	 in	detail,	depicted	 in	Figure	5.5,	reveals	that	the	

adapted	system	is	indeed	able	to	reconstruct	the	considered	system’s	strongly	

nonlinear	behaviour	with	good	accuracy.	

	
Figure	5.3:	 Identified	eRFC	(left)	and	dRFC	(right)	of	the	restoring	 force	between	the	

secondary	flywheel	and	the	shaker	platform.	ρU	and	ρL	denote	the	estimated	uncertainty	

curves	according	to	Section	2.3.2.	
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Figure	5.4:	 Identified	 cRFS	 of	 the	 secondary	 flywheel	 (left)	 and	 the	 adapted	model’s	

response	time	series	compared	to	the	real	system’s	noisy	measurement	(right).	

	
Figure	5.5:	The	adapted	model’s	 response	 time	 series	compared	 to	 the	real	 system’s	

noisy	measurement	based	on	 the	 zoom	of	 the	 complete	measurement	 at	 several	 time	

ranges.	
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5.2 A	3DoF	weakly	nonlinear	system	

5.2.1 Experiment	setup	

The	3DoF	 identification	example	 is	carried	out	based	on	the	same	experiment	

setup	 that	was	 described	 in	 Section	 5.1.1.	However,	 in	 the	 current	 example	

realistic	conditions	are	considered	instead	of	an	artificial	load	case.	This	means	

that	the	SFW	is	axially	preloaded.	This	allows	the	undisturbed	investigation	of	

the	PFW’s	properties.	 In	 contrast	 to	 the	 thick	 form	of	 the	 cast	 iron	SFW,	 the	

PFW	is	a	rather	thin	structure	formed	from	sheet	steel.	Its	dynamics	are	mainly	

defined	by	its	own	elasticity,	which	typically	leads	to	three	elastic	eigenmodes	

in	the	frequency	range	of	approximately	100	Hz	to	500	Hz.	Three	accelerome-

ters	on	the	outer	diameter	of	the	PFW	that	measure	in	axial	direction	are	suffi-

cient	 to	distinguish	 these	modes.	Therefore,	 the	experiment	 setup	 consists	of	

the	acceleration	of	the	shaker	platform	as	the	 input	u,	and	the	three	response	

acceleration	signals	of	 the	PFW,	denoted	by	y1,	y2	and	y3,	at	 the	angular	posi-

tions	0°,	120°	and	240°	respectively	in	the	{ξ,η}	plane,	q.v.	Figure	5.6.	

	
Figure	5.6:	Experiment	setup	of	the	3DoF	identification	case	of	the	PFW.	
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The	excitation	 signal	and	 the	 system’s	 three	 response	 signals	are	depicted	 in	

Figure	5.7	 for	 the	considered	 load	case	of	 a	 forward	 frequency	sweep.	Notice	

that	 the	 system	 seemingly	 exhibits	 only	 two	 resonances,	 although	 three	

eigenmodes	 are	 expected.	The	 reason	 for	 this	 is	not	 the	 improper	 frequency	

range	of	the	sweep.	This	will	be	discussed	in	detail	in	Section	5.2.3.	

	
Figure	5.7:	Measured	 axial	 vibration	 of	 the	DMF’s	 PFW	 during	 a	 forward	 frequency	

sweep	with	axially	preloaded	SFW.	Both	u	and	yj	were	measured	via	accelerometers.	The	

signals	were	 captured	 at	 a	 sampling	 rate	of	10	kHz.	The	 time	 axis	 is	 replaced	by	 the	

corresponding	frequency	of	the	excitation	signal.	

5.2.2 Full	system	identification	

The	 current	 section	 presents	 the	 full	 identification	 of	 the	 PFW’s	 given	 setup	

based	on	 the	 frequency	sweep	measurement	depicted	 in	Figure	5.7.	Although	

the	 observed	dynamics	are	defined	by	 elastic	 eigenmodes,	 it	 is	 shown	 in	 the	

following	that	the	3DoF	rigid	body	model,	which	has	been	presented	in	Section	

3.3.1	and	been	extended	 in	Section	4.1,	can	be	efficiently	used	to	approximate	

the	system.	Therefore,	the	model	given	by	Figure	3.18	is	considered.	According	

to	Chapter	4	the	first	step	is	the	identification	of	the	structure’s	inertia	proper-

ties	using	the	 iterated	KF.	The	axial	preload	of	the	SFW	led	to	a	drastic	reduc-
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tion	of	the	measured	signals’	noise	level	compared	to	Section	5.1.1.	Accordingly,	

the	 computationally	 efficient	 EKF	 algorithm	 proved	 to	 be	 sufficient	 in	 the	

current	case.	The	convergence	of	 the	 inverse	 inertia	matrix’s	entries	over	 the	

iterations	of	 the	EKF	 is	depicted	 in	Figure	5.8.	The	 initial	values	were	chosen	

based	on	Finite	Element	simulations	of	the	PFW.	Notice	that	the	choice	of	these	

inertia	 properties	 is	 not	 trivial,	 since	 the	 real	 structure	 exhibits	 continuum	

vibrations.	

	
Figure	5.8:	Convergence	of	the	PFW’s	inertia	properties	over	the	iterations	of	the	EKF.	

Using	 the	 determined	 inverse	 inertia	 matrix	 M–1	 a	 subsequential	 additive	

nonparametric	 identification	 of	 the	model’s	 three	RFSs	 has	 been	 carried	 out	

using	 the	 EKF	 algorithm.	The	 reconstructed	 elastic	 and	 dissipative	RFCs	 are	

depicted	in	Figure	5.9	and	Figure	5.10	respectively.	It	can	be	observed	that	the	

eRFCs	 of	 the	 system	are	 approximately	 linear.	This	however	 can	not	be	 said	

about	 the	dRFCs	 that	 reveal	 significant	nonlinearities.	Due	 to	 the	high	uncer-
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priori	model	probably	neglects	some	dominant	dissipative	property	of	the	real	

system	at	 the	 first	 spring	element,	 i.e.	 c1	 (q.v.	Figure	3.18).	Therefore,	dRFC1	

has	 been	 manually	 tuned	 in	 order	 to	 achieve	 the	 best	 possible	 agreement	

between	 the	 measured	 signals	 and	 the	 adapted	 model’s	 response,	 which	 is	

depicted	in	Figure	5.11.	Notice	that	the	possibility	of	such	separate	characteri-

sation	of	a	multiple	DoF	system’s	RFSs	 is	a	major	advantage	of	nonparametric	

identification.	

	
Figure	5.9:	Identified	elastic	RFCs	of	the	PFW’s	3DoF	model.	

	
Figure	5.10:	Identified	dissipative	RFCs	of	the	PFW’s	3DoF	model.	
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Figure	 5.11:	 Comparison	 of	 the	 adapted	 3DoF	 rigid	 body	 model’s	 response	 to	 the	

measured	 continuum	 vibrations	 of	 the	 PFW	 during	 the	 frequency	 sweep	 experiment.	

The	time	axis	is	replaced	by	the	corresponding	frequency	of	the	excitation	signal.	

5.2.3 Further	system	analysis	

Nonlinearities	are	present	in	every	engineering	structure.	Nevertheless,	in	case	

of	weakly	nonlinear	systems,	such	as	the	PFW	from	Section	5.2.2,	it	is	justified	

to	identify	linear	models	of	the	structure,	which	can	approximately	describe	its	

behaviour	 in	 a	 particular	 load	 case.	 This	 allows	 the	 application	 of	 powerful	

linear	analysis	 techniques	 such	as	Modal	Analysis	 (MA).	Though,	 this	 topic	 is	

not	directly	in	the	scope	of	the	present	thesis,	it	is	briefly	investigated	based	on	

the	example	of	the	PFW	from	Section	5.2.2.	Thereby,	the	major	aim	 is	to	high-

light	 that	 the	RFSs,	which	 are	 identified	by	 the	proposed	nonparametric	 ap-

proach,	are	not	some	kind	of	non-physical	general	functions	that	fit	a	model	to	a	

given	 measurement	 set.	 Instead	 they	 are	 nonparametric	 representations	 of	

physical	 properties	 that	 allow	 gaining	 insight	 into	 the	 measured	 system’s	

structure.	

Accordingly,	 the	 identified	RFCs	 of	 the	PFW	have	been	 replaced	by	 constant	

stiffness	 and	 damping	 coefficients	 via	 the	 fitting	 of	 linear	 functions	 to	 the	
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noisefree	RFCs’	nodes	using	simple	Least	Squares	(LS)	estimation.	The	calcula-

tion	of	 the	eigenvalues	and	eigenvectors	of	 the	 first	2N×2N	elements	of	 the	 a	

priori	model’s	 Jacobian	(2.46)	results	 in	 the	 three	 linearised	eigenfrequencies	

and	 the	 corresponding	mode	 shapes	 of	 the	 structure,	which	 are	 depicted	 in	

Figure	5.12.	First	of	all,	 it	 can	be	 seen	 that	 the	 two	 tilting	modes	and	 the	 so	

called	“potting	mode”,	which	are	expected	in	case	of	such	elastic	plates,	seem	to	

be	 physically	 correct.	Considering	 the	modal	 displacement	 of	 the	 first	 tilting	

mode	at	the	excitation	position	instantly	explains,	why	this	first	mode	was	hard	

to	see	in	the	time	signals	of	the	frequency	sweep	measurement.	It	is	now	clear	

that	 the	position	of	 the	excitation	 is	near	 to	 the	 line	of	nonvibrating	points	of	

the	particular	mode	shape.	Furthermore,	a	relatively	 large	difference	between	

the	frequencies	of	the	two	tilting	modes	can	be	observed,	which	is	rather	unex-

pected	 in	 case	 of	 such	 nearly	 rotational	 symmetric	 structures.	Analysing	 the	

gradient	lines	of	the	mode	shapes	(indicated	by	red	dashed	lines	in	Figure	5.12)	

and	 reviewing	 the	 experiment	 setup	 leads	 to	 an	 obvious	 explanation	 of	 this	

phenomenon.	Taking	a	 look	at	the	mounting	of	the	DMF	 in	Figure	5.6	(left),	 it	

can	be	observed	that	the	seven	mounting	screws	are	not	uniformly	distributed.	

It	can	be	seen	in	Figure	5.12	that	the	gradient	 line	of	the	identified	first	tilting	

mode	shape	crosses	between	two	screws,	which	are	separated	by	a	larger	gap	

than	 the	distance	between	 the	other	 screws.	This	explains	 the	 shifting	of	 the	

first	 eigenfrequency	 to	 this	 unexpectedly	 low	 level,	which	 is	 a	 result	 of	 the	

decreased	mounting	stiffness	at	the	larger	gap.	It	is	easy	to	imagine	that	in	case	

of	a	uniform	mounting	none	of	the	tilting	modes	could	be	excited	properly	with	

the	particular	shaker	platform,	since	it	is	only	capable	of	axial	excitation.	How-

ever,	 the	 current	 non-uniform	 mounting	 allowed	 the	 observation	 of	 tilting	

vibrations	as	well.	Though,	 it	 only	 led	 to	 the	 proper	 excitation	 of	 one	 tilting	

mode,	thanks	to	the	proposed	identification	algorithm	both	tilting	eigenmodes	

of	the	system	could	be	analysed.	
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Figure	5.12:	Eigenmodes	of	the	measured	primary	flywheel	based	on	the	linearisation	

of	its	identified	RFCs.	Mode	shapes	(blue)	are	plotted	including	the	modal	displacement	

at	the	excitation	position	(green)	and	the	gradient	of	the	mode	shape	plane	(red	dashed	

line).	The	positions	of	the	mounting	screws	are	indicated	by	small	black	circles.	
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6 Conclusion	
The	present	thesis	explored	the	possibility	of	using	Kalman	Filter	based	master-

slave	 synchronisation	 for	 the	 nonparametric	 identification	 of	 a	 subclass	 of	

strongly	nonlinear	dynamic	systems,	which,	to	the	author’s	knowledge,	has	not	

yet	 been	 investigated	 in	 the	 literature.	 The	 core	 of	 the	 developed	workflow	

consists	of	the	synchronisation	of	a	general	nonparametric	a	priori	model	to	the	

real	system	using	noisy	measurement	signals	to	generate	sample	clouds	of	the	

system’s	 restoring	 force	 characteristics.	This	 is	 followed	by	optimal	nonpara-

metric	 fitting	 to	 generate	 noisefree	 elastic	 and	 dissipative	 Restoring	 Force	

Curves	or	 coupled	Restoring	Force	Surfaces.	Additionally,	 the	main	algorithm	

has	been	 coupled	with	well-known	parametric	 identification	 techniques.	As	 a	

result	a	full	identification	workflow	of	the	defined	subclass	of	systems	has	been	

proposed	 that	 allows	 the	 identification	 of	 their	 constant	parameters	 as	well.	

The	detailed	description	of	the	algorithm	was	followed	by	several	identification	

examples	of	one	and	three	degree	of	freedom	nonlinear	systems,	which	allowed	

the	extensive	investigation	of	the	derived	technique’s	properties.	

The	following	major	advantages	of	the	proposed	approach	have	been	revealed:	

· It	is	nonparametric	with	respect	to	the	system’s	restoring	force	char-

acteristics,	which	therefore	do	not	need	to	be	characterised	prior	to	

the	identification.	

· It	 requires	 only	 one	 measured	 mechanical	 quantity	 per	 degree	 of	

freedom	and	provides	identifiability	using	displacement,	velocity	and	

acceleration	signals	as	well.	

· The	probabilistic	manner	of	the	procedure	can	accommodate	signals	

highly	 corrupted	 by	measurement	 noise	without	 the	 application	 of	

frequency	 domain	 filters.	Hence,	 it	 simultaneously	 filters	 the	 noise	

and	preserves	the	high	frequency	nonlinear	information.	
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· It	provides	a	quantification	of	the	identified	restoring	force	character-

istic’s	uncertainty.	

· Due	 to	 the	 weakly	 nonlinear	 structure	 of	 the	 introduced	 general	

model	 equations,	 it	 allows	 the	 deployment	 of	 the	 fastest	 nonlinear	

Kalman	Filter	 algorithm,	 the	Extended	Kalman	Filter,	under	 typical	

measurement	conditions	regardless	of	the	type	of	nonlinearities	that	

are	 to	be	 identified.	This	results	 in	 a	computationally	efficient	algo-

rithm.	

· It	is	a	flexible	approach	due	to	the	implementation	of	the	Kalman	Fil-

ter,	 which	 allows	 its	 extension	 by	 parametric	 methods	 to	 identify	

constant	system	properties	as	well.	

Despite	 the	above	mentioned	numerous	advantages	 there	are	also	some	chal-

lenging	aspects	of	the	presented	technique,	which	should	be	mentioned	as	well:	

· A	certain	 lower	bound	of	 the	observable	effective	stiffness	has	been	

revealed,	which	 introduces	 a	 restriction	 to	 the	 form	 of	 identifiable	

nonlinearities	in	case	of	velocity	and	acceleration	measurements.	Ar-

bitrary	restoring	 force	surfaces	can	only	be	 identified	based	on	dis-

placement	signals.	

· The	approach	is	sensitive	to	modelling	errors	due	to	its	synchronisa-

tion	based	nature.	The	additional	parametric	identification	of	uncer-

tain	model	parameters	has	been	investigated	as	a	possible	solution	to	

overcome	this	difficulty.	

On	the	whole	it	can	be	concluded	that	the	investigated	technique	turned	out	to	

be	 a	 powerful	 approach	 for	 the	 identification	 of	 strongly	 nonlinear	 systems.	

Possible	future	work	could	consider	the	 identification	of	structures	with	more	

than	three	degrees	of	freedom	and	could	extend	the	considered	class	of	dynam-

ic	systems.	



	

	

Appendix	

A Mathematical	apparatus	
The	 current	 appendix	describes	 some	 of	 the	mathematical	 formulas	 that	are	

used	in	the	present	thesis.	

Lie	derivatives	

The	 ith	 order	 Lie	 derivative	 of	 the	 scalar	 function	 h(x)	 with	 respect	 to	 the	

vector	 function	a(x)	 is	denoted	by	Lia(h),	where	a	 is	a	symbolic	expression	of	

the	 time	derivative	 of	 x,	 i.e.	dx/dt=a(x).	 It	 is	defined	by	 an	 implicit	 formula,	

where	 the	0th	order	derivative	 is	h(x)	 itself,	 i.e.	L0a(h)≔h.	The	 further	deriva-

tives	are	given	as	

L (ℎ) ≔ ∇L (ℎ) ( ) ≔
L (ℎ)

( )	 (A.1)

Trigonometric	equalities	

sin ( ) + cos ( ) = 1	 (A.2)

sin ( ) = 1
2−

1
2 cos(2 )	 (A.3)

cos ( ) = 1
2 + 1

2 cos(2 )	 (A.4)

sin( )cos( ) = 1
2 sin(2 )	 (A.5)

Statistical	equalities	

Consider	 four	 scalar	 random	variables	A,	B,	C	and	D,	which	are	described	by	

their	mean	values	a,	b,	 c,	d	and	 their	variances	PA,	PB,	PC	and	PD	 respectively.	
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Their	cross-covariances	are	given	by	PAB,	PAC,	PAD,	PBC,	PBD	and	PCD,	i.e.	their	joint	

probability	distribution	is	of	the	form	

~ , ∙
∙ ∙
∙ ∙ ∙

.	 (A.6)

If	the	joint	distribution	around	the	mean	vector	is	symmetric,	then	according	to	

(Simon,	2006)	the	following	equalities	hold:	

E( − ) = 0	,	 (A.7)

E(( − ) ) = 	,	 (A.8)

E ( − )( − ) = 	,	 (A.9)

E ( − )( − )( − ) = E ( − ) ( − ) = E(( − ) ) = 0	,	 (A.10)

where	E(…)	denotes	the	expectation	operator.	Furthermore,	 if	the	 joint	distri-

bution	is	not	only	symmetric	but	also	Gaussian,	then	according	to	(Gelb,	Kasper,	

Nash,	Price,	&	Sutherland,	2001)	the	following	equalities	are	also	true:	

E(( − ) ) = 3 	,	 (A.11)

E(( − ) ( − ) ) = + 2 	,	 (A.12)

E ( − )( − )( − )( − ) = + + 	.	 (A.13)



	

	

B Error	assessment	
The	comparison	of	the	virtual	model	to	the	real	system	regarding	its	properties	

and	dynamic	behaviour	is	a	 frequently	occurring	task	in	system	 identification.	

The	quantification	of	estimation	accuracy,	 the	 convergence	monitoring	of	 the	

identification	 algorithm	 and	 the	 comparison	 of	 different	 identification	 tech-

niques	require	appropriate	quality	factors.	In	the	following	the	necessary	error	

definitions	are	introduced,	which	are	consistently	used	throughout	the	current	

thesis.	

Consider	 two	vector	 series	xi	and	yi,	which	are	of	 the	 same	dimension	nx.	To	

quantify	 the	error	of	yi	with	respect	 to	 the	 reference	series	xi	on	 the	 interval	

iϵ{i0,i0+1,…,i0+ns–1}	 the	normalised	Mean	Square	Error	 (eMS)	 is	 introduced	 in	

the	following	form:	

,
, ≔

1
, − , , − ̅ 	,	 (B.1)

where	 ̅ 	denotes	the	average	of	 , 	over	i.	In	most	cases	yi	is	the	estimate	of	xi,	

but	 it	can	also	be	e.g.	 a	noise-corrupted	version	of	xi.	The	simplified	notation	

eMS	is	used	without	sub-	and	superscript	if	the	latter	are	clear	from	the	context.	

This	definition	defers	from	the	simple	mean	square	error	 in	that	 it	 is	normal-

ised	by	the	variance	of	the	reference	series,	which	enables	the	direct	compari-

son	of	eMS	values	between	completely	different	{xi,yi}	data	pairs.	Its	relation	to	

the	 Coefficient	 of	Determination,	 denoted	 by	 R2,	which	 is	 commonly	 used	 in	

regression	analysis	(Yan	&	Su,	2009),	is	given	by	

= 1 − 	.	 (B.2)

In	order	 to	directly	compare	 the	error	 to	 the	analysed	data,	quality	 factors	of	

compatible	unit	are	defined	in	form	of	the	normalised	Root	Mean	Square	Error	
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(eRMS)	and	the	normalised	Percental	Root	Mean	Square	Error	(eRMS%),	which	

are	given	by	the	simple	formula	

% ≔ 100 ∙ ≔ 100 ∙ √ 	.	 (B.3)

For	the	scalar	case,	where	y	 is	compared	to	x,	the	above	definitions	reduce	 to	

the	 normalised	 Root	 Square	 Error	 (eRS)	 and	 the	 normalised	 Percental	Root	

Square	Error	(eRS%),	which	are	given	as	

% ≔ 100 ∙ ≔ 100 ∙ ( − ) / 	.	 (B.4)

Notice	 that	 eRMS	 is	 based	 on	 a	 quadratic	 error	 summation,	 and	 therefore	 it	

expresses	both	the	bias	(offset)	and	the	variance	(noisiness)	of	yi	compared	to	

xi.	 In	 order	 to	distinguish	 these	 two	 error	 components,	 an	 additional	quality	

factor,	the	normalised	Mean	Error	(eM),	is	introduced	as	

,
, ≔

1 1
, − ,

1
, − ̅ 	.	 (B.5)

Since	eM	is	based	on	linear	error	summation,	it	filters	out	symmetric	error,	i.e.	

variance.	Therefore,	the	bigger	the	difference	between	eRMS	and	eM,	the	more	

dominant	 is	 the	 variance	 component	 of	 the	 error.	 The	 normalised	 Percental	

Mean	Error	(eM%)	is	defined	as	

% ≔ 100 ∙ 	.	 (B.6)

	



	

	

C Observability	of	the	exploratory	
system	models	

Finding	an	a	priori	process	model	 that	ensures	observability	 for	all	kinematic	

measurement	 types	 is	 investigated	 in	 Section	 2.1,	which	 results	 in	 the	 RFS	

model	 c(z,v)≔sz+dv.	 Thereby	 the	 properties	 of	 three	 additional	 exploratory	

models	are	discussed	in	Section	2.1.3	in	order	to	justify	the	chosen	model.	The	

observability	 investigation	 of	 these	 additional	 models	 is	 summarised	 in	 the	

following.	The	first	exploratory	RFS	model	is	of	the	form	

( , ) ≔ 	.	 (C.1)

The	 corresponding	 observability	matrices	 of	 the	 system	 for	 the	 three	meas-

urement	types,	displacement	(z),	velocity	( )	and	acceleration	( ̇),	are:	

| =
1 0 −
0 1 0
0 0 −

	,	 (C.2)

| =
0 − 0
1 0 −
0 − −

	,	 (C.3)

| ̇ =
− 0

0 − 0
− − + ( − )

	.	 (C.4)

Apparently	all	columns	of	these	matrices	are	symbolically	 independent,	which	

means	 that	 the	model	 in	general	allows	observability	 for	all	kinematic	meas-

urement	types.	However,	it	can	be	seen	that	symbolically	zero	rows	appear	for	

s=0	in	case	of	yϵ{ , ̇}.	Furthermore,	it	can	be	seen	that	for	each	measurement	

type	 the	 first	 and	 the	 third	 columns	 of	 O	 become	 linearly	 dependent	 if	 the	

particular	measured	quantity	equals	zero.	In	order	to	come	to	this	conclusion	

for	y= ̇ ,	it	has	to	be	recognised	that	sz–mbu=–m ̇ .	Such	situation	occurs	at	least	
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twice	a	period	 in	case	of	typical	vibration	measurements,	which	 leads	to	 local	

observer	divergencies	for	all	three	measurement	types.	

The	second	exploratory	RFS	model	is	of	the	form	

( , ) ≔ 	.	 (C.5)

The	 corresponding	 observability	matrices	 of	 the	 system	 for	 the	 three	meas-

urement	types,	displacement	(z),	velocity	( )	and	acceleration	( ̇),	are:	

| =
1 0 0
0 1 −
0 0 −

	,	 (C.6)

| =
0 0 0
1 −
0 − (2 − )

	,	 (C.7)

	 | ̇ =
0 0 0

− −
− (2 − ) (2 − 3 )

	,	 (C.8)

The	system	is	apparently	not	observable	in	case	of	yϵ{ , ̇},	because	the	corre-

sponding	O	matrices	contain	a	zero	row	vector.	This	confirms	the	reasoning	in	

Section	2.1.3,	since	the	model	(C.5)	does	not	establish	any	symbolic	connection	

between	z	and	the	measured	quantity.	Additionally	in	case	of	y=z	the	third	row	

vector	of	O	becomes	zero	for	zero	velocity,	which	similar	to	model	(C.1)	leads	to	

local	observer	divergencies	during	vibration	measurements.	

The	third	exploratory	RFS	model	is	of	the	form	

( , ) ≔ ( + )	,	 (C.9)

where	τ	is	a	positive	time	constant	that	is	necessary	to	match	the	units	of	z	and	

v.	Because	of	the	complexity	of	the	corresponding	observability	matrices,	only	

their	 determinants	 are	 given	 in	 the	 following.	 As	 discussed	 in	 Section	 2.1.2	

these	determinants	are	directly	related	to	the	observability	criterion	for	single	
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measurement	systems.	The	symbolic	determinants	of	O	for	the	three	measure-

ment	types,	displacement	(z),	velocity	( )	and	acceleration	( ̇),	are:	

det | = − [	 + 	]	 (C.10)

det | = − [	2 − (2 − 4 + 4 + 4 )	]	 (C.11)

	det | ̇ = − [	⋯	]	 (C.12)

It	can	be	seen	that	similar	to	model	(2.5)	the	determinant	is	symbolically	zero	

for	s=0	in	case	of	yϵ{ , ̇}.	However,	in	this	situation	it	is	a	major	problem,	since	

in	the	particular	model	s	 is	not	an	effective	stiffness	but	a	direct	coefficient	of	

the	restoring	force,	hence,	 it	crosses	zero	and	changes	 its	sign	at	 least	twice	a	

period	 for	 every	 typical	 oscillatory	 system,	 which	 results	 in	 local	 observer	

divergencies.	Additionally	in	case	of	y=v	the	determinant	becomes	zero	for	v=0	

as	well.	 Nevertheless,	 for	 displacement	measurement	 the	 specific	model	 as-

sures	 observability	 without	 restrictions,	 which	 however	 also	 holds	 for	 the	

model	(2.5)	that	at	the	same	time	introduces	a	significantly	weaker	nonlinearity	

in	the	a	priori	process	equation.	





	

	

D Coefficients	of	the	Unscented	
Transformation	

Section	1.6.2	briefly	describes	the	Unscented	Transformation	(UT)	that	is	tuned	

by	 the	 coefficients	 . .	 According	 to	 (van	 der	 Merwe	 &	 Wan,	 2001)	 these	

tuning	coefficients	are	defined	as	follows.	

≔ ( + )	 (D.1)

≔ ( + ) − 	 (D.2)

. ≔ + 	 , = 1	 (D.3)

. ≔ + − + + 1	, = 1	 (D.4)

. ≔ . ≔
1

2( + )	 , {2, … ,2 + 1}	 (D.5)

Thereby	n	denotes	the	size	of	the	vector	that	is	being	transformed,	which	is	the	

vector	x	in	Section	1.6.2.	The	scaling	factor	pα	controls	the	spread	of	the	sigma	

points	 and	 is	 to	 be	 chosen	 from	 the	 range	 of	 pαϵ[10-4,1].	 The	 parameter	 pβ	

allows	 the	 incorporation	 of	 a	priori	 knowledge	 about	 the	distribution	 that	 is	

being	transformed.	For	a	Gaussian	distribution	pβ=2	is	the	optimal	choice.	The	

secondary	scaling	factor	pκ	is	set	to	pκ=0	if	the	UT	is	used	in	a	Kalman	Filter	(i.e.	

in	the	UKF).	If	the	UT	is	deployed	in	recursive	nonlinear	parameter	estimation,	

then	it	should	be	set	to	pκ=(3-n).	





	

	

E Central	Moving	Average	
The	Central	Moving	Average	(CMA)	is	a	simple	off-line	algorithm	that	generates	

a	 phase-shift-free	 moving	 average	 of	 the	 discretely	 sampled	 time	 series	 y,	

denoted	by	yCMA.	The	averaged	 (smoothed)	value	 for	 the	 jth	 sample	 is	deter-

mined	by	the	formula:	

≔
1

	 (E.1)

where	k	denotes	the	window	size	of	the	averaging,	which	is	necessarily	an	odd	

integer.	It	should	be	set	to	at	least	3,	since	k=1	results	in	the	original	signal.	The	

“k-point”	CMA	of	y	is	denoted	by	yCMAk.	The	first	and	last	(k-1)/2	samples	of	the	

time	series	are	smoothed	using	a	reasonably	reduced	sample	window.	

This	 simple	 formulation	 implies	 an	 equidistant	 sampling	 over	 time,	which	 is	

fulfiled	 in	 the	 examples	 throughout	 the	 current	 thesis.	 For	 a	 more	 general	

solution	 one	 can	 deploy	 MATLAB’s	 “smooth”	 algorithm	 (MathWorks,	

www.mathworks.com),	of	which	the	CMA	represents	a	simplified	version.	





	

	

F Derivation	of	the	RFC	sample	
formulas	

The	detailed	derivation	of	the	formulas	for	the	mean	vector	and	the	covariance	

matrix	of	the	probabilistic	RFC	samples,	i.e.	xRFC	and	PRFC,	as	functions	of	xC	and	

PC	 is	 presented	 in	 the	 following.	 This	means	 the	 algebraic	 evaluation	 of	 the	

formulas	(2.60)	and	(2.61)	 in	order	 to	achieve	(2.62)	and	(2.63)	respectively.	

The	evaluation	is	based	on	the	mathematical	apparatus	of	statistical	equalities	

from	Appendix	A.	These	 rely	 on	 the	 general	 assumption	 that	 the	 considered	

probability	distributions	are	symmetric.	Furthermore,	during	the	derivation	of	

PRFC,	 i.e.	 (2.63),	 formulas	 for	 fourth	 order	 stochastic	moments	 are	 deployed,	

which	 imply	 the	 additional	 assumption	 that	 the	 considered	 distribution	 is	

Gaussian.	The	formula	(2.60)	for	xRFC	is	the	direct	expected	value	of	the	Taylor	

series	 (2.59).	 Hence,	 no	 detailed	 derivation	 of	 (2.62)	 is	 necessary,	 since	 the	

statistical	 equalities	 can	 be	 applied	 directly	 without	 intermediate	 algebraic	

steps.	Therefore,	only	the	derivation	of	(2.63)	from	the	formula	(2.61)	needs	to	

be	discussed,	which	results	in	the	analytical	expressions	for	PRFC.	The	substitu-

tion	of	(2.59)	and	(2.62)	into	(2.61)	leads	to	the	following	expressions:	

, , = ( − ) 	 (F.1)

, , = ( − )( − ) + ( − )( − ) + ( − ) − ( − )	 (F.2)

, , = ( − )( − )	 (F.3)

, , = ( − )( − ) + ( − )( − )( − ) + ( − )( − )

− ( − )	
(F.4)
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, , = ( − ) ( − ) + 2( − ) ( − ) + ( − )

+ 2( − )( − ) + 2( − )( − ) + ( − )

− 2 ( − )( − ) − 2 ( − ) − 2 ( − )

+ 	

(F.5)

, , = ( − )( − )( − ) + ( − )( − ) + ( − )( − )

− ( − )	
(F.6)	

, , = ( − )( − )( − ) + ( − )( − ) + ( − )(

− ) + ( − )( − )( − )( − )

+ ( − )( − )( − ) + ( − )( − )( − )

+ ( − )( − ) + ( − )( − )( − )

+ ( − )( − ) − ( − )( − ) − ( − )

− ( − ) − ( − ) − ( − )( − )

− ( − ) + 	

(F.7)

, , = ( − ) 	 (F.8)

, , = ( − ) + ( − )( − ) + ( − )( − ) − ( − )	 (F.9)

, , = ( − ) + 2 ( − )( − ) + 2 ( − )( − )

+ ( − ) ( − ) + 2( − ) ( − ) + ( − )

− 2 ( − ) − 2 ( − )( − ) − 2 ( − )

+ 	

(F.10)

Applying	 the	 statistical	 equalities	 from	Appendix	 A	 to	 the	 above	 expressions	

yields	the	following	formulas	for	the	entries	of	PRFC,	i.e.	for	(2.63):	
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, , = 	 (F.11)

, , = + 	 (F.12)

, , = 	 (F.13)

, , = + 	 (F.14)

, , = + + 2 + − + 2 	 (F.15)

, , = + 	 (F.16)	

, , = + + + + + 	 (F.17)

, , = 	 (F.18)

, , = + 	 (F.19)

, , = + + 2 + − + 2 	 (F.20)
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