

tttttt Q

Liquid

H₀ Gas

CFD simulation of liquid back suction and gas bubble formation in connected tubes of different cross-section

Xuan Cai¹, Martin Wörner², Holger Marschall³, Olaf Deutschmann^{1,2}

¹ Karlsruhe Institute of Technology

² Karlsruhe Institute of Technology

³ Technische Universität Darmstadt

Institute for Chemical Technology and Polymer Chemistry Institute of Catalysis Research and Technology Mathematical Modeling and Analysis, Dep. of Mathematics

Delivery line

Motivation and goal

- In urea-water-solution (UWS) dosing system of SCR, UWS is drained from delivery line and sucked back to UWS tank, when vehicle is out of operation
- During the above process, there is a risk of air being sucked into delivery unit. Such gas bubble formation adversely affects working pressure for atomization and thus should be prevented
- This study is devoted to numerical investigation of the UWS back suction in expanding pipes and exploration of effective means to prevent gas bubble formation

Numerical method and setup

Phase-field method

- Interface-capturing method where interface is treated as being of certain thickness
- Especially suited for moving contact line

Influence of mesh

Conclusions

- Mesh alignment near wall is vital
- Reducing diameter ratio D₂/D₁ can delay bubble formation
- Decreasing inclination angle *α* can suppress bubble formation

phaseFieldFoam

 A novel OpenFOAM solver for a Cahn-Hilliard coupled with Navier-Stokes equations

UWS tank

000

Image source: Stola et al. SAE Int. J. Engines, 2015

Developed by the authors (Marschall and Cai)

Physical parameter

• Liquid: UWS (32.5% urea) under room temp.

D.

g

Contact angle $\theta_0 = 52^\circ$

H.

H

SCR

Fixed outlet mass flow rate $Q = 700 \text{ mm}^{3/\text{s}}$

We acknowledge the financial support by Deutsche Forschungsgemeinschaft (DFG) through SFB/Transregio 150 project B05 References

Cai, Wörner, Marschall and Deutschmann, Emission Control Science and Technology, in press, 2017, DOI: https://doi.org/10.1007/s40825-017-0073-3

KIT - The Research University in the Helmholtz Association

Contact: Xuan Cai (xuan.cai@kit.edu) Engesserstr. 20, 76131 Karlsruhe, Germany

