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Introduction

Almost everywhere in science laws of nature are described by ordinary or partial differen-
tial equations. Only very rarely and typically only for simple problems the solution can
be evaluated directly. For most differential equations and especially for questions coming
from applications it is hence necessary to compute solutions numerically.
Over the years many numerical schemes for a large amount of different types of equations

have been invented, analysed and tested in practice. Nevertheless, different summands
within one equation often do not behave numerically equal and should therefore be treated
with methods that are adapted to them. This mainly happens when different phenomena
have been included in the differential equation during the mathematical modelling stage.
Splitting methods are a way to tackle these difficulties and to compute in a small amount

of time a numerical solution that differs not much from the exact solution. They are well
suited to equations where one has an efficient numerical solver for each summand. The
basic idea of splitting methods is to combine them to gain a numerical solution of the
whole equation by treating the different parts of the equation one after another. The result
of each sub-step with one part of the equation is used as initial value for the computation
of the next sub-step with another part of the equation. General and detailed information
on splitting methods can be found in the survey article [54].
This procedure requires that the problem can be written as an evolution equation that

is first-order in time. Then the terms except the one with time derivative determine the
rate of change of the observed quantity. At least for small time step sizes it is reasonable
to assume that it makes not much difference whether the summands of the rate of change
are treated together or one after another. The precise dependency of this difference on the
time step size is quantified by the convergence order of the numerical scheme. The most
important topic of this thesis is to prove convergence orders of splitting schemes. For the
investigation of the topic it is crucial which norm is chosen for the errors estimates.
A further reason for using schemes that treat each part in an appropriate way is that

they often conserve the energy, the momentum, the positivity or the regularity of a solu-
tion.
If there exist already implemented algorithms for some types of equations, it is fairly

easy to combine them to a splitting method. This allows to compute solutions to more
involved equations that contain these well-known types of equations without having to
write the complete code from the scratch. This gain of programming time is especially
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Introduction

an important advantage in applications.
When dealing with the numerical computation it should not be forgotten to assure that

the differential equation has a unique solution (in a suitable sense) since it is useless to
compute an approximation to a solution that does not exist and since we can hardly say
to which solution the approximation belongs if there is more than one solution.
Although it does not appear in this thesis, we mention that boundary conditions can

cause an order reduction of a scheme, sometimes in a rather unexpected way. A remedy
to this can be a different splitting of the right-hand side of the equation, see [20] and [21].
A general technical problem in the theoretical analysis of splitting methods is that

often a high spatial regularity of the initial functions and the solutions is necessary. As
a consequence, the lack of regularity can reduce the convergence order of the scheme, see
Chapter 4 and 5, as well as Section 10.3.
In the thesis at hand we tackle two partial differential equations from physics with

different types of splitting schemes: the cubic nonlinear Schrödinger equation with expo-
nential splitting methods and the Maxwell equations with an ADI splitting method. It
might be possible to treat other wave type equations, like the nonlinear wave equation,
with similar techniques as the ones presented in this thesis.
In practical computations always space discretization errors come into play. In this

thesis we restrict ourselves to the time discretization errors and do not give an error
analysis of the full discretizations.

Exponential splitting methods for nonlinear Schrödinger equations
We analyse the convergence order of two splitting schemes applied to the cubic nonlinear
Schrödinger equation on the torus and on the full space. The linear part is treated with
the fast Fourier transform and for the solution of the nonlinear part we use the existing
explicit solution formula. We start with a well-known theorem by C. Lubich from [51]
and put our main focus on the question whether (and to what extend) a reduction of the
regularity of the initial function causes a reduction of the convergence order. This turns
out to be true and can be found together with the proof in part two of this thesis. We add
numerical experiments to investigate the order reduction in practice. We have published
the theoretical analysis in [22].
The earlier paper [10] contains a convergence result for the case of two space dimen-

sions and any globally Lipschitz nonlinearity. Defect-based local error estimators for the
nonlinear Schrödinger equation were proven in [7] (see also [5] and [6] for the linear case).
Adaptive splitting methods for the Schrödinger equation in the semiclassical regime were
studied in [4]. An analysis of the cubic semilinear Schrödinger equation with damping
and forcing terms on the torus for regular initial functions can be found in [44]. Low
regularity exponential-type integrators for the cubic nonlinear Schrödinger equation were
investigated in [60] very recently.
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Introduction

The long-time behaviour of numerical (splitting) schemes for a spectral semi-discretization
of nonlinear Schrödinger equations was investigated in [28] and [29], see also [26] and [25].
For a quasilinear Schrödinger equation and solutions in H7, the paper [50] provides error
estimates in H1 of the Strang splitting combined with a frequency cut-off.
In contrast to [25] or [51], we do not use Lie derivatives and Lie commutators to show

the local error estimates. Instead we employ error formulas that are derived by iterating
the solution formula and by replacing the exponential function in the numerical scheme
by a Taylor expansion, see [12] for a similar procedure. We split the error formulas into
a quadrature error and several remainder terms as in e.g. [12], [43] and [27]. The main
novelty of our approach is the use of fractional convergence results. They allow us to treat
initial values in spaces larger than H4 (which was taken in [51]). Moreover, for the Lie
splitting the fractional convergence in H7/4 is crucial for the necessary a priori bound in
H7/4 of the numerical solution. The needed estimates, involving fractional orders of the
time step size, are established by various interpolation arguments, e.g. when controlling
quadrature errors.

An ADI method for the Maxwell equations
The other problem from physics we address are the Maxwell equations. For them we use
an alternating direction implicit (ADI) scheme that is based on the splitting of the curl

operator into those partial derivatives with negative and those with positive signs in the
Maxwell operator. We deal with the error estimate and the convergence order of the ADI
method and add an analysis of the preservation of the divergence identity. The main
advantage of the ADI method we investigate is its efficiency. We can rewrite the resulting
equations in such a way that systems of three-dimensional implicit equations decouple
into three one-dimensional implicit equations. We conclude that part of this thesis with
numerical experiments that confirm some of our results.
The idea of ADI methods in general was published in [63] for the heat equation. The

studies therein were further developed in [18] and [19]. An analysis of dimension splitting
methods for abstract evolution equations was done in [35].
We compute the space derivatives with finite differences on the Yee grid, as proposed

in [72]. This combination was first done in [76] and [75]. An analysis of the numerical dis-
persion was done in [74] and a combination with perfectly matched layers was investigated
in [49] and [30]. A version of this scheme for the two-dimensional Maxwell equations was
discussed in [57]. A much earlier approach of a combination of an ADI scheme with the
Yee grid was presented in [41].
The ADI splitting we present is not the only possible one, see for instance [14]. Finite

element methods with an explicit time integration scheme on a spatial mesh that contains
very small mesh elements often come along with severe CFL conditions on the time step
size. This difficulty can be overcome by an implicit method. An approach to the Maxwell
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equations with a locally implicit method to avoid this difficulty was investigated in [39].
In our splitting method we use resolvents of splitting operators, so that it belongs to

the class of resolvent splitting methods. An abstract analysis of two different resolvent
splitting methods was done in [59].

Structure of this thesis
This PhD thesis consists of three parts and is organised as follows.
The first part is Chapter 1 and contains an overview over splitting methods in Sec-

tion 1.3. Some notations and preliminaries are denoted in Section 1.1, while Section 1.2
gives an introduction into quadrature rules. Important theorems from functional analysis
and semigroup theory that we use in this thesis are recalled in Section 1.4.
In the second part of this thesis we deal with splitting methods for nonlinear Schrödinger

equations. In Chapter 2 we state the problem we are looking at for the rest of this part.
Section 2.1 contains well-known facts about nonlinear Schrödinger equations, especially on
the well-posedness theory, and we introduce the splitting schemes we use. The functional
analytic setting for our analysis is presented in Section 2.2. From then on we restrict
ourselves to the case of a cubic nonlinearity.
Chapter 3 is devoted to the situation that the initial function is in H4. This situation

was already investigated for the case of the torus in [51]. In Section 3.1 we state that
the Strang splitting scheme converges in L2 with order two in the time step size to the
exact solution. We additionally note auxiliary results that appear in the proof of this
theorem. This proof consists of arguments in H2, followed by considerations in L2. They
are presented in detail in the Sections 3.2 and 3.3, respectively.
Our main contribution to the scientific progress from this part is the convergence theo-

rem for initial functions in H2+2θ for θ ∈ (0, 1). It reads that the convergence order in L2

reduces to 1 + θ and is the topic of Chapter 4. We present the theorem itself as well as
intermediate results in Section 4.1. The proof follows the same structure as the one for
the theorem in the H4-situation in Chapter 3 and is the content of the Sections 4.2 and
4.3.
Finally, we investigate the situation that the initial function has only H2-regularity.

We are able to show in Chapter 5 that in this case the Lie and the Strang splitting are
convergent of order one in L2. As far as we know it is the first result in this setting for
the Lie splitting. Section 5.1 contains these theorems and the most important results
required in their proofs. In Section 5.2 we show the proofs of the statements.
We close part two of this thesis by numerical experiments in Chapter 6. We conduct

them to confirm the theoretical results we have shown in the previous chapters and to show
their sharpness. After giving an overview over the experiments in Section 6.1, we explain
in Section 6.2 the two techniques we use to gain initial functions of a given regularity. We
test our code in Section 6.3 on the example of plane wave solutions, for which the formula
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of the solution is known explicitly, and on the example of modified soliton solutions. In
Section 6.4 we compute the numerical convergence order of the scheme for initial functions
belonging to several Hs-spaces and see the reduction of the convergence order we have
shown in Chapter 4. In Section 6.5 we see in an experiment that the error constant
increases for highly oscillating initial functions.
In the third part of the thesis we analyse an alternating direction implicit (ADI) splitting

for the Maxwell equations. In Chapter 7 we describe the problem we look at and show
properties of its solutions. We introduce the Maxwell equations in Section 7.1. The
functional analytic setting for this part and the introduction of the Maxwell operator
and the splitting operators, as well as the proofs of basic properties of them and some
embedding theorems, are contained in Section 7.2. In Section 7.3 we prove the well-
posedness of the problem and additionally embedding and trace properties of the domain
of the Maxwell operator and the three restrictions of the Maxwell operator we use.
Chapter 8 is devoted to the properties of the splitting operators and the ADI splitting

scheme. In the Sections 8.1, 8.2 and 8.3 we show that the splitting operators generate
C0-semigroups and that their resolvents satisfy some estimates. We introduce the ADI
scheme we work with in Section 8.4 and close the chapter with a proof of its efficiency in
Section 8.5. This efficiency is the main reason for using the ADI scheme.
In Chapter 9 we use the properties of the splitting operators that have been shown in

Chapter 8 to prove the convergence of the scheme. In Section 9.1 we show the convergence
of order one in L2 and in Section 9.2 we use similar techniques to prove the same result in a
weak sense. The exact solution of the Maxwell equations satisfies two identities involving
the divergence of the electric and the magnetic field, respectively. These equations are
satisfied by the numerical solutions in a weak sense and in L2, which we see in the
Sections 9.3 and 9.4, respectively.
The last chapter of this thesis, Chapter 10, is devoted to the numerical verification of

the theoretical results in L2 of the ADI scheme. In Section 10.1 we give an overview over
our numerical experiments. We conduct two experiments in Section 10.2 for the situa-
tion without conductivity and without external currents, in which the exact solution is
known. The results help us not only to check our programming code but also to estimate
the appropriate fineness of the space discretization. Afterwards we see the predicted con-
vergence order of the method and the predicted order of the preservation of the divergence
properties for the situation with conductivity and external current. We close this chapter
by an experiment in Section 10.3 that shows the behaviour of the scheme for the case that
the initial function does not satisfy all regularity assumptions of the convergence theorem
in Section 9.1.
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1. Introduction to splitting methods

In this chapter we present the basic principles of splitting methods in general and explain
mathematical background needed later on. We start with notations and concepts from
functional analysis in Section 1.1. Afterwards Section 1.2 gives an overview over quadra-
ture rules. Splitting methods are motivated and explained in Section 1.3. We present
the two types of them we use and comment on their basic properties. The chapter is
closed by Section 1.4 with a collection of important theorems from functional analysis
and semigroup theory used in this thesis.

1.1. Notations and preliminaries

Throughout this thesis c denotes a generic constant, whose values may change from ap-
pearance to appearance, also within the same equation. It possibly depend on the dimen-
sion of the spatial set on which our differential equations are defined and on embedding
constants. Moreover, I is the identity operator, 1 the function being constant one and
1A the indicator function of a set A, i.e. 1A(x) = 1 if x ∈ A and 0 otherwise.
Let X and Y be two Banach spaces. We write Y ↪→ X if Y is continuously embedded

into X and X ∼= Y if there exists an isomorphism between X and Y . We denote the
duality pairing of Y ∗ and Y by 〈y∗, y〉Y ∗,Y or by 〈y, y∗〉Y,Y ∗ for y ∈ Y and y∗ ∈ Y ∗. If X is
a Hilbert space, we write (· | ·)X for its inner product. Note that if Y is densely embedded
into X and if X is a Hilbert space, we have 〈x, y〉Y ∗,Y = (x | y)X for x ∈ X ∼= X∗ ↪→ Y ∗

and y ∈ Y ↪→ X.
The Banach space of all bounded linear operators from X to Y is denoted by B(X, Y ),

and by B(X) if Y = X. The domain D(A) of a linear operator A : D(A) ⊆ X → X

is always equipped with the graph norm, which is defined by ‖x‖D(A) := ‖x‖X + ‖Ax‖X
for x ∈ D(A). The resolvent of such a linear operator is denoted by (λI − A)−1 for
λ being in the resolvent set of A. Linear operators act on all expressions that follow
till the enclosing parenthesis end or till the summand in which they appear ends. The
part of a linear operator A : D(A) ⊆ X → X in a subspace Y ⊆ X is the operator
AY : D(AY ) ⊆ Y → Y with

D(AY ) := {y ∈ Y | y ∈ D(A), Ay ∈ Y }

and AY y = Ay for all y ∈ D(AY ).

15



1. Introduction to splitting methods

Let Ω ⊆ Rd be an open set with the spatial dimension d ∈ N. The set of infinitely
often differentiable real-valued or complex-valued functions with compact support in Ω is
denoted by C∞c (Ω). Let p ∈ [1,∞] and K be either R or C. The Lebesgue spaces are the
Banach spaces defined by

Lp(Ω) :=
{
f : Ω→ K Borel measurable

∣∣∣ ∫
Ω

|f(x)|p dx <∞
}
, p ∈ [1,∞),

L∞(Ω) := {f : Ω→ K Borel measurable | ∃c ≥ 0 : |f(x)| ≤ c

for almost all x ∈ Ω}, p =∞,

and are equipped them with the norms

‖f‖Lp :=

(∫
Ω

|f(x)|p dx

)1/p

, p ∈ [1,∞),

‖f‖∞ := ‖f‖L∞ := inf
c≥0

{
|f(x)| ≤ c for almost all x ∈ Ω}, p =∞.

In the same way we define the Lebesgue spaces for non-open Borel measurable sets Ω ⊆ Rd.
Furthermore, we define for a non-empty open set Ω ⊆ Rd the weak derivatives and the

Sobolev spaces. We denote by L1
loc(Ω) the space of all Borel measurable locally integrable

functions , i.e. all Borel measurable f : Ω → K for which the restriction f |K to any
compact set K ⊆ Ω is in L1(K). Let f ∈ L1

loc(Ω). It is weakly differentiable with respect
to the j-th variable if there exists a g ∈ L1

loc(Ω) such that∫
Ω

f∂jϕ dx = −
∫

Ω

gϕ dx

for all ϕ ∈ C∞c (Ω). In this case g is called weak derivative of f and we write ∂jf for
g. Weak derivatives of higher order are defined recursively. The order of a multiindex
α ∈ Nd is defined by α1 + · · · + αd and denoted by |α|. Observing that weak derivatives
commute, we denote a weak derivative with respect to α as ∂α := ∂α1

1 · · · ∂αdd . For k ∈ N0

and p ∈ [1,∞] we introduce the Sobolov space of order k as

W k,p(Ω) :=
{
f ∈ Lp(Ω)

∣∣ ∂αf exists and ∂αf ∈ Lp(Ω) for all α ∈ Nd with |α| ≤ k
}

and equip it with the norm

‖f‖Wk,p :=

( ∑
α∈Nd, |α|≤k

‖∂αf‖pLp
)1/p

, p ∈ [1,∞),

‖f‖Wk,∞ := max
α∈Nd, |α|≤k

‖∂αf‖L∞ , p =∞.

With real interpolation theory, see Section 7.57 in [1], we define the fractional Sobolev
spaces for s ≥ 0, k ∈ N0 with s ≤ k, and p ∈ [1,∞] as

W s,p(Ω) :=
(
Lp(Ω),W k,p(Ω)

)
s/k,p

,
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1.2. Quadrature rules

equipped with the norm given by the interpolation. All Sobolev spaces are Banach spaces.
In the case p = 2, which is the most important case for this thesis, they are Hilbert spaces
and we write Hs(Ω) := W s,2(Ω). Note that H0(Ω) = L2(Ω). We use real and also complex
interpolation of Hilbert spaces in this thesis. For further information about these topics
we refer to [52]. Sobolev spaces are discussed in detail in [1].
If f ∈ W 1,∞(Ω) ∩W 2,3(Ω), then we define the norm

‖f‖W 1,∞∩W 2,3 := ‖f‖W 1,∞ + ‖f‖W 2,3 .

Let F and F−1 denote the unitary Fourier transform and its unitary inverse on L2(Rd)

and on L2(Td), respectively. For Ω ∈ {Rd,Td} and all s ≥ 0 there exists the characteri-
zation

Hs(Ω) =
{
f ∈ L2(Ω) | F−1

(
(1 + |ξ|2)s/2Ff

)
∈ L2(Ω)

}
(1.1)

for the Sobolev spaces Hs(Ω) and

‖f‖Hs '
∥∥F−1

(
(1 + |ξ|2)s/2Ff

)∥∥
L2 =

∥∥(1 + |ξ|2)s/2Ff
∥∥
L2 ,

for their norms, see Section 7.62 in [1] for the case Ω = Rn. Thereby, ' means equal up
to a multiplicative constant. We remark that for s ∈ [0, 4] this norm equivalence holds
true with constants independent of s by taking k = 4 in the definition of the fractional
Sobolev spaces and interpolating between the norm estimates in L2 and Hk. On the torus
we actually have the norm in `2(Zd) on the right-hand side of the above identity. As
above, we suppress the domain in the notation of norms if the main spatial domain in the
corresponding context is meant.

1.2. Quadrature rules

In numerical analysis it is often necessary to compute the value of an integral over a
continuous function f . We need that in this thesis to estimate differences of an integral
and evaluations of functions appearing in Taylor expansions, and to incorporate inhomo-
geneities into numerical schemes. If it is not possible to calculate the exact value of the
integral, we have to approximate it numerically. This can be done with quadrature rules .
We first consider one-dimensional integrals. Let H be a Hilbert space with norm ‖·‖H

and let f ∈ C([0, 1], H) be a function. Looking at
∫ 1

0
f(t) dt, we evaluate f at certain

points in the interval [0, 1] and sums these function values up after multiplying them with
certain weights. So, a quadrature rule is given by a number n ∈ N, nodes 0 ≤ c1 < · · · <
cn ≤ 1 and weights ωi ≥ 0, i = 1, . . . , n. It approximates the integral by∫ 1

0

f(t) dt ≈
n∑
i=1

ωif(ci).
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1. Introduction to splitting methods

We pose the restriction
∑n

i=1 ωi = 1 since at least constant functions shall be integrated
without error.
All quadrature rules can be carried over to other intervals via translations and dilations.

On the interval [t0, t0 + τ ], which is the case we mostly need, they read as∫ t0+τ

t0

f(t) dt ≈ τ
n∑
i=1

ωif(t0 + ciτ).

A quadrature rule is said to be of order k ∈ N if every polynomial with degree at most
k − 1 is integrated exactly. It is easy to see that this is the case if and only if for all
l = 1, . . . , k we have

n∑
j=1

ωjc
l−1
j =

1

l
.

The following error estimate is well-known and can for instance be found as Theorem 3.2.2
in [65]. Its scalar-valued proof transfers directly to the Hilbert space-valued situation.

Proposition 1.1. Let a quadrature rule be given by n ∈ N, nodes 0 ≤ c1 < · · · < cn ≤ 1

and weights ωi ≥ 0 for all i ∈ {1, . . . , n} that has (at least) order k. Let f be (at least)
k-times continuously differentiable on [t0, t0 + τ ]. Then we have the error estimate∥∥∥∥∥

∫ t0+τ

t0

f(t) dt− τ
n∑
i=1

ωif(t0 + ciτ)

∥∥∥∥∥
H

≤ cτ k+1 max
s∈[t0,t0+τ ]

∥∥f (k)(s)
∥∥
H
.

The simplest quadrature rule is the rectangular rule. More precisely, there is the rect-
angular rule with the left endpoint and the rectangular rule with the right endpoint. They
have the single node c1 = 0 or c1 = 1, respectively, and the weight ω1 = 1, so that∫ t0+τ

t0

f(t) dt ≈ τf(t0) and
∫ t0+τ

t0

f(t) dt ≈ τf(t0 + τ),

respectively. They are both of order one.
The midpoint rule also has only one node, c1 = 1/2, and one weight, ω1 = 1, but is of

order two. A quadrature rule with the same order is the trapezoidal rule, which has the
two nodes c1 = 0 and c2 = 1 and the weights ω1 = ω2 = 1/2. In formulas these two rules
read ∫ t0+τ

t0

f(t) dt ≈ τf(t0 + τ/2) and
∫ t0+τ

t0

f(t) dt ≈ τ

2

(
f(t0) + f(t0 + τ)

)
.

We further mention the second order quadrature rule with the three nodes c1 = 0,
c2 = 1/2 and c2 = 1 and the weights ω1 = ω3 = 1/4 and ω2 = 1/2, i.e.∫ t0+τ

t0

f(t) dt ≈ τ

4
f(t0) +

τ

2
f(t0 + τ/2) +

τ

4
f(t0 + τ),
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1.3. Splitting methods

which appears in the Sections 9.3 and 9.4. Observe that there exists an order-four quadra-
ture rule with the same nodes, namely the Simpson rule with the weights ω1 = ω3 = 1/6

and ω2 = 2/3, reading∫ t0+τ

t0

f(t) dt ≈ τ

6
f(t0) +

2τ

3
f(t0 + τ/2) +

τ

6
f(t0 + τ),

Unfortunately, we cannot use the Simpson rule in the above mentioned sections since the
weights ω1 = ω3 = 1/4 and ω2 = 1/2 come out of the proof of the error formulas.
We can also define multidimensional quadrature rules, which we do in this thesis with

a two-dimensional rule that approximates an integral over a simplex. The standard two-
dimensional simplex is the set

S := {(x, y) ∈ R2 | x, y ≥ 0, x+ y ≤ 1}.
For a function f ∈ C(S,H) we use the approximation∫

S

f(x, y) d(x, y) ≈ 1

8

(
f(0, 0) + f(1, 0) + f(0, 1) + f(1/3, 1/3)

)
.

We will see in Lemma 3.9 that this quadrature rule is of order two.

(0, 0) (1, 0)

(0, 1)

(1/3, 1/3)

Figure 1.1.: Two-dimensional simplex with the nodes of the quadrature rule.

More information on quadrature rules can be found for example in Section 3 in [65].

1.3. Splitting methods

1.3.1. The idea of splitting methods

We consider a differential equation of the type

u′(t) = Lu(t)
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1. Introduction to splitting methods

together with an initial time t0 and an initial condition u(t0) = u0. Assume that the
operator L can be written as the sum of two operators A and B, i.e. we consider the
problem u′(t) = Au(t) +Bu(t), t ≥ t0,

u(t0) = u0.
(1.2)

We suppose that problem (1.2) has a unique solution on the time interval [t0, T ] for a
T > t0. Our goal is to compute numerically an approximate solution to problem (1.2)
with as little amount of computation costs as possible.
Therefore, we look at the two “subproblems”v′(t) = Av(t), t ≥ t0,

v(t0) = v0,
(1.3a)

and w′(t) = Bw(t), t ≥ t0,

w(t0) = w0.
(1.3b)

We assume that they both have a unique solution on the time interval [t0, T ] and that these
solutions can be computed efficiently. Thus, a computer needs only a small amount of
time for computing an approximate solution that differs not much from the exact solution.
Examples for operators for which the corresponding problem can be solved efficiently are
the cases when the solutions of (1.3) are explicitly given or have a simple representation in
the Fourier mode, as the Laplace operator on the torus for instance. This is precisely the
situation we have in the second part of this thesis for the nonlinear Schrödinger equation.
The idea of splitting methods is to exploit the good solvability properties of (1.3) to

get an approximate solution for (1.2) in the following way (based on the Lie splitting, see
below). We fix a time step size τ = T−t0

N
> 0 for an N ∈ N and calculate the solution v

of the first subproblem with initial function u0 after one time step of length τ . Then we
define ũ1 := v(t0 + τ) = etAu0 and calculate the solution w of the second subproblem with
initial function ũ1 (and again starting time t0), getting u1 := w(t0+τ) = etBũ1 = etBetAu0.
The function u1 is now taken as the approximate solution of problem (1.2) at time t0 + τ .
Afterwards we repeat this procedure with initial function u1 as initial function for the first
subproblem until we reach the end time T of our computation. A graphical illustration
of this approach is displayed on the left-hand side of Figure 1.2.
The described procedure causes as time discretization error the so-called splitting error ,

which is due to the fact that we only compute solutions of the subproblems (1.3) and never
of the original problem (1.2). Fortunately, there is hope that for small time step sizes
the error is small. The reason for this optimism is that (1.2) is a differential equations of
first order in time, which means that the right-hand side depicts the rate of change of the

20



1.3. Splitting methods

solution. For small time step sizes it is plausible that it does not make a huge difference
whether we treat both summands of the rate of change at once or one after another.
One of the most important questions concerning splitting methods is the one for their

convergence order . The convergence order is the rate with which the time discretiza-
tion error of the approximation decreases when the time step size is reduced. The most
important topic in this thesis is to determine convergence orders of splitting schemes.
The idea of splitting methods can be generalized in a straightforward way to a sum of

finitely many operators L := A1 + · · ·+Am, m ∈ N. With the help of quadrature rules it
is also possible to include inhomogeneities, see for example Subsection 1.3.3.
In this thesis we deal with two types of splitting methods. We use exponential split-

ting methods in Chapter 2 till 6 to tackle the nonlinear Schrödinger equation, while we
investigate in Chapter 7 till 10 an application of an alternating direction implicit (ADI)
method to the Maxwell equations. Further splitting methods and an overview over split-
ting methods in general can be found in the survey article [54].

1.3.2. Exponential splitting methods

A relatively obvious type of splitting methods are the exponential splitting methods. They
mimic closely the general idea of splitting methods we described in Subsection 1.3.1.
A convergence analysis of exponential splitting schemes in an abstract framework was
performed in [36]. General information on exponential integrators can be found in the
survey article [38].
An exponential splitting method is defined by a time step size τ > 0, an l ∈ N and

coefficients a1, . . . , al, b1, . . . , bl ∈ R. In this thesis we only consider methods with the
condition

∑l
k=1 ak =

∑l
k=1 bk = 1. This means that we proceed per application of the

scheme in total exactly one time step along the solutions of the both subproblems.
Denoting the exact solutions of the subproblems (1.3) by etAv0 and etBw0, the result of

an exponential splitting method after one time step reads

u1 = eblτBealτA · · · eb1τBea1τAu0. (1.4)

The three most important exponential splitting methods are the following ones.
The method we described as motivation in Subsection 1.3.1 is the Lie splitting (some-

times also called Lie–Trotter splitting), cf. [71]. It is defined by n = 1 and a1 = b1 = 1,
i.e. the numerical solution after one time step is given by

u1 = eτBeτAu0.

The second simplest method is the Strang splitting (sometimes also called Strang–
Marchuk splitting), which is given by l = 2, a1 = a2 = 1

2
, b1 = 1 and b2 = 0. It has been
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1. Introduction to splitting methods

introduced independently in [66] and in [53]. Its result after one time step is given by

u1 = e
1
2
τAeτBe

1
2
τAu0.

The last exponential splitting method we mention is the Yoshida splitting , see [73]. It
is given by l = 4 and the coefficients

a1 = a4 =
1

2
(
2− 21/3

) , a2 = a3 =
1− 21/3

2
(
2− 21/3

) ,
b1 = b3 =

1

2− 21/3
, b2 = − 21/3

2− 21/3
and b4 = 0.

The Yoshida splitting has the disadvantage that it uses negative time steps, represented
by the arrows going leftwards or downwards in Figure 1.2. This is not an obstacle for
hyperbolic problems such as wave type equations due to their time reverseness. But
the Yoshida splitting should not be used for parabolic problems since they are not well-
defined for negative times. We remark that the Yoshida splitting can also be obtained by
composing the Strang splitting with itself (“triple jump method”), see Chapter II in [33].
The Lie, the Strang and the Yoshida splitting are schematically sketched in Figure 1.2.

(a) Lie splitting scheme (b) Strang splitting scheme (c) Yoshida splitting scheme

Figure 1.2.: Schematical sketches of the Lie, the Strang and the Yoshida splitting. The two
solutions referring to the operators A and B are drawn as dashed arrows in
the horizontal and dotted arrows in the vertical direction, respectively. The
solid lines represent the solution of the original problem, having a slightly
different end point than the numerical schemes.

Each splitting method has a classical order . It is obtained by making a formal Taylor
expansion of (1.4) and comparing the terms with a Taylor expansion of the exact solution
et(A+B)u0. Regardless of the given problem and the regularity of the initial function, the
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1.3. Splitting methods

order of a splitting method can never be higher than its classical order. For the three
splitting methods introduced above we have the following classical orders:

splitting method classical order
Lie splitting 1

Strang splitting 2

Yoshida splitting 4

It is clear that we can write down each splitting scheme with interchanged roles of A and
B. This does not change the classical order and usually also not the convergence order of
the special situation the splitting scheme is applied to. For long time computations it can
be that one choice is preferable to the other one, namely if one ordering gives a gain in
computing time by combining the last sub-step of one execution of the scheme with the
first sub-step of the next execution. For instance, for the nonlinear Schrödinger equation
it is advisable to choose A to be (a multiple of) the Laplace operator and B to be the
nonlinearity when using the Strang splitting, see Section 2.1.

1.3.3. ADI splitting methods

The simplest numerical methods for solving differential equations are the explicit and the
implicit Euler method. Let uAn and uBn be the numerical solutions after n time steps of
length τ of the subproblems (1.3). Then the result after a further time step of length τ
starting from them is

uAn+1 = (I + τA)uAn and uBn+1 = (I + τB)uBn ,

respectively, for the explicit Euler method, and

uAn+1 = (I − τA)−1uAn and uBn+1 = (I − τB)−1uBn ,

respectively, for the implicit Euler method. These methods are role models for all explicit
and implicit methods since they show the typical properties of them.
A single step with an explicit method is very efficient but explicit methods have the

disadvantage that they come along with a time step size restriction. The reason is that
for partial differential operators A and B the explicit method is unstable for large time
steps. The time step size restriction is of the type τ ≤ cN−Ds —assuming a uniform space
grid—, where Ns is the number of space discretization points in each direction and D

the order of the differential equation. The necessity to make small time steps has the
impact that many time steps have to be done, which causes a large total computation
time. The complication is particularly severe for problems in higher dimensions since then
the computation of one time step needs more time.
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1. Introduction to splitting methods

Implicit methods do in general not suffer from a time step size restriction but while
applying them we have to solve a large system of equations, which usually needs a lot of
computation time. This is especially a difficulty for multidimensional problems since the
number of unknowns is proportional to Nd

s .
One remedy to these difficulties is to use so-called alternating direction implicit (ADI )

splitting schemes, see [63]. We explain the idea using the example of the two-dimensional
heat equation ∂tu = ∂xxu+ ∂yyu (with suitable boundary conditions). We introduce two
different numerical sub-methods and combine them to an ADI method. First, the second
derivative in x-direction is computed implicitely and the second derivative in y-direction
is computed explicitly. In the second sub-method it is done the other way around. These
two methods are then executed after another (with the same time step size). In [63] it is
shown that the resulting method is stable.
Transferring this idea to the abstract problem (1.2), we introduce the following splitting

scheme. For a time step size τ > 0 the result after the (n + 1)-st time step is computed
from the result after the n-th time step by

un+1 = (I − τ
2
B)−1(I + τ

2
A)
[
(I − τ

2
A)−1(I + τ

2
B)un

]
,

where we assume that I − τ
2
A and I − τ

2
B are invertible for all τ sufficiently small.

From now on we allow that the problem we investigate contains an inhomogeneity. This
means that we look at a differential equation of the formu′(t) = Au(t) +Bu(t) + f(t), t ≥ t0,

u(t0) = u0,
(1.5)

with a continuous function f . Inspired by the integrated form of (1.5),

u(t) = u0 +

∫ t

t0

(A+B)u(s) ds+

∫ t

t0

f(s) ds,

we incorporate the impact of f into the numerical scheme by a quadrature rule. Choosing
the trapezoidal rule, we define for a sufficiently small time step size τ > 0 the splitting
scheme

un+1 = (I − τ
2
B)−1(I + τ

2
A)
[
(I − τ

2
A)−1(I + τ

2
B)un + τ

2

(
f(tn) + f(tn+1)

)]
.

It is possible to choose other quadrature rules for the incorporation of the inhomogene-
ity. The most obvious alternative is the midpoint rule since it has the same order two
and needs only one evaluation of f per time step. We did not work out the proofs in
detail but we assume that this change does not affect the convergence orders we get in
Chapter 9. At first sight the midpoint rule seems to be superior to the trapezoidal rule
since it needs only one evaluation of the inhomogeneity per time step instead of two. But
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the trapezoidal rule can compensate that by storing the evaluation of f for the next time
step.
In principle it is also possible to use other quadrature rules than these two but this is

not advisable. Using one of the two lower-order rectangular rules unfortunately reduces
the overall convergence order of the scheme. The choice of a higher-order quadrature
rule is a waste of computation time since gaining a higher convergence order than in our
results would still be impossible due to the chosen arrangement of the operators A and
B.

1.4. Tools from functional analysis and semigroup
theory

In this section we state several important classical theorems from analysis that we use in
this thesis.

1.4.1. Results from functional analysis

The first theorem gives a unique weak solution of linear partial differential equations, see
Theorem 6.2.1 in [24].

Theorem 1.2 (Lemma of Lax–Milgram). Let (H, ‖·‖H) be a real Hilbert space and
B : H ×H → R a bilinear mapping, for which there exist constants α, β > 0 such that

|B(u, v)| ≤ α ‖u‖H ‖v‖H

for all u, v ∈ H and
B(u, u) ≥ β ‖u‖2

H

for all u ∈ H. Furthermore, let f : H → R be a bounded linear function. Then there
exists a unique u ∈ H such that

B(u, v) = f(v)

for all v ∈ H.

For some norm estimates it is crucial to have embeddings from some Sobolev spaces
into Lebesgue spaces or spaces of continuous functions.

Theorem 1.3 (Sobolev embedding theorem). Let Ω be a Lipschitz domain in Rd

and m ∈ N.

(a) If m > d/p, then Wm,p(Ω) ↪→ Lq(Ω) for q ∈ [p,∞].

(b) If m > d/p and Ω is a bounded cuboid, then Wm,p(Ω) ↪→ C(Ω).
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1. Introduction to splitting methods

(c) If m = d/p, then Wm,p(Ω) ↪→ Lq(Ω) for q ∈ [p,∞).

(d) If m < d/p, then Wm,p(Ω) ↪→ Lq(Ω) for q ∈ [p, pd/(d−mp)].

(e) If p = 2, then the statements (a), (c) and (d) also holds for Ω = Td.

Proof:
For the case of a Lipschitz domain in Rd the statements and some more can be found in
Theorem 4.12 in [1]. For the case of the torus and p = 2 part (a) follows from

‖f‖∞ =
∥∥F−1Ff

∥∥
∞ ≤ c ‖Ff‖L1 ≤ c

∥∥(1 + |·|2)−s/2
∥∥
L2 ‖f‖Hs ≤ c ‖f‖Hs , (1.6)

and for part (d) see e.g. Corollary 1.2 in [8]. �

These Sobolev embeddings yield for up to three space dimensions in particular the
following embeddings.

Corollary 1.4. Let d ∈ {1, 2, 3} and let either Ω ∈ {Rd,Td} or Ω ⊆ R3 a Lipschitz
domain. Then H2(Ω) ↪→ L∞(Ω) and H1(Ω) ↪→ L6(Ω).

1.4.2. Results from semigroup theory

In this subsection we collect some theorems on strongly continuous semigroups, also called
C0-semigroups. An introduction into this topic and more detailed information can be
found in [23].
The most important semigroups for this thesis are semigroups of contractions. The first

theorem gives sufficient conditions under which a linear operator generates a C0-semigroup
of contractions, compare Theorem II.3.15 in [23].

Theorem 1.5 (Theorem of Lumer–Phillips). Let X be a Banach space and let the
operator A : D(A) ⊆ X → X be linear, closed, densely defined and dissipative. If the
range of λI − A is dense in X for some λ > 0, then A generates a C0-semigroup of
contractions.

Under suitable smallness assumptions, a perturbation of a generator of a semigroup of
contractions is again a generator. Theorem III.2.7 in [23] provides the following result on
perturbation by a bounded and dissipative operator.

Theorem 1.6 (Theorem of dissipative perturbation). Let X be a Banach space,
A : D(A) ⊆ X → X generate a C0-semigroup of contractions and B ∈ B(X) be dis-
sipative. Then A+B generates a C0-semigroup of contractions on D(A).

The following theorem yields a further statement on the generation of a semigroup of
contractions, see Theorem II.3.5 in [23]. It can also be used the other way around to get
from a semigroup of contractions a resolvent estimate.
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Theorem 1.7 (Theorem of Hille–Yosida). Let X be a Banach space and A : D(A) ⊆
X → X a linear operator. Then the following properties are equivalent.

(a) A generates a C0-semigroup of contractions.

(b) A is closed, densely defined, every λ > 0 belongs to the resolvent set of A, and one
has the estimate ‖(λI − A)−1‖B(X) ≤ 1

λ
for all λ > 0.

On a Hilbert space one can characterize the generators of unitary groups by the following
result, see Theorem II.3.24 in [23].

Theorem 1.8 (Stone’s Theorem). Let H be a Hilbert space and A : D(A) ⊆ H → H

a densely defined operator. Then A generates a C0-group of unitary operators if and only
if A is skew-adjoint.

The main purpose of semigroups for this thesis is that they are closely connected to the
solutions of Cauchy problems.

Theorem 1.9. Let X be a Banach space, A : D(A) ⊆ X → X a linear operator that
generates a C0-semigroup (T (t))t≥0, u0 ∈ D(A) and f ∈ C1([0,∞), X)+C([0,∞), D(A)).

(a) The inhomogeneous Cauchy problemu′(t) = Au(t) + f(t), t ≥ 0,

u(0) = u0,

has a unique solution u in C1([0,∞), X) ∩ C([0,∞), D(A)), which satisfies

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s) dx = T (t)u0 −
∫ t

0

T (s)f(t− s) ds (1.7)

for t ≥ 0. Moreover,

‖u‖C([0,T ],D(A))∩C1([0,T ],X) ≤ c
(
‖u0‖D(A) + ‖f‖C1([0,T ],X)+C([0,T ],D(A))

)
for all T > 0.

(b) Let T > 0. If u0 ∈ D(A2) and f ∈ C2([0, T ], X) ∩ C([0, T ], D(A)), then u belongs
to C([0, T ], D(A2)) and we have

‖u‖C([0,T ],D(A2)) ≤ c
(
‖u0‖D(A2) + ‖f‖C([0,T ],D(A)) + ‖f‖C2([0,T ],X)

)
.
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Proof:
For the statements of part (a) compare Section VI.7a in [23], and see Corollary 4.2.5 and
4.2.6 in [62] for the solution formula. The proofs of the two corollaries further shows the
estimate of (a).
For the proof of part (b) let T > 0. We differentiate (1.7) and get

u′(t) = T (t)
(
Au0 + f(0)

)
+

∫ t

0

T (s)f ′(t− s) ds

for all t ≥ 0. Since Au0 + f(0) ∈ D(A) and f ∈ C1([0, T ], X), Corollary 4.2.5 and 4.2.6
in [62] then yield u′ ∈ C1([0, T ], X) ∩ C([0, T ], D(A)). From Au′(t) = A2u(t) + Af(t) for
all t ≥ 0 we infer that A2u = Au′ − Af belongs to C([0, T ], X). This gives with part (a)
and the proofs of Corollary 4.2.5 and 4.2.6 in [62] that

‖u‖C([0,T ],D(A2))

= ‖u‖C([0,T ],X) +
∥∥A2u

∥∥
C([0,T ],X)

≤ ‖u‖C([0,T ],X) + ‖Au′‖C([0,T ],X) + ‖Af‖C([0,T ],X)

≤ c
(
‖u0‖D(A) + ‖f‖C1([0,T ],X) + ‖u0‖D(A2) + ‖f‖C2([0,T ],X) + ‖f‖C([0,T ],D(A))

)
,

which is the desired estimate. �

Finally, we recall Sobolev spaces of negative orders associated to a semigroup. The
statements can be found in Section II.5a in [23] and in Theorem V.1.4.6 in [2].

Proposition 1.10. Let X be a Banach space and A : D(A) ⊆ X → X a linear operator
that generates a C0-semigroup (etA)t≥0 on X. Then there exists a λ > 0 in the resolvent
set of A. We define the Sobolev space of order −1 associated to the semigroup (etA)t≥0,

XA
−1 :=

(
X,
∥∥(λI − A)−1·

∥∥
X

)∼
, (1.8)

which denotes the completion of X with respect to the norm
∥∥(λI−A)−1·

∥∥
X
. The operator

A has an extension A−1 : X → XA
−1 that generates an extended C0-semigroup on XA

−1.
Inductively, the Sobolev spaces of order −2 and so on are defined. Furthermore,

XA∗
−1
∼= D

(
A∗∗
)∗

= D(A)∗ and XA∗
−2
∼= D(A2)∗.
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Part II.

The Strang and the Lie splitting for
the cubic nonlinear Schrödinger

equation
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2. Basic properties of the nonlinear
Schrödinger equation

In this chapter we introduce the cubic nonlinear Schrödinger equation (NLS) and provide
the background for this part of the thesis. In Section 2.1 we discuss the problem and our
splitting schemes, followed by a summary of the state of the art and an outline of our
theorems. In Section 2.2 we describe the needed functional analytic setting and prove
auxiliary lemmas on function spaces, the free Schrödinger group and the solutions to the
cubic NLS.

2.1. The nonlinear Schrödinger equation and the
splitting schemes

Among the many different semilinear Schrödinger equations we focus on the one with
a cubic nonlinearity. Let µ ∈ {−1, 1} be a parameter and d ∈ {1, 2, 3} be the spatial
dimension. Let the spatial domain Ω be either the full space Rd or the d-dimensional
torus Td. We choose the initial time t0 = 0 and restrict ourselves to non-negative times.
The cubic nonlinear Schrödinger equation then reads∂tu(t) = i∆u(t)− iµ |u(t)|2 u(t), t ≥ 0,

u(0) = u0,
(2.1)

for a given initial function u0 ∈ H2(Ω). The parameter µ determines the sign of the
nonlinearity. In the focusing case µ = −1 the problem (2.1) has blow-up solutions for
d ≥ 2, see e.g. Theorem 6.5.10 in [13]. In contrast to this the solutions obtained in the
defocusing case µ = 1 are global in time by e.g. Corollary 6.1.2 in [13] for Ω = Rd and
Section V.2 in [11] for Ω = Td. From now on we omit Ω in our notation if we do not need
to distinguish between Rd and Td.
The cubic nonlinear Schrödinger equation arises in nonlinear optics and in the theory

of shallow water waves as amplitude equation that approximatly determines the evolution
of wave packets. A variant of (2.1) with a potential term is the Gross–Pitaevskii equation
that governs the behaviour of Bose–Einstein condensates. Further information on the
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2. Basic properties of the nonlinear Schrödinger equation

physical background can be found in [55] and [67]. Semilinear Schrödinger equations are
investigated in the monograph [13] in great detail and generality.
We consider (2.1) as an equation in L2 and thus require that the initial function is at

least in H2. Due to Theorem 4.1 and 4.2 in [46] we have for all u0 ∈ Hs with s ≥ 2 a
unique local Hs-solution. This is a function

u ∈ C1([0, Tmax), Hs−2) ∩ C([0, Tmax), Hs)

fulfilling (2.1), where Tmax ∈ (0,∞] is the maximal existence time. The blow-up alter-
native says that the solution exists either for all times, which means Tmax = ∞, or that
the norm of the solution tends to infinity at a finite time that we then call Tmax < ∞.
Because we want to guarantee the existence of the solution up to the end time of our
observation interval, we restrict the solution to a time interval [0, T ] with a fixed finite
end time T < Tmax. As mentioned above we can choose T arbitrarily large if µ = 1. This
is also the case if d = 1, see Section 6.6 in [13]. All these properties on the maximal
existence times hold also true for negative times, which we do not consider in this thesis.
There are two reasons why we restrict ourselves to at most three space dimensions.

First, in the physically most relevant situations we have one, two or three dimensions.
Second, replacing H2 by Hk with k > 2 we could treat great higher dimensions than three
since we then have the needed Sobolev embeddings but we omit this for the simplicity of
the presentation. In the case of only one or two spatial dimensions some simplifications
of the following proofs are possible, which we do not discuss.
Apart from the cubic nonlinearity it is also of interest to look at the more general

equation ∂tu(t) = i∆u(t)− iµϕ
(
|u(t)|2

)
u(t), t ≥ 0,

u(0) = u0 ∈ H2,

with a twice continuously differentiable function ϕ : R→ R with ϕ(0) = 0. Nevertheless,
the cubic nonlinearity is its most important representative since it appears in many ap-
plications and since it can be considered as a model case for the more general situations.
The analysis in this thesis is flexible enough to be extended to the general nonlinearities
ϕ. However, to avoid technicalities in the context of fractional Sobolev spaces, we restrict
ourselves to the cubic case.
The solution to the nonlinear ordinary differential equation

∂tu(t) = −iµ |u(t)|2 u(t)

with initial value u(0) = u0 is given for all t ≥ 0 by the simple formula

u(t) = exp
(
−iµt |u0|2

)
u0.
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2.1. The nonlinear Schrödinger equation and the splitting schemes

The linear equation
∂tu(t) = i∆u(t)

can easily be solved by means of the Fourier transform, which can numerically be approx-
imated efficiently on the torus. These observations are exploited when using the Lie and
the Strang splitting scheme for (2.1). In the Lie splitting scheme the numerical solution
after one time step τ > 0 starting at u0 ∈ H2 is given by

Φτ (u0) := exp
(
−iµτ |ũ|2

)
ũ with ũ := T (τ)u0, (2.2)

and in the Strang splitting scheme by

Ψτ (u0) := T (τ/2)u∗∗ (2.3)

with u∗∗ := exp
(
−iµτ |u∗|2

)
u∗ with u∗ := T (τ/2)u0,

where T (·) denotes the free Schrödinger group.
We could interchange the usage of the solution formula for the linear and the nonlinear

equation in these splitting schemes. In applications one is sometimes only interested in
the value of the solution at the end time. For the Strang splitting this means that the last
sup-step of each execution of the scheme and the first sub-step of the next execution can
be combined in the computation. Calculating the fast Fourier transform and its inverse in
the computation of the solution of the linear equation takes much more computing time
than evaluating the action of a multiplication operator in the solution formula for the
nonlinear equation. Therefore, it is not advisable for the Strang splitting to interchange
the usage of the solution formulas.
C. Lubich showed in [51] second-order convergence in time of the Strang splitting scheme

for initial functions in H4(Rd) with a proof based on the theory of Lie derivatives (see also
[43] for linear Schrödinger equations). More precisely, there exists a bound τ0 ∈ (0, T ] on
the time step size such that

‖u(nτ)−Ψn
τ (u0)‖L2 ≤ Cτ 2

for all u0 ∈ H4(Rd), τ ∈ (0, τ0] and n ∈ N with nτ ∈ [0, T ] with a constant C ≥ 0

depending only on T and on the norm of u in C([0, T ], H4(Rd)), see Theorem 7.1 in [51]
and also [40]. We give a complete proof of this theorem in Chapter 3. We note that in
[51] the time step size restriction was missing. In the later paper [40], coauthored by C.
Lubich, this was then elaborated in a somewhat different context.
For smooth solutions a Taylor series expansion shows that the Lie and the Strang

splitting are of classical order one and two, respectively, cf. Section 1.3.2. Hence, more
regular initial functions do not lead to a higher convergence order. Higher-order splitting
methods for Schrödinger equations were investigated in [68] and in [6], and in [69] for the
Gross–Pitaevskii equation.
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2. Basic properties of the nonlinear Schrödinger equation

In our Theorem 4.1 we reduce the level of regularity of the initial functions and therefore
of the solutions to H2+2θ with θ ∈ (0, 1). We show an error estimate in L2 of the Strang
splitting with the corresponding fractional convergence order 1 + θ. Afterwards we prove
an analogous fractional error estimate which shows the first order convergence in L2 for
the Strang and the Lie splitting for initial functions in H2, see Theorem 5.1 and 5.2.
These three theorems have been published in [22]. Results for the Lie splitting in the case
of the cubic NLS have been known so far only in spaces of functions on the torus with
summable Fourier coefficients. For this see Proposition IV.6 of [25], where the calculus
of Lie derivatives was used. Moreover, for nonlinearities of the type iλ|u|pu with λ ∈ R
and p < 4/3 first-order convergence of the Lie splitting in L2 was shown in [42] for initial
functions in H2 by different methods than ours. In the thesis at hand we focus on the
time integration and do not treat the space discretization (which was studied in e.g. [25]).
The strategy for the proof of the theorems is to show a local error bound and that the

numerical solution after one time step τ > 0 is Lipschitz continuous with respect to the
initial function. To iterate this stability estimate, the Lipschitz constant has to be of the
form ecτ . One then obtains a Lipschitz bound on time intervals [0, nτ ] with constant ecnτ

for n ∈ N. Because of the nonlinearity, c depends on the (so far uncontrolled) Hs-norm
of the numerical solution on [0, nτ ], cf. Lemma 3.4, 5.5 and 5.6. Here we take s = 2 for
the case of initial functions in H2+2θ and s = 7/4 for the case of initial functions in H2.
By means of a telescopic sum, see e.g. [34] or [40], we then deduce a global error bound in
our Theorems 3.1, 4.1, 5.1 and 5.2. We measure the error in L2, but we can also bound it
in Hs (with a smaller fractional convergence order). Since the exact solution is bounded
in Hs, the needed a priori estimate on the numerical solution in Hs follows under a time
step size restriction, see [40] or our Lemmas 3.6, 4.3 and 5.7.

2.2. The functional analytic setting

We define the operators

A : H2 → L2; Au := i∆u, and B : H2 → L2; B(u) := −iµ |u|2 . (2.4)

They are the splitting operators we are going to use. The free Schrödinger group generated
by A is denoted by T (·). The mapping I−∆ : Hs+2 → Hs is for all s ≥ 0 an isomorphism.
This fact can be deduced from the characterization (1.1) of the Sobolev spaces via the
Fourier transform, using that the Laplace operator corresponds to the symbol |·|2 in
Fourier space. One furthermore sees that ∆ is self-adjoint in Hs for all s ≥ 0. Hence, i∆
is skew-adjoint in Hs, so that the restriction of T (·) to Hs is a unitary C0-group on Hs

by Stone’s Theorem for all s ≥ 0. We denote these restrictions also by T (·). With the
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2.2. The functional analytic setting

introduced notation problem (2.1) takes the form∂tu(t) = Au(t) +B(u(t))u(t), t ≥ 0,

u(0) = u0 ∈ H2.
(2.5)

We look at the two “subproblems”∂tv(t) = Av(t) = i∆v(t), t ≥ 0,

v(0) = v0 ∈ H2,
(2.6)

and ∂tw(t) = B(w(t))w(t) = −iµ |w(t)|2w(t), t ≥ 0,

w(0) = w0 ∈ H2.
(2.7)

The subproblem (2.6) is uniquely solved by v(t) = T (t)v0 and the subproblem (2.7) by

w(t) = etB(w0)w0, (2.8)

both for all t ≥ 0. For both subproblems we thus have explicitly given solution formulas.
A fully discrete numerical approximation to the solution of subproblem (2.6) can efficiently
be computed at least on the torus by using the fast Fourier transform, see e.g. [25]. The
solution of subproblem (2.7) can quickly be calculated by means of the solution formula.
Therefore, splitting methods like (2.2) and (2.3) are very attractive for the numerical
treatment of (2.5). With the above notations, the Lie splitting (2.2) reads

Φτ (u0) := exp
(
τB(ũ)

)
ũ with ũ := T (τ)u0 (2.9)

and the Strang splitting (2.3) becomes

Ψτ (u0) := T (τ/2)u∗∗ (2.10)

with u∗∗ := exp
(
τB(u∗)

)
u∗ and u∗ := T (τ/2)u0.

We recall the well-known fact that the space Hs is an algebra if s > d/2 and several
related properties, which are crucial for our analysis.

Lemma 2.1. (a) Let s ∈ (3/2,∞). Then the product of functions f, g ∈ Hs belongs to
Hs and satisfies

‖fg‖Hs ≤ c ‖f‖Hs ‖g‖Hs .

The product of a function f ∈ Hs and a function g ∈ L2 belongs to L2 and satisfies

‖fg‖L2 ≤ c ‖f‖Hs ‖g‖L2 .
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2. Basic properties of the nonlinear Schrödinger equation

(b) Let s ∈ (3/2,∞), t ≥ 0, and v, w ∈ Hs with ‖v‖Hs ≤ r and ‖w‖Hs ≤ r. Then we
have

‖B(v)‖Hs ≤ c ‖v‖2
Hs ≤ cr2,

‖B(v)−B(w)‖Hs ≤ c
(
‖v‖Hs + ‖w‖Hs

)
‖v − w‖Hs ≤ cr ‖v − w‖Hs .

If s ∈ [s1, s2] ⊆ (3/2,∞), then all the constants only depend on s1 and s2.

Proof:
(a): Let s > 3/2 and f, g ∈ Hs. We have

(
1 + |ξ|2

)s/2 ≤ c
((

1 + |ξ − η|2
)

+
(
1 + |η|2

))s/2
≤ c
((

1 + |ξ − η|2
)s/2

+
(
1 + |η|2

)s/2)
for all ξ, η ∈ Rd, using basic estimates for the roots for s ∈ (3/2, 2] and Hölder’s inequality
for s > 2. From this estimate and F(fg) = c(Ff) ∗ (Fg) we derive that

(
1 + |ξ|2

)s/2 |F(fg)(ξ)| ≤ c

∫
Rd

(
1 + |ξ|2

)s/2 |(Ff)(ξ − η)(Fg)(η)| dη

≤ c
(∣∣∣(1 + |·|2

)s/2Ff ∣∣∣ ∗ |Fg|)(ξ) + c
(
|Ff | ∗

∣∣∣(1 + |·|2
)s/2Fg∣∣∣)(ξ).

Young’s inequality for convolutions and the Sobolev embedding Hs ↪→ L∞ in (1.6) thus
yield

‖fg‖Hs ≤ c
(
‖f‖Hs ‖Fg‖L1 + ‖Ff‖L1 ‖g‖Hs

)
≤ c
(
‖f‖Hs ‖g‖L∞ + ‖f‖L∞ ‖g‖Hs

)
≤ c ‖f‖Hs ‖g‖Hs .

The rest of the statement follows directly from the Sobolev embedding. The statements
of part (b) follow directly from part (a).
The constants are uniformly bounded for s ∈ [s1, s2] since the Sobolev embedding

constants satisfy this property and since the constants depend on s only via the Sobolev
embeddings. �

Remark 2.2. In the rest of our analysis we only deal with the case s ∈ [7/4, 4], so that
the constant c in the previous lemma can be chosen independently of s.

Theorem 4.1 in [46] shows that for u0 ∈ Hs with s ≥ 2 the problem (2.5) is locally
wellposed, i.e. there exists a time T > 0 such that there exists a unique solution u =

u(·, u0) ∈ C([0, T ], Hs) to (2.5). Throughout the thesis T is chosen in this way. (In the
defocusing case µ = 1 one obtains a global solution on R+, see e.g. Corollary 6.1.2 in [13]
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2.2. The functional analytic setting

for Ω = Rd and Section V.2 in [11] for Ω = Td, but we will not need this fact.) The
solution is given by

u(t) = T (t)u0 − iµ
∫ t

0

T (t− r)
(
|u(r)|2 u(r)

)
dr

= T (t)u0 +

∫ t

0

T (t− s)B(u(s))u(s) ds,

(2.11)

see Theorem refthm:solinhomCauchypbDuhamel. BecauseHs is an algebra by Lemma 2.1,
the function |u|2 u belongs to C([0, T ], Hs). Hence, by standard semigroup theory, u is
contained in C1([0, T ], Hs−2) and solves problem (2.5) in Hs−2. Below we use the quan-
tities

Ms := sup
t∈[0,T ]

‖u(t)‖Hs for s ≥ 0,

whenever these expressions are finite. We remark that Ms depends only on u0, s and
T . By the representation of the Sobolov spaces via the Fourier transform, the Fourier
transform is up to a constant an isometric isomorphism from Hs to the weighted Lebesgue
space

L2
s :=

{
f ∈ L2

∣∣ (1 + |x|2
)s/2 |f(x)| ∈ L2

}
.

For all 0 < s1 < s2 we infer from
(
1 + |x|2

)s1/2 ≤ (1 + |x|2
)s2/2 that

‖f‖Hs1 = ‖Ff‖L2
s1
≤ ‖Ff‖L2

s2
= ‖f‖Hs2

for all f ∈ Hs2 . The equivalence of the two Sobolev norms in Section 1.1 thus implies
that Ms1 ≤ cMs2 for all 0 ≤ s1 ≤ s2 ≤ 4 for a constant c independent of s1 and s2.
We close this section by stating several important regularity properties of the free

Schrödinger group and the solutions to (2.5).

Lemma 2.3. Let η ∈ (0, 1) and s ≥ 0.

(a) For f ∈ H2η and g ∈ H2, we have fg ∈ H2η and

‖fg‖H2η ≤ c ‖f‖H2η ‖g‖H2 .

(b) For each y ∈ Hs+2η, the mapping T (·)y : [0,∞)→ Hs is η-Hölder continuous with

‖T (t1)y − T (t2)y‖Hs ≤ c |t1 − t2|η ‖y‖Hs+2η

for all t1, t2 ≥ 0.

(c) Let s > 3/2. For each y ∈ Hs+2η, the solution u(·, y) : [0, T ] → Hs+2η to (2.5) is
η-Hölder continuous on Hs with

‖u(t1, y)− u(t2, y)‖Hs ≤ c
(
Ms+2η +M3

s T
1−η + TM3

s+2η

)
|t1 − t2|η

=: C(Ms+2η, T ) |t1 − t2|η

for all t1, t2 ∈ [0, T ].
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2. Basic properties of the nonlinear Schrödinger equation

The above constants c do not depend on η.

Proof:
Let η ∈ (0, 1). We first recall thatHs+2η is an interpolation space betweenHs andHs+2 by
Theorem 5.4.1 in [9] in combination with the Fourier transform. (See also Theorem 6.2.4
and 6.4.4 in [9] for Rd.) We observe that the constants involved in this proof can be
chosen independently of η.
(a) Let g ∈ H2. The norms of the linear operators V1 : L2 → L2 and V2 : H2 → H2

given by Vjf := fg for j = 1, 2 are bounded by c ‖g‖H2 due to Lemma 2.1. Assertion (a)
then follows by interpolation.
(b) Let t1, t2 ≥ 0 with t1 < t2 be fixed. We look at the linear mapping T̃t1,t2 : Hs → Hs;

T̃t1,t2y := T (t1)y − T (t2)y, whose norm is bounded by 2. We also use its restriction
T̃t1,t2 : Hs+2 → Hs. For y ∈ Hs+2, we have d

dt
T (t)y = T (t)Ay and hence∥∥∥T̃t1,t2y∥∥∥

Hs
≤ sup

t∈[t1,t2]

‖T (t)Ay‖Hs |t1 − t2| ≤ c |t1 − t2| ‖y‖Hs+2 .

Interpolation now yields assertion (b).
(c) The representation (2.11), part (b), the unitarity of T (·) on Hs and Lemma 2.1

imply

‖u(t1, y)− u(t2, y)‖Hs

≤ ‖T (t1)y − T (t2)y‖Hs +

∫ t2

t1

∥∥T (t2 − s)
(
|u(s)|2 u(s)

)∥∥
Hs ds

+

∫ t1

0

∥∥(T (t2 − t1)− I
)
T (t1 − s)

(
|u(s)|2 u(s)

)∥∥
Hs ds

≤ c |t1 − t2|η ‖y‖Hs+2η + cM3
s |t1 − t2|η T 1−η + c |t1 − t2|η TM3

s+2η

for all 0 ≤ t1 ≤ t2 ≤ T . �
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3. Convergence of the Strang
splitting for initial functions in H4

In [51], C. Lubich showed that the Strang splitting applied to the cubic NLS on Rd con-
verges with order two if the initial function is contained in H4. We present the main
theorem and some auxiliary properties of the splitting scheme in Section 3.1. The proof
contains estimates in H2 and L2, which are presented in the Sections 3.2 and 3.3, respec-
tively. The ideas for the intermediate results and the structure of the proof are taken
from [51] and [40]. We give the full prove of this theorem since the original one is a bit
sketchy and since it provides the background for our later results.

3.1. The convergence theorem for initial functions in
H4

The following convergence theorem for the Strang splitting can be found for the full-space
situation as Theorem 7.1 in [51].

Theorem 3.1. For each u0 ∈ H4 there exists a bound τ0 > 0 on the time step size such
that we have

‖u(nτ)−Ψn
τ (u0)‖L2 ≤ Cτ 2

for all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T with a constant C ≥ 0 that depends only on u0

and T . More precisely, C depends only on T and M4.

The number τ0 = τ0(T,M2) is given in Lemma 3.6.

Remark 3.2. The dependency of C on M4 in the previous theorem shows that the error
constant is large for rapidly oscillating solutions and therefore also for rapidly oscillating
initial functions. We confirm this numerically in Section 6.5.

We first show that the local error in H2 is of order two.

Lemma 3.3. For all u0 ∈ H4 and τ ∈ (0, T ] we have

‖u(τ)−Ψτ (u0)‖H2 ≤ C1τ
2,

with a constant C1 ≥ 0 depending only on M4.
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3. Convergence of the Strang splitting for initial functions in H4

We next need a stability lemma for the Strang splitting.

Lemma 3.4. Let M ≥ 0 and u0, v0 ∈ H2 with ‖u0‖H2 ≤ M and ‖v0‖H2 ≤ M . Then
there exists a constant C2 ≥ 0, only depending on M , such that

‖Ψτ (u0)−Ψτ (v0)‖H2 ≤ eC2τ ‖u0 − v0‖H2

for all τ ∈ (0, T ].

Here, the precise form of the constant in the estimate is crucial since its n-th power
enters in the proof of Theorem 3.1. In this proof we also need the following property of
the numerical scheme.

Definition 3.5. Let T > 0, s ≥ 2 and φτ be a time integration scheme. We call the
scheme φτ strongly bounded for (2.5) in Hs for initial functions in H t with time step size
bound τ0 ∈ (0, T ] if for all initial functions u0 ∈ H t there exists a constant Ĉ ≥ 0, only
depending on u0 and T , such that for all τ ∈ (0, τ0], n ∈ N with nτ ≤ T and k ∈ {0, . . . , n}
we have

∥∥φn−kτ (u(kτ))
∥∥
Hs ≤ Ĉ. Here, u denotes the solution to (2.5) with initial function

u0.

The Strang splitting for the cubic NLS is strongly bounded in H2.

Lemma 3.6. Let u0 ∈ H4. Then there exists a bound τ0 > 0 on the time step size, which
is given by

τ0 := min

{
M2

TeTC2C1

, T

}
,

with C1 from Lemma 3.3 and C2 from Lemma 3.4, such that the following two statements
hold true.

(a) For all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T , we have

‖Ψn
τ (u0)− u(nτ)‖H2 ≤ Cτ,

with a constant C ≥ 0 depending only on T and M2, i.e. the Strang splitting con-
verges in H2 with order one.

(b) Ψτ is strongly bounded for (2.5) in H2 for initial functions in H4, i.e. there exists
a constant Ĉ ≥ 0, only depending on T and M2, such that

∥∥Ψn−k
τ (u(kτ))

∥∥
H2 ≤ Ĉ

for all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T and k ∈ {0, . . . , n}. In particular, the
numerical solution is bounded in H2 (choose k = 0).

The above lemmas are proved in Section 3.2. In the next lemma we show that the local
error in L2 is of order three, i.e. one order higher than in H2.
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3.2. The estimate in H2

Lemma 3.7. For all u0 ∈ H4 and τ ∈ (0, T ] we have

‖u(τ)−Ψτ (u0)‖L2 ≤ C3τ
3,

with a constant C3 ≥ 0 depending only on M4.

Due to the nonlinearity, we obtain a weaker stability property in L2 than in H2, which
we call H2-conditional stability . For this reason we have to invoke the strong boundedness
in H2. It is used to apply Lady Windermere’s fan, see [34], in the proof of Theorem 3.1.

Lemma 3.8. Let M ≥ 0 and u0, v0 ∈ H2 with ‖u0‖H2 ≤ M and ‖v0‖H2 ≤ M . Then
there exists a constant C4 ≥ 0, only depending on M , such that

‖Ψτ (u0)−Ψτ (v0)‖L2 ≤ eC4τ ‖u0 − v0‖L2

for all τ ∈ (0, T ].

The preceding two lemmas and Theorem 3.1 are shown in Section 3.3.

3.2. The estimate in H2

We prove Lemma 3.3 and 3.4 and combine them to show Lemma 3.6.

3.2.1. The local error in the H2-norm
Proof (of Lemma 3.3):
Let u0 ∈ H4 and τ > 0. By (2.11), the solution to problem (2.5) at time τ is given by

u(τ) = T (τ)u0 +

∫ τ

0

T (τ − s)B(u(s))u(s) ds.

Plugging this formula into itself, we derive the representation

u(τ) = T (τ)u0 +

∫ τ

0

T (τ − s)B(u(s))T (s)u0 ds

+

∫ τ

0

T (τ − s)B(u(s))

∫ s

0

T (s− σ)B(u(σ))u(σ) dσ ds,

(3.1)

which is valid in H2. To show a corresponding formula for the numerical approximation,
we use the Taylor expansion

eτx = 1 + τx+

∫ τ

0

(τ − s)x2esx ds.

Applying this to u∗∗ = eτB(u∗)u∗, we infer

u∗∗ = u∗ + τB(u∗)u∗ +

∫ τ

0

(τ − s)B(u∗)2esB(u∗)u∗ ds.
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3. Convergence of the Strang splitting for initial functions in H4

Because Ψτ (u0) = T (τ/2)u∗∗ and u∗ = T (τ/2)u0, see (2.10), the numerical solution after
one time step is thus given by

Ψτ (u0) = T (τ)u0 + τT (τ/2)B(u∗)T (τ/2)u0 +

∫ τ

0

(τ − s)T (τ/2)B(u∗)2esB(u∗)T (τ/2)u0 ds.

This equation and the representation (3.1) yield

u(τ)−Ψτ (u0) =

(∫ τ

0

T (τ − s)B(u(s))T (s)u0 ds− τT (τ/2)B(u∗)T (τ/2)u0

)
+

(∫ τ

0

T (τ − s)B(u(s))

∫ s

0

T (s− σ)B(u(σ))u(σ) dσ ds

−
∫ τ

0

(τ − s)T (τ/2)B(u∗)2esB(u∗)T (τ/2)u0 ds

)
(3.2)

=: I1 + I2.

1) Bound on I1: We look at the function w : [0, T ]→ H2 defined by

w(s) := T (τ − s)B(u(s))T (s)u0.

We then estimate with the midpoint quadrature rule

‖I1‖H2 ≤
∥∥∥∥∫ τ

0

w(s) ds− τw(τ/2)

∥∥∥∥
H2

+ ‖τw(τ/2)− τT (τ/2)B(u∗)T (τ/2)u0‖H2 (3.3)

=: S1 + S2.

So, we have split the local error into a quadrature error and a remainder error term. The
calculation

2 Re
(
u(s)B(u(s))u(s)

)
= 2 Re

(
−iµ |u(s)|4

)
= 0

gives the identity

∂sB(u(s)) = −2iµRe
(
u(s)

(
A+B(u(s))

)
u(s)

)
= −2iµRe

(
u(s)Au(s)

)
. (3.4)

Using this result, we infer

w′(s) = −T (τ − s)AB(u(s))T (s)u0

− 2iµT (τ − s) Re
(
u(s)Au(s)

)
T (s)u0

+ T (τ − s)B(u(s))T (s)Au0.

(3.5)

The algebra property of H2 and H4, and the unitarity of T (·) thus implies

‖w′(s)‖H2 ≤ c
(
‖u(s)‖2

H4 ‖u0‖H4 + ‖u(s)‖H2 ‖u(s)‖H4 ‖u0‖H2 + ‖u(s)‖2
H2 ‖u0‖H4

)
.

Therefore,
sup
s∈[0,T ]

‖w′(s)‖H2 ≤ c
(
M3

4 +M2
2M4

)
≤ cM3

4 .
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Because the midpoint quadrature rule has order two (and hence also order one), we
conclude from this calculation and Proposition 1.1 that

S1 ≤ c · sup
s∈[0,T ]

‖w′(s)‖H2 · τ 2 =: C̃1,1τ
2, (3.6)

with C̃1,1 only depending on M4.
To deal with the summand S2 in (3.3), we note that with the definitions of w and u∗,

the remainder error term has the form

τw(τ/2)− τT (τ/2)B(u∗)T (τ/2)u0

= τT (τ/2)
(
B(u(τ/2))−B

(
T (τ/2)u0

))
T (τ/2)u0.

(3.7)

We introduce the function f : [0, T ]→ H2 defined by

f(t) :=
(
B(u(t/2))−B

(
T (t/2)u0

))
T (t/2)u0.

Identity (3.4) yields the derivative

2f ′(t) = −2iµ
(

Re
(
u(t/2)Au(t/2)

)
− Re

(
(T (t/2)u0)AT (t/2)u0

))
T (t/2)u0

+
(
B(u(t/2))−B

(
T (t/2)u0

))
T (t/2)Au0.

(3.8)

We employ again the algebra property of H2 and H4 as well as the unitarity of T (t/2)

and obtain the inequalities

‖f ′(t)‖H2 ≤ c
(
‖u(t/2)‖H2 ‖u(t/2)‖H4 ‖u0‖H2 + ‖u0‖H2 ‖u0‖H4 ‖u0‖H2

+ ‖u(t/2)‖2
H2 ‖u0‖H4 + ‖u0‖2

H2 ‖u0‖H4

)
,

sup
t∈[0,T ]

‖f ′(t)‖H2 ≤ cM2
2M4 ≤ cM3

4 . (3.9)

Due to f(0) = 0, we have

f(τ) = f(0) +

∫ τ

0

f ′(t) dt =

∫ τ

0

f ′(t) dt.

Hence, the formulas (3.7) and (3.9) lead to the estimate

S2 = ‖τT (τ/2)f(τ)‖H2 ≤ C̃1,2τ
2, (3.10)

with C̃1,2 only depending on M4.
2) Bound on I2: By means of Lemma 2.1, we estimate the two summands of I2 by∥∥∥∥∫ τ

0

T (τ − s)B(u(s))

∫ s

0

T (s− σ)B(u(σ))u(σ) dσ ds

∥∥∥∥
H2
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≤ c

∫ τ

0

‖u(s)‖2
H2

∫ s

0

‖u(σ)‖3
H2 dσ ds ≤ c

τ 2

2
M5

4 =: C̃2,1τ
2

and ∥∥∥∥∫ τ

0

(τ − s)T (τ/2)B(u∗)2esB(u∗)T (τ/2)u0 ds

∥∥∥∥
H2

≤ c

∫ τ

0

(τ − s) ‖T (τ/2)u0‖4
H2 ‖u0‖H2 ds

≤ c
τ 2

2
‖u0‖5

H2 ≤ c
τ 2

2
M5

4 =: C̃2,2τ
2,

using
∥∥esB(u∗)

∥∥
L∞ = 1. With C̃2 := C̃2,1 + C̃2,2, the summands of I2 are together bounded

by C̃2τ
2, where C̃2 only depends on M4.

We combine the two estimates above with (3.2), (3.3), (3.6) and (3.10) to finish the
proof. �

3.2.2. Stability in the H2-norm
Proof (of Lemma 3.4):
Let z0, w0 ∈ H2 with ‖z0‖H2 ≤ M and ‖w0‖H2 ≤ M . We first look at the initial value
problem

∂tz(t) = −iµ |z(t)|2 z(t), z(0) = z0.

Its solution is z(t) = exp(−iµt |z0|2)z0 for all t ≥ 0. We additionally set w(t) :=

exp(−iµt |w0|2)w0. The first and second derivatives of z are given by

∂jz(t) = −2iµt exp(−iµt |z0|2) Re(z0∂jz0)z0 + exp(−iµt |z0|2)∂jz0,

∂jkz(t) = −4µ2t2 exp(−iµt |z0|2) Re(z0∂kz0) Re(z0∂jz0)z0

− 2iµt exp(−iµt |z0|2)
(
Re(z0∂jkz0) + Re((∂jz0)∂kz0)

)
z0

− 2iµt exp(−iµt |z0|2) Re(z0∂kz0)∂jz0

− 2iµt exp(−iµt |z0|2) Re(z0∂jz0)∂kz0

+ exp(−iµt |z0|2)∂jkz0

for all t ≥ 0 and j, k ∈ {1, · · · , d}. Using the embeddings H2 ↪→ L∞ and H1 ↪→ L6 as
well as ∥∥exp

(
−iµt |z0|2

)∥∥
L∞ = 1,

we deduce

‖z(t)‖H2 ≤ c
(
‖z(t)‖L2 +

d∑
j=1

‖∂jz(t)‖L2 +
d∑

j,k=1

‖∂jkz(t)‖L2

)
≤ c
(
‖z0‖L2 +

(
t ‖∇z0‖L2 ‖z0‖2

L∞ + ‖∇z0‖L2

)
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+
(
t2 ‖∇z0‖2

H1 ‖z0‖H1 ‖z0‖2
L∞ + t

∥∥D2z0

∥∥
L2 ‖z0‖2

L∞

+ t ‖∇z0‖2
H1 ‖z0‖H1 + t ‖∇z0‖2

H1 ‖z0‖H1 + t ‖∇z0‖2
H1 ‖z0‖H1 +

∥∥D2z0

∥∥
L2

))
for all t ≥ 0, where D2z0 denotes the matrix of the second-order derivatives of z0. This
yields

‖z(t)‖H2 ≤ c
(
‖z0‖H2 + t ‖z0‖3

H2 + t2 ‖z0‖5
H2

)
(3.11)

for all t ≥ 0. (If one simply applies Lemma 2.1 here, one obtains worse constants below.)
We further compute

∂tz(t)− ∂tw(t) = −iµ
(
|z0|2 z(t)− |w0|2w(t)

)
= −iµ

(
(z0 − w0)z0

)
z(t)− iµ

(
w0(z0 − w0)

)
z(t)

− iµw0w0(z(t)− w(t)).

Lemma 2.1 and estimate (3.11) then yield

‖∂tz(t)− ∂tw(t)‖H2

≤ c ‖z0 − w0‖H2 ‖z0‖H2 ‖z(t)‖H2 + c ‖w0‖H2 ‖z0 − w0‖H2 ‖z(t)‖H2

+ c ‖w0‖2
H2 ‖z(t)− w(t)‖H2

≤ c
(
‖z0‖H2 + ‖w0‖H2

)(
‖z0‖H2 + t ‖z0‖3

H2 + t2 ‖z0‖5
H2

)
‖z0 − w0‖H2 (3.12)

+ c ‖w0‖2
H2 ‖z(t)− w(t)‖H2 .

Integrating from 0 to τ , we thus infer

‖z(τ)− w(τ)‖H2 =

∥∥∥∥z0 − w0 +

∫ τ

0

∂t(z(t)− w(t)) dt

∥∥∥∥
H2

≤ ‖z0 − w0‖H2 + c
(
‖w0‖H2 + ‖w0‖H2

)(
τ ‖z0‖H2

+ 1
2
τ 2 ‖w0‖3

H2 + 1
3
τ 3 ‖z0‖5

H2

)
‖z0 − w0‖H2

+ c ‖w0‖2
H2

∫ τ

0

‖z(t)− w(t)‖H2 dt

≤ ‖z0 − w0‖H2 + cM(τM + τ 2M3 + τ 3M5) ‖z0 − w0‖H2

+ cM2

∫ τ

0

‖z(t)− w(t)‖H2 dt.

Gronwall’s inequality now yields

‖z(τ)− w(τ)‖H2 ≤
(
1 + cM2τ + (cM2)2 τ2

2
+ (cM2)3 τ3

6

)
‖z0 − w0‖H2 e

cM2τ

≤ ecM
2τ ‖z0 − w0‖H2 . (3.13)

Let u0, v0 ∈ H2 with ‖u0‖H2 ≤ M and ‖v0‖H2 ≤ M . Because T (τ/2) is unitary, we first
have

‖T (τ/2)u0‖H2 = ‖u0‖H2 ≤M and ‖T (τ/2)v0‖H2 = ‖v0‖H2 ≤M.
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Therefore, estimate (3.13) leads to

‖Ψτ (u0)−Ψτ (v0)‖H2

=
∥∥∥T (τ/2) exp

(
−iµτ |T (τ/2)u0|2

)
T (τ/2)u0 − T (τ/2) exp

(
−iµτ |T (τ/2)v0|2

)
T (τ/2)v0

∥∥∥
H2

=
∥∥exp

(
−iµτ |T (τ/2)u0|2

)
T (τ/2)u0 − exp

(
−iµτ |T (τ/2)v0|2

)
T (τ/2)v0

∥∥
H2

≤ ecM
2τ ‖T (τ/2)u0 − T (τ/2)v0‖H2 = ecM

2τ ‖u0 − v0‖H2 .

The claim follows with C2 := cM2. �

3.2.3. Boundedness of the numerical solution in the H2-norm
Proof (of Lemma 3.6):
We denote by u(s, y0) the solution to problem (2.5) at time s ≥ 0 with initial function
y0 ∈ H4. Let u0 ∈ H4 and define

τ0 := min

{
M2

TeTC2C1

, T

}
. (3.14)

We prove part (b) and an even stronger version of part (a) with an induction argument.
For all τ ∈ (0, τ0], n ∈ N0 with nτ ≤ T and k ∈ {0, . . . , n} we claim that∥∥Ψn−k

τ (u(kτ, u0))− u(nτ, u0)
∥∥
H2 ≤ TeTC2C1τ (3.15)

with C1 from Lemma 3.3 and C2 from Lemma 3.4 (with M := 2M2). We note that
definition (3.14) and estimate (3.15) yield∥∥Ψn−k

τ (u(kτ, u0))− u(nτ, u0)
∥∥
H2 ≤M2

for τ ∈ (0, τ0], so that the strong boundedness estimate∥∥Ψn−k
τ (u(kτ, u0))

∥∥
H2 ≤ 2M2 =: Ĉ (3.16)

will follow from (3.15) with the triangle inequality.
We fix τ ∈ (0, τ0] and establish (3.15) by induction. The case n = 0 is trivial. Let the

induction hypothesis∥∥Ψn−k
τ (u(kτ, u0))− u(nτ, u0)

∥∥
H2 ≤ TeTC2C1τ ≤M2

hold true for some n ∈ N0 with (n + 1)τ ≤ T and all k ∈ {0, . . . , n}. Hence, (3.16) is
valid for all k ∈ {0, . . . , n}. We now show (3.15) with n replaced by n+ 1. For k = n+ 1

estimate (3.15) is clear. Let k ∈ {0, . . . , n}. Estimate (3.16) for n gives a uniform constant
C2 for the following applications of Lemma 3.4, so that Lemma 3.4 and 3.3 imply via a
telescopic sum that∥∥Ψn+1−k

τ (u(kτ, u0))− u((n+ 1)τ, u0)
∥∥
H2
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≤
n−k∑
j=0

∥∥∥∥Ψn−k−j
τ

(
Ψτ

(
u((k + j)τ, u0)

))
−Ψn−k−j

τ

(
u((k + j + 1)τ, u0)

)∥∥∥∥
H2

≤
n−k∑
j=0

e(n−k−j)C2τ
∥∥Ψτ

(
u((k + j)τ, u0)

)
− u
(
τ, u((k + j)τ, u0)

)∥∥
H2

≤
n−k∑
j=0

e(n−k−j)C2τC1τ
2 ≤

n−k∑
j=0

eTC2C1τ
2 ≤ TeTC2C1τ.

To estimate the local errors with starting point u(lτ, u0) in the second to the last line we
use that for all l ∈ {0, . . . , n} the constant C1 from Lemma 3.3 only depends on

sup
t∈[0,T−lτ ]

‖u(t, u(lτ, u0))‖H4 ≤M4

and in particular not on l. �

3.3. The estimate in L2

We first prove Lemma 3.7. Afterwards we show Lemma 3.8 and combine it with Lemma 3.7
and 3.6 to derive Theorem 3.1.

3.3.1. The local error in the L2-norm

The proof of Lemma 3.7 is similar to the one of Lemma 3.3, but we need a Taylor
expansion of second order instead of first order. We furthermore use the following non-
standard quadrature rule for two-dimensional simplexes .

Lemma 3.9. Let X be a Hilbert space. On the simplex

S := {(x, y) ∈ R2 | x, y ≥ 0, x+ y ≤ 1}

we choose the quadrature rule with the equally weighted nodes ξ1 := (0, 0), ξ2 := (1, 0),
ξ3 := (0, 1) and ξ4 := (1/3, 1/3), i.e. for functions f : S → X we use the quadrature rule

Q(f) :=
1

8

(
f(0, 0) + f(1, 0) + f(0, 1) + f(1/3, 1/3)

)
.

Let τ > 0. Transforming this map to the shrunk, rotated and translated simplex

Sτ := {(x, y) ∈ R2 | 0 ≤ y ≤ x ≤ τ}

gives for a function f̃ : Sτ → X the quadrature rule

Qτ (f̃) :=
τ 2

8

(
f̃(0, 0) + f̃(τ, 0) + f̃(τ, τ) + f̃(2τ/3, τ/3)

)
.

These two quadrature rules have order two.
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3. Convergence of the Strang splitting for initial functions in H4

Proof:
The simplex S is mapped bijectively onto the simplex Sτ by the linear transformation
(x, y) 7→ (−yτ + τ, xτ). Therefore, both quadrature rules have the same order. For an
arbitrary affine f : S → X, written as f(x, y) = a1x + a2y + a3 with a1, a2, a3 ∈ X, we
compute ∫

S

f(x, y) d(x, y) =

∫ 1

0

∫ 1−x

0

(a1x+ a2y + a3) dy dx

=

∫ 1

0

(
a1x(1− x) + 1

2
a2(1− x)2 + a3(1− x)

)
dx

=
1

6
a1 +

1

6
a2 +

1

2
a3,

Q(f) =
1

8

(
4
3
a1 + 4

3
a2 + 4a3

)
=

1

6
a1 +

1

6
a2 +

1

2
a3.

This shows that the two quadrature rules have order (at least) two. �

Proof (of Lemma 3.7):
Let u0 ∈ H4 and τ ∈ (0, T ]. We use the Taylor expansion

eτx = 1 + τx+
τ 2

2
x2 +

1

2

∫ τ

0

(τ − s)2x3esx ds

for u∗∗ = exp
(
τB(u∗)

)
u∗ and obtain

u∗∗ = u∗ + τB(u∗)u∗ +
τ 2

2
B(u∗)2u∗ +

1

2

∫ τ

0

(τ − s)2B(u∗)3esB(u∗)u∗ ds. (3.17)

Recall that Ψτ (u0) = T (τ/2)u∗∗ and u∗ = T (τ/2)u0, see definition (2.10). We apply
T (τ/2) to (3.17) and insert u∗ = T (τ/2)u0 thrice, arriving at

Ψτ (u0) = T (τ)u0 + τT (τ/2)B(u∗)T (τ/2)u0 +
τ 2

2
T (τ/2)B(u∗)2T (τ/2)u0

+
1

2

∫ τ

0

(τ − s)2T (τ/2)B(u∗)3esB(u∗)u∗ ds.

Subtracting this identity from the representation (3.1) for u(τ), we infer

u(τ)−Ψτ (u0)

=

(∫ τ

0

T (τ − s)B(u(s))T (s)u0 ds− τT (τ/2)B(u∗)T (τ/2)u0

)
(3.18)

+

(∫ τ

0

T (τ − s)B(u(s))

∫ s

0

T (s− σ)B(u(σ))u(σ) dσ ds

− τ 2

2
T (τ/2)B(u∗)2T (τ/2)u0

)
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− 1

2

∫ τ

0

(τ − s)2T (τ/2)B(u∗)3esB(u∗)u∗ ds

=: I1 + I2 + I3.

1) Bound on I1: We first introduce the function w : [0, T ]→ L2 by

w(s) := T (τ − s)B(u(s))T (s)u0,

see Section 3.2. With the midpoint quadrature rule we split I1 into a quadrature error
and a remainder error term, which yields

‖I1‖L2 ≤
∥∥∥∥∫ τ

0

T (τ − s)B(u(s))T (s)u0 ds− τw(τ/2)

∥∥∥∥
L2

+ ‖τw(τ/2)− τT (τ/2)B(u∗)T (τ/2)u0‖L2 (3.19)

=: S1 + S2.

In (3.5) we have seen

w′(s) = −T (τ − s)AB(u(s))T (s)u0

− 2iµT (τ − s) Re
(
u(s)Au(s)

)
T (s)u0

+ T (τ − s)B(u(s))AT (s)u0.

By differentiating, reordering the terms and using the identities (3.4) and (2.5), we con-
clude

w′′(s) = T (τ − s)A2B(u(s))T (s)u0 − 2T (τ − s)AB(u(s))T (s)Au0

+ T (τ − s)B(u(s))T (s)A2u0

+ 4iµT (τ − s)A
(

Re
(
u(s)Au(s)

)
T (s)u0

)
− 2iµT (τ − s) |Au(s)|2 T (s)u0

− 2iµT (τ − s) Re
(
B(u(s))u(s)Au(s)

)
T (s)u0

− 2iµT (τ − s) Re
(
u(s)A2u(s)

)
T (s)u0

− 2iµT (τ − s) Re
(
u(s)AB(u(s))u(s)

)
T (s)u0

− 4iµT (τ − s) Re
(
u(s)Au(s)

)
T (s)Au0.

We again employ that T (·) is unitary, that H2 and H4 are algebras and the Sobolev
embedding H2 ↪→ L∞, and estimate

‖w′′(s)‖L2 ≤ c
(
‖u(s)‖2

H4 ‖u0‖H4 + ‖u(s)‖2
H2 ‖u0‖H4

+ ‖u(s)‖2
H2 ‖u0‖H4 + ‖u(s)‖H2 ‖u(s)‖H4 ‖u0‖H2

+ ‖u(s)‖H2 ‖u(s)‖H4 ‖u0‖H2 + ‖u(s)‖4
H2 ‖u0‖H2
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+ ‖u(s)‖H2 ‖u(s)‖H4 ‖u0‖H2 + ‖u(s)‖4
H2 ‖u0‖H2

+ ‖u(s)‖2
H2 ‖u0‖H4

)
.

As a result,

sup
s∈[0,T ]

‖w′′(s)‖L2 ≤ c
(
M3

4 +M2
2M4 +M5

2

)
≤ c(M3

4 +M5
4 ).

Since the midpoint quadrature rule has order two, we conclude from Proposition 1.1 that

S1 ≤ c · sup
s∈[0,T ]

‖w′′(s)‖L2 · τ 3 =: C̃2,1τ
3, (3.20)

with C̃3,1 only depending on M4.
For the treatment of S2 from (3.19), as in Section 3.2, we define the function f : [0, T ]→

L2 by
f(t) :=

(
B(u(t/2))−B

(
T (t/2)u0

))
T (t/2)u0. (3.21)

We recall formula (3.8),

2f ′(t) = −2iµ
(

Re
(
u(t/2)Au(t/2)

)
− Re

(
(T (t/2)u0)AT (t/2)u0

))
T (t/2)u0

+
(
B(u(t/2))−B

(
T (t/2)u0

))
T (t/2)Au0.

By means of the identities (3.4) and (2.5) we further compute

4f ′′(t) = −2iµ
(
|Au(t/2)|2 − |AT (t/2)u0|2

)
T (t/2)u0

− 2iµ
(

Re
(
u(t/2)A2u(t/2)

)
− Re

(
T (t/2)u0A

2T (t/2)u0

))
T (t/2)u0

− 2iµ
(

Re
(
B(u(t/2))u(t/2)Au(t/2)

))
T (t/2)u0

− 2iµ
(

Re
(
u(t/2)A

(
B(u(t/2))u(t/2)

)))
T (t/2)u0

− 4iµ
(

Re
(
u(t/2)Au(t/2)

)
− Re

(
T (t/2)u0AT (t/2)u0

))
T (t/2)Au0

+
(
B(u(t/2))−B

(
T (t/2)u0

))
T (t/2)A2u0.

Using Lemma 2.1 and the unitarity of T (t/2), we conclude

‖f ′′(t)‖L2 ≤ c
(
‖u(t/2)‖H2 ‖u(t/2)‖H4 ‖u0‖H2 + ‖u0‖2

H2 ‖u0‖H4

+ ‖u(t/2)‖H2 ‖u(t/2)‖H4 ‖u0‖H2 + ‖u0‖2
H2 ‖u0‖H4

+ ‖u(t/2)‖4
H2 ‖u0‖H2 + ‖u(t/2)‖4

H2 ‖u0‖H2

+ ‖u(t/2)‖2
H2 ‖u0‖H4 + ‖u0‖2

H2 ‖u0‖H4

+ ‖u(t/2)‖2
H2 ‖u0‖H4 + ‖u0‖2

H2 ‖u0‖H4

)
,

sup
t∈[0,T ]

‖f ′′(t)‖L2 ≤ c
(
M2

2M4 +M5
2

)
≤ c
(
M3

4 +M5
4

)
. (3.22)
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3.3. The estimate in L2

With f(0) = 0 and f ′(0) = 0 we get

f(τ) = f(0) + f ′(0) +

∫ τ

0

(τ − t)f ′′(t) dt =

∫ τ

0

(τ − t)f ′′(t) dt.

The inequality (3.22) thus implies

S2 = ‖τT (τ/2)f(τ)‖L2 ≤ C̃3,2τ
3, (3.23)

with C̃3,2 only depending on M4.
2) Bound on I2: We rewrite∫ τ

0

T (τ − s)B(u(s))

∫ s

0

T (s− σ)B(u(σ))u(σ) dσ ds

=

∫ τ

0

∫ s

0

T (τ − s)B(u(s))T (s− σ)B(u(σ))u(σ) dσ ds.

We look at the function v : [0, T ]× [0, T ]→ L2 given by

v(s, σ) := T (τ − s)B(u(s))T (s− σ)B(u(σ))u(σ). (3.24)

As we did with the summand I1, we split the term I2 into a quadrature error and a
remainder error term, namely

‖I2‖L2 ≤
∥∥∥∥∥
∫ τ

0

∫ s

0

T (τ − s)B(u(s))T (s− σ)B(u(σ))u(σ) dσ ds

− τ 2

8

(
v(0, 0) + v(τ, 0) + v(τ, τ) + v(2τ/3, τ/3)

)∥∥∥∥∥
L2

+

∥∥∥∥τ 2

8

(
v(0, 0) + v(τ, 0) + v(τ, τ) + v(2τ/3, τ/3)

)
− τ 2

2
T (τ/2)B(u∗)2T (τ/2)u0

∥∥∥∥
L2

=: R1 +R2.

(3.25)

Using once more identity (3.4) yields

∂sv(s, σ) = −T (τ − s)AB(u(s))T (s− σ)B(u(σ))u(σ)

− 2iµT (τ − s) Re(u(s)Au(s)
)
T (s− σ)B(u(σ))u(σ)

+ T (τ − s)B(u(s))T (s− σ)AB(u(σ))u(σ),

∂σv(s, σ) = −T (τ − s)B(u(s))T (s− σ)AB(u(σ))u(σ)

− 2iµT (τ − s)B(u(s))T (s− σ) Re
(
u(σ)Au(σ)

)
u(σ)

+ T (τ − s)B(u(s))T (s− σ)B(u(σ))
(
Au(σ) +B(u(σ))u(σ)

)
.
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3. Convergence of the Strang splitting for initial functions in H4

Estimating as above, we derive

‖∂sv(s, σ)‖L2 ≤ c
(
‖u(s)‖2

H2 ‖u(σ)‖3
H2 + ‖u(s)‖2

H2 ‖u(σ)‖3
H2

+ ‖u(s)‖H2 ‖u(σ)‖3
H2

)
,

‖∂σv(s, σ)‖L2 ≤ c
(
‖u(s)‖2

H2 ‖u(σ)‖3
H2 + ‖u(s)‖2

H2 ‖u(σ)‖3
H2

+ ‖u(s)‖2
H2 ‖u(σ)‖2

H2

(
‖u(σ)‖H2 + ‖u(σ)‖2

H2 ‖u(σ)‖L2

))
.

So, we have

sup
(s,σ)∈[0,T ]×[0,T ]

‖∂sv(s, σ)‖L2 ≤ cM5
2

sup
(s,σ)∈[0,T ]×[0,T ]

‖∂σv(s, σ)‖L2 ≤ c
(
M5

2 +M0M
6
2

)
≤ c
(
M5

2 +M7
2 ).

Lemma 3.9, then implies the bound

R1 ≤ c · max
(s,σ)∈[0,T ]×[0,T ]

∣∣∣∣∣
(
‖∂sv(s, σ)‖L2

‖∂σw(s, σ)‖L2

)∣∣∣∣∣
2

· τ 3 =: C̃4,1τ
3, (3.26)

with C̃4,1 only depending on M2.
To control the remainder error term R2 in (3.25), we notice

v(0, 0) = T (τ)B(u0)2u0,

v(τ, 0) = B(u(τ))T (τ)B(u0)u0,

v(τ, τ) = B(u(τ))2u(τ) and

v(2τ/3, τ/3) = T (τ/3)B(u(2τ/3))T (τ/3)B(u(τ/3))u(τ/3).

Hence, R2 becomes

R2 =

∥∥∥∥τ 2

8

(
T (τ)B(u0)2u0 +B(u(τ))T (τ)B(u0)u0 +B(u(τ))2u(τ)

+ T (τ/3)B(u(2τ/3))T (τ/3)B(u(τ/3))u(τ/3)
)

− τ 2

2
T (τ/2)B(u∗)2T (τ/2)u0

∥∥∥∥
L2

.

We introduce the functions g1, g2, g3, g4, h, g : [0, T ]→ L2 by

g1(t) := T (t)B(u0)2u0,

g2(t) := B(u(t))T (t)B(u0)u0,

g3(t) := B(u(t))2u(t),

g4(t) := T (t/3)B(u(2t/3))T (t/3)B(u(t/3))u(t/3),
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3.3. The estimate in L2

h(t) := T (t/2)B(T (t/2)u0)2T (t/2)u0,

g := g1 + g2 + g3 + g4 − 4h.

Identity (3.4) then yields the derivatives

g′1(t) = AT (t)B(u0)2u0,

g′2(t) = −2iµRe
(
u(t)Au(t)

)
T (t)B(u0)u0 +B(u(t))AT (t)B(u0)u0,

g′3(t) = −4iµRe
(
u(t)Au(t)

)
B(u(t))u(t) +B(u(t))2

(
Au(t) +B(u(t))u(t)

)
,

3g′4(t) = AT (t/3)B(u(2t/3))T (t/3)B(u(t/3))u(t/3)

− 4iµT (t/3) Re
(
u(2t/3)Au(2t/3)

)
T (t/3)B(u(t/3))u(t/3)

+ T (t/3)B(u(2t/3))AT (t/3)B(u(t/3))u(t/3)

− 2iµT (t/3)B(u(2t/3))T (t/3) Re
(
u(t/3)Au(t/3)

)
u(t/3)

+ T (t/3)B(u(2t/3))T (t/3)B(u(t/3))
(
Au(t/3) +B(u(t/3))u(t/3)

)
,

2h′(t) = AT (t/2)B(T (t/2)u0)2T (t/2)u0

− 4iµRe
(
(T (t/2)u0)AT (t/2)u0

)
B(T (t/2)u0)T (t/2)u0

+ T (t/2)B(T (t/2)u0)2T (t/2)Au0.

As before these derivatives can bounded by

‖g′1(t)‖L2 ≤ c ‖u0‖5
H2 ,

‖g′2(t)‖L2 ≤ c
(
‖u(t)‖2

H2 ‖u0‖3
H2 + ‖u(t)‖2

H2 ‖u0‖3
H2

)
,

‖g′3(t)‖L2 ≤ c
(
‖u(t)‖5

H2 + ‖u(t)‖4
H2

(
‖u(t)‖H2 + ‖u(t)‖2

H2 ‖u(t)‖L2

))
,

‖g′4(t)‖L2 ≤ c
(
‖u(2t/3)‖2

H2 ‖u(t/3)‖3
H2 + ‖u(2t/3)‖2

H2 ‖u(t/3)‖3
H2

+ ‖u(2t/3)‖2
H2 ‖u(t/3)‖3

H2 + ‖u(2t/3)‖2
H2 ‖u(t/3)‖3

H2

+ ‖u(2t/3)‖2
H2 ‖u(t/3)‖2

H2

(
‖u(t/3)‖H2 + ‖u(t/3)‖2

H2 ‖u(t/3)‖L2

))
,

‖h′(t)‖L2 ≤ c
(
‖u0‖5

H2 + ‖u0‖5
H2 + ‖u0‖5

H2

)
.

Therefore, we have

sup
t∈[0,T ]

‖g′1(t)‖L2 ≤ cM5
2 ,

sup
t∈[0,T ]

‖g′2(t)‖L2 ≤ cM5
2 ,

sup
t∈[0,T ]

‖g′3(t)‖L2 ≤ c
(
M5

2 +M7
2

)
,

sup
t∈[0,T ]

‖g′4(t)‖L2 ≤ c(M5
2 +M7

2

)
,

sup
t∈[0,T ]

‖h′(t)‖L2 ≤ cM5
2 .
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3. Convergence of the Strang splitting for initial functions in H4

Because of
g(0) = g1(0) + g2(0) + g3(0) + g4(0)− 4h(0) = 0,

g can be expressed by

g(τ) = g(0) +

∫ τ

0

g′(t) dt =

∫ τ

0

(
g′1(t) + g′2(t) + g′3(t) + g′4(t)− 4h′(t)

)
dt.

The bounds for the derivatives thus give

R2 =

∥∥∥∥τ 2

8
g(τ)

∥∥∥∥
L2

≤ C̃4,2τ
3, (3.27)

with C̃4,2 only depending on M4.
3) Bound on I3: Using

∥∥esB(u∗)
∥∥
L∞ = 1, we estimate∥∥∥∥1

2

∫ τ

0

(τ − s)2T (τ/2)B(u∗)3esB(u∗)u∗ ds

∥∥∥∥
L2

≤ c

∫ τ

0

(τ − s)2
∥∥B(T (τ/2)u0

)∥∥3

H2 ‖T (τ/2)u0‖L2 ds

≤ c
τ 3

3
‖u0‖6

H2 ‖u0‖L2 ≤ c
τ 3

3
M7

4 =: C̃5τ
3,

with C̃5 only depending on M4.
The claim now follows by combing the above estimate with (3.18), (3.19), (3.20), (3.23),

(3.25), (3.26) and (3.27). �

3.3.2. H2-conditional stability in the L2-norm
Proof (of Lemma 3.8):
Let u0, v0 ∈ H2 with ‖u0‖H2 ≤ M and ‖v0‖H2 ≤ M . For z0, w0 ∈ H2, we look at the
solutions of the initial value problems

∂tz(t) = −iµ |z(t)|2 z(t), z(0) = z0,

∂tw(t) = −iµ |w(t)|2w(t), w(0) = w0.

As estimate (3.12) in the proof of Lemma 3.4, we derive

‖∂tz(t)− ∂tw(t)‖L2 ≤ c
(
‖z0‖H2 + ‖w0‖H2

)(
‖z0‖H2 + t ‖z0‖3

H2

+ t2 ‖z0‖5
H2

)
‖z0 − w0‖L2 + c ‖w0‖2

H2 ‖z(t)− w(t)‖L2 .

From this fact we conclude with Gronwall’s inequality that

‖z(t)− w(t)‖L2 ≤ eC4τ ‖z0 − w0‖L2

for a constant C4 only depending onM , cf. (3.13). As in the proof of Lemma 3.4, we then
arrive at

‖Ψτ (u0)−Ψτ (v0)‖L2 ≤ eC4τ ‖u0 − v0‖L2 ,

which is the desired estimate. �
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3.3.3. Convergence in the L2-norm
Proof (of Theorem 3.1):
Let u0 ∈ H4. Let τ ∈ (0, τ0] with τ0 > 0 from Lemma 3.6 and n ∈ N with nτ ≤ T . We
have

u(nτ)−Ψn
τ (u0) =

n−1∑
k=0

Ψk
τ

(
u((n− k)τ)

)
−Ψk+1

τ

(
u((n− k − 1)τ)

)
.

In view of Lemma 3.6, the expressions Ψl
τ

(
u((n − l)τ)

)
with l ∈ {0, . . . , n} are bounded

in H2 by a constant Ĉ that only depends on M2 (and in particular not on n or τ). Thus,
Lemma 3.8 can iteratively be applied with M := Ĉ to all summands appearing in the
second line of the following calculation. Together with the local error bound in Lemma 3.7
we derive

‖u(nτ)−Ψn
τ (u0)‖L2

≤
n−1∑
k=0

∥∥Ψk
τ

(
u((n− k)τ)

)
−Ψk+1

τ

(
u((n− k − 1)τ)

)∥∥
L2

≤
n−1∑
k=0

ekC4τ
∥∥u(τ, u((n− k − 1)τ)

)
−Ψτ

(
u((n− k − 1)τ)

)∥∥
L2

≤
n−1∑
k=0

ekC4τC3τ
3 ≤

n−1∑
k=0

eTC4C3τ
3 ≤ TeTC4C3τ

2.

As in the analogous situation in the proof of Lemma 3.6 we use that for all l ∈ {0, . . . , n−1}
the constant C3 from Lemma 3.7 for the local error with initial value u(lτ, u0) only depends
on

sup
t∈[0,T−lτ ]

‖u(t, u(lτ, u0))‖H4 ≤M4

and not on l. This completes the proof of Theorem 3.1. �
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4. Convergence of the Strang
splitting for initial functions in
H2+2θ

Our aim is to show that the Strang splitting also converges if the initial function has
a lower regularity than H4. In this chapter we deal with the situation that the initial
function is in H2+2θ for θ ∈ (0, 1). In Section 4.1 we state that the Strang splitting still
converges but suffers from an order reduction that reduces the convergence order to 1+θ.
We add some auxiliary results on the splitting scheme and the strategy of the proof,
which are very similar to the ones of the H4-situation in Chapter 3. The main difference
in the proof is that we invoke interpolation estimates to cope with the reduced regularity.
The details of the proof are presented in the Sections 4.2 and 4.3, separated according to
arguments in H2 and in L2.

4.1. The theorem for initial functions in H2+2θ

The main result of this chapter is the following fractional convergence theorem for the
Strang splitting.

Theorem 4.1. For each θ ∈ (0, 1) and u0 ∈ H2+2θ, there exists a bound τ0 > 0 on the
time step size such that we have

‖u(nτ)−Ψn
τ (u0)‖L2 ≤ Cτ 1+θ

for all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T with a constant C ≥ 0 that depends only on u0

and T . More precisely, C depends only on T and M2+2θ.

The number τ0 = τ0(θ, T,M2) is given in Lemma 4.3. It is possible to get rid of the
dependency of τ0 on θ, see Remark 5.9. We first show that the local error in H2 is of
order 1 + θ.

Lemma 4.2. For all θ ∈ (0, 1), u0 ∈ H2+2θ and τ ∈ (0, T ], we have

‖u(τ)−Ψτ (u0)‖H2 ≤ C1τ
1+θ,

with a constant C1 ≥ 0 depending only on T and M2+2θ.
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4. Convergence of the Strang splitting for initial functions in H2+2θ

As in Chapter 3, the precise form of the constant in the estimate is important since its
n-th power enters in the proof of the main result. Also as in Chapter 3, our numerical
solutions are strongly bounded in H2.

Lemma 4.3. Let θ ∈ (0, 1) and u0 ∈ H2+2θ. Then there exists a bound τ0 > 0 on the
time step size, which is given by

τ0 := min

{(
M2

TeTC2C1

)1/θ

, T

}
,

with C1 from Lemma 4.2 and C2 from Lemma 3.4, such that the following two statements
hold true.

(a) For all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T , we have

‖Ψn
τ (u0)− u(nτ)‖H2 ≤ Cτ θ,

with a constant C ≥ 0 depending only on T and M2+2θ, i.e. the Strang splitting
converges in H2 with order θ.

(b) Ψτ is strongly bounded for (2.5) in H2 for initial functions in H2+2θ, i.e. there exists
a constant Ĉ ≥ 0, only depending on T and M2, such that

∥∥Ψn−k
τ (u(kτ))

∥∥
H2 ≤ Ĉ

for all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T and k ∈ {0, . . . , n}. In particular, the
numerical solution is bounded in H2 (choose k = 0).

The above lemmas are proved in Section 4.2. As in Chapter 3, we see in the next lemma
that the order of the local error in L2 is one higher than the one in H2, namely 2 + θ

instead of 1 + θ.

Lemma 4.4. For all θ ∈ (0, 1), u0 ∈ H2+2θ and τ ∈ (0, T ], we have

‖u(τ)−Ψτ (u0)‖L2 ≤ C3τ
2+θ,

with a constant C3 ≥ 0 depending only on T and M2+2θ.

Together with the H2-conditional stability from Lemma 3.8 we will obtain the desired
result with Lady Windermere’s fan.

4.2. The estimate in H2

We prove Lemma 4.2 and combine it with Lemma 3.4 to conclude Lemma 4.3.
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4.2.1. The local error in the H2-norm
Proof (of Lemma 4.2):
Let θ > 0, u0 ∈ H2+2θ and τ > 0. We start our investigations with the representation
(3.2) for u(τ)−Ψτ (u0), given by

u(τ)−Ψτ (u0) =

(∫ τ

0

T (τ − s)B(u(s))T (s)u0 ds− τT (τ/2)B(u∗)T (τ/2)u0

)
+

(∫ τ

0

T (τ − s)B(u(s))

∫ s

0

T (s− σ)B(u(σ))u(σ) dσ ds

−
∫ τ

0

(τ − s)T (τ/2)B(u∗)2esB(u∗)T (τ/2)u0 ds

)
(4.1)

=: I1 + I2.

1) Bound on I1: As in Section 3.2, we use the function

w : [0, T ]→ H2; w(s) := T (τ − s)B(u(s))T (s)u0,

and the estimate

‖I1‖H2 ≤
∥∥∥∥∫ τ

0

w(s) ds− τw(τ/2)

∥∥∥∥
H2

+ ‖τw(τ/2)− τT (τ/2)B(u∗)T (τ/2)u0‖H2

=: S1 + S2,

(4.2)

see (3.3). For each y ∈ H2+2θ, the maps t 7→ T (t)y and t 7→ u(t, y) are θ-Hölder continuous
in H2 on [0, T ] by Lemma 2.3. From

w(s1)− w(s2) = T (τ − s1)B(u(s1))
(
T (s1)u0 − T (s2)u0)

)
− T (τ − s1)

(
B(u(s1))−B(u(s2))

)
T (s2)u0

+
(
T (τ − s1)− T (τ − s2)

)
B(u(s2))T (s2)u0

we then deduce with the unitarity of T (·) that

‖w(s1)− w(s2)‖H2 ≤ c
(
‖u(s1)‖2

H2 ‖u0‖H2+2θ

+ C(M2+2θ, T )
(
‖u(s1)‖H2 + ‖u(s2)‖H2

)
‖u0‖H2

+ ‖u(s2)‖2
H2+2θ ‖u0‖H2+2θ

)
· |s1 − s2|θ

for all s1, s2 ∈ [0, T ). Here, we also took the algebra property from Lemma 2.1 into
account. By this inequality, w belongs to C0,θ([0, T ], H2) and

‖w(s1)− w(s2)‖H2 ≤ c
(
M2

2M2+2θ + C(M2+2θ, T )M2
2 +M3

2+2θ

)
|s1 − s2|θ

≤ c
(
M3

2+2θ + C(M2+2θ, T )M2
2+2θ

)
|s1 − s2|θ .
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The space C0,θ([0, T ], H2) of Hölder continuous functions is the real interpolation space(
C([0, T ], H2), C1([0, T ], H2)

)
θ,∞.

This can be proved as in the scalar-valued case, see e.g. the Examples 1.8 and 1.9 in
[52]. An inspection of that proof shows that the occurring constants can be chosen
independently of θ ∈ (0, 1). We can now interpolate the results of Proposition 1.1 to
derive

S1 ≤ c
(
M3

2+2θ + C(M2+2θ, T )M2
2+2θ

)
τ 1+θ =: C1,1τ

1+θ (4.3)

with C1,1 only depending on T and M2+2θ.
To deal with S2 in (4.2), as in Section 3.2, we introduce the function

f : [0, T ]→ H2; f(t) :=
(
B(u(t/2))−B(T (t/2)u0)

)
T (t/2)u0.

We write

f(t1)− f(t2) =
(
B(u(t1/2))−B(T (t1/2)u0)

)(
T (t1/2)u0 − T (t2/2)u0

)
+
(
B(u(t1/2))−B(u(t2/2))

)
T (t2/2)u0

−
(
B(T (t1/2)u0)−B(T (t2/2)u0)

)
T (t2/2)u0

and estimate

‖f(t1)− f(t2)‖H2 ≤ c
((
‖u(t1/2)‖2

H2 + ‖u0‖2
H2

)
‖u0‖H2+2θ

+ C(M2+2θ, T )
(
‖u(t1/2)‖H2 + ‖u(t2/2)‖H2

)
‖u0‖H2

+ 2 ‖u0‖H2+2θ ‖u0‖2
H2

)
· |t1 − t2|θ

for all t1, t2 ∈ [0, T ], employing Lemma 2.1 and 2.3. Because of f(0) = 0 we thus obtain

‖f(τ)‖H2 ≤ c
(
M2

2M2+2θ + C(M2+2θ, T )M2
2 +M2+2θM

2
2

)
τ θ

≤ c
(
M3

2+2θ + C(M2+2θ, T )M2
2+2θ

)
τ θ,

S2 = ‖τT (τ/2)f(τ)‖H2 ≤ C1,2τ
1+θ (4.4)

with C1,2 only depending on T and M2+2θ.
2) Bound on I2: By means of Lemma 2.1, we bound the two summands of I2 by∥∥∥∥∫ τ

0

T (τ − s)B(u(s))

∫ s

0

T (s− σ)B(u(σ))u(σ) dσ ds

∥∥∥∥
H2

≤ cτ 2M5
2 ,∥∥∥∥∫ τ

0

(τ − s)T (τ/2)B(u∗)2esB(u∗)u∗ ds

∥∥∥∥
H2

≤ cM3
2 τ

2.

The assertion now follows by combining the above two inequalities with (4.1), (4.2),
(4.3) and (4.4). �
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4.2.2. Boundedness of the numerical solution in the H2-norm
Proof (of Lemma 4.3):
Let θ ∈ (0, 1). We denote by u(s, y0) the solution to (2.5) at time s ≥ 0 with initial
function y0 ∈ H2+2θ. Let u0 ∈ H2+2θ and define

τ0 := min

{(
M2

TeTC2C1

)1/θ

, T

}
. (4.5)

We prove with an induction argument part (b) and an even stronger version of part (a).
For all τ ∈ (0, τ0], n ∈ N0 with nτ ≤ T and k ∈ {0, . . . , n} we claim∥∥Ψn−k

τ (u(kτ, u0))− u(nτ, u0)
∥∥
H2 ≤ TeTC2C1τ

θ (4.6)

with C1 from Lemma 4.2 and C2 from Lemma 3.4 (with M := 2M2) and∥∥Ψn−k
τ (u(kτ, u0))

∥∥
H2 ≤ 2M2 =: Ĉ. (4.7)

We first note that definition (4.5) and estimate (4.6) yield∥∥Ψn−k
τ (u(kτ, u0))− u(nτ, u0)

∥∥
H2 ≤M2

for τ ∈ (0, τ0], so that the strong boundedness estimate (4.7) will follow from (4.6) via
the triangle inequality.
We fix τ ∈ (0, τ0] and establish (4.6) by induction. The case n = 0 is trivial. Let the

induction hypothesis∥∥Ψn−k
τ (u(kτ, u0))− u(nτ, u0)

∥∥
H2 ≤ TeTC2C1τ

θ ≤M2

hold true for all k ∈ {0, . . . , n} and some n ∈ N0 with (n+ 1)τ ≤ T . Hence, (4.7) is valid
for all k ∈ {0, . . . , n}. We now show (4.6) with n replaced by n + 1. For k = n + 1 the
estimate (4.6) is clear. Let k ∈ {0, . . . , n}. Estimate (4.7) for n gives a uniform constant
C2 for following applications of Lemma 3.4, so that Lemma 3.4 and 4.2 imply with a
telescopic sum that∥∥Ψn+1−k

τ (u(kτ, u0))− u((n+ 1)τ, u0)
∥∥
H2

≤
n−k∑
j=0

∥∥∥∥Ψn−k−j
τ

(
Ψτ

(
u((k + j)τ, u0)

))
−Ψn−k−j

τ

(
u((k + j + 1)τ, u0)

)∥∥∥∥
H2

≤
n−k∑
j=0

e(n−k−j)C2τ
∥∥Ψτ

(
u((k + j)τ, u0)

)
− u
(
τ, u((k + j)τ, u0)

)∥∥
H2

≤
n−k∑
j=0

e(n−k−j)C2τC1τ
1+θ ≤

n−k∑
j=0

eC2TC1τ
1+θ ≤ TeTC2C1τ

θ.

Thereby, we can apply Lemma 4.2 with a uniform constant since we have

sup
t∈[0,T−lτ ]

‖u(t, u(lτ, u0))‖H2+2θ ≤M2+2θ

for all l ∈ {0, . . . , n}, compare Section 3.2. �
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4.3. The estimate in L2

We first prove Lemma 4.4. Afterwards we show Lemma 3.4 and combine it with Lemma 4.4
and 4.3 to infer Theorem 4.1.

4.3.1. The local error in the L2-norm

The proof of Lemma 4.4 is similar to the one of Lemma 4.2, but we need a Taylor expansion
of second order instead of first order. We use the following fact about a quadrature formula
on a two-dimensional simplex.

Lemma 4.5. Let (X, ‖·‖) be a Banach space, τ > 0 and

Sτ := {(x, y) ∈ R2 | 0 ≤ y ≤ x ≤ τ}.

We define the linear operators

U1 : C(Sτ , X)→ X and U2 : C1(Sτ , X)→ X

by

Ujf : =

∫
Sτ

f(x, y) d(x, y)− τ 2

8

(
f(0, 0) + f(τ, 0) + f(τ, τ) + f(2τ/3, τ/3)

)
.

These operators are bounded and we have

‖U1f‖ ≤ τ 2 ‖f‖C and ‖U2f‖ ≤ cτ 3 ‖f‖C1 .

Proof:
The first estimate in the lemma is clear. To see the second one, we write

f(x, y)− f(a, b) = −
∫ 1

0

f ′(x+ r(a− x), y + r(b− y)) · (a− x, b− y) dr

for each (a, b) ∈ {(0, 0), (τ, 0), (τ, τ), (2τ/3, τ/3)}. �

Proof (of Lemma 4.4):
Let θ ∈ (0, 1), u0 ∈ H2+2θ and τ ∈ (0, T ]. We first recall the representation (3.18) for
u(τ)−Ψτ (τ),

u(τ)−Ψτ (u0)

=

(∫ τ

0

T (τ − s)B(u(s))T (s)u0 ds− τT (τ/2)B(u∗)T (τ/2)u0

)
+

(∫ τ

0

T (τ − s)B(u(s))

∫ s

0

T (s− σ)B(u(σ))u(σ) dσ ds
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− τ 2

2
T (τ/2)B(u∗)2T (τ/2)u0

)
(4.8)

− 1

2

∫ τ

0

(τ − s)2T (τ/2)B(u∗)3esB(u∗)u∗ ds

=: I1 + I2 + I3.

1) Bound on I1: We employ again the function w : [0, T ]→ L2 defined by

w(s) := T (τ − s)B(u(s))T (s)u0,

see Section 3.3, and estimate (3.19), i.e.

‖I1‖L2 ≤
∥∥∥∥∫ τ

0

T (τ − s)B(u(s))T (s)u0 ds− τw(τ/2)

∥∥∥∥
L2

+ ‖τw(τ/2)− τT (τ/2)B(u∗)T (τ/2)u0‖L2 (4.9)

=: S1 + S2.

The first summand on the right-hand side will be controlled by interpolation. We already
know from (3.5) that

w′(s) = −T (τ − s)AB(u(s))T (s)u0

− 2iµT (τ − s) Re
(
u(s)Au(s)

)
T (s)u0

+ T (τ − s)B(u(s))AT (s)u0.

This equality yields with Lemma 2.1 that

‖w′(s)‖L2 ≤ c
(
‖u(s)‖2

H2 ‖u0‖H2 + ‖u(s)‖2
H2 ‖u0‖H2 + ‖u(s)‖2

H2 ‖u0‖H2

)
and hence

sup
s∈[0,T ]

‖w′(s)‖L2 ≤ cM3
2 .

We have

w′(s1)− w′(s2) = −T (τ − s1)AB(u(s1))
(
T (s1)u0 − T (s2)u0

)
− T (τ − s1)A

(
B(u(s1))−B(u(s2))

)
T (s2)u0

−
(
T (τ − s1)− T (τ − s2)

)
AB(u(s2))T (s2)u0

− 2iµT (τ − s1) Re
(
u(s1)Au(s1)

)(
T (s1)u0 − T (s2)u0

)
− 2iµT (τ − s1) Re

(
u(s1)A

(
u(s1)− u(s2)

))
T (s2)u0

− 2iµT (τ − s1) Re
((
u(s1)− u(s2)

)
Au(s2)

)
T (s2)u0

− 2iµ
(
T (τ − s1)− T (τ − s2)

)
Re
(
u(s2)Au(s2)

)
T (s2)u0

+ T (τ − s1)B(u(s1))A
(
T (s1)u0 − T (s2)u0

)
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+ T (τ − s1)
(
B(u(s1))−B(u(s2))

)
AT (s2)u0

+
(
T (τ − s1)− T (τ − s2)

)
B(u(s2))AT (s2)u0.

Lemma 2.1 and 2.3 then imply

‖w′(s1)− w′(s2)‖L2

≤ c
(
‖u(s1)‖2

H2 ‖u0‖H2+2θ + C(M2+2θ, T )
(
‖u(s1)‖H2 + ‖u(s2)‖H2

)
‖u0‖H2

+ ‖u(s2)‖2
H2+2θ ‖u0‖H2+2θ + ‖u(s1)‖2

H2 ‖u0‖H2+2θ

+ ‖u(s1)‖H2 C(M2+2θ, T ) ‖u0‖H2 + C(M2+2θ, T ) ‖u(s1)‖H2 ‖u0‖H2

+ ‖u(s2)‖H2 ‖u(s2)‖H2+2θ ‖u0‖H2 + ‖u(s1)‖2
H2 ‖u0‖H2+2θ

+
(
‖u(s1)‖H2 + ‖u(s2)‖H2

)
C(M2+2θ, T ) ‖u0‖H2 + ‖u(s2)‖2

H2 ‖u0‖H2+2θ

)
·

· |s1 − s2|θ

for all s1, s2 ∈ [0, T ]. The function w thus belongs to C1,θ([0, T ], L2) and

‖w′(s1)− w′(s2)‖L2 ≤ c
(
M2

2M2+2θ + C(M2+2θ, T )M2
2 +M3

2+2θ

)
|s1 − s2|θ

≤ c
(
M3

2+2θ + C(M2+2θ, T )M2
2+2θ

)
|s1 − s2|θ

for all s1, s2 ∈ [0, T ]. Analogously as in the the proof of Lemma 4.2, C1,θ([0, T ], L2) is the
real interpolation space (

C1([0, T ], L2), C2([0, T ], L2)
)
θ,∞

and the occurring constants are independent of θ ∈ (0, 1). Hence, interpolation in Propo-
sition 1.1 yields

S1 ≤ τ 2+θc
((
M3

2+2θ + C(M2+2θ, T )M2
2+2θ

)
+M3

2

)
=: C3,1τ

2+θ (4.10)

with C3,1 only depending on T and M2+2θ.
To treat the second summand in (4.2), we look at the function

f : [0, T ]→ L2; f(t) :=
(
B(u(t/2))−B(T (t/2)u0)

)
T (t/2)u0,

cf. (3.21). We want to check that f belongs to C1,θ([0, T ], L2). Observe that

2f ′(t) = −2iµ
(

Re
(
u(t/2)Au(t/2)

)
− Re

(
(T (t/2)u0)T (t/2)Au0

))
T (t/2)u0

+
(
B(u(t/2))−B(T (t/2)u0)

)
T (t/2)Au0.

So, we have

2f ′(t1)− 2f ′(t2) = −2iµRe
(
u(t1/2)Au(t1/2)

)(
T (t1/2)u0 − T (t2/2)u0

)
− 2iµRe

(
(T (t1/2)u0)T (t1/2)Au0

)(
T (t1/2)u0 − T (t2/2)u0

)
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− 2iµRe
(
u(t1/2)A

(
u(t1/2)− u(t2/2)

))
T (t2/2)u0

− 2iµRe
((
u(t1/2)− u(t2/2)

)
Au(t2/2)

)
T (t2/2)u0

+ 2iµRe
(

(T (t1/2)u0)A
(
T (t1/2)u0 − T (t2/2)u0

))
T (t2/2)u0

+ 2iµRe
((

(T (t1/2)u0)− (T (t2/2)u0)
)
T (t2/2)Au0

)
T (t2/2)u0

+
(
B(u(t1/2))−B(T (t1/2)u0)

)
A
(
T (t1/2)u0 − T (t2/2)u0

)
+
(
B(u(t1/2))−B(u(t2/2))

)
T (t2/2)Au0

−
(
B(T (t1/2)u0)−B(T (t2/2)u0)

)
T (t2/2)u0

and thus

‖f ′(t1)− f ′(t2)‖L2

≤ c
(
‖u(t1/2)‖2

H2 ‖u0‖H2+2θ + ‖u0‖2
H2 ‖u0‖H2+2θ

+ ‖u(t1/2)‖H2 C(M2+2θ, T ) ‖u0‖H2 + C(M2+2θ, T ) ‖u(t2/2)‖H2 ‖u0‖H2

+ ‖u0‖H2 ‖u0‖H2+2θ ‖u0‖H2 + ‖u0‖H2+2θ ‖u0‖2
H2

+
(
‖u(t1/2)‖2

H2 + ‖u0‖2
H2

)
‖u0‖H2+2θ

+
(
‖u(t1/2)‖H2 + ‖u(t2/2)‖H2

)
C(M2+2θ, T ) ‖u0‖H2

+ 2 ‖u0‖H2 ‖u0‖H2+2θ ‖u0‖H2

)
· |t1 − t2|θ

≤ c
(
M2

2M2+2θ +M2
2C(M2+2θ, T )

)
|t1 − t2|θ

≤ c
(
M3

2+2θ +M2
2+2θC(M2+2θ, T )

)
|t1 − t2|θ

=: C3,2 |t1 − t2|θ

for all t1, t2 ∈ [0, T ], with a constant C3,2 only depending on T and M2+2θ. Together with
f(0) = 0 and f ′(0) = 0 this inequality implies

‖f(τ)‖L2 ≤
∥∥∥∥∫ τ

0

(
f ′(s)− f ′(0)

)
ds

∥∥∥∥
L2

≤ C3,2τ
1+θ,

S2 = ‖τT (τ/2)f(τ)‖L2 ≤ C3,2τ
2+θ. (4.11)

2) Bound on I2: We now tackle the summand I2 in (4.8). We define, as in (3.24), the
function v : [0, T ]× [0, T ]→ L2 by

v(s, σ) := T (τ − s)B(u(s))T (s− σ)B(u(σ))u(σ)

and split

‖I2‖L2 ≤
∥∥∥∥∥
∫ τ

0

∫ s

0

T (τ − s)B(u(s))T (s− σ)B(u(σ))u(σ) dσ ds
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− τ 2

8

(
v(0, 0) + v(τ, 0) + v(τ, τ) + v(2τ/3, τ/3)

)∥∥∥∥∥
L2

,

+

∥∥∥∥τ 2

8

(
v(0, 0) + v(τ, 0) + v(τ, τ) + v(2τ/3, τ/3)

)
(4.12)

− τ 2

2
T (τ/2)B(u∗)2T (τ/2)u0

∥∥∥∥
L2

=: R1 +R2,

as in (3.25). For all (s1, σ1), (s2, σ2) ∈ Sτ we have

v(s1, σ1)− v(s2, σ2)

= T (τ − s1)B(u(s2))T (s1 − σ1)B(u(σ1))
(
u(σ1)− u(σ2)

)
− T (τ − s1)B(u(s1))T (s1 − σ1)

(
B(u(σ1))−B(u(σ2))

)
u(σ2)

+ T (τ − s1)B(u(s2))
(
T (s1 − σ1)− T (s2 − σ2)

)
B(u(σ2))u(σ2)

+ T (τ − s1)
(
B(u(s1))−B(u(s2))

)
T (s2 − σ2)B(u(σ2))u(σ2)

+
(
T (τ − s1)− T (τ − s2)

)
B(u(s2))T (s2 − σ2)B(u(σ2))u(σ2).

Lemma 2.1 and 2.3 then yield

‖v(s1, σ1)− v(s2, σ2)‖L2

≤ c
(
‖u(s1)‖2

H2 ‖u(σ1)‖2
H2 C(M2+2θ, T ) |σ1 − σ2|θ

+ ‖u(s1)‖2
H2

(
‖u(σ1)‖H2 + ‖u(σ2)‖H2

)
C(M2+2θ, T ) ‖u(σ2)‖H2 |σ1 − σ2|θ

+ ‖u(s2)‖2
H2 ‖u(σ2)‖3

H2+2θ |s1 − s2 + σ1 − σ2|θ

+
(
‖u(s1‖H2 + ‖u(s2)‖H2

)
C(M2+2θ, T ) ‖u(σ2)‖3

H2 |s1 − s2|θ

+ ‖u(s2)‖2
H2 ‖u(σ2)‖2

H2 ‖u(σ2)‖H2θ |s1 − s2|θ
)
,

≤ c
(
M4

2C(M2+2θ, T ) +M2
2M

3
2+2θ +M4

2M2θ

) ∣∣∣∣∣
(

s1 − s2

σ1 − σ2

)∣∣∣∣∣
θ

≤ c
(
M4

2+2θC(M2+2θ, T ) +M5
2+2θ

) ∣∣∣∣∣
(

s1 − s2

σ1 − σ2

)∣∣∣∣∣
θ

≤ C4,1

∣∣∣∣∣
(

s1 − s2

σ1 − σ2

)∣∣∣∣∣
θ

with C4,1 only depending on T and M2+2θ. By interpolating in Lemma 4.5, we obtain as
above the inequality

R1 ≤ cτ 2+θC4,1. (4.13)

To estimate R2, we introduce the function g : [0, T ]→ L2 by

g(t) : = T (t)B(u0)2u0 +B(u(t))T (t)B(u0)u0
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+B(u(t))2u(t) + T (t/3)B(u(2t/3))T (t/3)B(u(t/3))u(t/3)

− 4T (t/2)B(T (t/2)u0)2T (t/2)u0.

For all t1, t2 ∈ [0, T ] we have

g(t1)− g(t2)

=
(
T (t1)− T (t2)

)
B(u0)2u0

+B(u(t1))
(
T (t1)B(u0)u0 − T (t2)B(u0)u0

)
+
(
B(u(t1))−B(u(t2))

)
T (t2)B(u0)u0

+B(u(t1))2
(
u(t1)− u(t2)

)
+
(
B(u(t1)) +B(u(t2))

)(
B(u(t1))−B(u(t2))

)
u(t2)

+ T (t1/3)B(u(2t1/3))T (t1/3)B(u(t1/3))
(
u(t1/3)− u(t2/3)

)
+ T (t1/3)B(u(2t1/3))T (t1/3)

(
B(u(t1/3))−B(u(t2/3))

)
u(t2/3)

+ T (t1/3)B(u(2t1/3))
(
T (t1/3)− T (t2/3)

)
[B(u(t2/3))u(t2/3)]

+ T (t1/3)
(
B(u(2t1/3))−B(u(2t2/3))

)
T (t2/3)B(u(t2/3))u(t2/3)

+
(
T (t1/3)− T (t2/3)

)
B(u(2t2/3))T (t2/3)B(u(t2/3))u(t2/3)

− 4T (t1/2)B(T (t1/2)u0)2
(
T (t1/2)u0 − T (t2/2)u0

)
+ T (t1/2)

(
B(T (t1/3)u0) +B(T (t2/3)u0)

)(
B(T (t1/3)u0)−B(u(t2/3)u0)

)
T (t2/2)u0

− 4
(
T (t1/2)− T (t2/2)

)
B(T (t2/2)u0)2T (t2/2)u0.

From Lemma 2.1 and 2.3 we thus derive

‖g(t1)− g(t2)‖L2

≤ c
(
‖u0‖4

H2 ‖u0‖H2θ + ‖u(t1)‖2
H2 ‖u0‖2

H2 ‖u0‖H2θ

+
(
‖u(t1)‖L2 + ‖u(t2)‖L2

)
C(M2+2θ, T ) ‖u0‖3

H2

+ ‖u(t1)‖3
H2 ‖u(t1)‖L2 C(M2+2θ, T )

+
(
‖u(t1)‖2

H2 + ‖u(t2)‖2
H2

)(
‖u(t1)‖H2 + ‖u(t2)‖H2

)
C(M2+2θ, T ) ‖u(t2)‖L2

+ ‖u(2t1/3)‖2
H2 ‖u(t1/3)‖H2 ‖u(t1/3)‖L2 C(M2+2θ, T )

+ ‖u(2t1/3)‖2
H2

(
‖u(t1/3)‖H2 + ‖u(t2/3)‖H2

)
C(M2+2θ, T ) ‖u(t2/3)‖L2

+ ‖u(2t1/3)‖2
H2 ‖u(t2/3)‖2

H2 ‖u(t2/3)‖H2θ

+
(
‖u(2t1/3)‖H2 + ‖u(2t2/3)‖H2

)
C(M2+2θ, T ) ‖u(t2/3)‖2

H2 ‖u(t2/3)‖L2

+ ‖u(2t2/3)‖2
H2 ‖u(t2/3)‖2

H2 ‖u(t2/3)‖H2θ

+ ‖u0‖4
H2 ‖u0‖H2θ

+ 2 ‖u0‖2
H2

(
‖u(t1/2)‖H2 + ‖u(t2/2)‖H2

)
C(M2+2θ, T ) ‖u0‖L2

+ ‖u0‖4
H2 ‖u0‖H2θ

)
· |t1 − t2|θ
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≤ c
(
M3

2M0C(M2+2θ, T ) +M4
2M2θ

)
|t1 − t2|θ

≤ c
(
M5

2 +M4
2C(M2+2θ, T )

)
|t1 − t2|θ

≤ C4,2 |t1 − t2|θ

with C4,2 only depending on T and M2+2θ. Because of g(0) = 0, this inequality leads to
the bound

R2 =

∥∥∥∥τ 2

8
g(τ)

∥∥∥∥
L2

≤ C4,2τ
2+θ. (4.14)

3) Bound on I3: Lemma 2.1 implies that∥∥∥∥1

2

∫ τ

0

(τ − s)2T (τ/2)B(u∗)3esB(u∗)u∗ ds

∥∥∥∥
L2

≤ cM7
2 τ

3.

This estimate and (4.8), (4.9), (4.10), (4.11), (4.12), (4.13) and (4.14) imply the asser-
tion. �

4.3.2. Convergence in the L2-norm
Proof (of Theorem 4.1):
Let θ > 0 and u0 ∈ H2+2θ. Take τ ∈ (0, τ0] with the bound τ0 > 0 on the time step size
from Lemma 4.3 and n ∈ N with nτ ≤ T . We have

u(nτ)−Ψn
τ (u0) =

n−1∑
k=0

(
Ψk
τ

(
u((n− k)τ)

)
−Ψk+1

τ

(
u((n− k − 1)τ)

))
.

In view of Lemma 4.3, the expressions Ψl
τ

(
u((n − 1 − l)τ)

)
with l ∈ {0, . . . , n − 1} are

bounded in H2 by a constant Ĉ that only depends onM2 (and not on n or τ). Iteratively,
Lemma 3.8 can thus be applied with M := Ĉ to all summands appearing in the second
line of the following calculation. Together with Lemma 4.4 we derive

‖u(nτ)−Ψn
τ (u0)‖L2

≤
n−1∑
k=0

∥∥Ψk
τ

(
u((n− k)τ)

)
−Ψk+1

τ

(
u((n− k − 1)τ)

)∥∥
L2

≤
n−1∑
k=0

ekC4τ
∥∥u(τ, u((n− k − 1)τ)

)
−Ψτ

(
u((n− k − 1)τ)

)∥∥
L2

≤
n−1∑
k=0

ekC4τC3τ
2+θ ≤

n1∑
k=0

eC4TC3τ
2+θ ≤ TeTC4C3τ

1+θ.

As in the analogous situation in the proof of Lemma 4.3 we can apply Lemma 4.4 with a
uniform constant C3 since

sup
t∈[0,T−lτ ]

‖u(t, u(lτ, u0))‖H2 ≤M4.

This completes the proof of Theorem 4.1. �
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5. Convergence of the Strang and
the Lie splitting for initial
functions in H2

In this chapter we extend our analysis from Chapter 4 to the situation that the initial
function is only inH2. In contrast to in Chapter 3 and 4 we investigate not only the Strang
splitting but also the Lie splitting. In Section 5.1 we state that they both converge with
order one.
The main problem in transferring the proof from Chapter 4 to this situation with initial

functions of low regularity is that the order of the local error in the H2-norm is no longer
strictly larger than (but equal to) one. This implies that the proofs of the analoga to
Lemma 4.3 on the strong boundedness, see Lemma 5.7 and 5.8, cannot be carried out as
before. Moreover, these lemmas cannot be omitted completely since the error constant
in the final part of the proof is not allowed to depend on the time step size and the time
step. The remedy is to use interpolation in the domains to show the strong boundedness.
We give the details of this procedure in Section 5.2.
It is a natural question to ask if initial functions in other Hs-spaces are also worth

to look at. One can lower the regularity below H2 with the drawback that the solution
to (2.5), or at least the derivative of this solution, is in a distributional space H−r for
some r > 0. We did not investigate that situation in this thesis. Theorem 3.1 and 5.2
show that the Strang and the Lie splitting have their classical order for initial functions
in H4 and H2, respectively. Since this order cannot be improved, the investigation with
initial functions with higher regularity does not lead to new interesting result, except one
measures the errors in an Hs-norm for an s > 0.

5.1. The theorems for initial functions in H2

The main results of this chapter are the following two convergence theorems for the Strang
and the Lie splitting.

Theorem 5.1. For each u0 ∈ H2 there exists a bound τ0 > 0 on the time step size such

69
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that we have
‖u(nτ)−Ψn

τ (u0)‖L2 ≤ Cτ

for all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T with a constant C ≥ 0 that depends only on u0

and T . More precisely, C depends only on T and M2.

The number τ0 = τ0(T,M2) is given in Lemma 5.7.

Theorem 5.2. For each u0 ∈ H2 there exists a bound τ0 > 0 on the time step size such
that we have

‖u(nτ)− Φn
τ (u0)‖L2 ≤ Cτ

for all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T with a constant C ≥ 0 that depends only on u0

and T . More precisely, C depends only on T and M2.

The number τ0 = τ0(T,M2) is given in Lemma 5.8.
The proofs of Theorem 5.1 and 5.2 are similar to the one of Theorem 4.1. The main

difference is that in the first part of the proofs the local errors are estimated not in the
H2-norm but in the H7/4-norm, see Lemma 5.3 and 5.4. This has the advantage that we
obtain a local error of order 9/8 instead of order one. Additionally, H7/4 is still an algebra
due to Lemma 2.1. So, the stability estimates in H7/4, see Lemma 5.5 and 5.6, can be
shown in the same way as the stability estimate in Lemma 3.4. Since 9/8 > 1, we can
then prove Lemma 5.7 and 5.8 in the same way as Lemma 4.3 (with θ = 1/8).
The proofs of the next two lemmas concerning the local errors for the Strang and the

Lie splitting are discussed and shown in Section 5.2.

Lemma 5.3. For all u0 ∈ H2 and τ ∈ (0, T ] we have

‖u(τ)−Ψτ (u0)‖H7/4 ≤ C1τ
9/8,

‖u(τ)−Ψτ (u0)‖L2 ≤ C3τ
2,

with constants C1, C3 ≥ 0 depending only on T and M2.

Lemma 5.4. For all u0 ∈ H2 and τ ∈ (0, T ] we have

‖u(τ)− Φτ (u0)‖H7/4 ≤ C5τ
9/8,

‖u(τ)− Φτ (u0)‖L2 ≤ C7τ
2,

with constants C5, C7 ≥ 0 depending only on T and M2.

As explained above, the proof of the following stability, convergence and boundedness
properties can be seen in the same way as in Chapter 3 and 4.
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5.1. The theorems for initial functions in H2

Lemma 5.5. Let M ≥ 0 and u0, v0 ∈ H2 with ‖u0‖H7/4 ≤ M and ‖v0‖H7/4 ≤ M . Then
there are constants C2, C4 ≥ 0, only depending on M , such that

‖Ψτ (u0)−Ψτ (v0)‖H7/4 ≤ eC2τ ‖u0 − v0‖H7/4 ,

‖Ψτ (u0)−Ψτ (v0)‖L2 ≤ eC4τ ‖u0 − v0‖L2

for all τ ∈ (0, T ].

Lemma 5.6. Let M ≥ 0 and u0, v0 ∈ H2 with ‖u0‖H7/4 ≤ M and ‖v0‖H7/4 ≤ M . Then
there are constants C6, C8 ≥ 0, only depending on M , such that

‖Φτ (u0)− Φτ (v0)‖H7/4 ≤ eC6τ ‖u0 − v0‖H7/4 ,

‖Φτ (u0)− Φτ (v0)‖L2 ≤ eC8τ ‖u0 − v0‖L2

for all τ ∈ (0, T ].

Lemma 5.7. Let u0 ∈ H2. There exists a bound τ0 > 0 on the time step size, which is
given by

τ0 := min

{(
M7/4

TeTC6C5

)8

, T

}
,

with C5 from Lemma 5.3 and C6 from Lemma 5.5, such that the following two statements
hold true.

(a) For all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T we have

‖Ψn
τ (u0)− u(nτ)‖H7/4 ≤ Cτ 1/8,

with a constant C ≥ 0 depending only on T and M2, i.e. the Strang splitting con-
verges in H7/4 with order 1/8.

(b) Ψτ is strongly bounded for (2.5) in H7/4 for initial functions in H2, i.e. there exists
a constant Ĉ ≥ 0, only depending on M2, such that

∥∥Ψn−k
τ (u(kτ))

∥∥
H7/4 ≤ Ĉ for all

τ ∈ (0, τ0] and n ∈ N with nτ ≤ T and k ∈ {0, . . . , n}. In particular, the numerical
solution is bounded in H7/4 (choose k = 0).

Lemma 5.8. Let u0 ∈ H2. There exists a bound τ0 > 0 on the time step size, which is
given by

τ0 := min

{(
M7/4

TeTC6C5

)8

, T

}
,

with C5 from Lemma 5.4 and C6 from Lemma 5.6, such that the following two statements
hold true.
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5. Convergence of the Strang and the Lie splitting for initial functions in H2

(a) For all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T we have

‖Φn
τ (u0)− u(nτ)‖H7/4 ≤ Cτ 1/8,

with a constant C ≥ 0 depending only on T and M2, i.e. the Lie splitting converges
in H7/4 with order 1/8.

(b) Φτ is strongly bounded for (2.5) in H7/4 for initial functions in H2, i.e. there exists
a constant Ĉ ≥ 0, only depending on M2, such that

∥∥Φn−k
τ (u(kτ))

∥∥
H7/4 ≤ Ĉ for all

τ ∈ (0, τ0] and n ∈ N with nτ ≤ T and k ∈ {0, . . . , n}. In particular, the numerical
solution is bounded in H7/4 (choose k = 0).

Remark 5.9. Theorem 5.1 can be seen as an extension of Theorem 4.1 to the case θ = 0.
Of course, this fact is not interesting for applications since the simpler Lie splitting also
converges with order one in L2 due to Theorem 5.2. However, one can use Lemma 5.3
and 5.5 for an alternative proof of Theorem 4.1 but with the bound τ0 from Lemma 5.7,
which does not depend on θ. We omit the details of the proofs of these claims.

5.2. The proofs of the theorems

We first prove Lemma 5.4. The proof of Lemma 5.3 can be done similarly. We start with
an interpolation lemma that is closely related to Proposition 1.1. The very simple proof
is omitted.

Lemma 5.10. Let T > 0 and τ ∈ (0, T ]. We define the Banach space

Z := C1([0, T ], L2) ∩ C([0, T ], H2)

with norm
‖f‖Z := ‖f‖C1([0,T ],L2) + ‖f‖C([0,T ],H2)

and the linear operators

V1 : Z → H2 and V2 : Z → L2 by Vjf :=

∫ τ

0

f(s) ds− τf(0).

These operators are bounded and we have

‖V1f‖H2 ≤ 2τ ‖f‖Z and ‖V2f‖L2 ≤ τ 2 ‖f‖Z .

Proof (of Lemma 5.4):
Let u0 ∈ H2 and τ > 0. By Theorem 1.9, the solution to (2.5) at time τ is given by

u(τ) = T (τ)u0 +

∫ τ

0

T (τ − s)B(u(s))u(s) ds, (5.1)
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5.2. The proofs of the theorems

see (2.11). Applying the Taylor expansion

eτx = 1 + τx+

∫ τ

0

(τ − s)x2eτx ds

to Φτ (u0) = exp
(
τB(ũ)

)
ũ with ũ = T (τ)u0, see definition (2.9), we determine the numer-

ical solution after one time step as

Φτ (u0) = T (τ)u0 + τB(ũ)ũ+

∫ τ

0

(τ − s)B(ũ)2esB(ũ)ũ ds. (5.2)

The difference of (5.1) and (5.2) is

u(τ)− Φτ (u0) =

(∫ τ

0

T (τ − s)B(u(s))u(s) ds− τB(ũ)ũ

)
−
∫ τ

0

(τ − s)B(ũ)2esB(ũ)ũ ds (5.3)

=: I1 + I2.

1) Bound on I1: We again look at the function

w : [0, T ]→ H2; w(s) := T (τ − s)B(u(s))u(s).

We abbreviate

S1 :=

∫ τ

0

T (τ − s)B(u(s))u(s) ds− τw(0) and S2 := τw(0)− τB(ũ)ũ,

and write I1 as the telescopic sum

I1 =

(∫ τ

0

T (τ − s)B(u(s))u(s) ds− τw(0)

)
+
(
τw(0)− τB(ũ)ũ

)
= S1 + S2.

(5.4)

With identity (3.4) and problem (2.5) we see that the derivative of w is

w′(s) = −T (τ − s)AB(u(s))u(s)

− 2iµT (τ − s) Re
(
u(s)Au(s)

)
u(s)

+ T (τ − s)B(u(s))
(
Au(s) +B(u(s))u(s)

)
.

Lemma 2.1 now implies

‖w(s)‖H2 ≤ c ‖u(s)‖3
H2 ,

‖w(s)‖L2 ≤ c ‖u(s)‖2
H2 ‖u(s)‖L2 ,

‖w′(s)‖L2 ≤ c
(
‖u(s)‖3

H2 + ‖u(s)‖3
H2 + ‖u(s)‖3

H2 + ‖u(s)‖4
H2 ‖u(s)‖L2

)
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5. Convergence of the Strang and the Lie splitting for initial functions in H2

for all s ∈ [0, T ]. We thus obtain

sup
s∈[0,T ]

‖w(s)‖H2 ≤ cM3
2 ,

sup
s∈[0,T ]

‖w(s)‖L2 ≤ c
(
M2

2M0

)
≤ cM3

2 ,

sup
s∈[0,T ]

‖w′(s)‖L2 ≤ c
(
M3

2 +M4
2M0

)
≤ c
(
M3

2 +M5
2

)
.

By these inequalities, w belongs to C1([0, T ], L2)∩C([0, T ], H2) and its norm in this space
is bounded by a constant C1,1 only depending on M2. Lemma 5.10 then gives

‖S1‖L2 ≤ C1,1τ
2 and ‖S1‖H2 ≤ 2C1,1τ. (5.5)

Additionally, by interpolation w is contained in C0,1/8([0, T ], H7/4) and

‖S1‖H7/4 ≤ cC1,1τ
9/8. (5.6)

For the estimation of S2 we first note that

S2 = τT (τ)B(u0)u0 − τB(T (τ)u0)T (τ)u0.

We define the function f : [0, T ]→ H2 by

f(t) := T (t)B(u0)u0 −B(T (t)u0)T (t)u0.

Since

f(t1)− f(t2) =
(
T (t1)B(u0)u0 − T (t2)B(u0)u0

)
−B(T (t1)u0)

(
T (t1)u0 − T (t2)u0

)
−
(
B(T (t1)u0)−B(T (t2)u0))

)
T (t2)u0,

we deduce (with θ = 1/8) from Lemma 2.1 and 2.3

‖f(t1)− f(t2)‖H7/4 ≤ c
(
‖u0‖3

H2 + ‖u0‖2
H7/4 ‖u0‖H2

+ 2 ‖u0‖H7/4 ‖u0‖H2 ‖u0‖H7/4

)
· |t1 − t2|1/8

≤ c
(
M3

2 +M2
7/4M2

)
|t1 − t2|1/8

≤ cM3
2 |t1 − t2|1/8

for all t1, t2 ∈ [0, T ]. Due to f(0) = 0, we thus have

‖S2‖H7/4 = ‖τf(τ)‖H7/4 ≤ cM3
2 τ

9/8 ≤ C1,2,74τ
9/8 (5.7)

with a constant C1,2,74 only depending on M2. The derivative of f is given by

f ′(t) = T (t)AB(u0)u0 + 2iµRe
(
(T (t)u0)AT (t)u0

)
T (t)u0 −B(T (t)u0)AT (t)u0.
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5.2. The proofs of the theorems

As before we can estimate this by

‖f ′(t)‖L2 ≤ c
(
‖u0‖3

H2 + ‖u0‖L2 ‖u0‖2
H2 + ‖u0‖3

H2

)
for all t ∈ [0, T ], which yields

sup
t∈[0,T ]

‖f ′(t)‖L2 ≤ c
(
M3

2 +M2
2M0

)
≤ cM3

2 .

Again due to f(0) = 0, it follows

f(τ) =

∫ τ

0

f ′(s) ds

and thus with the above estimate

‖S2‖L2 = ‖τf(τ)‖L2 ≤ C1,2,0τ
2 (5.8)

with a constant C1,2,0 only depending on M2.
2) Bound on I2: Lemma 2.1 allows us to bound the term I2 in (5.3) by

‖I2‖H7/4 ≤ cM5
2T

7/8τ 9/8 and ‖I2‖L2 ≤ cM5
2 τ

2.

The proof now is finished by combing the estimates of I2 with (5.3), (5.4), (5.6), (5.5),
(5.7) and (5.8). �

Proof (of Theorem 5.1 and 5.2):
The stability properties of Lie splitting, see Lemma 5.6, are shown in the same manner
as the ones for the Strang splitting in Lemma 3.4 and 3.8, but with H2 replaced by H7/4.
Analogously as in Lemma 3.6 we see the strong boundedness of the numerical solution in
Lemma 5.8. Then we deduce Theorem 5.2 by combining Lemma 5.4, 5.6 and 5.8 with the
same technique as in the proof of Theorem 3.1. Theorem 5.1 is shown in the same way.�
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6. Numerical experiments for the
cubic nonlinear Schrödinger
equation

In this chapter we conduct numerical experiments to confirm the results of Chapter 3
and 4 numerically. Observe that we have not analysed the space discretization error in
Theorem 3.1, 4.1, 5.1 and 5.2, which comes into play in every numerical experiment.
Therefore, we do not actually test these results in the following sections. By taking a
small space mesh width, the results therein nevertheless give an indication whether our
theorems are sharp or not.
We describe our general setting and our algorithm in Section 6.1. A crucial task is to

generate discretized initial functions with a given regularity. We discuss our techniques
how to gain these functions in Section 6.2. The correctness of our algorithm is confirmed by
tests in Section 6.3. The most important question we address is whether the convergence
order for initial functions with low regularity decreases in practice, see Theorem 4.1. We
investigate this topic and additionally verify Theorem 3.1 in Section 6.4. Furthermore,
the proofs of Theorem 3.1, 4.1, 5.1 and 5.2 suggest that the error increases when the H4-,
H2+2θ- or H2-norm of the solution, respectively, increases. In the final Section 6.5 we use
oscillating initial functions to confirm this conjecture.

6.1. An overview over the numerical experiments

The numerical computations are performed on the one-dimensional torus T1. We para-
metrize it by [−π, π), discretize [−π, π) by a uniform grid with 1024, 2048 or 4096 grid
points, and equip them with periodic boundary conditions.
As explained in Section 2.2, the choice of the torus allows us to compute the solutions

of the “linear” subproblem (2.6) in the Fourier space with the fast Fourier transform
(FFT). The solutions of the subproblem (2.7) are obtained by a pointwise evaluation of
the explicit solution formula (2.8).
Because we do not have explicit formulas for the solutions to problem (2.1), we have

to calculate precise reference solutions. We conducted pre-experiments in which we com-
puted them with the Strang splitting or with the forth order Yoshida scheme with very
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6. Numerical experiments for the cubic nonlinear Schrödinger equation

small time step sizes. We obtained very similar results with both methods. So, we choose
the Strang splitting for the computation of the reference solutions since it has the shorter
computation times.

We choose [0, 1] as time domain for our computations. This is possible since the solu-
tions to (2.1) exist in one space dimension globally in time. The reference solutions are
calculated with R · 27 uniform time steps for all

R ∈ {128, 131, 134, 137, 140, 143, 146, 149, 152, 156, 159, 162, 166, 170, 173, 177,

181, 185, 189, 193, 197, 202, 206, 211, 215, 220, 225, 230, 235, 240, 245, 251}.

The numbers that R takes as values are the rounded values of
(

32
√

2
)k·128 for k = 0, . . . , 31.

Thus, the time step sizes are almost uniformly distributed on a logarithmic scale. The
solutions of the Strang splitting are computed with the numbers of uniform time steps that
are the 128-th, 64-th, 32-th, 16-th and 8-th part of the ones for the reference solutions.
All solutions, including the reference solutions, are saved at R+ 1 equidistant time steps
(including the starting time 0).

We measure the error of the Strang splitting by calculating at the R + 1 time points
the discrete L2-norm of the difference between the reference solution and the result of the
Strang splitting computation. For this we choose that reference solution whose number of
time steps is 2l times the number of time steps of the Strang splitting for an l ∈ N. The
final errors are defined as the maximum over those discrete L2-norms. We display them
over the time step sizes in double logarithmic plots.

In order to illustrate the results of Chapter 3 and 4 numerically we would like to
construct initial functions that are in certain Sobolev spaces Hs, but not in one with a
higher order, i.e. not in Hr with r > s. Since we do not know how to do that, we construct
initial functions that are in Hs−ε \ Hs for all ε ∈ (0, s). For shortness we say that such
functions are “almost in Hs”. The arbitrary small difference between being in the certain
Hs-space or not has no impact on numerical results. As regularity for the initial functions
that are almost in Hs we choose s = 4, 7/2, 3 and 5/2.

We use two different techniques to construct functions that are almost in Hs. The
first one is to choose finitely many subintervals of [−π, π) and a function that is smooth
on each of these subintervals and given by an explicit formula. We then discretize these
formulas on the space grid. For the second technique we use the Fourier representation
of functions on the torus, draw randomly distributed Fourier coefficients and scale them
appropriately. We describe both techniques in more detail in Section 6.2.

78



6.2. Construction of initial functions with a given regularity

6.2. Construction of initial functions with a given
regularity

In this section we describe how we gain initial functions that are not in a certain Hs-space
but in all larger Sobolev spaces, i.e. “almost in Hs”. (Note that a larger Sobolev space has
a smaller regularity parameter.) We use the technique of discretizing a function given by
an explicit formula on the spatial grid and the one of drawing random Fourier coefficients.
We normalize all gained initial functions in the discrete L2-norm.

6.2.1. Discretising an explicitly given function

As basic functions for the construction of explicitly given initial functions we use piecewise
linear functions and functions that are pieceweise of square root type. Piecewise linear
functions are almost in H3/2 and the square root is almost in H1 (since their derivatives
have Fourier coefficients of order 1

k
and 1√

k
, respectively). By translating, mirroring

and afterwards integrating (maybe more than once) we combine these basic functions to
functions with the desired regularities. Observe that a function is continuous on the torus
if and only if its canonical mapping onto the parametrization domain [−π, π) satisfies
periodic boundary conditions. So, the Sobolev embeddings give us constraints which of
the following functions and derivatives have to satisfy periodic boundary conditions.

−4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

(a) Graph of the derivative of f4

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

(b) Graph of f4

Figure 6.1.: The graphs of the function f4 and of its derivative.

We demonstrate the construction of the initial functions at the example of a function
being almost in H5/2. We choose the piecewise linear function whose graph is displayed
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6. Numerical experiments for the cubic nonlinear Schrödinger equation

in Figure 6.1 (a). Integrating yields f4 : [−π, π)→ R defined by

f4(x) :=


1
2
(x+ π)2, x ∈ [−π,−π

2
),

−1
2
x2 + π2

4
, x ∈ [−π

2
, π

2
),

1
2
(x− π)2, x ∈ [π

2
, π),

which is illustrated in Figure 6.1 (b).
In the same way we construct the function f1 : [−π, π)→ R defined by
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The graphs of these functions are displayed in Figure 6.2.
We claim that f1 is almost in H4, f2 almost in H7/2, f3 almost in H3 and f4 almost in

H5/2. The proof for f1 can be done in the same way as the following ones for the other
functions.
For the Fourier coefficients {ck, k ∈ Z} for f2 we get for all k ∈ Z \ {0} from a long

calculation, using integration by parts, that

ck =
1

k4
√

2π

(
e−ikπ − 2e−ik

3
4
π + 2e−ik

1
4
π + 2eik

1
4
π − 2eik

3
4
π + eikπ

)
.

This shows the desired regularity since the series
∑

k∈Z
1
kα

is convergent if and only if
α > 1.
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Figure 6.2.: The graphs of the functions f1, f2 and f3.

For the Fourier coefficients {ck, k ∈ Z} of f3 we first compute in a similar way for all
k ∈ Z \ {0} the identity

ck =
1

−k2
√

2π

((
e−ikπ − e−ikπ/2 − 1 + eikπ/2

) ∫ π/4

0

x1/2eikx dx

+
(
e−ikπ/2 − 1− eikπ/2 + eikπ

) ∫ π/4

0

x1/2e−ikx dx

)
.

We have with the substitution x = y2 that∫ π/4

0

x1/2eikx dx =

∫ √π/4

0

2y2eiky
2

dy

= −
∫ √π/4

0

1

ik
eiky

2

dy +

[
1

ik
yeiky

2

]√π/4

y=0

.

Assuming without loss of generality that k > 0, we get with the substitution z = y
√
k

that ∫ π/4

0

x1/2eikx dx = −
∫ √kπ/4

0

1

ik3/2
eiz

2

dz +
1

ik

√
π

4
eikπ/4.
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From ∫ π/4

0

x1/2e−ikx dx =

∫ π/4

0

x1/2eikx dx

we thus deduce

ck =
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.

For all k ≥ 0 we get with the substitutions y = z2 and y = z2 − π that∫ √2(k+1)π

√
2kπ

sin(z2) dz =

∫ √(2k+1)π

√
2kπ

sin(z2) dz +
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√
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sin(z2) dz

=
1

2

∫ (2k+1)π

2kπ

(
1√
y
− 1√

y+π

)
sin(y) dy > 0. (6.1)

Moreover, the function t 7→
∫ t√

2kπ
sin(z2) dz is increasing on

[√
2kπ,

√
(2k + 1)π

]
and

decreasing on
[√

(2k + 1)π,
√

2(k + 1)π
]
for all k ≥ 0. Together this gives

inf
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dz
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∣∣∣∣∣ ,
∣∣∣∣∣
∫ √2π
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sin(z2) dz

∣∣∣∣∣
}
> 0.

An analogous calculation as (6.1) gives

∫ √(2k+3)π

√
(2k+1)π

sin(z2) dz < 0

for all k ≥ 0. Together with (6.1) this yields that the non-negative sequence (bl)l∈N

being defined by bl :=

∣∣∣∣∫√(l+1)π
√
lπ

sin(z2) dz

∣∣∣∣ for all l ∈ N is monotonically decreasing. The

computation

bl ≤
√

(l + 1)π −
√
lπ ≤ sup

t∈[lπ,(l+1)π]

1

2
√
t
· π =

√
π

2
√
l
−→ 0

as l→∞ shows that (bl) is a null sequence. Therefore, the Leibniz test ensures

∫ ∞
0

sin(z2) dz =
∞∑
l=0

∫ √(l+1)π

√
lπ

sin(z2) dz <∞.
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With an analogous calculation for the cosine we see that

sup
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Hence, we have constants C1, C2 > 0 such that

C1 ≤
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∫ √kπ/4

0

eiz
2

dz

∣∣∣∣∣ ≤ C2

for all k ∈ N. This finishes the regularity proof for the same reason as above.
For the Fourier coefficients {ck, k ∈ Z} of f4 we get for all k ∈ Z \ {0} with a similar

but shorter calculation than the one for f2 that

ck =
2

−ik3
√

2π

(
e−ikπ/2 − eikπ/2

)
.

Analogously to the argumentation for f2 the claim follows.

6.2.2. Drawing randomly distributed Fourier coefficients

Another technique for gaining initial functions being almost in Hs is to use the repre-
sentation of the Sobolev spaces via the Fourier transform, see (1.1). We work with two
variants of this idea. The first one is to use N Fourier coefficients c−N/2, . . . , cN/2−1 that
are drawn with a normally distributed real part and a normally distributed imaginary
part. The coefficients are scaled by multiplying them with

(
1 + |ξ|2

)s/2, where ξ is the
variable in Fourier space and s the degree of “regularity” of the function. Afterwards, the
inverse FFT is applied to get the values of the function on the space grid. The second idea
is to draw an angle ϕk from a uniform distribution on [0, 2π), to set the Fourier coefficient
ck to exp(iϕk) for all k ∈ {−N/2, . . . , N/2− 1} and also to apply the inverse FFT.

6.3. Testing of the Strang splitting scheme

In this section we test our numerical programme to confirm its correctness. We do this by
computing the numerical approximation to plane wave solutions and to mollified soliton
solutions. In this section we discretize [−π, π) with N = 1024 space grid points.
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6.3. Testing of the Strang splitting scheme

6.3.1. Plane wave solutions

The plane wave
u(t, x) = a exp(ix) exp(−it) exp(a2iµt)

for x ∈ R with parameter a ∈ R and initial function

u0(x) = u(0, x) = a exp(ix)

for x ∈ R is a 2π-periodic solution to (2.5) on the full space R. Restricting it to [−π, π)

and mapping this restriction to the torus T via its parametrization gives a solution to
(2.5) on T. For the following experiments we choose the parameter a such that u0 has
norm 1 in the discrete L2-norm. Since we have an explicit formula for the solution, we do
not need to compute a reference solution.
Figure 6.3 shows errors of a very small magnitude for both the defocusing and the

focusing case. This could be expected since the action of the solution (2.8) to the “non-
linear” subproblem (2.7) on the exact solution u at an arbitrary time point is only the
multiplication with a constant depending on the time step size.
The errors that we see are maybe the result of rounding errors. This conjecture is

supported by the fact that the errors are higher for smaller time step sizes, rising approx-
imately with order one in the number of time steps.

10−4 10−3 10−2
10−15

10−14

10−13

10−12

time step size

er
ro

r

defocusing case
focusing case

Figure 6.3.: Error of the Strang splitting for a plane wave solution.

6.3.2. Soliton solutions

The soliton

u(t, x) =
a
√

2

cosh(ax)
exp(a2it) (6.2)
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for x ∈ R with parameter a ∈ R and initial function

u0(x) = u(0, x) =
a
√

2

cosh(ax)

for x ∈ R is a solution to (2.5) in the focusing case (µ = −1) on the full space R. If we
restrict u0 to the parametrization interval [−π, π) and identify that with T, we see that
the restricted initial function is not differentiable on the torus since it has a kink at that
point of the torus that is identified with the point −π of the parametrization interval.
Therefore, we first discretize the standard mollifier

ψ(x) =

exp
(
− 1

1−(10x/π)2

)
, x ∈

[
− π

10
, π

10

]
,

0, x ∈ [−π, π) \
[
− π

10
, π

10

]
,

on the space grid and normalize it in the discrete L2-norm. Then we convolute it with
the restricted u0. As always, we normalize the resulting function in the discrete L2-norm.
We choose a1 = 5/2 and a2 = 4 for the following experiments. The parameter a1

leads to a soliton with a broad peak and the parameter a2 to one with a narrow peak.
Figure 6.4 shows the results of the computation. We clearly see the convergence order
two. The error is larger for the narrow soliton. This is maybe caused by the fact that the
space grid resolves the thin peak worse than the peak of the broad soliton.
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Figure 6.4.: Error of the Strang splitting for two mollified soliton solutions.

The smoothing of the initial function is necessary for the well-definedness of the al-
gorithm, which we see by the following experiment. We do neither convolute the initial
function with a mollifier nor normalize it in the discrete L2-norm. By a very fine resolu-
tion of a small part of the time step size range we get Figure 6.5, which shows very large
errors for some particular time step sizes. For the sake of comparison we do not use the
exact solution formula, see (6.2), as reference solution, and we additionally display the
errors we gain for the (also not normalized) mollified initial function.
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Figure 6.5.: Comparison of the errors of the Strang splitting for a mollified and an un-
mollified version of a soliton solution.

6.4. Convergence orders of the Strang splitting
scheme

In the experiments in this section we investigate the convergence order of the Strang
splitting scheme. We first confirm the second order convergence for initial functions in
H4, see Theorem 3.1. Afterwards we want to find out whether the convergence order of
the Strang splitting is reduced in the case that the initial functions are not in H4 but only
in an Hs with s ∈ (2, 4), see Theorem 4.1.

6.4.1. Results of the experiments with initial functions in H4

We confirm the second order convergence for initial functions in H4 with initial functions
that are almost in H4. The results of the computations are displayed in Figures 6.6 and
6.7. In both diagrams we see clearly a convergence order of two. There are only very few
time step sizes where the error is larger than expected from the other values.

6.4.2. Results of the experiments with less regular initial functions

We continue with experiments with initial functions being almost in H7/2, H3 and H5/2.
The results can be seen in Figures 6.8, 6.9, 6.10, 6.11, 6.12 and 6.13. The diagrams show
an oscillating behaviour of the error. We can only speculate about the reasons for this.
Two possible explanations are the following ones.
The first one is that the data points with the higher magnitudes were disturbed by reso-

nance effects in the computations. This would lead to the conclusion that the convergence
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order is two also in this case and that no order reduction can be seen. This might be due
to the fact that there are functions that would show the sharpness of Theorem 4.1, but
that the ones we have chosen for our experiments are better in the sense that their error
behaves like the one we would expect of a function of higher regularity. Of course it is
impossible to make experiments with all Sobolev functions of (almost) a given regularity,
but maybe a more clever choice of the initial functions can reveal an order reduction.
The other possibility is that the convergence orders obtained in Theorem 4.1 (and Theo-
rem 5.1) are too pessimistic. Maybe one can see with another proof strategy convergence
of a higher order, perhaps even one with the classical order two.
The second possible explanation is that for many time step sizes the error is, due to

cancellation effects in the computations, smaller than expected. Then the diagrams show
a reduction of the convergence order of almost the amount that Theorem 4.1 predicts.
It is remarkable that the oscillations occur at more time step sizes and are much higher

if we use the initial functions gained by drawing Fourier coefficients than if we use the
ones stemming from an explicit formula. The reason is maybe the amount of points that
hinder the initial function from being in a higher-order Sobolev space. For the function
with explicit formula it consists of the finitely many boundary points of the parts of
its domain and is thus a Lebesgue null set. In contrast to this the functions from the
randomly drawn (uniformly or normally distributed) Fourier coefficient are, in the limit
of the number of space grid points going to infinity, of the low regularity on every open
subset of the domain [−π, π).
The different magnitudes of the errors for one and the same time step size are caused

by different values of the error constant. Due to Theorems 3.1 and 4.1 the error constant
depends on the supremum of the Hs-norms of the exact solutions. We approximate these
suprema by the fully discrete L∞(Hs)-norm of that corresponding reference solution with
the smallest time step size. For the case of explicitly given initial functions we get the
values

H4 H7/2 H3 H5/2

N = 1024 10.0616 5.4524 2.6762 1.9731
N = 2048 10.3906 5.6551 2.7251 2.0033
N = 4096 10.7186 5.8506 2.7732 2.0332

in the defocusing and the values

H4 H7/2 H3 H5/2

N = 1024 10.2816 5.5240 2.6569 1.9124
N = 2048 10.6036 5.7241 2.7062 1.9436
N = 4096 10.9180 5.9174 2.7546 1.9743

in the focusing case. For the case of initial functions gained by normally distributed
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Fourier coefficients we obtain the values

H4 H7/2 H3 H5/2

N = 1024 37.4775 34.9033 31.9712 28.7382
N = 2048 81.0564 70.8092 61.0943 52.0103
N = 4096 65.8371 64.4928 62.6448 60.0718

in the defocusing and the values

H4 H7/2 H3 H5/2

N = 1024 37.5064 34.9237 31.9849 28.7472
N = 2048 81.0797 70.8239 61.1033 52.0158
N = 4096 65.8278 64.4926 62.6441 60.0710

in the focusing case. For the case of initial functions gained by uniformly distributed
Fourier coefficients we obtain the values

H4 H7/2 H3 H5/2

N = 1024 30.1452 29.4183 28.4263 27.0721
N = 2048 42.6113 41.5857 40.1860 38.2741
N = 4096 60.2558 58.8014 56.8236 54.1214

in the defocusing and the values

H4 H7/2 H3 H5/2

N = 1024 30.1260 29.4018 28.4130 27.0619
N = 2048 42.6081 41.5837 40.1848 38.2736
N = 4096 60.2565 58.8033 56.8255 54.1236

in the focusing case. Comparing these values explains why the errors belonging to the case
of normally distributed Fourier coefficients are, relatively to the errors belonging to the
other two cases, for the choiceN = 2048 larger than for the other two space discretizations,
and why this effect is weaker for less regular initial functions. Furthermore, it explains
why the errors belonging to the explicitly given initial functions are, relatively to the
errors belonging from the other types of initial functions, smaller for less regular initial
functions.

6.5. Increase of the error constant for highly
oscillating initial functions

The proofs of Theorems 3.1, 4.1, 5.1 and 5.2 show that the error constant increases if the
supremum of the H4-norm, the H2+2θ-norm or the H2-norm of the solution, respectively,
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enlarges. Because we cannot control the norms of the solutions itself, we adjust the norms
of the initial functions.
As initial functions for the following experiment we use for the factors K ∈ {1, 2, 4, 8}

the smooth functions
x 7→ sin(Kx) + cos((K + 1)x)

and normalize them in the discrete L2-norm after the discretization on N = 1024 equidis-
tant space grid points. They have an increasing H4-norm, but are not just scalings of one
another with a different oscillation frequency. The latter fact has the advantage that we
have slightly different “types” of oscillating functions, so that the results of the following
calculations are probably not caused by a similar structure of the initial functions and the
solutions. We see clearly that the error is larger when the initial function is more rapidly
oscillating, see Figure 6.14.
As in Section 6.4, we use the fully discrete L∞(H4)-norm of the reference solutions

with the smallest time step sizes as an approximation to the L∞(H4)-norm of the exact
solution. The resulting values

K 1 2 4 8

defocusing case 19.2 75.0 524.6 5629.2
focusing case 19.1 74.9 523.0 5621.0

explain the increase of the errors for K increasing.
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(c) N = 4096.

Figure 6.6.: Errors of the Strang splitting for initial functions being almost in H4 in the
defocusing case for N space grid points.
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(c) N = 4096.

Figure 6.7.: Errors of the Strang splitting for initial functions being almost in H4 in the
focusing case for N space grid points.
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(c) N = 4096.

Figure 6.8.: Errors of the Strang splitting for initial functions being almost in H7/2 in the
defocusing case for N space grid points.
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(c) N = 4096.

Figure 6.9.: Errors of the Strang splitting for initial functions being almost in H7/2 in the
focusing case for N space grid points.
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Figure 6.10.: Errors of the Strang splitting for initial functions being almost in H3 in the
defocusing case for N space grid points.
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(a) N = 1024.
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(b) N = 2048.
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(c) N = 4096.

Figure 6.11.: Errors of the Strang splitting for initial functions being almost in H3 in the
focusing case for N space grid points.
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(a) N = 1024.
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(c) N = 4096.

Figure 6.12.: Errors of the Strang splitting for initial functions being almost in H5/2 in
the defocusing case for N space grid points.
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(a) N = 1024.
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(c) N = 4096.

Figure 6.13.: Errors of the Strang splitting for initial functions being almost in H5/2 in
the focusing case for N space grid points.
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(a) Defocusing case.
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(b) Focusing case.

Figure 6.14.: Errors of the Strang splitting with smooth oscillating initial functions, using
the oscillating factor K.
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Part III.

An ADI splitting for the Maxwell
equations
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7. The Maxwell equations and their
solutions

In this chapter we introduce the Maxwell equations and give a short overview over the
properties of their solutions. In Section 7.1 we present the problem we deal with and
the questions we tackle in this part of the thesis. The functional analytic background for
our analysis and our splitting operators are described in Section 7.2. This section also
includes the proofs of some embedding properties. Semigroup generation properties of the
Maxwell operators and properties of the solutions we gain by using them are discussed in
Section 7.3.

7.1. The Maxwell equations

On a spatial domain Q ⊆ R3 we consider for t ≥ 0 the Maxwell equations

∂tE(t) =
1

ε
curlH(t)− 1

ε
(σE(t) + J0(t)) in Q, (7.1a)

∂tH(t) = − 1

µ
curlE(t) in Q, (7.1b)

div(εE(t)) = ρ(t) in Q, (7.1c)

div(µH(t)) = 0 in Q, (7.1d)

supplemented by the boundary conditions

E(t)× ν = 0 on ∂Q, (7.1e)

µH(t) · ν = 0 on ∂Q, (7.1f)

and the initial conditions

E(0) = E0, H(0) = H0 in Q, (7.1g)

where ν is the outer unit normal vector. In the following, Q is the interior of a three-
dimensional cuboid whose edges are parallel to the coordinate axes, which ensures the
unique existence of ν in almost all boundary points. The unknowns E(t, x) ∈ R3 and

103
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H(t, x) ∈ R3 are the electric and magnetic field, respectively. The electric permittivity and
the magnetic permeability are denoted by ε(x) ∈ (0,∞) and µ(x) ∈ (0,∞), respectively.
Furthermore, J0(t, x) ∈ R3 is the external electric current density, σ(x) ≥ 0 the electric
conductivity and ρ(t, x) ∈ R the electric charge density. The initial fields E0 and H0

belong to L2(Q,R)3. We treat the case of perfectly conducting boundary conditions
E(t) × ν = 0 and µH(t) · ν = 0. They describe the situation that the electric flux lines
are on the boundary perpendicular to the surface and that the magnetic flux lines never
cross the boundary.
Equation (7.1a) is Ampère’s circuital law that relates the change of the electric field

to the induced magnetic field, including an external current density and a damping term
caused by electric conductivity. Faraday’s law of induction (7.1b) connects the change of
the magnetic field to the induced electric field. Gauss’s law (7.1c) says that the electric
flux that leaves a volume is proportional to the charge inside. Gauss’s law for magnetism
in (7.1d) states that there no magnetic charges exist and that the electric flux through
every closed surface is zero.
Let τ > 0. We set tn := nτ for n ∈ N0. The alternating direction implicit (ADI)

splitting scheme SIτ,n+1 we investigate is given by

SIτ,n+1w : = (I − τ
2
B)−1(I + τ

2
A)·

·
[
(I − τ

2
A)−1(I + τ

2
B)w − τ

2ε
(J0(tn) + J0(tn+1), 0)

]
,

see also Section 8.4. The conductivity σ is included in the splitting operators A and B
that are defined by

A :=

(
− σ

2ε
I 1

ε
C1

1
µ
C2 0

)
and B :=

(
− σ

2ε
I −1

ε
C2

− 1
µ
C1 0

)
,

C1 :=

 0 0 ∂2

∂3 0 0

0 ∂1 0

 and C2 :=

 0 ∂3 0

0 0 ∂1

∂2 0 0

 .

The sum of A and B is the Maxwell operator that governs (7.1).
This splitting scheme has been introduced for σ = 0 in [75]. It is efficient, stable

and formally of second order. In [37] an error analysis in L2 has been done for σ = 0,
ρ = 0 and J0 = 0, where only zero divergence conditions have been considered. In the
thesis at hand we treat in Theorem 9.3 the full problem with nontrivial charge densities,
conductivity and external current densities. We thus have to include an inhomogeneity
into the numerical scheme, see above. Furthermore, we add a convergence analysis in an
H−1-setting under weaker assumptions on the data, see Theorem 9.5. In both situations
the result of the numerical scheme converges to the solution to (7.1) with order two in
the time step size.
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The solution to problem (7.1) fulfils the divergence conditions

div(εE(t)) = div(εE0)−
∫ t

0

div(σE(s) + J0(s)) ds, (7.2a)

div(µH(t)) = div(µH0) (7.2b)

for t ≥ 0, see Section 7.3. We show that the divergence of the numerical solution differs
in L2 and in H−1 only linearly in the time step size from (7.2), see Theorem 9.9 and 9.6.
Again, the result in H−1 requires less regularity of the data.
Throughout, we assume that the material coefficients satisfy the general assumptions

ε, µ, σ ∈ W 1,∞(Q,R),

ε, µ ≥ δ for a constant δ > 0, σ ≥ 0.

Recall that the Sobolev space W 1,∞(Q,R) coincides with the space of bounded Lipschitz
conditions functions. In some results we have to pose slightly stronger assumptions on the
coefficients. The assumptions on the data E0, H0 and J0 differ from theorem to theorem.
Roughly speaking we will assume at least that they belong to H1 and satisfy the boundary
conditions. We emphasize that ε, µ, σ, J0, E0 and H0 are given functions, while ρ is not
given in advance, but will be determined by the solution to (7.1). Assumptions on the
regularity of ρ(t) for t ≥ 0 are therefore constraints on the regularity of the solution.

Remark 7.1. The speed of light is proportional to 1√
εµ

with a constant depending on the
units. An infimum of the electric permittivity or the magnetic permeability of zero would
therefore lead to an arbitrarily large speed of light. Thus, it is physically reasonable that ε
and µ are bounded away from zero.

We describe the cuboid by

Q := (a−1 , a
+
1 )× (a−2 , a

+
2 )× (a−3 , a

+
3 )

with a±j ∈ R and a−j < a+
j for j = 1, 2, 3. We denote its boundary by Γ := ∂Q and its

outer unit normal vector by ν. We introduce the notations

Γ±j := {(x1, x2, x3) ∈ Γ | xj = a±j }

and Γj := Γ−j ∪ Γ+
j for j = 1, 2, 3 and define

dmin := min
j∈{1,2,3}

(a+
j − a−j ).

We abbreviate L2(Q) := L2(Q,R) and so on.
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7.2. The functional analytic setting

7.2.1. Function spaces for the Maxwell operator

We first observe that the general assumptions on the coefficient functions ε and µ imply
1
ε
, 1
µ
∈ W 1,∞(Q) and that 1

ε
and 1

µ
are bounded away from zero.

The following lemma states that some Sobolev spaces are invariant under multiplication
with certain functions. We use this fact later on for the material coefficient functions.

Lemma 7.2. (a) Let ψ ∈ W 1,∞(Q). Then the mapping f 7→ ψf is continuous on
H1(Q) and we have

‖ψf‖H1 ≤ c ‖ψ‖W 1,∞ ‖f‖H1

for all f ∈ H1(Q).

(b) Let ψ ∈ W 1,∞(Q) ∩W 2,3(Q). Then the mapping f 7→ ψf is continuous on H2(Q)

and we have
‖ψf‖H2 ≤ c ‖ψ‖W 1,∞∩W 2,3 ‖f‖H2

for all f ∈ H2(Q).

Proof:
(a) Young’s inequality yields

‖ψf‖2
H1 ≤ c

(
‖ψf‖2

L2 +
3∑

k=1

‖f∂kψ‖2
L2 +

3∑
k=1

‖ψ∂kf‖2
L2

)
≤ c ‖f‖2

W 1,∞ ‖f‖2
H1 .

(b) Using Hölder’s inequality and the Sobolev embedding H1(Q) ↪→ L6(Q), we estimate

‖f∂klψ‖L2 ≤ ‖f‖L6 ‖∂klψ‖L3 ≤ c ‖f‖H1 ‖ψ‖W 2,3

for all k, l ∈ {1, 2, 3} and thus with Young’s inequality

‖ψf‖2
H2 ≤ c

(
‖ψf‖2

L2 +
3∑

k=1

‖f∂kψ‖2
L2 +

3∑
k=1

‖ψ∂kf‖2
L2

+
3∑

k,l=1

‖f∂klψ‖2
L2 +

3∑
k,l=1

‖(∂kψ)(∂lf)‖2
L2 +

3∑
k,l=1

‖ψ∂klf‖2
L2

)
≤ c
(
‖ψ‖2

W 1,∞ + ‖ψ‖2
W 2,3

)
‖f‖2

H2 ≤ c
(
‖ψ‖W 1,∞ + ‖ψ‖W 2,3

)2 ‖f‖2
H2 ,

which is the claimed statement. �

We define the space X := L2(Q)6 and equip it with the weighted inner product(
(u, v) | (ϕ, ψ)

)
X

:=

∫
Q

(
εu · ϕ+ µv · ψ

)
dx
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for (u, v), (ϕ, ψ) ∈ X, which induces a norm ‖·‖X . Due to the general assumptions on ε
and µ this so-called “energy norm” is equivalent to the L2-norm. We introduce the Hilbert
spaces

H(curl, Q) := {u ∈ L2(Q)3 | curlu ∈ L2(Q)3}, ‖u‖2
curl := ‖u‖2

L2 + ‖curlu‖2
L2

and

H(div, Q) := {u ∈ L2(Q)3 | div u ∈ L2(Q)}, ‖u‖2
div := ‖u‖2

L2 + ‖div u‖2
L2 .

We moreover define
H0(curl, Q) := C∞c (Q)

‖·‖curl .

In the next result we collect well-known facts about traces.

Proposition 7.3. (a) The Dirichlet trace u 7→ u|Γ on C(Q)3 ∩ H1(Q)3 has a unique
continuous surjective extension tr : H1(Q)3 → H1/2(Γ)3 and the Neumann trace
u 7→ ∂νu is the continuous mapping trν : H2(Q)3 → H1/2(Γ)3.

(b) The tangential trace u 7→ (u × ν)|Γ on C(Q)3 ∩ H1(Q)3 has a unique continuous
extension trt : H(curl, Q) → H−1/2(Γ)3. For all u ∈ H(curl, Q) and v ∈ H1(Q)3 it
holds ∫

Q

curlu · v dx =

∫
Q

u · curl v dx− 〈trt(u), v〉H−1/2(Q)3×H1/2(Q)3 .

(c) The normal trace u 7→ (u·ν)|Γ on C(Q)3∩H1(Q)3 has a unique continuous extension
trn : H(div, Q)→ H−1/2(Γ). For all u ∈ H(div, Q) and v ∈ H1(Q) it holds∫

Q

div(u)v dx =

∫
Q

u · ∇v dx+ 〈trn(u), v〉H−1/2(Q)×H1/2(Q) .

(d) The space
C∞c (Q) =

{
f |Q

∣∣ f ∈ C∞c (R3)
}

is dense in H1(Q), H(div, Q) and H(curl, Q).

(e) Defining for A ⊆ Γ the restricted trace trA(u) := 1A tr(u), we have

H0(curl, Q) : = {u ∈ H(curl, Q) | trt(u) = 0 on Γ}
= {u ∈ H(curl, Q) | trΓ1(u2) = trΓ1(u3) = trΓ2(u1)

= trΓ2(u3) = trΓ3(u1) = trΓ3(u2) = 0}.
Proof:
The statement on the Dirichlet trace follows from the Sections 2.4 and 2.5 in [58]. The
claims on the Neumann trace then follow by taking the derivatives. The parts (b), (c)
and (d) can be found in Section IX.A.1.2 in [16]. The formulas in part (b) and (c)
for the partial integration are seen with Green’s formula. Part (e) can be seen by an
approximation argument. �
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To ease the notation we write in the following u1 = 0 on Γ2 for the property trΓ2(u1) = 0,
and so on. Furthermore, for Γ̃ ⊆ Γ being a union a some of the faces of Q we set

H1
Γ̃
(Q) := {u ∈ H1(Q) | tr(u) = 0 on Γ̃}.

It is clear that H1(Q)3 embeds continuously into H(curl, Q) and H(div, Q). The fol-
lowing proposition states the converse implication under an additional assumption, see
Theorem 2.17 in [3].

Proposition 7.4. Let f ∈ H(div, Q)∩H(curl, Q) and let either trt(f) = 0 or trn(f) = 0

on Γ. Then f ∈ H1(Q)3 and

‖f‖H1 ≤ c
(
‖f‖L2 + ‖div f‖L2 + ‖curl f‖L2

)
.

We note that for sufficiently regular functions the trace is multiplicative.

Lemma 7.5. Let p, q ∈ (1,∞] with 1
p

+ 1
q
< 1.

(a) Let f ∈ W 1,p(Q) and g ∈ W 1,q(Q). Then we have

tr(fg) = tr(f) tr(g).

(b) Let f ∈ W 1,p(Q) and h ∈ W 1,q(Q)3. Then we have

tr(fh) = tr(f) tr(h), trt(fh) = tr(f) trt(h) and trn(fh) = tr(f) trn(h).

Proof:
To show part (a), we approximate f in W 1,p(Q) and g in W 1,q(Q) by functions fn and gn
in W 1,∞(Q). We omit the respective approximation if p = ∞ or q = ∞. For fn and gn
the result is true and it extends to f and g by the continuity of the trace operator since
fg ∈ W 1,r(Q) for 1

r
= 1

p
+ 1

q
. The statement of part (b) follows in the same way. �

We define the Maxwell operator

M :=

(
−σ

ε
I 1

ε
curl

− 1
µ

curl 0

)
(7.3)

with domain D(M) := H0(curl, Q) × H(curl, Q): Observe that the electric boundary
condition is included in this domain. We abbreviate((

M(E,H)
)

1(
M(E,H)

)
2

)
:= M(E,H) =

(
−σ

ε
E + 1

ε
curlH

− 1
µ

curlE

)
for (E,H) ∈ D(M). We define, as usual

D(M2) := {(E,H) ∈ D(M) |M(E,H) ∈ D(M)},
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and so on. The above domain only contains the electric boundary conditions. The mag-
netic ones and the divergence conditions are encoded in the subspace

X0 := {(u, v) ∈ X | div(εu) = div(µv) = 0, trn(µv) = 0 on Γ}. (7.4)

Here, the constraints are meant in the sense that the equations in Q hold true in H−1(Q),
while the trace is zero in H−1/2(Γ), compare Proposition 7.3.

Lemma 7.6. The subspace X0 equipped with the norm ‖·‖X is a closed subspace of X.

Proof:
Let (u, v) ∈ X. Since ε belongs to W 1,∞(Q) and

div(εu) = ∇ε · u+ ε div(u) ⇐⇒ div(u) = 1
ε

div(εu)− 1
ε
∇ε · u, (7.5)

we see that div(εu) ∈ L2(Q) if and only if div(u) ∈ L2(Q), and analogously for div(µv).
This shows

X0 ⊆ H(div, Q)×H(div, Q) ⊆ X.

The closedness of X0 in L2 then follows from the closedness of the divergence and the
continuity of the normal trace. �

If the charge density ρ is not zero, we need different spaces in view of (7.1c). We first
introduce the space H1

00(Q) of all functions in H1(Q) such that for all faces Γ̂ of Q the
Dirichlet traces on Γ̂ are contained in H

1/2
0 (Γ̂). This means that the boundary values

are zero on the edges of Q in a generalised sense. We need this property in some later
proofs as a compatibility condition. Here, for a face Γ̂ of Q the space H1/2

0 (Γ̂) is the real
interpolation space

H
1/2
0 (Γ̂) :=

(
L2(Γ̂), H1

0 (Γ̂)
)

1/2,2
.

Interpolation of the inclusion maps L2(Γ̂) → L2(Γ̂) and H1
0 (Γ̂) → H1(Γ̂) yields the em-

bedding
H

1/2
0 (Γ̂) ↪→ H1/2(Γ̂).

We write H1/2
0 (Γ̃) in the case that Γ̃ is the union of some faces of Q and mean by the

notation u ∈ H1/2
0 (Γ̃) that u belongs to u ∈ H1/2

0 (Γ̂) for all Γ̂ ⊆ Γ̃. We then define the
subspaces

X
(0)
div := {(u, v) ∈ X | div(µv) = 0, trn(µv) = 0 on Γ, div(εu) ∈ L2(Q)} (7.6a)

and

X
(2)
div := {(u, v) ∈ D(M2) | div(µv) = 0, trn(µv) = 0 on Γ, div(εu) ∈ H1

00(Q)} (7.6b)
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with the norms given by

‖(u, v)‖2

X
(0)
div

:= ‖(u, v)‖2
X + ‖div(εu)‖2

L2

for (u, v) ∈ X(0)
div and

‖(u, v)‖2

X
(2)
div

:= ‖(u, v)‖2
D(M2) + ‖div(εu)‖2

H1 +
∑

Γ̂ face of Q

‖div(εu)‖2

H
1/2
0 (Γ̂)

for (u, v) ∈ X(2)
div. It is clear that X(2)

div is continuously embedded into X(0)
div. We will use

the spaces X(0)
div and X(2)

div depending on the regularity of ρ and thus on the contraints on
the regularity of the solution to (7.1).

Lemma 7.7. The spaces (X
(0)
div, ‖·‖X(0)

div
) and (X

(2)
div, ‖·‖X(2)

div
) are Hilbert spaces, and X0 is

a closed subspace of them. Moreover, X(0)
div is embedded in H(div, Q)2, where the constant

depends only on ‖ε‖W 1,∞, ‖µ‖W 1,∞ and δ.

Proof:
Clearly, the norms of X(0)

div and X(2)
div are given by an inner product. The norm ‖·‖

X
(0)
div

is

equivalent to the norm given by ‖u‖2
div + ‖v‖2

div due to (7.5). Furthermore, the maps v 7→
div(µv) and v 7→ trn(µv) are continuous on H(div, Q). Therefore, the space (X

(0)
div, ‖·‖X(0)

div
)

is complete as it is isomorphic to a closed subspace of the Hilbert space H(div, Q)2.
Further, let (un, vn)n∈N be a Cauchy sequence in X

(2)
div. Since M is closed, (un, vn) then

has a limit (u, v) in D(M). Moreover, div(εun) converges to a function ϕ ∈ H1(Q)3

and to div(εu) in H−1(Q)3, so that ϕ = div(εu). Similarly, the traces of div(εun) on
each face Γ̂ of Q tend to a function ψ in H1/2

0 (Γ̂) and also to tr
(
div(εu)

)
in H1/2(Γ̂), i.e.

tr
(
div(εu)

)
= ψ in Γ̂. As for X(0)

div one checks the magnetic conditions. The closedness
of X0 in X(0)

div and in X(2)
div follows from the continuity of u 7→ div(εu) from H(div, Q) to

L2(Q)3. �

We use these spaces to define the Maxwell operators

M0 : D(M0) := D(M) ∩X0 → X, (7.7a)

M
(0)
div : D(M

(0)
div) := D(M) ∩X(0)

div → X, (7.7b)

M
(2)
div : D(M

(2)
div) := D(M3) ∩X(2)

div → X, (7.7c)

which are restrictions of M . We note that these operators and M differ by the respective
electric divergence and the magnetic conditions. Furthermore, M (2)

div incorporates two
more degrees of regularity. This is necessary in Section 7.3 to show that the semigroup
generated by M leaves X(2)

div invariant. We define, analogously to above,

D(M2
0 ) : = {(u, v) ∈ D(M0) |M(u, v) ∈ D(M0)},
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D
(
(M

(0)
div)2

)
: = {(u, v) ∈ D(M

(0)
div) |M(u, v) ∈ D(M

(0)
div)}.

Our next goal is to show embedding properties of the domains of the Maxwell operators.
For this we prove two auxiliary lemmas. The first one allows us to take a limit of boundary
integrals.

Lemma 7.8. We define for all κ ∈ (0, dmin/2) the cuboid

Qκ := {(x1, x2, x3) ∈ Q | dist
(
(x1, x2, x3),Γ

)
> κ}.

Then we have for f ∈ H1(Q) that

lim
κ→0

∫
∂Qκ

|f |2 dσ =

∫
Γ

|f |2 dσ.

Proof:
Let f ∈ H1(Q). We define for all κ ∈ (0, dmin/2)

Iκ(f) :=

∫
∂Qκ

|f |2 dσ and I(f) :=

∫
Γ

|f |2 dσ.

Let (fn)n∈N in C1(Q) be such that fn → f in H1(Q) as n → ∞. Let η > 0. With the
continuity of the trace from H1(Qκ) to H1/2(∂Qκ) we deduce

|Iκ(fn)− Iκ(f)| ≤
∫
∂Qκ

|fn| |fn − f | dσ +

∫
∂Qκ

|fn − f | |f | dσ

≤
(
‖fn‖L2(∂Qκ) + ‖f‖L2(∂Qκ)

)
‖fn − f‖L2(∂Qκ)

≤ c
(
‖fn‖H1(Qκ) + ‖f‖H1(Qκ)

)
‖fn − f‖H1(Qκ)

≤ c
(
‖fn‖H1(Q) + ‖f‖H1(Q)

)
‖fn − f‖H1(Q)

−→ 0

as n → ∞. Thus, we can choose an index n1 = n1(η) ∈ N independent of κ such that
|Iκ(fn)− Iκ(f)| ≤ η. In the same way we can choose an n2 = n2(η) ∈ N such that
|I(fn)− I(f)| ≤ η. From now on let n ≥ max{n1, n2} be fixed. Analogously to Γ±j ,
j = 1, 2, 3, we define

∂Q−κ,j := {(x1, x2, x3) ∈ ∂Qκ | xj = a−j + κ},
∂Q+

κ,j := {(x1, x2, x3) ∈ ∂Qκ | xj = a+
j − κ}.

We define the set

Γ−3,κ := [a−1 + κ, a+
1 − κ]× [a−2 + κ, a+

2 − κ]× {a−3 }
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and so on. From

S1,n =

∫
Γ−3,κ

(∣∣fn(t, a−3 )
∣∣2 − ∣∣fn(t+ a−3 + κ)

∣∣2 dt

≤ 2 ‖fn‖L∞
∫

Γ−3,κ

∣∣fn(t, a−3 )− fn(t, a−3 + κ)
∣∣ dt

≤ 2 ‖fn‖L∞ ‖f ′n‖L∞ κ(a+
1 − a−1 )(a+

2 − a−2 )

and so on we infer

|Iκ(fn)− I(fn)| ≤ cκ ‖fn‖2
L∞ +

6∑
j=1

Sj,n ≤ cnκ −→ 0

as κ→ 0 for n fixed. The estimate

|Iκ(f)− I(f)| ≤ |Iκ(f)− Iκ(fn)|+ |Iκ(fn)− I(fn)|+ |I(fn)− I(f)| ≤ 3η

for κ small enough finishes the proof. �

We continue with a lemma on the regularity of the solutions of two integral equations.

Lemma 7.9. Let f ∈ L2(Q).

(a) Let Γ̃ be the union of one or two of the sets Γ1, Γ2 and Γ3, and Γ̃′ = Γ \ Γ̃.
Furthermore, let

D0 := {u ∈ H2(Q) ∩H1
Γ̃
(Q) | ∂νu = 0 on Γ̃′}.

Then there exists a unique function u ∈ H1
Γ̃
(Q) such that∫

Q

uϕ dx+

∫
Q

∇u · ∇ϕ dx =

∫
Q

fϕ dx

for all ϕ ∈ H1
Γ̃
(Q). Additionally, we have u ∈ D0 and u − ∆u = f . Finally, the

H2-norm and the graph norm of ∆ are equivalent on D0.

(b) Let Γ̃ be the union of exact two of the sets Γ1, Γ2 and Γ3, and Γ̃′ = Γ \ Γ̃. Further-
more, let

D := H2(Q) ∩H1
Γ̃
(Q)

and g ∈ L2(Γ̃′). Then there exists a unique function v ∈ H1
Γ̃
(Q) such that∫

Q

vϕ dx+

∫
Q

∇v · ∇ϕ dx =

∫
Q

fϕ dx+

∫
Γ̃′
gϕ dσ (7.8)

for all ϕ ∈ H1
Γ̃
(Q). If g ∈ H1/2

0 (Γ̃′), then we additionally have v ∈ D, v −∆v = f ,
∂νv = g on Γ̃′ and

‖v‖H2 ≤ c
(
‖f‖L2 + ‖g‖

H
1/2
0 (Γ̃′)

)
.

112



7.2. The functional analytic setting

Proof:
We only show part (b) since (a) was shown in Lemma 3.6 in [37].
1) First we show that problem (7.8) has a unique solution in H1

Γ̃
(Q). We define the

bilinear form B : H1
Γ̃
(Q)×H1

Γ̃
(Q)→ R and the linear functional F : H1

Γ̃
(Q)→ R by

B(u, v) :=

∫
Q

uv dx+

∫
Q

∇u · ∇v dx and

F (u) :=

∫
Q

fu dx+

∫
Γ

gu dσ.

For all u, v ∈ H1
Γ̃
(Q) we obtain the relations

|B(u, v)| ≤ 2 ‖u‖H1 ‖v‖H1 , B(u, u) = ‖u‖2
H1 ,

|F (u)| ≤ ‖f‖L2 ‖u‖L2 + ‖g‖L2(Γ̃′) ‖u‖L2(Γ) ≤ c
(
‖f‖L2 + ‖g‖L2(Γ̃′)

)
‖u‖H1 ,

using H1(Q) ↪→ L2(Γ) for the last estimate. The Lemma of Lax-Milgram then yields a
unique solution ṽ in H1

Γ̃
(Q) to (7.8).

2) Next we prove that for g ∈ H1/2
0 (Γ̃′) there exists a function w ∈ H2(Q) with ∂νw = g

on Γ̃′ and w = 0 on Γ̃. Let without loss of generality Γ̃′ = Γ1. Let R ⊆ R2 be a rectangle
that is congruent to one of the two congruent parts of Γ̃′ and let ∆R be the Dirichlet
Laplacian on R with domain D(∆R) = H2(R) ∩H1

0 (R). Without further mentioning we
use ∆R on Γ−1 and on Γ+

1 , i.e. with R = Γ−1 and R = Γ+
1 .

It is well-known that the spectrum of ∆R consists only of finitely many discrete eigen-
values on the negative real axis without zero, compare e.g. Lemma 6.2.1 in [17] for the
situation of a cube. Therefore, ∆R is invertible. Furthermore, ∆R is self-adjoint since
it is symmetric and has its spectrum on the real axis. So, we can define (−∆R)1/2 and
(−∆R)−1/2 with the functional calculus for self-adjoint operators and these operators again
have a discrete spectrum and are self-adjoint, see Theorem VII.1 in [64]. Hence, (−∆R)1/4

can be defined in the same way. From(
(−∆R)1/2h, h

)
L2 =

(
(−∆R)1/4h, (−∆R)1/4h

)
L2 ≥ 0

for all h ∈ D
(
(−∆R)1/2

)
we infer that (−∆R)1/2 generates an analytic semigroup of

contractions due to Corollary II.4.7 in [23]. Theorem 4.36 in [52] further shows that

D
(
(−∆R)1/2

)
=
(
L2(R), H2(R) ∩H1

0 (R)
)

1/2,2
.

On the other hand, ∆R is given by its quadratic form

a(u, v) = (∇u,∇v)L2

on H1
0 (R) and we therefore know due to Theorem VI.2.23 in [47] that D

(
(−∆R)1/2

)
=

H1
0 (R). So,

(
L2(R), H2(R) ∩H1

0 (R)
)

1/2,2
is isomorphic to H1

0 (R).
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Let g ∈ C∞c (Γ1) and look at the two restrictions g1 ∈ C∞c (Γ−1 ) and g2 ∈ C∞c (Γ+
1 ). Let

χ : [0, a+
1 − a−1 ] → R be a C∞-function with suppχ ⊆

[
0, 1

2
(a+

1 − a−1 )
]
and χ = 1 on[

0, 1
4
(a+

1 − a−1 )
]
. We set

w(x1, x2, x3)

:= −
(
χ(x1 − a−1 )(−∆R)−1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

+
(
χ(a+

1 − x1)(−∆R)−1/2 exp
(
(a+

1 − x1)(−∆R)1/2
)
g2

)
(x2, x3)

=: w(1)(x1, x2, x3) + w(2)(x1, x2, x3)

for (x1, x2, x3) ∈ Q. By the smoothing of the semigroup, w(x1, ·, ·) belongs to H2(R) for
all x1 ∈ Q. The derivatives of w(1) are given by

∂1w
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 ) exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

−
(
χ′(x1 − a−1 )(−∆R)−1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3),

∂kw
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )∂k(−∆R)−1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3),

∂11w
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )(−∆R)1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

− 2
(
χ′(x1 − a−1 ) exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

−
(
χ′′(x1 − a−1 )(−∆R)−1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3),

∂1kw
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )∂k exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

−
(
χ′(x1 − a−1 )∂k(−∆R)−1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3),

∂klw
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )∂kl(−∆R)−1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

for all k, l ∈ {2, 3}. Observe that∥∥exp
(
t(−∆R)1/2

)
h
∥∥
D
(

(−∆R)1/2
) =

∥∥exp
(
t(−∆R)1/2

)
h
∥∥
L2(R)

+
∥∥exp

(
t(−∆R)1/2

)
(−∆R)1/2h

∥∥
L2(R)

≤ ‖h‖D((−∆R)1/2)

for all t ≥ 0 and h ∈ D
(
(−∆R)1/2

)
. With g1 ∈ D

(
(−∆R)1/2

)
we infer from Proposition 6.2

in [52] that∥∥χ(· − a−1 )(−∆R)1/2 exp
(
(· − a−1 )(−∆R)1/2

)
g1

)∥∥2

L2

=

∫ a+1

a−1

∥∥χ(x1 − a−1 )(−∆R)1/2 exp
(
(x1 − a−1 )(−∆R)1/2

)
g1(x2, x3)

∥∥2

L2(R)
dx1

≤ c ‖g1‖2(
L2(R),D((−∆R)1/2)

)
1/2,2

· (a−1 − a+
1 )

≤ c∗ ‖g1‖2

H
1/2
0 (R)

.

We therefore estimate∥∥w(1)
∥∥2

L2 ≤
∫ a+1

a−1

‖χ‖2
L∞
∥∥(−∆R)−1/2

∥∥2

B(L2(R))
·
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·
∥∥(exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

∥∥2

L2(R)
dx1

≤ c ‖g1‖2
L2(R) ,∥∥∂1w

(1)
∥∥2

L2 ≤ c

∫ a+1

a−1

‖χ‖2
L∞
∥∥(exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

∥∥2

L2(R)
dx1

+ c

∫ a+1

a−1

‖χ′‖2
L∞
∥∥(−∆R)1/2

∥∥2

B(L2(R))
·

·
∥∥(exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

∥∥2

L2(R)
dx1

≤ c ‖g1‖2
L2(R) ,∥∥∂kw(1)

∥∥2

L2 ≤ c

∫ a+1

a−1

‖χ‖2
L∞ ·

·
∥∥((−∆R)−1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

∥∥2

H1
0 (R)

dx1

≤ c

∫ a+1

a−1

∥∥(−∆R)−1/2
∥∥2

B(L2(R),H1
0 (R))
‖g1‖2

L2(R) dx1

≤ c ‖g1‖2
L2(R) ,∥∥∂11w

(1)
∥∥2

L2 ≤ c∗ ‖g1‖2

H
1/2
0 (R)

+ c ‖g1‖2
L2(R) ,∥∥∂1kw

(1)
∥∥2

L2 ≤ c

∫ a+1

a−1

‖χ‖2
L∞
∥∥((−∆R)1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

∥∥2

L2(R)
dx1

+ c

∫ a+1

a−1

‖χ′‖2
L∞
∥∥(exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

∥∥2

L2(R)
dx1

≤ cc∗ ‖g1‖2
H1

0 (R) + c ‖g1‖2
L2(R) ,∥∥∂klw(1)

∥∥2

L2 ≤ c

∫ a+1

a−1

∥∥χ(x1 − a−1 )
(
(−∆R)−1(−∆R)1/2·

· exp
(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

∥∥2

H2(R)
dx1

≤ c

∫ a+1

a−1

∥∥(−∆R)−1
∥∥2

B(L2(R),H2(R))
·

·
∥∥χ(x1 − a−1 )

(
(−∆R)1/2

(
exp
(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

∥∥2

H1
0 (R)

dx1

≤ cc∗ ‖g1‖H1/2
0 (R)

,

using the equivalence of ‖·‖D((−∆R)1/2) and ‖·‖H1 and the one of ‖·‖D(∆R) and ‖·‖H2 .
Together with the analogous estimates for w(2), we derive w ∈ H2(Q) and the estimate

‖w‖H2 ≤ c ‖g‖
H

1/2
0 (Γ1)

.

On Γ−1 we further obtain

∂νw(x1, x2, x3)|x1=a−1
= −∂1w

(1)(x1, x2, x3)|x1=a−1
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=
(
exp
(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)|x1=a−1

= g1(x2, x3)

and on Γ+
1

∂νw(x1, x2, x3)|x1=a+1
= ∂1w(x1, x2, x3)|x1=a+1

=
(
exp
(
(a+

1 − x1)(−∆R)1/2
)
g1

)
(x2, x3)|x1=a+1

= g2(x2, x3).

The Neumann trace of w on Γ1 thus equals g. Since exp
(
s(−∆R)1/2

)
maps into

D
(
(−∆R)1/2

)
= H1

0 (R)

for s > 0 and g1 ∈ H1
0 (R), the function w(x1, ·, ·) has zero trace for all x1 ∈ [a−1 , a

+
1 ].

We conclude part 2) of the proof with an approximation argument. Let g ∈ H1/2
0 (Γ1)

be given. We choose a sequence (gn)n∈N in C∞c (Γ1) with gn → g in H1/2
0 (Γ1) as n → ∞.

This is possible since C∞c (Γ1) is dense in H1
0 (Γ1) and thus also in the interpolation space

H
1/2
0 (Γ1), see Proposition 1.17 in [52]. We define the corresponding sequence (wn)n∈N in

H2(Q), and with the same estimates as above for w we see

‖wn − wm‖H2 ≤ c ‖gn − gm‖H1/2
0 (Γ1)

−→ 0

as n,m → ∞. Thus, (wn) has a limit w ∈ H2(Q). The continuity of the Dirichlet trace
map and the Neumann trace map yields w = 0 on Γ \ Γ1 and ∂νw = g on Γ1.
3) Set f̃ := f − w + ∆w ∈ L2(Q) with the w from step 2). Part (a) then provides a

function u ∈ D0 with u − ∆u = f̃ . Hence, v := u + w ∈ D satisfies v − ∆v = f and
∂νv = g on Γ̃′1. By the divergence theorem one checks that v also satisfies (7.8) for all
ϕ ∈ H1

Γ̃
(Q), so that it is equal to ṽ from step 1). �

We continue with a lemma concerning traces that we need for the trace properties of
the Maxwell operators and later on for versions of the splitting operators in an H1- and
an H2-setting.

Lemma 7.10. Let j, k ∈ {1, 2, 3} with k 6= j.

(a) For a function f ∈ L2(Q) with ∂jf, ∂kf, ∂jkf ∈ L2(Q) and f = 0 on Γj we have
∂kf = 0 on Γj.

(b) Let f ∈ L2(Q) with ∂jf ∈ L2(Q) and f = 0 in Γj. For ρ(k) ∈ C∞c ((a−k , a
+
k )) we

define the convolution g := ρ(k) ∗ f acting on the k-th variable by extending ρ(k) and
f by 0 outside of (a−k , a

+
k ). Then g = 0 on Γj.

(c) Let l ∈ N be such that l ≥ 1
a+k −a

−
k

. Let f ∈ L2(Q) with ∂jf ∈ L2(Q) and f = 0 on
Γj. Then

g(x) :=

∫ xk

a−k

χ
(k)
l (t)f(t, x̂) dt and h(x) :=

∫ xk

a−k

f(t, x̂) dt
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satisfy g = 0 and h = 0 on Γj, where χ
(k)
l are the cut-off functions defined in (7.13)

and x̂ contains xj and that xi with i ∈ {1, 2, 3} \ {j, k}.

Proof:
Let without loss of generality j = 1.
(a) Let k ∈ {2, 3} be fixed and recall from (7.11) the set

Q1 := (a−2 , a
+
2 )× (a−3 , a

+
3 ).

We have for almost all (x2, x3) ∈ Q1 that f(·, x2, x3) ∈ H1
0 (a−1 , a

+
1 ) and

f(x1, x2, x3) =

∫ x1

a−1

∂1f(t, x2, x3) dt,

as well as ∂1kf(x1, ·, ·) ∈ L2(Q1) for almost all x1 ∈ [a−1 , a
+
1 ]. Let ϕ ∈ C∞c (Q). Fubini’s

theorem and integration by parts yields∫
Q

f(x)∂kϕ(x) dx =

∫ a+1

a−1

∫
Q1

∫ x1

a−1

∂1f(t, x2, x3) dt ∂kϕ(x1, x2, x3) d(x2, x3) dx1

=

∫ a+1

a−1

∫ x1

a−1

∫
Q1

∂1f(t, x2, x3)∂kϕ(x1, x2, x3) d(x2, x3) dt dx1

= −
∫ a+1

a−1

∫ x1

a−1

∫
Q1

∂1kf(t, x2, x3)ϕ(x1, x2, x3) d(x2, x3) dt dx1

= −
∫
Q

∫ x1

a−1

∂1kf(t, x2, x3) dt ϕ(x) dx.

This implies ∂kf(x1, x2, x3) =
∫ x1
a−1
∂1kf(t, x2, x3) dt for almost all (x2, x3) ∈ Q1, so that we

first get

‖∂kf(x1, ·, ·)‖L2(Q1) ≤
∫ x1

a−1

‖∂1kf(t, ·, ·)‖L2(Q1) dt

≤ (x1 − a−1 )1/2
(∫ x1

a−1

∫
Q1

|∂1kf(t, x2, x3)|2 d(x2, x3) dt
)1/2

(7.9)

for almost all x1 ∈ (a−1 , a
+
1 ) and then

‖∂kf(x1, ·, ·)‖L2(Q1) ≤ (x1 − a−1 )1/2 ‖∂1kf‖L2 −→ 0

as x1 → a−1 . In the same way as (7.9) we see

‖∂kf(x1, ·, ·)‖L2(Q1) ≤ (a+
1 − x1)1/2

(∫ a+1

x1

∫
Q1

|∂1kf(t, x2, x3)|2 d(x2, x3) dt
)1/2

(7.10)

for almost all x1 ∈ (a−1 , a
+
1 ).
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For j ∈ {1, 2, 3} we define

Qj := (a−k , a
+
k )× (a−l , a

+
l ) (7.11)

for k, l ∈ {1, 2, 3} with k 6= j, l 6= j and k 6= l. For all n > 4
dmin

we define the set

A(j)
n := A(j),−

n ∪ A(j),+
n := [a−j + 1

n
, a−j + 2

n
] ∪ [a+

j − 2
n
, a+

j − 1
n
] (7.12)

and the cut-off function

χ(j)
n (t) :=



0, t ∈ [a−j , a
−
j + 1

n
],

n
(
t− (a−j + 1

n
)
)
, t ∈ (a−j + 1

n
, a−j + 2

n
),

1, t ∈ [a−j + 2
n
, a+

j − 2
n
],

1− n
(
t− (a+

j − 2
n
)
)
, t ∈ (a+

j − 2
n
, a+

j − 1
n
),

0, t ∈ [a+
j − 1

n
, a+

j ].

(7.13)

Let
fn(t, x2, x3) := χ(1)

n (t)f(t, x2, x3).

The convergence ∂kfn = χ
(1)
n ∂kf → ∂kf in L2(Q) as n → ∞ is seen with the theorem of

dominated convergence. We have the identity

∂1kfn = (χ(1)
n )′∂kf + χ(1)

n ∂1kf.

Using the inequalities (7.9) and (7.10) we deduce∥∥(χ(1)
n )′∂kf

∥∥
L2 ≤

(∫
A

(1)
n

∫
Q1

n2 |∂kf(x1, x2, x3)|2 d(x2, x3) dx1

)1/2

≤
(

2n sup
x1∈A(1)

n

∫
Q1

|∂kf(x1, x2, x3)|2 d(x2, x3)
)1/2

≤
(

4 sup
x1∈A(1),−

n

∫ x1

a−1

∫
Q1

|∂1kf(t, x2, x3)|2 d(x2, x3) dt

+ 4 sup
x1∈A(1),+

n

∫ a+1

x1

∫
Q1

|∂1kf(t, x2, x3)|2 d(x2, x3) dt
)1/2

= 2
(∫

[a−1 ,a
−
1 + 2

n
]∪[a+1 −

2
n
,a+1 ]

∫
Q1

|∂1kf(t, x2, x3)|2 d(x2, x3) dt
)1/2

−→ 0

as n→∞, where we used the theorem of dominated convergence in the last step. Together
with χ(1)

n ∂1kf → ∂1kf in L2(Q) as n → ∞ it follows ∂1kfn → ∂1kf in L2(Q) as n → ∞.
We conclude that on Γ1 the trace of ∂kfn converges to the trace of ∂kf in the L2-sense.
Since ∂kfn = 0 on Γ1 is evident due to the cut-off function, the claim follows.
(b) We define

fn(x1, x2, x3) := χ(1)
n (x1)f(x1, x2, x3)
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From χ
(1)
n f → f in L2(Q) we infer ρ(k) ∗ fn → ρ ∗ f in L2(Q) as n→∞. The convergence

∂1

(
ρ(k) ∗ fn

)
= ρ(k) ∗

(
(χ(1)

n )′f + χ(1)
n ∂1f

)
−→ ρ ∗ ∂1f

as n → ∞ is seen with the methods of the proof of part (a). As above, we thus get the
claim due to fn = 0 in a neighbourhood of Γ1 and thus ρ(k) ∗ fn = 0 on Γ1.
(c) Let without loss of generality k = 2. We define

gn(x1, x2, x3) := χ(1)
n (x1)

∫ x2

a−2

χ
(2)
l (t)f(x1, t, x3) dt.

From ∥∥∥∥∥χ(1)
n (x1)

∫ x2

a−2

χ
(2)
l (t)f(x1, s, x3) dt

∥∥∥∥∥
L2

≤ (a+
2 − a−2 ) ‖f‖L2

we infer gn → g in L2(Q) as n → ∞ with the theorem of dominated convergence. We
compute

∂1gn(x1, x2, x3) = (χ(1)
n )′(x1)

∫ x2

a−2

χ
(2)
l (t)f(x1, t, x3) dt

+ χ(1)
n (x1)

∫ x2

a−2

χ
(2)
l (t)∂1f(x1, t, x3) dt

and see
∂1gn −→

∫ x2

a−2

χ
(2)
l (t)∂1f(x1, t, x3) dt

as n → ∞ with the methods of the proof of part (a). As above, we thus get the claim
due to gn = 0 on Γ1. The proof for h is done in the same way. �

We now are in the position to prove embedding and trace properties of the domains of
the Maxwell operators. In Lemma 3.2 in [37] it was shown that D(M2

0 ) is continuously
embedded into H2(Q). More results on embeddings and traces on Lipschitz domains can
be found in great detail in [15].

Proposition 7.11. (a) The domain D(M
(0)
div) is continuously embedded into H1(Q)6.

Furthermore, we have

‖(E,H)‖H1 ≤ c
(
‖(E,H)‖

X
(0)
div

+ ‖M(E,H)‖X
)

for all (E,H) ∈ D(M
(0)
div) with a constant depending only on ‖ε‖W 1,∞, ‖µ‖W 1,∞,

‖σ‖L∞ and δ. Additionally, (E,H) ∈ D(M
(0)
div) has the traces

E2 = E3 = 0, H1 = 0 on Γ1,

E1 = E3 = 0, H2 = 0 on Γ2,

E1 = E2 = 0, H3 = 0 on Γ3.
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(b) Let ε, µ ∈ W 2,3(Q). Then X
(2)
div is continuously embedded into H2(Q)6. Moreover,

we have
‖(E,H)‖H2 ≤ c ‖(E,H)‖

X
(2)
div

for all (E,H) ∈ X(2)
div, where the constants depends only on the quantities ‖ε‖W 1,∞∩W 2,3,

‖µ‖W 1,∞∩W 2,3, ‖σ‖W 1,∞ and δ. Additionally, (E,H) ∈ X(2)
div has the traces

E2 = E3 = 0, ∂2E2 = ∂3E2 = ∂2E3 = ∂3E3 = 0 on Γ1,

E1 = E3 = 0, ∂1E1 = ∂3E1 = ∂1E3 = ∂3E3 = 0 on Γ2,

E1 = E2 = 0, ∂1E1 = ∂2E1 = ∂1E2 = ∂2E2 = 0 on Γ3,

H1 = 0, ∂2H1 = ∂3H1 = 0 on Γ1,

H2 = 0, ∂1H2 = ∂3H2 = 0 on Γ2,

H3 = 0, ∂1H3 = ∂2H3 = 0 on Γ3.

Proof:
(a) Let (E,H) ∈ D(M

(0)
div). The embedding is a consequence of Lemma 7.7 and 7.5 and

furthermore Proposition 7.4 since curlH = σE+ε
(
M(E,H)

)
1
. The trace result is clear if

(E,H) is also smooth in Q, and this follows by an approximation, using Proposition 7.3.
(b) Let (E,H) ∈ X(2)

div.
1) By part (a) andX(2)

div ↪→ D(M
(0)
div), E andH belong toH1(Q)3 and satisfy the assertion

on the zero-order traces. We next show that both fields are contained inH2
loc(Q)3. Part (a)

provides the estimate

‖(E,H)‖H1 ≤ c
(
‖(E,H)‖

X
(0)
div

+ ‖M(E,H)‖X
)
. (7.14)

The momentum inequality, see Theorem II.5.34 in [23], together with Young’s inequality
yields

‖M(E,H)‖X ≤ c
(
‖(E,H)‖X +

∥∥M2(E,H)
∥∥
X

)
. (7.15)

We have

M2(E,H) =

(
σ2

ε2
E− 1

ε
curl 1

µ
curlE− σ

ε2
curlH

1
µ
∇
(
σ
ε

)
× E + σ

µε
curlE− 1

µ
curl 1

ε
curlH

)
=:

((
M2(E,H)

)
1(

M2(E,H)
)

2

)

and furthermore, due to identity (7.5),

curl
(

1
µ

curlE
)

=
(
∇ 1

µ

)
× curlE +

1

µ
curl curlE

= − 1

µ2
(∇µ)× curlE +

1

µ
(−∆E +∇ divE)

= − 1

µ2
(∇µ)× curlE− 1

µ
∆E +

1

µ
∇
(

1
ε

div(εE)− 1
ε
∇ε · E

)
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= − 1

µ2
(∇µ)× curlE− 1

µ
∆E− 1

µε2
div(εE)∇ε+

1

µε
∇ div(εE)

+
1

µε2
(∇ε · E)∇ε− 1

µε
∇(∇ε · E).

Reordering these terms gives

∆E = µε
(
M2(E,H)

)
1
− µσ2

ε
E +

µσ

ε
curlH

− 1

µ
(∇µ)× curlE− 1

ε2
div(εE)∇ε+

1

ε
∇ div(εE)

+
1

ε2
(∇ε · E)∇ε− 1

ε

( 3∑
j=1

(
(∂jkε)Ej + (∂jε)∂kEj

))3

k=1

.

We now use (M2(E,H))1 ∈ L2(Q)3, (7.14), div(εE) ∈ H1(Q), the Sobolev embedding
H1(Q)3 ↪→ L6(Q)3 applied to E, the assumptions on ε, µ and σ and (7.15). It follows

‖∆E‖L2 ≤ c
(∥∥M2(E,H)

∥∥
X

+ ‖(E,H)‖
X

(0)
div

)
.

Here, c depends only on ‖ε‖W 1,∞∩W 2,3 , ‖µ‖W 1,∞ , ‖σ‖L∞ and δ. So, ∆Ej belongs to L2(Q)

for all j ∈ {1, 2, 3}. Analogously, we infer with div(µH) = 0 first

curl
(

1
ε

curlH
)

= − 1

ε2
(∇ε)× curlH− 1

ε
∆H

+
1

ε2µ
(∇µ ·H)∇µ− 1

εµ
∇(∇µ ·H)

and then

∆H = εµ
(
M2(E,H)

)
2
− ε∇

(
σ
ε

)
× E− σ curlE

− 1

ε
(∇ε)× curlH +

1

εµ
(∇µ ·H)∇µ− 1

µ
∇(∇µ · E).

In the same way as above, this identity yields

‖∆H‖L2 ≤ c
(∥∥M2(E,H)

∥∥
X

+ ‖(E,H)‖
X

(0)
div

)
and ∆Hj ∈ L2(Q) for all j ∈ {1, 2, 3}, where now c also depends on ‖µ‖W 2,3 and ‖σ‖W 1,∞ .
So, we have shown (∆E,∆H) ∈ L2(Q)6 and

‖(∆E,∆H)‖L2 ≤ c
(∥∥M2(E,H)

∥∥
X

+ ‖(E,H)‖
X

(0)
div

)
. (7.16)

We recall the definition

H2
loc(Q) := {u ∈ L1

loc(Q) | u ∈ H2(U) for each open set U ⊆ U ⊆ Q}.
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Let Q0 ⊆ Q be open and U a domain with Q0 ⊆ U ⊆ U ⊆ Q. Let ϕ ∈ C∞c (Q) with ϕ = 1

on U and u ∈ {Ej, Hj, j ∈ {1, 2, 3}}. The function v := ϕu satisfies v ∈ H1
0 (Q) and v = u

on U . Since E,H ∈ H1(Q)3, the function v belongs to H1(U). From the identity

∆v = u∆ϕ+ 2∇u · ∇ϕ+ ϕ∆u

and ∆Ej,∆Hj ∈ L2(Q) for all j ∈ {1, 2, 3} we deduce that ∆v belongs to L2(U). Theo-
rem 8.8 in [31] then implies that v ∈ H2(U) and hence u ∈ H2(Q0). As a result, Ej and
Hj are contained in H2

loc(Q) for all j ∈ {1, 2, 3}.
2) We next show E ∈ H2(Q)3 and the estimate ‖E‖H2 ≤ c ‖(E,H)‖

X
(2)
div
. For this part

of the proof we set Γ̃ := Γ2 ∪ Γ3. Observe that

∆(εE1) = E1∆ε+ 2∇ε · ∇E1 + ε∆E1.

From ∆E1 ∈ L2(Q), E1 ∈ H1(Q), the assumption on ε and the embedding H1(Q) ↪→
L6(Q), we thus conclude that (I −∆)εE1 belongs to L2(Q). We further compute that

∂kl(εE1) = E1∂lkε+ (∂kε)(∂lE1) + (∂lε)(∂kE1) + ε∂klE1 (7.17)

for all k, l ∈ {1, 2, 3}. Using E1 ∈ H2
loc(Q) and E1 ∈ H1(Q), we infer that εE1 is contained

in H2
loc(Q). Lemma 7.5 and E1 = 0 on Γ2 ∪ Γ3 show that εE1 = 0 on Γ2 ∪ Γ3. We fix a

function ψ ∈ H1(Q) with ∂2ψ, ∂3ψ ∈ H1(Q) and essential support in

Q(η) := [a−1 , a
+
1 ]× [a−2 + η, a+

2 − η]× [a−3 + η, a+
3 − η] (7.18)

for an η = η(ψ) ∈ (0, dmin/2). For each κ ∈ (0, dmin/2) we define

Qκ := (a−1 + κ, a+
1 − κ)× (a−2 + κ, a+

2 − κ)× (a−3 + κ, a+
3 − κ).

We take κ ∈ (0, η) and denote by Γ±1 (κ) those open faces of Qκ that contain the points
of the form (a∓1 ± κ, x2, x3). We conclude with the theorem of dominated convergence,
integration by parts and ∇(εEj) ∈ H1(Q) that∫

Q

εE1ψ dx+

∫
Q

∇(εE1) · ∇ψ dx = lim
κ→0

∫
Qκ

(
εE1ψ +∇(εE1) · ∇ψ

)
dx

= lim
κ→0

[∫
Qκ

ψ(I −∆)(εE1) dx+

∫
∂Qκ

trn
(
ψ∇(εE1)

)
dσ

]
=

∫
Q

ψ(I −∆)(εE1) dx± lim
κ→0

∫
Γ±1 (κ)

trn
(
ψ∇(εE1)

)
dσ.

Moreover, the boundary of Γ±1 (κ) is disjoint to Q(η) due to κ < η. Hence, ψ vanishes on
the boundary of Γ±1 (κ), so that

±
∫

Γ±1 (κ)

ψ
(
∂2(εE2) + ∂3(εE3)

)
dσ = ∓

∫
Γ±1 (κ)

(
εE2∂2ψ + εE3∂3ψ

)
dσ.
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Therefore, we can continue our calculation by∫
Q

εE1ψ dx+

∫
Q

∇(εE1) · ∇ψ dx

=

∫
Q

ψ(I −∆)(εE1) dx± lim
κ→0

∫
Γ±1 (κ)

ψ∂1(εE1) dσ

=

∫
Q

ψ(I −∆)(εE1) dx± lim
κ→0

∫
Γ±1 (κ)

ψ div(εE1) dσ

∓ lim
κ→0

∫
Γ±1 (κ)

ψ
(
∂2(εE2) + ∂3(εE3)

)
dσ

=

∫
Q

ψ(I −∆)(εE1) dx+ lim
κ→0

∫
∂Qκ

ψρ dσ

± lim
κ→0

∫
Γ±1 (κ)

(
εE2∂2ψ + εE3∂3ψ

)
dσ.

Lemma 7.5 together with part 1) implies εEj = 0 on Γ1 for all j ∈ {2, 3}, so that
Lemma 7.8 yields

lim
κ→0

∫
∂Qκ

ψρ dσ =

∫
Γ

ψρ dσ and lim
κ→0

∫
Γ±1 (κ)

(
εE2∂2ψ + εE3∂3ψ

)
dσ = 0.

We thus have shown ∫
Q

εE1ψ dx+

∫
Q

∇(εE1) · ∇ψ dx

=

∫
Q

ψ(I −∆)(εE1) dx+

∫
Γ

ψρ dσ.

(7.19)

We next show that we can approximate each function in H1
Γ2∪Γ3

(Q) in H1(Q) by func-
tions as chosen above. Let ψ ∈ H1

Γ2∪Γ3
(Q) and η > 0. Take functions ϕ̃m ∈ C∞(Q) with

ϕ̃m → ψ in H1(Q) as m → ∞. Then tr(ϕ̃m) → tr(ψ) = 0 in L2(Γ2 ∪ Γ3). We fix an
m ∈ N with

‖ϕ̃m − ψ‖H1 ≤ η and ‖tr(ϕ̃m)‖L2(Γ2∪Γ3) ≤ η.

Set ϕ̃ := ϕ̃m. Recall for all n > 4
dmin

the sets A(j)
n , A(j),+

n and A
(j),−
n in (7.12) and the

cut-off function in (7.13). Set ϕn := χ
(2)
n χ

(3)
n ϕ̃. The theorem of dominated convergence

gives ϕn → ϕ̃ and ∂1ϕn → ∂1ϕ̃ in L2(Q) as n→∞. Additionally, we get with

ϕ̃(x1, x2, x3) =

∫ x2

a−2

∂1ϕ̃(x1, t, x3) dt− ϕ̃(x1, a
−
2 , x3),

ϕ̃(x1, x2, x3) = −
∫ a+2

x2

∂1ϕ̃(x1, t, x3) dt+ ϕ̃(x1, a
+
2 , x3)

that∥∥∥(χ(2)
n

)′
χ(3)
n ϕ̃

∥∥∥2

L2
≤
∫
A

(2)
n

∫
Q2

n2 |ϕ̃(x1, x2, x3)|2 d(x1, x3) dx2
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7. The Maxwell equations and their solutions

≤ 2n sup
x2∈A(2)

n

∫
Q2

|ϕ̃(x1, x2, x3)|2 d(x1, x3)

≤ cn sup
x2∈A(2),−

n

∫ x2

a−2

∫
Q2

|∂1ϕ̃(x1, t, x3)|2 d(x1, x3) dt

+ cn sup
x2∈A(2),−

n

∫
Q2

∣∣ϕ̃(x1, a
−
2 , x3)

∣∣2 d(x1, x3) dt

+ cn sup
x2∈A(2),+

n

∫ a+2

x2

∫
Q2

|∂1ϕ̃(x1, t, x3)|2 d(x1, x3) dt

+ cn sup
x2∈A(2),+

n

∫
Q2

∣∣ϕ̃(x1, a
+
2 , x3)

∣∣2 d(x1, x3) dt

≤ c

∫
[a−2 ,a

−
2 + 2

n
]∪[a+2 −

2
n
,a+2 ]

∫
Q2

|∂1ϕ̃(x1, t, x3)|2 d(x2, x3) dt+ c̃ ‖tr(ϕ̃)‖2
L2(Γ2)

≤ (c̃+ 1)η2

for n large enough, since the first summand tends to zero as n→∞ and ‖tr(ϕ̃)‖2
L2(Γ2) ≤ η2.

Hence,
∂2ϕn − ∂2ϕ̃ =

(
χ(2)
n χ(3)

n − 1
)
∂2ϕ̃+

(
χ(2)
n

)′
χ(3)
n ϕ̃ −→ 0

in L2(Q) as n → ∞ by the theorem of dominated convergence. Analogously we see
∂2ϕn → ∂3ϕ̃ in L2(Q) as n→∞. Altogether, we ϕn → ϕ̃ in H1(Q) as n→∞.
Therefore, (7.19) holds true for all ψ ∈ H1

Γ̃
(Q) by approximation. Lemma 7.9 shows

that εE1 is contained in H2(Q) and that

‖εE1‖H2 ≤ c
(
‖εE1 −∆(εE1)‖L2 + ‖ρ‖

H
1/2
0 (Γ1)

)
≤ c
(∥∥M2(E,H)

∥∥
X

+ ‖(E,H)‖
X

(0)
div

+ ‖ρ‖
H

1/2
0 (Γ1)

)
≤ c ‖(E,H)‖

X
(2)
div
, (7.20)

using estimate (7.16) in the second to the last estimate.
For all k, l ∈ {1, 2, 3} we have

∂klE1 =
1

ε
∂kl(εE1)− ∂kε

ε2
∂l(εE1)− ∂lε

ε2
∂k(εE1) + εE1

(
−∂lkε

ε2
+ 2(∂kε)(∂lε)

ε3

)
.

Using E1 ∈ H1(Q) ↪→ L6(Q), εE1 ∈ H2(Q) and the assumptions on ε, we conclude from
this that E1 belongs toH2(Q). E2 and E3 are treated in the same way, giving E ∈ H2(Q)3.
From (7.20) we infer

‖E1‖2
H2 ≤ c

(
1
δ2
‖εE1‖2

L2 + 2
3∑

k=1

(
1
δ2
‖∂k(εE1)‖2

L2 + 1
δ4
‖∂kε‖2

L∞ ‖εE1‖2
L2

)
+

3∑
k,l=1

(
1
δ2
‖∂kl(εE1)‖2

L2 +
‖∂kε‖2L∞

δ4
‖∂l(εE1)‖2

L2 +
‖∂lε‖2L∞

δ4
‖∂k(εE1)‖2

L2
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+
(‖∂klε‖2L∞

δ4
+

2‖∂kε‖2L∞‖∂lε‖
2
L∞

δ6

)
‖εE1‖2

L2

))
≤ c ‖εE1‖2

H2 ≤ c ‖(E,H)‖2

X
(2)
div

,

which is the desired norm estimate.
3) For i ∈ {1, 2, 3} we denote by γi the Dirichlet trace operator on Γi. Let i, j, k ∈
{1, 2, 3} with i 6= j and i 6= k. We approximate the function Ek ∈ H2(Q) in H2(Q)

by a sequence (vn)n∈N ⊆ C2(Q). Observe that γi∂jvn = ∂jγivn. Taking the limit n →
∞ gives with the continuity of the trace operators that γi∂jEk = ∂jγiEk, so that the
already established zero-order traces of E imply now the claimed first-order traces of E
by Lemma 7.10.
4) Using Lemma 7.9, the remaining assertions for H can be seen as in the proof of

Lemma 3.7 in [37]. �

One benefit of the embeddings we have just seen is that the Maxwell operators map
into the respective restrictions of X.

Lemma 7.12. (a) If σ = 0, then the operator M0 maps into X0 and is thus equal to
the part of M in X0.

(b) The operator M (0)
div maps into X(0)

div and is thus the part of M in X(0)
div.

(c) If ε, µ, σ ∈ W 2,3(Q), then the operator M (2)
div maps into X(2)

div.

Proof:
The proof for part (a) can be found in the proof of Proposition 3.5 in [37].
(b) Let (E,H) ∈ D(M

(0)
div). With div curl = 0 we compute

Ξ := div
(
ε(M(E,H))1

)
= div

(
εσ
ε
E
)

= ∇
(
σ
ε

)
· εE +

σ

ε
div(εE)

= ∇σ · E− σ

ε
∇ε · E +

σ

ε
div(εE). (7.21)

This function belongs to L2(Q) due to the general assumptions on ε and σ and since
(E,H) ∈ X(0)

div. The statement for X(0)
div now follows as the one for X0 in part (a).

(c) Let (E,H) ∈ D(M
(2)
div). We first observe that then M(E,H) ∈ X(0)

div by part (a) and
that M(E,H) ∈ D(M2). Moreover, (E,H) ∈ H2(Q)6 by Proposition 7.11. To check that
Ξ is contained in H1

00(Q) we differentiate (7.21) and obtain

∂jΞ = ∇∂jσ · E +∇σ · ∂jE−
∂jσ

ε
∇ε · E +

σ∂jε

ε2
∇ε · E− σ

ε
∇∂jε · E

+
σ

ε
∇ε · ∂jE +

∂jσ

ε
div(εE)− σ∂jε

ε2
div(εE) +

σ

ε
∂j div(εE).

for all j ∈ {1, 2, 3}. The function ∂jΞ thus belongs to L2(Q) due to the assumptions on ε
and σ, the Sobolev embedding H1(Q) ↪→ L6(Q) and div(εE) ∈ H1(Q). Using Ξ ∈ L2(Q)
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7. The Maxwell equations and their solutions

from part (b), we see that Ξ = div
(
ε(M(E,H))1

)
is an element of H1(Q). We observe

that the map f 7→ σ
ε
f belongs to B(L2(Γ̂)) and to B(H1

0 (Γ̂)) and thus to B(H
1/2
0 (Γ̂))

by interpolation for each face Γ̂ of Q. This shows that σ
ε

div(εE) belongs to H1/2
0 (Γ).

The other terms on the right-hand side of (7.21) are contained in W 1,3(Q) by Sobolev’s
embedding and the assumptions on ε and σ. Hence, they have traces in W 2/3,3(Γ) by the
Theorem 2.5.3 in [58]. By Proposition 7.11 and Lemma 7.5, the trace of

ϕ := (∂1σ)E1 −
σ

ε
(∂1ε)E1

vanishes on Γ2 ∪ Γ3. As in the proof of Proposition 7.11 we construct smooth functions
ϕn converging to ϕ in W 1,3(Q) with support in the set Q(1/n), see (7.18). Their traces
belong to W 2/3,3

0 (Γ1) (which is the closure of C∞c (Γ1) in W 2/3,3(Γ1)) and converge in this
space by Theorem 3.1 in [45]. Thus, tr(ϕ) in contained in W 2/3,3

0 (Γ1) and its trace on ∂Γ1

vanishes. Proposition 2.11, Remark 2.7 and Proposition 3.3 in [45] say that

Hθ,3
0 (Γ1) =

[
L3(Γ1),W 1,3

0 (Γ1)
]
θ

= {ψ ∈ Hθ,3(Γ1) | trψ = 0 on ∂Γ1}

for θ > 0, where Hθ,3
0 (Γ1) is the closure of the test functions in the Bessel potential space

Hθ,3(Γ1). Due to Proposition 1.4 and 1.3 in [52] we have for all θ ∈ (0, 2/3) the embedding

W 2/3,3(Γ1) = (L3(Γ1),W 1,3(Γ1))2/3,3 ↪→ (L3(Γ1),W 1,3(Γ1))θ,1

and the example on page 53 in [52] yields

(L3(Γ1),W 1,3(Γ1))θ,1 ↪→ [L3(Γ1),W 1,3(Γ1)]θ = Hθ,3(Γ1).

So, the space W 2/3,3(Γ1) is continuously embedded in Hθ,3(Γ1) for any θ ∈ (0, 2/3). As
a result, trΓ1(ϕ) belongs to Hθ,3

0 (Γ1) for all θ ∈ (1/2, 2/3). Since L3(Γ1) ↪→ L2(Γ1) and
W 1,3

0 (Γ1) ↪→ H1
0 (Γ1), interpolation shows that trΓ1(ϕ) is an element of[

L2(Γ1), H1
0 (Γ1)

]
θ

=
(
L2(Γ1), H1

0 (Γ1)
)
θ,2
↪→ H

1/2
0 (Γ1) = (L2(Γ1), H1

0 (Γ1))1/2,2,

where we used see Corollary 4.37 in [52] for the first identity and Proposition 1.4 and
1.3 in [52] for the embedding. Summing up, ϕ is an element of H1/2

0 (Γ). The remaining
summands of Ξ can be treated similarly. Hence, Ξ belongs to H1

00(Q) and thus M(E,H)

to X(2)
div. �

Using this Proposition iteratively gives the following embedding and representations of
the domains of the Maxwell operators.

Corollary 7.13. We have the representations D
(
(M

(0)
div)j

)
= D(M j)∩X(0)

div and, if σ = 0,
D(M j

0 ) = D(M j) ∩ X0, for all j ∈ N. Furthermore, X(2)
div is continuously embedded into

D
(
(M

(0)
div)2

)
.
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7.2. The functional analytic setting

7.2.2. The splitting operators and their domains

The basic idea for the splitting scheme proposed in [75] is to split the curl operator into

curl = C1 − C2

with

C1 :=

 0 0 ∂2

∂3 0 0

0 ∂1 0

 and C2 :=

 0 ∂3 0

0 0 ∂1

∂2 0 0

 (7.22)

and to define the splitting operators

A :=

(
− σ

2ε
I 1

ε
C1

1
µ
C2 0

)
and B :=

(
− σ

2ε
I −1

ε
C2

− 1
µ
C1 0

)
. (7.23)

These operators are endowed with the domains

D(A) := {(u, v) ∈ X | (C1v, C2u) ∈ X,
u1 = 0 on Γ2, u2 = 0 on Γ3, u3 = 0 on Γ1},

D(B) := {(u, v) ∈ X | (C2v, C1u) ∈ X,
u1 = 0 on Γ3, u2 = 0 on Γ1, u3 = 0 on Γ2},

which contain “partial” Dirichlet boundary conditions. Observe that the boundary condi-
tions of M have been partitioned into the boundary conditions of the operators A and B.
This is done in such a way that the square integrability of the corresponding derivatives
assures that the boundary conditions are well-defined, see Theorem 4.12 in [1]. Clearly,
we have

D(A) ∩D(B) ↪→ D(M) and M = A+B on D(A) ∩D(B).

Keep in mind that neither the divergence conditions nor the boundary condition for the
magnetic field have been taken into account in the definition of A and B. We write A0

and B0 for the operator A, respectively B, with σ = 0, i.e. we have D(A0) = D(A),
D(B0) = D(B),

A0 = A+

(
σ
2ε
I 0

0 0

)
and B0 = B +

(
σ
2ε
I 0

0 0

)
. (7.24)

The following statements can be found in Section 4.3 in [37]. Let u, ψ ∈ L2(Q)3 with
C1ψ ∈ L2(Q)3 and C2u ∈ L2(Q)3. Let furthermore the boundary conditions

u2 = 0 or ψ1 = 0 on Γ3,

u3 = 0 or ψ2 = 0 on Γ1,

u1 = 0 or ψ3 = 0 on Γ2,

(7.25)
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hold true. Then we see with integration by parts that

(C2u | ψ)L2 = (u | −C1ψ)L2 . (7.26)

Let v, ϕ ∈ L2(Q)3 with C1v ∈ L2(Q)2 and C2ϕ ∈ L2(Q)3. Let additionally the boundary
conditions

v3 = 0 or ϕ1 = 0 on Γ2,

v1 = 0 or ϕ2 = 0 on Γ3,

v2 = 0 or ϕ3 = 0 on Γ1,

(7.27)

be satisfied. Then we get with integration by parts that

(C1v | ϕ)L2 = (v | −C2ϕ)L2 . (7.28)

This gives us the adjoint operators of A, B and M .

Lemma 7.14. (a) The adjoints of the splitting operators have the domains

D(A∗) = D(A∗0) = D(A) and D(B∗) = D(B∗0) = D(B)

and satisfy the identities A∗0 = −A0, B∗0 = −B0,

A∗ =

(
− σ

2ε
I −1

ε
C1

− 1
µ
C2 0

)
and B∗ =

(
− σ

2ε
I 1

ε
C2

1
µ
C1 0

)
.

(b) The adjoint of M is given by D(M∗) = D(M) and

M∗ = A∗ +B∗ =

(
−σ

ε
I −1

ε
curl

1
µ

curl 0

)
.

Proof:
(a) The domains of and the formulas for the operators A∗0 and B∗0 follow from (7.25), (7.27),
(7.26) and (7.28), see Lemma 4.3 in [37]. Together with the symmetry and boundedness

of Σ =

(
− σ

2ε
I 0

0 0

)
we thus obtain

A∗ = A∗0 + Σ∗ = −A0 + Σ =

(
− σ

2ε
I −1

ε
C1

− 1
µ
C2 0

)

on D(A∗) = D(A∗0). Analogously, we see D(B∗) = D(B∗0) and B∗ =

(
− σ

2ε
I 1

ε
C2

1
µ
C1 0

)
.

(b) The skew-adjointness of M with σ = 0 was shown for instance in Proposition 3.5 in
[37]. One can then proceed as above. �

128



7.2. The functional analytic setting

As usual, we set
D(AB) := {u ∈ D(B) | Bu ∈ D(A)}

and analougously for D(A2), D(BA) and D(B2). Further properties of the splitting
operators are shown in the Sections 8.1, 8.2 and 8.3.
The domains of the Maxwell operators are embedded into some domains of the splitting

operators.

Proposition 7.15. (a) D(M
(0)
div) is continuously embedded into D(A) and D(B). More-

over, we have

‖A(u, v)‖X ≤ c
(
‖(u, v)‖

X
(0)
div

+ ‖M(u, v)‖
X

(0)
div

)
,

‖B(u, v)‖X ≤ c
(
‖(u, v)‖

X
(0)
div

+ ‖M(u, v)‖
X

(0)
div

)
for all (u, v) ∈ D(M

(0)
div), with the constants depending only on ‖ε‖W 1,∞, ‖µ‖W 1,∞,

‖σ‖L∞ and δ.

(b) Let ε, µ ∈ W 2,3(Q). Then X
(2)
div is continuously embedded into D(A2), D(AB),

D(BA) and D(B2). Furthermore, we have∥∥A2(u, v)
∥∥
X
≤ c ‖(u, v)‖

X
(2)
div
,

‖AB(u, v)‖X ≤ c ‖(u, v)‖
X

(2)
div
,

‖BA(u, v)‖X ≤ c ‖(u, v)‖
X

(2)
div
,∥∥B2(u, v)

∥∥
X
≤ c ‖(u, v)‖

X
(2)
div

for all (u, v) ∈ X(2)
div, with the constants c only depending on ‖ε‖W 1,∞∩W 2,3, ‖µ‖W 1,∞∩W 2,3,

‖σ‖W 1,∞ and δ.

(c) We have M (0)
div = A+B on D(M

(0)
div) and M (2)

div = A+B on D(M
(2)
div).

Proof:
(a) Let (u, v) ∈ D(M

(0)
div). Then (u, v) satisfies the boundary conditions of D(A) and D(B)

due to Proposition 7.11. The embedding D(M
(1)
div) ↪→ H1(Q)6 from Proposition 7.11 then

implies that (u, v) is contained in D(A)∩D(B). The embedding follows from the obvious
estimate

max
{
‖A(u, v)‖L2 , ‖B(u, v)‖L2

}
≤ c ‖(u, v)‖H1

and the inequality ‖(u, v)‖H1 ≤ c ‖(u, v)‖
D(M

(0)
div)

in Proposition 7.11. Here the constants
only depend on the claimed quantities.
(b) Let (u, v) ∈ X(2)

div. For the first component of A(u, v) and B(u, v) we have the traces

− σ

2ε
u1 +

1

ε
∂2v3 = 0 on Γ3 and − σ

2ε
u1 −

1

ε
∂3v2 = 0 on Γ2,
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respectively, due to Proposition 7.11 and Lemma 7.5. Thus, A(u, v) fulfils the boundary
condition ofD(B) and B(u, v) fulfils the boundary condition ofD(A). Taking additionally
M(u, v) ∈ D(M) into account, we obtain

− σ

2ε
u1 +

1

ε
∂2v3 = (M(u, v))1,1 +

σ

2ε
u1 +

1

ε
∂3v2 = 0 on Γ2,

− σ

2ε
u1 −

1

ε
∂3v2 = (M(u, v))1,1 +

σ

2ε
u1 −

1

ε
∂2v3 = 0 on Γ3,

respectively, where (M(u, v))1,1 denotes the first component of (M(u, v))1. Thus, the
boundary conditions of D(A) is satisfied by A(u, v) and the boundary condition of D(B)

is satisfied by B(u, v). The second and third component of A(u, v) and B(u, v) are treated
similarly. Together with the embedding X(2)

div ↪→ H2(Q)6 from Proposition 7.11 we have
shown that (u, v) is contained in D(A2) ∩D(AB) ∩D(BA) ∩D(B2). The continuity of
the embedding follows from the estimate

max
{∥∥A2(u, v)

∥∥
L2 , ‖AB(u, v)‖L2 , ‖BA(u, v)‖L2 ,

∥∥B2(u, v)
∥∥
L2

}
≤ c ‖(u, v)‖H2

and the estimate ‖(u, v)‖H2 ≤ c ‖(u, v)‖
X

(2)
div

from Proposition 7.11, with the constants
only depending on the claimed quantities.
The statement of part (c) is clear. �

For our error analysis we need versions of the splitting operators in an H1-setting and
in an H2-setting. For the splitting in the H1-setting, we define the space

Y := {(u, v) ∈ H1(Q)6 | uj = 0 on Γ \ Γj, vj = 0 on Γj, for all j ∈ {1, 2, 3}}. (7.29)

We use for (u, v), (ϕ, ψ) ∈ Y the weighted inner product

(
(u, v) | (ϕ, ψ)

)
Y

:=

∫
Q

(
εu · ϕ+ µv · ψ + ε

3∑
j=1

∂ju · ∂jϕ+ µ

3∑
j=1

∂jv · ∂jψ
)

dx

with the induced norm ‖·‖Y . Due to our assumptions on ε and µ, this norm is equivalent
to the H1-norm. The continuity of the traces implies that Y is a closed subspace of
H1(Q)6.

Remark 7.16. By definition we have

Y ↪→ D(A) ∩D(B) ∩D(A∗) ∩D(B∗).

The part of A in Y is the operator AY with domain

D(AY ) := {(u, v) ∈ Y | (u, v) ∈ D(A), A(u, v) ∈ Y }
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and AY (u, v) := A(u, v) for (u, v) ∈ D(AY ), and the part of B in Y is the operator BY

with
D(BY ) := {(u, v) ∈ Y | (u, v) ∈ D(B), B(u, v) ∈ Y }

and BY (u, v) := B(u, v) for (u, v) ∈ D(BY ). Combining the formulas for A and B with
the definition of Y and the assumptions on ε, µ and σ yields, due to Lemma 7.2, the
following representation for D(AY ) and D(BY ). It will be improved in Corollary 8.3.

Lemma 7.17. We have

D(AY ) = {(u, v) ∈ Y | (C1v, C2u) ∈ Y }
= {(u, v) ∈ H1(Q)6 | uj = 0 on Γ \ Γj, vj = 0 on Γj,

for all j ∈ {1, 2, 3},
∂2u1, ∂3u2, ∂1u3, ∂3v1, ∂1v2, ∂2v3 ∈ H1(Q),

∂3v1 = 0 on Γ \ Γ2, ∂1v2 = 0 on Γ \ Γ3, ∂2v3 = 0 on Γ \ Γ1,

∂3u2 = 0 on Γ1, ∂1u3 = 0 on Γ2, ∂2u1 = 0 on Γ3}

and

D(BY ) = {(u, v) ∈ Y | (C2v, C1u) ∈ Y }
= {(u, v) ∈ H1(Q)6 | uj = 0 on Γ \ Γj, vj = 0 on Γj,

for all j ∈ {1, 2, 3},
∂3u1, ∂1u2, ∂2u3, ∂2v1, ∂3v2, ∂1v3 ∈ H1(Q),

∂2v1 = 0 on Γ \ Γ3, ∂3v2 = 0 on Γ \ Γ1, ∂1v3 = 0 on Γ \ Γ2,

∂3u1 = 0 on Γ2, ∂1u2 = 0 on Γ3, ∂2u3 = 0 on Γ1}.

Proof:
The identity

D(AY ) = {(u, v) ∈ Y | (C1v, C2u) ∈ Y }

follows from Y ↪→ D(A), the general assumptions on ε, µ and σ, and Lemma 7.2. The
second equality in the reformulation of D(AY ) is true by the definition of Y . The operator
BY is treated in the same way. �

For the splitting in the H2-setting, we define the space

Z : = {(u, v) ∈ H2(Q)6 | uj = 0 on Γ \ Γj, vj = 0 on Γj,¸notag (7.30)

∂juj = 0 on Γj, for all j ∈ {1, 2, 3}, (7.31)

∂jvk = 0 on Γj for all j, k ∈ {1, 2, 3} with j 6= k}
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and use for (u, v), (ϕ, ψ) ∈ Z the weighted inner product

(
(u, v) | (ϕ, ψ)

)
Z

: =

∫
Q

(
εu · ϕ+ µv · ψ + ε

3∑
j=1

∂ju · ∂jϕ+ µ

3∑
j=1

∂jv · ∂jψ

+ ε

3∑
j,k=1

∂jku · ∂jkϕ+ µ
3∑

j,k=1

∂jkv · ∂jkψ
)

dx.

Due to the general assumptions on ε and µ, the norm ‖·‖Z that is induced by this inner
product is equivalent to the H2-norm. We have Z ↪→ D(A) ∩D(B) ⊆ D(M) and by the
continuity of the traces that Z ⊆ H2(Q)6 is closed. We define the restriction AZ of A to
the subspace

D(AZ) : = {(u, v) ∈ Z | ∂2u1, ∂3u2, ∂1u3, ∂3v1, ∂1v2, ∂2v3 ∈ H2(Q), (7.32)

∂22u1 = 0 on Γ2, ∂33u2 = 0 on Γ3, ∂11u3 = 0 on Γ1}

of Z by AZ(u, v) := A(u, v) for (u, v) ∈ D(AZ) and the restriction BZ of B to the subspace

D(BZ) : = {(u, v) ∈ Z | ∂3u1, ∂1u2, ∂2u3, ∂2v1, ∂3v2, ∂1v3 ∈ H2(Q), (7.33)

∂33u1 = 0 on Γ3, ∂11u2 = 0 on Γ1, ∂22u3 = 0 on Γ2}

of Z by BZ(u, v) := B(u, v) for (u, v) ∈ D(BZ). Note that in contrast to the analogous
H1-setting, AZ and BZ are not the parts of A and B in Z, respectively. This change is
necessary due to some technical difficulties in later proofs. We now enforce that AZ and
BZ map into Z by posing a trace condition on the coefficients.

Lemma 7.18. If ε, µ, σ ∈ W 2,3(Q) and ∂νε = ∂νµ = ∂νσ = 0 on Γ, then AZ and BZ

map into Z.

Proof:
Let (u, v) ∈ D(AZ). The smoothness A(u, v) ∈ H2(Q)6 follows from the assumptions on
ε, µ and σ and Lemma 7.2. In the rest of this proof we use Lemma 7.10 and 7.5 frequently
and without further mentioning. The first component of A(u, v) satisfies the zero-order
boundary conditions − σ

2ε
u1 + 1

ε
∂2v3 = 0 on Γ2 ∪Γ3 due to the definition of Z. We further

obtain
∂1

(
1
ε
∂2v3

)
= −∂1ε

ε2
∂2v3 +

1

ε
∂2∂1v3 = 0

on Γ1 due to ∂νε = 0 on Γ and ∂1v3 = 0 on Γ1 from the definition of Z. Moreover, the
equation

∂1

(
− σ

2ε
u1

)
= −∂1σ

2ε
u1 +

σ∂1ε

2ε2
u1 −

σ

2ε
∂1u1 = 0

on Γ1 follows from ∂νσ = ∂νε = 0 on Γ and ∂1u1 = 0 on Γ1 from the definition of Z. The
first component of A(u, v) then fulfils the boundary conditions of Z.
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The zero-order boundary condition 1
µ
∂3u2 = 0 on Γ1 of the forth component of A(u, v) is

satisfied by the definition of Z. Using ∂2u2 = 0 on Γ2 by the definition of Z and ∂νµ = 0

on Γ, we infer

∂2

(
1
µ
∂3u2

)
= −∂2µ

µ2
∂3u2 +

1

µ
∂3∂2u2 = 0

on Γ2. Again due to ∂νµ = 0 on Γ and this time due to the definition of D(AZ) we
compute

∂3

(
1
µ
∂3u2

)
= −∂3µ

µ2
∂3u2 +

1

µ
∂33u2 = 0

on Γ3. Hence, the boundary conditions of Z of the fourth component of A(u, v) are shown.
The other components of A(u, v) are treated analogously.
Let (u, v) ∈ D(BZ). In the same way as for D(AZ) we check B(u, v) ∈ H2(Q)6, the

boundary conditions

− σ

2ε
u1 −

1

ε
∂3v2 = 0 on Γ2 ∪ Γ3

and

∂1

(
− σ

2ε
u1 − 1

ε
∂3v2

)
= −∂1σ

2ε
u1 +

σ∂1ε

2ε2
u1 −

σ

2ε
∂1u1 +

∂1ε

ε2
∂3v2 −

1

ε
∂3∂1v2 = 0 on Γ1

of the first component of B(u, v), as well as the boundary conditions

− 1

µ
∂2u3 = 0 on Γ1,

∂2

(
− 1
µ
∂2u3

)
=
∂2µ

µ2
∂2u3 −

1

µ
∂22u3 = 0 on Γ2,

∂3

(
− 1
µ
∂2u3

)
=
∂3µ

µ2
∂2u3 −

1

µ
∂2∂3u3 = 0 on Γ3

of the forth component of B(u, v). The other components of B(u, v) are treated analo-
gously. �

7.3. Solutions to the Maxwell equations

Observe that the electric boundary condition has been built into the domain of the
Maxwell operator. The divergence condition on the magnetic field and the magnetic
boundary condition are conserved quantities, see Chapter 1 in [56]. Rather than at (7.1),
we thus look at the inhomogeneous Cauchy problem

∂t

(
E(t)

H(t)

)
= M

(
E(t)

H(t)

)
+

(
−1
ε
J0(t)

0

)
in Q, (7.34a)

(E(0),H(0)) = (E0,H0) ∈ D(M), (7.34b)
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7. The Maxwell equations and their solutions

with ρ(t) := div(εE(t)) in L2(Q) or H1(Q), assuming that div(εE0) belongs to L2(Q) or
H1(Q), respectively, and that

div(µH0) = 0 on Q and trn(µH0) = 0 on Γ.

We look for solutions (E,H) that (at least) belong to C1([0,∞), X) ∩ C([0,∞), D(M)).
First, we look at problem (7.1) without the divergence conditions and without the

magnetic boundary condition, i.e.

∂tE(t) =
1

ε
curlH(t)− 1

ε

(
σE(t) + J0(t)

)
in Q, (7.35a)

∂tH(t) = − 1

µ
curlE(t) in Q, (7.35b)

trt(E(t)) = 0 on Γ, (7.35c)

E(0) = E0, H(0) = H0 in Q, (7.35d)

for t ≥ 0.

Proposition 7.19. (a) The operator M generates a contraction C0-semigroup etM on
X. If (E0,H0) ∈ D(M) and

(
J0, 0

)
∈ C([0,∞), D(M)) +C1([0,∞), X), then there

exists a unique solution (E,H) ∈ C1([0,∞), X)∩C([0,∞), D(M)) to (7.35), which
fulfils

(E(t),H(t)) = etM(E0,H0)−
∫ t

0

e(t−s)M(1
ε
J0(s), 0

)
ds in L2(Q)6, (7.36a)

div(εE(t)) = e−
σ
ε
t div(εE0)−

∫ t

0

e−
σ
ε

(t−s)
(
∇
(
σ
ε

)
εE(s) + div(J0(s))

)
ds (7.36b)

in H−1(Q),

div(εE(t)) = div(εE0)−
∫ t

0

div(σE(s) + J0(s)) ds in H−1(Q), (7.36c)

div(µH(t)) = div(µH0) in H−1(Q), (7.36d)

trn(µH(t)) = trn(µH0) in H−1/2(Γ), (7.36e)

for all t ≥ 0. If σ = 0, then the semigroup can be extended to a unitary group.

(b) Let (E0,H0) ∈ X and (J0, 0) ∈ L1
loc([0,∞), X). Define (E(t),H(t)) by (7.36a).

Then the equations (7.36b), (7.36c) and (7.36d) still hold true in H−1(Q).

Proof:
(a) We define the operator (M̃,D(M̃)) on X with D(M̃) := D(M) and

M̃ :=

(
0 1

ε
curl

− 1
µ

curl 0

)
.
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Let (E0,H0) ∈ D(M) = D(M̃). Due to Proposition 3.5 in [37] the operator M̃ generates
a unitary C0-group etM̃ and etM̃(E0,H0) is the unique solution to (7.35) in C1([0,∞), X)∩
C([0,∞), D(M)) if σ = 0 and J0 = 0. Because M − M̃ is bounded and dissipative on
X, Theorem III.2.7 in [23] yields that M generates a contractive C0-semigroup etM on X.
Under the assumptions on (E0,H0) and (J0, 0) we thus obtain a solution

(E,H) ∈ C1([0,∞), X) ∩ C([0,∞), D(M))

to (7.35), given by (7.36a).
Equation (7.35a) implies

∂s div(εE(s)) = div curl(εE(s))− div
(
σ
ε
εE(s)

)
− div(J0(s))

= −σ
ε

div(εE(s))−∇
(
σ
ε

)
εE(s)− div(J0(s)),

so that

∂s
(
e
σ
ε
s div(εE(s)

)
=
σ

ε
e
σ
ε
s div(εE(s))− e

σ
ε
s
(
σ
ε

div(εE(s)) +∇
(
σ
ε

)
εE(s) + div(J0(s))

)
= −eσε s

(
∇
(
σ
ε

)
εE(s) + div(J0(s))

)
in H−1(Q) for s ≥ 0. Integration from 0 to t yields

e
σ
ε
t div(εE(t)) = div(εE0)−

∫ t

0

e
σ
ε
s
(
∇
(
σ
ε

)
εE(s) + div(J0(s))

)
ds

and thus

div(εE(t)) = e−
σ
ε
t div(εE0)−

∫ t

0

e−
σ
ε

(t−s)
(
∇
(
σ
ε

)
εE(s) + div(J0(s))

)
ds

in H−1(Q), which is (7.36b).
Let ϕ ∈ H1

0 (Q). Again equation (7.35a) and div curl = 0 in H−1(Q) yield the formula

∂t 〈div(εE(t)), ϕ〉H−1(Q),H1
0 (Q) = −∂t

∫
Q

εE(t) · ∇ϕ dx

= −
∫
Q

(curlH(t)− σE(t)− J0(t)) · ∇ϕ dx

= 〈− div(σE(t) + J0(t)), ϕ〉H−1(Q),H1
0 (Q)

since (J0, 0) ∈ C([0,∞), D(M)) ∩ C1([0,∞), X). Hence,

∂t div(εE(t)) = − div(σE(t) + J0(t))

in H−1(Q). By integrating, (7.36c) is thus valid in H−1(Q). In the same way one shows
(7.36d) by means of (7.35b).
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7. The Maxwell equations and their solutions

To derive (7.36e), we take ϕ ∈ H2(Q). Again (7.35b) and Proposition 7.3 imply that

0 =
(
∂t(µH(t)) + curlE(t) | ∇ϕ

)
L2

= −∂t
∫
Q

div(µH(t))ϕ dx+ ∂t

〈
trn(µH(t)), ϕ

〉
H−1/2(Γ),H1/2(Γ)

+

∫
Q

E(t) · curl∇ϕ dx−
〈

trt(E(t)),∇ϕ
〉
H−1/2(Γ)3,H1/2(Γ)3

.

Using (7.36d), curl∇ = 0 and (7.35c), we deduce that

∂t 〈trn(µH(t)), ϕ〉H−1/2(Γ),H1/2(Γ) = 0.

This implies (7.36e) since H2(Q) is dense in H1(Q) and the trace map tr : H1(Q) →
H1/2(Γ) is surjective by Proposition 7.3.
For σ = 0 the semigroup can be extended to a unitary group by Stone’s Theorem since

M is skew-adjoint by Proposition 3.5 in [37].
The statement of (b) is seen by approximation. �

Before we can continue with the generation properties of the restricted Maxwell oper-
ators, we show a weaker version of Lemma 7.9. We need it later on due to a lack of zero
boundary conditions.

Lemma 7.20. Let f ∈ L2(Q) and θ ∈ (1/4, 1/2). Let Γ̃ be the union of exact two of the
sets Γ1, Γ2 and Γ3, and Γ̃′ = Γ \ Γ̃. Furthermore, let

D := H3/2+θ(Q) ∩H1
Γ̃
(Q)

and g ∈ L2(Γ̃′). Then there exists a unique function v ∈ H1
Γ̃
(Q) such that∫

Q

vϕ dx+

∫
Q

∇v · ∇ϕ dx =

∫
Q

fϕ dx+

∫
Γ̃′
gϕ dσ (7.37)

for all ϕ ∈ H1
Γ̃
(Q). If g ∈ Hθ(Γ̃′), then we additionally have v ∈ D, v −∆v = f , ∂νv = g

on Γ̃′ and
‖v‖H3/2+θ ≤ c

(
‖f‖L2 + ‖g‖Hθ(Γ̃′)

)
.

Proof:
The proof works similar to the ones of Lemma 3.6 in [37] and of Lemma 7.9.
1) The Lemma of Lax-Milgram yields that problem (7.37) has a unique solution ũ

H1
Γ̃
(Q). Let L = ∆ be the Laplace operator on Q with Dirichlet boundary conditions on

Γ̃ and Neumann boundary conditions on Γ̃′. It was shown in Lemma 3.6 of [37] that

D(L) = {v ∈ H2(Q) ∩H1
Γ̃
(Q) | ∂νv = 0 on Γ̃′}.
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Since L is m-accretive, we infer (after shifting L so that it is invertible) from Corollary 4.30
and 4.37 in [52] that

XL
α := D

(
(I − L)α

)
= (L2(Q), D(L))α,2

for all α ∈ (0, 1). We interpolate for α ∈ (0, 1) \ {1/4, 3/4} the inclusions

H2
0 (Q) ↪→ D(L) ↪→ H2(Q)

and L2(Q)→ L2(Q) to get

(L2(Q), H2
0 (Q))α,2 = H2α

0 (Q) ↪→ XL
α ↪→ H2α(Q),

using Proposition 2.11 in [45]. Observe that H2α
0 (Q) = H2α(Q) for α ∈ (0, 1/4), see

Theorem 4.3.2.1 in [70]. This implies

XL
α = H2α(Q) = H2α

0 (Q)

for α ∈ (0, 1/4). Further, we have XL
−α =

(
XL
α

)∗ due to the self-adjointness of L, see
Proposition V.1.4.3 in [2]. This gives XL

α = H−2α(Q) for α ∈ (−1/4, 0). The map
(I − L)−1 : XL

−α → XL
1−α is continuous by Corollary V.1.3.9 in [2].

2) We assume without loss of generality that Γ̃′ = Γ1. Let R ⊆ R2 be a rectangle that
is congrent to one of the two congruent parts of Γ1 and let ∆R be the Dirichlet Laplacian
on R with domain D(∆R) = H2(R) ∩H1

0 (R). We conclude from Corollary 4.30 and 4.32
in [52] that

Vα := D
(
(−∆R)α

)
=
(
L2(R), D(−∆R)

)
α,2
.

Again from Corollary V.1.3.9 in [2] we infer V−α = (Vα)∗. We see analogously to in part 1)
that

H2α
0 (R) ↪→ Vα ↪→ H2α(R)

for α ∈ (0, 1) \ {1/4, 3/4}. This implies with Theorem 4.3.2.1 in [70] that

Vα = H2α(R) = H2α
0 (R)

for α ∈ (0, 1/4). By duality, we also have Vα = H−2α(R) for α ∈ (−1/4, 0).
3) We denote by Jx and Jy the projections of R onto the x- and the y-axis, respectively,

and set H2α
D := H2α∩Hmin{1,2α}

0 for all α ∈ (0, 1]. The operator ∆R equals the sum of ∂xx
and ∂yy with domains H2

D(Jx, L
2(Jy)) and H2

D(Jy, L
2(Jx)), respectively. As in the proof

of Lemma 3.6 in [37] we see

D(∆R) = D0(∂xx) ∩D0(∂yy) = H2
D

(
Jx, L

2(Jy)
)
∩H2

D

(
Jy, L

2(Jx)
)
,

where D0(∂xx) and D0(∂yy) are the domains of ∂xx and ∂yy with Dirichlet bonudary
conditions, respectively. Due to [32] and the proof of Lemma 3.6 in [37] we hence have
for α > 1/4 that

Vα = (L2(Q), D0(∂xx))α,2 ∩ (L2(Q), D0(∂yy))α,2

137



7. The Maxwell equations and their solutions

= H2α
D (Jx, L

2(Jy)) ∩H2α
D (Jy, L

2(Jx)) ∩H2α(R)

⊆ {u ∈ H2α(R) | tru = 0 on ∂R}.

4) We assume g ∈ C∞c (Γ1) and look at the two restrictions g1 ∈ C∞c (Γ−1 ) and g2 ∈
C∞c (Γ+

1 ). We define w, w(1) and w(2) as in the proof of Lemma 7.9, i.e. for instance

w(1)(x1, x2, x3) := −
(
χ(x1 − a−1 )(−∆R)−1/2 exp

(
(x1 − a−1 )(−∆R)1/2

)
g1

)
(x2, x3)

with a C∞-function χ : [0, a+
1 − a−1 ] → R with suppχ ⊆

[
0, 1

2
(a+

1 − a−1 )
]
and χ = 1 on[

0, 1
4
(a+

1 − a−1 )
]
. Further, we define for all x1 ∈ (a−1 , a

+
1 ) the function ψ(x1) : R→ R by

ψ(x1) := (−∆R)−1/4 exp
(
(x1 − a−1 )(−∆R)1/2

)
(−∆R)θ/2g1

and have the crucial estimate

‖ψ(x1)‖L2(R) ≤ c(x1) ‖g1‖Hθ(R) ,

which holds true due to Proposition 6.2 in [52]. Taking the derivatives of w(1) and rear-
ranging the operators gives

w(1)(x1, x2, x3) = −
(
χ(x1 − a−1 )(−∆R)−3/4−θ/2ψ(x1)

)
(x2, x3),

∂1w
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )(−∆R)−1/4−θ/2ψ(x1)

)
(x2, x3)

−
(
χ′(x1 − a−1 )(−∆R)−3/4−θ/2ψ(x1)

)
(x2, x3),

∂kw
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )∂k(−∆R)−3/4/−θ/2ψ(x1)

)
(x2, x3),

∂11w
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )(−∆R)1/4−θ/2ψ(x1)

)
(x2, x3)

− 2
(
χ′(x1 − a−1 )(−∆R)−1/4−θ/2ψ(x1)

)
(x2, x3)

−
(
χ′′(x1 − a−1 )(−∆R)−3/4−θ/2ψ(x1)

)
(x2, x3),

∂1kw
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )∂k(−∆R)−1/4−θ/2ψ(x1)

)
(x2, x3)

−
(
χ′(x1 − a−1 )∂k(−∆R)−3/4−θ/2ψ(x1)

)
(x2, x3),

∂klw
(1)(x1, x2, x3) = −

(
χ(x1 − a−1 )∂kl(−∆R)−3/4−θ/2ψ(x1)

)
(x2, x3)

for all k, l ∈ {2, 3}. Due to 1/4−θ/2 ∈ (−1/4, 0), the operator (−∆R)
1/4−θ/2
−1 is continuous

from L2(R) to Vθ/2−1/4 and we have Vθ/2−1/4 = Hθ−1/2(R). We furthermore have

∂kV1/4+θ/2 ⊆ ∂kH
1/2+θ(R) ⊆ Hθ−1/2(R),

∂klV3/4+θ/2 ⊆ ∂klH
3/2+θ(R) ⊆ Hθ−1/2(R)

for all k, l ∈ {2, 3}. The other appearing terms are of the same type or even regular. We
thus infer with the boundedness of χ and its derivative that w(1) belongs to H3/2+θ(Q).
Arguing in the same way with w(2) we obtain that w belongs to H3/2+θ(Q).
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Set f̃ := f − w + ∆w. Since θ/2− 1/4 ∈ (−1/4, 0), we conclude that f̃ is contained in
Hθ−1/2(Q) = XL

θ/2−1/4. Together with w ∈ H3/2+θ(Q) we thus infer that

u := (I − L)−1f̃ + w

belongs to XL
3/4+θ/2 ⊆ H3/2+θ(Q). Furthermore, u−∆u = f , u = 0 on Γ̃ and ∂νu = g on

Γ̃′.
5) We now approximate g ∈ Hθ(Γ1) by a sequence (gn)n∈N in C∞c (Γ1) with gn → g

in Hθ(Γ1) as n → ∞, which is possible due to Proposition 1.17 in [52]. We take a
corresponding sequence (un)n∈N in H3/2+θ(Q) from step 3) and obtain with the same
estimates as above that

‖un − um‖H3/2+θ ≤ c ‖gn − gm‖Hθ(Γ1) −→ 0

as n,m → ∞. Hence, (un) has a limit u in H3/2+θ(Q). The continuity of the Dirichlet
trace map and the Neumann trace map implies u = 0 on Γ \ Γ1 and ∂νu = g on Γ1.

By the divergence theorem one checks that u satisfies (7.37) for all ϕ ∈ H1
Γ̃
(Q), so that

it is equal to ũ from step 1). �

We now state an analogon of the above result in the spaces X0, X
(0)
div and X(2)

div.

Proposition 7.21. (a) Let σ = 0. Then the operator M0 generates a unitary C0-
semigroup etM0 on X0. For (E0,H0) ∈ D(M0) and J0 = 0, the function

(E(t),H(t)) := etM0(E0,H0)

is the unique solution to (7.1) in C1([0,∞), X0) ∩ C([0,∞), D(M0)), where ρ = 0.

(b) The operatorM (0)
div generates a C0-semigroup etM

(0)
div on X(0)

div. For (E0,H0) ∈ D(M
(0)
div)

and (J0, 0) ∈ C
(
[0,∞), D(M

(0)
div)
)

+ C1
(
[0,∞), X

(0)
div

)
, the function

(E(t),H(t)) := etM
(0)
div(E0,H0)−

∫ t

0

e(t−s)M(0)
div

(
1
ε
J0(s), 0

)
ds, t ≥ 0

is the unique solution to (7.1) in C1
(
[0,∞), X

(0)
div

)
∩ C

(
[0,∞), D(M

(0)
div)
)
with

ρ = div(εE(t)) = div(εE0)−
∫ t

0

div(σE(s) + J0(s)) ds (7.38)

= e−
σ
ε
t div(εE0)−

∫ t

0

e−
σ
ε

(t−s)
(
∇
(
σ
ε

)
· εE(s) + div J0(s)

)
ds

in L2(Q) for t ≥ 0. The semigroup satisfies∥∥∥etM(0)
div(E0,H0)

∥∥∥
X

(0)
div

≤ c(1 + t) ‖(E0,H0)‖
X

(0)
div

for all t ≥ 0 and (E0,H0) ∈ X(0)
div.
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7. The Maxwell equations and their solutions

(c) Let ε, µ, σ ∈ W 2,3(Q). Then M
(2)
div generates a C0-semigroup etM

(2)
div on X

(2)
div. For

(E0,H0) ∈ D(M
(2)
div) and

(
1
ε
J0, 0

)
∈ C

(
[0,∞), D(M

(2)
div)
)

+ C1
(
[0,∞), X

(2)
div

)
, the

function

(E(t),H(t)) := etM
(2)
div(E0,H0)−

∫ t

0

e(t−s)M(2)
div

(
1
ε
J0(s), 0

)
ds, t ≥ 0

is the unique solution to (7.1) in C1
(
[0,∞), X

(2)
div

)
∩C

(
[0,∞), D(M

(2)
div)
)
, where ρ is

given as in (7.38). The semigroup satisfies∥∥∥etM(2)
div(E0,H0)

∥∥∥
X

(2)
div

≤ c
(
1 + t2

)
‖(E0,H0)‖

X
(2)
div

for all t ≥ 0 and (E0,H0) ∈ X(2)
div.

All three semigroups are restrictions of etM .

Proof:
Part (a) was shown in Proposition 3.5 of [37].
(b) Let (E0,H0) ∈ X(0)

div and t ≥ 0. Set

(Ẽ(t), H̃(t)) := etM(E0,H0).

Proposition 7.19 shows that
∥∥∥(Ẽ(t), H̃(t))

∥∥∥
X
≤ ‖(E0,H0)‖X . Hence, formula (7.36b)

yields that div(εẼ(t)) belongs to L2(Q) and that∥∥∥div(εẼ(t))
∥∥∥
L2(Q)

≤ ‖div(εE0)‖L2(Q) + ct ‖(E0,H0)‖X .

Moreover, div(εE(t)) tends to div(εE0) in L2(Q) as t → 0. The magnetic conditions in
X

(0)
div are satisfied by H(t) due to (7.36d) and (7.36e). The semigroup etM thus leaves

X
(0)
div invariant and is strongly continuous on this space. Hence, it satisfies the asserted

estimate due to Section II.2.3 in [23]. Here we use that M (0)
div is the part of M in X(0)

div by
Lemma 7.12 and

(
1
ε
J0, 0

)
belongs to C

(
[0,∞), D(M

(0)
div)
)

+ C1
(
[0,∞), X

(0)
div

)
.

(c) 1) We now take (E0,H0) ∈ X(2)
div and define (Ẽ(t), H̃(t)) as in the proof of part (b).

The strategy of the proof is again to check that the semigroup etM leaves X(2)
div invariant

and is strongly continuous thereon. Then we conclude the assertion by Section II.2.3 in
[23].
2) As above the magnetic field H̃(t) satisfies the divergence and boundary condi-

tions in X
(2)
div for t ≥ 0 and the map t 7→ div(εẼ(t)) is continuous in L2(Q). More-

over, t 7→ (Ẽ(t), H̃(t)) is continuous in the space D(M2), so that Ẽ is contained in
C([0,∞), H0(curl, Q)). Taking also the identity

div(Ẽ(t)) = div
(

1
ε
εẼ(t)

)
= ∇

(
1
ε

)
· εẼ(t) +

1

ε
div(εẼ(t))
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7.3. Solutions to the Maxwell equations

for t ≥ 0 into account, we see that Ẽ belongs to C([0,∞), H(div, Q)). Proposition 7.4
thus shows that Ẽ is a continuous map into H1(Q)3 and∥∥∥Ẽ(t)

∥∥∥
H1
≤ c(1 + t) ‖(E0,H0)‖

X
(2)
div
.

3) This fact allows us to differentiate (7.36b) in L2(Q), obtaining

∇ div(εẼ(t)) = −te−σε t∇
(
σ
ε

)
div(εE0) + e−

σ
ε
t∇ div(εE0)

+

∫ t

0

e−
σ
ε

(t−s)
(

(t− s)
(
∇
(
σ
ε

))2
εẼ(s) +D2

(
σ
ε

)
εẼ(s)

−∇
(
σ
ε

)
(∇ε)Ẽ(s)− ε

(
∂Ẽ(s)

)T∇(σ
ε

))
ds

for all t ≥ 0, where D2u denotes the matrix with the second derivatives of a function u.
Using the properties of σ and ε, the H1-continuity of Ẽ and the embedding H1(Q)3 ↪→
L6(Q)3, we conclude that div(εẼ(t)) belongs to C([0,∞), L2(Q)) and fulfils the estimate∥∥∥∇ div(εẼ(t))

∥∥∥
L2

= t
∥∥∇(σ

ε

)∥∥
L∞ ‖div(εE0)‖L2 + ‖∇ div(εE0)‖L2

+

∫ t

0

(
(t− s)

∥∥∇(σ
ε

)∥∥2

L∞ ‖ε‖L∞
∥∥∥Ẽ(s)

∥∥∥
L2

+
∥∥D2

(
σ
ε

)∥∥
L3 ‖ε‖L∞

∥∥∥Ẽ(s)
∥∥∥
H1

+
∥∥∇(σ

ε

)∥∥
L∞ ‖∇ε‖L∞

∥∥∥Ẽ(s)
∥∥∥
L2

+
∥∥∇(σ

ε

)∥∥
L∞ ‖ε‖L∞

∥∥∥∇Ẽ(s)
∥∥∥
L2

)
ds

≤ c
(
t ‖div(εE0)‖H1 + (t+ t2)

∥∥∥Ẽ(t)
∥∥∥
L2

+ t
∥∥∥Ẽ(t)

∥∥∥
H1

)
.

Together with step 1), we thus deduce the continuity of t 7→ div(εẼ(t)) in H1(Q) and the
bound ∥∥∥div(εẼ(t))

∥∥∥
H1(Q)

≤ c(1 + t2) ‖(E0,H0)‖
X

(2)
div
.

4) We still have to show the continuity of t 7→ div(εẼ(t)) in the smaller space H1
00(Q).

To this aim we first show that t 7→ Ẽ(t) is continuous with values in H15/8(Q), which will
allow us to take traces on the edges of Q. Let t ≥ 0. As in the proof of Proposition 7.11
we get

‖∆E(t)‖L2 , ‖∆H(t)‖L2 ≤ c
(∥∥M2(E(t),H(t))

∥∥
X

+ ‖(E(t),H(t))‖
X

(0)
div

)
≤ c ‖(E(t),H(t))‖

X
(2)
div
,

as well as ∆(εE1(t)) ∈ L2(Q) and εE1(t) ∈ H2
loc(Q). As therein we get equation (7.19)

with ρ(t) ∈ H1/2(Γ) ↪→ Hθ(Γ) for θ = 3/8 ∈ (1/4, 1/2). Lemma 7.20 hence yields
εE1(t) ∈ H15/8(Q). Due to the assumptions on ε, the multiplication operator f 7→ 1

ε
f

is continuous from H1(Q) to H1(Q) and from H2(Q) to H2(Q). By interpolation it is
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7. The Maxwell equations and their solutions

thus also continuous from H15/8(Q) to H15/8(Q), from which we infer E1(t) ∈ H15/8(Q).
This yields tr(E1(t)) ∈ Hα(Γ) for all α ∈ (1/2, 1) by Theorem 3.1 in [45]. The trace
tr(E1(t)) = 0 on Γ2 ∪ Γ3 now gives by the same theorem that tr(E1(t)) = 0 on ∂Γ̂ for all
faces Γ̂ ⊆ Γ (in Hα−1/2(Γ̂) for all α ∈ (1/2, 1)). So, tr(εE1(t)) = 0 on all faces Γ̂ ⊆ Γ.
Analogous results hold for E2(t) and E3(t).
5) The function e−

σ
ε
t is continuous from L2(Γ̂) to L2(Γ̂) and from H1

0 (Γ̂) to H1
0 (Γ̂) for

all faces Γ̂ of Q. So, it is also continuous from H
1/2
0 (Γ̂) to H1/2

0 (Γ̂), which yields that
e−

σ
ε
t div(εE0) is contained in H

1/2
0 (Γ̂) for all faces Γ̂ of Q. Thus, t 7→ e−

σ
ε
t div(εE0)

with values in H1
00(Q). We have ∇

(
σ
ε

)
∈ W 1,3(Q). Let ϕn be functions in C∞(Q) with

ϕn → ∇
(
σ
ε

)
in W 1,3(Q). Then

tr(ϕnεE(s)) = tr(ϕn) tr(εE(s)) = 0

on ∂Γ̂ for all faces Γ̂ of Q. Taking the limit we get that ∇
(
σ
ε

)
· εE(s) vanishes on all edges

of Q. We apply the Sobolev embedding H15/8(Q) ↪→ L∞(Q) from Theorem 4.6.1 in [70]
to E(s) and get with ε ∈ L∞(Q) and ∇

(
σ
ε

)
∈ W 1,3(Q) that∫ t

0

∇
(
σ
ε

)
· εE(s) ds

belongs to W 1,3(Q), so that its trace belongs to W 2/3,3
0 (Γ) due to the vanishing trace of

the integrand. From the inclusions L3(Γ) ↪→ L2(Γ) and W 1,3
0 (Γ) ↪→ H1

0 (Γ) we infer by
interpolating the embedding W 2/3,3

0 (Γ) ↪→ H
1/2
0 (Γ). Thus, we get altogether with (7.36b)

that ρ is continuous with values in H1/2
0 (Γ) and hence that ρ is continuous with values in

H1
00(Q). �
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8. The ADI splitting scheme and
properties of the splitting
operators

This chapter is devoted to the splitting operators and the splitting scheme we construct
with them. We show in the Sections 8.1, 8.2 and 8.3 that the splitting operators in the
L2-setting and their restrictions to the subspace of H1 and H2 generate quasicontractive
strongly continuous semigroups, respectively. This implies crucial estimate of their resol-
vents. After presenting the ADI splitting scheme in Section 8.4, we explain its efficiency
in Section 8.5.

8.1. Properties of the splitting operators in the
L2-setting

We start with a basic result in X.

Proposition 8.1. (a) The operators A and B generate C0-semigroups of contractions
on X. In particular,∥∥(I − τA)−1

∥∥
B(X)
≤ 1 and

∥∥(I − τB)−1
∥∥
B(X)
≤ 1

for all τ > 0.

(b) For all τ > 0 we have∥∥(I + τA)(I − τA)−1
∥∥
B(X)
≤ 1 and

∥∥(I + τB)(I − τB)−1
∥∥
B(X)
≤ 1.

Proof:
(a) In Lemma 4.3 in [37] it was shown that A0 and B0, being defined in (7.24), are
skew-adjoint on X. Therefore, they generate by Stone’s Theorem C0-semigroups (even
C0-groups) of unitary operators on X. Due to −σ ≤ 0 and the boundedness of σ, The-
orem III.2.7 in [23] shows that the operators A and B, see (7.23), also generate C0-
semigroups of contractions on X. In particular, all λ > 0 are in the resolvent set of A
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8. The ADI splitting scheme and properties of the splitting operators

and in the resolvent set of B. For τ > 0 the Theorem of Hille–Yosida gives∥∥(I − τA)−1x
∥∥
X

=
1

τ

∥∥∥( 1
τ
I − A

)−1
x
∥∥∥
X
≤ 1

τ
· τ ‖x‖X = ‖x‖X

for all x ∈ X, which yields the desired resolvent estimate. The operator B is treated in
the same way.
(b) Let τ > 0. For all x ∈ D(A) we have by the dissipativity of A, see the remark to
Assumption 7 in [59],

‖(I + τA)x‖2
X = ‖x‖2

X + 2 Re(τAx | x)X + ‖τAx‖2
X

≤ ‖x‖2
X − 2 Re(τAx | x)X + ‖τAx‖2

X = ‖(I − τA)x‖2
X .

Because each x ∈ D(A) can be written as x = (I − τA)−1y for some y ∈ X, we thus have∥∥(I + τA)(I − τA)−1y
∥∥
X
≤ ‖y‖X .

Hence, with the same argumentation for B, we infer∥∥(I + τA)(I − τA)−1
∥∥
B(X)
≤ 1 and

∥∥(I + τB)(I − τB)−1
∥∥
B(X)
≤ 1,

which finishes the proof. �

8.2. Properties of the splitting operators in the
H1-setting

We conclude the following corollary on first-order traces by Lemma 7.10 from the zero-
order boundary conditions of D(AY ) and D(BY ), see Subsection 7.2.2 for the definition
of the operators AY and BY .

Corollary 8.2. (a) Let (u, v) ∈ D(AY ). Then

∂3u2 = ∂2u3 = ∂3u3 = ∂3v1 = 0 on Γ1,

∂1u3 = ∂3u1 = ∂1u1 = ∂1v2 = 0 on Γ2,

∂2u1 = ∂1u2 = ∂2u2 = ∂2v3 = 0 on Γ3.

(b) Let (u, v) ∈ D(BY ). Then

∂2u3 = ∂2u2 = ∂3u2 = ∂2v1 = 0 on Γ1,

∂3u1 = ∂3u3 = ∂1u3 = ∂3v2 = 0 on Γ2,

∂1u2 = ∂1u1 = ∂2u1 = ∂1v3 = 0 on Γ3.
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8.2. Properties of the splitting operators in the H1-setting

The above first-order boundary conditions can be used to rewrite the domains of AY
and BY .

Corollary 8.3. We have

D(AY ) = {(u, v) ∈ H1(Q)6 | uj = 0 on Γ \ Γj, vj = 0 on Γj, for all j ∈ {1, 2, 3},
∂2u1, ∂3u2, ∂1u3, ∂3v1, ∂1v2, ∂2v3 ∈ H1(Q),

∂3v1 = 0 on Γ3, ∂1v2 = 0 on Γ1, ∂2v3 = 0 on Γ2}

and

D(BY ) = {(u, v) ∈ H1(Q)6 | uj = 0 on Γ \ Γj, vj = 0 on Γj, for all j ∈ {1, 2, 3},
∂3u1, ∂1u2, ∂2u3, ∂2v1, ∂3v2, ∂1v3 ∈ H1(Q),

∂2v1 = 0 on Γ2, ∂3v2 = 0 on Γ3, ∂1v3 = 0 on Γ1}.

In the next lemmas we collect some basic properties of AY and BY .

Lemma 8.4. The operators AY and BY are closed in Y and densely defined on Y .

Proof:
1) To show the closedness of AY we take a sequence (un, vn)n∈N ⊆ D(AY ) with (un, vn)→
(u, v) in Y and A(un, vn) → (f, g) in Y as n → ∞. Then (u, v) fulfils the zero-order
boundary conditions of Y by the continuity of the occurring traces. Moreover, C2un and
C1vn tend to C2u and C1v in L2(Q)3, respectively, as n → ∞, and A(u, v) = (f, g).
Additionally, we deduce from Lemma 7.2 that σ

2
un → σ

2
u in H1(Q)3 and

C1vn =
(
−σ

2
un + C1vn

)
+ σ

2
un −→ εf + σ

2
u = C1v

and C2un → µg in H1(Q)3 as n → ∞. As a result, C2u and C1v belong to H1(Q)3

and (u, v) satisfies the first-order boundary conditions of D(AY ). Altogether we have
(u, v) ∈ D(AY ) and A(u, v) = (f, g).
To show the closedness of BY we take a sequence (un, vn)n∈N ⊆ D(BY ) with (un, vn)→

(u, v) in Y and B(un, vn) → (f, g) in Y as n → ∞. Then (u, v) fulfils the zero-order
boundary conditions of Y . Additionally, C1un and C2vn converge to C1u and C2v in
H1(Q)3, respectively, as n → ∞, and B(u, v) = (f, g). Furthermore, we have σ

2
un → σ

2
u

in H1(Q)3 and
−C2vn =

(
−σ

2
un − C2vn

)
+ σ

2
un −→ εf + σ

2
u

and −C1un → µg in H1(Q)3 as n→∞. This yields that C1u and C2v belong to H1(Q)3

and that (u, v) fulfils the first-order boundary conditions of D(BY ). Hence, we have
(u, v) ∈ D(BY ) and B(u, v) = (f, g).
2) Let (u, v) ∈ Y , choose n0 ∈ N with n0 ≥ 4

dmin
and let n ≥ n0. Let χ

(j)
n be the cut-off

functions from the proof of Lemma 7.10, see (7.13), acting on the j-th variable. In the
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8. The ADI splitting scheme and properties of the splitting operators

sequel we use the standard C∞-mollifiers ρ(j)
n with support in [− 1

2n
, 1

2n
], acting on the j-th

variable. We extend u1 by 0 outside of Q and define the convolution

u1,n :=
(
ρ(2)
n ∗

(
χ(2)
n χ(3)

n u1

))
|Q.

The support of this function has a distance of at least 1
2n

to Γ2 ∪ Γ3, which implies
the boundary condition on the first of the six components of elements of D(AY ), see
Corollary 8.3. It is clear that u1,n and ∂1u1,n belong to L2(Q) and, letting the derivative
act on the mollifier, also ∂2u1,n. Due to χ(2)

n , χ
(3)
n , (χ

(3)
n )′ ∈ L∞(Q), we have

∂3u1,n = ρ(2)
n ∗

(
χ(2)
n (χ(3)

n )′u1 + χ(2)
n χ(3)

n ∂3u1

)
∈ L2(Q),

so that together u1,n ∈ H1(Q). From

∂22u1,n = ∂2ρ
(2)
n ∗

(
(χ(2)

n )′χ(3)
n u1 + χ(2)

n χ(3)
n ∂2u1

)
and

∂j2u1,n = ∂2ρ
(2)
n ∗ ∂j

(
χ(2)
n χ(3)

n u1

)
for j ∈ {1, 3} we deduce with the same arguments that ∂2u1,n is contained in H1(Q).
Standard results on mollifiers yield that

u1,n −→ u1 in L2(Q) and ∂1u1,n −→ ∂1u1 in L2(Q)

as n→∞. We argue analogously to the procedure in the proof of Lemma 7.10 (and with
the notation from there). We conclude u1(x) =

∫ x2
a−2
∂2u1(x1, t, x3) dt from u1 = 0 on Γ2

and thus

‖u1(·, x2, ·)‖L2(Q2) ≤ (x2 − a−2 )1/2
(∫ x2

a−2

∫
Q2

|∂2u1(x2, t, x3)|2 d(x1, x3) dt
)1/2

,

as well as

‖u1(·, x2, ·)‖L2(Q2) ≤ (a+
2 − x2)1/2

(∫ a+2

x2

∫
Q2

|∂2u1(x1, t, x3)|2 d(x1, x3) dt
)1/2

for almost all x2 ∈ (a−2 , a
+
2 ), so that

∥∥(χ(2)
n )′χ(3)

n u1

∥∥
L2 ≤ n

(∫
[a−2 ,a

−
2 + 2

n
]∪[a+2 −

2
n
,a+2 ]

‖u1(·, x2, ·)‖2
L2(Q2) dx2

)1/2

≤ 2
√
n sup
x2∈[a−2 ,a

−
2 + 2

n
]∪[a+2 −

2
n
,a+2 ]

‖u1(·, x2, ·)‖L2(Q2) (8.1)

≤ 2
(∫

[a−2 ,a
−
2 + 2

n
]∪[a+2 −

2
n
,a+2 ]

∫
Q2

|∂2u1(x1, t, x3)|2 d(x1, x3) dt
)1/2

−→ 0
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8.2. Properties of the splitting operators in the H1-setting

as n→∞. Hence,

∂2u1,n = ρ(2)
n ∗

(
(χ(2)

n )′χ(3)
n u1

)
+ ρ(2)

n ∗
(
χ(2)
n χ(3)

n ∂2u1

)
−→ ∂2u1 in L2(Q)

as n→∞. The convergence

∂3u1,n −→ ∂3u1 in L2(Q)

as n→∞ is seen similarly. This shows u1,n → u1 in H1(Q) as n→∞. The functions u2

and u3 are treated in the same way.
Let Φ be the linear and bounded Stein extension operator that maps functions in H1(Q)

to functions in H1(R3), see Theorem 5.24 in [1]. We extend v1 by 0 outside of Q and set

v1,n,m := ρ(2)
n ∗

(
ρ(3)
n ∗ Φ

((
ρ(1)
m ∗

(
χ(1)
m v1

))
|Q
))
|Q

for all n,m ≥ n0. This function is in H1(Q) and it satisfies ∂3v1,n,m ∈ H1(Q) and
v1,n,m = 0 on Γ1, since the support of ρ(1)

m ∗
(
χ

(1)
m v1

)
has distance of at least 1

2m
from Γ1.

Let η > 0. Using that v1 = 0 on Γ1, as in (8.1) one sees that∥∥(χ(1)
m )′v1

∥∥
L2 −→ 0

as m→∞. Letting the occurring derivatives acting on χ(1)
m v1, we see that there exists an

m̃ = m̃(η) ≥ n0 such that ∥∥∥ρ(1)
m̃ ∗

(
χ

(1)
m̃ v1

)
− v1

∥∥∥
H1
≤ η.

Furthermore, there exists an ñ = ñ(η) ≥ n0 such that∥∥∥v1,ñ,m̃ − Φ
(
ρ

(1)
m̃ ∗

(
χ

(1)
m̃ v1

))
|Q
∥∥∥
H1
≤ η,

so that
‖v1,ñ,m̃ − v1‖H1 ≤

(
1 + ‖Φ‖B(H1(Q),H1(R3))

)
η.

Set v̂1 := v1,ñ,m̃.
Because v̂1 does not necessarily fulfil the first-order boundary condition on the forth

component of elements of D(AY ), we define ϕn := χ
(3)
n ∂3v̂1 and

vn1 (x) := vn1 (x1, x2, x3) := v̂1(x1, x2, a
−
3 ) +

∫ x3

a−3

ϕn(x1, x2, t) dt

for almost all (x1, x2) ∈ (a−1 , a
+
1 ) × (a−2 , a

+
2 ). The trace of ϕn vanishes o Γ3 due to χ(3)

n ,
so that ∂3v

n
1 = ϕn = 0 on Γ3. Lemma 7.10 shows that vn1 = 0 on Γ1 because v̂1 = 0

on Γ1. As a result, vn1 also satisfies the other boundary condition vn1 = 0 on Γ1. From
χ

(3)
n ∈ W 1,∞(Q) we infer that ϕn belongs to H1(Q). The identity ∂3v

n
1 = ϕn now shows

vn1 , ∂3v
n
1 ∈ H1(Q).
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It remains to check that vn1 converges to v̂1 inH1(Q) as n→∞. Dominated convergence
yields

ϕn − ∂3v̂1 =
(
χ(3)
n − 1

)
∂3v̂1 −→ 0

in L2(Q) as n→∞. We thus obtain the limit

vn1 (x1, x2, x3)− v̂1(x1, x2, x3) =

∫ x3

a−3

(
ϕn(x1, x2, t)− ∂3v̂1(x1, x2, t)

)
dt −→ 0

in L2(Q) as n→∞ since(∫
Q

∣∣∣∣∣
∫ x3

a−3

(
ϕn(x1, x2, t)− ∂3v̂1(x̂3, t)

)
dt

∣∣∣∣∣
2

dx

)1/2

≤
(∫

Q

(x3 − a−3 )

∫ x3

a−3

|ϕn(x1, x2, t)− ∂3v̂1(x̂3, t)|2 dt dx

)1/2

≤
(∫ a+3

a−3

(a+
3 − a−3 )

∫ a+1

a−1

∫ a+2

a−2

∫ a+3

a−3

|ϕn(x1, x2, t)− ∂3v̂1(x1, x2, t)|2

dt dx2 dx1 dx3

)1/2

≤ (a+
3 − a−3 ) · ‖ϕn − ∂3v̂1‖L2 −→ 0

as n→∞. Moreover,

∂3v
n
1 (x1, x2, x3)− ∂3v̂1(x1, x2, x3) = ϕn(x1, x2, x3)− ∂3v̂1(x1, x2, x3) −→ 0

in L2(Q) as n→∞. Furthermore,

∂jϕn − ∂3j v̂1 =
(
χ(3)
n − 1

)
∂3j v̂1 −→ 0 for j ∈ {1, 2}

in L2(Q) as n→∞, so that as above

∂jv
n
1 (x1, x2, x3)− ∂j v̂1(x1, x2, x3) =

∫ x3

a−3

(
∂jϕn(x1, x2, t)− ∂3j v̂1(x1, x2, t)

)
dt −→ 0

in L2(Q) as n→∞ for j ∈ {1, 2}. This gives us vn1 → v̂1 in H1(Q) as n→∞. Thus, we
can choose an n̂ = n̂(η) ≥ ñ so large such that∥∥vn̂1 − v1

∥∥
H1 ≤

∥∥vn̂1 − v̂1

∥∥
H1 + ‖v̂1 − v1‖H1 ≤

(
2 + ‖Φ‖B(H1(Q),H1(R3))

)
η,

which shows the assertion. The components v2 and v3 are treated in the same way. �

We set

κY :=
3 ‖∇σ‖L∞

4δ
+

3 ‖σ‖L∞ ‖∇ε‖L∞
4δ2

+
3 ‖∇ε‖L∞ + 3 ‖∇µ‖L∞

2δ2
.
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Lemma 8.5. The operators AY − κY I and BY − κY I are dissipative on Y .

Proof:
Let (u, v) ∈ D(AY ). With integration by parts we see

3∑
j=1

∫
Q

(
∂jC1v · ∂ju+ ∂jC2u · ∂jv

)
dx

=
3∑
j=1

∫
Q

(
∂j2v3 ∂ju1 + ∂j3v1 ∂ju2 + ∂j1v2 ∂ju3 (8.2)

+ ∂j3u2 ∂jv1 + ∂j1u3 ∂jv2 + ∂j2u1 ∂jv3

)
dx

= 0,

where we have used the boundary properties of u from Corollary 8.2 and the ones of v
from D(AY ) in Lemma 7.17 to get rid of the boundary integrals. Thus, we have together
with (7.26), (7.28) and Young’s inequality that

Re
(
A(u, v) | (u, v)

)
Y

=

∫
Q

(
−σε

2ε
|u|2 +

ε

ε
C1v · u+

µ

µ
C2u · v − ε

3∑
j=1

∂j
(
σ
2ε
u
)
· ∂ju

+ ε
3∑
j=1

∂j
(

1
ε
C1v

)
· ∂ju+ µ

3∑
j=1

∂j
(

1
µ
C2u

)
· ∂jv

)
dx

= −
∫
Q

σ

2
|u|2 dx−

∫
Q

σ

2
|∂u|2 dx−

3∑
j=1

∫
Q

(∂jσ
2
− σ∂jε

2ε

)
u · ∂ju dx

−
3∑
j=1

∫
Q

∂jε

ε
C1v · ∂ju dx−

3∑
j=1

∫
Q

∂jµ

µ
C2u · ∂jv dx

≤
(‖∇σ‖L∞

4δ
+
‖σ‖L∞ ‖∇ε‖L∞

4δ2

)∫
Q

(
3ε |u|2 + ε |∂u|2

)
dx

+
‖∇ε‖L∞ + ‖∇µ‖L∞

2δ2

∫
Q

(
3ε |∂u|2 + 3µ |∂v|2

)
dx

≤ κY ‖(u, v)‖2
Y ,

where |∂u| and |∂v| denote the Frobenius norm of the Jacobi matrix of u and v, respec-
tively.
Let now (u, v) ∈ D(BY ). The identity (8.2) (with interchanged roles of u and v) yields

together with (7.26), (7.28) and Young’s inequality in the same way as above that

Re
(
B(u, v) | (u, v)

)
Y
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=

∫
Q

(
−σε

2ε
|u|2 − ε

ε
C2v · u−

µ

µ
C1u · v − ε

3∑
j=1

∂j
(
σ
2ε
u
)
· ∂ju

− ε
3∑
j=1

∂j
(

1
ε
C2v

)
· ∂ju− µ

3∑
j=1

∂j
(

1
µ
C1u

)
· ∂jv

)
dx

= −
∫
Q

σ

2
|u|2 dx−

∫
Q

σ

2
|∂u|2 dx−

3∑
j=1

∫
Q

(∂jσ
2
− σ∂jε

2ε

)
u · ∂ju dx

−
3∑
j=1

∫
Q

∂jε

ε
C2v · ∂ju dx−

3∑
j=1

∫
Q

∂jµ

µ
C1u · ∂jv dx

≤
(‖∇σ‖L∞

4δ
+
‖σ‖L∞ ‖∇ε‖L∞

4δ2

)∫
Q

(
3ε |u|2 + ε |∂u|2

)
dx

+
‖∇ε‖L∞ + ‖∇µ‖L∞

2δ2

∫
Q

(
3ε |∂u|2 + 3µ |∂v|2

)
dx

≤ κY ‖(u, v)‖2
Y ,

which finishes the proof. �

Lemma 8.6. The operators (1 + κY )I −AY and (1 + κY )I −BY have dense range in Y .

Proof:
We first deal with the operator (1 + κY )I −AY . Because we know from Lemma 8.4 that
D(AY ) is dense in Y , it is sufficient to show that the range of (1 + κY )I − AY contains
D(AY ). Let (f, g) ∈ D(AY ). We look for fields (u, v) ∈ D(AY ) with

(
(1+κY )I−A

)
(u, v) =

(f, g), i.e.

(
1 + κY + σ

2ε
)u1 −

1

ε
∂2v3 = f1, (1 + κY )v3 −

1

µ
∂2u1 = g3, (8.3a)(

1 + κY + σ
2ε

)u2 −
1

ε
∂3v1 = f2, (1 + κY )v1 −

1

µ
∂3u2 = g1, (8.3b)(

1 + κY + σ
2ε

)u3 −
1

ε
∂1v2 = f3, (1 + κY )v2 −

1

µ
∂1u3 = g2. (8.3c)

Plugging in each line the second equation into the first one, we get with the abbreviation
Dj := ∂j

1
µ
∂j for j ∈ {1, 2, 3} the equations

(
ε(1 + κY ) + σ

2

)
u1 −

1

1 + κY
D2u1 = εf1 +

1

1 + κY
∂2g3 =: h1, (8.4a)(

ε(1 + κY ) + σ
2

)
u2 −

1

1 + κY
D3u2 = εf2 +

1

1 + κY
∂3g1 =: h2, (8.4b)(

ε(1 + κY ) + σ
2

)
u3 −

1

1 + κY
D1u3 = εf3 +

1

1 + κY
∂1g2 =: h3. (8.4c)
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Let j ∈ {1, 2, 3}. Since (f, g) ∈ D(AY ), the function hj belongs to H1(Q) and satisfies
hj = 0 on Γ \ Γj. We define

D(Dj) := {ϕ ∈ L2(Q) | ∂jϕ ∈ L2(Q), Djϕ ∈ L2(Q), ϕ = 0 on Γj}.

Using the general assumptions on µ, we obtain

D(Dj) = {ϕ ∈ L2(Q) | ∂jϕ ∈ L2(Q), ∂2
jϕ ∈ L2(Q), ϕ = 0 on Γj}.

Furthermore, we set

D(∂j) := {ϕ ∈ L2(Q) | ∂jϕ ∈ L2(Q), ϕ = 0 on Γj}.

Let j = 2. We define the operator L by

Lw :=
(
(1 + κY )ε+ σ

2

)
w − 1

1 + κY
∂2

(
1
µ
∂2w

)
for w ∈ D(D2). As in the proof of Lemma 4.3 in [37] we obtain a function w1 inD(D2) with
Lw1 = h1. Moreover, L is invertible. From ∂k∂2w1 ∈ H−1(Q) and the general assumptions
on µ, we infer 1

µ
∂2∂kw1 ∈ H−1(Q) and thus D2∂kw1 ∈ H−2(Q) for all k ∈ {1, 2, 3}. Let

ϕ ∈ H2
0 (Q) and k ∈ {1, 2, 3}. We can thus compute

〈L∂kw1, ϕ〉H−2×H2
0

=
〈
∂kw1,

(
(1 + κY )ε+ σ

2

)
ϕ
〉
H−1×H1

0
− 1

1 + κY

〈
∂2

1
µ
∂2∂kw1, ϕ

〉
H−2×H2

0

= −
∫
Q

w1

((
∂k
(
(1 + κY )ε+ σ

2

))
ϕ+

(
(1 + κY )ε+ σ

2

)
∂kϕ

)
dx

+
1

1 + κY

〈
∂k∂2w1,

1
µ
∂2ϕ
〉
H−1×H1

0

= −
∫
Q

(
(1 + κY )ε+ σ

2

)
w1∂kϕ dx−

∫
Q

(
∂k
(
(1 + κY )ε+ σ

2

))
w1ϕ dx

− 1

1 + κY

∫
Q

(∂2w1)
((
∂k

1
µ

)
∂2ϕ+ 1

µ
∂2∂kϕ

)
dx

= −
∫
Q

(∂kϕ)Lw1 dx−
∫
Q

(
∂k
(
(1 + κY )ε+ σ

2

))
w1ϕ dx

− 1

1 + κY

∫
Q

(
∂k

1
µ

)
(∂2w1)∂2ϕ dx

=

∫
Q

(∂kh1)ϕ dx−
∫
Q

(
∂k
(
(1 + κY )ε+ σ

2

))
w1ϕ dx

+
1

1 + κY

〈
∂2

((
∂k

1
µ

)
∂2w1

)
, ϕ
〉
D(∂2)∗×D(∂2)

,

using that H2
0 (Q) ↪→ D(∂2). Note that the function ∂k

(
1
µ

)
∂2w1 belongs to L2(Q)3. By

the density of H2(Q) in D(∂2), this identity thus holds true for all ϕ ∈ D(∂2) and

L∂kw1 = ∂kh1 −
(
∂k
(
(1 + κY )ε+ σ

2

))
w1 +

1

1 + κY
∂2

((
∂k

1
µ

)
∂2w1

))
=: ψ1(h1) ∈ H−2(Q).

(8.5)
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We observe that the operator L is given by the symmetric, closed, positive definite and
densely defined bilinear form

(w, w̃) 7→
((

(1 + κY )ε+ σ
2

)
w, w̃

)
L2

+
1

1 + κY

(
1
µ
∂2w, ∂2w̃

)
L2

on D(∂2). Thus, L is self-adjoint due to the mentioned properties of the form by Proposi-
tion 1.24 in [61]. Theorem VI.2.23 in [46] yields the equivalence D(∂2) ∼= D(L1/2). Thus,
D(∂2)∗ ∼= D(L1/2)∗, so that ∂kw1 = L−1

−1ψ1(h1) ∈ D(∂2) ∼= D(L1/2). Here, L−1
−1 is the

extension of L−1 to the Sobolev space of order −1, see Section II.5a in [23] and also
Section 9.2. Because this is true for all k ∈ {1, 2, 3}, we have that ∂2w1 is contained in
H1(Q).
We now verify the boundary conditions for w1. From w1 ∈ D(D2) we know that w1 = 0

on Γ2. Moreover, we have w1 = L−1h1 and as remarked above, h1 = 0 on Γ3. The
proof of Lemma 8.4 shows that there exist functions h1,n in H1(Q) whose support has
a distance of at least 1

2n
to Γ2 ∪ Γ3 and satisfy h1,n → h1 in H1(Q) as n → ∞. Set

w1,n := L−1h1,n ∈ D(D2) and take a function χn ∈ C∞c ((a−3 , a
+
3 )) that is constant on

[a−3 + 1
2n
, a+

3 − 1
2n

]. We then obtain

h1,n = χnh1,n = χnLw1,n = L(χnw1,n).

Note that χnw1,n belongs to D(D2) and that w1,n = χnw1,n vanishes on Γ3. We know that
w1,n = L−1h1,n tends to w1 in D(D2). The above arguments further imply

‖∂k(w1,n − w1)‖L2 =
∥∥L−1
−1ψ1(h1,n − h1)

∥∥
L2 ≤ c ‖ψ1(h1,n − h1)‖D(∂2)

≤ c

(
‖∂kh1,n − ∂kh1‖L2 +

∥∥(∂k((1 + κY )ε+ σ
2

))
(w1,n − w1)

∥∥
L2

+
1

1 + κY

∥∥∥(∂k( 1
µ

))
∂2(w1,n − w1)

∥∥∥
L2

)
−→ 0

as n → ∞. Therefore, w1,n converges to w1 in H1(Q) and so w1 also vanishes on Γ3 by
the continuity of the trace.
We define

w̃3 :=
1

1 + κY
g3 +

1

1 + κY

1

µ
∂2w1 ∈ H1(Q),

compare (8.3a). We then have w̃3 = 0 on Γ3 since g3 = 0 on Γ3 by (f, g) ∈ D(AY ) and
∂2w1 = 0 on Γ3 with Lemma 7.10. In the above equation we take the derivative with
respect to the second variable and plug in Lw1 = h1. It follows

∂2w̃3 =
1

1 + κY
∂2g3 +

(
(1 + κY )ε+ 1

2
σ
)
w1 − h1

152



8.2. Properties of the splitting operators in the H1-setting

in L2(Q). The definition of h1 in (8.4a) then yields

∂2w̃3 = −εf1 +
(
ε(1 + κY ) + σ

2

)
w1

in L2(Q). So, (8.3a) is valid for u1 := w1 and v1 := w̃3. Due to the regularity of the
right-hand side ∂2w̃3 belongs to H1(Q). The boundary condition ∂2w̃3 = 0 on Γ2 now
follows with Lemma 7.5 from f1 = 0 and w1 = 0 on Γ2. The other components of w
and w̃ are treated in the same way. Altogether, we hence have (w, w̃) ∈ D(AY ) and
A(w, w̃) = (f, g).
For the operator BY we get

(
1 + κY + σ

2ε
)u1 +

1

ε
∂3v2 = f1, (1 + κY )v2 +

1

µ
∂3u1 = g2,(

1 + κY + σ
2ε

)u2 +
1

ε
∂1v3 = f2, (1 + κY )v3 +

1

µ
∂1u2 = g3,(

1 + κY + σ
2ε

)u3 +
1

ε
∂2v1 = f3, (1 + κY )v1 +

1

µ
∂2u3 = g1

and (
ε(1 + κY ) + σ

2

)
u1 −

1

1 + κY
D3u1 = εf1 −

1

1 + κY
∂3g2 =: h1,(

ε(1 + κY ) + σ
2

)
u2 −

1

1 + κY
D1u2 = εf2 −

1

1 + κY
∂1g3 =: h2,(

ε(1 + κY ) + σ
2

)
u3 −

1

1 + κY
D2u3 = εf3 −

1

1 + κY
∂2g1 =: h3.

instead of (8.3) and (8.4). Now we get the statement for BY in the same way as the one
for AY . �

Proposition 8.7. (a) The operators AY and BY generate C0-semigroups on Y whose
norms are bounded by eκY t. The restrictions of (I − τA)−1 and (I − τB)−1 to Y are
the operators (I − τAY )−1 and (I − τBY )−1, respectively. The semigroup estimate
implies

∥∥(I − τAY )−1
∥∥
B(Y )
≤ 1

1− τκY
and

∥∥(I − τBY )−1
∥∥
B(Y )
≤ 1

1− τκY

for all 0 < τ < 1
κY

, which means in particular∥∥(I − τAY )−1
∥∥
B(Y )
≤ 2 and

∥∥(I − τBY )−1
∥∥
B(Y )
≤ 2

for all 0 < τ ≤ 1
2κY

. Furthermore, the operators AY − κY I and BY − κY I are
maximally dissipative on Y .
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(b) The parts of A∗Y and B∗Y of A∗ and B∗ in Y generate C0-semigroups on Y whose
norms are bounded by eκY t. The restrictions of (I−τA∗)−1 and (I−τB∗)−1 to Y are
the operators (I − τA∗Y )−1 and (I − τB∗Y )−1, respectively. The semigroup estimate
implies∥∥(I − τA∗Y )−1

∥∥
B(Y )
≤ 1

1− τκY
and

∥∥(I − τB∗Y )−1
∥∥
B(Y )
≤ 1

1− τκY

for all 0 < τ < 1
κY

, which means in particular∥∥(I − τA∗Y )−1
∥∥
B(Y )
≤ 2 and

∥∥(I − τB∗Y )−1
∥∥
B(Y )
≤ 2

for all 0 < τ ≤ 1
2κY

. Furthermore, the operators A∗Y − κY I and B∗Y − κY I are
maximally dissipative on Y .

(c) We define the function

γτ (z) :=
1 + τz

1− τz
on C \ { 1

τ
}. Then there exists a τ̃ ∈

(
0, 1

κY

)
such that

‖γτ (AY )‖B(Y ) ≤ e3κY τ , ‖γτ (BY )‖B(Y ) ≤ e3κY τ ,

‖γτ (A∗Y )‖B(Y ) ≤ e3κY τ , ‖γτ (B∗Y )‖B(Y ) ≤ e3κY τ

for all 0 < τ < τ̃ .

Proof:
Due to Lemma 7.14, the statements for the adjoint operators are seen as the other ones.
Therefore, we only show the proofs for AY and BY .
(a) Due to the Theorem of Lumer–Phillips, Lemma 8.4, 8.5 and 8.6 imply that AY −κY I

and BY − κY I generate contraction semigroups on Y . So (0,∞) is in the resolvent
set of AY − κY I and BY − κY I, which together with Lemma 8.5 yields the maximal
dissipativity. Moreover, AY and BY generate C0-semigroups TA(·) and TB(·) on Y with
‖TA(t)‖B(Y ) ≤ eκY t and ‖TB(t)‖B(Y ) ≤ eκY t for all t ≥ 0. Let 0 < τ < 1

κY
, see Section II.2.2

in [23]. The statement of the restrictions of the resolvents follows since for complex
numbers with a larger real part than the growth bound of a semigroup, the resolvent is
the Laplace transform of the semigroup, see Theorem II.1.10 in [23]. This also gives

∥∥(I − τAY )−1y
∥∥
Y

=
∥∥∥ 1
τ

(
1
τ
I − AY

)−1
y
∥∥∥
Y
≤ 1

τ

∥∥∥∥∫ ∞
0

e−
1
τ
tTA(t)y dt

∥∥∥∥
Y

≤ 1

τ

∫ ∞
0

eκY t−
1
τ
t ‖y‖Y dt =

1

τ

1
1
τ
− κY

‖y‖Y =
1

1− τκY
‖y‖Y

for all y ∈ Y . The estimate for (I − τBY )−1 is done in the same way.

154



8.2. Properties of the splitting operators in the H1-setting

(c) Let again 0 < τ < 1
κY

. Due to 1 + τ(z − κY ) 6= 0 for Re z > 0 we can define

γ̃τ (z) :=
1− τ(z − κY )

1 + τ(z − κY )

on {z ∈ C | Re z > 0}. We observe γτ (z) = γ̃τ (κY − z). For r > 0 we look at the mapping

s 7→ γ̃τ (r + is) =
1− τ(r + is− κY )

1 + τ(r + is− κY )

for s ∈ R. Because γ̃τ is a Möbius transform, the generalized circles {r + is | s ∈ R}
are mapped by γ̃τ on a generalized circles Kr, i.e. either a circle or a straight line. From
γ̃τ (r + is) = γ̃τ (r − is) we conclude that the Kr are symmetric with respect to the real
axis and from lims→±∞ γ̃τ (r + is) = −1 we infer that Kr are circles through −1 and
γ̃τ (r) ∈ R. Therefore, the point on the Kr with the largest distance to the origin is either
−1 or γ̃τ (r). From γ̃τ (0) = 1+τκY

1−τκY
> 1, limr→∞ γ̃τ (r) = −1 and γ̃′τ (r) = − 2τ

(1+τ(r−κY ))2
< 0

for all r ∈ (0,∞) infer

sup
Re z>0

‖γ̃τ (z)‖ = sup
r>0
‖γ̃τ (r + ·)‖∞ = sup

r>0
max{1, |γ̃τ (r)|}

= max
{

1, sup
r>0
|γ̃τ (r)|

}
= γ̃τ (0) =

1 + τκY
1− τκY

.

We define
φ(τ) := ln

(1 + τκY
1− τκY

)
for τ ∈ (0, 1

κY
) and φ(0) := 0 and see that φ is continuous on

[
0, 1

κY

)
. By applying

L’Hospital’s rule we get

φ′(0) = lim
τ→0

φ(τ)

τ
= lim

τ→0

2κY
(1−τκY )2

1+τκY
1−τκY

= lim
τ→0

2κY
1− τ 2κ2

Y

= 2κY

and hence have with φ′(τ) = 2κY
1−τ2κ2Y

for τ > 0 that φ ∈ C1([0, 1
κY

)). So, there exists
a τ̃ ∈ (0, 1

κY
) with φ(τ) ≤ 3κY τ and therefore sup

Re z>0
‖γ̃τ (z)‖ ≤ e3κY τ for all τ ∈ (0, τ̃).

Because the operator κY I −AY = −(AY − κY I) is maximal accretive by part (a), we can
apply Theorem 11.5 of [48] and get a H∞-functional calculus for κY I −AY together with
the estimate

‖γτ (AY )‖B(Y ) = ‖γ̃τ (κY I − AY )‖B(Y ) ≤ sup
Re z>0

|γ̃τ (z)| ≤ e3κY τ

for all τ ∈ (0, τ̃). The other estimate is shown in the same way and the operators BY and
B∗Y are treated analogously. �
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8. The ADI splitting scheme and properties of the splitting operators

8.3. Properties of the splitting operators in the
H2-setting

We first use Lemma 7.10 to deduce from the definition of D(AZ) and D(BZ) further trace
properties of these domains, see Subsection 7.2.2 for the definition of the operators AZ
and BZ , as well as AY and BY . In addition, we still have those of Corollary 8.2 since
AZ ⊆ AY and BZ ⊆ BY .

Corollary 8.8. (a) Let (u, v) ∈ D(AZ). Then

∂2u2 = ∂3u2 = ∂2u3 = ∂3u3 = ∂2v1 = ∂3v1 = 0 on Γ1,

∂23u2 = ∂33u2 = ∂22u3 = ∂23u3 = ∂33u3 = 0 on Γ1,

∂23v1 = ∂33v1 = ∂12v2 = ∂13v2 = 0 on Γ1,

∂3u1 = ∂1u1 = ∂1u3 = ∂3u3 = ∂1v2 = ∂3v2 = 0 on Γ2,

∂11u3 = ∂13u3 = ∂11u1 = ∂13u1 = ∂33u1 = 0 on Γ2,

∂12v2 = ∂13v2 = ∂12v3 = ∂23v3 = 0 on Γ2,

∂1u1 = ∂2u2 = ∂1u2 = ∂2u2 = ∂1v3 = ∂2v3 = 0 on Γ3,

∂12u1 = ∂22u1 = ∂11u2 = ∂12u2 = ∂22u2 = 0 on Γ3,

∂12v3 = ∂22v3 = ∂13v1 = ∂23v1 = 0 on Γ3.

(b) Let (u, v) ∈ D(BZ). Then

∂2u2 = ∂3u2 = ∂2u3 = ∂3u3 = ∂2v1 = ∂3v1 = 0 on Γ1,

∂22u3 = ∂23u3 = ∂22u2 = ∂23u2 = ∂33u2 = 0 on Γ1,

∂22v1 = ∂23v1 = ∂12v3 = ∂13v3 = 0 on Γ1,

∂3u1 = ∂1u1 = ∂1u3 = ∂3u3 = ∂1v2 = ∂3v2 = 0 on Γ2,

∂13u1 = ∂33u1 = ∂11u3 = ∂13u3 = ∂33u3 = 0 on Γ2,

∂13v2 = ∂33v2 = ∂12v1 = ∂23v1 = 0 on Γ2,

∂1u1 = ∂2u2 = ∂1u2 = ∂2u2 = ∂1v3 = ∂2v3 = 0 on Γ3,

∂11u2 = ∂12u2 = ∂11u1 = ∂12u1 = ∂22u1 = 0 on Γ3,

∂11v3 = ∂12v3 = ∂13v2 = ∂23v2 = 0 on Γ3.

In the next lemmas we collect some properties of AZ and BZ .

Lemma 8.9. Let ε, µ, σ ∈ W 2,3(Q). Then the operators AZ and BZ are closed in Z and
densely defined on Z.
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Proof:
1) To show the closedness of AZ let (un, vn)n∈N ⊆ D(AZ) be a sequence with (un, vn) →
(u, v) in Z and A(un, vn)→ (f, g) in Z as n→∞. The fields (u, v) satisfy the boundary
conditions of Z by the continuity of the traces. Additionally, C2un and C1vn converge to
C2u and C1v in H2(Q)3, respectively, as n → ∞ due to the assumptions on ε, µ and σ,
and A(u, v) = (f, g). Furthermore, we deduce σ

2
un → σ

2
u in H2(Q)3 and

C1vn =
(
−σ

2
un + C1vn

)
+ σ

2
un −→ εf + σ

2
u

and C2un → µg in H2(Q)3 as n → ∞. So, C2u and C1v belong to H2(Q)3 and (u, v)

satisfies the second-order boundary conditions of D(AZ). Altogether we have (u, v) ∈
D(AZ) and A(u, v) = (f, g).
To show the closedness of BZ let (un, vn)n∈N ⊆ D(BZ) be a sequence with (un, vn) →

(u, v) in Z and B(un, vn) → (f, g) in Z as n → ∞. Then (u, v) satisfies the boundary
conditions of Z. Moreover, C1un and C2vn converge to C1u and C2v in H2(Q)3, respec-
tively, as n → ∞ again due to the assumptions on the coefficients, and B(u, v) = (f, g).
From ε, σ ∈ W 1,∞(Q) ∩W 2,3(Q) and ε ≥ δ > 0 we deduce σ

2
un → σ

2
u in H2(Q)3 and

C2vn =
(
−σ

2
un + C2vn

)
+ σ

2
un −→ εf + σ

2
u

and C1un → µg in H2(Q)3 as n → ∞. So, C1u and C2v belong to H2(Q)3 and (u, v)

fulfils the seond-order boundary conditions of D(BZ). Altogether we have (u, v) ∈ D(BZ)

and B(u, v) = (f, g).
2) Let (u, v) ∈ Z and choose n0 ∈ N with n0 ≥ 4

dmin
. Let (ρ

(j)
n )n∈N be the standard se-

quences of symmetric C∞-mollifiers with supp(ρ
(j)
n ) ⊆

[
− 1
n
, 1
n

]
acting on the j-th variable.

We define the cuboids

Q(1) : = (a−1 , a
+
1 )× (2a−2 − a+

2 , a
−
2 )× (a−3 , a

+
3 ),

Q(2) : = (a−1 , a
+
1 )× (a+

2 , 2a
+
2 − a−2 )× (a−3 , a

+
3 )

and Q̃ : = (a−1 , a
+
1 )× (2a−2 − a+

2 , 2a
+
2 − a−2 )× (a−3 , a

+
3 ),

and extend u1 in an antisymmetric way to Q̃ by

ũ1(x1, x2, x3) : =


−u1(x1, 2a

−
2 − x2, x3), x2 ∈ (2a−2 − a+

2 , a
−
2 ),

u1(x1, x2, x3), x2 ∈ [a−2 , a
+
2 ],

−u1(x1, 2a
+
2 − x2, x3), x2 ∈ (a+

2 , 2a
+
2 − a2).

We first show that ũ1 is contained in H2(Q̃). Due to the regularity and the integrability
of u1 we only have to prove ∂2ũ1 ∈ L2(Q̃) and ∂22ũ1 ∈ L2(Q̃). Let ϕ ∈ C∞c (Q̃). Using
u1 = 0 on Γ2, we have∫

Q̃

ũ1∂2ϕ dx =

∫
Q(1)

ũ1∂2ϕ dx+

∫
Q

ũ1∂2ϕ dx+

∫
Q(2)

ũ1∂2ϕ dx
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= −
∫
Q(1)

ϕ(x)(∂2u1)(x1, 2a
−
2 − x2, x3) dx+

[
−u1(x1, 2a

−
2 − x2, x3)ϕ(x)

]
Γ−2

−
∫
Q

ϕ(x)(∂2u1)(x) dx−
[
u1(x)ϕ(x)

]
Γ−2

+
[
u1(x)ϕ(x)

]
Γ+
2

−
∫
Q(2)

ϕ(x)(∂2u1)(x1, 2a
+
2 − x2, x3) dx−

[
−u1(x1, 2a

+
2 − x2, x3)ϕ(x)

]
Γ+
2

= −
∫
Q(1)

ϕ(x)(∂2u1)(x1, 2a
−
2 − x2, x3) dx−

∫
Q

ϕ(x)(∂2u1)(x1, x2, x3) dx

−
∫
Q(2)

ϕ(x)(∂2u1)(x1, 2a
+
2 − x2, x3) dx.

This shows that

(∂2ũ1)(x1, x2, x3) =


(∂2u1)(x1, 2a

−
2 − x2, x3), x2 ∈ (2a−2 − a+

2 , a
−
2 ),

(∂2u1)(x1, x2, x3), x2 ∈ [a−2 a
+
2 ],

(∂2u1)(x1, 2a
+
2 − x2, x3), x2 ∈ (a+

2 , 2a
+
2 − a−2 ),

is contained in L2(Q̃). Furthermore,∫
Q̃

(∂2ũ1)∂2ϕ dx =

∫
Q(1)

(∂2ũ1)∂2ϕ dx+

∫
Q

(∂2ũ1)∂2ϕ dx+

∫
Q(2)

∂2ũ1∂2ϕ dx

= −
∫
Q(1)

−ϕ(x)(∂22u1)(x1, 2a
−
2 − x2, x3) dx

+
[
(∂2u1)(x1, 2a

−
2 − x2, x3)ϕ(x)

]
Γ−2

−
∫
Q

ϕ(x)(∂22u1)(x) dx−
[
(∂2u1)(x)ϕ(x)

]
Γ−2

+
[
(∂2u1)(x)ϕ(x)

]
Γ+
2

−
∫
Q(2)

−ϕ(x)(∂22u1)(x1, 2a
+
2 − x2, x3) dx

−
[
(∂2u1)(x1, 2a

+
2 − x2, x3)ϕ(x)

]
Γ+
2

= −
∫
Q(1)

−ϕ(x)(∂22u1)(x1, 2a
−
2 − x2, x3) dx

−
∫
Q

ϕ(x)(∂22u1)(x1, x2, x3) dx

−
∫
Q(2)

−ϕ(x)(∂22u1)(x1, 2a
+
2 − x2, x3) dx,

so that

(∂22ũ1)(x1, x2, x3) =


−(∂22u1)(x1, 2a

−
2 − x2, x3), x ∈ (2a−2 − a+

2 , a
−
2 ),

(∂22u1)(x1, x2, x3), x2 ∈ [a−2 a
+
2 ],

−(∂22u1)(x1, 2a
+
2 − x2, x3), x2 ∈ (a+

2 , 2a
+
2 − a−2 ),
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belongs to L2(Q̃).
Moreover, ũ1 = 0 on Γ2∪Γ3 and ∂1ũ1 = 0 on Γ1 due to the definition of Z. Let n ≥ n0,

extend ũ1 by 0 outside of Q̃ and set

ũn1 := (ρ(2)
n ∗ ũ1)|Q̃.

Then ũn1 and ∂k2 ũn1 belong to H2(Q̃) for all k ∈ N. Lemma 7.10 says that ũn1 = 0 on Γ3

and that ∂1ũ
n
1 = ρ

(2)
n ∗ ∂1ũ1 = 0 on Γ1. Additionally,

ũn1 (x1, a
−
2 , x3)

=

∫ 1/n

−1/n

ρ(2)
n (t)ũ1(x1, a

−
2 − t, x3) dt

=

∫ 0

−1/n

ρ(2)
n (t)u1(x1, a

−
2 − t, x3) dt−

∫ 1/n

0

ρ(2)
n (t)u1(x1, a

−
2 + t, x3) dt

=

∫ 1/n

0

ρ(2)
n (−s)u1(x1, a

−
2 + s, x3) ds−

∫ 1/n

0

ρ(2)
n (t)u1(x1, a

−
2 + t, x3) dt

= 0

for almost all (x1, x3) ∈ (a−1 , a
+
1 )× (a−3 , a

+
3 ) due to the support and the symmetry of ρ(2)

n .
With the analogous calculation for a+

2 instead of a−2 we infer ũn1 = 0 on Γ2. Furthermore,
we have ũn1 → ũ1 in H2(Q̃) as n→∞, so that ũn1 |Q → u1 in H2(Q) as n→∞. Let η > 0

and choose an ñ = ñ(η) ≥ n0 such that
∥∥ũñ1 − u1

∥∥
H2 ≤ η and set û1 := ũn1 .

Because û1 does not necessarily satisfy the second-order boundary condition of the
first component of elements of D(AZ), we have to modify it once more. Let α, β ∈
C∞([a−2 , a

+
2 ], [0, 1]) with α = 1 on

[
a−2 , a

−
2 + 1

3
(a+

2 −a−2 )
]
, β = 1 on

[
a−2 + 2

3
(a+

2 −a−2 ), a+
2

]
and

α+β = 1 on [a−2 , a
+
2 ]. So, α = 0 on

[
a−2 +2

3
(a+

2 −a−2 ), a+
2

]
and β = 0 on

[
a−2 , a

−
2 +1

3
(a+

2 −a−2 )
]
.

We set

un1 (x1, x2, x3) : = α(x2)(x2 − a−2 )∂2û1(x1, a
−
2 , x3)

+ α(x2)

∫ x2

a−2

∫ t

a−2

χ(2)
n (s)∂22û1(x1, s, x3) ds dt

+ β(x2)(x2 − a+
2 )∂2û1(x1, a

+
2 , x3)

+ β(x2)

∫ a+2

x2

∫ a+2

t

χ(2)
n (s)∂22û1(x1, s, x3) ds dt,

where χ(2)
n are the cut-off functions form the proof of Lemma 7.10 extended to R by zero.

Then un1 and ∂2u
n
1 are contained in H2(Q) due to the regularity of û1. Moreover, we have

un1 = 0 on Γ2 by the cut-off function in the definition of un1 and the supports of α and β.
The trace condition un1 = 0 on Γ3 follows from the boundary and regularity properties of
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û1 and Lemma 7.10. Furthermore, we have ∂1u
n
1 = 0 on Γ1 due to again the boundary

and regularity properties of û1 and Lemma 7.10. On Γ2 we obtain

∂22u
n
1 (x1, x2, x3) = χ(2)

n (x2)∂22û1(x1, x2, x3) = 0

due to the cut-off function. We use û1 = 0 on Γ2 to gain the representation

û1(x1, x2, x3) = α(x2)(x2 − a−2 )∂2û1(x1, a
−
2 , x3) + α(x2)

∫ x2

a−2

∫ t

a−2

∂22û1(x1, s, x3) ds dt

+ β(x2)(a+
2 − x2)∂2û1(x1, a

−
2 , x3) + β(x2)

∫ a+2

x2

∫ a+2

t

∂22û1(x1, s, x3) ds dt.

Thus, it follows

un1 (x1, x2, x3)− û1(x1, x2, x3) = α(x2)

∫ x2

a−2

∫ t

a−2

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds dt

+ β(x2)

∫ a+2

x2

∫ a+2

t

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds dt.

The theorem of dominated convergence then yields that

‖∂jk(un1 − û1)‖L2 ≤ c(a+
2 − a−2 )2

∥∥(χ(2)
n − 1

)
∂22jkû1

∥∥
L2 −→ 0

as n → ∞ for all j, k ∈ {1, 3}. In the same way we see un1 → û1 and ∂ju
n
1 → ∂jû1 in

L2(Q) as n→∞ for all j ∈ {1, 3}. We treat the terms

∂2(un1 − û1)(x1, x2, x3) = α(x2)

∫ x2

a−2

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds

+ α′(x2)

∫ x2

a−2

∫ t

a−2

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds

− β(x2)

∫ a+2

x2

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds

+ β′(x2)

∫ a+2

x2

∫ a+2

t

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds,

∂j2(un1 − û1)(x1, x2, x3) = α(x2)

∫ x2

a−2

(
χ(2)
n (s)− 1

)
∂22jû1(x1, s, x3) ds

+ α′(x2)

∫ x2

a−2

∫ t

a−2

(
χ(2)
n (s)− 1

)
∂22jû1(x1, s, x3) ds

− β(x2)

∫ a+2

x2

(
χ(2)
n (s)− 1

)
∂22jû1(x1, s, x3) ds

+ β′(x2)

∫ a+2

x2

∫ a+2

t

(
χ(2)
n (s)− 1

)
∂22jû1(x1, s, x3) ds,

160



8.3. Properties of the splitting operators in the H2-setting

∂22(un1 − û1)(x1, x2, x3) =
(
χ(2)
n (x2)− 1

)
∂22û1(x1, x2, x3)

+ α′(x2)

∫ x2

a−2

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds

− β′(x2)

∫ a+2

x2

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds

+ α′′(x2)

∫ x2

a−2

∫ t

a−2

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds dt

+ β′′(x2)

∫ a+2

x2

∫ a+2

t

(
χ(2)
n (s)− 1

)
∂22û1(x1, s, x3) ds dt

in the same way. As a result, un1 tends to û1 in H2(Q) as n→∞. Altogether we see that
un1 → û1 in H2(Q) as n→∞. Thus, choosing n̂ ≥ ñ large enough, we have∥∥un̂1 − u1

∥∥
H2 ≤

∥∥un̂1 − û1

∥∥
H2 + ‖û1 − u1‖H2 ≤ 2η.

To deal with v1, we redefine the cuboids from above to be

Q(1) : = (a−1 , a
+
1 )× (a−2 , a

+
2 )× (2a−3 − a+

3 , a
−
3 ),

Q(2) : = (a−1 , a
+
1 )× (a−2 , a

+
2 )× (a+

3 , 2a
+
3 − a−3 )

and Q̃ : = (a−1 , a
+
1 )× (a−2 , a

+
2 )× (2a−3 − a+

3 , 2a
+
3 − a−3 ),

and extend v1 in a symmetric way to Q̃ by

ṽ1(x1, x2, x3) :=


v1(x1, x2, 2a

−
3 − x3), x3 ∈ (2a−3 − a+

3 , a
−
3 ),

v1(x1, x2, x3), x3 ∈ [a−3 , a
+
3 ],

v1(x1, x2, 2a
+
3 − x3), x3 ∈ (2a+

3 − a−3 , a+
3 ).

As, above, we first show ṽ1 is contained in H2(Q̃). Due to the regularity and the integra-
bility of v1 we only have to prove ∂3ṽ1 ∈ L2(Q̃) and ∂33ṽ1 ∈ L2(Q̃). Let ϕ ∈ C∞c (Q̃). We
compute∫

Q̃

ṽ1∂3ϕ dx =

∫
Q(1)

ṽ1∂3ϕ dx+

∫
Q

ṽ1∂3ϕ dx+

∫
Q(2)

ṽ1∂3ϕ dx

= −
∫
Q(1)

−ϕ(x)(∂2v1)(x1, x2, 2a
−
3 − x3) dx+

[
v1(x1, x2, 2a

−
3 − x3)ϕ(x)

]
Γ−3

−
∫
Q

ϕ(x)(∂3v1)(x) dx−
[
v1(x)ϕ(x)

]
Γ−3

+
[
v1(x)ϕ(x)

]
Γ+
3

−
∫
Q(2)

−ϕ(x)∂3v1)(x1, x2, 2a
+
3 − x3) dx−

[
v1(x1, x2, 2a

+
3 − x3)ϕ(x)

]
Γ+
3

= −
∫
Q(1)

−ϕ(x)(∂3v1)(x1, x2, 2a
−
3 − x3) dx−

∫
Q

ϕ(x)(∂3v1)(x1, x2, x3) dx
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−
∫
Q(2)

−ϕ(x)(∂3v1)(x1, x2, 2a
+
3 − x3) dx.

This shows that

(∂3ṽ1)(x1, x2, x3) =


−(∂3v1)(x1, x2, 2a

−
3 − x3), x3 ∈ (2a−3 − a+

3 , a
−
3 ),

(∂3v1)(x1, x2, x3), x3 ∈ [a−3 a
+
3 ],

−(∂3v1)(x1, x2, 2a
+
3 − x3), x3 ∈ (a+

3 , 2a
+
3 − a−3 ),

belongs to L2(Q̃). Moreover, using ∂3v1 = 0 on Γ3 we get∫
Q̃

(∂3ṽ1)∂3ϕ dx =

∫
Q(1)

(∂3ṽ1)∂3ϕ dx+

∫
Q

(∂3ṽ1)∂3ϕ dx+

∫
Q(2)

(∂3ṽ1)∂3ϕ dx

= −
∫
Q(1)

ϕ(x)(∂33v1)(x1, x2, 2a
−
3 − x3) dx

+
[
−(∂3v1)(x1, x2, 2a

−
3 − x3)ϕ(x)

]
Γ−3

−
∫
Q

ϕ(x)(∂33v1)(x) dx−
[
(∂3v1)(x)ϕ(x)

]
Γ−3

+
[
(∂3v1)(x)ϕ(x)

]
Γ+
3

−
∫
Q(2)

ϕ(x)(∂33v1)(x1, x2, 2a
+
3 − x3) dx

−
[
−(∂3v1)(x1, x2, 2a

+
3 − x3)ϕ(x)

]
Γ+
3

= −
∫
Q(1)

ϕ(x)(∂33v1)(x1, x2, 2a
−
3 − x3) dx−

∫
Q

ϕ(x)(∂33v1)(x1, x2, x3) dx

−
∫
Q(2)

ϕ(x)(∂33v1)(x1, x2, 2a
+
3 − x3) dx,

so that

(∂33ṽ1)(x1, x2, x3) =


−(∂33v1)(x1, x2, 2a

−
3 − x3), x ∈ (2a−3 − a+

3 , a
−
3 ),

(∂33v1)(x1, x2, x3), x3 ∈ [a−3 a
+
3 ],

−(∂33v1)(x1, x2.2a
+
2 − x3), x3 ∈ (a+

3 , 2a
+
3 − a−3 ),

is contained in L2(Q̃).
Furthermore, we have ṽ1 = 0 on Γ1, ∂2ṽ1 = 0 on Γ2 and ∂3ṽ1 = 0 on Γ3 due to the

properties of Z. For n ≥ n0 we extend ṽ1 by 0 to R3 and set

vn1 (x1, x2, x3) :=
(
ρ(3)
n ∗ ṽ1

)∣∣
Q̃

(x1, x2, x3) =

∫ 1/n

−1/n

ρ(3)
n (t)ṽ1(x1, x2, x3 − t) dt

∣∣∣
Q̃

on Q̃. Then vn1 and ∂3v
n
1 belong to H2(Q̃). From the properties of ṽ1 we derive in the same

way as above for the traces of ũn1 that vn1 = 0 on Γ1 and ∂2v
n
1 = 0 on Γ2. Furthermore,

(∂3v
n
1 )(x1, x2, x3) =

∫ 1/n

−1/n

ρ(3)
n (t)(∂3ṽ1)(x1, x2, x3 − t) dt,
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so that

(∂3v
n
1 )(x1, x2, a

−
3 )

=

∫ 0

−1/n

ρ(3)
n (t)(∂3v1)(x1, x2, a

−
3 − t) dt−

∫ 1/n

0

ρ(3)
n (t)(∂3v1)(x1, x2, a

−
3 + t) dt

=

∫ 1/n

0

ρ(3)
n (−s)(∂3v1)(x1, x2, a

−
3 + s) ds−

∫ 1/n

0

ρ(3)
n (t)(∂3v1)(x1, x2, a

−
3 + t) dt

= 0,

due to the symmetry of ρ(3)
n . Analogously, we get ∂3v

n
1 (x1, x2, a

+
3 ) = 0, so that together

∂3v1 = 0 on Γ3. We have vn1 → ṽ1 in H2(Q̃) as n→∞ and therefore vn1 |Q → v1 in H2(Q)

as n→∞. �

Under the assumption ε, µ, σ ∈ W 2,3(Q) we set

κZ : =
7 ‖∇σ‖L∞

4δ
+

7 ‖σ‖L∞ ‖∇ε‖L∞
4δ2

+
6 ‖∇ε‖L∞ + 6 ‖∇µ‖L∞

2δ2

+
9CH1↪→L6 ‖σ‖W 2,3

4δ
+

9CH1↪→L6 ‖σ‖L∞ ‖ε‖W 2,3

4δ2

+
9 ‖∇σ‖L∞ ‖∇ε‖L∞

2δ2
+

9 ‖σ‖L∞ ‖∇ε‖
2
L∞

2δ3

+
5CH1↪→L6 ‖ε‖W 2,3 + 5CH1↪→L6 ‖µ‖W 2,3

δ2
+

9 ‖∇ε‖2
L∞ + 9 ‖∇µ‖2

L∞

δ3
,

where CH1↪→L6 denotes the Sobolev embedding constant from H1(Q) to L6(Q).

Lemma 8.10. Let ε, µ, σ ∈ W 2,3(Q). Then the operators AZ − κZI and BZ − κZI are
dissipative on Z.

Proof:
Let (u, v) ∈ D(AZ). With integration by parts we see

3∑
j,k=1

∫
Q

(
∂jkC1v · ∂jku+ ∂jkC2u · ∂jkv

)
dx

=
3∑

j,k=1

∫
Q

(
∂jk2v3 ∂jku1 + ∂jk3v1 ∂jku2 + ∂jk1v2 ∂jku3

+ ∂jk3u2 ∂jkv1 + ∂jk1u3 ∂jkv2 + ∂jk2u1 ∂jkv3

)
dx

= 0,

where we have used the boundary properties of from Corollary 8.8 and of the definition
of D(AZ) to get rid of the boundary integrals. As in the proof of Lemma 7.2 we have for
example

‖(∂jkσ)u‖L2 ≤ CH1↪→L6 ‖σ‖W 2,3 ‖u‖H1
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for all (u, v) ∈ D(AZ). Together with (7.26), (7.28), (8.2) and Young’s inequality we thus
estimate

Re
(
A(u, v) | (u, v)

)
Z

=

∫
Q

(
−σε

2ε
|u|2 +

ε

ε
C1v · u+

µ

µ
C2u · v

− ε
3∑
j=1

∂j
(
σ
2ε
u
)
· ∂ju+ ε

3∑
j=1

∂j
(

1
ε
C1v

)
· ∂ju+ µ

3∑
j=1

∂j
(

1
µ
C2u

)
· ∂jv

− ε
3∑

j,k=1

∂jk
(
σ
2ε
u
)
· ∂jku+ ε

3∑
j,k=1

∂jk
(

1
ε
C1v

)
· ∂jku+ µ

3∑
j,k=1

∂jk
(

1
µ
C2u

)
· ∂jkv

)
dx

=

∫
Q

−σ
2
|u|2 dx−

∫
Q

σ

2
|∂u|2 dx−

3∑
j=1

∫
Q

(∂jσ
2
− σ∂jε

2ε

)
u · ∂ju dx

−
3∑
j=1

∫
Q

∂jε

ε
C1v · ∂ju dx−

3∑
j=1

∫
Q

∂jµ

µ
C2v · ∂ju dx

− σ

2

3∑
j,k=1

∫
Q

|∂jku|2 dx−
3∑

j,k=1

∫
Q

((∂jσ
2
− σ∂jε

2ε

)
∂ku+

(
∂kσ

2
− σ∂kε

2ε

)
∂ju
)
· ∂jku dx

−
3∑

j,k=1

∫
Q

(∂jkσ
2
− ∂jσ∂kε

2ε
− ∂kσ∂jε

2ε
− σ∂jkε

2ε
+

σ(∂jε)∂kε

ε2

)
u · ∂jku dx

+
3∑

j,k=1

∫
Q

(
−∂jkε

ε
+

2(∂jε)∂kε

ε2

)
C1v · ∂jku dx+

3∑
j,k=1

∫
Q

(
−∂jε

ε
∂kC2v − ∂kε

ε
∂jC1v

)
· ∂jku dx

+
3∑

j,k=1

∫
Q

(
−∂jkµ

µ
+

2(∂jµ)∂kµ

µ2

)
C2u · ∂jkv dx

+
3∑

j,k=1

∫
Q

(
−∂jµ

µ
∂kC2u− ∂kµ

µ
∂jC2u

)
· ∂jkv dx

≤
(‖∇σ‖L∞

4δ
+
‖σ‖L∞ ‖∇ε‖L∞

4δ2

)∫
Q

(
3ε |u|2 + ε |∂u|2

)
dx

+
‖∇ε‖L∞ + ‖∇µ‖L∞

2δ2

∫
Q

(
3ε |∂u|2 + 3µ |∂v|2

)
dx

+
(‖∇σ‖L∞

2δ
+
‖σ‖L∞ ‖∇ε‖L∞

2δ2

)∫
Q

(
3ε |∂u|2 + ε

∣∣D2u
∣∣2) dx

+ CH1↪→L6

(‖σ‖W 2,3

4δ
+
‖σ‖L∞ ‖ε‖W 2,3

4δ2

)∫
Q

(
9ε |u|2 + 9ε |∂u|2 + ε

∣∣D2u
∣∣2) dx

+
(‖∇σ‖L∞ ‖∇ε‖L∞

2δ2
+
‖σ‖L∞ ‖∇ε‖

2
L∞

2δ3

)∫
Q

(
9ε |u|2 + ε

∣∣D2u
∣∣2) dx
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+ CH1↪→L6

‖ε‖W 2,3 + ‖µ‖W 2,3

2δ2

∫
Q

(
9ε |∂u|2 + 9µ |∂v|2 + 10ε

∣∣D2u
∣∣2 + 10µ

∣∣D2v
∣∣2) dx

+
‖∇ε‖2

L∞ + ‖∇µ‖2
L∞

δ3

∫
Q

(
9ε |∂u|2 + 9µ |∂v|2 + ε

∣∣D2u
∣∣2 + µ

∣∣D2v
∣∣2) dx

+
‖∇ε‖L∞ + ‖∇µ‖L∞

δ2

∫
Q

(
3ε
∣∣D2u

∣∣2 + 3µ
∣∣D2v

∣∣2) dx

≤ κZ ‖(u, v)‖2
Z ,

where the norm of the Jacobian matrix and the matrix of the second derivatives is the
Frobenius norm.
Let (u, v) ∈ D(BZ). In the same way as for AZ we see

3∑
j,k=1

∫
Q

(
∂jkC2v · ∂jku+ ∂jkC1u · ∂jkv

)
dx = 0

and estimate

Re
(
B(u, v) | (u, v)

)
Z

=

∫
Q

(
−σε

2ε
|u|2 +

ε

ε
C2v · u+

µ

µ
C1u · v

− ε
3∑
j=1

∂j
(
σ
2ε
u
)
· ∂ju+ ε

3∑
j=1

∂j
(

1
ε
C2v

)
· ∂ju+ µ

3∑
j=1

∂j
(

1
µ
C1u

)
· ∂jv

− ε
3∑

j,k=1

∂jk
(
σ
2ε
u
)
· ∂jku+ ε

3∑
j,k=1

∂jk
(

1
ε
C2v

)
· ∂jku+ µ

3∑
j,k=1

∂jk
(

1
µ
C1u

)
· ∂jkv

)
dx

≤ κZ ‖(u, v)‖2
Z ,

which finishes the proof. �

Lemma 8.11. Let ε, σ ∈ W 2,3(Q), µ ∈ C2(Q) and ∂νε = ∂νµ = ∂νσ = 0 on Γ. Then the
operators (1 + κZ)I − AZ and (1 + κZ)I −BZ have a dense range in Z.

Proof:
We first deal with the operator (1 + κZ)I −AZ . Having the denseness of D(AZ) in Z by
Lemma 8.9 in mind, let (f, g) ∈ D(AZ) ⊆ D(AY ). As in the proof of Lemma 8.6 we have
equation (8.4) with κZ instead of κY . Due to Lemma 8.6 there exists fields (u, v) ∈ D(AY )

that solves (8.4) and thus satisfies in particular(
(1 + κZ)ε+ σ

2

)
u1 − ∂2v3 = εf1, (8.6a)

µ(1 + κZ)v3 − ∂2u1 = µg3. (8.6b)
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From the definition of L from the proof of Lemma 8.6 with κY replaced by κZ we derive
from these equations the identity

Lu1 =
(
(1 + κZ)ε+ σ

2

)
u1 −

1

1 + κZ
∂2

(
1
µ
∂2u1

)
= εf1 +

1

1 + κZ
∂2g3 =: h1. (8.7)

Due to the properties of D(AY ) we know that u1, v3, ∂2u1 and ∂2v3 are contained in
H1(Q), u1 = 0 on Γ2 ∪ Γ3, v3 = 0 on Γ3, ∂2u1 = 0 on Γ3 and ∂2v3 = 0 on Γ2 ∪ Γ3. The
properties of D(AZ) furthermore give that f1, g3, ∂2f1 and ∂2g3 belong to H2(Q), f1 = 0

on Γ2∪Γ3, g3 = 0 on Γ3, ∂1f1 = 0 on Γ1, ∂22f1 = 0 on Γ2 and ∂jg3 = 0 on Γj for j ∈ {1, 2}.
So, h1 is contained in H2(Q) and h1 = 0 on Γ2, due to Lemma 7.5.
From ∂2u1 ∈ H1(Q) and µ ∈ W 1,∞(Q) we inferD2∂jku1 ∈ H−2(Q) for all j, k ∈ {1, 2, 3}.

Let ϕ ∈ H3
0 (Q) and j, k ∈ {1, 2, 3}. Using the regularity of the coefficients, we can thus

estimate

〈L∂jku1, ϕ〉H−2×H2
0

=
〈
∂jku1,

(
(1 + κZ)ε+ σ

2

)
ϕ
〉
H−1×H1

0
− 1

1 + κZ

〈
∂2

1
µ
∂2∂jku1, ϕ

〉
H−2×H2

0

=

∫
Q

u1

((
∂jk
(
(1 + κZ)ε+ σ

2

))
ϕ+

(
∂j
(
(1 + κZ)ε+ σ

2

))
∂kϕ

+
(
∂k
(
(1 + κZ)ε+ σ

2

))
∂jϕ+

(
(1 + κZ)ε+ σ

2

)
∂jkϕ

)
dx

+

∫
Q

(∂2u1)
((
∂jk

1
µ

)
∂2ϕ+

(
∂j

1
µ

)
∂k∂2ϕ+

(
∂k

1
µ

)
∂j∂2ϕ+ 1

µ
∂2∂jkϕ

)
dx

=

∫
Q

Lu1∂jkϕ dx+

∫
Q

u1

(
∂jk
(
(1 + κZ)ε+ σ

2

))
ϕ dx

+

∫
Q

u1

((
∂j
(
(1 + κZ)ε+ σ

2

))
∂kϕ+

(
∂k
(
(1 + κZ)ε+ σ

2

))
∂jϕ
)

dx

+

∫
Q

(∂2u1)
((
∂j

1
µ

)
∂k∂2ϕ+

(
∂k

1
µ

)
∂j∂2ϕ+

(
∂jk

1
µ

)
∂2ϕ
)

dx

=

∫
Q

(∂jkh1)ϕ dx−
∫
Q

u1

(
∂jk
(
(1 + κZ)ε+ σ

2

))
ϕ dx

−
∫
Q

(
(∂ku1)

(
∂j
(
(1 + κZ)ε+ σ

2

))
+ (∂ju1)

(
∂k
(
(1 + κZ)ε+ σ

2

)))
ϕ dx

+
〈
∂2∂k

(
(∂2u1)

(
∂j

1
µ

))
+ ∂2∂j

(
(∂2u1)

(
∂k

1
µ

))
, ϕ
〉
D(∂2)∗×D(∂2)

−
〈
∂2

(
(∂2u1)

(
∂jk

1
µ

))
, ϕ
〉
D(∂2)∗×D(∂2)

.

As in the proof of Lemma 8.6, by the density of H3
0 (Q) in D(∂2) this identity holds true

for all ϕ ∈ D(∂2) and so

L∂jku1 = ∂jkh1 −
(
(1 + κZ)∂jkε+

∂jkσ

2

)
u1 −

(
(1 + κZ)∂jε+

∂jσ

2

)
∂ku1

−
(
(1 + κZ)∂kε+ ∂kσ

2

)
∂ju1 + ∂2

((
∂jk

1
µ

)
∂2u1

)
+ ∂2

((
∂j

1
µ

)
∂2ku1

)
+ ∂2

((
∂k

1
µ

)
∂2ju1

)
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=: ψ1(h1) ∈ D(∂2)∗

first in H−2(Q), and then that it holds true even in D(∂2)∗ since all summands on the
right-hand side are in D(∂2)∗.
As in the proof of Lemma 8.6, we now conclude ∂jku1 = L−1ψ1(h1) ∈ D(∂2). Since
j, k ∈ {1, 2, 3} were arbitrary and the weak derivatives of first order can be treated as in
the proof of Lemma 8.6, we thus have that u1 and ∂2u1 are contained in H2(Q). With
(8.6) and Lemma 7.2 this gives that ∂2v3 and v3 belong to H2(Q). From (8.7), Lemma 7.5
and h1 = 0 on Γ2 we infer

∂2

(
1
µ
∂2u1

)
= (1 + κZ)

(
ε(1 + κZ) + σ

2

)
u1 − (1 + κZ)h1 = 0

on Γ2, so that using ∂νµ = 0 on Γ we have ∂22u1 = 0 on Γ2. It remains to prove that
∂1v3 = 0 and ∂1u1 = 0 on Γ1. Lemma 7.10 and the identity ∂1g3 = 0 on Γ1 imply
∂2∂1g3 = 0 on Γ1. With ∂νε = 0 on Γ1 and ∂1f1 = 0 on Γ1 we thus deduce

∂1h1 = (∂1ε)f1 + ε∂1f1 + ∂1∂2g3 = 0

on Γ1. moreover, the conditions ∂νε = ∂νσ = 0 on Γ yield

∂1

(
(1 + κZ)ε+ σ

2

)
= 0

on Γ1. Since µ ∈ C2(Q) and ∂1µ = 0 on Γ1 we have that ∂21µ = 0 on Γ1 and thus

∂12
1

µ
= −∂12µ

µ2
+

2(∂1µ)(∂2µ)

µ3
= 0

on Γ1. Hence,

∂2

((
∂1

1
µ

)
∂2u1

)
=
(
∂12

1
µ

)
∂2u1 −

∂1µ

µ
∂22u1 = 0

on Γ1, using that ∂2u1 belongs to H2(Q). Taking the last above facts into account, we
deduce from an analogon of equation (8.5) that the function

L∂1u1 =
(
∂1

(
(1 + κZ)ε− σ

2

))
u1 +

1

1 + κZ
∂2

((
∂1

1
µ

)
∂2u1

)
=: ϕ1 ∈ H1(Q)

vanishes on Γ1. Set ϕn1 := χ
(1)
n ϕ1 ∈ H1(Q). We have ϕn1 = 0 on Γ1 and ϕn1 → ϕ1 in

L2(Q) as n→∞. As in the proof of Lemma 8.6 we now infer L−1ϕn1 = 0 on Γ1 (even on a
neighbourhood of Γ1) and by the continuity of L−1 on L2(Q) that L−1ϕn1 → L−1ϕ1 = ∂1u1

in H1(Q) as n → ∞. Thus, ∂1u1 = 0 on Γ1. From this we conclude with Lemma 7.10
that ∂12u1 = 0 on Γ1 and hence with (8.6b), divided by µ, ∂νµ = 0 on Γ and Lemma 7.5
that ∂1v3 = 0 on Γ1. Treating the components u2, u3, v1, v2 as u1 and v3, respectively, we
have altogether (u, v) ∈ D(AZ).
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Replacing (8.6) by

(
(1 + κZ)ε+ σ

2

)
u1 + ∂3v2 = εf1,

µ(1 + κZ)v2 + ∂3u1 = µg2.

and (8.7) by

Lu1 =
(
(1 + κZ)ε+ σ

2

)
u1 −

1

1 + κZ
∂3

(
1
µ
∂3u1

)
= εf1 + ∂3g2 =: h1,

the statement involving the operator BZ is shown in the same way. �

With the same proof as for Proposition 8.7, invoking Lemma 8.9, 8.10 and 8.11, one
sees the following proposition on the resolvents of AZ and BZ .

Proposition 8.12. Let ε, σ ∈ W 2,3(Q), µ ∈ C2(Q) and ∂νε = ∂νµ = ∂νσ = 0 on Γ.

(a) The operators AZ and BZ generate C0-semigroups on Z whose norms are bounded
by eκZt. The restrictions of (I − τAY )−1 and (I − τBY )−1 to Z are the operators
(I − τAZ)−1 and (I − τBZ)−1, respectively. The semigroup estimate implies

∥∥(I − τAZ)−1
∥∥
B(Z)
≤ 1

1− τκZ
and

∥∥(I − τBZ)−1
∥∥
B(Z)
≤ 1

1− τκZ

for all 0 < τ < 1
κZ

, which means in particular∥∥(I − τAZ)−1
∥∥
B(Z)
≤ 2 and

∥∥(I − τBZ)−1
∥∥
B(Z)
≤ 2

for all 0 < τ ≤ 1
2κZ

. Moreover, the operators AZ − κZI and BZ − κZI are maximal
dissipative on Z.

(b) We define the function

γτ (z) :=
1 + τz

1− τz
on C \ { 1

τ
}. Then there exists a τ̃ ∈

(
0, 1

κZ

)
such that

‖γτ (AZ)‖B(Z) ≤ e3κZτ , ‖γτ (BZ)‖B(Z) ≤ e3κZτ ,

‖γτ (A∗Z)‖B(Z) ≤ e3κZτ , ‖γτ (B∗Z)‖B(Z) ≤ e3κY τ

for all 0 < τ < τ̃ .
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8.4. The ADI splitting scheme

Let τ > 0. We set tn := nτ for n ∈ N0 and assume (J0(t), 0) ∈ D(A) for all t ≥ 0. The
alternating direction implicit (ADI) splitting scheme SIτ,n+1 we investigate is given by

SIτ,n+1w := (I − τ
2
B)−1(I + τ

2
A)·

·
[
(I − τ

2
A)−1(I + τ

2
B)w − τ

2ε
(J0(tn) + J0(tn+1), 0)

] (8.8)

for w ∈ D(B), as introduced in Section 7.1. Proposition 8.1 shows that the resolvents in
(8.8) exist. Thus, the splitting scheme is well-defined.
We divide the splitting scheme (8.8) into the two parts

SI,(1)
τ w1 := (I − τ

2
A)−1(I + τ

2
B)w1 ∈ D(A) for w1 ∈ D(B) and (8.9a)

SI,(2)
τ w2 := (I − τ

2
B)−1(I + τ

2
A)w2 ∈ D(B) for w2 ∈ D(A), (8.9b)

which together give

SIτ,n+1w = SI,(2)
τ

[
SI,(1)
τ w − τ

2ε
(J0(tn) + J0(tn+1), 0)

]
∈ D(B) (8.9c)

for w ∈ D(B). Both S
I,(1)
τ and S

I,(2)
τ contain an implicit part that results in a linear

system with three coupled equations.
For a better overview concerning the physical meaning of the variables we switch our

notation to variables containing the electric and the magnetic field. For n ∈ N0 and
(E0,H0) ∈ D(B) this gives

(En+1/2,Hn+1/2) := SI,(1)
τ (En,Hn) ∈ D(A), (8.10a)

(En+1,Hn+1) := SI,(2)
τ

[
(En+1/2,Hn+1/2)− τ

2ε
(J0(tn) + J0(tn+1), 0)

]
∈ D(B) (8.10b)

and

(En,Hn) := SIτ,n · · ·SIτ,1(E0,H0). (8.10c)

Taking Proposition 8.7 and 8.12 into account, we get the following statements in the
H1- and the H2-setting.

Remark 8.13. (a) If (E0,H0) ∈ D(BY ) and (J0(t), 0) ∈ D(AY ) for all t ∈ R, then
(En,Hn) ∈ D(BY ) and (En+1/2,Hn+1/2) ∈ D(AY ) for all n ∈ N0.

(b) Let ε, σ ∈ W 2,3(Q), µ ∈ C2(Q) and ∂νε = ∂νµ = ∂νσ = 0 on Γ. If (E0,H0) ∈ D(BZ)

and (J0(t), 0) ∈ D(AZ) for all t ∈ R, then (En,Hn) ∈ D(BZ) and (En+1/2,Hn+1/2) ∈
D(AZ) for all n ∈ N0.
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8.5. The efficiency of the ADI splitting scheme

In the computation of a numerical solution to the Maxwell equations (7.1) one has to
solve implicit systems of linear equations. They arise from the two resolvents in the ADI
splitting scheme (8.8). As in [75] and [37] we replace (8.10) by equivalent formulations such
that the linear systems of three-dimensional equations decouple into three one-dimensional
equations each. So, they can be solved in an efficient way. This important property of
the ADI scheme is the main advantage of the present method over most other implicit
methods.
For λ ∈ {ε, µ} we define the operators

D
(1)
λ : {u ∈ L2(Q)3 | C2u ∈ H1(Q)3,

u1 = 0 on Γ2, u2 = 0 on Γ3, u3 = 0 on Γ1} → L2(Q)3

and

D
(2)
λ : {u ∈ L2(Q)3 | C1u ∈ H1(Q)3,

u1 = 0 on Γ3, u2 = 0 on Γ1, u3 = 0 on Γ2} → L2(Q)3

by

D
(1)
λ := C1

1
λ
C2 =

∂2
1
λ
∂2 0 0

0 ∂3
1
λ
∂3 0

0 0 ∂1
1
λ
∂1

 (8.11a)

and

D
(2)
λ := C2

1
λ
C1 =

∂3
1
λ
∂3 0 0

0 ∂1
1
λ
∂1 0

0 0 ∂2
1
λ
∂2

 . (8.11b)

Let (J0(t), 0) ∈ D(AY ) for all t ≥ 0. Starting with (En,Hn) ∈ D(BY ) for an n ∈ N we
have due to (8.9) and (8.10) in H1(Q)3 for n ∈ N0 that(

1 + στ
4ε

)
En+1/2 =

(
1− στ

4ε

)
En − τ

2ε
C2Hn + τ

2ε
C1Hn+1/2,

Hn+1/2 = Hn − τ
2µ
C1En + τ

2µ
C2En+1/2,

with (En+1/2,Hn+1/2) ∈ D(AY ). Plugging the second equation into the first one, we
eliminate Hn+1/2 therein and get(

(1 + στ
4ε

)I − τ2

4ε
D(1)
µ

)
En+1/2 =

(
1− στ

4ε

)
En + τ

2ε
curlHn − τ2

4ε
C1

1
µ
C1En,
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Hn+1/2 = Hn − τ
2µ
C1En + τ

2µ
C2En+1/2

in L2(Q)3. The representation of D(1)
µ as diagonal matrix in (8.11) shows that the implicit

part of the first equation decouples into three independent equations, so that the first
half-step of the spitting scheme can be computed efficiently.
Again with (8.9) and (8.10) we see that for (En+1,Hn+1) ∈ D(BY ) and n ∈ N we have

in H1(Q)3 that(
1 + στ

4ε

)
En+1 =

(
1− στ

4ε

)
En+1/2 + τ

2ε
C1Hn+1/2 − τ

2ε
C2Hn+1

−
(
1− στ

4ε

)
τ
2ε

(J0(tn) + J0(tn+1)),

Hn+1 = Hn+1/2 + τ
2µ
C2En+1/2 − τ

2µ
C1En+1

− τ
2µ
C2

τ
2ε

(J0(tn) + J0(tn+1)).

Plugging again the second equation into the first one gives in L2(Q)3 that(
(1 + στ

4ε
)I − τ2

4ε
D(2)
µ

)
En+1 =

(
1− στ

4ε

)
En+1/2 + τ

2ε
curlHn+1/2

− τ2

4ε
C2

1
µ
C2En+1/2

−
(
1− στ

4ε

)
τ
2ε

(J0(tn) + J0(tn+1))

+ τ3

8ε
C2

1
µ
C2

1
ε
(J0(tn) + J0(tn+1)),

Hn+1 = Hn+1/2 + τ
2µ
C2En+1/2 − τ

2µ
C1En+1

− τ
2µ
C2

τ
2ε

(J0(tn) + J0(tn+1)).

Also here we use the representation of D(2)
µ as diagonal matrix in (8.11) to see that in this

second half-step the implicit part of the first equation decouples into three independent
equations, so that altogether the whole scheme can be computed efficiently.
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9. Convergence of the ADI splitting
scheme and preservation of the
divergence conditions

In this chapter we investigate the convergence of the ADI scheme and the preservation
of the divergence conditions of the numerical solutions. We treat both questions with
respect to the L2-norm and in a weaker sense (in Y ∗ and in H−1(Q)6, respectively).
In this chapter we assume without loss of generality that τ ≤ 1.

9.1. Convergence of the numerical scheme in L2

The goal of this section is to prove the convergence of the ADI scheme (8.8) in L2(Q).
We integrate the convolution of the semigroup generated by the Maxwell operator with

a polynomial and show afterwards some properties of the resulting operators. Recall
Proposition 7.21 for the generation properties of M (0)

div and M (2)
div .

Definition 9.1. (a) We denote the C0-semigroup generated by M by at time τ > 0 by
etM and define the operators Λj(τ) by

Λj(τ) :=
1

τ j

∫ τ

0

e(τ−s)M sj−1

(j − 1)!
ds

for j ≥ 1 and Λ0(τ) := eτM .

(b) We denote the C0-semigroup generated by M (0)
div at time τ > 0 by eτM

(0)
div and define

the operators Λ
(0)
j (τ) on X(0)

div by

Λ
(0)
j (τ) :=

1

τ j

∫ τ

0

e(τ−s)M(0)
div

sj−1

(j − 1)!
ds

for j ≥ 1 and Λ
(0)
0 (τ) := eτM

(0)
div .

(c) If ε, µ, σ ∈ W 2,3(Q), then we denote the C0-semigroup generated by M (2)
div at time

τ > 0 by eτM
(2)
div and define the operators Λ

(2)
j (τ) on X(2)

div by

Λ
(2)
j (τ) :=

1

τ j

∫ τ

0

e(τ−s)M(2)
div

sj−1

(j − 1)!
ds
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for j ≥ 1 and Λ
(2)
0 (τ) := eτM

(2)
div .

Lemma 9.2. (a) For all j ≥ 0 we have

Λj(τ) =
1

j!
I + τMΛj+1(τ) on X, (9.1a)

Λ
(0)
j (τ) =

1

j!
I + τM

(0)
divΛ

(0)
j+1(τ) on X(0)

div, (9.1b)

Λ
(2)
j (τ) =

1

j!
I + τM

(2)
divΛ

(2)
j+1(τ) on X(2)

div. (9.1c)

(b) Under the assumption τ ≤ 0 we have

‖Λj(τ)‖X ≤
C

j!
,
∥∥∥Λ

(0)
j (τ)

∥∥∥
X

(0)
div

≤ C0

j!
and

∥∥∥Λ
(2)
j (τ)

∥∥∥
X

(2)
div

≤ C2

j!
,

with

C = sup
s∈[0,1]

∥∥esM∥∥
X
, C0 = sup

s∈[0,1]

∥∥∥esM(0)
div

∥∥∥
X

(0)
div

and C2 = sup
s∈[0,1]

∥∥∥esM(2)
div

∥∥∥
X

(2)
div

.

(c) For all j ≥ 0 the operators Λj(τ), Λ
(0)
j (τ) and Λ

(2)
j (τ) leave D(M), D(M

(0)
div) and

D(M
(2)
div) invariant, respectively.

(d) For all j ≥ 1 the operators Λj(τ), Λ
(0)
j (τ) and Λ

(2)
j (τ) map into D(M), D(M

(0)
div)

and D(M
(2)
div), respectively.

Proof:
(a) is seen with integration by parts. The rest of the statements follow easily from Defi-
nition 9.1, semigroup theory and Proposition 7.21. �

We are now in position to formulate and prove our first convergence theorem. Keep in
mind that D(M

(0)
div) ↪→ D(A) ∩D(B) by Proposition 7.15.

Theorem 9.3. Let T > 0, ε, µ, σ ∈ W 2,3(Q), (E0,H0) ∈ D(M
(2)
div) and(

1
ε
J0, 0

)
∈ C1

(
[0, T ], X

(2)
div

)
∩ C2

(
[0, T ], D(M

(0)
div)
)
.

Then the numerical scheme (8.8) converges quadratically in L2(Q)6 to the solution of
(7.1), i.e. for all τ > 0 and n ∈ N with nτ ≤ T we have∥∥SIτ,n · · ·SIτ,1(E0,H0)− (E(nτ),H(nτ))

∥∥
L2

≤ Cτ 2

(
T
(
‖(E0,H0)‖

D(M
(2)
div)

+
∥∥(1

ε
J0, 0

)∥∥
C1
(

[0,T ],X
(2)
div

))+

∫ nτ

0

‖(J ′′0 (s), 0)‖
D(M

(0)
div)

ds

)
with a constant C only depending on ‖ε‖W 1,∞∩W 2,3, ‖µ‖W 1,∞∩W 2,3, ‖σ‖W 1,∞∩W 2,3 and δ.
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Remark 9.4. It the solution is in C
(
[0, T ], D(M

(0)
div

))
with norm smaller than M , then

it is sufficient to assume(
1
ε
J0, 0

)
∈ C

(
[0, T ], X

(2)
div

)
∩ C2

(
[0, T ], D(M

(0)
div)
)
.

In this case we have∥∥SIτ,n · · ·SIτ,1(E0,H0)− (E(nτ),H(nτ))
∥∥
L2

≤ cτ 2

(
T
(
M +

∥∥(1
ε
J0, 0

)∥∥
C
(

[0,T ],X
(2)
div

) + ‖(J ′0, 0)‖
C1
(

[0,T ],D(M
(0)
div)
))

+

∫ nτ

0

‖(J ′′0 (s), 0)‖
D(M

(0)
div)

ds

)
.

Proof:
First observe that the embeddingX(2)

div ↪→ D(A)∩D(B) from Proposition 7.15 ensures that
SIτ,n · · ·SIτ,1(E0,H0) is well-defined for all n ∈ N. Let τ > 0 and n ∈ N with (n+ 1)τ ≤ T

be fixed. A Taylor expansion of J0(nτ + s) at nτ for s ∈ (0, τ ] yields the identity

(
1
ε
J0(nτ + s), 0

)
=

(
1
ε
J0(nτ) + s1

ε
J′0(nτ) +

∫ nτ+s

nτ

(nτ + s− r)1
ε
J′′0(r) dr, 0

)
(9.2)

in X(2)
div. By Theorem 1.9, the solution w = (E,H) of (7.1) belongs to C

(
[0, T ], D(M

(2)
div)
)

and can be written in D(M
(2)
div), using (9.2) and Definition 9.1, as

w((n+ 1)τ) = eτMw(nτ) +

∫ τ

0

e(τ−s)M(−1
ε
J0(nτ + s), 0

)
ds

= eτMw(nτ) +

∫ τ

0

e(τ−s)M
(
−1
ε

(
J0(nτ) + sJ′0(nτ)

+

∫ nτ+s

nτ

(nτ + s− r)J′′0(r) dr
)
, 0

)
ds (9.3)

= Λ0(τ)w(nτ) + τΛ1(τ)
(
−1
ε
J0(nτ), 0

)
+ τ 2Λ2(τ)

(
−1
ε
J′0(nτ), 0

)
+Rn(τ)

with

Rn(τ) :=

∫ τ

0

e(τ−s)M
(∫ nτ+s

nτ

(nτ + s− r)
(
−1
ε
J′′0(r), 0

)
dr

)
ds.

We have∥∥(I + τ
2
B)Rn(τ)

∥∥
X
≤ c ‖Rn(τ)‖

D(M
(0)
div)
≤ cτ 2

∫ (n+1)τ

nτ

‖(J′′0(s), 0)‖
D(M

(0)
div)

ds,

‖Rn(τ)‖X ≤ cτ 2

∫ (n+1)τ

nτ

‖(J′′0(s), 0)‖
D(M

(0)
div)

ds,

with the constants c only depending on ‖ε‖W 1,∞ , ‖µ‖W 1,∞ , ‖σ‖W 1,∞ and δ.
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Plugging the Taylor expansion (9.2) with s = τ into the numerical scheme SIτ,n+1 from
(8.8) and applying it to SIτ,n · · ·SIτ,1w(0) gives for all n ∈ N0 with (n+ 1)τ ≤ T in X that

SIτ,n+1S
I
τ,n · · ·SIτ,1w(0) = (I − τ

2
B)−1(I + τ

2
A)
[
(I − τ

2
A)−1(I + τ

2
B)SIτ,n · · ·SIτ,1w(0)

+ τ
(
−1
ε
J0(nτ), 0

)
+ 1

2
τ 2
(
−1
ε
J′0(nτ), 0

)]
(9.4)

+ (I − τ
2
B)−1(I + τ

2
A)rn(τ)

with

rn(τ) :=
τ

2

∫ (n+1)τ

nτ

((n+ 1)τ − r)
(
−1
ε
J′′0(r), 0

)
dr.

The assumption
(
J0, 0

)
∈ C2

(
[0, T ], D(A)

)
implies rn ∈ C

(
[0, T ], D(A)

)
and hence, simi-

lar to above, ∥∥(I + τ
2
A)rn(τ)

∥∥
X
≤ cτ 2

∫ (n+1)τ

nτ

‖(J′′0(r), 0)‖D(A) dr

with c only depending on ‖ε‖W 1,∞ , ‖µ‖W 1,∞ , ‖σ‖W 1,∞ and δ.
We use the notation

γτ/2(A) = (I + τ
2
A)(I − τ

2
A)−1

and analogously for B instead of A. Taking the difference between (9.3) and (9.4), and
using the embedding X(2)

div ↪→ D(AB)∩D(A2) from Proposition 7.15 and that (I − τ
2
A)−1

and I + τ
2
A commute on D(A), we have for all n ∈ N0 with (n+ 1)τ ≤ T that

SIτ,n+1S
I
τ,n · · ·SIτ,1w(0)− w((n+ 1)τ)

= (I − τ
2
B)−1γτ/2(A)(I + τ

2
B)
(
SIτ,n · · ·SIτ,1w(0)− w(nτ)

)
+ (I − τ

2
B)−1(I − τ

2
A)−1·

·
(
(I + τ

2
A)(I + τ

2
B)− (I − τ

2
A)(I − τ

2
B)Λ

(2)
0 (τ)

)
w(nτ)

+ τ(I − τ
2
B)−1(I − τ

2
A)−1·

·
(
(I − τ

2
A)(I + τ

2
A)− (I − τ

2
A)(I − τ

2
B)Λ

(2)
1 (τ)

)(
−1
ε
J0(nτ), 0

)
+ τ 2(I − τ

2
B)−1

(
1
2
(I + τ

2
A)− (I − τ

2
B)Λ

(0)
2 (τ)

)(
−1
ε
J′0(nτ), 0

)
+ (I − τ

2
B)−1(I + τ

2
A)rn(τ)−Rn(τ)

=: (I − τ
2
B)−1γτ/2(A)(I + τ

2
B)
(
SIτ,n · · ·SIτ,1w(0)− w(nτ)

)
+ Σ1(τ) + Σ2(τ) + Σ3(τ) + (I − τ

2
B)−1(I + τ

2
A)rn(τ)−Rn(τ).

Using (9.1), we see as in Section 4.1 of [37] that

Σ1(τ) = τ 3(I − τ
2
B)−1(I − τ

2
A)−1

((
M

(0)
div

)2(1
2
Λ

(2)
2 (τ)− Λ

(2)
3 (τ)

)
M

(2)
div

− 1
4
ABΛ

(2)
1 (τ)M

(2)
div

)
w(nτ).

176



9.1. Convergence of the numerical scheme in L2

We recall that M = A+B on X(2)
div and the embedding X(2)

div ↪→ D
(
(M

(0)
div)2

)
from Coroal-

lary 7.13. Taking this and (9.1) into account, we have in XA
−1 the identity

(I − τ
2
A)(I + τ

2
A)− (I − τ

2
A)(I − τ

2
B)Λ

(2)
1 (τ)

= I − τ2

4
A2 − (I − τ

2
(A+B) + τ2

4
A−1B)

(
I + τΛ

(0)
2 (τ)M

(0)
div

)
= − τ2

4
A2 − τM (0)

div

(
1
2
I + τΛ

(0)
3 (τ)M

(0)
div

)
+ τ

2
M

(0)
div + τ2

2
Λ

(0)
2 (τ)

(
M

(0)
div

)2

− τ2

4
AB − τ3

4
A−1BΛ

(0)
2 (τ)M

(0)
div

= − τ2

4
A2 − τ 2Λ

(0)
3 (τ)

(
M

(0)
div

)2
+ τ2

2
Λ

(0)
2 (τ)

(
M

(0)
div

)2 − τ2

4
AB − τ2

4
AB(Λ

(2)
1 (τ)− I)

of operators acting on X(2)
div. Thus,

Σ2(τ) = τ 3(I − τ
2
B)−1(I − τ

2
A)−1

(
−1

4
A2 − Λ

(0)
3 (τ)

(
M

(0)
div

)2

+ 1
2
Λ

(0)
2 (τ)

(
M

(0)
div

)2 − 1
4
AB − 1

4
AB(Λ

(2)
2 (τ)− I)

)(
−1
ε
J0(nτ), 0

)
.

Next, we conclude by (9.1) and D(M
(0)
div) ↪→ D(A) ∩ D(B) from Proposition 7.15 the

identity

1
2
(I + τ

2
A)− (I − τ

2
B)Λ

(0)
2 (τ) = 1

2
I + τ

4
A− (I − τ

2
B)
(

1
2
I + τΛ

(0)
3 (τ)M

(0)
div

)
= τ

4
A+ τ

4
B − τΛ

(0)
3 (τ)M

(0)
div + τ

2
B(Λ

(0)
2 (τ)− I)

on D(M
(0)
div). This implies

Σ3(τ) = τ 3(I − τ
2
B)−1

(
1
4
A− 1

4
B − Λ

(0)
3 (τ)M

(0)
div + τ

2
Λ

(0)
3 M

(0)
div

)(
−1
ε
J′0(nτ), 0

)
.

We abbreviate

Jk(τ) : = (I − τ
2
A)−1

((
M

(0)
div

)2(1
2
Λ

(2)
2 (τ)− Λ

(2)
3 (τ)

)
M

(2)
div − 1

4
ABΛ

(2)
1 (τ)M

(2)
div

)
w(kτ)

+ (I − τ
2
A)−1

(
−1

4
A2 − Λ

(0)
3 (τ)

(
M

(0)
div

)2

+ 1
2
Λ

(0)
2 (τ)

(
M

(0)
div

)2 − 1
4
AB − 1

4
AB(Λ

(2)
2 (τ)− I)

)(
−1
ε
J0(kτ), 0

)
+
(

1
4
A− 1

4
B − Λ

(0)
3 (τ)M

(0)
div + τ

2
Λ

(0)
3 (τ)M

(0)
div

)(
−1
ε
J′0(kτ), 0

)
for all k ≥ 0 with kτ ≤ T . We can estimate this expression by

‖Jk(τ)‖L2 ≤ c
(
‖w(kτ)‖

D(M
(2)
div)

+
∥∥(1

ε
J0(kτ), 0

)∥∥
X

(2)
div

+ ‖(J′0(kτ), 0)‖
D(M

(0)
div)

)
with c only depending on ‖ε‖W 1,∞∩W 2,3 , ‖µ‖W 1,∞∩W 2,3 , ‖σ‖W 1,∞∩W 2,3 , δ and T , see Propo-
sition 8.1, 7.11 and 7.15, and Lemma 9.2. The above calculations yield

SIτ,n · · ·SIτ,1w(0)− w(nτ)
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= (I − τ
2
B)−1γτ/2(A)(I + τ

2
B)
(
SIτ,n−1 · · ·SIτ,1w(0)− w((n− 1)τ)

)
+ τ 3Jn−1(τ) + (I − τ

2
B)−1(I + τ

2
A)rn−1(τ)−Rn−1(τ).

We solve this error recursion and get

SIτ,n · · ·SIτ,1w(0)− w(nτ)

= τ 3

n−1∑
k=0

(I − τ
2
B)−1

(
γτ/2(A)γτ/2(B)

)n−1−k
Jk(τ)

+
n−1∑
k=0

(I − τ
2
B)−1

(
γτ/2(A)γτ/2(B)

)n−1−k
(I + τ

2
A)rk(τ)

−
n−2∑
k=0

(I − τ
2
B)−1

(
γτ/2(A)γτ/2(B)

)n−2−k
γτ/2(A)(I + τ

2
B)Rk(τ)

−Rn−1(τ).

Hence,∥∥SIτ,n · · ·SIτ,1w0 − w(nτ)
∥∥
L2

≤ cτ 3

n−1∑
k=0

(
‖w(kτ)‖

D(M
(2)
div)

+
∥∥(1

ε
J0(kτ), 0

)∥∥
X

(2)
div

+ ‖(J′0(kτ), 0)‖
D(M

(0)
div)

+ cτ 2

∫ (k+1)τ

kτ

‖(J′′0(r), 0)‖
D(M

(0)
div)

dr

)
≤ Cτ 2

(
T
(
‖w0‖D(M

(2)
div)

+
∥∥(1

ε
J0, 0

)∥∥
C1
(

[0,T ],X
(2)
div

))+

∫ nτ

0

‖(J′′0(r), 0)‖
D(M

(0)
div)

dr

)
,

see Proposition 8.1 and Theorem 1.9. Thereby, C only depends on ‖ε‖W 1,∞∩W 2,3 , ‖µ‖W 1,∞∩W 2,3 ,
‖σ‖W 1,∞∩W 2,3 and δ. �

9.2. Convergence of the numerical scheme in a weak
sense

We first remind the reader that for w0 = (E0,H0) ∈ D(M
(0)
div) and(

J0, 0
)
∈ C

(
[0, T ], D(M

(0)
div)
)

+ C1
(
[0, T ], X

(0)
div

)
,

Proposition 7.21 gives a unique solution w of (7.1) with

w = (E,H) ∩ C1
(
[0, T ], X

(0)
div

)
∩ C

(
[0, T ], D(M

(0)
div)
)
.

Moreover, we recall the definition of Sobolev spaces of negative orders associated to semi-
groups from Proposition 1.10.
With reduced regularity assumptions on the initial function and on the inhomogeneity

our numerical scheme is still convergent of order two in time in a weak sense.
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9.2. Convergence of the numerical scheme in a weak sense

Theorem 9.5. Let T > 0, (E0,H0) ∈ D
(
(M

(0)
div)2

)
and(

J0, 0
)
∈ C

(
[0, T ], D

(
M

(0)
div

))
∩ C2

(
[0, T ], X

(0)
div

)
.

Then the numerical scheme (8.8) converges for small time step sizes quadratically in Y ∗

to the solution of (7.1), i.e. there is a bound τ0 ∈ [0, T ) on the time step size such that
for all τ ∈ (0, τ0] and n ∈ N with nτ ≤ T we have∣∣(SIτ,n · · ·SIτ,1(E0,H0)− (E(nτ),H(nτ)) | (ϕ, ψ)

)
X

∣∣
≤ Cτ 2e6κY TT

(
‖(E0,H0)‖

D
(

(M
(0)
div)2
) + ‖(J0, 0)‖

C
(

[0,T ],D(M
(0)
div)
)

+ ‖(J0, 0)‖
C2
(

[0,T ],X
(0)
div

)) ‖(ϕ, ψ)‖Y

for all (ϕ, ψ) ∈ Y with a constant C only depending on ‖ε‖W 1,∞, ‖µ‖W 1,∞, ‖σ‖W 1,∞ and
δ.

Proof:
First observe that the embedding D(M

(0)
div) ↪→ D(A)∩D(B) from Proposition 7.15 ensures

that SIτ,n · · ·SIτ,1(E0,H0) is well-defined for all n ∈ N.
Let τ0 := min{ 1

2κY
, τ̃} with the τ̃ from Proposition 8.7 and let τ ∈ (0, τ0]. Let n ∈ N

with nτ ≤ T . Let (ϕ, ψ) = (I + τ
2
B∗)(ϕ0, ψ0) for some (ϕ0, ψ0) ∈ Y . Under the regularity

assumptions of this theorem the Taylor expansion (9.2) is only valid in X and (9.3) is
valid in X with

Rn(τ) :=

∫ τ

0

e(τ−s)M(0)
div

(∫ nτ+s

nτ

(nτ + s− r)
(
−1
ε
J′′0(r), 0

)
dr

)
ds.

We get, due to Y ↪→ D(B∗) by Remark 7.16, that∣∣(Rn(τ) | (ϕ, ψ)
)
X

∣∣ ≤ c

∫ τ

0

∥∥e(τ−s)M∥∥
B(X)
·

·
∫ nτ+s

nτ

(nτ + s− r)
∥∥(−1

ε
J′′0(r), 0

)∥∥
X

dr ds ‖(ϕ, ψ)‖X

≤ cτ 2

∫ (n+1)τ

nτ

‖(J′′0(r), 0)‖X dr ‖(ϕ, ψ)‖X

and

∣∣(Rn(τ) | (ϕ, ψ)
)
X

∣∣ ≤ cτ 2

∫ (n+1)τ

nτ

‖(J′′0(r), 0)‖X dr ‖(ϕ, ψ)‖X

with the constants c only depending on ‖ε‖L∞ , ‖µ‖L∞ , ‖σ‖L∞ and δ. In the same way we
get for

rn(τ) :=
τ

2

∫ (n+1)τ

nτ

((n+ 1)τ − r)
(
−1
ε
J′′0(r), 0

)
dr
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

with Y ↪→ D(A∗) that

∣∣(rn(τ) | (ϕ, ψ)
)
X

∣∣ ≤ cτ 2

∫ (n+1)τ

nτ

‖(J′′0(r), 0)‖X dr ‖(ϕ, ψ)‖X .

As in Section 9.1, we expand the inhomogeneity in both summands of

SIτ,n+1 · · ·SIτ,1w(0)− w((n+ 1)τ)

into a Taylor series, test the difference with (ϕ, ψ), bring the operators by taking the
adjoints to the right-hand side and do the same algebraic reformulations as before. This
gives(
SIτ,n+1 · · ·SIτ,1w(0)− w((n+ 1)τ) | (ϕ, ψ)

)
X

=
(
SIτ,n · · ·SIτ,1w(0)− w(nτ) | (I + τ

2
B∗)(I − τ

2
A∗)−1(I + τ

2
A∗)(I − τ

2
B∗)−1(ϕ, ψ)

)
X

+
(
w(nτ) |

(
(I + τ

2
B∗)(I + τ

2
A∗)

− Λ0(τ)∗(I − τ
2
B∗)(I − τ

2
A∗)
)
(I − τ

2
A∗)−1(I − τ

2
B∗)−1(ϕ, ψ)

)
X

+ τ
((
−1
ε
J0(nτ), 0

)
|
(
(I + τ

2
A∗)(I − τ

2
B∗)−1 − Λ1(τ)∗

)
(ϕ, ψ)

)
X

+ τ 2
((
−1
ε
J′0(nτ), 0

)
|
(

1
2
(I + τ

2
A∗)(I − τ

2
B∗)−1 − Λ2(τ)∗

)
(ϕ, ψ)

)
X

+
(
rn(τ) | (I + τ

2
A∗)(I + τ

2
B∗)−1(ϕ, ψ)

)
L2 − (Rn(τ) | (ϕ, ψ))X

=:
(
(I − τ

2
B)−1(I + τ

2
A)(I − τ

2
A)−1(I + τ

2
B)(SIτ,n · · ·SIτ,1w(0)− w(nτ)) | (ϕ, ψ)

)
X

+ Σ1(τ) + Σ2(τ) + Σ3(τ) +
(
rn(τ) | (I + τ

2
A∗)(I + τ

2
B∗)−1(ϕ, ψ)

)
X

− (Rn(τ) | (ϕ, ψ))X ,

where we used that I + τ
2
A∗ and (I − τ

2
A∗)−1 commute on Y ↪→ D(A∗) ∩D(B∗). We set

χ(τ) := (I − τ
2
A∗Y )−1(I − τ

2
B∗)−1(ϕ, ψ) ∈ D(A∗Y )

and have due to M∗ = A∗ +B∗ on Y that

Σ1(τ) =
(
w(nτ) |

(
(I + τ

2
B∗)(I + τ

2
A∗)− Λ0(τ)∗(I − τ

2
B∗)(I − τ

2
A∗)
)
χ(τ)

)
X

=
(
w(nτ)|

(
(I − Λ0(τ)∗) + τ

2
(I + Λ0(τ)∗)M∗ + τ2

4
(I − Λ0(τ)∗)B∗A∗

)
χ(τ)

)
X
.

Due to (9.1) we have

I − Λ0(τ)∗ = −τM∗ − 1
2
τ 2(M∗)2 − τ 3Λ0(τ)∗(M∗)3 on D

(
(M∗)3

)
,

I + Λ0(τ)∗ = 2I + τM∗ + τ 2Λ2(τ)∗(M∗)2 on D
(
(M∗)2

)
and

I − Λ0(τ)∗ = −τΛ1(τ)∗M∗ on D(M∗).
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9.2. Convergence of the numerical scheme in a weak sense

Thus, using Y ↪→ D(B∗), w(nτ) ∈ D
(
(M

(0)
div)2

)
↪→ D(M2) and D(M

(0)
div) ↪→ D(A) ∩D(B)

from Proposition 7.15, we get

Σ1(τ) =

〈
w(nτ),

(
−τ 3Λ3(τ)∗−2M

∗
−2M

∗
−1M

∗

+ τ3

2
Λ2(τ)∗−2M

∗
−2M

∗
−1M

∗

− τ3

4
Λ1(τ)∗−1M

∗
−1B

∗A∗
)
χ(τ)

〉
D(M2)×XM∗

−2

= τ 3
((
−
(
M

(0)
div

)2
Λ

(0)
3 (τ) + 1

2
(M

(0)
div)2Λ

(0)
2 (τ)

)
w(nτ) |M (0)

divχ(τ)
)
X

− τ 3
(

1
4
BM

(0)
divΛ

(0)
1 (τ)w(nτ) | A∗χ(τ)

)
X
.

Moreover,

Σ2(τ) = τ
((
−1
ε
J0(nτ), 0

)
|
(
(I + τ

2
A∗)(I − τ

2
A∗)− Λ1(τ)∗(I − τ

2
B∗)(I − τ

2
A∗)
)
χ(τ)

)
X

= τ
((
− 1

ε
J0(nτ), 0

)
|
(
I − τ2

4
(A∗)2 − Λ1(τ)∗

(
I − τ

2
(A∗ +B∗)

)
− τ2

4
Λ1(τ)∗B∗A∗

)
χ(τ)

)
X
.

Using first Λ1(τ)∗ = I + τΛ2(τ)∗M∗ and then Λ2(τ)∗ = 1
2
I + τΛ3(τ)∗M∗ by (9.1), we thus

have

Σ2(τ) = τ
〈(
−1
ε
J0(nτ), 0

)
,
(
− τ2

4
(A∗)2 − τΛ

(0)
2 (τ)∗M∗

−1 + τ
2
M∗

+ τ2

2
Λ2(τ)∗−1M

∗
−1M

∗ − τ 2Λ1(τ)∗B∗A∗
)
χ(τ)

〉
D(M)×XM∗

−1

= τ
〈(
−1
ε
J0(nτ), 0

)
,
(
− τ2

4
(A∗)2 − τ 2Λ3(τ)∗−1M

∗
−1M

∗

+ τ2

2
Λ2(τ)∗−1M

∗
−1M

∗

− τ 2Λ1(τ)∗B∗A∗
)
χ(τ)

〉
D(M)×XM∗

−1

= τ 3

((
−1

4
A
(
−1
ε
J0(nτ), 0

)
| A∗χ(τ)

)
X

+
(
−(M

(0)
div)Λ

(0)
3 (τ)

(
−1
ε
J0(nτ), 0

)
|M∗χ(τ)

)
X

+
(
−1

2
M

(0)
divΛ

(0)
2 (τ)

(
−1
ε
J0(nτ), 0

)
|M∗χ(τ)

)
X

+
(
−1

4
BΛ

(0)
1 (τ)

(
−1
ε
J0(nτ), 0

)
| A∗χ(τ)

)
X

)
,

where we have taken M
(0)
div = A + B on D(M

(0)
div) into account in the last equality. Fur-

thermore, we have again with (9.1) that

Σ3(τ) = τ 2
((
−1
ε
J′0(nτ), 0

)
,
(

1
2
(I + τ

2
A∗)− Λ2(τ)∗(I − τ

2
B∗)
)
(I − τ

2
B∗Y )−1(ϕ, ψ)

)
X
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= τ 2
((
−1
ε
J′0(nτ), 0

)
,
(

1
2
I + τ

4
A∗ −

(
1
2
I + τΛ3(τ)∗M∗)

+ 1
2
Λ

(0)
2 (τ)∗B∗

)
(I − τ

2
B∗Y )−1(ϕ, ψ)

)
X

= τ 3
((
−1
ε
J′0(nτ), 0

)
,
(

1
4
A∗ − Λ3(τ)∗M∗

+ 1
2
Λ2(τ)∗B∗

)
(I − τ

2
B∗Y )−1(ϕ, ψ)

)
X
.

We altogether get

(
SIτ,n · · ·SIτ,1w(0)− w(nτ) | (ϕ, ψ)

)
X

= τ 3

n−1∑
k=0

((
−(M

(0)
div)2Λ

(0)
3 (τ) + 1

2
(M

(0)
div)2Λ

(0)
2 (τ)

)
w(kτ) |

M∗(I − τ
2
A∗)−1

(
γτ/2(B)∗γτ/2(A)∗

)n−1−k
(I − τ

2
B∗)−1(ϕ, ψ)

)
X

− τ 3

n−1∑
k=0

(
1
4
BM

(0)
divΛ

(0)
1 (τ)w(kτ) | A∗(I − τ

2
A∗)−1

(
γτ/2(B)∗γτ/2(A)∗

)n−1−k·

(I + τ
2
B∗)−1(ϕ, ψ)

)
X

− τ 3

n−1∑
k=0

((
1
4
A+ 1

4
BΛ

(0)
1 (τ)

)(
−1
ε
J0(kτ), 0

)
|

A∗(I − τ
2
A∗)−1

(
γτ/2(B)∗γτ/2(A)∗

)n−1−k
(I + τ

2
B∗)−1(ϕ, ψ)

)
X

− τ 3

n−1∑
k=0

(
1
2
M

(0)
divΛ

(0)
2 (τ)

(
−1
ε
J0(kτ), 0

)
|M∗(I − τ

2
A∗)−1·

(
γτ/2(B)∗γτ/2(A)∗

)n−1−k
(I − τ

2
B∗)−1(ϕ, ψ)

)
X

− τ 3

n−1∑
k=0

(
M

(0)
divΛ

(0)
3 (τ)

(
−1
ε
J0(kτ), 0

)
|M∗(I − τ

2
A∗)−1·

(
γτ/2(B)∗γτ/2(A)∗

)n−1−k
(I − τ

2
B∗)−1(ϕ, ψ)

)
X

+ τ 3

n−1∑
k=0

((
−1
ε
J′0(kτ), 0

)
| −Λ3(τ)∗M∗(γτ/2(B)∗γτ/2(A)∗

)n−1−k
(I − τ

2
B∗)−1(ϕ, ψ)

)
X

+ τ 3

n−1∑
k=0

((
−1
ε
J′0(kτ), 0

)
|
(

1
4
A∗ + 1

2
Λ

(0)
2 (τ)∗B∗

)(
γτ/2(B)∗γτ/2(A)∗

)n−1−k·

(I − τ
2
B∗)−1(ϕ, ψ)

)
X

+
n−1∑
k=0

(
rk(τ) | (I + τ

2
A∗)
(
γτ/2(B)∗γτ/2(A)∗

)n−1−k
(I − τ

2
B∗)−1(ϕ, ψ)

)
X
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+
n−2∑
k=0

(
Rk(τ) | (I + τ

2
B∗)γτ/2(A)∗

(
γτ/2(B)∗γτ/2(A)∗

)n−2−k
(I − τ

2
B∗)−1(ϕ, ψ)

)
X

+
(
Rn−1(τ) | (ϕ, ψ)

)
X
.

Analogously as in Section 9.1 we use the norm estimates from Proposition 8.1 and Theo-
rem 1.9 to infer∣∣(SIτ,n · · ·SIτ,1w(0)− w(nτ) | (ϕ, ψ)

)
L2

∣∣
≤ cτ 3

n−1∑
k=0

(
‖w(kτ)‖

D
(

(M
(0)
div)2
) + ‖(J0(kτ), 0)‖

D(M
(0)
div)

+ ‖(J′0(kτ), 0)‖X

+

∫ (k+1)τ

kτ

‖(J′′0(s), 0)‖X ds

)
e6κY nτ ‖(ϕ, ψ)‖H1

≤ Cτ 2T
(
‖w0‖

D
(

(M
(0)
div)2
) + ‖(J0, 0)‖

C
(

[0,T ],D(M
(0)
div)
)

+ ‖(J0, 0)‖
C2
(

[0,T ],X
(0)
div

))e6κY T ‖(ϕ, ψ)‖H1 .

Thereby, C only depends on ‖ε‖W 1,∞ , ‖µ‖W 1,∞ , ‖σ‖W 1,∞ and δ. �

9.3. Near preservation of the divergence conditions in
H−1

Due to Proposition 7.19, the solution of (7.1) fulfils the divergence conditions

div(εE(t)) = div(εE0)−
∫ t

0

div(σE(s) + J0(s)) ds,

div(µH(t)) = 0

in H−1(Q) for all t ∈ [0, T ] if (E0,H0) ∈ D(M) and

(J0, 0) ∈ C
(
[0, T ], D(M)

)
+ C1

(
[0, T ], X

)
.

Theorem 9.6. Let T > 0, (E0,H0) ∈ D(BY ) and (J0, 0) ∈ C
(
[0, T ], D(AY )

)
∩C1

(
[0, T ], X

)
.

Then there exists a bound τ0 ∈ (0, T ] on the time step size such that the numerical solution
fulfils the divergence conditions in H−1(Q) for time step sizes τ ∈ (0, τ0] up to order one
in τ ; more precisely, for all τ ∈ (0, τ0] and N ∈ N with Nτ ≤ T we have∥∥∥(div(εEN), div(µHN)

)
−
(
div(εE0), 0

)
+

N−1∑
k=0

τ
2

(
div(σ

2
Ek+1 + σEk+1/2 + σ

2
Ek), 0

)
+

∫ Nτ

0

(
div(J0(s)), 0

)
ds
∥∥∥
H−1
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9. Convergence of the ADI splitting scheme and preservation of the divergence conditions

≤ Cτ

(∫ T

0

‖(J ′0(s), 0)‖L2 ds+ e6κY T
((
‖(E0,H0)‖H1 + τ ‖BY (E0,H0)‖H1

)
(9.5)

+ T sup
t∈[0,T ]

(
‖(J0(t), 0)‖H1 + τ

∥∥AY (1
ε
J0(t), 0

)∥∥
H1

)))
for a constant C ≥ 0 only depending on ‖ε‖W 1,∞, ‖µ‖W 1,∞, ‖σ‖W 1,∞ and δ.

Remark 9.7. The proof of Theorem 9.6 below also shows that under the same assump-
tions we have for all τ ∈ (0, τ0] and N ∈ N with Nτ ≤ T the estimate∥∥∥(div(εEN), div(µHN)

)
−
(
div(εE0), 0

)
+

N−1∑
k=0

τ
2

(
div(σ

2
Ek+1 + σEk+1/2 + σ

2
Ek), 0

)
+

N−1∑
k=0

τ
2

(
div(J0(tk) + J0(tk+1)), 0

)∥∥∥
H−1

≤ Cτ

(
e6κY T

((
‖(E0,H0)‖H1 + τ ‖BY (E0,H0)‖H1

)
(9.6)

+ T sup
t∈[0,T ]

(
‖J0(t)‖H1 + τ ‖AY (J0(t), 0)‖H1

)))
for a constant C ≥ 0 only depending on ‖ε‖W 1,∞, ‖µ‖W 1,∞, ‖σ‖W 1,∞ and δ. This version
of Theorem 9.6 can be used for numerical confirmations.

Proof (of Theorem 9.6):
Let τ0 := min{ 1

2κY
, τ̃} with the bound τ̃ on the time step size from Proposition 8.7 and

let τ ∈ (0, τ0]. In the following we write tk := kτ for k ∈ N and make frequently use of
the assumption τ ≤ 1. Let n ∈ N and w0 := (E0,H0).
We first show a recursion formula for the divergence of numerical solution and then

insert it into itself to obtain a closed, but nevertheless implicit, formula for the divergence.
Afterwards we bring all terms that approximate the divergence condition to one side of
the equation and estimate the error of the approximation of the integral as well as the
other summands.
1) We have by Remark 8.13 and the identities (8.10) and (8.9) that (En,Hn) ∈ D(BY )

and
(En+1/2,Hn+1/2) =

(
I − τ

2
AY
)−1(

I + τ
2
BY )(En,Hn) ∈ D(AY ),

and therefore (
(1 + στ

4ε
)En+1/2,Hn+1/2

)
− τ

2

(
1
ε
C1Hn+1/2,

1
µ
C2En+1/2

)
=
(
(1− στ

4ε
)En,Hn

)
− τ

2

(
1
ε
C2Hn,

1
µ
C1En

)
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in Y . Reordering the terms and plugging the equation into itself gives in L2(Q)6(
(1 + στ

4ε
)En+1/2,Hn+1/2

)
= τ

2

(
1
ε
C1

(
τ
2µ
C2En+1/2 + Hn − τ

2µ
C1En

)
,

1
µ
C2

(
τ
2ε
C1Hn+1/2 + (1− στ

4ε
)En − τ

2ε
C2Hn

))
+ τ

2

(
0,− 1

µ
C2

στ
4ε
En+1/2

)
+
(
(1− στ

4ε
)En,Hn

)
− τ

2

(
1
ε
C2Hn,

1
µ
C1En

)
.

Hence, recalling (8.11) and using curl = C1 − C2,(
εEn+1/2 − τ2

4
D(1)
µ En+1/2, µHn+1/2 − τ2

4
D(2)
ε Hn+1/2

)
=
(
εEn − τ2

4
C1

1
µ
C1En, µHn − τ2

4
C2

1
ε
C2Hn

)
− τ

2

(
0, C2

στ
4ε

(En+1/2 + En)
)

(9.7)

−
(
στ
4

(En+1/2 + En), 0
)

+ τ
2
(curlHn,− curlEn)

in L2(Q)6. From

(En+1,Hn+1) =
(
I − τ

2
BY

)−1(
I + τ

2
AY )

(
(En+1/2,Hn+1/2)

− τ
2ε

(J0(tn) + J0(tn+1), 0)
)
,

see (8.10) and (8.9), we get(
(1 + στ

4ε
)En+1,Hn+1

)
+ τ

2

(
1
ε
C2Hn+1,

1
µ
C1En+1

)
=
(
(1− στ

4ε
)En+1/2,Hn+1/2

)
+ τ

2

(
1
ε
C1Hn+1/2,

1
µ
C2En+1/2

)
−
(
(1− στ

4ε
) τ

2ε
(J0(tn) + J0(tn+1)), τ

2µ
C2

τ
2ε

(J0(tn) + J0(tn+1))
)

in Y . Again we reorder the terms and plug the equation into itself, getting(
(1 + στ

4ε
)En+1,Hn+1

)
= − τ

2

(
1
ε
C2

(
− τ

2µ
C1En+1 + Hn+1/2 + τ

2µ
C2En+1/2

)
,

1
µ
C1

(
− τ

2ε
C2Hn+1 + (1− στ

4ε
)En+1/2 + τ

2ε
C1Hn+1/2

))
+
(
0, τ

2µ
C1

στ
4ε
En+1

)
− τ

2

(
−1
ε
C2

(
τ
2µ
C2

τ
2ε

(J0(tn) + J0(tn+1))
)
,

− 1
µ
C1

(
(1− στ

4ε
) τ

2ε
(J0(tn) + J0(tn+1))

))
+
(
(1− στ

4ε
)En+1/2,Hn+1/2

)
+ τ

2

(
1
ε
C1Hn+1/2,

1
µ
C2En+1/2

)
−
(
(1− στ

4ε
) τ

2ε
(J0(tn) + J0(tn+1)), τ

2µ
C2

τ
2ε

(J0(tn) + J0(tn+1))
)

in L2(Q)6. This yields, again with (8.11) and curl = C1 − C2,(
εEn+1 − τ2

4
D(2)
µ En+1, µHn+1 − τ2

4
D(1)
ε Hn+1

)
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=
(
εEn+1/2 − τ2

4
C2

1
µ
C2En+1/2, µHn+1/2 − τ2

4
C1

1
ε
C1Hn+1/2

)
−
(
στ
4

(En+1 + En+1/2), 0
)

+ τ
2
(curlHn+1/2,− curlEn+1/2) (9.8)

+ τ
2

(
0, C1

στ
4ε

(En+1/2 + En+1)
)

+ τ
2

(
C2

τ
2µ
C2

τ
2ε

(J0(tn) + J0(tn+1)),−C1
στ
4ε

τ
2ε

(J0(tn) + J0(tn+1))
)

− τ
2

(
(1− στ

4ε
)(J0(tn) + J0(tn+1)), 0

)
+
(
0, curl

(
τ
2ε

(J0(tn) + J0(tn+1))
))

in L2(Q)6. Let ϕ ∈ H2
0 (Q). The identity curl∇ = 0 yields for all v ∈ H1(Q)3 with

C2v ∈ H1(Q)3 and the equations (7.26) and (7.28) that(
D(1)
ε v | ∇ϕ

)
L2 =

(
1
ε
C2v,−C2∇ϕ

)
L2

=
(

1
ε
C2v, (C1 − C2)∇ϕ

)
L2 −

(
1
ε
C2v, C1∇ϕ

)
L2

=
(
C2

1
ε
C2u | ∇ϕ

)
L2 .

So, using the density of∇H2
0 (Q) in L2(Q)3 and the continuity of div : L2(Q)3 → H−1(Q)3,

we have in the distributional sense

divD(1)
ε v = divC2

1
ε
C2v

and, shown analogously,

divD(2)
µ u = divC1

1
µ
C1u

for all u ∈ H1(Q)3 with C1u ∈ H1(Q)3. Together with 0 = div curl = divC1 − divC2 in
the distributional sense we get in H−1(Q)6 for n ≥ 1 by (9.8) and (9.7) that(

div
(
εEn+1 − τ2

4
D(2)
µ En+1

)
, div

(
µHn+1 − τ2

4
D(1)
ε Hn+1

))
=
(

div
(
εEn+1/2 − τ2

4
D(1)
µ En+1/2

)
, div

(
µHn+1/2 − τ2

4
D(2)
ε Hn+1/2

))
−
(
div(στ

4
(En+1 + En+1/2)), 0

)
+ τ

2

(
0, div

(
C1

στ
4ε

(En+1/2 + En+1)
))

+ τ
2

(
div
(
C2

τ
2µ
C2

τ
2ε

(J0(tn) + J0(tn+1))
)
,

− div
(
C1

στ2

8ε2
(J0(tn) + J0(tn+1))

))
− τ

2

(
div
(
(1− στ

4ε
)(J0(tn) + J0(tn+1))

)
, 0
))

=
(

div
(
εEn − τ2

4
D(2)
µ En

)
, div

(
µHn − τ2

4
D(1)
ε Hn

))
−
(

div
(
στ
4
En+1 + στ

2
En+1/2 + στ

4
En

)
, 0
)

− τ
2

(
div(J0(tn) + J0(tn+1)), 0

)
+ τ

2

(
0, div

(
C1

στ
4ε

(En+1 − En)
))
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+ τ
2

(
τ
2

div
(
D(1)
µ

τ
2ε

(J0(tn) + J0(tn+1))
)
,

− div
(
C1

στ2

8ε2
(J0(tn) + J0(tn+1))

))
+ τ

2

(
div
(
στ
4ε

(J0(tn) + J0(tn+1))
)
, 0
))
.

Thus, we get for N ≥ 1 by inserting this relation inductively into itself(
div
(
εEN − τ2

4
D(2)
µ EN

)
, div

(
µHN − τ2

4
D(1)
ε HN

))
=
(

div
(
εE0 − τ2

4
D(2)
µ E0

)
, div

(
µH0 − τ2

4
D(1)
ε H0

))
−

N−1∑
n=0

(
div
(
στ
4
En+1 + στ

2
En+1/2 + στ

4
En

)
, 0
)

−
N−1∑
n=0

τ
2

(
div(J0(tn) + J0(tn+1)), 0

)
+

N−1∑
n=0

τ2

8

(
0, div

(
C1

σ
ε
(En+1 − En)

))
+

N−1∑
n=0

τ2

4

(
div
(
D(1)
µ

τ
2ε

(J0(tn) + J0(tn+1))
)
,

− div
(
C1

στ
4ε2

(J0(tn) + J0(tn+1))
))

+
N−1∑
n=0

τ
2

(
div
(
στ
4ε

(J0(tn) + J0(tn+1))
)
, 0
)

in H−1(Q)6. Reordering these terms yields with div(µH0) = 0 that(
div(εEN), div(µHN)

)
−
(
div(εE0), 0

)
+

N−1∑
n=0

(
div(στ

4
En+1 + στ

2
En+1/2 + στ

4
En), 0

)
+

N−1∑
n=0

τ
2

(
div(J0(tn) + J0(tn+1)), 0

)
=
(

div
(
τ2

4
D(2)
µ EN

)
, div

(
τ2

4
D(1)
ε HN

))
−
(

div
(
τ2

4
D(2)
µ E0

)
, div

(
τ2

4
D(1)
ε H0

))
+ τ2

8

(
0, div

(
C1

σ
ε
(EN − E0)

))
+

N−1∑
n=0

τ3

16

(
div
(
D(1)
µ

1
ε
(J0(tn) + J0(tn+1))

)
, (9.9)

− div
(
C1

σ
ε2

(J0(tn) + J0(tn+1))
))

+
N−1∑
n=0

τ2

8

(
div
(
σ
ε
(J0(tn) + J0(tn+1))

)
, 0
)
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in H−1(Q)6.
2) We observe that the absolute value of the left-hand side of (9.9) is the left-hand

side of (9.5) with the integral replaced by the trapezoidal quadrature rule. With the
trapezoidal rule and the assumption (J0, 0) ∈ C1

(
[0,∞), L2(Q)6

)
we have∥∥∥∥∥

(N−1∑
n=0

τ
2

(
div(J0(tn) + J0(tn+1)

)
−
∫ Nτ

0

div(J0(s)) ds, 0

)∥∥∥∥∥
H−1

≤ c

∥∥∥∥∥
N−1∑
n=0

(
τ
2

(
J0(tn) + J0(tn+1)

)
−
∫ tn+1

tn

J0(s) ds
)∥∥∥∥∥

L2

≤ c

∥∥∥∥∥∥
N−1∑
n=0

(∫ 1
2

(tn+tn+1)

tn

(J0(tn)− J0(s)) ds+

∫ tn+1

1
2

(tn+tn+1)

(J0(tn+1)− J0(s)) ds
)∥∥∥∥∥∥

L2

≤ c
N−1∑
n=0

τ

∫ tn+1

tn

‖J′0(s)‖L2 ds ≤ cτ

∫ T

0

‖J′0(s)‖L2 ds.

Thus, it remains to bound the right-hand side of (9.9).
3) For n ≥ 1 we have by (8.10) in Y the formulation

(En,Hn) = SIτ,n · · ·SIτ,1(E0,H0)

=
(
I − τ

2
BY )−1γτ/2(AY )

(
γτ/2(BY )γτ/2(AY )

)n−1(
I + τ

2
BY )(E0,H0)

−
n−1∑
k=0

(I − τ
2
BY )−1

(
γτ/2(AY )γτ/2(BY )

)k
(I + τ

2
AY )· (9.10)

· τ
2ε

(
J0(tn−k−1) + J0(tn−k), 0

)
.

Observe that

(
D(2)
µ EN , D

(1)
ε HN) = −

(
0 C2

C1 0

)
B0S

I
τ,N · · ·SIτ,1(E0,H0)

=

(
εI 0

0 µI

)
B2

0S
I
τ,N · · ·SIτ,1(E0H0)

=

(
εI 0

0 µI

)(
BY +

(
σ
2ε
I 0

0 0

))2

·

·
((
I − τ

2
BY )−1γτ/2(AY )

(
γτ/2(BY )γτ/2(A)

)N−1(
I + τ

2
BY )(E0,H0)

+
N−1∑
k=0

(I − τ
2
BY )−1

(
γτ/2(AY )γτ/2(BY )

)k
(I + τ

2
AY )·

· τ
2ε

(
J0(tN−k−1) + J0(tN−k), 0

))
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in L2(Q)6. We thus deduce∥∥(divD(2)
µ EN , divD(1)

ε HN

)∥∥
H−1 ≤ c

∥∥(D(2)
µ EN , D

(1)
ε HN

)∥∥
L2

≤
∥∥∥∥∥
(
εI 0

0 µI

)(
BY +

(
σ
2ε
I 0

0 0

))2(
I − τ

2
BY

)−1
γτ/2(AY )·

·
(
γτ/2(BY )γτ/2(AY )

)N−1(
I + τ

2
BY

)
(E0,H0)

∥∥∥∥∥
L2

(9.11)

+

∥∥∥∥∥
(
εI 0

0 µI

)(
BY +

(
σ
2ε
I 0

0 0

))2

(I − τ
2
BY )−1

N−1∑
k=0

(
γτ/2(AY )γτ/2(BY )

)k·
· (I + τ

2
AY )1

ε
τ
2

(
J0(tN−k−1) + J0(tN−k), 0

)∥∥∥∥∥
L2

.

With the identity
τ
2
BY

(
I − τ

2
BY

)−1
=
(
I − τ

2
BY

)−1 − I

on Y we get by Proposition 8.7 that∥∥∥∥∥τ 2

4

(
εI 0

0 µI

)
B2
Y

(
I − τ

2
BY )−1γτ/2(AY )

(
γτ/2(BY )γτ/2(A)

)N−1·

·
(
I + τ

2
BY )(E0,H0)

∥∥∥∥∥
L2

≤ τ

2
c ‖B‖B(Y,X)

∥∥(I − τ
2
BY )−1 − I

∥∥
B(Y )

∥∥γτ/2(AY )
∥∥
B(Y )
·

·
(∥∥γτ/2(BY )

∥∥
B(Y )

∥∥γτ/2(AY )
∥∥
B(Y )

)N−1 ∥∥(I + τ
2
BY )(E0,H0)

∥∥
H1

≤ 3τ

2
ce3(2N−1)κY τ

∥∥(I + τ
2
BY )(E0,H0)

∥∥
H1

≤ cτe6κY T
(
‖w0‖H1 + τ ‖BYw0‖H1

)
,

where c depends on ‖ε‖W 1,∞ , ‖µ‖W 1,∞ , ‖σ‖W 1,∞ and δ. With similar, but easier, estimates

for the other summands of
(
BY +

(
σ
2ε
I 0

0 0

))2

we thus have

∥∥∥∥∥τ 2

4

(
εI 0

0 µI

)(
BY +

(
σ
2ε
I 0

0 0

))2

·

·
(
I − τ

2
BY )−1γτ/2(AY )

(
γτ/2(BY )γτ/2(A)

)N−1(
I + τ

2
BY )(E0,H0)

∥∥∥∥∥
L2

(9.12)

≤ cτe6κY T
(
‖w0‖H1 + τ ‖BYw0‖H1

)
,
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where the constant c depends on the same quantities as before. In the same way as above
we get ∥∥∥∥∥τ 2

4

(
εI 0

0 µI

)(
BY +

(
σ
2ε
I 0

0 0

))2

(I − τ
2
BY )−1

N−1∑
k=0

(
γτ/2(AY )γτ/2(BY )

)k·
· (I + τ

2
AY )1

ε
τ
2

(
J0(tN−k−1) + J0(tN−k), 0

)∥∥∥∥∥
L2

≤ cτe6κY T

N−1∑
k=0

τ
(
‖(J0(tk), 0)‖H1 + τ

∥∥AY (1
ε
J0(tk), 0

)∥∥
H1 (9.13)

+ ‖(J0(tk+1), 0)‖H1 +
∥∥AY (1

ε
J0(tk+1), 0

)∥∥
H1

)
≤ cTe6κY T τ sup

t∈[0,T ]

(
‖(J0(t), 0)‖H1 + τ

∥∥AY (1
ε
J0(t), 0

)∥∥
H1

)
,

with c again depending on ‖ε‖W 1,∞ , ‖µ‖W 1,∞ , ‖σ‖W 1,∞ and δ. Altogether we have with
(9.11), (9.12) and (9.13) that∥∥∥∥τ 2

4

(
divD(2)

µ EN , divD(1)
ε HN

)∥∥∥∥
L2

≤ ce6κY T τ
((
‖w0‖H1 + τ ‖BYw0‖H1

)
+ T sup

t∈[0,T ]

(
‖J0(t)‖H1 + τ

∥∥AY (1
ε
J0(t), 0

)∥∥
H1

))
with c depending only on ‖ε‖W 1,∞ , ‖µ‖W 1,∞ , ‖σ‖W 1,∞ and δ.
The identity (

D(2)
µ E0, D

(1)
ε H0) = −

(
εI 0

0 µI

)
B2

0(E0H0)

in L2(Q)6 due to B0(E0,H0) ∈ Y gives∥∥∥∥τ 2

4

(
divD(2)

µ E0, divD(1)
ε H0

)∥∥∥∥
H−1

≤ cτ 2 ‖B0w0‖H1 ≤ cτ 2
(
‖BYw0‖H1 + ‖w0‖H1

)
with c depending only on ‖ε‖W 1,∞ , ‖µ‖W 1,∞ , ‖σ‖W 1,∞ and δ.
4) We now estimate the remaining terms. From (9.10) we conclude with Proposition 8.7

in the same way as above that

‖En‖H1 ≤ c
∥∥(I − τ

2
BY )−1

∥∥
B(Y )

∥∥γτ/2(AY )
∥∥
B(Y )

(∥∥γτ/2(BY )
∥∥
B(Y )

∥∥γτ/2(AY )
∥∥
B(Y )

)n−1·
·
∥∥(I + τ

2
BY )(E0,H0)

∥∥
H1

+ cτ

n−1∑
k=0

∥∥(I − τ
2
BY )−1

∥∥
B(Y )

(∥∥γτ/2(AY )
∥∥
B(Y )

∥∥γτ/2(BY )
∥∥
B(Y )

)k
·

·
∥∥(I + AY )

(
1
ε
(J0(tn−k) + J0(tn−k−1)), 0

)∥∥
H1

≤ ce6κY T
((
‖w0‖H1 + τ ‖BYw0‖H1

)
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+ T sup
t∈[0,T ]

(
‖J0(t)‖H1 + τ

∥∥AY (1
ε
J0(t), 0

)∥∥
H1

))
for all n ∈ {1, . . . , N}, so that∥∥∥(0, τ

2

8
div
(
C1

σ
ε
(EN − E0)

))∥∥∥
H−1

≤ cτ 2
(
‖EN‖H1 + ‖E0‖H1

)
≤ cτ 2e6κY T

((
‖w0‖H1 + τ ‖BYw0‖H1

)
+ T sup

t∈[0,T ]

(
‖J0(t)‖H1 + τ

∥∥AY (1
ε
J0(t), 0

)∥∥
H1

))
,

with c again depending only on ‖ε‖L∞ , ‖µ‖L∞ , ‖σ‖L∞ and δ. Furthermore, we have, using
the same techniques as above,∥∥∥∥∥ τ316

N−1∑
n=0

(
τ div

(
D(1)
µ

2
ε
(J0(tn) + J(tn+1))

)
, 0
)∥∥∥∥∥

H−1

≤ cTτ 2 sup
t∈[0,T ]

∥∥AY (1
ε
J0(t), 0

)∥∥
H1 ,

∥∥∥∥∥ τ316

N−1∑
n=0

(
0, div

(
C1

σ
ε2

(J0(tn) + J0(tn+1)
))∥∥∥∥∥

H−1

≤ cTτ 2 sup
t∈[0,T ]

‖(J0(t), 0)‖H1

and ∥∥∥∥∥ τ28
N−1∑
n=0

(
div
(
σ
ε
(J0(tn) + J0(tn+1))

)
, 0
)∥∥∥∥∥

H−1

≤ cTτ sup
t∈[0,T ]

‖(J0(t), 0)‖H1 ,

with c each time depending only on ‖ε‖W 1,∞ , ‖µ‖W 1,∞ , ‖σ‖W 1,∞ and δ. �

Remark 9.8. As mentioned in Section 1.2, the above proof shows that the quadrature
rule used in (9.5) and (9.6) for div(σE(t)) cannot be replaced by the Simpson rule since
the weights come out of the proof.

9.4. Near preservation of the divergence conditions in
L2

Theorem 9.9. Let T > 0, ε, σ ∈ W 2,3(Q), µ ∈ C2(Q) and ∂νε = ∂νµ = ∂νσ = 0 on Γ.
Let (E0,H0) ∈ D(BZ) and

(
1
ε
J0, 0

)
∈ C

(
[0, T ], D(AZ)

)
∩C1

(
[0, T ], Y

)
. Then there exists

a τ0 ∈ (0, T ] such that the numerical solution fulfils the divergence conditions in L2(Q)

for time step sizes τ ∈ (0, τ0] up to order one in τ ; more precisely, for all τ ∈ (0, τ0] and
N ∈ N with Nτ ≤ T we have∥∥∥(div(εEN), div(µHN)

)
−
(
div(εE0), 0

)
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+
N−1∑
k=0

τ
2

(
div(σ

2
Ek+1 + σEk+1/2 + σ

2
Ek), 0

)
+

∫ Nτ

0

(
div(J0(s)), 0

)
ds
∥∥∥
L2

≤ Cτ

(∫ T

0

‖(J ′0(s), 0)‖H1 ds+ e6κZT
((
‖(E0,H0)‖H2 + τ ‖BZ(E0,H0)‖H2

)
+ T sup

t∈[0,T ]

(∥∥(1
ε
J0(t), 0

)∥∥
H2 + τ

∥∥AZ(1
ε
J0(t), 0

)∥∥
H2

)))
with a constant C ≥ 0 only depending on ‖ε‖W 1,∞∩W 2,3, ‖µ‖W 1,∞∩W 2,3, ‖σ‖W 1,∞∩W 2,3 and
δ.

Proof:
The algebraic reformulations of the proof of Theorem 9.6 can under the assumptions of
Theorem 9.9 be done with the identities being in Z instead of Y and in Y instead of
L2(Q)6. We arrive at the identity (9.9). With the replacements AY by AZ , BY by BZ

and κY by κZ the rest of the proof is done analogously to the one of Theorem 9.6, using
Proposition 8.12. �

Remark 9.10. The proof of Theorem 9.9 also shows that under the same assumptions
we have for all τ ∈ (0, τ0] and N ∈ N with Nτ ≤ T the estimate∥∥∥(div(εEN), div(µHN)

)
−
(
div(εE0), 0

)
+

N−1∑
k=0

τ
2

(
div(σ

2
Ek+1 + σEk+1/2 + σ

2
Ek), 0

)
+

N−1∑
k=0

τ
2

(
div(J0(tk) + J0(tk+1)), 0

)∥∥∥
L2

≤ Cτ

(
(1 + τ)e6κZT

((
‖(E0,H0)‖H2 + τ ‖BZ(E0,H0)‖H2

)
+ T sup

t∈[0,T ]

(
‖(J0(t), 0)‖H2 + τ ‖AZ(J0(t), 0)‖H2

)))
with a constant C ≥ 0 only depending on ‖ε‖W 1,∞∩W 2,3, ‖µ‖W 1,∞∩W 2,3, ‖σ‖W 1,∞∩W 2,3 and
δ. We use this version of Theorem 9.9 in Section 10.2 for numerical confirmations, see
Chapter 10.
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10. Numerical experiments with the
ADI scheme for the Maxwell
equations

In this chapter we conduct numerical experiments to confirm some of our theoretical
results of Chapter 9. We give in Section 10.1 an overview over the experiments and the
setting we use for them. In Section 10.2 we first deal with the situation of no electrical
conductivity (σ = 0) and no external currents (J0 = 0). We are able to confirm the
results of Section 4.4 in [37] and furthermore see that the error of the divergence is very
small. Afterwards, we include conductivity (σ 6= 0) and external currents (J0 6= 0).
We confirm the second order convergence of the ADI scheme from Theorem 9.3, and the
preservation of first order of the divergence conditions from Theorem 9.9. The experiment
in Section 10.3 shows that the requirement for initial functions to be in D(M

(2)
div) cannot

be weakened to X(2)
div.

10.1. An overview over the numerical experiments

We do the numerical computations on the three-dimensional unit cube Q := (0, 1)3. We
discretize it by the Yee grid , see [72], which is a staggered grid. The idea is that the
electric and the magnetic field are evaluated on different grids. This allows an efficient
implementation of the space derivatives with finite differences with a step size of half the
mesh width. It does not matter for our purposes that the divergence is not discretized
on points of the Yee grid. Moreover, the zero tangential trace of the electric field on Γ is
incorporated into the discretization of the operators.
More precisely, we choose a maximal number N of grid points in each direction and

define yk := k/N for k = 0, . . . , N and yk+1/2 := (k + 1/2)/N for k = 0, . . . , N − 1.
The first component of the electric field then has values on the grid points (yk+1/2, yl, ym)

for k = 1, . . . , N − 1 and m, l = 0, . . . , N . The first component of the magnetic field is
defined on the points (yk, yl+1/2, ym+1/2) for k = 0, . . . , N and m, l = 0, . . . , N − 1. The
other components of the electric and the magnetic field are discretized on the analogous
space grids. Figure 10.1 sketches the discretization.
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Figure 10.1.: Sketch of the partitioning of Q into the cells of the Yee grid and drawing of
one cell of the Yee grid.

The time domain for our computations is the interval [0, 1], which we discretize by
uniform time steps. We use time step sizes of length 1/10 for 1/640, slightly varying from
experiment to experiment. The error of the ADI method is measured by calculating the
discrete L2-norm of the error term at several equidistant time points. The error term is
the difference between the result of the ADI method computation and either the exact
solution (if available by an explicit formula) or a reference solution. The final error is
defined as the maximum over those discrete L2-norms. For the errors of the divergence
preservation we bring all summands in the fully discretized version of (7.2) to one side.
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This reads

div(εEh
N)− div(εEh

0) +
N−1∑
k=0

τ
2

div(σ
2
Eh
k+1 + σEh

k+1/2 + σ
2
Eh
k)

+
N−1∑
k=0

τ
2

div(Jh0(tk) + Jh0(tk+1)) = 0,

div(µHh
N) = 0,

where Eh
N is the (spatially discretized) result of the ADI splitting of the electric field after

N time steps, and so on. We compute at several equidistant time points the discrete
L2-norm and take the maximum over those values. In Subsection 10.2.1 and for the
experiment in Subsection 10.2.2 on the divergence conditions we use five time steps.
For the experiments on the convergence order in the Subsection 10.2.2 and the one in
Section 10.3 we use ten time steps.

10.2. Verification of the theoretical results

10.2.1. Experiments without conductivity and external current

First we treat the case that we have no conductivity (σ = 0) and no external currents
(J0 = 0), see Section 4.4 in [37]. The parameter functions are chosen to be ε = 1 and
µ = 1. In this situation we have solutions to (7.1) that are given by explicit formulas,
namely

u(1)(t, x) =



sin(πx2) sin(πx3) cos(
√

2πt)

0

0

0

−1
2

√
2 sin(πx2) cos(πx3) sin(

√
2πt)

1
2

√
2 cos(πx2) sin(πx3) sin(

√
2πt)


,

u(2)(t, x) =



0

sin(πx1) sin(πx3) cos(
√

2πt)

0
1
2

√
2 sin(πx1) cos(πx3) sin(

√
2πt)

0

−1
2

√
2 cos(πx1) sin(πx3) sin(

√
2πt)
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and

u(3)(t, x) =



0

0

sin(πx1) sin(πx2) cos(
√

2πt)

−1
2

√
2 sin(πx1) cos(πx2) sin(

√
2πt)

1
2

√
2 cos(πx1) sin(πx2) sin(

√
2πt)

0


.

The corresponding initial basis functions are

u
(1)
0 (x) = u(1)(0, x) =



sin(πx2) sin(πx3)

0

0

0

0

0


,

u
(2)
0 (x) = u(2)(0, x) =



0

sin(πx1) sin(πx3)

0

0

0

0



and

u
(3)
0 (x) = u(3)(0, x) =



0

0

sin(πx1) sin(πx2)

0

0

0


.

We define the initial function

u0 = 2u
(1)
0 + 3u

(2)
0 + 4u

(3)
0 .
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In contrast to the authors of [37] we choose slightly different coefficients and we do not
normalize the initial function in the L2-norm. Applying M to u(1)

0 first gives

Mu
(1)
0 (x) = −u(1)

0 (x) + π



0

0

0

0

sin(πx2) cos(πx3)

− cos(πx2) sin(πx3)


and then

M2u
(1)
0 (x) = −Mu

(1)
0 (x) + π2



2 sin(πx2) sin(πx3)

0

0

0

0

0


.

Repeating this inductively it follows that Mmu
(1)
0 ∈ D(M) for all m ∈ N0 and that all the

trace and divergence conditions for u(1)
0 being in D(M

(2)
div) are satisfied. Arguing with u(2)

0

and u(3)
0 in the same way, we obtain u0 ∈ D(M

(2)
div). Due to the linearity of the Maxwell

equations (7.1) we have that the exact solution to this initial function is

u(t) = 2u(1)(t) + 3u(2)(t) + 4u(3)(t).

The errors between the computed approximate solutions and the exact solutions are
displayed in Figure 10.2. For the larger time step sizes we see convergence of order two.
For small time step sizes the spatial error dominates the total error, and the plateaus
being visible indicate the space discretization errors.
In Figure 10.3 one sees the L2-deviation of the divergence terms from zero, which is in

the order of the machine accuracy. This shows that errors of the divergence preservation
of numerical solutions appearing later in the experiments are caused by the errors of
the numerical solution and not by the numerical method that computes the error of the
divergence preservation.

10.2.2. Experiments with conductivity and external current

In this subsection we extend the setting of Subsection 10.2.1 by adding a conductivity
and external currents. We conduct experiments to confirm the statements of Theorem 9.3
and 9.9, which predict a temporal convergence in L2 of order two, and a preservation of
the divergence conditions of order one in the time step size.
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Figure 10.2.: Errors of the ADI splitting method without conductivity and external cur-
rent, using a space mesh width of h.
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Figure 10.3.: Errors of the preservation of the divergence conditions for the case of no
conductivity and external current, using a space mesh width of h.

In contrast to Subsection 10.2.1 we do not have a formula for the exact solution. There-
fore, we have to compute a reference solution. We do this with the ADI scheme with the
very small time step size of 1/1920.
As in Subsection 10.2.1, we use the initial function

(E0,H0)(x) :=



2 sin(πx2) sin(πx3)

3 sin(πx1) sin(πx3)

4 sin(πx1) sin(πx2)

0

0

0


∈ D(M

(2)
div) ∩D(BZ).

The electric permittivity, the magnetic permeability and the conductivity density are
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chosen to be

ε(x) := µ(x) := 1 + g1(x1)g1(x2)g1(x3)

and

σ(x) := g1(x1)g1(x2)g1(x3)

with
g1(y) := −2y3 + 3y2.

Due to g′1(0) = g′1(1) = 0 and g1 ≥ 0 on [0, 1], the functions ε, µ and σ satisfy the normal
trace conditions ∂νε = ∂νµ = ∂νσ = 0 on Γ and their positivity assumptions. Moreover,
we have ε, µ, σ ∈ W 1,∞(Q) ∩W 2,3

(
Q
)
. As current density we use

J0(t, x) :=

 g2(x2)g2(x3) sin(t)

g2(x1)g2(x3) cos(2t)

g2(x1)g2(x2) sin(t) cos(3t)


with

g2(y) := 50y3(1− y)3.

The smoothness of g2 and all its derivatives, and the zero boundary condition of g2, g′2
and g′′2 at y = 0 and y = 1 ensure that(

1
ε
J0, 0

)
∈ C1

(
[0, 1], X

(2)
div

)
∩ C2

(
[0, 1], D(M

(0)
div)
)

and (
1
ε
J0, 0

)
∈ C

(
[0, 1], D(AZ)

)
∩ C1

(
[0, 1], Y

)
.

So, the requirements of Theorem 9.3 and 9.9 on the initial function, the coefficient func-
tions and the current density are satisfied.
We first deal with the convergence order of the ADI scheme in the L2-setting. The

results, displayed in Figure 10.4, show convergence order two in the time step size as
predicted by Theorem 9.3, independent of the space mesh width. In contrast to Figure 10.2
no plateaus showing the space discretization error are visible. The reason is that the
solution and the reference solution are computed on the same spatial grid so that in
Figure 10.4 only the time discretization error is visible.
We now compute the numerical error of the divergence conditions in the L2-setting.

The results, displayed in Figure 10.5, show (for small time step sizes) a preservation of
the divergence conditions of order one in the time step size, in perfect coincidence with
Theorem 9.9, independent of the space mesh width.
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Figure 10.4.: Errors of the ADI method, using the space mesh width h.
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Figure 10.5.: Errors of the preservation of the divergence conditions, using the space mesh
width h.

10.3. An order reduction for an initial function with
low regularity

The Cauchy problem (7.34) has a unique solution in X
(2)
div if the initial function is in

D(M
(2)
div), see Proposition 7.21. We add an experiment which shows that the requirement

that (E0,H0) belongs to D(M3) that is contained in the assumption (E0,H0) ∈ D(M
(2)
div)

is necessary for the full convergence order in Theorem 9.3, and that (E0,H0) ∈ X(2)
div with

the included assumption (E0,H0) ∈ D(M2) is not sufficient.
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Choose J0 as in the experiments in Subsection 10.2.2. Let σ = ε = µ = 1 and

(E0,H0) =



sin(πx1) sin(πx2) sin(πx3)

sin(πx1) sin(πx2) sin(πx3)

sin(πx1) sin(πx2) sin(πx3)

0

0

0


.

We immediately see (E0,H0) ∈ D(M), div(H0) = 0, trn(H0) = 0 and div(E0) ∈ H1(Q).
From

div(E0) = π
(
cos(πx1) sin(πx2) sin(πx3) + sin(πx1) cos(πx2) sin(πx3)

+ sin(πx1) sin(πx2) cos(πx3)
)

we see that div(E0) vanishes on the edges of Q. So, div(E0) ∈ H1/2
0 (Q). Moreover,

M(E0,H0) = −(E0,H0)−



0

0

0

π sin(πx1)
(
cos(πx2) sin(πx3)− sin(πx2) cos(πx3)

)
π sin(πx2)

(
sin(πx1) cos(πx3)− cos(πx1) sin(πx3)

)
π sin(πx3)

(
cos(πx1) sin(πx2)− sin(πx1) cos(πx2)

)


=: −(E0,H0)− (Ẽ0, H̃0).

We see (Ẽ0, H̃0) ∈ D(M), which gives (E0,H0) ∈ D(M2).
Setting

(Ê0, Ĥ0) : = M(Ẽ0, H̃0)

= π2



sin(πx3)
(
cos(πx1) cos(πx2) + sin(πx1) sin(πx2)

)
sin(πx1)

(
cos(πx2) cos(πx3) + sin(πx2) sin(πx3)

)
sin(πx2)

(
cos(πx1) cos(πx3) + sin(πx1) sin(πx3)

)
0

0

0



− π2



− sin(πx2)
(
sin(πx1) sin(πx3) + cos(πx1) cos(πx3)

)
− sin(πx3)

(
sin(πx1) sin(πx3) + cos(πx1) cos(πx2)

)
− sin(πx1)

(
sin(πx2) sin(πx3) + cos(πx2) cos(πx3)

)
0

0

0


,
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we see

trt(Ê0) =

 0

∓π2 sin(πx3) cos(πx2)

∓π2 sin(πx2) cos(πx3)

 6= 0

on Γ±1 (and analogously on Γ±2 and Γ±3 ). Due to trt(E0) = 0 and trt(Ẽ0) = 0 on Γ we infer
trt(M

2(E0,H0)) 6= 0 on Γ. So, (E0,H0) /∈ D(M3).

60 80 100 120 140 160

1

1.2

1.4

1.6

number of space grid points

di
sc

re
te

L
2
-n

or
m

M(E0,H0)

M2(E0,H0)

M3(E0,H0)

Figure 10.6.: Behaviour of the discrete L2-norm of the initial function on different space
grids when applying M .
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Figure 10.7.: Errors of the ADI method, using an initial function in X(2)
div \ D(M
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div) and

the space mesh width h.

To illustrate these analytical investigations numerically we display in Figure 10.6 the
discrete L2-norm of (E0,H0) on different space grids after applying M , M2 and M3. We
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10.3. An order reduction for an initial function with low regularity

normalised the values by setting it to one on the coarsest space grid since only the relative
increase is important.
The results of the ADI splitting, depicted in Figure 10.7, show a reduction of the

convergence order to 1.75. Nevertheless, we see for small time step sizes an increase of
the convergence order to two since we are then in the non-stiff regime.
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List of Symbols

This list of symbols is ordered by their appearance in the text and grouped by the parts
of this thesis.

Part I

symbol meaning
I the identity operator
1 the function being constant one
1A the indicator function of a set A
↪→ continuous embedding
X ∼= Y Y is isomorphic to X with equivalent norm
〈·, ·〉 a duality paring
B(X, Y ) the set of linear and bounded operator from X to Y
B(X) the set of linear and bounded operator from X to X
‖·‖D(A) the graph norm with respect to the operator A
(λI − A)−1 the resolvent of A for λ in the resolvent set
Ω an open or Borel measurable subset of Rd (with d ∈ N)
C∞c the set of infinitely often differentiable functions with

compact support
∂j the partial or weak derivative with respect to the j-th

variable
L1
loc the space of locally integrable functions

Lp, p ∈ [1,∞] the Lebesgue spaces
W k,p, k ∈ N0 the Sobolev spaces
W s,p, s ≥ 0 the (fractional) Sobolev spaces
(X, Y )η,2, η ∈ (0, 1) real interpolation space with the parameters η and 2

Hs, s ≥ 0 the (fractional) Sobolev spaces (with respect to L2)
F and F−1 the Fourier transform and its inverse
‖·‖X∩Y ‖·‖X + ‖·‖Y
Td the d-dimensional torus
' equal up to a multiplicative constant
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List of Symbols

XA
−1 the Sobolev space of order −1 associated to the semi-

group generated by A. see (1.8)
(X, ‖·‖Y )∼ completion of X with respect to the norm ‖·‖Y

Part II

symbol meaning
µ the sign of the nonlinearity of the NLS
Ω domain of interest, either Rd or Td

∂t the partial derivative with respect to time
∆ the Laplace operator
Φτ the Lie splitting scheme for the cubic NLS with time

step size τ , see (2.2)
T (·) the free Schrödinger group
Ψτ the Strang splitting scheme for the cubic NLS with time

step size τ , see (2.3)
A and B the splitting operators for the cubic NLS, see (2.4)
Ms the supremum norm of the solution of the cubic NLS in

Hs over [0, T ]

C0,θ the space of θ-Hölder continuous functions
C1,θ the space of differentiable functions whose derivative is

θ-Hölder continuous
D2f the matrix of the second-order (weak) derivatives of a

function f

Part III

symbol meaning
Ω a cuboid in R3

ε the electric permittivity
σ the electric conductivity
J0 the electric current density
µ the magnetic permeability
ρ the electric charge density
C1 and C2 the parts of the split curl-operator, see (7.22)
A and B the splitting operators for the ADI scheme, see (7.23)
Γ the boundary of the cuboid Ω
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List of Symbols

Γj, j = 1, 2, 3 the faces of Γ that are orthogonal to the respectively
coordinate axis

X L2(Ω)6

tr the Dirichlet trace
trt and trn the tangential and the normal trace
H0(Ω, curl) the space of functions in H(Ω, curl) with zero tangential

trace
M the Maxwell operator, see (7.3)
X0, X

(0)
div and X(2)

div subspaces of X, see (7.4) and (7.6)
(M(u, v))1/2 the components one till three / four till six of M(u, v)

M0, M
(0)
div and M2)

div restrictions of the Maxwell operator to X0, X
(0)
div and a

subspace of X(2)
div, see (7.7)

[X, Y ]η complex interpolation space with parameter η
A0 and B0 the splitting operators with zero conductivity
Hθ,p, Hθ,p

0 Bessel potential spaces
Y a subspace of H1(Ω)6 with certain boundary conditions,

see (7.29)
AY and BY the part of A and B in Y
Z a subspace of H2(Ω)6 with certain boundary conditions,

see (7.30)
AZ and BZ a restriction of A and B to a subspace of Z, see (7.32)

and (7.33)
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