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1 Introduction and main results

1.1 Derivation of the main equations

Maxwell equations reads as followd]

v-D = p (Gauss’ law for electric field), (1)
V'E =0 (Gauss’ law for magnetic field), (2)
VxE = —%? (Faraday’s law), (3)
VxH=17 + %B (Ampere’s law). (4)

In the above equations B stands for the electric displacement [%], E the
electric field [%}, § the magnetic ﬁeld%%], ﬁ the magnetic field intensity

[%}, p the volume charge density [%}, the current density [%], €o and pig

are called permittivity and permeability of vacuumﬂ We study the situation
with no charges (p = 0) and no currents (J = 0).
Moreover we assume the following dependence between the fields

BIEQﬁ‘i‘?, (5)
ﬁzuoﬁ—i—ﬁ, (6)

with
P = con(DE +an(?) |E E (7)

where ? is the polarization and ]\_/[> is the magnetization of the media. The
fields P and M describe how the electric and magnetic fields change the electric
and magnetic properties of the material under consideration, respectively.

For the derivation of the equation, which we will later consider, we will
assume that

X1(T) = xa(a3) and xa(7) = xa(ws) - (9)

The model example for us is the so-called slab waveguide, i.e., when

@) = o) ={ i (]2
@ =t ={ 3 (S0

IHere equations are presented in MKS units.

2o ~ 8.8541878176...- 10710 [£], 1y ~ 1.2566370614 ... - 1076 [1-2]

>



Under such assumptions we (formally) consider

B o, 930 _o,9 A
VxVxE 2 VX(%?_ ant<,uoﬁ+M>
(8

= —Vx%(,uo(l + Xv) ﬁ) = —po(1+xv) %VXﬁ

—puo(1+ x0) 38_:23 —uo(1+ x0) g—; (eof + ?)

2

—po(1 + xv) v (60(1 +x1) B + €oXs ‘ﬁr B) )

ot?

=

=i

which amounts to the quasilinear wave equation of the form

VXVXE+%(V(?)ﬁ+F(?))ﬁ’23) — 0, (10)

where
V =101+ xu)eo(l+x1), I' = po(1 4 x0) €0xs-

When we look for polarised waves, i.e., waves of the form

0
E@0) = U@, zt) ], (11)
0

then equation (10) becomes a quasilinear scalar wave equation

2
—AU+%(V(&73)U+T($3)|U|2 U) =0onR*xR. (12)

Note that, if ﬁ is as in , then we have that V-B = 0, and in consequence,
due to , and @ V-B = 0. Moreover, if U solves and B is of the
form , by defining § by the time integration of —V x
solution of the full Maxwell system ([]) - (4)).

Our goal is to investigate travelling waves solutions of the equation (12]),
i.e., waves having the form U(Z,t) = u(z; — wt, z3), where function the u is
2P-periodic in its first variable. The profile has to satisfy the equation

we will obtain a

— Au+ w?(V(z3) urr + (zs) (3u’uiy + 6un)) =0, (13)

on a strip D =(—P, P) x R.

In section we will prove the existence of a solution for the problem ([13])
with V(z3) = ad(x3) + v, where 6(+) is a Dirac delta function supported along
the line x3 = 0 (cf. Theorem . The result is obtained by an application of
the theorem of Crandall-Rabinowitz (cf. Theorem[I41]). These travelling waves



are established by bifurcating from the linear guided modes, i.e., functions of
0

the form E(?, t) = | ¢(x3) | e®!=*21) solving the equation
0

2

VxVxﬁ%—V(xg) 0 E—0onR® xR

o
In section 5| we will study the existence of real valued travelling waves for
the semilinear variant of the equation (12]), namely the equation

— AW + V(flfg) th + /LW = g(xg, W) on R2 X R. (14)

After taking the travelling wave asatz W (', t) = w(z; — wt, z3), where w is
2P-periodic in its first variable, the equation , becomes

— Aw + w?V (z3) wig + pw = g(xs,w) on D =(—P, P) x R. (15)

The main result of this section is stated in Theorem The equation ((14)) can
be viewed as an approximation of the equation as discussed in [9, Section
Al.

1.2 Outline of the work

In the section 3| we introduce and study the basic properties of some anisotropic
Sobolev spaces H**(D), which distinguish between the differentiability proper-
ties of the functions in different directions. The need for studying such spaces
is motivated by our considerations of the quasilinear wave equation. The quasi-
linear equation has a linear potential containing a Dirac delta function
supported along the line x3 = 0, hence obtained solutions will not be twice
differentiable in the x3 direction at x1 = 0. However, in the x; direction they
are twice differentiable and this property is important. In this section we study
the existence of trace operator at the line z3 = 0 with values in L*(—P, P) (cf.
Lemma [5) the embedding properties (e.g. Lemma |§|, Corollary , and the
Fourier series (in the x; direction) in defined spaces.

Section [4] is devoted to studying the so-called Nemytskii operators induced
by the non-linearities appearing in the considered problems and .
Namely we investigate the differentiability properties of the mappings of the

form
H'(D) 5 ur—> g(ul)) € LA(D). (16)

and
H*Y(D) 3 u — 3uuy; + 6un? € L*(D). (17)

The results obtained for and will be later applied in the proof of
the existence of solutions of the equations and . The main results of

this section, Lemmas and , state that the mappings and are



sufficiently smooth to apply the Crandall-Rabinowitz theorem for considered
problems.

The sections [f] and [6] are the core of this work. In this sections, we show
the existence of travelling waves solving the semilinear and quasilinear wave
equation. The main results of this sections are Theorems and which
state the existence of solutions of the equations and i.e., of real
valued travelling waves solving and , under suitable assumptions. The
strategy of the proof of these two theorems is similar - in both cases, we apply
the Crandall-Rabinowitz theorem (quoted here in Theorem . Equations

and can be written in the form
Lyw = G(w), (18)

where A is the bifurcation parameter and G is the corresponding non-linearity.
In the quasilinear case, we take A\ = w? where w is the frequency of the
travelling wave, and in the semilinear case we take A = p. First we study the
linear operator L, and its properties with respect to the parameter A. The
results, which we want to mention at this point are Lemmas[52] and [106] They
state, that the operator L, has a bounded inverse Ty on the space ker Ly*
and describe the behaviour of its norm with respect to the parameter A. We
choose \; in such a way, that the operator Ly, has a one-dimensional kernel.
Then we take ¢ to be a normalised element of the kernel of L,, and we rewrite

the problem as

Lyw = Lyw + P,w = G(w) + Pyw, (19)
where P,w is the L? projection of the function w on the kernel of Ly,. The
idea of considering these projections P, comes from my colleague Peter Rupp
from the Institute for Analysis. We are able to show, that the operator L, is
invertible for all values of A in a sufficiently small neighbourhood of A;. In the

~

semilinear case we consider the inverse as T\ = Ly : L2,(D) — Hl, (D).
Correspondingly, in the quasilinear, the inverse is defined as Ty: L2 (D) —
H géld(D). Moreover we prove that the operator 7)\ has a norm bounded uni-

formly for all A\ sufficiently close to A; (cf. Corollaries [86{ and [132)). With this,
we can rewrite the equation [19|into the form F'(w, ) = 0, where

F(w, \) :w—f\(w—i—P@w).

For such a function F, thanks to results from section [d we are able to ap-
ply the Crandall-Rabinowitz theorem. Due to the projection P, some of the
Fréchet derivatives of the function F' have very simple form, namely for A being
sufficiently close to A\; we have

<h790>L2(D)
D F(0, N h=h— — D),
(0, 4) T+r—N"
h, )2
D2, F(0,\) h = LLQ(D)W,
(IT+X—=X\)



which allows to verify assumptions in the Crandall-Rabinowitz theorem.

Section [0] also contains description of some potentials appearing in the
equation , where one can compute the solution explicitly (cf. Example
. Moreover, we study existence of complex valued travelling waves solving
(12). These waves have the form

U(xy, g, x3,1) = eiw(xl_\/rt)v(xi%) )

which leads to the equation of the form

2
— 271} +w?(1 — AV (x3)) v = Mw?T'(23) v on R, (20)
3
which is a nonlinear, time independent Schrodinger equation in 1-d. Theo-
rem is an existence result for the equation ([20)).
In section [7] we quote the Crandall Rabinowitz theorem and some remarks
concerning its assumptions coming from [5].
Section [§| contains some definitions and technical results, which are used.
It also contains some discussion about the necessity of the assumption
in the semilinear case.
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Spaces and notations

In this section we will introduce some notations used later.

2.1

Notations

Let D = (—P, P) x R, where P > 0. Elements of the set D will be usually
denoted as (x1,z3) € D. Let € > 0. The ¢ neighbourhood and ¢ surrounding
of the point x € R will be denoted by I = (z —e,2+¢) and J. = I\
{z}, respectively. We will use the following notations for the derivatives. Let
u: D — R be sufficiently smooth, then

2.2

o
axl ’
0%u

U1l = Ugyay = w,
1

U = Ugpy =

0%u

U3 = umlz;g - Ma

Spaces

We will consider the following sets and spaces

C°(D) is the space of all C>*(D) functions with compact support,
C:°(D) is the space of all C>*(D) functions with bounded support,
Coorr(R) is the space of all C**(R) functions which are T' periodic,

Coo.r5(R?) is the space of all C**(R?) functions, which are T-periodic in
the z; direction, and have bounded support in the x5 direction, i.e., for
every f € C35. 1,(D), there exists a constant M > 0 such that supp f C
R x [—-M, M],

L?,4(D) is the set of all L?(D) functions f which are odd in the z; di-
rection, i.e., for almost all (x1,z3) € D, f(—z1,23) = — f(x1, 23). Equiv-
alently, the space LZ;4(D) is the space of all L?(D) functions, which can
be written in the form

f(zy,x3) = ka(xg) sin(k%m) ,

keN

for some sequence ( fx),y of L*(R) functions such that >, | f k”iz( p) <
Oo’

10



e the spaces H**(D) are anisotropic Sobolev spaces defined in Definition
in section [3]

o the space H{""(R?) is the space of all functions f such that fio € H*(Q)
for every bounded set Q) C R,

e H%’(D) is the space of all H**(D) functions f, which are 2P periodic

per
in the x; direction, i.e., there exists a function f € Hﬁ;’f (R?) such that f

is 2P periodic in the direction of z; and fjp = f.

o H)\(D) is the set of all H%(D) functions, which are odd in the

per

direction. As proven in Lemma (14| f € H g&Z(D) if and only if

flzy,23) = Z fr(xs) sin(k%xl) in L*(D),

keN

for some sequence (fy),cy of H?(R) functions, such that

Z kaHng(D) k> < oo,

keN
for all (o, B) € L4p), where I, is as in Definition .

e L(X,Y) is the space of all linear and continuous operators between two
normed spaces X and Y,

o N={1,2,...}, Ny = Nu{0}.

11



Figure 1: The set I 35 (marked with dots) and the set I, 5 (marked with squares)
as defined in ([21]).

3 About the spaces H*"

In this section we introduce some anisotropic Sobolev spaces. We will use them
later in the section [6]in the considerations about the quasilinear wave equation
(12)), with the potential V' containing a Dirac delta function supported along
the line x5 = 0.

3.1 Definition and basic properties

We will begin our considerations with the definition of the function space

H**(Q).
Definition 1. Let a,b € Ny and let Q C R? be an open set. Define

L.y :{(a,ﬁ) EN:0<a<a,0<B<hat+B< max{a,b}}. (21)
The space H**(Q) is defined to be

oots f
Ox0yP

H*(Q) = { ferL*): € L*(Q) for all (o, B) € Ja,b} u

On the space H**(£2) we consider the norm [ oy defined by

2

80‘+ﬂf
Oz QyP

Wl = | 3 ]

(avlg)ela,b

LXQ)

The set H"*(Q) consists of all functions ~u such that u € H**(U) for every
bounded and open set U C R? such that U C Q.

. . atB g, . C s .
3the derivative % is understood in the distributional sense.

12



Remark 2. For every m € N we have H™™(Q) = H™(2), where H™(Q) is
the usual Sobolev space of functions having L?(D) integrable derivatives up to
order m, cf. [I].

Lemma 3. The space C;°(D) is dense in the space H*'(D).

Proof. Let p: R? — R be a mollifier, for example,

olz) = ce <|x| =22+ 22 < 1) ,
0 (lzl = 1),

where the constant ¢ > 0 is chosen in such a way, that fRQ odz = 1. Denote
D' =(—2P,2P) x R. For v € L] (D') and h > 0 define

() = h‘Q/, Q(x - y) v(y) dy.

The function vy, is a C* function, for all h > 0. Take any u € H*'(D). After
periodic extension consider the function u as an element of the space H%!(D’).
By [3l Lemma 7.3, p. 150], for sufficiently small h > 0, we have that

ouy, ou

— = — D. 22

81'3 <85L‘3) on ( )

By [I, Theorem 2.29, p. 36] we have that

L¥D) ( ou ) L3p) Ou
u,

h—0 Oxz ), h—0 Oxz

Relations and imply, that the set C>*(D) is a dense subset of H%!(D).

For every k € N consider a function wy: R — R such that wy € C(R),
wi(z) = 1, for |z] <k, wi(z) =0, for [z] > k + 1 and [w[| pe) < 2. Let
v € C®(D)N HY (D). For every k € N define

Up,

vp(z1, 23) = v(x1, w3) w(x3)  (71,73) € D).

Note that

2
ok = ol = et =~ )y < [ [ o amsaas .

Denote Ry =[—k — 1, —k] U[k, k + 1]. We have

2

0 0 0
P I e R R
ov 2
<2 wg — 1
‘ 8$3( t= 1) LXD)

+2// v2wj, ?day dzg — 0,
Ry, k—o0

13



HOY(D
Hence vy, D), w, which shows, that that the space C;°(D) is dense in

k—o0

H%Y(D). O
Remark 4. By same argumentation as in the proof of Lemma (3 we get that
the space Cg°(D) is dense in H**(D), for all a,b € N.

3.2 Trace operator for the space H"!(D)

Lemma 5. There exists a continuous trace operator tr : H*'(D) — L*(—P, P)
at the line x3 = 0.

Proof. Let L ={0} x (=P, P), ¢ =(0,1) € R?. Let u € C°(D). Since u is
continuous, it has a trace tru = v, at x5 = 0. Moreover

/ (tru)? daz/ w?¢ - vdo
(—P,P) oD+
ou
= v - (€u?) d :/ 2u—od
/D+ (fu) x - uam3 x
< 2, (v 2d = |l
< D+u + G $—||U||H0,1(D)-

Note that we can obtain the same estimate using the set D~. Therefore the
operator tr: C°(D) — L*(—P, P)) satisfies

[t wll 3 p,py < 1l oy -

for all u € Cz°(D). By Lemma 3| the space Cg°(D) is a dense subset of H!(D).
Hence there is a continuous extension of the trace operator tr: C;°(D) —
L*(—P,P) to tr: H*Y(D) — L*(—P, P). O

Lemma 6. There exists a trace operator tr : H™ (D) — H™(—P, P) at x3 =
0.

Proof. By Lemma [5| for v € C;°(D) and for all @ < m, we have that

Therefore the operator tr: C;°(D) — L*(—P, P)) satisfies

aa

a
O0xf

B 0%

= ||tr
L—P,P) H Oxy

0%

tru
0x§

< Null gom iy -
HO(D)

h ‘
L—P,P)

||truHL2(—P,P) S “h“HUJ(D)’

for all u € C3°(D). By Remark[4]the space Cg°(D) is a dense subset of H™!(D).
Thus, there exists a continuous extension of the trace operator tr : C;°(D) —
H™(—P, P) to tr : H™(D) — H™(—P, P).

O

14



3.3 Embedding properties of the space H*!(D)
Now we will list some embedding theorems for the space H*!(D).

Lemma 7. The space H**(D) embeds continuously into the space LY(D) for
all g € [2,00).

Proof. Note that H>'(D) C H'(D) and the space H!(D) embeds continuously
into the space L4(D) for all ¢ € [2,00) (cf. [Il, Theorem 4.12, p. 85]). O

Lemma 8. The mapping H*'(D) 3 u+— 2% € H'(D) is continuous.

Proof. Take uw € H*'(D) and let f = 88—;1. By the definition of the space
H>'(D), we have that f, 2L 2L < [2(D). Therefore f € H'(D). O

’ Oxy’ Oxs

Lemma 9. The space H>'(D) embeds continuously into the space C*? (E) for
all B €(0,3).

Proof. Take 8 € (0, %) By Lemma [§] and the fact that the space H'(D)
embeds continuous into the space L(D) for all ¢ € [2,00)) (cf. [1I, Theorem
4.12, p. 85]), we have that

ueL%Dygggamun,%%eL%D) (ue H*'(D),q € [2,00)). (24)

For each n € Z let D,, = (=P, P) x(n,n+1). Let ¢ = ?)’g—j Note that by

[6, Theorem 2], there exists a constant C' > 0 such that for all n € N and all

u e H* (D)
L2(Dn)> .

This, together with , gives, that there exists some constant C' > 0

8u‘Dn

5’x1

8U|Dn

8I3

\Mmmwmggcommme+‘ mm)’

Hu|DnHCOvB(D7n) <C ”U\DnHHz,l(Dn) <O ||u||H271(D) (u € H*'(D),n € N) ~

Therefore, for every 5 € (0, %), there exists a constant C'z > 0 such that

lellcosm) < Callullnpy (€ HX(D)).

As a consequence of the Lemmas [7] and [0}, we get our next result

Corollary 10. The space H*'(D) embeds continuously into the space LI(D)
for all q € [2,00].

15



3.4 Fourier series in the spaces Hg&%(D)

In this subsection, we will consider Fourier series in the spaces HSAZ(D). The
main results of this section are Lemmas [12] and [14] , which are Riesz-Fisher
type results.

Lemma 11. Let u € L2 (D), i.e., u has the form
o0 ' T
u(xy, z3) = ;bk<$3) sm(k‘;xl) , for almost all(zy,x3) € D.

Assume that -
Z k? ||bk||i2(R) < 0. (25)
k=1

Then u € H:\(D) and

ou

B Z k%bk(xl) cos(k%m) , for almost all (x1,23) € D.
L k=1

Proof. Extend periodically the functions u to the whole R%. For each K € N
define

K
) T
ug (1, 23) = ;bk<l‘3) &n(kFxl) , for almost all(z, 73) € R?.
The functions ugx are weakly differentiable with respect to x; and
Oug i i T be(z1) ( i T >
= —bi(x1) cos| k—=x
afL‘l £ P k\+1 P 1/

for almost all (z1,z3) € R?* and all K € N. Assumption implies that the

sequence <%“TK> is a Cauchy sequence in L?(—M, M) x R), for all M > 0.
1/ KeN

: : L(—M,M)xR
Therefore there exists a function v € L _(R?) such that %“Tff —((K—)X—)—> v,
—00

for all M > 0. Moreover, v € L*(—M, M) x R), for all M > 0. We will show
that v is a weak derivative of the function w.
Consider any ¢ € C>°(R?). Let L > P be such that suppy C [-L, L] x
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[—L, L]. We have:
T T
/ v(z) p(x) do :/ Zkﬁbk(xl)cos(kﬁxl) p(x1,x3) d(21, 73)
R? R? keN
L L
:Z/ / kzbk(xl)cos@zatl) o(x1,x3) dry dag
-1 P P

L L
. 0
= — Z/L /L bk(:m)sm(k:%m) a—z(ml,xg) dx; das

keN

_ T 0
= —/ g bk(xl)&n(kﬁxl) a_@(xhx3) d(zq, x3)
[7L7L]><[7L7L] keN l’l

0
= — /R2 u(xl, $3> a—;i(l’l, xg) d(xl, .173) .

Therefore 2% = v and u € H'°(—M, M) x R), for all L > 0. Moreover this

ox1
implies, that v € H (D).

Lemma 12. Assume that u € L?,4(D), i.e.,
= . m .
u(xy, x3) = ;Uk(l'g) sm(kFxl) in L*(D),
where u, € H°(R) (k € N) and
Z ||Uk:||§1ﬁ(R) k> < oo,
k=1
for all (v, B) € Iy. Then u € HL(D) and for all(a, B) € Iy,

0 thy

dxal

= Z fﬁf)(xg)(sin ar xl)(a) for almost all (x1,23) € D.
k=1

Proof. The proof follows from induction and Lemma [11]

Lemma 13. Let u € H-\(D), i.e., u has the form

K

w(zy, x3) = ZUk([Eg) sin(k%m) (z1,23) € D,K € N).
k=1

2
Then 3 yen k2 [[ur | Tomy < 00

17



Proof. Since u € H"(D), we have that 2 € L*(D), therefore, we can write
it as
ou

o, —(x1,23) = ick(:rg) coS <l{:%x1> (z1,23) € D),

k=1
for some sequence (¢y), oy of L?(R) functions, such that >,°, HCk-HiQ(D) < 00.
We will show that

L2(]R

We have that
/ = [ Puar (pecx(D)) (27)
(9901 T D 8x1(p TP ¢ ’

Observe that for every ¢ € C°(D)

— Zk ug(x3) cos(kp.icl> o(x1,x3) dzy dag

- )
= Z/ ug(x3) sm ) _90(1,17%) dx; dzs (28)
=1 3x1
K
T\ O 0
= / Z s1n< F) a—;i(xl,x?,) dzy dzs KHOO‘/D a;i dz,
and
K T
— Z/ Ck(ZL'3) COS <k‘—[L’1> gO(I’l, Ig) dZL‘l dZL‘g
k=1"D P
K T ou
- / ; (T3 cos(krpx1> o(xy, x3) dry des K_}—@) axlapdx
(29)
Therefore, by , and we obtain . O
Proof. The proof follows from induction and Lemma [13] O

As a consequence of above statement, we have the following characteriza-
tion of the space H%(D).

Lemma 14. u € H* (D) if and only if u has the form
w(zy, x3) Zuk Z3 sm(k xl) , for almost all (x1,23 € D),
for some sequence (ug),cy of H'(R) functions such that for all(c, 8) € I,

2 «
D ke B < oo

k=1

18



Proof. The proof follows from induction and Lemma [13]
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4 Nemytskii operators

In this section we will study the differentiability properties of certain non-linear
maps acting between Banach spaces.

4.1 Results applicable for the semilinear wave equation

In this section we will study the continuity and differentiability of the operators

of the form
HY(D) 3 uvr— g(-,u(-) € L*(D).

The main results of this section are Lemmas [18], 20 and
We will begin with listing some technical results used later in the proofs.

Remark 15. Because of [I, Theorem 4.12, p. 85| for all ¢ € [2,00), the space
H'(D) embeds continuously into the space L(D).

Remark 16. Assume that § > 1. Then the function
[0,00) 3 +— 2 € [0, 00), (30)
is superadditive, i.e.,

a® +0° <(a+b)" (a,b>0).

Remark 17. Let 8 > 1 and p > 1. Then if f € LP(Q), then |f|° € L5(<).
B
B —
P 3y = (e

Lemma 18. Let r € [2,00). Assume that the function g: D x R — R is such
that

Moreover

e for all s € R the mapping
D > (xq,x3) — g(x1,73,8) € R,
18 measurable,
e for almost all(xy,x3) € D the mapping
R > s+ g(x1,23,8) € R, (31)
1S continuous,

o for some a > 1 and q € (r,00] there exists a function a € LY(D) such
that
\g(x1, w3, 8)| < alzy, x3)|s|” (x1,23) € D,s € R). (32)
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Then the mapping G: H' (D) — L"(D) defined as
G(u)(x1,2z3) = g(x1, 23, u(x71, T3)) (u € HY(D) ,(z1,23) € D) , (33)
1S continuous.

Proof. First we will show that the mapping G introduced in is well-defined.
By the Remarks [15] and [I7], we get that

o 2
oy < o0 (we H' (D) pe | 2,00) ).

There exists p > 2 such that % = % +
estimate

ﬁ. Using Holder’s inequality we can

NG gy < lla- [l oy < Nlall gy Nl gy < o0

Now we will show the continuity of the mapping G. Let u € H(D)

and let h, L) 0 be arbitrary. We will show that every subsequence of

n—oQ

(HG(u—l— hy) — G(u)HLQ(D)> has a subsequence convergent to 0. W.l.o.g
neN

(by choosing suitable subsequences) we may assume that h,(x;,z3) —— 0
n—00

for almost all (z, x3) € D and that
1
“hn—H - hnHHl(D) < Q_n (n = N)' (34)

Note that for every n € N we have h,, = h; + Z;:ll(hiﬂ — h;). By inequality
and Remark [15] the function w = |hy| + > 0, |hiy1 — hy| € L* for all
s € [2,00). Observe that

()] < Jha ()] + Z |higa (2 (@) Sw(z) (zreN). (35

For every n € N define
(1, 23) = g(21, T3, u(T1, T3) + A (21, 23)) — 9(21, 3, u(21, 75)) -
For almost all # € D, we can estimate
on(2)] < lg(@, u(@) + hn(2))] + |g(2, u(2))]
< a(@)(|u(z) + hn(2)" + |u(2)[%)
< a(@)2fu@)] + [hn(2)])*
< a(@)(2fu(@)] + w(z)”.
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This shows that the functions v, are bounded by a function from the space
L™ (D).

Since the sequence h, converges to 0 almost everywhere in D and the
function g is continuous with respect to the third variable (cf. (31)), we have
that the sequence v, converges to 0 almost everywhere in D. An application
of Lebesgue’s dominated convergence theorem finishes the proof. n

Lemma 19. Let r € [2,00). Assume that the function g: D x R — R is such
that

e for all s € R the mapping
D >(xy,23) — g(z1, 73, 8) € R,
1s measurable,
e for almost all(xq,x3) € D the mapping
R > s+ g(x1,23,5) € R, (36)
18 continuous,

e for some a > 1 and q € (r,00| there ezists a function a € L1(D) such
that
\g(x1, 23, 8)| < alzy,x3) |s|* (x1,23) € D,s € R). (37)
H'(D) 1
Then for every sequence h, —= 0 and for every u € H'(D) we have
n—oo

ACINGY

n—o0

/O oz, u(@) + tha(2)) — g(z, u(x)) dt

Proof. Let r > 2. Denote
vn(z) = /1 g(x,u(z) + thy(x)) — g(z,u(z)) dt (n e N,z € D).
0

We will show that every subsequence of (vanH LT(D)) has a subsequence
neN

convergent to 0. W.l.o.g (by choosing suitable subsequences) we may assume
that h, (21, z3) — 0 for almost all (21, 23) € D and that
n—oo

1
||hn+1 - hnHHl(D) < 2_n (n = N)' (38)
Note that for every n € N we have h, = hy + 31— (his1 — h;). By inequality

and Remark (15[ the function w = |hq| + >°.2, |hip1 — hi| € L¥(D) for all
€ [2,00). Observe that

[ ()] < |ha ()] + Z |higa (2 (@) Sw(z) (xeN). (39
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For every n € N define

1
Up(x1, 73) = / 9(z1, z3, u(z1, 23) + thy (1, 23)) At — g(21, 23, U271, 73)) .
0

For almost all x € D, we can estimate
1
on(@)| < [ lgta,u(e) + tha(o)] + lg(o. u(w)] d
0
1

< a(fv)/o (lu(z) + tha(2)[" + [u(z)[) dt
Remark [16]

< a(x)/o (2 [u(@)| +t |y (2)])* dt
< a(@) (2 ul@)] + |hn(z)])"

g a(z)(2|u(x)| +w(x))™.

B

Above estimate shows, that the functions v, (n € N) are bounded by a function
from the space L"(D).

Since the sequence h, converges to 0 almost everywhere in D and the
function g is continuous with respect to the third variable (cf. (31)), we have
that the sequence v, converges to 0 almost everywhere in D. Application of
Lebesgue’s dominated convergence theorem finishes the proof. O

Lemma 20. Assume that the function g: D x R — R is such that:

e the for almost all(zy,x3) € D the mapping

R > s+ g(x1,23,8) €R,
15 differentiable,

e the mappings g and % are Carathéodory functions (cf. Definition ,

e g(x1,73,0) =0 for almost all(xy,x3) € D,

e for some a > 1 and q € (2,00] there exit functions a € LY(D) such that
g o
‘—(271,1’3, s)| < a(zy,x3) |s|” (21,23) € D,s € R), (40)

0s

Then the operator G: H (D) — L*(D) defined as
G(u)(x1,z3) = g(x1, 23, u(21, T3)) (u € H' (D) ,(z1,23) € D) , (41)

is of the class C'(HY(D), L*(D)) and

DG(u)h = %(-,-,u) h (u,h € H'(D)). (42)
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Proof. Observe that, for almost all (z1,x3) € D

50
/0 a—g($1,$37§) d¢

1
< la(er, )| / oI de
0

_ a1, 73)] |S|a+1
a+1 '

|g($1,$3,3)| =

Note that Lemma |18 implies that the operators described in and
are well-defined and continuous. We will show that the operator defined in
(42) is indeed the Fréchet derivative of the operator G defined in . Let
u,h € H'(D). Consider

G(u+ h)(xy, x3) —G(u)(z1, x3)

== g(xla x37u(x17'r3) + h(ﬂjl, 1:3)) - 9(351; xs, U/(xh .Z'g))
1
0
= h(l‘l, l’g) 8—g(x1,$3,U($1,$3) + th(l‘l, ]3'3)) dt.
0

Using this we can write

R(u, h)(-,+) =(G(u+h) = G(u) = DG(u) h)(-,)
- h(',-)< O %(‘,-m(‘,-) Y th(4) — %(.7.&(.,.)) dt> ,

This, together with Holder’s inequality, Remark |15 and Lemma |19, shows that

| R(u, h) HLQ(D)

||h||H1(D) RO

> 0.

]

Lemma 21. Under the assumptions of Lemma assume that o > 1 in
condition ([{A0)). Then the operator G: H'(D) — L*(D) defined in is twice
differentiable at point 0 and

D*G(0)[h,v] =0 (h,v € H'(D)).

Proof. We have to show that

IDG(v) h = DG(0) Al 1)

_Sup e —0
he€B 1 py(0,1) HYD) HY(D)
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Let s > 2 and p > %, be such that % = % — % = % + i. Using generalised
Hoélder’s inequality (cf. [I4, Theorem 2.1]), we obtain:
dg dg
||DG(U)h_DG(O) h||L2(D) = a_('7'7v)h < |h'| a_('7'>v)
5 L(D) 5 LX(D)

< lInla ol 2py < NI

2

Ls(D) ||a||Lq(D) H|U| HLp(D)
< Al Ly Nlall ooy ol e -

Since « > 1, above estimate, together with Remark [T proves the claim. [

Example 22. In Lemma [21| the assumption that a > 1 is essential and it can
not be replaced by a > 1.
1 dg _

Consider the function g(x1,z3,5) = g(s) = 5 |s|s. Then 3? = |s| and the

corresponding operator GG is not twice differentiable at 0.

4.2 Results applicable for the quasilinear wave equation

In the following lemmas we will discuss the differentiability properties of the
mapping (cf. Lemma [27)

H*Y(D) 3 u — 3uuy; + 6un? € L*(D).
Lemma 23. There exists a constant C > 0 such that

HabCllHH(D) <C HG’HHQJ(D) HbHHQJ(D) HC”HQJ(D) (CL?bac € H2’1<D)) :

Proof. For arbitrary a,b,c € H*'(D), by using the Holder’s inequality, we
obtain

HabCHHH(D) < ||aHL°°(D) HbHLw(D) ||cll||L2(D) :
Application of the Corollary [I0] gives the claim. O

Lemma 24. The function G: H*>*(D) — L*(D) defined as
G(u) =v*uy  (uwe H*'(D)), (43)
is of the class C*(H*'(D), L*(D)) and

DG(u) h = 2uuyh +v’hyy (u,h € H*'(D)), (44)
D?G(u)[h,v] = 2uvi1h + 2uyvh + 2uvhy, (u, h,v e H2’1(D)) ) (45)
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Proof. Note that by Lemma [23| there exists a constant C' > 0 such that
3
1G (W)l 3py < C llull2p) (u € H*' (D)),

which shows that the function G is well-defined.
Again applying Lemma [23| there exist a constant C' > 0 such that

IDG(w) hllpypy < Cllullzgzapy 10l ey (u.h € H*Y(D)).

which shows that the operator DG (u) : H*'(D) — L?(D) described in the
formula is well-defined for each u € H*!(D).

Now we will show that the operator DG (u) defined in is the Fréchet
derivative of the function G at the point u € H*'(D). Observe that for every
functions u, h € H*'(D)

N(u,h) = G(u+h) — G(u) — DG(u) h = uy1h® + 2uhhyy + h*hyy. (46)

By Lemma [23| there is a constant C' > 0 such that

2 3
IVt )l gy < C (Wl 1l sy + Il poay) (e € HPA(D)).
Therefore one obtains
[N (us R) | Loy
17l 72

which, together with (46)), shows that the operator DG(u) defined in is
the Fréchet derivative of the function G at the point u € H*!(D). For any
u,v,h € H*'(D) consider the expression

2
= C (el sy 1ell oy + NNy ) ———0,

||h||H2v1(D)—>0

R(u,v,h) = DG (u + v) h—DG(u) h = 2uvy; h-+2u1,vh+-20v11 h+2uvhy +v*hy .
(47)
By Lemma we obtain that

HDQG(U)[th]”m(D) <C ”UHHZI(D) ||h||H271(D) ||U||H271(D) (u, h,v e HQ’I(D)) )
(48)

which in particular implies that the operator D*G(u) is well-defined. We will
show that this mapping is the Fréchet second derivative of the function G.

Note that (cf. formulas and (47))
DG (u + v) h — DG(u) — D*G(u)[h,v] = 2vvi1h + v*hq;.

Let B denote the closed unit ball in the space H*!(D). Applying Lemma
for the above relation, we obtain that

sup ||DG(u +v) h — DG(u) — D*G(u)[h, U]HLQ(D) <C ||U||?{271(D)

heB

which proves the claim. By inequality the function G is of the class
C*(H*Y(D), L*(D)). O
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Lemma 25. There exists a constant C > 0 such that

”ablcll|L2(D) <C ||a||H2v1(D) ||b||H2v1(D) HCHH?J(D) (a7bac € HQ’I(D)) :

Proof. For arbitrary a,b,c € H*'(D) we have

labierl zpy < Nlall ooy 1011l 2oy el Loy

The claim follows by Lemma[§] Corollary[10]and the fact that the space H'(D)
embeds into the space LI(D), for all ¢ € [2,00) (cf. [I, Theorem 4.12, p.
85)). O

Lemma 26. The function G: H*'(D) — L*(D) defined as
G(u) =wui (ue H*'(D)), (49)
is of the class C*(H*'(D), L*(D)) and

DG (u) h = wih + 2uuhy  (u,h € H*'(D)), (50)
D?G(u)[h,v] = 2uyvih + 2uv by + 2uyvhy (u, h,v e H2’1(D)) ) (51)

Proof. The functions described in the formulas , and are well-
defined, indeed by Lemma [25] there exist some constant C' > 0 such that

IG py < C lulltponpy  (we H*Y(D)),
IDG(w) hllpypy < Cllullzgzspy 10l gaapy  (u.h € H*Y(D)),
<

HDZG(U)[hvv]”LZ(D) C ||U||H271(D) ”U”H?J(D) ||h||H271(D) (Uava h e Hg’l(D)) :
(52)

We will show that the operator defined in is the Fréchet derivative
of the function G at the point u € H*!'(D). Observe that for all functions
u,h € H>'(D)

N(u,h) = G(u+ h) — G(u) — DG(u) h = hh? + 2uyhhy + uh?, (53)
and by Lemma [25] there exists some constant C' > 0 such that
||N(u, h)||L2(D) < C(HhH?J)LI?J(D) + ||u||H2ﬁ1(D) ||h||12LI?’1(D)> (U, h e H2’1(D)) ‘

Thus

[V (w, h)Hm(D)
1l 2.

2
= C (Il ey 1ll oy + NNy ) ———0,

||h||H271(D)~}O
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which, together with (53)), shows that the operator DG(u) defined in is
the Fréchet derivative of the function G at the point uw € H*!(D).

We will show that the operator defined in is the second Fréchet
derivative of the function G at the point u € H*'(D). For all functions
u, h,v € H*(D), we have

R(u, h,v) = DG(u +v) h — DG(u) h — D*G(u)[h,v] = vih + 2vvihy.  (54)
Application of Lemma [25] yields
1R, By )| gzapy < C PN gy [0l2py  (w b € HPY(D)),  (55)

for some constant C' > 0 independent of the functions u, h and v. Let B
denote the closed unit ball in the space H*!(D). Therefore, by and

sup |G+ ) b= G(w) = DG, 1]y < C ol

which proves the claim. Inequality and the fact that the expression
D2G(u)[h,v] is linear implies the C*(H*'(D) , L*(D)) regularity of the mapping
G. O

Collecting the result of Lemma [24] and [26| we obtain out final result.

Lemma 27. The function G: H*>'(D) — L*(D) defined as
G(u) = 3u’uy; + 6uwui  (u e H*'(D)), (56)
is of the class C*(H*'(D), L*(D)) with

DG (u) h = 6uug b + 3uhyy + 6uih + 12uuihy,
D?G (u)[h, v] = 6uviih + 6uyvh + 6uvhyy + 12u v h + 12uv by + 12u0h

for all u,h,v € H*'(D).
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Figure 2: Qualitative sketch of the bifurcation diagram for the equation (58]).

5 Semilinear wave equation

In this section we will consider the following semilinear wave equation

— AW 4 V(23) Wy + pW = g(x3, W) on R? x R, (57)
where V(z3) = { “2 Iii} i Z . Our goal is to prove the existence of the

travelling wave solutions of , that is solutions of the form
W(xy,x3,t) = w(r) — wt, x3),

where the profile w is a 2P-periodic function in its first variable and has some
decay to 0 in its second variable. The function w and the constant w have to
satisfy the equation

— Aw + w?V (z3) wig + pw = g(xs,w) on D =(—P, P) x R. (58)

We will work under the assumptions [S]and [Sy| described in the section [5.1}
The main result of this section is the following statement.

Theorem 28. Assume@ and EZ' Then there exits a non-trivial, continuously
differentiable curve passing through a point (0, u1)

{(w(s), u(s)) € Hoga(D) x R: s €(=0,8) ,w(0) = 0, 14(0) = i }

such that the pair (w(s), u(s)) solves (58)) in a weak sense for all s € (—0,9).
Moreover all solutions of the equation i a neighbourhood of the point
(0, p1) are on the trivial line or on the curve defined above.

The proof of Theorem [2§] can be found in the subsection [5.4.4]

Remark 29. Theorem states the existence of a one parameter family of
travelling waves, propagating with the same speed w in the direction xy, solving
the equation . These travelling waves have the profile w(s). Moreover they
are close (in the sense of H'(D) norm) to the linear guided modes.
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5.1 Assumptions

In this section we will work under the following assumptions on the parameters
a, w, P, V, Vi, u and €.

Assumption S. We assume that

S' The values w, V; and V, are such that

1—w?V; <0, (59)
1 —w?V, > 0. (60)

S? The values y; and € > 0 are such that

S® Consider equations

(1 —w?V,) e ,u‘ 2.2 !
R RRack

(1 —w?V,) ]“12)—7;2 + ,u‘ L272 !
\)/< ) .= —ctg \/—(1—w2VZ~) pr T Hal. (62)
—(1 =w?V}) 55 —
P

For all p € I_ﬁl =[m1 — &, 1 +¢] and k € N one of the equations or
is satisfied if and only if £ = ky and pu = p.

S* The values a, w?, P, V; and V, are such that

/—(1 — w2V )
( Pw )a = % € QN (0,00), where gcd(j,n) =1, (63)

1_(*]2‘/0 kT kT

Moreover we will consider the following non-linearity g.
Assumption S,. Assume that the function g: R x R — R is such that:

S; for almost all 23 € R the mapping
R > s+ g(x3,5) € R,

is differentiable,

30



Sf] the mappings ¢ and % are Carathéodory functions (cf. Definition ,
Sg for almost all 3 € R the mapping
R > s+ g(xs3,5) € R,
is odd,
S% for some a > 1 and ¢ € (2, oc] there exits a function a € L4(R) such that

09 (1, 5)

B < a(zs)|s|* (x5 €R,s €R).

We will use the notation J5, = I \{y1} and we define a set
S* ={k € N: equations and are not satisfied for k£ and p}. (65)

Remark 30. By Lemma [41] the condition

1 — w2V,

—(1——002‘0/1') € Q\{1},

implies the condition ((64)) in Assumption .

Remark 31. Note that assumptions [S*| and |S*/ imply that for all p € I_f“ and
for all k € N

k*m? o K22
P2 <p<—(l-w Vé)?’

hence the expressions in the equations and are well-defined, for all
k€ Nand all p € If.

— (1 — wQVO) (66)

Remark 32. Assumption |[S is equivalent to the following. The values p; and
e > 0 are such that

_ 2 2
T C (_(1 ) (1w ﬁ) .

Remark 33. Note that assumption [S” implies that S** = N\ {k;} and for all
p € 15, \{p1}, we have that S* = N.

Note that the parameters chosen as in Examples [44] and [50] satisfy
satisfy [S]
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5.1.1 Some further remarks about the assumptions

As we show in Lemma the assumption in the Lemma |62 is neces-
sary. Therefore, the assumption is also necessary for presented method
of proving the Theorem [28

This also shows, that the parameter w? can not be used (at least using
presented techniques) as a bifurcation parameter in the equation , because

A/ —(1— 2Y1/.
when w? varies in any non-empty open set, the expression M takes
some irrational yalues.
Assumption expresses the fact that the expression ,/% is

not a limit point of the right hand sides of the equations and in

5.2 Choice of the parameters

This section is devoted the the choice of the parameters w, V;, V,, P and
a in a way suitable for the applications described in the section [5.4.1] i.e.
satisfying assumption As we will show later, the kernel of the operator
L,=—-A+wV(xs) 53_35% + u (defined later in the formula (80))), which is the

linear part of the equation , depends on the above parameters. This section
contains some examples of the parameters, for which we have a good control
of the kernel of the operator L, (cf. Examples , and .

Because the criterion, which describes the eigenvalues of the operator L,
(cf. Lemma and equation for the definition of the operators L, ;)
contains some trigonometric equations, we will begin our considerations, with
listing some results about trigonometric sequences.

5.2.1 Some remarks about the limit points of some trigonometric
sequences

In this section we will study the limit points of the sequences of the form

(sin \/W) e’ (COS \/W) ren and (tg \/W) . with

q € Q. The main results of this section is Lemma |38 and Corollary .

Definition 34. Let A C R™ and let f,,: A — R, for every n € N. We say that
the sequence (fy,), ey converges almost uniformly to a function f: A — R, if
and only if for every compact I C A

sup | fn(p) = f(u)] —= 0.

nel n—00

Lemma 35. For every p € R

lim sin\/k?72 + p = 0.

k—o0

Moreover, the convergence is almost uniform in p.
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Proof. Observe that
1
VK2 + o =kn+ 0(%) .
]

Definition 36. For a sequence (ax),cy let #1p(ax) denote the number of the
limit points (in R U{Zo0}) of the sequence (ax),cy-

Remark 37. For every n € N consider the sequences (s7), . and (), defined
as follows

SZ:sink—ﬂ (ke N),
n

c};:cosk—7r (ke N).
n

Then
n (ne2N+1),

#ip(sk) = Fap(ck) = { n+1 (ne€2N).

Moreover the sequences (s}), .y and (c}),cy are 2n periodic and their ranges
3 n
consist of #1,(s};) values.

Lemma 38. Let n € N and € R. Consider the sequences (i) ey and (Cr) e
defined as follows

k272

S = sin 2 + 1 (l{?eN),

N L2r2

Cr = COS 72T+,u (keN).
n

Then
n (ne€2N+1),

#1p(5k) = #1p(Cr) = { n+1 (ne2N).

Moreover the limit points of the sequences(5;),cy and(ck),en do not depend on
i and the convergence of convergent subsequences of them is almost uniform
in .

Proof. Observe that for every n € Nand p € R

n? M_n k)

The remaining part of the proof follows from the Remark [37] O]
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Lemma 39. Let n,j € N and p € R. Consider the sequences (5i),cy and
(Ck)pen defined as follows

2722

S=siny /I 4+u (keN),
n
2722

& = cos /2 ;T +un  (keN).
n

Then
#1p(5k) = #1(@) <n + 1.
Moreover the limit points of the sequences (5;) oy and(Cr),ey do not depend on

i and the convergence of convergent subsequences of them is almost uniform
in .

Proof. Note that the sequence (sin j%)keN is a subsequence of the sequence

(sin kn—”) keN" The claim follows from Lemma . In the same way, we treat the
Jkm

sequence (cos - )keN. L]

Lemma 40. Assume that ¢y > 0, co > 0 and pg, ity € R. Then

. vVak?+ e 2}
lim = ,/—

)
k—oo \/eok? + C2
Verk2+pa

almost uniformly in = (fa, ty). Moreover, the sequence | Y————= 18 in-
] Yy in pp = (fa, 1) q <\/m)k6N

creasing [resp. decreasing| if and only if ¢1pp,— capra > 0[resp. cipp — captq < 0],
where
N ={k € N: c1k? + 1 > 0 and 2k + py > 0} .

Proof. Let kg = min N. Consider the function f: (kg,00) — R defined by

Clx2 + ,u/a

f(ZL‘) = 02262—!-;%

(I > ]{?0)

We have

o) — 2x(cipuy — Cafla)
f(z) o T

Observe that for all x > ko f'(x) > 0[resp. f'(z) < 0] if and only if ¢y —
Coftq > 0resp. cipp — copig < 0]. Above, together with the fact that the func-
tion R 3 s — /s € R is increasing, proves the claim. O

Lemma 41. Let a,b € N. Then tg % € (R\ Q) U{0, %1}, unless ¢ € 3+ Z
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Proof. For the proof, we refer to [8, Corollary 1, p. 3]. O

n2

Corollary 42. Let n,j € N and p € R. The sequence (tg 2R M)
keN

has at most n + 1 limit points and each of these limit points is equal to +00,
+1, 0 or an irrational number. Moreover, the set of limit points ' of this
sequence does not depend on p and

ik N
sz{tgg: k:(),...,n},
n
J

where },ﬁ € N are such that gcd(}, ﬁ) =1 and % = L. Furthermore the

convergence of convergent subsequence of it is almost uniform in p.

j2k2ﬂ2
n2

j2k2ﬂ2
n?2

+p and ¢} = tg*. Since

Proof. Denote t, = tg +u =
km

jkT” + 0( %) and the sequence (‘WT”_) pen 1S a subsequence of the sequence (7) EN
the limit points of the sequence () ren are one of values of the sequence (17 ey

By Remark [37] there are at most n + 1 such limit points and each of these
limit points is one of the values of the sequence (£7), .. The rest follows from
Lemma, [41] O

Remark 43. Recall than for all z € R

s
—ctgx = tg (5 —i—x) .

5.2.2 Strategy of choosing the parameters in the equation

In this section we will give examples of parameters satisfying assumption [S]
They are described in Examples and 50, Theorem [45] contains a de-
scription of a strategy of finding parameters satisfying assumption [S]

FExample 44. Choose
a, P€(0,00), (67)

(0,00) 3 w?V, < 1and 1 — W’V = ——

\/13tg2(1+— V137r> ~3
T 2
0 <: a <: - =

4 V1-w, 4 V1I—wV,”

\/13tg (L) 3
where 1 ~ 3.729627607048 .... In order to find values of the

constants a, P, w, V, and V; satisfying above requirements one can do the
following:

(68)
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1. take any w € R and P € (0, 00),

2. take V, > < (which is equivalent to 1 — w?V,, > 0),

w?

\/l3tg 2(%#) —3‘ P

3. take a € | 0, 1 Nierrall

4. deﬁne‘/}:é(l—ks—;).

Now we will verify the assumptions [S] are satisfied. Denote

2

= —(1=wV) 35,
o (69)
ho = (1 — w?V,) o

Note that implies that |[S*| and moreover

2

he > 0 and h; = . (70)

a?

Since the the limit points of the right hand sides of the equations and
, as k — oo, are 0 and +oo, the assumption [S* is valid. Define

_ Vhok? + 1 Vhok? +
/hikQ_'u /ﬂ2§2 _ —
Rig (k) = tg (\/hikQ — ,ua) tg\/m2k? — a?u ,
Reig (K, 1) = —ctg <\/hik2 — U a> = tg <z + v/ hik? — ua)

2
tg (g + /m2k2 — a2u>

L(k, 1)

We will show that there there exists a unique pu; € (0, %Z—j) such that
L(1, p1) = Retg (1, p1). Note that

e the functions L(1,-) and R, (1,-) are continuous on the interval <O, Z—;)

L4 Rctg (17/1’) — +OO7
n—0t

Regg (1, ) ———— —o0,
)

Rctg(lvﬂ) = 0 if and only if u = %Z_;

the function <0, %Z—;) S p+—> Retg (1, 1) € R is decreasing,
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L(1,0) = 2v/h, >0,
e the functions (0, Z—;) > u+— L(1, ) € R is increasing,

o L(1,pu) —— o0,

us
H—=r

2 "
' 4 2> C (_hoahi)7 hence

one can choose sufficiently small ¢ > 0 such that [S? holds true. In order

to verify we will show that the equations and have solutions
different that £ = 1 and u = puy, for pu sufficiently close to py. Note that

which proves the claim. Moreover note that p; € <0

L(1, 1) # Rig (1, 11). Since py € <0, 0 2> then for all p sufficiently close to
1y and all k € N

T m 3 1 T
= k—1) < = ka1 — kyl1— = k
Gk <G mhylogg <Gk flogh <Gk

and the expression § + 7k, /1 —

k2 , gets closer to § + 7k, for as k — oo.

Hence, for all sufﬁc1ently close to puy

Rctg (k - 1: M) < Rctg (kuu) E} +00. (71>

By Lemma 40| the sequence (L(k, 1)),y is decreasing for all y in some open
neighbourhood of ;.

Since the function (O, Z—;) S p —> Reg (1, 1) is decreasing, the function

(O, Z—;) > p+— L(1, p) is increasing and there exits €; > 0 such that for
all p € (g — e, p1) and all k € N

L(k + 17:“) < L(k7/vb) < L(l,ﬂ) < RCtg(L/JJ) < RCtg (]{Z,,LL) < Rctg (k + 17”) '
Note that

e the functions L(2, -) and R, (2, -) are continuous on the interval (O, %Z—j) ,

L4 Rctg (27 :U’) — +OO,
u—0t

Retg (2 3 2 ) — tg (1”@ ) ~ 1.4019283574321805 . . .,

’ 4 a2

the function < %%) S p+—> Reg (2, 1) € R is decreasing,

L(2,0) = 2v/ho,

the functions ( ”—2> > ur— L(2, ) € R is increasing,
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o L(2,3%) = Y237 T 16a%h, .
\/13Rctg(2,%%§)273

Therefore, if a < § NS , then for all y € <0, %Z—j)
L(2, 1) < R (2.12)

Therefore, there exists 5 > 0 such that for all u € (u1, 1 + €2) and all k > 2

L(k+1,p1) < Lk, p) < L(2, ) < Retg (2, 1) < Rerg (K, p1) < Rerg (k+ 1, 11).

Hence, by taking ¢ = min{ey, e2}, we have that for all u € (13 — &, 11 + €)
and for all £ > 2

L(kv M) 7£ Rctg (k7 M) :
We have shown that the equation in |S°|is not satisfied for all £ > 2 and
all values p in a neighbourhood of 11;. Moreover, it is satisfied for £ = 1 if and
only if pu = uq, for all pu sufficiently close to .
It remains to show, that the equation in is never satisfied for all
k € N and p sufficiently close to 1. Since Rig (1, f11) # Retg (1, 1), then that
for all p sufficiently close to jq

Rtg (17 :u) 7é Rctg (17///) )

therefore, for all values p sufficiently close to j;

L(L:u’) # RCtg (17/1’) (72>
By applying the mean value theorem for the mapping  — +/z on the

interval [1 — #, 1], we obtain that

NI — A . _ 1 K
hik? — pa a\/Ek 1 e aﬁk(l 2\/5hik2>’

for some §, € [1 — hi%’ 1]. Then

L ap p
Vhik? — pa=mk— N for some ¢, € {1— hi]{?271:|. (73)

For k£ > 2, we have

0< 1 apy 1 %ag—z
2(/& Vhik o 1 m s Gk
_3m 1 < ™ 1
S8k fi_m 2 [ 3 (74)
hik? 4k2
7%2 s 1 s
X 45 < =



Relations and , yield that for £ > 2 and all p sufficiently close to py
Rtg (k ) N) < 07

therefore, using , we have that for all £ € N and all p in an open neigh-
bourhood of 1y

L(kau) 7é Rtg (kmu) )

which shows that the equation has no solutions for all £ € N and all p
sufficiently close to p;. Hence the assumption [S°| holds true.

Now we will describe a more general strategy of finding parameters satis-

. . (2 2\
fying assumption . Denote o, = 1 ;QVO and o; = —%. Define

Lk 1) = Vo k?m? +
y /—‘Q{ik’Qﬂz y )
Rig (b, p) = tg (\/aik%r? — ua) ,

Reig (K, 1) = —ctg (\/Oéik‘27'('2 — ,ua) .

From the point of view of assumption (S| (cf. it is important to describe for
which values of £ € N the condition

L(knu) = Rig (k;MU’) or L(kaﬂ) = Retg (k:7l’[/) )

holds true, where p varies in a bounded interval, which does not depend on k.

We will present a strategy of reducing above problem to finitely many values
of k.

Theorem 45. Assume that

Vaia € Q, (75)
%%{tg]ﬁ,—c‘cg%:k:&...,n}, (76)

n

where j,n € N are such that gcd(j,n) = 1 and % = Ja;a, and let I C R
be a bounded interval. There exists a number K € N, which can be computed
explicitly, such that for all k > K and all p € 1

Lk 1) # Rug (k. pt) and Lik, 1) # Reag (k, ).

Proof. Let I'ty € RU{oo} and 'y, € RU{oo} denote the sets of limit points of
the sequences (R (K, 1)),y and (Regg (K, 1)) oy Tespectively. By Corollary
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and assumption (75| we get that the sets Iy and I'yye are finite, ¢ independent
and

ik
g —{tg‘%: /{;—O,...,n}7

'k
Letg :{—ctg‘u: kzO,...,n}.
n

Lemma [40| implies that the sequence L(k, ) —— /% . Using assumption

k—o00

(76), we have that ,/% & I'\y; UT,. Let § > 0 be such that ,/% ¢

(Fig Ul )5, where X5 = (J,cy(z — 9,24+ 0). Since I € R is a bounded
interval then, there exists K € N such that for all £ > K and for all y € I

L(k, 1) # Reg (k, 1) and L(k, 1) # Rerg (k, ).

Now we will show, that the value K can be computed explicitly. Without
loss of generality, we may assume that I C (—o0,0] or I C [0,00) (Otherwise
consider [ = It U I~, where IT C R* U{0}.) Let I =(uq, i), where

Hafby 2 07 <77>

Note thatﬂ for every k € N the function R 5 pu —— L(k,u) € R is
increasing, therefore for all £ € N and for all p € [

Lk, pa) < L(k, 1) < L(k, up) -

By Lemma {40/ and by assumption the sequence (L(k, jt)),cy is monotone
for all ;1 € I. Therefore, the sequence (‘L(l{;, p) — /% D is decreasing (to
' IV keN

0) for all € I. In case, when the sequence (L(k, 1)),y is increasing, we have
that for all p € I and all k € N

« Q
J=2 - L < /=2 = Lk, a),
0< o (K, ) o (k. pa)

on the other hand, if the sequence (L(k, 1)),y is decreasing, we have that for
all p €l and all k € N
a a
0<L(k,p) — /=2 < Lk, ) — /2.
( 7:“) o ( :ub) o
Therefore, for every € > 0 there exists K; € N, which can be computed
explicitly, such that for all © € I and for all k£ > K;

‘\/Zj - L(k,u)' <e. (78)

4 d (aok2w2+u) _ KX aitos)

dp \ aik?m?—p ) T (aik2w2—p)? "
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If I C€(0,00), then we have that for all £ € N and all p € I
0 < av/o; km — /m2k20; — pa < av/o; km — \/m2k2q; — g a k—> 0,
— 00

in a monotone way. On the other hand, if I C(—00,0), then we have that for
all ke Nand all pe I

0 < Vm2k2a; — pa — ar/a; km < \/m2k%0; — iy a — ar/oy ke k—> 0,
—00

Hence for every € > 0, there exists Ky € N, which can be computed explicitly,
such that for all k > K and all p € I

’\/aik%r?—,ua—a\/ai k:w‘ <e. (79)

Let diy < dist (1 [ &2 ,I’tg>. Take ¢ = d%. Let K7 € N be such as .
Consider M, = dtTg + max{max{m €R: z €Iy \{£oo}}, /o } and let
tg : R — R be defined as follows

- tgr, iftgr €(—My, M),
tgr =< My, iftga > Mg,
_Mtg7 if tgl‘ § _Mtg'

Note that the function E;g/ is Lipschitz continuous on each of the intervals
(—% +v, 5+ 1/), v € Z, with the constant Ly, = 1+ Mfg. Observe that for
every k € N, there exists g, € I'yy such that g, = tg (a@lm). Let Ko € N
be as in (79)) (with ¢ = ﬁ) Let K, = max(K;, K,). For all p € I and for
all k > Kz we have

‘Eg(\/ kP — NCL) — tg (ay/a; /WT)‘ < Lig |V oik?n? —pa — a\/almr‘

Therefore, for all k£ > K, and p € 1
dist (Rig (k, pt) , T'g U (=00, =M ) U (M, 00)) < —=,
which together with , shows that for all k > Ky, and all p € I
L(k, 1) # Big (K, 1) -

Analogously we treat the R, case. [

Remark 46. By Lemma [41| the condition

\/ge@\{o,ﬂ},

implies assumption in the Theorem .
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In the following Example 47| and 48| we will illustrate the strategy described
in the Theorem 45l

FExample 47. Using the notations from the Theorem , let a =1, o = g,
= 1%. Then we have

Va3

limy o0 Lk, 1) = 3,

Ty, ={—1.7320508...,0,1.7320508.. .},
Ty ={—0.5773502...,0.5773502. . ., +o00},

dist (, fee ,th) ~ 0.6070508076 . . .,

dist( g, rctg) ~ 0.5476497308 . . .,

OL.L'7

define p; such that L(1, 1) = Retg (1, 1), for example consider p; ~
—0.9787174.. . .,

take p, = —0.98, up = —0.97,

note that (ug, ip) C (—a,m?, a;m?) =(—5.551652...,4.386490. . .)
take dig = 0.6 and dgtg = 0.54,

M, = 2.032050808 . . ., Mz = 1.395,

K® =1, K" =1,

Lig =~ 5120230485 . . ., Lotz = 2.946025,

K =4, K5'® =3,

for all 11 € (pta; i), Rig (1, 11) < 0.

By Theorem

the equation L(k, ) = R (K, 1) has no solutions for k > 3 and p €
(,uaa Mb)?

the equation L(k,u) = Ry (k, ) has no solutions for £ > 4 and p €
(/Lav:ub>'

Fig. [3| and [4] show the plots of the functions L(p, k), Rig (1, k) and Regg (g, k)
for small values of k and p € (14, ts). Observe, that the equation L(k,u) =
Ry (k, 1) has no solutions for all £ € N and p € (p1q, pp) and that L(k, p) =
Reg (k, ) if and only of k =1 and p = 4.
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(a) L(1, ) and Regg (1, ) (b) L(2, 1) and Reyg (2, 1)

Figure 3: Plots of the functions L(k,p), Retg(k,p), for & € {1,2} and
1t € (Has p), With parameters as described in Example A7, The function L
is marked in red and R, in green.

FExample 48. Using the notations from the Theorem , let a =1, oy =

9
25’

a, = v/2. Then we have

[SAIFN

Vaia=
limy o0 L(k, 1) = 3 - 23 ~ 1.982011858... ,

I

Ty, ={0,£3.077683537. .., 4+0.726542528 . ..},
g ={£0.3249196962 ..., +1.37638192 ..., 0o},

dist (‘ fee ,th> ~ 1.095671679 . . .

dist (1 [ee ,rctg> ~ 0.6056299379 . . .,

define iy such that L(1, 1) = Rig (1, 1), for example consider p; ~
1.95547737271124. . . .,

take p, = 1.955, pp = 1.956,

note that (g, ip) C (—aem?, a;m?) =(—3.5530...,13.9577...),
take dig = 1.09 and d¢g = 0.605,

K® =2 K =2,

Ly ~ 14.12383601. .., Leye = 6.218994431 . . .,
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(C) L(B,,U) and Rtg (37 /.L) (d) L(4’ :u) and Rtg (4,’[1)

Figure 4: Plots of the functions L(k,u), Ry (k,p), for k € {1,2,3,4} and

f € (fq, 1), With parameters as described in Example [A7, The function L is
marked in red and R, in blue.
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o Kb =14, K5'® =11.
By Theorem

e the equation L(k, 1) = Rty (k, i) has no solutions for £ > 11 and p €
(,uau Mb)v

e the equation L(k,pu) = Ry, (k,p) has no solutions for & > 14 and u €
(,uaalub>'

Fig. [5| presents the graphs of the functions L(1, ) and Ry, (1,u) for p €
(tta, t1p)- In order to exclude other intersection points for small values of k we
compute that

e the range of the function L(k,(ua, 1)), for k €{1,2,...,13}:

L(1, ) €[3.155558 ..., 3.156645 .. ] ,
L(2, 1) €[2.171275...,2.171382. . ] ,
L(3, 1) €[2.061382...,2.061424 .. ] ,
L(4, 1) €[2.025806. ..,2.025829. . ],
L(5, 1) €[2.009796 . ..,2.009811 .. ],
L(6, 1) €[2.001216....,2.001226 .. ] ,
L(7, ;1) €[1.996081 . ..,1.996089. . ],
L(8, 1) €[1.992764 ... ,1.992770.. ] ,
L(9, ;1) €[1.990497 ... ,1.990501 .. ],
L(10, 1) €[1.988879...,1.988882. . | ,
L(11, 1) €[1.987683...,1.987686 .. ] ,
L(12, 1) €[1.986775...,1.986777.. ],
L(13, 1) €[1.986069. . .,1.986071 .. ] ,
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e the range of the function Ry, (k,(ita, 1)), for k €{1,2,...,13}:

Ry (1,11) €[3.153812...,3.158147.. ],
Rig (2, 11) €[0.375601 .. .,0.375764 .. ],
Ry (3,11) €[~1.037904 ..., —1.037715.. ],
Rig (4, 1) €[2.096830...,2.097194 .. ],
Rig (5, 11) €[—0.104727 ..., —0.104673. . ] ,
Ry (6,11) €[—4.322421 ... —4.321544 . ],
R (7, 11) €]0.618606. . .,0.618659. . .,
Rig (8, 11) €[—0.830923..., —0.830867. . ] ,
Rig (9, 11) €[2.563717...,2.563941 .. ],
Rig (10, 1) €[—0.052003 ..., —0.051976.. . ] ,
Ry (11, 1) €[—3.656787 ..., —3.656440 . . ] ,
Rig (12, 11) €[0.662396. . .,0.662428 .. ],
Rig (13, 11) €[—0.789430 ..., —0.789396 . . ],

e the range of the function R, (k,(fta, i), for k €{1,2,...,10}:

Reg (1, 12) €[—0.317077...,—0.316641 .. ],
Regg (2, 1) €[—2.662401 ..., —2.661247 .. ],
Retg (3, 11) €]0.963480 . . .,0.963656 .. ] ,
Retg (4, 1) €[—0.476910 ..., —0.476828 . . ],
Retg (5, 11) €[9.548633...,9.553580 .. ],
Reg (6, 12) €[0.231352...,0.231399.. . ] ,
Retg (7, 11) €[—1.616537...,—1.616399 .. ],
Retg (8, 11) €[1.203481 ... ,1.203562 .. ]
Reg (9, 12) €[—0.390059. .., —0.390025 .. ],
Retg (10, 1) €[19.229690 . . ., 19.239558 . . ] .

Observe, that the equation L(k, i) = Reg (k, pt) has no solutions for all
k € N and g € (tq, pp) and that L(k, u) = Rig (k, ) if and only of k =1
and p = pu.

Now, using above Examples 7] and [48] we will present another suitable set
of parameters.

Example 49. Let a =1, and w, P, V, and V; be such that

1 —w?V, 9 q 1 —w?V,
- o — T 1 —_— e = i = .
P T P YTy

As shown in the Example [47] such constants fulfil all of the requirements de-
scribed in the Assumption [S|
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3.1544

18550 19552 19554 19556 19558  1.9560
L

Figure 5: Plots of the functions L(1,x) and R (1, 1) for pu € (pa, pp), with
parameters as described in Example . The function L is marked in red, Ry .

FExample 50. Let a =1, and w, P, V, and V; be such that

1 — w?V, 1—w? 9

—pz =a,=+?2 and -z Zai=2—5-
As shown in the Example (48] such constants fulfil all of the requirements de-
scribed in the Assumption [S|

5.3 About the linear part

5.3.1 About the equation L,w = f
We formally introduce a family of operators L, defined by the formula
Low=—ws —(1-w?V(z))wy +pw (ueR). (80)

Note that the expression L,w is the left hand side of the equation (58)). Here
we will treat the linear version of the equation (58|, namely we will study the
solvability in the space H!;;(D) of the equation

L,w=fonD, (81)

where f € L2,(D) is a given function. Note that the equation (81 is a linear
variant of the equation (58). The spaces H'y,(D) and L2;4(D) are defined in
section 2.2l We will look for weak solutions defined as follows

Definition 51. Let f € L%,4(D). We say that a function w € H}, (D) is a
weak solution of the equation (81)) if and only if

/ w33 +(1 - W2V($)) w1y + pwip dr = / fodw (w € ngrQP,b(D)) .
D D
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Our goal is to prove the following statement.
Lemma 52. AssumelSl. Let

. Li(D) be a set of all functions f € L244(D), which can be represented in
a form

f(zy,23) = Z fk(xg)sin<k%x1> ,

keSH

. H;(D) be a set of all functions w € HLy (D) which can be represented
in a form

w(wy, x3) = Z wi(z3) sin(k%aﬁ) ,

keSH
where S* is defined in . Then the following statements are true:

(i) For every f € L2,(D), there exits a unique w € Hy(D) solving the equa-
tion in the sense of the Definition . In other words, there exists
a solution operator T, € L(L2(D), H}(D)) for the equation (31)).

(i1) There exists a constant M > 0 such that for all p € E

lwllipy < M fllpapy  (f € L, (D))

where w =T,,(f).

Proof. Above statement follows directly from Lemma [67] and [68] O
Remark 53. Recall Remark. For all i € T7, \{1} we have L2 (D) = L24(D).

As we will see later L2 (D) = {p} 2aa® | where ¢ is an eigenfunction of the
operator L, corresponding to the zero eigenvalue. In other words ¢ € ker L,,,.
Remark 54. Note that for all 4 € J5 we have L2 (D) = L2,4(D) and H(D) =
H4q(D). Moreover, for all € J5 the operator L, has a bounded inverse
T, = L;": L24(D) — Hjg4(D). Let M, denote the norm of the operator T,.

Observe that M,, —— 0.
H—rp1

Section [5.3.1.3] contains a description of the eigenvalues of the operators
L

"
5.3.1.1 About the equation L, ,w = f

We write

w(zy, x3) = Z wy(x3) sin(k%m) :

kesSw
floras) = 3 filws) Sin(k%%) . (82)

keSkH
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Define

oo\ K22
bo = bo(k, ) = (1= Vo) 5 + 41 (k€ 5"),
12,2 (83)
b = bi(k, ) = (1 — w’V) Bt H (ke S*).

As we observed in Remark assumptions [S*| and [S|imply that for all £ € N
and for all p € I .
bo(ky i) >0 > bi(k, p). (84)

Let A = Ao(p, k) and X; = Ni(p, k) (n € I:  k € S*) be defined by

/\o(lu’a k) =V bo(/vbv k) ) )‘z(/JH k) =V _bi(ﬂv k) . (85>

Observe that

1.e.

limsupw < 00, liminfw > 0,

k—o00 k—oo
A k Aoty k
lim sup o4, ) < 00, lim infL

> 0.

Define the function b: R — R as

o=t = { 30 (150 &

For every 1 € R and k € N consider an operator L, defines as

d2
Lu,k = —@ + b%k(l') , (88)

where the function b = b, was defined in .
After taking the ansatz described in (82) the coefficients (wy),cq. and
(fr)gesn have to satisfy the equation

L, ywy = —wy, + b(z) wy = fi, on R. (89)
The main result of this section is the following.

Lemma 55. Assumel[S]. Then the following statements are true:

(i) If u € E and k € N are such that (u, k) # (p1, k1), then for every f €
L?(R), there exists a unique function w € H'(R) solving equation (B9).
In other words, there exists a solution operator T, € L(L*(R), H'(R))

for the equation .
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(ii) There exits a constant M > 0 such that for all p € Iz, all k € S" =
N\{ki} and all f € L*(R)

M

k

lwl oy < = 1 Loy - (90)

Hw/HL2(R) <M Hf”LQ(R)'

Proof. This is a consequence of Lemmas 65 and n

Remark 56. For every p € I_ﬁl let M, denote the norm of the operator 7}, ;, =
L}, - L*(R) — H'(R). Observe, that M, — oo

K1

5.3.1.1.1 Solving the equation L,,w = f using the variation of
constants Now, using variation of constants, we will derive a formula of
the function wy, solving equation . Consider two problems, which are the
homogeneous variants of the equation of the form

—u”" +b(x)u = 0on [0,+00),
{2 o
e e 0,+0)
—u" +b(x)u = 0on |0,400),
{2 @
Consider the functions
N, | cos Nz 0<z<a),
pr () = { Cero® + De 2% (1 > a),
poy_ [ sinhz 0<z<a),
() = { Cero® + De ™% (x> a), (93)

Acos iz + Bsin iz (0 <z <a),

pa(x) = { oot (x> a),

where the appearing constants are chosen in such a way, that the functions
oV, P and o, are of the class C'. The choice of this constants is described
by the following statement.

Lemma 57. The functions oY, 0P 0y are of the class C* if and only if the

20



constants A, B, C, 5, D, D are set to be

Caa i COS Aja + A, sin A\;a

A=e

Y ’
B _pHea A, COS A\ja — A; sin \;a
A ’
O — oo A, COS A\ja — A; sin \;a
2, . ’ (94)
Do o Ao COS Aja + A;sin A;a
2, ’
~ Caa i COS Aja + A, sin \;a
C=c 2, ’
D _phea A; COs \ja — A, sin )\ia.
2,

Let the constants A, B, C, 6’, D, D be chosen as in the Lemma (cf. for-
mulas ), then the pairs (golD , 4,02) (cp{v , 902) are fundamental solutions of the
equations and (92)) respectively. We will introduce the Wroniskians of the
sets of fundamental solutions, namely

Wy =Wy, k) = oy ¢ — (s@iv)/%
Wp =Wp(u, k) = @ oh — (@f’)' P2

Lemma [59| contains another formula for Wy and Wp.
Remark 58. The expressions Wp and Wy defined in do not depend on .

(95)

Proof. Consider the function Wy (), which is continuous on R (cf. Lemma [57)
and continuously differentiable on the set R \{+£a}. Note that, for all z € R

Wi (@) = ¢ (@) ¢i(a) = () (@) eal) Do,
Therefore, the function Wy (z) is constant. The same applies for Wp. ]
Lemma [57] implies the following statement.

Lemma 59. For every p € I, and k € S*

W, k) = —(Ao cos Nja — A sin \ja) e~ 2,

Wo(p, k) = —(Aicos \ia + A\, sin \a) e %,
where the A\, and \; are defined in .
Remark 60. By equations and Lemma |59 we get

WD WN WN ~ WD
B= =N o=-2
A i  © 2/\0’0 2,

A=—
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Remark 61. Observe that as a consequence of Remark |60] we have

C C
C C 1

c . o _ 1 97
e W, (97)

Now, using variation of constants, we will derive a formula for the function
wy: R — R solving equation . To simply notation, we will write v instead
of wy. Take any f, = f € L*(R) and split it into an odd and even part, i.e.
J = fo+ fe, where

1 1

folw) = 5(f(2) = f(=2)) (z €R), fe(z) = 5(f(z) + f(=2)) (v €R).

Observe, that f, and f. are odd and even respectively. Moreover, we can
consider the functions f, and f. as elements of the space L?(0,00). Solving

is equivalent to solving

L, v, = fo on R, (98)
L,xve = foon R, (99)

when v = v, + v.. Now we will derive a solution formula for the function v,.
Formula for v, can be obtained by the same way. We write as a first order

system
vo= z,
{ 2 = b(z) — fo. (100)

Every solution of the system ((100) has a form

B-enf)ea)

By differentiating (101]) and using (100]), we get

’ (Pf) P2\ 0
: (w?') < (so’z) a (-fo) ’
(&) =t (). (102

D
Modd = Modd(,[L?k) - |:(pé’ ¢2:| 5

and therefore

where

01 Py
_ _ 1 ok — (9 103
M = Moaa(p, k)" = dot Mo {_@2{3/ oD | (103)

det Modd = Wl)(,u, k) .
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By integrating (102)), we obtain

(o) =~ [ @@hds @20,
1D 0 (104)
o) = =55 [ PO (220)

This, together with (101), gives, for all z > 0

o) = = (W00 [ a9 100) ds + aa) [P0 () as) . 105)

By the same reasoning applied for the equation , we obtain for all x > 0

1

i (@) [T 209 ds ) [0 o) as
N x 0

(106)
Recall that w = v, + v, and fr = f, + f., where f, and f, are odd and even
part of f respectively.

By applying Corollaries and-for formulas ((105)) and - we obtain

) = =g (#7'@) [ ale) 19 ds 4o / (s a).

o) = =g (@) [ 205) a5 4 6o [0 1) ),
(107)

ve(z) =

for all z > 0. Recall that Lemma [59] describes the values of Wp and Wiy.

5.3.1.1.2 Derivation of the Green’s function for L,; Now we will
find the representation of the function wy = v in the terms of the Green’s
function. We can rewrite formulas (105 and (106)) as

Vo(x) = {fo Gny)fO() (z>0),
¢ _Uo( - _f(] GD {L‘,y) fo(y) dy (JZ < 0)7
i { 79 Y (x> 0),
‘ ve(—x) = [ Gn(—z y) fe(y) dy (z <0),

where Gy and Gp are the Green’s functions for the corresponding problems

and , ie.

et (@) eay) (0<z<y),
Cnle,y) = { WPt (W) wa(z) (0<y<a),
el (@) ealy) (0<z<y),
Gl ) { el W) pa(r) (0<y <),



where Lemma [59| contains the values of Wy and Wp, the functions ¢, ¢P
and ¢o were defined in the formula , and Lemma [57| described the values
of the constants appearing there. Define the function G: R? — R as follows

%(GN(x,y)—l—GD(x,y)) (.Z‘}O,y}(])

G({L’ y> — %(GN(:Ea _y> - GD(x7 _y)) ("E 2 an < 0)
’ %(GN(—JJ,?/)—GD(—QT,]J)) ($<07y>0)
%(GN(_$7 _y) + GD(_xa _y)) (m < an < 0)

We have that
o(z) = / Gle.y) f(y) dy (z€R).

Notice that
G(l’, y) = G(—Qf, _y) ((QT, y) € RQ) .
Consider the sets illustrated on fig. [f]

le{(x,y) cER*: z< —a,y>ay< —x},

YA
0, Qs
. Q3 Qy
Ql QG
”””””””””” S e
q B ] fhe s Q
7 | 12
- P Lt
_ai a T
0 - Q7 QO
13 ) 1
Qs | Qg )
TR
Qg ey
Qo Qo
QQO QZ3

Figure 6: The sets 21, ..., Qqy.

92:{(56,3/) eER* z< —a,y>ay> —x},

o4

(108)

(109)

(110)



{(z,y) e R?
{(z,y) e R?
{(z,y) e R?
{(z,y) e R?
{(z,y) e R?
{(z,t) e R?
{(z,t) e R?
{(z,t) e R?
{(z,t) e R?
{(z,y) e R?
{(z,y) e R?
{(x,t) e R?
{(z,t) e R?
{(z,t) e R?
{(z,t) e R?
{(z,y) e R?
{(z,y) e R?
{(z,y) e R?
{(z,y) e R?
{(z,y) e R?
{(z,y) e R?
(z,y)

: —a<a:<0,y>a},

:0<x<a,y>a},

:x>a,y>a,y>x},

:x>a,y>a,y<x},
:x<—a,0<y<a},

: —a<a:<(),0<y<a,y<—x},

: —a<a:<(),0<y<a,y>—x},
:0<x<a,0<y<a,y>x},
:0<x<a,0<y<a,y<x},

:x>a,0<y<a},
rx < —a,—a<y<0},

c—a<x<0,—a<y<0,y>uz},

—a<2<0,—a<y<0,y<uz},
:0<x<a,—a<y<0,y<—a:},
:0<x<a,—a<y<0,y>—a:},
:x>a,—a<y<0},

rx < —a,y<—ay>a},
rx < —a,y<—ay<az},
: —a<a:<(),y<—a},

:0<x<a,y<—a},

ra<zy<-—ay< -z},

eER*: a<z,y<-—ay>-—z}.

Inserting the formulas into ([108)), we obtain

G(x7y) =

sin \;x
2Wp +

CcosS A\; &
2WN

2Wn + 2Wp

C C
wn T awg

i el c ;ewuy)_

€

e~ Moy

Ao(y—z) _

D D
2WN + 2Wp
_ AsinMjzcos Ay  Bsindjxzsin iy  AcosAjwcos Ay  BcosAxsin Ay

D D Ao(—z—
§sz + zng ey

eAO(_y_w)

2Wp
__AcosAizsin \jy

2Wp

Bsin M\jzsin \;y

2WhN

AcosNizcos N\iy _ Bsin iz cos Ny

2Wn

2Wp

2Wp

_6_on sin Ay +cos)\iy

2Wp

2Wn

2WN

2WN

_ Acos Mz cos Ay + Bcos \jxsin \;y + Asin M\jzcos \;y _ Bsin Az sin Ay
2W i 2WN 2Wp 2Wp
_ [ coshix _ sin )z 6/\"y
2Win 2Wp
[ C__C ) et 4 (225 + o) =+
2Win 2Wp 2Wn 2Wp
lD

95

€ o),
€ N1 Uy7),
€ Q2 Ug),

((.’I,‘,y) S 923 U 924) .



Using the relations from Remark |60 one can rewrite above formulas as

(e ) e (@.y) € ),
- % + % R % A=Y (z,y) € Q5)
_ % + % eMoly—z) _ % + % ety ((z,y) € Qg),
2)\ sin(i(w — y)) — Zeindsindy _ Adoshacoshy (g ) € (),
G(z,y) = { —zhsin(Ni(x — y)) — ZEnGesmAn _ S Rgeosdal (z,y) € Q11 Uuy),
e N SH;I}\;‘U + Cg;‘i}:’y (z,y) € Q12 Uhs),
— Acos \poosdyy ;‘Vf,;os A4 e sin( Az —y)) — BERGEERAY (2, y) € Qu)
(e T) (z,y) € 02),
— (52 - %) Aol —T+y) (z,y) € a3 UQoy)

Let r1: R — R be defined as

( c C \ g
rl(s)—<2WN+2WD>e (s € R).

Define function r5: R?> — R as

ra(z,y) = Gz, y) =z —y) (@,y) €R?).
Observe, that by ((110]), we have that

7‘2($, y) - T2<—$, _y) ((ZL’, y) S R2) :
We can write the solution of as
o) = o)+ [ o) S dy weR). a1
R
Application of Young’s inequality and Holder’s inequality in ((111)) yields

ol gy < (Il + Il ) 1 e (112)

Now we will derive some estimates of the norms |71 gy, [[72[| 2ge). Observe
that

Il = 3 [0 + 50| )
Ao [Wn  Wp
and
Ir2l e R A
r a Wx | Wp|  2Xx
21l L2(Q4U000) S ‘WD‘ |WN| QN Wn Wp 2)o
5 D 872/\011
||7’2HL2((25U96)< Wij\f Ao
1|lD D € C|e o
I2llexssueen) S5 Wy ~Wp ~ Wy Wo | re o
lI2l < (\A|+|BI ¥ IA|+|B|) 1| ¢ | C |Vara—1+e*oa
T Se 2|Wy ~ Wp |
2/l L2010 U011 URLgURLT) [Wh| (Wi 2|Wy  Wp 2X0
2] W( 11 )e—w ¢, C|Vi-eho
T U | Vizemet
211 L2(Q150018) S [Wp| IWNl 2VA, " |Wy T Wp 2o
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Now we will show, that the values |[ri[| gy and |[ra|/ sy have a bound of
order 3 3, which is uniform in p € I, . This, together with inequality -

will lead to the proof of the estlmates in Lemma [55| part m

5.3.1.1.3 Estimates of the constants In this section we will study
the behaviour of the constants appearing in the estimates ((113) and (114)), as
k — oo.

In order to control the behaviour of Wy and Wp as k — oo, we will use
the following lemma. It will be used later in the proof of Lemma [65( which is
a part of the proof of Lemma

Lemma 62. Assume[S|. There exist constants C1,Cy > 0 such that for all
peT: and all k € S =N\ {k}{])

2 9

Cik < | Ao cos Nja — A sin \;a| < C
< [N\ cos Nja + A, sin A\a| < Cok

Cik

Proof. Because of , the upper bounds are clear. Note that

N A W17 JUA —)\/1—w2‘/;%. (115)

k koo P’ k‘ k—

Consider the sequences (aj},), ., (0;) ey defined by

/\o i .

a = - cos \a — = sin \ia,
7 )\0 .

b = 7 cos Aia + - sin \ia,

Recall that by A = \/ (1 -w?V;) 5 B2 _ 1. By condition in the
assumption and by Lemma and relatlon the sequences defined
above have finitely many limit points, which do not depend on the value of
W e E Let A%, B> denote the sets of limit points of the sequences (af) kEN
(b)) gen Tespectively. We will show that the sets A% and B> do not contain
0. Suppose that 0 € >°. Then, we have that

V1—=w?V, %ﬁ—\/—(l—w2%) %gzo, (116)

where £ and ¢ are one of the limit points of the sequences (cos Aja), .y and
(sin A\ja),cy (note, that the sets of the limits points of these sequences do not

5Recall that the values A;, A\, depend on k and pu, cf. formula for definitions of A;
and A,.
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depend on p € I7 ). Moreover, there exists a subsequence (k,),y of natural
numbers, such that

sin \;(k,) a 2 ¢ and cos (k) a =k (117)

V—00 v—00

Let T denote the set of limit points of the sequence (tg A\ja),.y. Relation
(116) is equivalent to

1 — w?V
R U Gl VR
K —(1 —w?V;)

which gives a contradiction, hence 0 ¢ 2*°. By similar arguments , we prove
that 0 ¢ B>.

The sets 2> and B°° consist of finitely many points, therefore, there exists
e > 0 such that the sets 2> and B>, do not contain 0. where we use the
notation X, = (J,. (2 —€,2 +¢). Using the fact that the sequences (ay),
and (bf)) ey converge uniformly, with respect to u, on the set I , there exists
K € N such that for all p € I;jl and for all k& > K we have CLZ € A and
by € B, Let €7 = min{|z|: z € A UBX}. Then we have that, for all
el i and k£ > K

Cik < |Aocos \ja — A;sin \ja| and Chk < |\ cos \ja + A, sin \al .

By condition in Assumption [S| we have that the right hand sides of the
expressions above can be equal to 0 only if k£ = ky and p = py. This ends the
proof. n

In Lemma in section we show, that the assumption is
necessary in Lemma
Remark 63. Now we will estimate all of the constants appearing in the in-

equalities (114]):

e note that all of the constants A, B, C', D, C and D depend on g in a
locally continuous way,

e there exits a constant M; > 0 such that for all u € [_f“ and all k£ € S*

o .,c
Wy W

1

Ao

@1<M1

— )\_g\ﬁa

e by and Lemmas [59and[62] there exists a constant M, > 0 such that
for all u € I and all k € 5™

( 1 1 ) 6_)“’a M2
+ < 3
‘WD‘ ‘WN’ \/>\o k2

o8



e there exists a constant M3 > 0 such that for all u € I_ﬁl and all k£ € S#

C . C | V1I—ePea _ My
Wy Wy 2\, k27

e by Lemmas and [62] there exists a constant My > 0 such that for
all p € Ig, and all k € S*

D D

6—2/\oa M4
_.I_ JE——
Wp  Wnx

S 73
Ao k?

e by Lemmas , an and formula (]@ there exists a constant M5 > 0
such that for all p € I% and all k € S*

6_2)\0(1 M5
< —
Ao k2

D D C C
Wy Wp Wy Wp

e by Lemmas and [62] there exists a constant Mg > 0 such that for
all p € I and all k € 5™

(|A|+|B\ |A|+!B|> o M
[Wh| Wyl ) =k

e by formula (97)) there exists a constant M; > 0 such that for all u € I_jjl
and all k € S"

‘05

VAd,a — 1 + e~ 1roa - M-

2, k

Wi

Wy W

Remark 64. As a consequence of Remark 63| and inequalities (113]) and (114])
we obtain that there exists a constant M > 0 such that for all £ € 5" and all
peli

M
171l gy < 72
M
||7“2||L2(R2) < T
Thus, using inequality (111]), we get that
M
101l Ly = llwnll 2wy < 7 [1fxll Loy -
®) ® S ®)

Moreover, it seems that ||r2[| ) are of order 1. Note that the

Q10U211UQ16UQ17 E
remaining norms can be bounded by terms of the order at least —.
k2
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5.3.1.1.4 L*(R) estimates for the functions w; and w), Now we are
ready to prove the following statement.

Lemma 65. There exists a constant M > 0 such that for all p € E, all
ke S =N\{ki} and all f € L*(R)

M
Hwk”L2(R) < T HfHL2(R) ’ (118)
Hw;cHLQ(R) M Hf”LQ(R) g (119)
where wy, = v is as in the formula ((109)).

Proof. Remark gives (118). Recall ((107). By similar reasoning, we get
(T19). O

5.3.1.1.5 Soundness of the functions w, Now we will show, that
the function wy = v defined in (109) solves the equation (89).

Lemma 66. Let € I5 and k € S* be such that (u, k) # (1, k1). For every
f € L*(D), the function v defined in (109) satisfies the equation almost
everywhere in R.

Proof. Recall that f = f, + f., where f, is the odd part of f and f. is the
even part of f, and that v = v, + v., where v, and v, are as in and
respectively. By applying Corollaries and , we can differentiate
formulas , and obtain that for almost all z > 0

W) = (w?"(aﬁ) [ ) 1.5) ds = @) alo) 1)

+ 5 () /O TGP(5) fuls) ds+ (@) P (@) fula) )

8- (so?”<x> /:O 22(5) ful) ds + () / AL ds) |

Since the functions ¢ and o, solve the homogeneous equation (92)), we have
that for almost all x > 0

2

L,u,kvo — _'U(/;, + bu,kvo = fo'
By same argument, we obtain, that for almost all z > 0

(188) 1"
L, wve = —vg + by pve = fe.

This finishes the proof. n
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5.3.1.2 Proof of Lemma
Recall the ansatz . We define the function w: D — R as
i T
w(zy, r3) = k; wg(z3) mn(xF:vl) : (120)

where the functions (wy),cg. are as in Lemma [55]

Lemma 67. Assume . Then for every f € LZ(D), the function w defined in
([120) is an element of the space H,(D). Moreover, the part of the Lemma
[52 holds true.

Proof. By applying Lemma |12 and the inequalities from Lemma 55| part
we obtain

2

ow M 2 2
| < 3 R Il < M,
LILAD)  pesm
dw ||? 2 2
- < Y M| fellzam < MIFII a0

keSH1

where the constant M does not depend on the choice of 1 € I_ﬁ and k € S =
NA{A}- O

Lemma 68. For every f € L2 (D) the function w € H,(D) defined (120)
solves the equation in the sense of the Definition .

Proof. By Lemma[55] we have that for all ¢ € C>°(R) and all k € S*
/ wi o' + by (z) wppdr = / frepde, (121)
R R

where b,,; is defined in (87). Take any ¢ € C3%, 5p,(D).

/wa dr = Z /_I;/Rfk(iEg) sin(k%:m) U(xy, x3) drs dry

keSH

3 /Zéw;(xg)sin<k%$1> (@, x3)

keSH

i T
+ by (23) wi(z3) sin (kﬁzzq) (xq, x3) deg day

:/ wsthy + (1 — w?V (z3)) withy + pwyp dz,
D

hence the function w is a weak solution of the equation (81J). O
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5.3.1.3 Some remarks about the eigenvalues of the operators L,

In this section we will identify the eigenvalues of the operator L, ; defined in
considered on the space H'(R). Moreover we will give a characterization of
the property the operator L, defined by the formula has 0 as a eigenvalue.
It is stated in the Lemma [73]

We will begin with discussion of the spectral properties of the operator

Laxv = —" + b(z) v, with b(z) = { bi, |z| <a

by |2 >a namely we will study the
eigenvalue problem

—v" +b(x)v = v on R,
where v € L?(R).

Lemma 69. Assume that b, > X\ > b; are such thaﬂ

V=A+b, = /b + Atg\/—b;i+ \a or

(122)
\ _)\+bo = —\/ —bi—f—)\Ctg\/ —bl-+)\a,
then the equation
— 0" 4+ b(z)v = Xv on R, (123)

has one dimensional set of solutions in the space H'(R). Moreover, if v €

H'(R) \{0} solves then X\ satisfies condition ((122)).
Proof. Function of the form

Aeimx_{_Be—imx (’x| <a)’

v(z) = ¢ Ce VAtbelz=a) (x> a),
De\/f)\ero(era) (ZL‘ < _a) ’

solves the equation —v” + b(z) v = v for x € R\{+£a}. The constants A, B,
C, D are chosen in such a way, that the function v is of the class C'. This
leads to the following system, with unknowns A, B, C, D:

Aei\/—bﬁ—/\a + Be_i‘/_bi""\a = C
Ae—i\/ —b;+Aa + Bei\/ —b;+Aa — D

1AV=b, + Xeltv—bitrhae B /ChF Ne~Wobithe — _CO/TXN T,
iA/=b; F Ne iV-bitAhae iR/ NelVobitha  — DN T),

The above system has a non-trivial solution if and only if the determinant of

6¢cf. Remark
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its matrix is equal to 0. Computing the determinant we find

eima eiima -1 0
det e_ima eim“ 0 -1
Vb F NtV hiNe TN e e o 0

RV Yy WO VATED L gy v W VALEON 0 —V/=A¥b,

et (IV=bi F XN+ V=A+b,) eV litre (V= XN4b, —iv/=b;i + X)e "V bitre
(IV=bi + X = V=X +bo ) eVt (VoXF b, +iy/=bi + X) eV hitAe

=- (ix/—bz- FA VA b ‘)2 eHVThitAe g (i\/—bi XN = V=X + b ‘)2 e MV mbitra

The determinant is equal to 0 if
<i\/—bi A+ A+ bo‘) etV bitha
= i(iV—bi A —V=A bo‘) etV hitAe
which is equivalent to the condition ([122]).
In order to finish the proof, we have to show that A is a simple eigenvalue.

Let ¢, % : R — R be eigenfunctions corresponding to \. We will show that the
functions ¢ and 1 are linearly dependent. Consider

[P O] v — e ote
W) = det | 500 50 — o) ') = o0 vt

Since both of the functions ¢ and v solve the equation (123]), we have that
W'(z) = 0, and hence W (x) = const. = ¢. Since

lim ¢(z) = lim ¢'(z) lim =d(z) = lim ¢'(z) =0,

r—+00 r—F00

we have that ¢ = 0. Let zg € R be such that ¢'(z¢) = 0. By the uniqueness of
the solution of the initial value problem, we have that ¢(zg) # 0. Since ¢ = 0,
we have that ¢'(z¢) = 0. Then, again by the uniqueness of the solution of the
initial value problem, we have that ¢ (xg) # 0. Hence, there exists a € R such
that

ap(wo) = (x0) ,
ay'(xg) = V' (z0) = 0.

Finally, by the uniqueness of the solution of the initial value problem, we have
that ap = 1. O]

Remark 70. Assume that A € R is an eigenvalue of the operator L, ; defined in
(89). Let o, € H'(R) \{0} be such that L,y = Apg. Consider the function
®: D — R defined as

. (T
O(x1, w3) = r(3) mn(k:Fa:l) :

Note that ® € H}, (D) and L,® = AP, hence A is an eigenvalue of the operator
L,.
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Remark 71. Recall . Note that
o Wy =Wn(u, k) =0 if and only if

V(1 k) = v/ =bi(p, k) tg /=bi(u, k) a,
o Wp=Wp(pu, k) =0 if and only if
Vol k) = —v/=bi(p, k) ctg /=bi(p, k) a.

The proof follows from formula and Lemmal[59} The condition[S¥expresses
the fact that that for all £ € N and for all p € If .

Wy (p, k) =0or Wp(u,k) =0

if and only of k = ky and p = p.

Remark 72. Assume (S| Let € I5 and k € N. The operator L, has 0
eigenvalue if and only if (i, k) = (p1, k).

Lemma 73. Assume and let i € T;, . The operator Ly,: Hyy(D) — L2,4(D)
defined in[80 has zero eigenvalue if and only if u = py. Moreover 0 is a simple
etgenvalue of the operator L, , i.e. dimker L, = 1.

Proof. Assume that U € H!, (D) \{0} is such that L,V = 0. The function ¥
has a form

U(zy,23) = Zwk sin(k%xl) for almost all (z1,23) € D.

peN

Then, for every k € N, we have that L, ;1 = 0. By Remark , we have that
Y # 0 if and only if kK = ky and pu = py.

It remains to show, that the eigenvalue is simple. Suppose that ¥, & €
H'(D)\{0} are such that L,, ¥ = L, ® = 0. Write

U(zy,x3) = Zq/)k sin(k:%a:1> for almost all (zq,x3) € D,

neEN

. (T
O(xy,23) = Z(bk &n(k:Fa:l) for almost all (z1,x3) € D.

neN

We have that for all & € N, that L, = ¥ = L, 1 = ¢ = 0. By Remark
we obtain, that ¢, # 0 if and only if £ = k;. We have the same for the
functions (@) ey 1.6, ¢r # 0 if and only if k& = ky. Since the operator L, x,

has zero as a simple eigenvalue, we have, that for some a € R ¢, = av)y,, and
hence & = a V. ]

As a consequence of Lemma [52| we get
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Remark 74. Assume [S| The operator L, has an inverse T}, = L*: L2,(D) —
H! (D) if and only if u # py. Moreover ker L,,, = lin {¢}, where p(z1,x3) =
P(x3)sin (k1 Ezq) with @ € ker Ly, .

Remark 75. In the Examples and [50] we present a choice of the constants
a, w, P, V, and V; satisfying assumption [S] in such a way,

We will finish this section with determining the essential spectrum of the
operator L, ; defined in (8§).

Lemma 76. Let VW € L*(R) and assume that the set supp W compact.
Consider the operators A, B: H*(R) — L*(R)

d2
A=——— 4V

dx2+ ’
B=A+W.

Then Oess(A) = Oess(B).
Proof. Define an operator T: L*(R) — H*(R) as
T=(A-i-1d)"'—(B—-i-I1d)"".
We will show, that the operator 7" is compact. Note that
T=—-B-i-Ild) " (A-B)(A—i-1d)"".

Let (fy),en be a sequence of L*(R) functions, which is bounded. Since the

operator (A —1 - Id)_1 is continuous, we have that, there exists a constant
M > 0 such that

A = 110 )y < M Mol ey (m €.
Observe, that (A — B) = W.. Therefore there exist L > 0 such that
supp (A — B)(A—i-1d)"'(f,) C[-L,L] (n€N),

By [1, Theorem 6.3, p. 168], the space H'(—L, L) embeds compactly into
the space L?*(—L, L), hence the sequence (A — B)(A—1- Id)fl(fn))nEN has
a convergent subsequence. Using the fact that the operator (B — 1 - Id)_1 is
continuous, we have that the sequence (1'f,), . has a convergent subsequence,

which shows that the operator T is compact. In order to obtain the claim, we
apply [16, Theorem 5.35, p. 244]. O

As a consequence of Lemma we get the following.

Lemma 77. Let L, be as in . Then Cess(Lyk) = [bo(k, 1) , +00), for all
pe s and k € N, where by(k, 1) is as in (83).
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Proof. Consider two operators

d2
A= —— bo ka 3
42 T ek, )
B=A+W,

where W = bz(:uv k) - bo(:ua k) |x| <a,
0 |z| > a,

that B = L, ;. By Lemma , we have that Oess(A) = Oess(B) = Oess(Lyk)-
Moreover, we have that 0ess(A) = [bo(k, ) , 00). O

. Note that supp W =[—a,a] and

5.3.2 About the equation E;w =f

Recall that p; € R is such that S"' = N\ {k;}, and for all u € J; , S* = N,

where the set S* was defined in (65)). Zero is a simple eigenvalue of the operator
L, (ct. (80)). We formally introduce an operator L, by the formula

—~

Ly = Ly +Py, (124)

where the operator L, is as in and Pyw = (p, w) o) ¢, With ¢ € ker Ly,
such that [[¢][ 2 py = 1.
In this section we will consider a linear equation of the form

Z;w L,w+P,w= fonD, (125)

where f € L2,4(D) is a given function. We seek for w € H! (D) being a
weak solution. The existence of a solution operator for this problem is stated

in Corollary [36] -
For n € R and k € N consider a family of operators L, defined as

— | L,xu, k # k1,
leku - { Lu’lu, _I_P(Zu’ k — kl, (126)

where Psh = (h, §) ) @, for all h € L*(R) with & being the ki-th Fourier
coefficient of ¢, i.e.
~ . ™
p(z1,73) = P(x3) Sln(hﬁh) )

and where the operator L, is defined in (89).
We write the functions w and f as

w(wy, x3) = Zwk@g) sin(k%:m) ,

keN

f(zy,x3) = ka(xg) sin(k%xl) .

keN

(127)
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Then the equation (125 becomes

The existence result (in case of k = ky) is stated in Lemma [85 The equation

([128) for k # ki was studied in section [5.3.1.1] (cf. Lemma [55)).

In the following we will consider the problem of existence of the inverse of
the operator L, .

5.3.2.1 Self-adjointness of the operator E,;;l
Recall the following fact.

Lemma 78. Let v € L*(R). Then [(—1)" ¢Pvde = [ wpdr for all ¢ €
C>(R) if and only if F(w) = (i€)* F(v), where F denotes the Fourier trans-

form.

Lemma 79. v € H*(R) if and only if v € L*(R) and there exists w € L*(R)

such that
/gp’/vdx :/wgodx (¢ € H*(R)) .
R R

Proof. 1t is sufficient to show the “=" part. Define

h= f—l(l f€2f(—w+v)). (129)

We will show that h € L?*(R) and h = v’ (i.e. h is a weak derivative of v).
Observe that

(€ €R). (130)

We have that

LYR)
< S IFw+ )l = 5 - + ol
therefore h € L?(R). By Lemma 78] we have that
F(—w) =&F (). (131)

Write "
@@y i
A
= e

Using the Lemma [78 again, we obtain that v' = h.

Fl—w+v) 2 ieF ().
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Lemma 80. Let V € L®(R). Define the operator A: H*(R) C L*(R) —
L*(R) by the formula

Av=—v"+V(z)v (v e H*(R)).

Let h € H*(R) \ {0} be such that Ah = Ah for some A\ € R. Define £ =
L2<R)m{h}LL2(R) and $) = HQ(R)ﬁ{h}LLQUR). Then, the operator A: $§ C £ — £
15 self-adjoint.

Proof. The adjoint A* of A is defined as follows. Dom(A*) is the set of all
v € £ such that, there exists w € £ with

(Au,v) oy = (U, W) o) (u € Dom(A) = §). (132)
We put A*v = w. Note that
<Ah7U>L2(R) = </\h7U>L2(R) =0= <h7w>L2(R)'
Therefore, the formula (132)) holds true for all u € H?(R) i.e.
(A, 0) gy = (u, W) 3w (v € HA(R)). (133)
The formula ((133)) is equivalent to

/R—u”vdx:/R(w—v(x)v)udx (u € H*(R)),

which means that v has a second weak derivative given by —w 4 V(z)v (cf.
Lemma [79). We have that

—" +V(z)v =w,
hence A*v = —v” 4V (z) v, so that Dom(A) = Dom(A4*) = § and A = 4*. O

Lemma 81. For every pn € R the operator fl:_k/l H?*(R) C L*(R) — L*(R) is
self-adjoint.

Proof. Note that the operator L, x, is symmetric. By [12, Theorem VIIL.3, p.
256] it is enough to show, that

im (f,;,; - i) = L*(R),
i.e., for every f € L*(R), there exists v € H*(R) such that
e . (126) .
(Lm + 1> v (L AP 1) 0= (134)

Denote £ = L2(R) N{h}"2*® and $ = H*(R) N{h} =*® . We have

L*(R) =lin {3} ® £,
H*R) =lin {5} @ 9.
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Write f = s¢ + g with s € R, g € £.
Note that by Lemma the operator L, i, 5 is self-adjoint, hence, again
by [12, Theorem VIIL.3, p. 256] for every g € £, there exists w € $) such that

(Lmkl + i) w = ¢g. Define t =
is an element of H?*(R). Then

m Observe that the function v =t + g

P

(Z/};k/l:i:i)v:t(u—ul—i—lii)@“—l—([,%kl:I:i)w:s(ﬁ—t—g:f,

hence ({134)) holds true. O

5.3.2.2 Properties of the spectrum the operator L/,;;;

—~—

Lemma 82. Assume S|, then 0 is not an eigenvalue of the operator L, j, for
all € I= .
K1

Proof. Suppose that there there exists a function h € H?(R) \ {0} such that

Lyklh-Luk1h+ <§57 h‘>§5:07 (135>
for some u € I_f“ Since Ly, k@ = 0, we have that

Ly = — ) @. (136)

After testing ((135]) with ¢ we obtain

0= <Luyk1hv 6> + <(15> h> = <Lu,k16> h> + <907 > ! (/L p 1) <h 6> :

If 1 is in a sufficiently small neighbourhood of p;, we obtain that (h, ) = 0,
and therefore L, ;,h = 0 (cf. equation (135))), i.e., 0 is an eigenvalue of the
operator L, . By Remark [72| we have to have that p = 1, and therefore
h = @. This, together with (h ) = 0 gives a contradiction. O

Lemma 83. Assume . For all u € E the value 0 is isolated from the spec-

—~—

trum G(L# kl) In other words, there exists d > 0 such that inf 0(5;;;)’ >0,
for all p e [5

Proof. Note that for all © € R the operator L, — L, = Pz is a compact
operator. Therefore, by [16l Theorem 5.35, p. 244], 0‘655<f/:;;> = Oess( Ly )5

which implies that 0 is isolated from O (LMH). Moreover by Lemma , we

have that 0 is not an eigenvalue of Z/L:k/l for all u being in a neighbourhood of

p1. By Lemma [77, we have that Oess(Ly, ) = [bo(k1, 1) , +00), where b, (k1, 1)

is as in the formula (83). Let § = min ,c7=—b,(k1, ). By the value ¢ is
I

positive. ]
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5.3.2.3 [Existence of the inverse of the operator L,

Lemma 84. There exist constants B > 0 and C > 0 such that for all p € I_/‘jl
and all g € H*(R)

Iolrve) < By 2

— 2 5
L8|+ € 9 my -

Proof. Note that there exists a constant B > 0 such that for all g € H*(R)

2
912y < B2 (1= Wiaw + lolliag) (9 € H2®).  (137)
Let Vix = max{(l — wQVO)2 (1 — w2‘/;)2} k?;r. Observe that, there exists

a constant C' > 0 (which does not depend on the value of p € (u; — €, 1 + €)),
such that for all g € H%(R)

2 2 r 2 2
I8 iz + gl = Lo —0) 9 —Poa| . + e
<2|| T, + 21Pal e, + 2(Vinas + 1+ 1) gl
whr || o) 291l Lyw) LAR)
2 )
<2|Lig] . + Clliam
Above estimate, together with inequality (137)) gives the claim. O]

Lemma 85. Assume . For every u € I_f“ and for every f € L*(R), there
exists a unique w € H*(R) such that

L,jpw=L,w+Pzw=f.
Moreover, there exists a constant M > 0 such that

lwll gy < Ml ey (F € LAR), e L)

Proof. By Lemmathe inverse of the operator f,;; H?*(R) — L*(R) exists,
for all 1 in some neighbourhood of py. It remains to show that the norm of

N1
the operator (L#,m) : L*(R) — H?*(R) can be bounded by a constant, which

does not depend on p € I_ﬁl In order to simplify the notation denote A = E;,
with Dom(A) = H*(R) and H = L*(R).
Let (P,),cg be the family of spectral projections of the operator A. Define

P :/ 14P,,
0

0
P~ :/ 1dP,.
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Denote H* = P*(H), then H = H™ @& H~. The operators A* = P*A =
AP*%: Dom(A*) = Dom(A) N H* — H?* are self-adjoint. Moreover, the op-
erators AT, A~ are positively, negatively definite, respectively. Since A =
AT 4+ A~ we have that A~! =(A")"" Pt +(47)"" P, and in a consequence

A= < A + [l (138)
AL +‘
-1 H( )/ H2(R) ||U||H2(R)
H(A ) H = su - = s TRy ET—
freH+ If HL?(R) u€Dom(A™T) |A uHLQ(R)

Using Lemma [84] we have that there exist constants B > 0 and C' > 0 such
that

2 2 ‘
V2 1A Ul + Cllulg
<B sup )

u€Dom(AT) HA_‘"LLH LYR)

(ar)™! (139)

Applying Bunyakovsky-Cauchy—Schwarz inequality for all v € Dom(A™) we
have [(ATu, u)| < ||u||L2(R) ||A+u||L2(]R)7 hence

2 4
HUHL2(R) < HUHL2(R)

< (u € Dom(A™)). (140)
||A+U||i2(R) <A+U;U>2
By [13, Theorem 4.3.1 p. 78], we have that
A+
in w =inf o(A*) > 4. (141)
ueDom(A*) {|u| o g,

” 2
Using inequalities (140) and (141)), we conclude that Mliag < 5% for all

HA+U’H§2([R>

u € Dom(A™") and in a consequence, together with ((139)) gives

l(ar)™ < B\/2+5€2. (142)

The same argument can be performed for the operator —A~. This, together
with (138)) finishes the proof. O

5.3.2.4 Existence of the inverse of the operator E;

We will summarise this section with a statement about the existence of a
solution of the equation ({125). As a consequence of Lemmas |55 and [85( we get
the following:

Corollary 86. Assume . Then for all p € [_jl and all f € L?,4(D) there
exists a unique w € Hxy (D) solving weakly equation (125)). Denote T, (f) = w.
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Moreover, there exits a constant M > 0 such that for all p € E and for all
f € Lia(D) ’

Proof. Recall ansatz described in ([127) and ([126)) for the definition of the
operators L, ;. As a consequence of Lemma , we have that:

< M| £l 2oy -

T.(5)|

HY(D)

(a) For all k € S" = N\{k}, all u € ]_;jl and for every f;, € L*(R) the
function wy, € H'(R) is a unique solution the equation (128]).

(b) There exists a constant M > 0 such that for all k € S*1 = N\ {k}, all
p € I5, and for every fi, € L*(R)

M
“wk“L?(R) < T kaHL2(R)7

Hw;c“L?(R) <M ka”L2(R)'

Lemma 85 implies that

(c) Forall p e I_ﬁl and all fy, € L?*(R), the function wy, € H'(R) is a unique
solution of the equation (128)) (with k& = k).

(d) There exists a constant M > 0 such that for all ; € I and all f, €
L*(R)
||wk1||H1(R) M ||fk1||L2(R)‘

Having @, @ and @ we proceed as in the proof of Lemma . O

Remark 87. A possible choice of the parameters a, w, P, V,, V; and p; such
that the assumptions of the Corollary |86 are satisfied was described in the

Examples [4] [49] and [50}
Remark 88. For all p sufficiently close to pq

Lu(p) =1+ p— ) e, (143)
T(p) = ﬁ : (144)
= h. @) rap 1
Tu(Pph) = %@ (i € Hoqq(D)) - (145)

Proof. Calculate

~ (@3
Lucp!Lu¢+P@w=Lu1¢+(u—u1)w+w=(1+u—m)so-

=0
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S N N
Since T}, = (Lu> and the operator 7}, is linear, we have the claims (143)) and

144). In order to prove ([145)), for every h € Hl, (D) calculate
odd

-~ — @ (h 90>L2(D)
T,,(Py,h) =T,((h, = —
u(Poh) u((h, ) ) 1— - i

]

5.4 Application of the Crandall-Rabinowitz theorem for
the semilinear equation

In this section we will apply the Crandall-Rabinowitz theorem, in order to
prove Theorem 28 Recall assumptions [S| and [S,|

5.4.1 Reformulation of the problem

In this section we will reformulate the problem in a way suitable for the
Crandall-Rabinowitz theorem.
As assumed in [S]let 11 € R be such that 0 is a simple eigenvalue of the

operator L,, (cf. Lemma [73). Rewrite a’
L,w+P,w = g(z3, w) +P,w on D, (146)

where Pow = (@, w) o) ¢, With ¢ € ker L, such that [|¢[;5p = 1. By
Corollary (86| there exists € > 0 such that for all yu € (u1 — e,y +¢), the

operator j); L, + P, is invertible and /T: = (L, +P,) " L2y(D) —
H!,4(D) is bounded and continuous with respect to p € (uy — €, g + €).

o

Define F': Hl (D) x (11 — e, 1 +€) = Hlyy(D) as
Flw,p) = w = T,(g(-w) + Pow) (w€ Hyy(D),u€1;,).  (147)

Note that finding a pair (w,u) € Hlyy(D) x R such that F(w,pu) = 0 is
equivalent to solving the problem described in ((146)) and, in a consequence,
equivalent to solving the problem (/58)).

5.4.2 Statement about the regularity of the function F

In this section we will derive some statement about the differentiability of
the function F' defined in ((147)). Our goal is to show, that the Remark
is applicable for function F. Lemma is the main result of this section.

For writing the derivatives with respect to real arguments, we will use the
convention described in the Remark 140

At this point I want to mention, that idea of introducing the projection P, comes from
Peter Rupp.
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5.4.2.1 Differentiability of the mapping u — /T:
Now we will discuss the differentiability of the mapping

R > p+— T, € L(L*(D), Hoga(D)) ,
-1
where the operator T, = %) (cf. formula (124]) for the definition of the

operator E; and Corollary @ for the existence of the operator ﬁ)

Lemma 89. The mapping R > p— ﬁ € L(L*(D), HL (D)) is of the class
C* in an open neighbourhood of yy. Moreover

dT, = =~
d—; = -T,0T,, (148)
for all p sufficiently close to ju;.
Proof. First we will show that for all y sufficiently close to py
—— £(L¥D),HY(D)) ~
Lyt 4 ) T,. (149)

h—0

Indeed, note that by Corollary |86| there exists ¢ > 0 and M > 0 such that for
all p € (uy — €,y +¢) and for all f € L?(D) such that

|7y < €My (150)
Denote
v = T#-i-h(f) ) (151)
w="T,(f).
Note that (151)) is equivalent to
Lyeno =1 (152)
L,aw=f.

By (152) we get

—

L,(v—w)+hv=0,

which is equivalent to .
v—w=—hT,(v).

With the aid of (151f), above relation can be rewritten as

—_~— —~

Toonf) = Tu(f) = =T (Tia(h)) (153)
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Denote B = Bpzpy (0, 1). Now, for p sufficiently close to p; and h sufficient
small, we calculate

—

ToenlF) = Tul) w [T (T
wp |50 = 1) ) E s 0| (Teca (),
? |h| C?,

which proves ([149)).

For p and p + h sufficiently close to p; consider the quotient

—_~— —

Tuin(f) = Tul(f)

sup ; +T,(Tu() .
|- )+ T

feB

by relation ((149)), which proves the fact that the mapping R 5 pu T: €
L(L*(D), H?4(D)) is differentiable in an open neighbourhood of ,u1 and justi—

fies formula (148)).

in an open neighbourhood of p;. The Clalm follows by 1nduct10n O

5.4.2.2 Differentiability of the function [
We will apply Lemma 21| and Lemma [89| for the function F' defined in ((147)).

Lemma 90. Denote I, = (u1 —¢&,p1 +¢€). There exists ¢ > 0 such that

the function F: Hlyy(D) x It — Hlq(D) defined in (I47) is of the class
C'(Hlyq(D) x Ig , HLyy(D)) and the differential DY F(w, 1) exists and is con-
tinuous for all w € H'(D) and p € I, . Moreover for al w,h € Hlyq(D) and

all pe I,

D, F(w, 1) = T,(T,(g(- w) + Paw)) (154)
Dy F(w, 1) h = h—ﬁ(%(-,w)hwt%h), (155)
D2, ) h =T, (T G wnn+ et ) ),
S
in particular, for all p € If,
Dy F(0,p1) =1y p) — T, 0 Py, (156)
D2 F(0,11) = T, 0T, 0P, (157)

Proof. The proof follows from Lemmas[21]and 89 and the fact that the operator
T, is linear and continuous. ]
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Remark 91. As a consequences of the relation (145 in the Remark @ we can
rewrite relations (156)) and (157) as

<h?90>L2(D)
D,FO,u)h=h— ———,
(0, ) —
<h7 @)iQ(D)
D3, F(0, 1) h = ————=50,
! 1+ p—m)?

for all h € H44(D).
In order to apply Remark [142] we need the following statement

Lemma 92. Let B denote a closed unit ball in H' (D), then

sup HDwF(U}, M) h - DwF((]? ,U,) h - DfuwF(07 ,LL) [’U), h] HHl(D)

ue[ﬁl,heB (158)
= oIl )
and
reli,

Proof. We will verify condition (158]). By Lemma
D%, F(0, p)[w,h] =0 (w,h € Hygy(D)) -

Using Corollary [86] we get that there exists a constant M > 0 such that for
all u € I and all f € L*(D)
T,

|70

By (155)) from Lemma [90| we get for every p € I and h € B that

7 eun)

iy < Mz (160)

IIDwF (w, 1) h — Dy F (0, ) hHHl(D) = ‘

HY(D)
9
Os L2D)

Applying Lemma [21{ we conclude that condition holds true.
Now we will proof . By the assumption [S7l we have that for almost
all x3 € R
g(x3,0) = 0. (161)

Observe, that by Syl we have

taJrl
< .
a(s) a—+1

t
/0 %(m, 5) ds (162)
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By formulas (I54) and (I57) from Lemma [90] we get for all w € H'(D) and
all p e I,

L0 Ty(g(w))|

2
< M7 [g( w)l 2y -

Hence, the claim ((159) follows from Lemma [20| and ((162)). O

5.4.3 Algebraic properties of the function F

This section is devoted for deriving the statements, which will be used, to

verify assumptions (261)) and (262) in Theorem applied for function F
defined in ({147]).

Lemma 93. Assume S| and[Sy, then
ker D, F'(0, 1) = ker L,,, .
Moreover dimker D,, F(0, 1) = 1.
Proof. 1f h € ker D, F(0, p1) (cf. formula (156)), then
h—T,,P,h =0,
which is equivalent to
L, h+P,h—P,h =0,
which means that h € ker L,,,. The rest follows from Remark O
Lemma 94. Assume S| and[Sy, then

dimker D, F(0, 1) = codim im D,, F'(0, 1) = 1.
Proof. We will show that
H! (D) = imD,F(0, 1t1) ® ker D, F(0, 1),

which together with the Lemma (93| will prove the claim.

Note that h € imD,,F(0, 1), if and only if, there exists z € Hl,,(D) such
that h =z —(z,¢) 15 p) . Moreover h € ker D, F'(0, p11) if and only of & = ¢,
for some £ € R. Observe, that for all h € Hl (D)

h=h— (h, §0>L2(D) ¢+ (h, 90>L2(D) ®;

~
€im Dy, F{0,11) €ker Dy, F(0,111)

hence Hly (D) = im D, F (0, p11) + ker D, F'(0, p1). Suppose that h € H};,(D)
is such that h € imD,,F(0, 1) Nker D, F'(0, p11). Then, for some £ € R and
z € H'(D), we have that z — (z, gp)LQ(D) = £p. After multiplying this relation
by ¢, we get that 0 = &, hence h = 0, which means that im D, F(0, x1) N
ker D, F'(0, 1) ={0} . O
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Lemma 95. Assume @ and@ then
D?U},LF<O7 :ul) ¥ ¢ imeF<0’ :ul) :

Proof. Suppose that waF(O,ul)gp € imD,F(0, 1), i.e., there exists some
Y € H!y;(D) such that

D%u,uF(Ov Ml) ¥ = DwF(07 Ml) wv

which is equivalent to (cf. formulas (156]) and (157)), for the definitions of the
corresponding operators)

T#l <T,u1 (90)) =9 - Tul (P@w> :
By Remark [88 we can rewrite above as
=P — (V) [y p) P-
By testing above with ¢, we get

1= <90790>L2(D) = <<P,¢>L2(D) - <907¢>L2(D) = 0.

Contradiction. ]

5.4.4 Proof of the main result for the semilinear wave equation

Proof of Theorem[28 In order to obtain the statement, we will apply Re-
mark for the function F': H}4(D) x I — Hj4q(D) defined in (147).
Note that by Lemmas [90| and [92 the function F' satisfies the regularity condi-
tions. The assumption is fulfilled by Lemma . The assumption
is satisfied due to Lemma [95] O
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6 Quasilinear wave equation

In this section we will consider the quasilinear wave equation derived in
section [L11

We look for polarized travelling wave solutions of the equation ([12)). i.e.
solutions having the form

0
E(a:,t) = | u(r; —wt,x3) |,
0

where the function v is 2P-periodic in its first variable and has some decay in
its second variable. The profile u = u(x1, z3) has to satisfy the equation

— Au + w2 (V(.ﬁlﬁg) U1 + F(ZEg) <3U2U11 + 6UU%)) = O, (163)
on a strip D =(—P, P) x R.

6.1 Preliminary remarks and examples concerning the
quasilinear wave equation

In the following example we will explicitly construct some coefficients and a
solution of the equation (163]), which can be written as

—up1 —ugz +w?V (23) uny +w T (w3) (Jul*w),, =0 on D =(—P, P) xR, (164)

where we look for a function u = u(z, x3) being 2P-periodic in its first variable
and having some decay in its second variable.

Example 96. Now we will construct examples of coefficients V', I', for which
we can solve ((164]). If we write u = 88—;1 for some function z, then the function
z has to satisfy

—2111 — 2331 + WV + Fffax% (|21‘2 Zl) =0on D,
and by integrating with respect to the x; variable, we will get
— 233 —i—(w2V — 1) 211 4+ Tw?o,, (|21]2 21) =0on D. (165)
After separating the variables
2(z1,23) = a(zy) b(zs) (v, €(—P,P),x3 € R),

the equation (165)) can be rewritten into the form

/
—ab” +(w?V (z3) — 1) a"b + w’T(z3) (a’3> b> =0 on D.
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After multiplying both sides of the above relation by factor ﬁ, we obtain

a b b3 a/3 !
_J +(w2V(Z'3) — 1) ﬁ —|—w2r(l’3) y ( a//) = 0 on D

2l ==6

We look for b such that

b
(w?V (z3) — 1) i const. = —,
b3
w2l (23) i const. = —0,

We want to find functions V', I" and b and the constants v, §, P and w such
that b decays at +co and simultaneously satisfies

—b' = —(w*V(z3) —1)b (r3 € R), (166)

— 2 |~

- = ngF(xg) v (x5 € R), (167)

and a function a, which can be extended to a periodic function, satisfying
!/
—va" — (5(a’3> =a (x1 €(—P,P)), (168)

Note that by solving the above problem, we will obtain an example of a solution

of the equation (165)). By defining u = 88—; = a'b, we will obtain a solution of

the equation ((164).
We will obtain a solution of the equation (168) by a minimization proce-
dure. We consider the functional I: W,*(0,1) — R given by

I(h) = /_11 (h;)Q + (hf dz  (h e Wy'(0,1)). (169)

We want to minimize the functional / under the constrain
1
/ h*dx = 1. (170)
0
Note that the minimizer of above problem satisfies (in a weak sense)
3 !/
_n - <h ) — M on (0,1),

with a Lagrange multiplier A € R, i.e.,

1 1
/ Wy + B2y de = )\/ hpde (v € Wy (0,1)). (171)
0

0
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Note that in fact A\ > 0. Indeed if h € W,*(0,1) is a minimizer of the
above problem, then by multiplying the equality by h and integrating by
parts, we get

A@@A/ﬂﬁ@wx@m/%Hf@ﬂm+/%ﬁf@ﬂx>0

We will show now, that the above problem has a solution. Observe that

e the functional I, defined in (169), is coercive. Indeed note that, by
Poincaré inequality, the norms [|-[|yy1.4¢,) and ||-||, are equivalent, where
[ull, = l|v[| aq,1)- Therefore, there exist constants C1 > 0,Cs > 0 such

that for all w e W,*(0,1)
1 1
||w||12/V01’4(0,1) < Cl/ w' dz < 01/ w? +w' dz < Col(w),
0 0

hence, if for some sequence (w,),,cy of W2*(0,1) functions the sequence
(I(wy)),en is bounded, then the sequence (wy), .y is bounded in the
W14(0,1) norm, which proves, the claim.

e the mapping R 3 p +— %2 + %4 € R is convex. Then, by [2, Theorem 1,
p. 446, the functional I is sequentially weakly lower semicontinuous on
W,(0,1).

e the set X = {w e Wy (0,1) : fol wrdr = 1} is (sequentially) weakly

closed. This is a consequence of the fact that the space W,*(0,1) is
compactly embedded into the space L?(R) (cf. [I, Theorem 6.3, p. 168])
and that the constrain is given by the L?(R) norm.

By [10, Theorem 1.2, p. 4], there exist a solution of the above minimization
problem.

Let h be a solution of the above problem and define a function g: (—1,1) —
R as an odd reflection of h, i.e.,

ﬂ@:{h@) (x>m? (172)

Since h € W,*(0,1), we have that g € W;*(—1,1). Note that the function g
can be extended to a 2-periodic function. Next we will show that it solves the
equation

g <g,3>l = M\gon (—1,1),

in a weak sense, i.e.,
1 , 1
[ avrdva—n [ ga pecz,m), o)
—~1 -1
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where C3, 7(R) denotes the set of all C* functions defined on R, which are T
periodic. Indeed, take an arbitrary ¢ € Cge, 5(R), and let U(x) = h(x)—1p(—1).
Since the function ¢ is 2 periodic, we obtain O(=1) = ¢(1) = 0. Write
¢ 1/)0 + %, where wo and we are odd and even part of w respectively, i.e.

U(z) —¢(=2) - V() + w(—x)'

bolw) = =gt () = =

Finally observe, that
() = Yelx) + ¥(=1) +dolz) (v €R),
—_—— N~

even odd

and define 9., 1¥,: R — R as follows
Ve() = Pe(@) +$(=1), o() = Po(x).

Moreover note that 1, = g/)\; € Wy*(—1,1). Since the function g defined in

(172) is odd, we have

1

[ guiar—o (174)
I1

[ ahva—o, (175)

~1

1

/ g dx = 0. (176)
1

In order to verify ((173) calculate

1 1 1 1 1
/ gV + ¢y dz = / g, dr + / g, dx + / gy de + / gy da
—1 -1 -1 -1 -1

(KE) (K6
—0 — 0

1 1 1
@ 2/ h’w’odx+2/ h’3w’odx2)\/ hab, da
0 0 0

P / g¢odx+>\/1 g¢ed$=A/19¢dx-

—|

Define a function a: [—%, ﬂ — R by

11
a(x) = tg(sz) (x € {——, —} , (177)
s's
where
1 A 1 —
= - pu— _— P = — = .



Note that then the equation ((168)) is valid, indeed for all x € [—l %]

s?

— (@) = §(a*(@)) — az)

(i) () () @

Moreover the function a can be extended to a periodic function on R.
Therefore, we can solve the equation for all values v > 0 and § > 0.

To simplify further considerations take v = 6 = 1. The idea is to choose
some function b and define the functions V' and I' in such a way, that the
equations and will be satisfied. There are two ways to do it:

r)/

A
5
A

e solve the equation
—b" = (w*V(x3) — 1) bon R,
and define the function I' using the formula

= WwV(x3)—1
B o

Wl (23) =

e solve the equation
—V" = wWT'(23) b® on R,

and define function V' using the formula

—y
WV (z3) — 1= = Wl (23) b2
In the first case let V = Vi, Jz| <a , where a, w, V; and V,, satisfy
Vo, x| >a

V1—w?V, = Vw2V, — 1tg Vw?V; — 1a or
V1—w?V, = /w?V, — 1ctg Vw?V; — 1a,

(178)

and let b be a guided mode in a wave-guide described by V' as in Lemma
in section [5.3.1.3)). Since the function (O, %) & — VEtg /€ €(0,00) is onto,

for every values w V, and a > 0 such that 1 —w?V, > 0, we can find Vj in such
a way, that the condition ([178) is satisfied. Observe, that for |z| > a

wWwV(r3) —1=w?V,—-1<0, (179)

hence, due to the exponential decay of the function b, the function I' is un-
bounded, namely we have that I'(x3) —— —oo. Observe, that for |z|a < a

WV (r3) —1=w?V;—1>0, (180)
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hence considered equation is hyperbolic.
In the second case let, e.g.,

bz)=(1+2%)"° (z€R).
Then, for each x € R

b,(l') = —]j(l + 372)7% s
_3 N |
Vi) = —(1+2%) 2 +322(1+2%) 2 = — .
(14 22)2
For each x € R set
! 1—2 2
wl(z) = (z) = ° ,
b(x)3 14 22
zt 42 (181)
WV (r) =1+ T(2)b(z)? = —-—.
@ ) =
Note that I'(z) —— —% and V(2) —— =5 hence the functions I and

V' are bounded. Moreover V' is positive (cf. Fig. [7]), which shows the physical
relevance of constructed example. Furthermore observe that there exists a
constant L > 0 such that

w?V(z3) —1>0 (Jasz| <L), (182)
hence again, the considered equation has a hyperbolic nature.

A

/N

Figure 7: The sketch of the graphs of the functions V' and I' defined in ([181)),
for w=1.

Remark 97. In the above Example[06], the constructed potential V always leads
to the situation, when the equation (164)) is hyperbolic (at some points, near
o0). Indeed note that by equations and there exists a constant
L > 0 such that the expression w?V (z3) — 1 is negative, if |x3] > L. The
following theorem demonstrates, that this is a necessary condition, to obtain
non-trivial solutions.

Note that the equation (165) is elliptic if and only if w? [[V]| i) < 1.
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Theorem 98. If w? |V opy < 1 then the equation
- (1 — CL)2V) 211 — %33 + 3W2F2121211 =0 on D, (183)
has no non-zero solution z € C*(D) N C(ﬁ) satisfying

z(xq, x3) —— 0 uniformly in 1, (184)

which is P-periodic in the x1 direction.

Proof. Suppose that z € C*(D) N C(ﬁ) is a solution of the problem ((183))
satisfying ([184)). Moreover, after periodic extension consider z as a function
defined on R?. Consider the operator defined by

02 02
+ BWQFZI Z11=-

_ 2 -~
L= (1 wV) dz?  0x3 0xy

Clearly L(z) = 0. Note that since w? [V ey < 1 the operator L is ellip-
tic. Because of the assumption (184 and periodicity, 2z attain its maximum
or minimum somewhere on the set R%. Therefore, by the strong maximum

principle (cf. [3, Theorem 3.5]), z = const. 0. O

Remark 99. Observe that by Theorem (98] if w?[[V[| o, < 1, the equation
(164)) has no non-trivial solutions, which decay to 0 as |z3] — 0 (cf. Example

6.2 Complex valued travelling waves

In this section we will prove the existence of complex valued travelling waves
for the quasilinear wave equation . We look for solutions of of the
form

U(xy,xe,x3,t) = eiw(zl*ﬁt)v(xg) (1,29, 23,t € R)

The above ansatz leads to the equation of the form

2 0%v 2 2 3
wv — — —w AV (x3) v — AwT'(z3) v> = 0 on R,

61‘3
which we will rewrite into the form

2
B g— +w* (1= AV (x5)) v = AT (3) o* on R, (185)
Zs3

which is a nonlinear, time independent Schrédinger equation in 1-d.
Denote

Vi(zs) = w?(1 — \V(z3)) (23 €R),
[(z3) = \w’[(z3) (235 € R),
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The equation ((185)) is equivalent to

— — + V(z3)v="T(x3)v° on R, (186)
8$3

Consider the following functional J: H'(R) — R defined by the formula
Ju] = /R W'|* + V(z)u*ds  (ue H'(R)).
We want to minimize the functional J over the set
S :{u e H'(R) : /Rf(s) u|* ds = 1} .
Assume that v* € S is a minimizer i.e., J[v*] = inf,cg J[v]. Then v* satisfies

—()" + V(z)v* = I(z)(v*)® on R,

where ¢ is a Lagrange multiplier. One can show, that ¢ = J[v*]. Assume that
» 0@. Since v* is a minimizer, we even have, that ¢ > 0. When we define

U= c%v*, then one can check that the function v is a solution of the equation
(186)). Such a solution is called a ground state for the equation ({186)).

Theorem 100. Assume that the functions V,T' € L>®(D) are such that
1
e the expression (fR(u’)2 + V(s) u? ds) * defines a norm, which is equiva-
lent to the H'(R) norm,
e moreover

lim V(z3) = sup V(x3) > 0,

|z3]—00 z3€R
lim I'(z3) = inf D(z3) > 0,
|zg|—o00 r3€R

then the equation (186)) has a ground state solution.

Proof. The proof follows from [I1, Theorem 2.5, p. 17] and [10, Theorem 4.2,
p. 32]. O

6.3 Real valued travelling waves

In this section we will look for real valued solutions of the equation ,
where the potential V' has the form V' (z3) = ad(x3) + v, where §(-) is a Dirac
delta function supported along the line x3 =0 and a € R, v € R.

We work under the assumptions |Q and described in section The
main result of this section if the following statement

8actually this is implied by the assumption that V., e L>® (R) in Theorem [100
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L

Wl 21y

Figure 8: Qualitative sketch of the bifurcation diagram for the equation (163)).

Theorem 101. Assume[Q| and[Qr] Then there exists a non-trivial, continu-
ously differentiable curve passing through a point (0,w?)

{(u(s),A(s)) € H2L(D) x R: s €(—0,6),u(0) = 0, \(0) = wi},

such that the pair (u(s),\(s)) solves (163) for all s € (=6,6). Moreover all
solutions of the equation (163)) in a neighbourhood of point (0,w?) are on the
trivial line or on the curve defined above.

The proof of the above theorem can be found in section

6.3.1 Assumptions

In this section we will work under the following assumptions on the parameters
a, v, w, P.

Assumption Q. We will assume that

Q! There exists ¢ > 0 such that for all w? € I¢, =[w} — £,w} + ¢] and for
1

all natural numbers k£ € N
4(1 — w?y) P?

"3 if and only if w? = w? and k = k.
aw?T

k=
Q? Forallw? € I5,
9 1
wy +e<—.
v
Assumption Qr. The function I': R — R is an element of the space L>(R).

We will also use the notation Ay = wi, A = w? and J¢, = I%, \{w}}. Define

8“2:{/461\1:!@27&%}. (187)

w22
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Note that assumptionimplies that 5“1 = N\{k,} and that for all w? € J5,,
we have that $*° = N.

Remark 102. Assumption is equivalent to the following: For every w? € I_f)g

1

1 —w?y>0.

6.3.2 Notion of the solution

In this section we will discuss the notion of the weak solution of the equation
(cf. Definition (103]).
— W33 — (1 - WQV(I'?))) wi=[f (z1 €(—P,P),r3€R). (188)

Definition 103. We say that a function v € HZ(D) solves the equation ([I88),
where f € L2 (D) is given, in the weak sense if for all functions ¢ € H%L(D)

per per

P

/ uzz dx + (1 — w2fy) / upy do — an/ uy(1,0) (21, 0) day
D D

—/fwdx. (189)

Since u € H (D), thenuy € H'(D) € H*'(D). By Lemmalff] the function u

per
has a trace in the space L?(— P, P), hence the integral f_PP uy(z1,0) Yy (21, 0) day
in the formula (189)) is well-defined.

The remaining considerations are devoted to the equation, which one ob-
tains by taking the Fourier transform of the equation ((188)) with respect to the
21 variable.

Definition 104. Let f € L? (R). Let V = ad + v, where § the Dirac delta

loc

unction supported at the point 0 and a,y € R. Denote a; = L 22. We say
P
that a function h € Hlloc< R) solves the equation

A (1 - w2x7> azh = f in R, (190)

in the weak sense if for all functions ¢ € C°(R)

/h’(p’dx + ak(l—wQV)/hgoda: — aapw?h(0) p(0) = /fgpdx. (191)
R R R

Lemma 105. Let f € L*(R) and that h € H'(R). The following conditions
are equivalent

e the function h € H?*((—o0,0]) N H%([0,0)) solves the equation
B +ap(1—why)h =T, (192)
pointwise almost everywhere on R and satisfies

W (07) = 1(0%) = araw?h(0) (193)

88



e the function h solves the equation (190)) in the sense of Definition m

Proof. Assume that h € H?((—o0,0]) N H?([0,00)) solves the equation (192)
pointwise almost everywhere on (—o0, 0] and on [0, 00) and satisfies condition
(1193)). Let ¢ € C:°(R). Integration by parts yields

0 0 0
/ —h"pdr = —[h’gp]goo +/ W' dx = —h'(07) ¢(0) +/ n'' dz,

/ —h'odx = —[h'p]y +/ W' dz =1 (0%) (0) + / n' dz,
0 0 0
therefore

/R —h"pdz = (0) (K (07) = h'(07)) + /R W' da

(2 —araw?h(0) ¢(0) + / h'¢' da.
R

(194)

Since h solves pointwise the equation (192)), we get

/ﬁpdx:/—h"gpdx—i-ak(l—w%)/hgpdx
R R R

/ Wodr + a1 — w?y) / hip dz — aarw?®h(0) ¢(0).
R R

Therefore, h solves the equation in the sense of definition m

Assume that the h solves the equation in the sense of Definition
104, By [3, Theorem 8.8, p. 173], we have that h solves pointwise
almost everywhere on (—o0,0) and on (0, 00). Moreover, one can show, that
h € H*((—o0,0]) N H?([0,00)). Since the space C°(R) is dense in H'(R), we
have that the condition hold for all ¢ € H'(R). For € > 0 define a
function ¢.: R — R by the formula

1, 2| <e,
pe(x) =3 2 2] (e, 2),
0, |z] < 2e.
Observe that o] o) = Se — 0 and
e—
*n h(2) — h
/ W qe = B ZRE) oy
e € © Y (195)
=W h(—e) — h(—=2
/ W e = MEDZIEE) oy,
_9 € £ e—0

By inserting ¢, into (|[191)), we get

— h, 2e h/ 2e ) R 9
“do— [ Zdot [ (a(t—wh)h—F)e.dr = aaw?h(0). (196)
—_ £ —2¢e

2 €
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Note that

2e
‘/ (ar(1 = w®y) b= ) pe da
—2€
< (a1 = w®7) 1l agy + 111y ) o<l ogey
8
= /3¢ (a1 = ) 1l oy + 1/ oy ) =22 O

This, together with (195]) and (196)) gives that
W(07) = 1 (07) = aaw?h(0),

which finishes the proof. O

6.3.3 About the linear part
6.3.3.1 About the equation L w = f

We formally introduce a family of operators defined by the formula

o o

— (1 2 -
L. = 522 (1-w?V) 022 (weR). (197)

In this section we will consider the solvability of the linear version of the

equation ([163)), namely
Lw = f on D, (198)

where f € L2,4(D) is given function. Observe that constants are element of
the kernel of the operator L, 2. Hence, as before in our considerations about
semilinear wave equation, we restrict our considerations to the functions, which
are odd in the z; direction, i.e. we will work on the spaces L2 ;(D) and
HZ5(D). Our goal is to prove the following statement.

Lemma 106. Assume|[Q] Let

o L2,(D) be a set of all functions f € L244(D), which can be represented
m a form

flzy,x3) = Z fr(xs) sin(k%xl),

kesw?

) Hi;l(D) be a set of all functions w € H2 (D) which can be represented
n a form

w(wy, 23) = Z wg(z3) sin(k‘%wl) ,

keSw?

where S¥° is defined in (187). Then the following statements hold true:
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(i) For every f € L2,(D), there exits a unique w € ngl(D) solving the
equation (198)) in the sense of the Deﬁm’tz’on In other words, there
exists a solution operator T,» € L(L2,(D),HZ; (D)) for the equation
(198).

ii) Moreover, there exists a constant M > 0 such that for all w?* € I¢,
( ) ) w
1

lolyeay < Mz, (£ € L(D))., (199)

Proof. Above statement is a consequence of Lemmas and proved in
the section [6.3.3.1.21 O
Remark 107. Observe that for all w? € JZ% we have L2,(D) = L2,4(D)
and Hzgl(D) = H2.(D), where the spaces L2,(D) and Higl(D) are as in
Lemma|106l Moreover, for all w? € JZ, the operator L2 has a bounded inverse
T, = Li: L24(D) — H2%4(D). Let M, denote the norm of the operator
T.,2. Observe that M, —— oco. As we will see later Li%(D) :{go}LLgdd(D),

w2—w?

where 0 # ¢ € ker L.

6.3.3.1.1 About the equation L,:; = f Foreachw € R and k € N,
the operator L,z is set to be

d? ~

Lipp ===+ (1 - w2V(x)> ax, (200)

where ‘7(95) = ad + v, with gbeing the Dirac delta function supported at the
point 0. We will also use the notation
k2m?

A = P2

(keN). (201)
We take the following ansatz

w(xy, x3) = Z wg(z3) sin(k%xl) (x1 €(=P,P),x3 € R), (202)

kesw?
flona) = > fk(xg)sin<k%:v1> (11 €(—P,P), 23 €R),  (203)
kesw?

where S is defined in (187)). The Fourier coefficients (Wi) pegw?s (fi)pege? DY
(198) have to satisfy

(1200)

ngkwk = —wg + <1 — va) apWy = fk(xg) (373 eERk e S) , (204)

where the sequence (ay),cq is as in ([201]).
We will prove the following statement.
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Lemma 108. Assume[Q The following statements are true:

1. If w? € I*, and k € N are such that (w? k) # (w? k1) then for every
w1

f € L*(R), there exists a unique function w € H'(R) solving equation
(204) in the sense of the Definition . In other words, there exists a
solution operator T,y € L(L*(R), H'(R)) for the equation (204]).

2. There exits a constant M > 0 such that for all w? € E, ke S@i =
N\{k1} and all f € L*(R)
M
[wll f2ry < 5l 11| 22y »
M
||w,||L2(R) < T ||f||L2(R) )
where w = T2 1 (f).

Proof. This is a consequence of Lemma and [T13] O

Derivation of the Green’s function for L,2; Now we will derive an
explicit formula for the function wy solving the equation , namely we will
find the representation of wy in the terms of Green’s function.

Consider the homogeneous version of the equation , ie.

Y (1 . w2\7) agh = 0, (205)

that is, we are looking for a function h € C*(R \{0}) N C(R) satisfying for all
test functions ¢ € C°(R)

/R—h(xg)go”(xg) das + a, (1 — w?y) / h(z3)p(r3) dzs — aarw?h(0)p(0) = 0.

R
(206)
By Lemma [105] we will look for solutions of the form
[ AePr (11— A)ePr (2 <0)
hz) = { e (x> 0). (207)

By integrating by parts, we have
| —hae ) e = =5 [ hw)et@rdr + 250 - )0, (08)

[206) and (208) yield that if
B:ﬁ(aﬂ’k) :\/m7

Ao A(w2 k) o aapw? (209)
’ 2v/ar (1 — w?y)”

92



h having the above form solves problem (206]). Note that by the assumption
the numbers A and 8 are well defined for k& € S*°. The equation (207) is
equivalent to the first order system

W= g,
{g' = (1—w217> ah. (210)

There are two linearly independent solutions (Z,l) , <Z,2) of the system ([210)).
1 2

The functions hq, ho have the form

hi(2) = ha) (v €R),

ho(z) = hi(—z) (z €R), (211)

Note that hy(x) —— 0 and ho(x) —— 0. Each solution of the system

T—00 T—r—00

(210)) has the form & (Z,l +¢ <Z,2) for some constants &, ( € R.
1 2
Write the equation (204]) as a first order system

w, = Z,
z, = (1 — wz‘A/) apWy — fr, (212)

where f;, € L*(R). We will solve it using the variation of constants. Each
solution of (212]) has the form

(Z: ) = & (@) (Zi ) + Gr(w) (ZZ ) : (213)

By differentiating (213]) and using (212]), we get
() () = ()
+ = )
fk <h/1 Ck h/2 _fk
&)= ()
- M , 214
(c,z ~h (214)

and therefore

where
hy h
M = M(* k _[1 2},
S [
. - L [hy -h (215)
M~ = M(w? k) = 2,
(" k) detM[—hll hi |’

det M = det M(wz, k) =2Ap3,

where the values A and 8 were defined in (209). Note the condition is
equivalent to saying that for every w? € I?, and k € N the determinant
1

det M (w?, k) = 0 if and only if w? = w? and k = k.
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By integrating (214]), we obtain

60 = gy [ mORG)d @eR). -
Glz) = deth / hi(s)fu(s)ds (2 € R).

Note that, since fr € L*(R), by Corollary , both expressions in (216)) are

well-defined. Substituting (216]) into (213)) and using (212]), we have for each
relR

1 x oo
we() = ha () / h(s) fu(s) ds + ha() / ha(s)fuls)ds | . (217)
det M oo -
Moreover, again by Corollary , the function wy, described in (217)) is almost
everywhere differentiable and its derivative, is indeed described by the formula
(218)). Hence, for almost all z € R

wy(x) = 1 <h’1 (:c)/ ha(s) fe(s)ds + h’z(x)/ hi(s)fx(s) ds) . (218)
det M e -
Later, in the proof of Lemma , we will show, that since f; € L*(R), then
wy, € H'(R), for all k € S*° and that the function wy, is indeed a solution of
the equation (204]) in the sense of the Definition .

Now we will rewrite the formulas and (218)) into terms of Greens
functions. Note that if

h1éx)f§\i[(y) (y

_ et

G(377y) - ha(2)hi (y) (:C
det M

),

X
y),

NN

then the formula (217)) can be written as

wn(z) = / Gl fuly)dy (x €R). (219)

Let

ri(s) = Ae Pl (s € R),

ro(z,y) =(1 — A)e A=+ (1 y € R), (220)

Then one can write (219)) as

1

we(z) = detM(rl * fr)(x) +

detM/RTQ(%y)fk(y) dy (zeR). (221)
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L*(R) estimates for w;, and wj Now we will derive L*(R) estimates for
the functions wy and wj, in the terms of || fi|| 2z, where wy is as in (217).

Lemma 109. Assume Q. There exits a constant M > 0 such that for all
w? €T, ke S =N\{ki} and all f, € L*(R)

M
||wk||L2(R) < %2 ||f||L2(]R) )

M
“w;sHL?(R) < T ||f||L2(R) 3
where the function wy is as in the formula (217)).

Proof. Applying Young’s inequality and Hoélder’s inequality in formula (221)),
we get the following estimate

1
lwi (@) || gy < W(HHHU(R) + ||7‘2||L2(R2)> el o) - (222)
We find that
2|4
1711l pymy = 5
A1) (223)
172l g2y = 7
Formulas (215]), (222) and (223) yield
2|A|+1]A—-1] 1 |A — 1|
||wk(x)||L2(]R) < 9 |A| ﬁQ ||fk||L2(]R) = @ L+ 9 |A| kaHLQ(R) :
By (209)) we have that
A—-1] akmw?

21A]  arkw? —2P\/1 — w2

By assumption , we have that amkw? — 2P+/1 —~yw? = 0 if and only if
w? = w? and k = k. Therefore, the expression |’;|;J| is bounded for all w? € T¢,
1

and all k € 5“7,
Recall (209) and observe, that there exists a constant C; > 0 such that for
all w? € I, and all k € Set
1

C
lor(@)l gy < 75 Ifelliay  (fi € L(R)).

Recall formula (218)). By similar reasoning, we get that there exists a constant
Cy > 0 such that for all w? € I, and all k € S«i
1

C
lwk @y < 7 Iellizgy  (fi € L(R)).
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Soundness of w, Now we will show, that the function wj; defined in
([217) solves equation (204) in the sense of the Definition [104] This is stated
in the Lemma [T13]

Lemma 110. The function h: R — R defined in (207) with coefficients [
and A as in the formula (209) solves the equation (205|) in the sense of the
Definition |10/}

Proof. Note that

W (z) = { :?f-ea;ﬁm t- A Eﬁ i 8; | (224)
and
W'(x) = Bh(z) (x € R\{0}). (225)
Equation yields
W(07) —n(07) =268(1— A). (226)

By integrating by parts and applying formulas (225 and (226]), for every ¢ €
C(R) we obtain

0 00
/h'gp’d$:/ h'gp’dx+/ h'' dx
R —00 0
0 0 00
:[h'go]_oo—{—[h’gp]go—/ h”gpdas—/ h"pdx

IS 0
BBLE 551 — 4) 4(0) — B2 / hip d.
R

Observe that h(0) = 1 and that the constants A and 8 (cf. formula (209))) are
chosen in such a way that the formula (191)) (with f = 0) holds true for all
v € CE(R). O

We will show that the function w;, defined in (204)) satisfy the assumptions
of the Lemma 105

Lemma 111. Let k € S¥° and let the function wy be as in formula (217).
Then
w;, (07) — wi (0%) = agawwy(0).

Proof. Recall (211]) for the definition for the functions hy, ho and (207)) for the
formula for the function A (the constants A, 5 are defined in (209))). Note that

i) =) = { 52 TRl
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and
, / Bebr (x <0)
hy(z) = —h'(—x) = { ABeP —(1 — A) Be= P (x> 0).

Observe

1 (07) = i (07) = By(07) = i (07) =281 = 4) = aa?. (227)

By (218]), we have

0

W (07) — wf (0%) = (5 (07) ~ B (07)) / Ta(s) fls) ds
g 600 =) [ ) A as
aakawk(O) :

O

Lemma 112. Let k € S¥°. The function wy, defined in formula (217)) ) is
twice differentiable almost everywhere in R and wy, € H?*((—o0, 0])NH?(]0, 00))
Moreover wy, solves the equation

—wj, + ak(l — w27) wg = f,
pointwise almost everywhere on (—o0,0) and on (0, 00).

Proof. Observe that for all x € R\ {0}

B () ha(x) — () By(z) = —248 B2 _ et M (228)

By differentiating formula (218)), at point x # 0 (cf. formula (211)) for the
definition of functions hy, hy and (207)), (209) for definition for the function h)
we get that for almost all z € R\ {0} (cf. Corollary [147))

k) =gty (M) [ nal)filo)ds 416500 ale) o) +

(o) [ (o)) ds — (o) 1io) fio)
B (o) [ e s o) [T neae ) - ).

—0o0

The rest of the claim follows from the fact that the functions hy, hs solve the
homogeneous problem. O]

As a consequence of Lemma [105] and Lemmas and [112] we have the
following statement:

Lemma 113. Let k € S¥°. The function wy, defined in formula (217) solves
equation ([204)) in the sense of the Definition [104)
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6.3.3.1.2 Proof of Lemma As indicated in (202]) consider the
function w of the form

w(zy, x3) = Zz wg(z3) sin(k%:cl) , (229)
kesw
where the functions wj, are as in the formula .
Lemma 114. Assume . For every f € LZ%(D), the function w defined in
18 an element of the space Hi’%l(D). Moreover, the estimate in part
(11) of the Lemma holds true.

Proof. Application of Lemma [12] and estimates from Lemma [10g] give

ow |I? C? 9 9 2
B <) ot ellzam) B~ < M f Iy
L1l zxp) 2
keS“1
(9w 2 7112 2
I < Z [wi 72wy < M fllz2p) -
T3l L) 2
kesS*1
62w 2 2
< E? ||lw! <M\ fIa e,
‘ oy < 2, ¥ Il < M 11
keS“1
82w||? cr o )
15| < 5 Il k< M,
o) keset

for some constant M > 0 independent of f € L2,(D), w* € EE and k € S« =
N\{k:1}, hence w € HZ’;(D). O

Remark 115. Let Dt = (=P, P) x(0,00) and D~ = (=P, P) x (—00,0). If

f € L2,(D) then w € W?>?(D¥). Moreover here exits a constant M > 0 such
1

that for all w # w; sufficiently close to w and for all f € L2,(D)

HwHW?ﬂ(Di) s M ||f||L2(D)‘

Proof. By Lemma [105] we have that

—wjy = ag(w”y — 1) wy + fi on (—00,0) and on (0, 0c).
Hence, by Lemma [I0§ we obtain
‘ 0*w

0u}
The rest of the proof follows from Lemma {114} n

2

L2(Di

2
2 2
< (Ifiliam) < MIFlxp) -
) keset
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It remains to show that the function w solves equation (198 in the sense
of the Definition [103]

Lemma 116. Assume . For every f € L2,(D), the function w € H-3 (D)
defined in (229) solves the equation (198)) in the sense of the Definition[105

Proof. We need to verify that the formula (189)) holds true. Consider arbitrary
¥ € Cpeapy(D). By Lemma [10§] the functions (wy),. .2 and (fi),cgo2 satisfy

the equation (204)) in the weak sense of the Definition , ie., forall k € ¢’
and for all ¢ € C(R)

/ wi' dzg + ar (1 — w?y) / wip darg — aapw?wy(0) (0)
R

R
R

Using integraton by parts, we obtain that for all k € S*°

P
/ —aw?apwy(0) sin \/ag 119(1,0) doy =

P

P
/ —aw?wi\/ax cos \/ar T111(x1,0) dzy. (231)
-P

As mentioned in the Definition [103| by Lemma [5| the expression u;(-,0)
defines a L*(—P, P) function. Calculate

/fwda:— Z/ (/ fulws) siny/ag w1 - (21, 73) dggg) day

keSw?
Z / (/wk x3) sin/ag, xq - Y3(x1, x3) dos
kesw? "

+ (1 — wzﬁy) / apwy(x3) sin \/ay 1 - (a1, x3) das
R
— aw?apwy(0) sin \/ag 1 - ¥(z1,0) ) dz
/ usyz de — (1 — w27) / w1 dx
D D

P
_aWQ/ ul(‘r170)¢1<x170> dxl?
—-P

because

uy(xy, ug(x ajp COS+/aj Ty.
,T3) k(23) Va k
keN

]

Proof of Lemma[106. Statement is a direct consequence of the Lemmas [T14]

and [116] O
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6.3.3.2 Some remarks about the spectrum of the operator L,

We want to find the eigenvalues of the operator L,z defined in (200)), i.e.,
we want to find f € H'(R) and p € R solving (in a distributional sense) the
equation

Lypf=pfinR.

Lemma 117. Assume that

=T (1)), 232

then, the equation

has one dimensional set of solutions in the space H'(R). Furthermore, if
f e HY(R)\{0} solves (233)), then p has to satisfy condition (232)).
Proof. Consider a function f: R — R defined as

efr (x <0)

f(iﬂ):{e,@x E$> )

where 8 > 0. Note that #'(07) — 2'(07) = 2. Moreover, for all x € R\ 0, we
have h”(x) = $%h(x). Hence, by Lemma function h solves equation (233)
if and only if

2 4 2

a”apw QW
,u:—ak< 4k —(1—w2’y)> and g = ; :

By the same argument as in the proof of Lemma [69 we show, that the eigen-
values are simple. O

Remark 118. As a consequence of Lemma we have that the operator Lz j
has a zero as a simple eigenvalue, if and only if

Paw’ =4(1—why). (234)

Remark 119. Assume . Among all of the operators {Lw;k: w? € 1_5)2, ke N}
1

only the operator Lz, has zero eigenvalue. Moreover it is simple.

Remark 120. Assume that p € R is an eigenvalue of the operator Lz ;. Let
¢ € H'(R) \{0} be such that Lz p = up. Consider the function ¥: D — R,
defined as

U(zy,x3) = @(3) sin(k%k) :

Note that ¥ € Hf(’fd(D) and L2V = pW, hence p is an eigenvalue of the
operator L.
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Lemma 121. Assume |Q| and let w? € It,. The operator Lyz: H>L(D) —
1

L24(D) has 0 eigenvalue if and only if w? = w?. Moreover 0 is a simple

eigenvalue of the operator Lz, i.c., dimker Lz = 1.
Proof. We proceed as in the proof of Lemma [73] n

Now we will investigate the essential spectrum of the operator L, j, defined
in (200).

Lemma 122. For every w? € I_fﬂ and k € N, we have
1
Gess<Lw2,k) = [ak(l - W27) 700) )

where aj, = k;’f is as in (201)).

Proof. By [I7, Theorem 3.1.4 p. 78|, we have that for all @ € R the essential
spectrum of the operator —dd—; + ad is the set [0, 00). O]

6.3.3.3 About the equation Lyw = f

This section is analogous to [5.3.2] presented for the semilinear problem. For
clarity, we repeat the proofs. We formally introduce a family of the operators
L, defined as follows: .

Ly = Ly+P,, (235)
where the operator Ly was defined in (197) (with A\ = w?) and ¢ € H2,(D) is
such that Ly, = 0 and [[¢]| 3y = 1. We want to study the linear equation
of the form

Lvw & Lyw +Pow=fon D, (236)

where f € L2,(D) is a given function. Our goal is to find w € H};4(D) being
a weak solution of (236]). The existence of a solution operator for this problem
(2306) is stated in Corollary [132]

For k € N and A € R define an operator ]j;/k by formula

T L)x,kua k 7é kl)
L)\’k B { L,\vklu + PSZU, k= k‘l, (237>

where ¢ is the ki-th Fourier coefficient of ¢, i.e.
~ . ™
p(z1,73) = P(23) Slﬂ(hﬁh) )

and where the operator L, is defined in (200)) (with w? = ). As before, we
write the functions w and f as

w(wy, x3) = Zwk(mg) sin(k:%xl) :
keS
form) = Y- o) (5 .

kes
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Then the equation (236)) becomes
Lyswy = fi. (239)

The existence result (in case of k = k;) for the problem (239) is stated in
Lemma Note that the remaining cases k # k; are treated by Lemma [108]

6.3.3.3.1 Domain of the operators L, ;, and [j):;l In the following,

we will consider the domain of the operators L ; and f,\\,/k and its properties.
Definition 123. Consider the set H, being the set of all u € L?(R) such that
e v € L*(R),
o v’ € L?(—00,0)), u" € L*(0,00)),
e v'(07) —u/(07) = apaw?u(0).

Here v and u” are understood in the weak sense. Note that the expressions
u(0) is well defined, because v € H*(R), and therefore, by [I, Theorem 4.12,
p. 85], u € C(R). Since u € H?*(—00,0)) and u € H*(0,0)), again by [,
Theorem 4.12, p. 85], we have that u € C'((—o0,0]) and u € C'([0,0)), and
therefore it also makes sense to consider the limits «/(0%) = lim,_,o+ v/(¢). We
will consider two norms on the space H, namely

[llary, = Nl oy + I Eawull gy
Ak (R)

ol = ey + | s -
Observe that for every u € H (cf. formula (237))
HUH,HL;:]C < ull oy + HL/\,kUHL2(R) + ||P§5u|‘L2(R)
< 2l + Ll ey < 2l
and on the other hand for every u € H
full,, = ull gy + Lot + P — Pl
<l + || Exir]p + 1ol e
< 2 ull gy + HZ*V"““HLQ(R) <2llully,_ -

Therefore the norms |||, and HHHL~ are equivalent. In the situations,
Ak Ak

when it will not lead to confusion, we will use the notation |- ||, do denote one
of these two norms.
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Lemma 124. For every e > 0 and every u € H'(R)

1
2 2 2
u(0)” < z [l oy + € 1012, -

Proof. Let u € C;°(R). Then

0 d 0
u(0)? :/ EUQ dt < 2/ luu'| dt,

o0 d o0
u(0)? :/ —u?dt < 2/ luad| dt.
o dt 0
Hence, using Holder’s inequality, we obtain.
2
0 <2 [ Jun] dt < 2 full e 9] -

By applying Young’s inequality in above relation we obtain, that for every
e>0 )
Il L(R)

2
u(0)* < + e [l 22 -
Since the space C°(R) is a dense subset of H?(R), we have the claim. O

Lemma 125. Let I C (0,00) () be a bounded interval. Let H be as in the
Definition |[125. There exists a constant C > 0 such that, for allu € H and for
all A\ eI

lell iy < C Nl -

Proof. Let w € H and let f = Ly yu. After testing this equality with u, we get
(cf. formula (237) for the definition of the operator L) ;)

/ u? dz +(1 — Myag) u® dz — Aaayu(0)® = / fudz
R R

<Ll oy el gy -
hence, using Lemma , for all € > 0, for all A € I and for all u € H'(R)

2 2 2
HU,HLQ(R) < HL/\,kUHLZ’(R) HUHLQ(R) + |1 = Myl HUHL2(R) + Aaayu(0)

Aaay, 9
< Wl Tl + (11 = Nl + 222 )

+ aare [0/ p)

Choose € > 0 such that 1 — Aaage > 0 for all A € I, then for some constants
Cy > 0and Cy > 0 for all A € T and for all u € H'(R)

2 2
101 2oy < Cr Il Lakull pogy lull gy + Co llullzg) -

9Formally there are no obstacles to consider I C R, however we apply this lemma for
A =w?>0.
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Therefore, there exits a constant C'3; > 0 such that, for all A € I and for all
uecH
e T

This suffices to prove the claim. O
6.3.3.3.2 Self-adjointness of the operator L/;;;

Lemma 126. Define £ = L*(R) N{@}® and $ = HN{F}+*®. Then, for
all \ € If\l the operator Ly, :  C £ — 9 s self-adjoint.

Proof. To avoid confusion denote

Lo = Ly, : H C L*(R) — L*(R),
Li=Lyp:HCL— L

By [18, Theorem 1] the operator L is self-adjoint. We will show that the
operator L is self-adjoint. The adjoint L} of L; is defined as follows. Dom(L%)
is the set of all v € £ such that, there exists w € £ such that

(L1u, v) gy = (U, W) 2z (v € Dom(Ly) = H). (240)
We put Ljv = w. Note that
(L1, U>L2(R) =(A=M) o, U>L2(R) =0= (g, w>L2(R) .
Therefore, by (240) and because $) C ‘H we have that
(Lou, 2’)L?(]R) = (u, w)LQ(R) (ueH). (241)

Since Ly is self-andjoint, we have that v € Dom(L§) = Dom(Ly) = H and
Liv = Lov = w. Recall that v € £. Hence

ve LNH =29 (242)
Therefore Lijv = w = Lov Lyv and Dom(L}) = $. O

Lemma 127. For every A € R the operator Ly, : H € LA(R) — L2(R) is
self-adjoint.

Proof. Observe that the operator )\f,\lgl is symmetric. By [12] Theorem VIII.3,
p. 256] it is enough to show, that

im <Z:k/1 + i) = I2(R),
i.e., for every f € L*(R), there exists v € H such that
(Z;,fl + i) 0B (L 4Pt i)u=f (243)
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Denote £ = L2(R) N{@}2*® and § = H N{F} #*®». We have

[A(R) = 1in {3} @ £,
H=1n{p} ®9H.

Write f = sp + g with s € R, g € £.
Note that by Lemma |126| the operator Ly k, 5 is self-adjoint, hence, again
by [12, Theorem VIIL.3, p. 256] for every g € £, there exists w € § such that

(Z;k/l + i) w = g. Define t = —=2-——. Observe, that v =tp + g € H. Then

A—A1+1+i
<[T;;;:I:i>v:t(A—A1+1ii)95+<f;;;ii>w:s<,5+g=f,

hence ([243)) holds true. O

6.3.3.3.3 Properties of the spectrum the operator [7,\\;1 Now we

are ready to study the existence of the inverse of the operator L, , .

Lemma 128. 0 is not an eigenvalue of the operator Ij;k/l for all X in some
open neighbourhood of ;.

Proof. Suppose that there exists a function h € H \{0} such that

Lonh & Lyh+ (31§ =0 (244)
Since Ly, », ¢ = 0, we have that
Lymp=(A—=XM)¢ (245)

After testing (244)) with ¢ we obtain

~ ~ N ~ 245)) —~
0= (Laphs 3) + (B 1) = Lan 1) + (B0 B (A= A+ 1) (1, 3

If A is in a sufficiently small neighbourhood of \;, we obtain that (h, ) = 0,
and therefore L)y, h = 0 (cf. equation (244))), i.e., the operator L)y, has zero
as an eigenvalue. Since, for A # Ay in an open neighbourhood of A; zero is not
an eigenvalue of the operator Ly ;,, we have to have that A = A\, and therefore
h = . This, together with (h, ) = 0 gives a contradiction. O
Lemma 129. Assume . For all \ € I_f\l the value 0 is isolated from the spec-
trum G(l/);k/l). In other words, there exists § > 0 such that inf ‘0‘(2:;)’ >0,

for all X € I_il
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Proof. Note that for all A € R the operator Z/L:k/l — Ly, = Pz is com-
pact. Hence, applying [16, Theorem 5.35, p. 244], we obtain O <[//A\k/l) =

Oess(Lxk, ), which implies that 0 is isolated from O (LA,Iq)- Moreover by

Lemma , we have that 0 is not an eigenvalue of f,\\k/l for all A\ being in a
neighbourhood of \;. By Lemma [122] we have that

O—ess(L)\,kl) = [ak(l - w27) 7+OO) )

2.2 2.2
where A = w? and aj, = 245~ Let § = 47 minwgelw%s(l — w?y). By assump-
tion [Q7, we have that § > 0. O

6.3.3.3.4 Existence of the inverse of the operator L),

Lemma 130. Assume . For every \ € I_il and for every f € L*(R), there
exists an unique w € H such that

—— @)
L)\7k1w LA,klw + Pyw = f. (246)
Moreover, there exists a constant M > 0 such that

”wHHGT < M || fll o (fe L*R), A€ I}).

Proof. By Lemma the inverse of the operator If/; H — L*(R) exists,
for all A in some neighbourhood of \;. It remains to show that the norm of

1
the operator (L,\Jﬁ) : L*(R) — H can be bounded with a constant, which

does not depend on A. In order to simplify the notation denote A = Z;, with
Dom(A) = H and H = L*(R).
Let (P,), g be the family of spectral projections of the operator A. Define

P :/ 1P,
0

0
P :/ 1P,

Denote H* = P*(H), then H = H* @& H~. The operators AT = P*A =
AP*: Dom(A*) = Dom(A) N H* — H¥ are self-adjoint. Moreover, the op-
erators AT, A~ are positively, negatively definite, respectively. Since A =
At + A~ we have that A~! =(A+)"" P* +(A7)"" P~ and in a consequence

o< o) o
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o+, _

At 71H: sup 1 - gyp M
Jca) srems N liamy  weponta) 14T Ul oy (248)
u
B (17

u€Dom(A+) HA+U||L2(R) '

Using Bunyakovsky-Cauchy—Schwarz inequality we have that for all u €
Dom(A"), we have [(ATu, u)| < ||u||L2(]R) HA+U||L2(]R)7 hence

[ull 2wy |72y |2
< < H u € Dom(AT)). (249)
Al < A S @ €0 A)
By [13| Theorem 4.3.1 p. 78], we have that
A+
in M = inf o(A%) >4, (250)
u€Dom(AT) ”U'HH

where 6 > 0 because of Lemma In the virtue of inequalities (249) and

(250]), we conclude that ””u”ﬂ < 3 for all u € Dom(AT) and in a conse-

A+u”L2(R)
quence, together with (248)) gives
_ 1
[ <1+ (251)
Same argument can be performed for the operator —A~. This, together with
(247)) finishes the proof. O

Remark 131. As a consequence of Lemma and inequality (130]), we get
that, there exists € > 0 and a constant M > 0 such that

i ey < M fisllomy (i € L2(R), A ETR),

where wy, solves the equation (246]).

6.3.3.3.5 Existence of the inverse of the operator ZL: We will
finish our considerations in this section with a statement about the existence
of a solution of the equation . As a consequence of Lemmas and
we get the following:

Corollary 132. Assuming[Q] For all f € L24,(D) there exists a unique w €

Hgéld(D) solving weakly equation (236)). Denote Tx\(f) = w. Moreover, there
exits a constant M > 0 such that for all X € I3 and for all f € L2;4(D)

|70

<M )
H21(D) ||f||L2(D)

which is a solution operator for the equation |
uniformly in A € I, .

N1
In other words, there exists an operator T\ = L,\)  L24(R) — HZL(D),
236)), which has a norm bounded
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Proof. Recall ansatz described in (238)) and (237)) for the definition of the
operators L) ;. As a consequence of Lemma 1()8|7 we have that:

(a) For all k € S = N\{k1}, all X € I5 and for every f, € L*(R) the
function wy, € H'(R) is a unique solution the equation (239).

(b) There exists a constant M > 0 such that for all k € SM = N\ {k,}, all
A € I, and for every f, € L*(R)

M
|Iwk|lL2(R) < k_k ||fk||L2(R)7

Hw;c“LQ(R) sM kaHLQ(R)‘

Remark implies that

(c) Forall A € I5 and all f;, € L*(R), the function wy, € H'(R) is a unique
solution of the equation (239)) (with k& = k).

(d) There exists a constant M > 0 such that for all A € I and all f;, €
L*(R)
Hw’ﬂHHl(R) sM ka1HL2(R)'

Having @, @ and @ we proceed as in the proof of Lemma m n

Remark 133. For all X\ sufficiently close to Ay

E;(QO) =(1+X—=X\)o,

N 1+>\——)\1(’0’
= (h, ) 13p) |
T5\(Pyh) = T N7 (h € Hyga(D)) - (252)

Proof. Proof of above statements is analogous to the proof of Lemma |88 [

6.3.4 Application of the Crandall-Rabinowitz for the quasilinear
equation

6.3.4.1 Reformulation of the problem

In this section we will reformulate the problem in a way suitable for the
Crandall-Rabinowitz theorem.

As assumed in @ let w; € R be such that the operator L, has a zero as a
simple eigenvalue. Take \; = w} and A\ = w? and rewrite adl|

Lyu+Pyu = —AI'(z3) G(u) + Pyu on D, (253)

10At this point I want to mention, that idea of introducing the projection P, comes from
Peter Rupp.
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where the function G: H>\ (D) — L24,(D) is defined as
G(u) = 3uusy + 6uu;  (u € Hf(’ild(D)) : (254)

and Pou = (¢, ) o) ¢, With ¢ € ker Ly, such that [|¢[|;4p) = 1. By Corol-
larythere exists € > 0 such that for all A € I5 = (A1 — ¢, A\; + ¢), the oper-

ator Ly B2 [, + P, is invertible and Ty = (Ly +P,) " : L2,,(D) — H*L(D)
is bounded with respect to A € I5 . The non-linearity G maps the ;-
odd functions to z;-odd functions. Moreover, by Lemma we have that
G: H>L — L244(D) is well-defined.

Define F': H2y (D) x I, — H% (D) as

F(u,\) = u — Ta(=AL(73) G(u) + Pou) (ue€ Hoy(D), A€ I5). (255)

Note that the function F' is well-defined, since I' € L*>°(D) (cf. assumption

Q).

Note that finding a pair (u,\) € Hlyy(D) x R such that F(u,\) = 0 is
equivalent to solving the problem described in and, in a consequence,
equivalent to solving the problem .

6.3.4.2 Statement about the regularity of the function F

In this section we will prove that the function F' defined in (255)) is of the class
C%. This is stated in Lemma m For writing the derivatives with respect to
real arguments, we will use the convention described in the Remark [I40]

6.3.4.2.1 Differentiability of the mapping \ — ﬁ Now we will
discuss the differentiability of the mapping
R2A+— Ty € L(L*(D), H2q(D)),

-1 —
where the operator T\ = <L ,\> (the operator L, was defined in ([235]), Corol-
lary states the existence of the operator ﬁ)

Lemma 134. The mapping R > A —s T, € E(LQ(D),H(?&B(D)) is of the
class C* in an open neighbourhood of A1. Moreover
ATy = =
—= =-T\oT 256
d\ A O L), ( )

for all \ sufficiently close to \;.

Proof. By Corollary there exists ¢ > 0 and M > 0 such that for all
A€M —&, A\ +¢) and for all f € L*(D) such that

5] e

Having inequality (257), we proceed as in the proof of Lemma [89] O

) S ClF 1 oy - (257)
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6.3.4.2.2 Differentiability of the function F° This section we will
apply Lemmas and 27] in order to show that the function F defined in
([255)) is of the class C2.

Lemma 135. Denote I3, = (A —¢,\ +¢) There evists ¢ > 0 such that
the function F: Hoph(D) x IS5, — H>L(D) defined in (253) is of the class
C2(HZ4(D) x I, H%4(D)) and for all all u,h € H2q(D) and all X € I, we

have
DyF(u, A) = ’TK(’TK(—AP(@ G(u) + P¢u)) + T (D(x3) G(u))
D F(u, \) h = h — T\(—=AL(z3) DG(u) h + P_h) |
D2, F(u, A) h = T3 (TA(=AT (25) DG(u) h + Ph) ) + T(T(w5) DG(u) h)
where the non-linearity G was defined in and
DG (u) h = 6uuy b + 3uhyy + 6ush + 12uuihy,
In particular for all A € I3,
D, F(0,) = Idgzp) — Ty o Py, (258)
D2, F(0,\) = Ty 0 Ty 0 P,,. (259)

Proof. The proof follows the differentiability of G as described in Lemma [27]
Lemma and the fact that the operator T} is linear and continuous. O

Remark 136. As a consequences of the relation (252)) in the Remark we
can rewrite relations (258|) and (259)) as

h, N
h, )2
D2, F(0,\) h = L”(D)Q%
(I+X—X\)

for all h € H2 (D).

6.3.4.3 Algebraic properties of the function F

Now we will prove some statements, which we will use, to verify assumptions

([261]) and (262)) in Theorem [141]applied for function F defined in ([255)). Results
of this section are analogous to the ones presented in the section devoted
to semilinear problem.

Lemma 137. Assume[Q] and [Qrl, then

ker D,F'(0,\) =ker L,,,
Moreover dimker D, F'(0, A\;) = 1.
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Proof. If h € ker D, F (0, \) (cf. formula (258)), then
h —TyP,h =0,
which is equivalent to
Ly h+P,h —P,h =0,
which means that h € ker Ly,. The rest follows from Lemma [121] O
Lemma 138. Assume|[Q] and[Qr], then
dimker D, F'(0, A1) = codimim D, F'(0, A;) = 1.
Proof. We will show that
H2L(D) = imD,F (0, \;) ® ker D, F(0, \,),

which together with the Lemma [137] will prove the claim.
Note that h € imD,F(0, \,), if and only if, there exists z € H(D) such
that h =z — (2, ) 13 p) ¢- Moreover h € ker D, F(0, A1) if and only of & = ¢,

for some £ € R. Observe, that for all h € H:(D)
h=nh—(h, 90>L2(D) @+ (h, 90>L2(D) ¥,
EimD;;(O,)\l) Eker D:F(O,Al)

hence H> (D) = imD,F(0, ) + ker D, F(0, \;). Suppose that h € H-} (D)
is such that h € imD,F(0,A\;) Nker D,F(0, ;). Then, for some £ € R and
2 € H>5(D), we have that 2 — (z, ©) 12y = . After multiplying this relation
by ¢, we get that 0 = &, hence h = 0, which means that imD,F'(0, A;) N
ker D, F(0,\) ={0}. O

Lemma 139. Assume|[Q] and[Qy], then
D2, F(0,\) ¢ & im D, F(0, Ay) .

Proof. Suppose that D2, F(0,\) ¢ € imD,F(0, ), i.e., there exists some
¢ € H% (D) such that

D2, F(0, M) = D,F(0,\) 1,

which is equivalent to (cf. formulas (258) and (259)), for the definitions of the
corresponding operators)

T>\1 (T)\l (@)) =9 — T)\1 (P‘Pw> :
By Remark [133] we can rewrite this as
=1 — (0, V) p) ¥-
By testing with ¢, we get
1= <S0790>L2(D) = <S07¢>L2(D) - <%¢>L2(D) =0.
Contradiction. O
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6.3.4.4 Proof of the main result for the quasilinear wave equation

Proof of Theorem[101 As mentioned earlier, we will apply Theorem for
the function F: H-py(D) x IS, — H2>L(D) defined in (255). Note that by
Lemma the function is of the class C?. The assumption is fulfilled
by Lemma and the assumption (262)) is satisfied due to Lemma m m
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7 Crandall-Rabinowitz theorem

In this section we present the Crandall-Rabinowitz theorem, cf. [4, Theorem
5.1, p. 15].

Let X, Y, Z be Banach spaces, U C X,V C Y opensetsand F': UxV — Z
be a function. The theorem is about the structure of set of solutions of the
equation

F(z,y)=0. (260)

Remark 140. Let f: R — Z, where Z is some normed space, and let D f(x) €
L(R, Z) be a Fréchet derivative of f at some point xy € R. Notice that in this
case we can identify D f(xy) with element D f(z()1 € Z.

Theorem 141 (Crandall-Rabinowitz). Assume that X, Z are Banach spaces,
UxV CX xR isan open set, F € C2(U xV,Z), F(0,A\) =0 (A€ V) and
that there is \g € V' such that

dimker D, F(0, \g) = codim im D, F(0, \g) = 1. (261)
Furthermore assume that there is some Uy € X, ||0o|| = 1 such that

ker D, F(0, \o) = lin {Ty},

and

D2, F(0, X\o)to & imD,F(0,\o) (). (262)

Then there is a non-trivial continuously differentiable curve through point

(Oa )\O)?
{(2(s),\(s)) € X x R: s € (=6,8),2(0) = 0, A(0) = Ao}, (263)

such that
F(z(s),A(s)) =0 (s € (=4,0)),

and all solutions of equation (260) in a neighbourhood of point (0, \g) are on
the trivial line or on the non-trivial curve (263)).

It is important to notice that the Theorem can be formulated more
generally:

Remark 142 (Theorem A.7, p. 121 in [B]). The Crandall-Rabinowitz Theo-
rem holds true under weakening the regularity assumptions for the func-
tion F. Tt is enough to assume that function F € C*(U x V, Z) and for each
non-empty compact set Iy C V the following holds true

sup |22, 0) = D3OV = ool

Ief. Remark
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According to [, p. 120] the function F of the form F(x,\) = Zi:l F(x)A,(N)
fulfils the above condition, when the functions Fi,..., F, and A, ..., A, are
continuously differentiable and the functions Fy, ..., F} are twice differentiable
at the point 0.
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8 Some definitions and technical results

In this section we collect some definitions and technical statements, which were
used before.

8.1 Carathéodory functions

In the section and in the assumptions [Sj| in the section we use the
notion of Carathéodory function. It is defined as follows.

Definition 143. let G C R™ be a measurable set. A function f: G x R" — R
is called a Carathéodory function if

e for all s € R", the mapping
G3zxr— f(z,s),
is measurable,
e for almost all x € G the mapping
R" 5 s — f(x,s) € R,

1S continuous.

8.2 Lebesgue differentiation theorem

In order to differentiate formulas (105)), (106]) and (217)) we need the following

statements.

Theorem 144 (Lebesgue differentiation theorem in 1-d). Assume that g €
LY(R), and define the function F: R — R by a formula

G(x):/_w g(s) dz (z € R).

Then the function G is continuous, almost everywhere differentiable (with re-
spect to the Lebesgue measure) and

G'(x) = g(x) for almost all x € R.

Proof. For the proof of above theorem we refer to [7, Theorem 1.6.11, p. 136]
]

While deriving a solution formula for the equation (89), the following corol-
laries from Theorem (144 are used. As mentioned earlier, they are used while

differentiating formulas (105]), (106]).
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Corollary 145. Let f € L*(0,00) and let h: (0,00) — R be a function having
the form
_J B(z) (z€(0,a)),
M) = { Ae T (2> a),

where A € R and € (0, oo)(ﬁ) and B € L*(0,a), for some a > 0. Then, the
function v: (0,00) — R defined by

o) = [ T h(s) f(s) ds (x €(0,00).

is continuous, almost everywhere differentiable (with respect to the Lebesgue
measure) and

v'(z) = —h(z) f(z) for almost all x €(0,00).

Proof. Note that the function hf € L'(0,1). Applying Theorem [144| gives the
claim. O

Corollary 146. Let f € L*(0,00) and let h: (0,00) — R be a function having

the form
B B(l‘) (ZL‘ G(O,Q))a
h(z) = { Aje " 4+ Ay (x> a),

where Ay, As € R and By, B2 € (0, oo)(EV and B € L*(0,a), for some a > 0.
Then, the function v: (0,00) — R defined by

v(z) = / h(s) £(s) ds (x €(0,00)).

is continuous, almost everywhere differentiable (with respect to the Lebesgue
measure) and

v'(x) = h(x) f(z), for almost all x € (0,00) .

Proof. For every N € N consider a function vy : (0,00) — R defined by

on(a) = / “h(s) £() xom(s) ds (@ €(0,00)).

Since h € L*(0,N) and f € L?*(R), we have that the function hfyon) €
L'(0,00), which implies that the function vy is well-defined for all N € N.
Moreover, we have that

v(z) =vn(x) (z€(0,N),N eN).

120bserve, that lim, o h(7)
130bserve, that lim, o h(7)
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By Theorem [144], the function vy is continuous, almost everywhere differen-
tiable and

vy (z) = h(z) f(x) xo,n) (), for almost all z €(z), and all N € N.

From above, we conclude the claim. O

Similarly, we need the following while solving the equation (204). The
following statement is used to differentiate equation ([217)).

Corollary 147. Let f € L*(R) and let h: R — R be a function having the
form

[ AP (x <0),
h(z) = { Age™P2% 4 AzePst (1> 0),

where Ay, As, A3 € R and (1, fs, 53 € (0, oo)(@ Then, the functionv: R — R
defined by

oie) = [ b fs) ds weR).
is continuous, almost everywhere differentiable (with respect to the Lebesgue

measure) and
V'(z) = h(x) f(z), for almost all x € R.

Proof. For every N € N define a function vy: R — R by a formula

UM@Z/WMQﬂ@Mmm@dS@fRY

—00

Since h € L?*(—o0o, N) and f € L*(R), we have that the function hfx(—oon) €
L'(R), which implies that the function vy is well-defined, for all N € N.
Moreover

v(z) =vn(z) (v €(—o00,N),N €N).

By Theorem [144] the function vy is continuous, almost everywhere differen-
tiable (with respect to the Lebesgue measure) and

vy(x) = h(z) f(x) X(—oon)(z), for almost all 2 € R, and all N € N.

From the above, we conclude that the function v has the desired properties. [

40Observe, that lim, , o h(z) = 0 and lim,_, |h(z)| = co.
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Figure 9: Behaviour of the sequence (|a‘k‘ |, eN). On the graph the ranges of the

functions [—2,1] 5 p — |af| € R are marked.

8.3 Some remarks about Lemma

In the following we will present some comments about the necessity of the
Assumption in the Lemma We will study the limit points (as
k — o) of the sequences

V aom2k? +
ay VAT T T o y/aum?k? + pa

k
[k
_ a++“ sin /o m2k? + a,
ok + (264)
bl :ZTM cos v/ oum2k? + pa
[k
+ O”TTHL sin \/a;m2k? 4+ pa.

On the Figures @ and the behaviour of the sequence (|ay]), .y, for some
rational values of /a;a € Q was presented. The figures [T1} [12 and [13] show
the behaviour of the sequence (|ay|), ., When /aza ¢ Q. All above figures
contains the ranges of the functions [pg, uy] 39— a} € R, for corresponding
values of k € N.

Lemma 148. Let f: R — R be a continuous function with a period T € R\ Q.
Then, the set f(N) is a dense subset of f(R).

Proof. Consider a function [-] : R — [0,1) defined by the formula
[zl =2 —|z] (z€R),

where |z| = max{z € Z: z < z}. By [15, Theorem 2], if « € R\ Q, the
sequence ([n]), oy is a dense subset of the interval [0, 1]. Let y € f(R) and let
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\ a=1,0=v2,0,=2, pc[-1,1]
Ymin = 0.061944 . ..
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Figure 11: Behaviour of the sequence (\a’,ﬂkeN). The value Y, represents the
smallest value marked on the graph.
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e > 0 be arbitrary. There exist z¢ € [0, 7] such that f(zo) = y. Let § > 0 be
such that, if |z — x| < 0, then

€

7@ -yl <

(265)

Since T is an irrational number, then % is also irrational. The sequence

(L%])%N is a dense subset of [0,1]. Let n € N be such that |£ — |2]| < 2,

hence
n

T ]| <o

By (263), we get

Note that n n n n
7|7l =77 7)) :”—T@-
Hence f(n) = f(T |%]). O

Lemma 149. Let o, ap,a > 0, Jasa € R\ Q and let p € R. Then the
sequences (ay,) oy and (b)), defined in (264) have 0 as a limit point.

Proof. Consider a function f: R — R defined as
f(z) = \/a, mcos Ja; arr — \Ja; wsin /o arz  (x € R). (266)
Note that the function f is periodic, with the period 2 € R\ Q. Observe

a; a

that f(0) > 0 and f(\/L > < 0, hence 0 € f(R). Therefore, by Lemma [148|

o a

there exists a sequence (k,), oy of natural numbers, such that f(k,) —— 0.
n—oo

Observe

/o m2k2
LT TN Vao,

k‘ k—o0
i 2]{;2
VAL L Jarm,

k—o0

k
Vom2k? + pa — /o ark k—> 0.
—00

This implies that aj, — f(k,) —— 0, which shows that a;, —— 0. By same
n n—00 n—00
reasoning the get the claim for the sequence (by), - O]
Remark 150. Above Lemma shows, that the assumption in the
Lemma [62] is necessary.
We will conclude this section with we following summary

e if assumption holds true then, both of the sequences (|ak|)
and (|b}]), . have finitely many limit points,

keN
keN
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— if assumption holds true, then 0 is not a limit point of the
sequences (|ay|), oy and (|0]) pens

— if assumption is not satisfied, then 0 is a limit point of one
of the sequences (|ay|), oy or (|0%])ens

e if assumption is not satisfied then, both of the sequences (|aj|),
and (|by;]) ,ey have infinitely many limit points and 0 is one of them. More
precisely, for every value p € N, the set{af € R: k € N} is a dense subset
of the set f((0,00)), where f is in (26€]). Similar holds for the sequence

(6% )ken:
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