Best Sility

Transmission for sustainability

COOLING CONSIDERATIONS FOR THE LONG LENGTH HVDC CABLES CRYOSTAT WITHIN BEST PATHS PROJECT

Steffen Klöppel, **Christoph Haberstroh**

Best Paths project

BEyond State-of-the-art Technologies for Power AC corridors and multi-Terminal HVDC Systems

RD&D project founded by the European commission under FP7

Period: Oct. 2014 - Sept. 2018 (4 years)

Demo	Objective
1	HVDC offshore connection
2	Interoperability of HVDC-VSC multiterminal multivendor solutions
3	Uprating of existing HVDCV multiterminal interconnectors
4	Innovative repowering of existing AC corridors
5	MgB ₂ superconducting links

Demo 5 consortium Mexans

- Optimization of MgB₂ wires and conductors
- Cable system
- Cryogenic machines
- Testing in GHe
- Integration into the Grid

- Optimization of MgB₂ wires and conductors
- Cable system

- MgB₂ wire
- Optimization of MgB₂ wires and conductors

Cryogenic machines

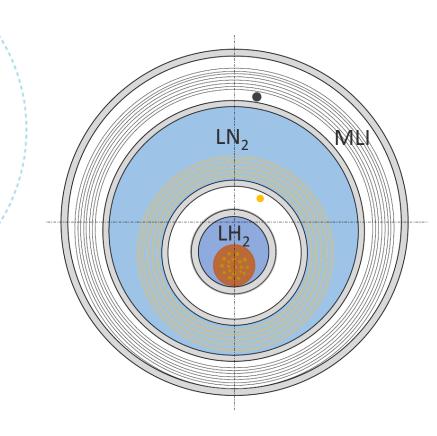
"Engineering the future"

- Reliability
- Integration into Transmission grid

- Cable system
- Integration into
- Transmission grid
- Testing in GHe
- Reliability

- Scientific coordination
- Dissemination & exploitation

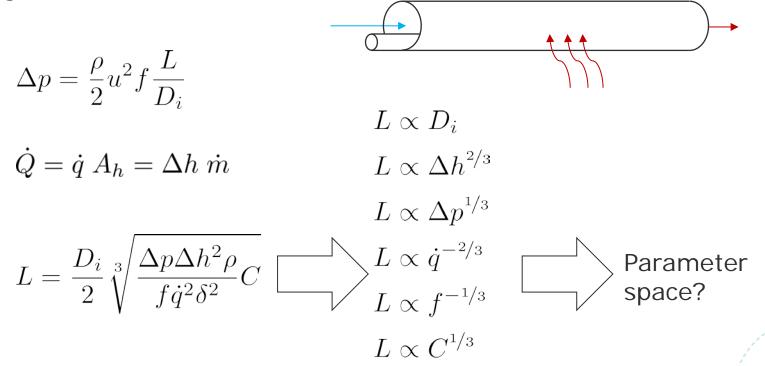
• Cable system


Cable system

Principle cable cryostat design

MgB₂ cable: $d_c = 9 \text{ mm}$ I = 10 kAU = 320 kV

 $P_{el} = 3.2 \,\mathrm{GW}$


BEST PATHS stands for "BEyond State-of-the-art Te Commission under the Seventh Framework Program

Simple model

Analytical formulation shows dependencies and possible improvements

 \rightarrow Fast assessment of viable options, influence of parameters on cooled length

Diameter

 $L \propto D_i$

Limitations outer diameter:

duct size

bending radius corrugated tubing cable drum

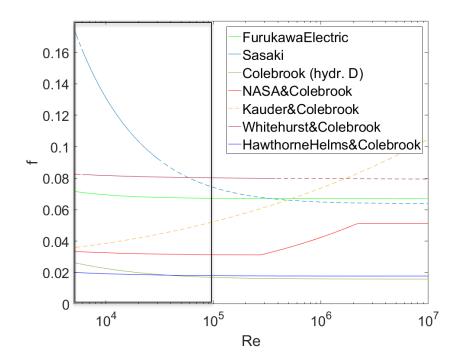
With straight tubing, any length can be reached $\dot{Q} \propto D_i
ightarrow \dot{Q} \propto L$

Pressure span

 $L \propto \Delta p^{1/3}$

Limitations:

Pumping machinery and power Mechanical integrity cryostat: 20 bar Single phase fluid only



Pressure loss

 $L \propto f^{-1/3}$

Literature correlations show large spread (0.02..0.08)

Straight tubes optimal

Enthalpy span

 $L \propto \Delta h^{2/3}$

Limitations: operational range MgB₂ <u>single-phase fluid</u> *lowest starting temperature*

 $T_{out} \le 25 \ K$

Enthalpy span

 $L\propto \Delta h^{2/3}$

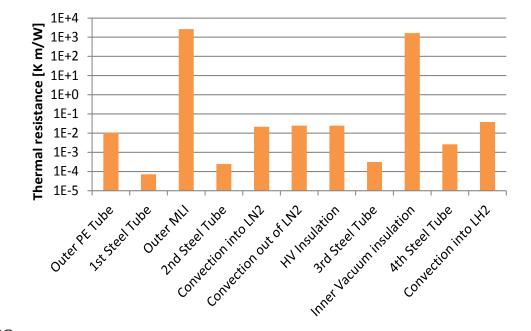
Alternative coolants:

	LH ₂	GHe	LHe→GHe	SH ₂ +LH ₂	SNe+LNe
T _{in}	15 K	15 K	5.00 K	14.4 K	25 K
p in	2 MPa	2 MPa	2 MPa	2 MPa	0,975 MPa
h _{in}	-23.32 kJ/kg	69.10 kJ/kg	11.30 kJ/kg	-	-
\mathbf{T}_{out}	25 K	25 K	25 K	25 K	25 K
p _{out}	0.35 MPa	0.5 MPa	0.5 MPa	0.35 MPa	0.1 MPa
\mathbf{h}_{out}	55.86 kJ/kg	133.21 kJ/kg	133.21 kJ/kg	55.86 kJ/kg	-
Δh	79.19 kJ/kg	64.11 kJ/kg	121.91 kJ/kg	112.06 kJ/kg	8.3 kJ/kg
L/L _{LH2}	100%	68.8%	106%	125%	36%

Slush hydrogen is the only viable alternative

Continuous, unmanned operation of an auger plant? Agglomeration of SH₂ in corrugations?

Heat inleak


 $L \propto \dot{q}^{-2/3}$

Load bearing MLI

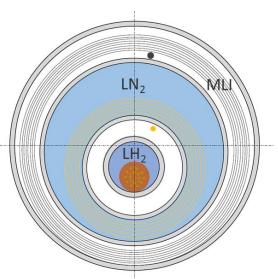
Margins for:

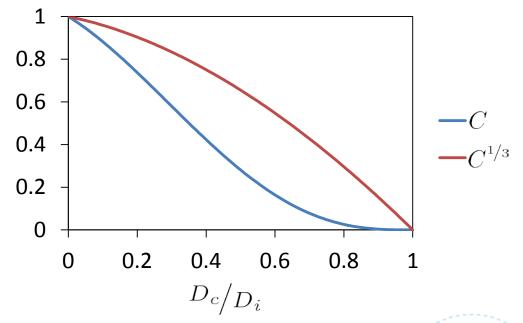
Long time vacuum stability Bending

Additional AC-losses

Calculation based on literature data $\dot{q}_{300 \text{ K} \to 77 \text{ K}} = 4.3 \text{ W m}^{-2}$ $\dot{q}_{77 \text{ K} \to 20 \text{ K}} = 0.9 \text{ W m}^{-2}$

→Neumann: -36% heat inleak




Cable diameter $L \propto C^{1/3}$

$$C = 1 - \left(\frac{D_c}{D_i}\right) - 2\left(\frac{D_c}{D_i}\right)^2 + 2\left(\frac{D_c}{D_i}\right)^3 + \left(\frac{D_c}{D_i}\right)^4 - \left(\frac{D_c}{D_i}\right)^5$$

Small cable \rightarrow minor influence on length

Larger effect for el. insulation

Exemplary geometry

Distance between reactive power compensation stations in France: ca. 50 km

→Cable design for 50 km

Mass flow LH_2 : 0.175 kg/s →15 t/d

Mass flow LN_2 : 4.4 kg/s

 \rightarrow 380 t/d=circulation rate

Summary

Cooling of kilometric long cables is possible with flexible cryostat Down scaling of cable cryostat not possible →Minimal el. power to justify investment (GW range) integration into grid redundancy etc.? Outlook Replacement of el. insulation with spacer Design with straight tubing

Design of pump/recooling station

Transmission for sustainability

COOLING CONSIDERATIONS FOR THE LONG LENGTH HVDC CABLES CRYOSTAT WITHIN BEST PATHS PROJECT

Steffen Klöppel, Christoph Haberstroh

