Karlsruhe, 14.09.2017

Liquid Nitrogen operated Cooling Systems for Superconducting Power Lines

Friedhelm Herzog, Thomas Kutz, Mark Stemmle, Torsten Kugel

AmpaCity – the world`s longest superconducting cable

A project of RWE Deutschland AG (now: Innogy SE)

in cooperation with:

- Nexans
- KIT (Karlsruhe Institute of Technology)
- PTJ (German federal ministry of research)
- Messer

- → cable and cryostat
- → material research / scientific attendance
- → public funding
- → cooling unit and LIN-supply

Photo: Cooling Unit for AmpaCity

Time schedule

- LIN-vessel installation: 09 / 2013
- HTS-cable installation:
- Cooling unit installation:
- functional tests:
- start up: 02 / 2014
- regular operation since
- full integration into network 03 / 2016

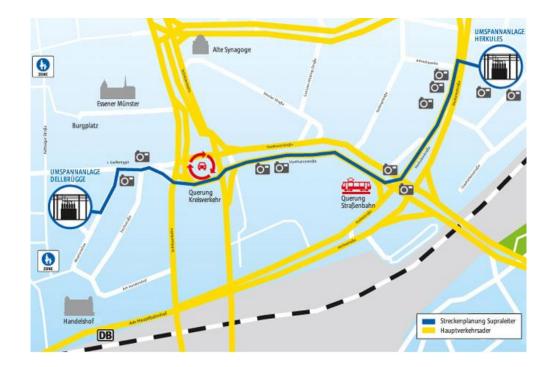
AmpaCity – the world`s longest superconducting cable

A project of RWE Deutschland AG (now: Innogy SE)

in cooperation with:

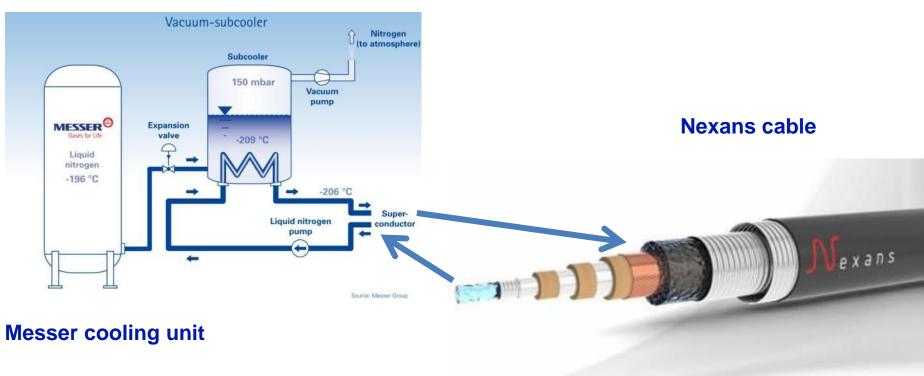
- Nexans
- KIT (Karlsruhe Institute of Technology)
- PTJ (German federal ministry of research)
- Messer

German Climate and Environment Innovation Award (IKU) 2015 (Federal Ministry of Environment)

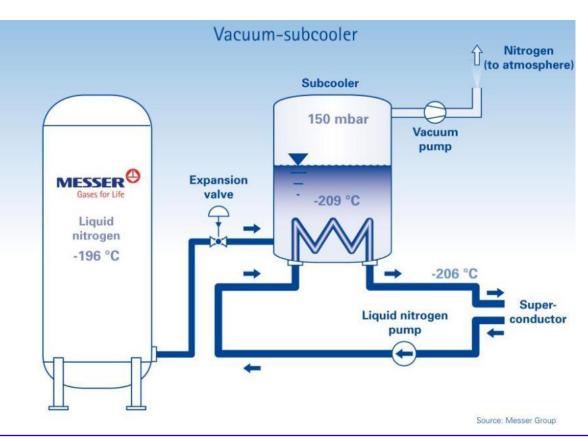


(67 K)

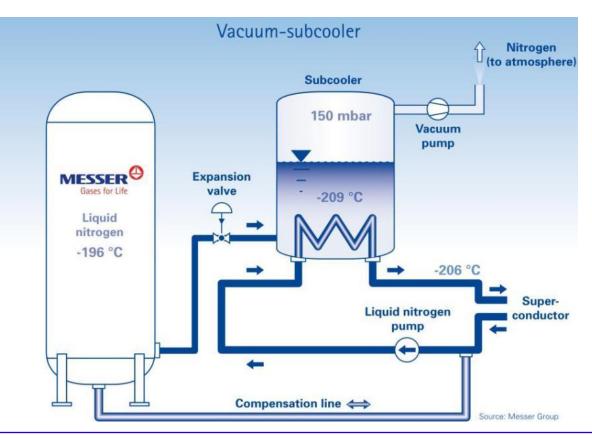
Project data


Place: Essen, Germany

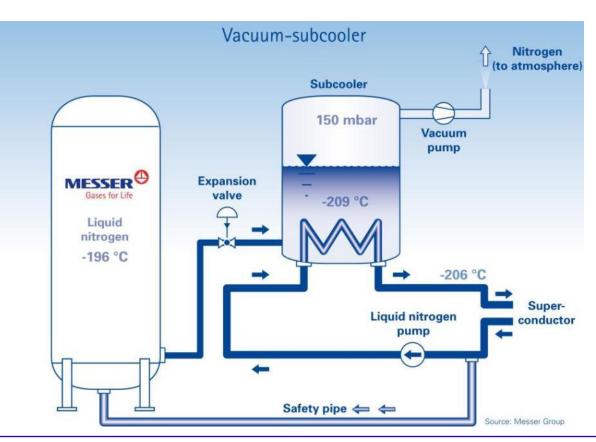
- Cable length: 1,000 m
- Voltage: 10,000 V
- Electrical capacity: 40,000 kW
- Cooling capacity (cable): 4 kW
- Cooling temperature: 206°C


The most important components

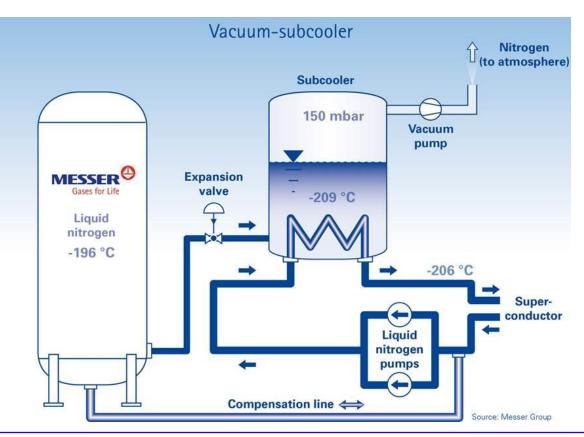
Basic diagram


- Liquid nitrogen is used
 - as heat transfer medium
 - as cooling agent
- LIN is pumped through the superconducting cable
- LIN is recooled in the subcooler (to -206°C)
- LIN vaporizes at 150 mbar(a)
- LIN temperature decreases to -209°C in expansion valve (LIN becomes solid at -210°C)

Basic diagram

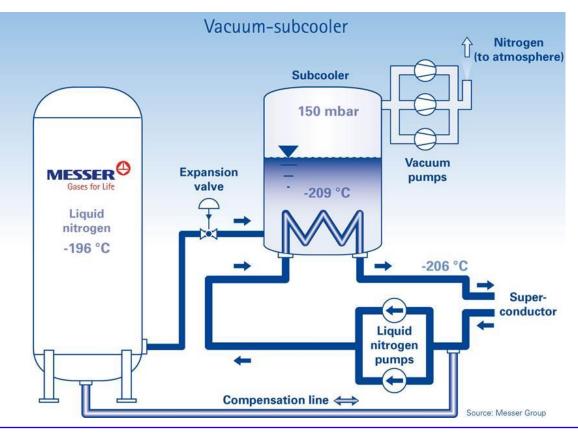

- Expansion vessel is tricky to design (gas volume collapses in subcooled liquids)
- We use the LIN tank as expansion vessel
- The LIN vessel becomes a <u>functional</u> detail of the cooling circuit !

Basic diagram


- In case of a serious damage LIN (3.000 I) flows back to the storage vessel
- The LIN vessel additionally has a safety function
- The LIN vessel is an integrated part of the cooling unit

Redundancy (circulation)

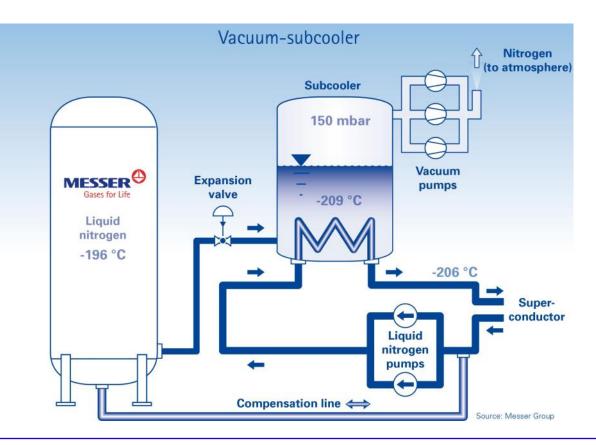
- There are installed 2 liquid nitrogen circulation pumps.
- 1 pump is in operation, the other one is in standby.
- Pump maintanance is done without stopping the circuit.
- In case of malfunction there is automatic switchover to the standby pump.



Redundancy (vac. pumps)

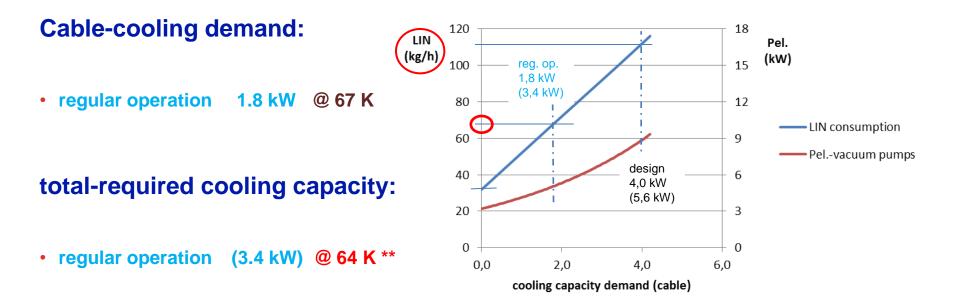
- For operation at <u>full capacity</u> 2 vacuum pumps are in operation.
- In case of 1 vacuum pump malfunctioning there is automatic switchover to the 3rd pump.

Remark:


Full capacity means 4 kW @ -206°C (for the cable) plus internal losses of the cooling unit (pumps, insulation)

Redundancy

→100% redundancy is available for < 5% additional investment.


liquid nitrogen and electricity consumption

		cooling- demand HTS-cable (total*)	liquid nitrogen consumption	P _{el.} vacuum pumps	P _{el.} other components	P _{el.} total
<	AmpaCity regular operation	1.8 kW (3.4 kW)	68 kg/h	5 kW		9 kW
	AmpaCity design	4.0 kW (5.6 kW)	110 kg/h	9 kW	4 kW	13 kW
	future projects scale up	30 kW (36 kW)	710 kg/h	50 kW		54 kW

* total: heat impact from cable + cooling unit (mainly circulation pumps)

liquid nitrogen and electricity consumption

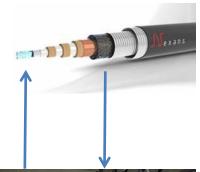
** N2 becomes solid at 63 K (-210°C)

Cooling unit energy- data (regular operation point)

- liquid nitrogen consumption:
- electricity

68 kg/h 9 kW

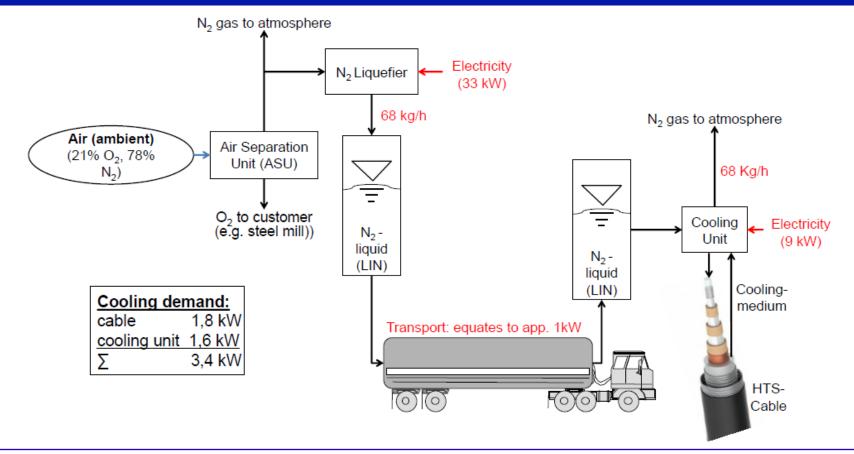
Liquid nitrogen supply chain (additional losses)



air separation unit (ASU)

→ transport

→ tank



Part of the Messer World

→ cooling unit

HTS – cooling unit: nitrogen and energy balance

Energy-data comparison (regular operation point)

- **Cable-cooling demand:**
- Total required cooling capacity: •
- Liquid nitrogen consumption:
- **Required electricity for N2-liquefying:** 33 kW
- **Exergetic effect LIN transport (130 km):** 1 kW
- Pel. (vacuum pumps): 5 kW
- Pel. (other equipment): 4 kW
- total: 43 kW for comparison: Pel. for mechanical cooling: 75 to 100 kW

(dependant on the availability of cooling water)

1.8 kW (@ 67 K)

3.4 kW (@ 64 K)

68 kg/h

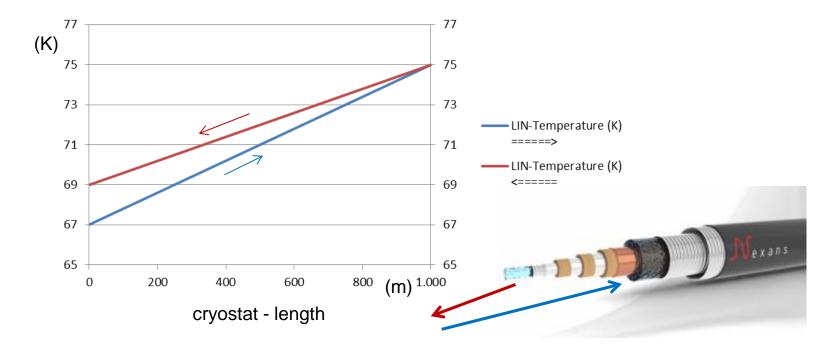
Comparison (1 km cable lenght):	mechanical	liquid N2
 Investment costs (single unit) Redundancy 	high + 100 %	medium + 5 %
 Reliability Flexibility (cooling capacity / temperature) 	machines design on the pointlow	pumps (only) oversizing at low costs
 Electricity consumption liquid nitrogen consumption total energy consumption (incl. N2 liquefying) Energy consumption at deviation from design additional operational costs for redundancy 	app. 100 kW app. 100 kW exponential yes	9 kW 68 kg/h 43 kW linear no ***

(redundant pumps not in operation) ***

Tank Installation

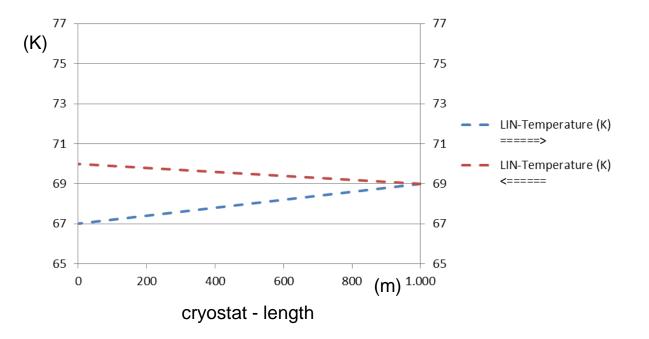
- 19.09.2013
- Transport
- Erection
- Installation and piping

People at work

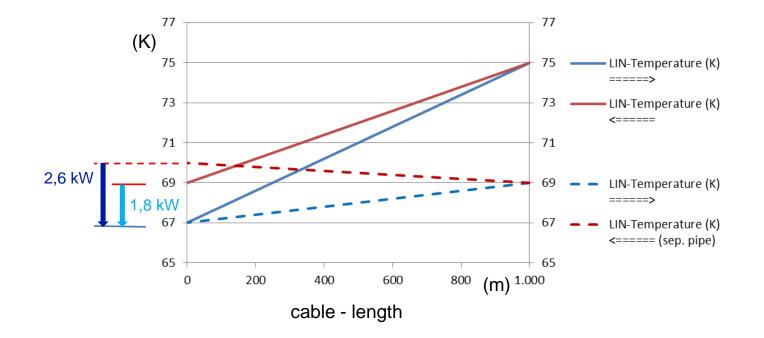

Installation of:

- **Cooling unit**
- **LIN-vessel**

HTS-cable



Liquid Nitrogen Temperature inside the Cable-Cryostat



Liquid Nitrogen Temperature Profile with separate return Pipe

Temperature Profile Comparison: concentric cable / cable with sep. return pipe

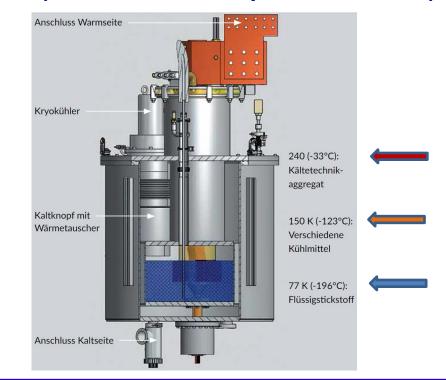
Electrical Energy Transfer

typical lenght

- 10 kV cable: 5.000 m
- High current bus bar: 500 m
 - → lower heat impact through cryostat

typical current

- 10 kV cable: 2.000 A
- High current bus bar: 200.000 A
 - → add. heat impact through current leads



high current bus bar (e.g. for aluminium smelters)

Current Lead: ICE®LINK – Sytem from VESC (Vision Electric Super Conductors)

cooling system	required cooling capacity	temp.	P (el.) / P (req.)	P (el.)	for comparison
cryocooler (mech.)	4.250 kW	77 K	22	93.500 kW	100%
	2.700 kW	240 K	1	2.700 kW	
ICE LINK (VESC)	2.800 kW	150 K	6	16.800 kW	
	1.750 kW	77 K	(22)	38.500 kW	
			sum:	58.000 kW	62%
ICE LINK (VESC)	2.700 kW	240 K	1	2.700 kW	
with	2.800 kW	150 K	6	16.800 kW	
liquid nitrogen cooling	1.750 kW	77 K	10	17.500 kW	
			sum:	37.000 kW	40%

Conclusion

- AmpaCity is in regular opertion since 3 ½ years with great success.
- Operating data evaluation gives us the chance to design upscaled units very accuratly with quite precise forcasts of operating costs and reliability.
- Installations for typical distances of power distribution cables in urban areas (3 to 6 km) are easily feasable.
- Major advantage for urban installations are low space requirements for the installation.
- Major advantage for high current industrial installations are energy savings.

IWC Workshop Karlsruhe 2017

