

Atomsondentomografie der Metall-Aluminiumoxid-Grenzfläche auf NiAlCr-Legierungen

Torben Boll*, Olof Bäcke, Kinga A. Unocic, Bruce A. Pint, Krystyna Stiller

Überblick

- Ni-Basis-Legierungen: Hohe Temperaturen (z.B. Flugzeugturbinen)
- Stabiles schützendes Oxid: α-Al₂O₃
- Weitere Elemente wie Cr oder reactive Elements (e.g. Y,Hf) werden hinzugefügt um die Mikrostruktur und die Chemie an den Korngrenzen (KG) und Phasengrenzen (PG) zu ändern
- TEM kann qualitativ Segregation an KG bestimmen
- Atomsonde (APT) f
 ür quantitative Analysen von KG und PG

Atom Probe Tomography (APT)

- Hohes Feld, fast stark genug um einzelne Atome zu evaporieren
- Zusätzlicher Puls (Laser oder Spannung): Atom wird evaporiert
- Aus der Flugzeit wird das Masse-zu-Ladungsverhältnis berechnet
- (x,y)- Koordinaten sind vom Detektor bekannt, z wird aus der Ankunftsreihenfolge errechnet

Was kann APT für mich tun?

Überblick: TEM

Rect Physics	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		$Metal-Al_2O_3$	$Al_2O_3 - Al_2O_3$	Al ₂ O ₃ -M _y O _x
	Hf	Υ	Y	Y
	Υ	Ν	Y	Y
	Ті	Ν	Ν	Ν
	В	Ν	Ν	Ν
	Ni		Y	
500nm	Cr		Y	

TEM of oxidized NiCrAl after 100h@1100°C APT: Quantitative Enrichment at different interfaces

BOLL, T., UNOCIC, K. A., PINT, B. A. & STILLER, K. (2017). Microscopy & Microanalysis

 $\begin{array}{l} \text{Cr-rich grain} \\ \text{Ni}_{59}\text{Al}_{16}\text{Cr}_{24}\text{Ti}_{0.1} \end{array} \end{array}$

Al-rich grain $Ni_{70.2}Al_{21.3}Cr_{5.9}Ti_{0.7}$

- Hf aber kein Ti or Y an Metall-Oxid-Grenzfläche
- γ/γ Nanostruktur im Metall. Ti-Anreicherung in γ

 $\begin{array}{l} \text{Cr-rich grain} \\ \text{Ni}_{59}\text{Al}_{16}\text{Cr}_{24}\text{Ti}_{0.1} \end{array}$

Al-rich grain Ni_{70.2}Al_{21.3}Cr_{5.9}Ti_{0.7}

- Hf aber kein Ti or Y an Metall-Oxid-Grenzfläche
- γ/γ Nanostruktur im Metall. Ti-Anreicherung in γ

Atom Probe:YHfB: M/O Phasengrenze

Unerwartete Rauheit der Grenzfläche

HAADF STEM

HAADF STEM

<u>20 nm</u>

EFTEM - O

EFTEM - Ni

HRTEM

Auch mit EFTEM ist keine O im Ni zu sehen

Regionen mit Moire-Effekt im Metall

Atom Probe:YHfB: Metal-oxide interface

Unerwartete Rauheit der Grenzfläche

M/O Grenzfläche

- Al₂O₃-Grenzfläche
- Al-Verarmung, Ni-Anreicherung im Metal nahe der PG
- Hf angrereichert an der PG
- Keine anderen Elemente sind angreichert

APT: YHfB- M/O-Grenzfläche

National Laboratory

MICRO

APT: YHfB- M/O-Grenzfläche

National Laboratory

MICRO

- Oxidation von oben links
- Oxygen diffundiert entlang γ/γ PG
- γ ` (Ni₃AI): Ni₆₁AI_{23.5}Cr_{9.3}O_{4.0} γ (NiAICr):Ni_{52.5}Cr_{32.3}AI_{10.0}O_{3.2}

Zusammenfassung

Grenzflächen

- Ti & B weder an KG noch PG
- Hf an M/O-PG, O/O-PG und Oxid-KG
- Y an O/O-KG und O/O-PG, a ber nicht an M/O-PG
- AI_2O_3 - AI_2O_3 KG enthalten Ni und Cr.
- Hf und Y beeinflussen den Transport von O, Ni and Cr in den KG

Der Oxidationsprozess

- Oxid-Metal Grenzfläche rauh
- Oxidation entlang γ/γ -PGs in Al-reiche γ -phase
- Kleine Oxidpartikel im Metall nicht nur Al₂O₃ sondern auch NiO und CrO
- Nur dank APT beobachtet

Vielen Dank für Ihre

Aufmerksamkeit

An APT interessiert? - knmf.kit.edu, oder mich ansprechen. KNMF gewährt sinnvollen Projekten APT-Zeit.

