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Preface

The research work covered by this thesis was carried out between May 2013 and
June 2017 at the Institute for Theoretical Solid State Physics and the Institute of
Nanotechnology at the Karlsruhe Institute of Technology in collaboration with Prof.
Gerd Schön and Dr. Panagiotis Kotetes.
One of the main motivations of this thesis is the study of Majorana fermions in

solid state systems. While Majorana fermions are discussed in high-energy physics as
possible elementary particles for example in the context of neutrino physics, zero-energy
excitations with similar characteristics can appear in solid state systems. There are
various proposals predicting the appearance of Majorana zero modes. Some of those
proposals are under experimental investigation right now with promising results [5,
6]. In transport experiments even the characteristic quantization of the tunneling
conductance of 2e2/h through Majorana zero modes was recently reported [7].
Zero-energy Majorana modes living on a two-dimensional surface are non-abelian

anyons. This means their exchange statistics are different from bosons and fermions. In
contrast to those, moving localized Majorana particles around each other adiabatically,
while keeping ‘safe’ distance between the particles, results in a modified wavefunction.
In the case of abelian anyons the wavefunction acquires a complex phase factor, while
for non-abelian anyons, like Majorana fermions, the components of the wavefunctions
are rotated. This movement of the localized particles on a surface is called braiding, as
the worldlines of the particles are threaded like strands. Braiding operations can be
used for quantum information processing. The quantum information, represented as
quantum bits or ‘qubits’ is encoded in the ground state degeneracy spanned by the
Majorana zero modes. The dimension plays a crucial role for braiding, which can be
seen as follows: If a particle is moved around another one on a closed path in two
dimensions, this path cannot be contracted to a point. In three dimensions however,
any closed path of one of the particles can be reduced to a point without interfering
with the other particle. This difference arises from the topology of the parameter
space describing the location of the two particles. Manipulation of qubits encoded in
Majorana fermions is therefore referred to as topological quantum computation.
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Topology is the mathematical discipline of classifying spaces in terms of topological
invariants, e.g., integer numbers, which do not change their value under smooth
deformations of the space. Staying with the example of the paths of the particles in two
dimensions – the winding number of a path is a topological invariant and counts how
often one particle moves around the other particle. The winding number is integral
and does not change if the path is deformed slightly. This fact hints at an interesting
stability property of systems characterized by topological invariants. It turns out that
manipulating Majorana based qubits via braiding acts in a parity subspace of the Hilbert
space. As long as perturbations leave this subspace intact the quantum information is
‘topologically protected’. Furthermore the Majorana zero modes are usually non-local,
i.e., spatially separated with an energy splitting exponentially suppressed by their
distance. Hence local perturbations cannot couple and destroy the modes. While
the extent of the topological protection is still unclear and as of now experimentally
untested, the idea of protecting quantum information from environmental noise in
this way is certainly interesting. Even if ultimately Majorana based qubits disqualify
as practical qubit building blocks, it would be a huge achievement to show their
non-abelian exchange statistics via braiding in experiment.

More general, a physical system in a topological phase can be characterized by a
topological invariant, which can be a measurable quantity, if this quantity will not
change in the presence of small perturbations. For example the topological invariant
associated to a band structure will not change as long as no gap closings happen under
perturbation. A probably familiar topological invariant, the genus g of a manifold,
behaves similarly. The genus counts the number of handles of the geometric object, for
example a sphere has g = 0, a torus g = 1 and a pretzel g = 3. Even if the pretzel is
deformed it is still a pretzel with g = 3 as long as none of the holes is closed.

The presence of Majorana modes on the boundary of a solid state system is closely
connected to a topological invariant of the system. In fact there is a topological invariant
arising from the bulk band structure counting the number of Majorana modes. For a
three-dimensional bulk system, in particular topological superconductors engineered
from topological insulators, the modes live on the two-dimensional surface. Often
systems of lower dimension are considered too, e.g., two dimensional thin films or
one-dimensional nanowires. This bulk invariant is non-zero if the band structure is
‘twisted’ in a non-trivial way. This connection between modes on the boundary and bulk
properties is commonly called the ‘bulk boundary correspondence’. The correspondence
in the general case is conjectured and has not been rigorously proven. However for
specific physical systems, e.g., a nanowire with Majorana bound states localized at the
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ends of the chain, both the number of bound states and the invariant of the bulk band
structure can be calculated explicitly, confirming the correspondence in this case.

The second ingredient of this work are interaction effects leading to ordering, in
particular magnetic ordering. Interactions can induce correlations and can lead to
a phase transition and stabilization of order, e.g., the ordering of adatom spins on
a superconducting surface or the stabilization of a magnetic skyrmion texture. In
particular we focus on heterostructures, which are composed of elementary subsystems,
where magnetic order is induced by interactions. For example one of the heterostructures
considered consists of a superconducting substrate, e.g., Pb, on which a chain of
magnetic Fe adatoms is placed.

A phase transition might be associated with the breaking of symmetries, e.g., magnetic
ordering breaks rotational symmetry. Symmetries are associated with conservation laws,
but also play an important role as a tool in the phenomenological description of physical
systems – often the knowledge of symmetries suffice to write useful low energy theories,
e.g., Landau theories. Additionally to that, symmetries allow classifying Hamiltonian
operators and restrict the geometric structure of the operator space. This geometric
structure can then be analyzed using methods from topology. In this work we study
the relationship between interactions, the resulting phase transitions, symmetries, and
the topological structure for certain concrete models with connection to experiment.

In the following we outline the contents of the chapters of this thesis. The first two
chapters lay the foundational basis. The succeeding three chapters are based on the
main results of this PhD work. We study solid state systems which act as platforms for
Majorana bound states and illuminate different aspects. While the systems considered
don’t look much alike at first sight, they share the property of intrinsic ordering induced
by interactions. Furthermore the mathematical description of the low energy physics of
such Majorana platforms is often identical and can be reduced to that of a prototypical
model, a spinless p-wave superconductor in one dimension as introduced by Kitaev [8].

Chapter 1 introduces topological phases in condensed matter systems. We discuss
the class of quantum Hall effects systems, which are topological insulators. In particular
we describe the integer quantum Hall effect (IQHE), the quantum anomalous Hall
effect (QAHE) and the quantum spin Hall effect (QSHE). The IQHE was the first
effect understood in terms of a topological invariant, the TKNN number, named after
Thouless, Kohmoto, Nightingale and de Nijs [9, 10]. Topological insulators are generally
characterized by fermionic conducting surface modes, while the bulk is gapped and
insulating. Similarly the bulk of topological superconductors is characterized by a
superconducting gap, while the surface hosts Majorana modes. The occurrence of
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topological phases relies on specific symmetries of the system. Phase transitions in
the Landau sense often involve spontaneous breaking of symmetry. To shed light on
the relation of phase transitions in the Landau sense and in the topological sense we
compare the two mechanisms. Furthermore this chapter summarizes fundamentals
about symmetries and the classification of topological phases in terms of symmetries
and topological invariants. In particular we discuss the periodic table of topological
insulators based on the Altland-Zirnbauer classification of random matrices [11, 12].
This classification by antiunitary symmetries is exhaustive and covers all kinds of
non-interacting solid state systems. The table assigns to each symmetry class and
dimension a label 0 for trivial classes and Z and Z2 for classes with possible non-trivial
topological phases.

Chapter 2 gives an overview over Majorana fermions which appear as zero energy
modes on the boundary of topological superconductors, e.g., at the ends of a 1D
p-wave superconducting chain. We motivate their application in the area of topological
quantum computing based on braiding operations. Majorana zero modes are created
by field operators with the reality condition γ = γ†. To satisfy this condition, the
Majorana operator γ is decomposed as γ = (c+ c†)/2 with a fermionic operator c. This
implies that a Majorana zero mode in an electronic system is composed of an electron
and a hole.

Chapter 3 is based on our publications Ref. [2, 3]. We consider magnetic adatom
chains on top of a superconducting substrate. At the end of the chain Majorana
bound states will occur. We study first the magnetic ordering of the spins of the
adatoms due to an exchange interaction of the spins mediated by the superconducting
substrate. Due to the presence of spin-orbit coupling this interaction can be effectively
described by a Ruderman-Kittel-Kasuya-Yosida (RKKY) superexchange interaction.
This type of interaction can lead to a spiral ordering. However in the presence of weak
symmetry breaking due to crystal field effects, the interaction leads to ferromagnetic
or antiferromagnetic ordering. In both ferromagnetic and antiferromagnetic chains,
the low energy behavior is dominated by Yu-Shiba-Rusinov (YSR) states. The low
energy YSR chain can show topological phases hosting one or two Majorana bound
states per end of the chain, which possess a spin-content. This chapter focuses mostly
on the transport signatures of the Majorana bound states in various setups. In
particular we studied coupled Majorana states in multiple wires. Transport signatures
of Majorana bound states are one of the main proposals to demonstrate the existence
of Majorana bound states. In our work we explore the richer set of signatures due to
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spin polarization if a spin-polarized scanning tunneling microscope tip is used for the
transport measurements.

Chapter 4 is based on Ref. [1] and focuses on warped topological insulators and the
formation of magnetic order on the surface of such an insulator. Usual 3D topological
insulators host surface modes described by a rotationally symmetric Dirac dispersion.
However due to crystal effects the dispersion can be modified by additional warping
terms breaking the rotational symmetry to a discrete symmetry. In the case of
Bi2Te3, the topological insulator considered mainly in this work, the symmetry is
reduced to a C3v point group symmetry. Time reversal and point group symmetry
lead to a Fermi surface of hexagonal shape. Depending on the chemical potential µ,
which can be adjusted by doping the material, the curvature of the Fermi surface
can be controlled. Around a certain chemical potential µhex the Fermi surface takes
approximately hexagonal shape with flat sides. In this scenario three nesting vectors
Q1,2,3 connect the sides of the Fermi surface resulting in a tendency of magnetic ordering.
For this system, we showed that a skyrmion magnetic texture can be stabilized in the
presence of a sufficiently strong repulsive Hubbard interaction.
Chapter 5 extends the previous chapter, by considering a heterostructure of a

surface with a magnetic texture, e.g., the previously discussed skyrmion lattice, and a
superconductor. We discuss feedback effects in both directions. The superconducting
gap ∆ induced in the magnetic system by the superconducting proximity effect competes
with the magnetic ordering and as such leads to a suppression of the magnetic gap.
In the other direction supercurrent correlations and staggered superconducting order
parameters are induced. The heterostructure forms a topological superconductor
supporting chiral Majorana modes propagating along the one-dimensional boundary.
Additionally, we show that up to three degenerate Majorana modes appear along a
domain wall where B −∆ changes sign. Here B is the intrinsic effective magnetic field
of the magnetic layer in a proper normalization. The Majorana modes can propagate
along the wall and form a flat band which is susceptible to remnant interaction effects.
A related system is an anisotropic p-wave superconductor, which is a prototype for the
study of flat bands in interacting systems.

Chapter 6 concludes and points out further directions of our research.
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1 Chapter 1

Introduction to topological phases
of matter

In this chapter we introduce topological phases, which are a recent topic in physics and
in particular in condensed matter physics, where effects like the quantum Hall effect and
related experimentally accessible phenomena are mathematically described by using
methods from topology. The field of topology studies geometric properties of spaces.
Spaces can be classified by associated invariants which do not change under smooth
deformations. In this chapter, we start first with examples of topological phases in
condensed matter physics, i.e., topological insulators and topological superconductors,
that can be described by topological invariants. Both insulators and superconductors
commonly are gapped systems, i.e., the bulk band structure exhibits an energy gap ∆
in the spectrum and the Fermi energy EF lies within this gap.

Topological insulators have the peculiar property of hosting conducting fermionic
surface modes while still being insulating in the bulk due to the energy gap. As
examples of topological insulators we describe the integer quantum Hall effect and the
related effects with spin-dependence, the quantum anomalous Hall effect and quantum
spin Hall effect. In contrast to topological insulators, topological superconductors
host Majorana surface modes. They are described in a mathematically similar fashion,
however involving particle-hole degrees of freedom.

After introducing topological phases, we compare them to phases according the
Landau paradigm of phases and transitions. Instead of considering topological invari-
ants, such phase transitions are characterized by the presence of order parameters.
Often phase transitions involve the breaking of symmetries, such that after the phase
transition the system exhibits fewer symmetries.
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1 Introduction to topological phases of matter

We proceed with the discussion of the classification of topological phases relying on
the presence of antiunitary symmetries. In particular we are interested in the topology
of the space of Hamiltonian operators defined on a Brillouin zone Ĥ(k).

1.1 Topological insulators and superconductors

In this section we introduce topological insulators, which are materials, that are
insulating in the bulk while hosting conducting fermionic surface modes. Similarly
there are topological superconductors which also exhibit a bulk gap and as such can
be treated and classified in a similar manner as the topological insulators. Since
there exist multiple extensive and accessible reviews for topological insulators [13, 14]
and topological superconductors [14, 15] we only shortly review the most important
topological phases in a pedagogical manner. Topological systems exist in multiple
dimensions. At first we discuss the two-dimensional quantum Hall systems.

1.1.1 Quantum Hall effect

The integer quantum Hall effect (IQHE) was discovered by von Klitzing in 1980 [16].
In contrast to the classical Hall effect with Hall resistance linear in the field strength,
for small temperatures and strong magnetic fields the Hall conductivity shows exactly
quantized plateaus, i.e.,

σxy = e2

h
ν , (1.1)

where ν is an integer as shown in Fig. 1.1. Shortly thereafter scenarios were discovered
where ν takes specific rational values, e.g., ν = 1/3, giving rise to the fractional
quantum Hall effect [17]. This effect can be understood by assuming that the relevant
excitations are fractionalized by interaction effects.

The experimental setup of the IQHE consists of a small 2D sample in the xy-plane
with a perpendicular magnetic field Bz restricting the electrons effectively to the
xy-plane. Furthermore there is an electric field E in x-direction leading to an electron
flow with constant current I. The Hall effect manifests itself in a Hall voltage VH
induced in y-direction between the two sides of the sample.
Classically, the electrons flowing are deflected due to the Lorentz force, following a

Drude equation of motion in equilibrium

0 = mv̇ = eE + ev ×B − mv

τ
(1.2)
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1.1 Topological insulators and superconductors

Figure 1.1: Original measurements of the Hall voltage UH and voltage drop between
potential probes Upp over the gate voltage Vg. Temperature T = 1.5 K,
source drain current I = 1µA, magnetic field B = 18 T. Reprinted from
Ref. [16] with permission by the American Physical Society, copyright 1980.

with electron charge e, velocity v and scattering time τ . Introducing the current density
J = nev yields Ohm’s law J = σE where σ is a 2 × 2 conductivity tensor1. The
transverse resistance Rxy = Vy/Ix = ρxy = B/(ne) is independent of the sample size
and linear in the field strength B. The dependence on B contradicts the experimental
result in the quantum regime, where the quantization of the energy levels of the
electrons in the magnetic field must be considered. The minimally coupled Hamiltonian
H0 = (p + eA)2/(2m) with magnetic field B = ∇ ×A, no electric field E = 0 and
vector potential in the Landau gauge A = xBzêy reduces to the Hamiltonian of the
harmonic oscillator with the Landau energy levels En = ~ωC(n+ 1/2) and cyclotron
frequency ωC = eB/m. The number of filled Landau levels below the Fermi level EF
is then observable in experiment for sufficiently low temperature kBT � ~ωC . Since
[py, H] = 0 the Landau levels are highly degenerate. This degeneracy is lifted by an
electric field, which leads to a drift of the states in y-direction.

The Hall conductivity is derived within linear response theory [18]. The unperturbed
Hamiltonian H0 with the states |n〉 given by H0 |n〉 = En |n〉 is extended with a term
δH = −J ·A with E = −∂tA. One proceeds by calculating the expectation value
〈J(t)〉 of the current operator for an AC field E(t) = Ee−ıωt. The expectation value is

1In experiment resistances Rij ∝ ρij are measured, where ρ = σ−1 is the resistivity tensor.
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1 Introduction to topological phases of matter

given by

〈Ji(t)〉 = 1
~ω

∫ ∞
0

dt′ eıωt′
〈
0
∣∣[Jj(0), Ji(t′)

]∣∣0〉Eje−ıωt , (1.3)

which shows linear response behavior, i.e., the current oscillates with the same frequency
ω as the applied electric field [18]. From there one obtains the Kubo formula for the
Hall conductivity

σxy(ω) = 1
~ω

∫ ∞
0

dt eıωt 〈0|[Jy(0), Jx(t)]|0〉 . (1.4)

Taking the DC limit ω → 0 yields

σxy = ı

~
∑

En<EF<Em

〈n|Jy|m〉 〈m|Jx|n〉 − 〈n|Jx|m〉 〈m|Jy|n〉
(En − Em)2 . (1.5)

Here it is non-obvious that the conductivity is an integer. Rewriting the current
operators as Ji = evi and the velocities in terms of derivatives of the Hamiltonian, as
in the seminal work by Thouless, Kohmoto, Nightingale and de Nijs [9, 10], allows to
express the Hall conductivity in terms of a topological invariant, the first Chern number,
which is an integer. We will discuss the topological invariant later in Section 1.3.3. The
quantum Hall effect goes hand in hand with the appearance of chiral edge currents, which
are intuitively understood by skipping orbits. In modern terminology the appearance
of edge currents is seen as a realization of the bulk-boundary correspondence, discussed
in Section 1.3.4.

1.1.2 Quantum anomalous Hall effect

In contrast to the integer quantum Hall effect, the quantum anomalous Hall effect
(QAHE) does not rely on the presence of a magnetic field. The Hall conductivity
σ = νe2/h is still quantized with an integer ν, which appears due to the intrinsic
topological structure of the band structure of the material, instead of the topological
structure created in an IQHE experiment by the magnetic field and the resulting
Landau levels. Like the IQHE, the QAHE corresponds to the presence of chiral edge
channels, implying that time reversal symmetry is broken. The first model showing a
QAHE was the Haldane model on the honeycomb lattice [19]. However the essential
physics is already captured by a simple two band model in two dimensions of the form
Ĥ(k) = g(k) · σ where g is the configuration vector of the Hamiltonian defined on
the two-dimensional Brillouin zone and σ = (σx, σy, σz) are the Pauli matrices. The
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1.1 Topological insulators and superconductors

Figure 1.2: Skyrmion configuration g(k) = (sin kx, sin ky, cos kx + cos ky − 1)ᵀ defined
on the torus T2 = [−π, π]2 with topological invariant C1 = 1. We show
different rotations 0, π/4, π/2 and π of the normalized vectors ĝ(k) around
the z-axis, since the Hamiltonian has a rotational gauge symmetry. Opposite
sides of the plots are identified due to the torus topology.

configuration vector is given by

g(k) = (A sin kx, A sin ky, B(cos kx + cos ky −M))ᵀ (1.6)

where A, B andM are material parameters. For a realistic system a full band structure
could be obtained by density functional theory. The effective model is usually obtained
from there by projecting to the lowest two bands. For this system the zero temperature
Kubo formula of the Hall conductivity reduces to

σH = e2

h

1
4π

∫
dk ĝ ·

(
∂kx ĝ × ∂ky ĝ

)
(1.7)

with the unit configuration vector ĝ = g/|g|. This integral equation is the first Chern
number (see Section 1.3.3), which counts the number of windings of the vector ĝ
on the Brillouin zone. In particular the conductivity does not change under smooth
deformations of g, as long as no gap closing happens. For example a gap closing at
k = 0 occurs for M = 2. Furthermore the conductivity is independent of the length of
the configuration vector |g(k)|, corresponding to the energy scale.
For a non-zero value of σH the configuration vector forms a skyrmion. Skyrmions

were proposed first by T. Skyrme in high energy physics as a unified theory for strongly
interacting particles [20]. We display a trivial and non-trivial configuration of the
configurations vectors in Fig. 1.2. The transition between the non-trivial skyrmion
phase and the trivial phase is a topological phase transition which coincides with a gap
closing in the band structure. The k-points with possible gap closings correspond to
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1 Introduction to topological phases of matter

Figure 1.3: Meron g+ and anti meron g− configurations for the linear model g±(k) =
(kx, ky, ±1) with topological charge C1 = ±1/2. The plots shows the
normalized vectors ĝ±(k).

the critical low-energy points of the systems. They suffice to determine the parameter
values at which topological phase transitions occur. In the above Hamiltonian gap
closings g(k) = 0 occur for M = 0, ±2. For M = −2 the critical point is Γ = (0, 0),
for M = 0 one finds X = (π, 0) and Y = (0, π) and for M = 2 a gap closing can
occur at Z = (π, π). Interestingly the low energy behavior around these points also
determines the topological invariant of the full system. This can be seen by considering
the linearized Hamiltonians around the critical points

gΓ(k) = (Akx, Aky, B(2−M))ᵀ , (1.8)

gX(k) = (−Akx, Aky,−BM)ᵀ , (1.9)

gY (k) = (Akx,−Aky,−BM)ᵀ , (1.10)

gZ(k) = (−Akx,−Aky,−B(2 +M))ᵀ . (1.11)

Integrating the Chern integral for each of the points p = Γ, X, Y, Z on the whole real
plane yields a value C1,p = ±1/2, corresponding to half a skyrmion or a so-called meron.
Summing up the local half-integer invariants yields the invariant of the full system
C1 =

∑
p=Γ,X,Y,Z C1,p. We illustrate the merons in Fig. 1.3.

1.1.3 Quantum spin Hall effect

In contrast to the QAHE, the quantum spin Hall effect (QSHE) shows helical edge
channels, leading to a spin current. There exists one channel per spin with the electrons
of the two channels flowing in opposite direction, i.e., the channels show spin momentum
locking. Hence the QSHE can essentially be described as two copies of the QAHE.
While a single conducting chiral channel breaks time-reversal symmetry, two chiral
channels forming helical channels preserve time reversal symmetry. We illustrate the
distinction in Fig. 1.4.

The QSHE was first proposed for graphene [22, 23], but was not observed due to weak
spin orbit coupling. Later the QSHE was proposed for HgTe quantum wells [24, 25] and
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1.1 Topological insulators and superconductors

IQHE

k

E

k

E

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association www.kit.edu

QSHE

k

E

k

E

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association www.kit.edu

Figure 1.4: Integer quantum Hall effect and quantum spin Hall effect in comparison
(adapted from Ref. [21]). The integer quantum Hall effect shows chiral edge
modes, while the quantum spin Hall effect shows helical edge modes made
up from two chiral edge modes each.

discovered [26]. The experimental setup consists of a HgTe well of thickness d which is
sandwiched between two CdTe layers. As long as d > dC with some critical thickness
dC , the QSHE is observable. The two materials HgTe and CdTe are both described by
effective models with six bands. At the interface between the two materials there is a
band inversion of two bands which leads to non-trivial behavior. Essentially the band
structure of the whole setup acquires a non-trivial topological winding2. The projected
model with four bands takes the form

Ĥ(k) =
(
ĥ↑(k) 0

0 ĥ↓(k)

)
, (1.12)

ĥσ(k) = ε(k) + gσ(k) · ρ , (1.13)

where ρ are Pauli matrices. Symmetry analysis determines the configuration vector
and dispersion at lowest order in terms of the harmonics

ε(k) = C +D(cos kx + cos ky) , (1.14)

gσ(k) = (σA sin kx, A sin ky, B(cos kx + cos ky −M))ᵀ . (1.15)

The configuration vector per spin is equivalent to the QAHE model, showing that
indeed the QSHE consists of two copies of the QAHE. The parameters A, B, C, D and
M are given by the materials and the setup. For example M corresponds the thickness
d of the quantum well. The block diagonal form of the Hamiltonian ensures that time

2See also Fig. 2.5 for an illustration of the winding of a band structure in the context of the Kitaev
chain
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1 Introduction to topological phases of matter

reversal symmetry is preserved. The first Chern number per block is defined by

Cσ1 = 1
4π

∫
BZ

dkx dky ĝσ ·
(
∂kx ĝσ × ∂ky ĝσ

)
, (1.16)

which is proportional to the conductivity σσxy per spin. Due the block diagonal form of
the Hamiltonian Ĥ(k) the charge conductivity σCxy = σ↑xy + σ↓xy = 0 vanishes. However
the difference of the conductivities σSxy = σ↑xy − σ↓xy = 2σ↑xy can be non-zero. This sum
does not yet capture the topological phase of the QSH system since an even number of
helical edge modes hybridizes by scattering at non-magnetic impurities, corresponding
to additional off-block diagonal Hamiltonian terms. Only the case of an odd number of
edge channels the system is topologically non-trivial. Therefore the topological phase
of the system is described by a Z2 invariant, i.e., C↑1 = 0, 1 mod 2.

1.1.4 Topological superconductors

After discussing examples of topological insulators, we proceed with topological su-
perconductors, which similarly exhibit a bulk gap. Furthermore the bands of the
superconductor must allow the definition of a non-zero topological invariant, requiring
non-trivial winding in the band structure. As in the case of topological insulators
there are in-gap states localized at the boundary, which determine the low-energy
physics. However in contrast to the topological insulators with fermionic boundary
states, the boundary states of topological superconductors can be Majorana states due
to the particle-hole degree of freedom in the system. We discuss zero-energy Majorana
states in Chapter 2 in detail. Here we shortly connect topological insulators and
superconductors to put them into context.

There are multiple classes of topological superfluids distinguishable by their symmetry
properties. The first topological superfluid, discussed by Volovik, was He-3B [27]. The
class of chiral p-wave superconductors with px + ıpy pairing in two dimensions supports
chiral edge modes which propagate at an edge in one direction. Essentially one considers
the model of the QAHE discussed before with the configuration vector

g(k) = (A sin kx, A sin ky, B(cos kx + cos ky −M))ᵀ (1.17)

and Hamiltonian Ĥ(k) = g(k) · τ defined in particle-hole space τ . The observable dif-
ference is that the edge modes in topological superconductors have Majorana character,
which correspond to Majorana operators with the property γk = γ−k. In solid state
physics, the existence of intrinsic p-wave superconductivity is discussed for the ruthen-
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1.2 Phase transitions and symmetries

ates [28]. However there are possibilities to artificially engineer p-wave superconductors
from trivial superconductors, which will be discussed in Section 2.3.

Similar to px+ ıpy superconductors with angular momentum l = 1 there exist system
with other types of unconventional superconductivity, for example the class of chiral
d-wave superconductors with dx2−y2 ± ıdxy pairing with higher angular momentum
l = 2 but similar topological properties.
Dimensionally reducing the px + ıpy superconductor by one dimension yields a 1D

spinless p-wave superconductor. We discuss this important model, called the Kitaev
chain in Section 2.3.1. There are multiple systems which behave according to the
Kitaev chain, namely 1D organic superconductors and polymers. Again there are ways
to artificially realize 1D or quasi-1D p-wave models from well-understood building
blocks (See Section 2.3).

After introducing topological phases we proceed with a discussion of phase transitions
and symmetries which play a crucial role for the topological classification of solid state
systems.

1.2 Phase transitions and symmetries

Symmetries play a crucial role for the characterization of physical systems. In this thesis
we rely on symmetry analysis at many places such that a short review of some important
symmetries is appropriate. In particular the classification of topological systems relies
on the presence of certain symmetries as discussed in Section 1.3. There are certain ways
to categorize symmetries, e.g., continuous or discrete symmetries. On the other hand
one can consider internal symmetries of a system or space-time symmetries. Continuous
symmetries are intimately related to conservation laws according to Noether’s theorem.

A class of symmetries with a significant role in modern physics are gauge symmetries
which are redundancies in the mathematical description. However the word redundancy
is downplaying the significance since local gauge invariance gives rise to gauge fields
and in the quantized version to gauge bosons. One of the best known examples is the
gauge symmetry of Maxwell’s equation where the equations stay invariant under a
gauge transformation of the vector potential A → A+∇f and the scalar potential
φ→ φ− ∂tf with a function f(r, t). An example in condensed matter physics is the
U(1) gauge symmetry of a superconductor, which is broken in the superconducting
phase.

In particular, in condensed matter discrete symmetries are omnipresent. The repet-
itive structure of crystals leads to discrete translational and rotational symmetries,
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1 Introduction to topological phases of matter

which break the continuous symmetries of the vacuum. However in contrast to fully
disordered matter, the symmetries are not fully broken, but discrete symmetries are re-
tained. The schema of allowed symmetries leads to a classification of all possible crystal
structures, the so-called Bravais lattices. These lattices in two (three) dimensions are
connected to their respective wallpaper (space) groups. We will describe point groups
and other the spatial symmetries and their action on Hamiltonians in the Bogoliubov-de
Gennes formalism in Section 1.2.2. Furthermore there are discrete symmetries with
only one generator, e.g., inversion symmetry I, time reversal symmetry T or charge
conjugation symmetry C.
In the next section we relate symmetries to their role in classical phase transitions

according to the Landau paradigm.

1.2.1 The Landau paradigm of phase transitions

Second order phase transitions are connected to the breaking of symmetries and the
presence of an order parameter which changes continuously. There are also first order
phase transitions where an order parameter of the system does not change continuously
but changes abruptly and non-continuously. First order transitions are not necessarily
connected to spontaneous symmetry breaking as for example the liquid-gas phase
transition. Nonetheless, symmetries play a crucial role for the description of phases.
The classification of topological phases also relies on symmetries – this means that
spontaneous symmetry breaking can change the topological class of a system.
Interactions are crucial to derive phase transitions within a Landau theory picture.

The starting point is a model Hamiltonian H0 extended with interactions terms. In a
tight-binding model the interactions commonly considered include on-site Hubbard
repulsion HU = U

∑
i ni↑ni↓ due to Coulomb interaction, or more general density-

density interaction HV =
∑
i 6=j Vijninj and spin-spin interaction HJ =

∑
ijJijSi · Sj .

The operators nσ = c†iσciσ are number operators and Si is a spin operator. In this
thesis we rely on a spin-spin exchange interaction leading to an RKKY interaction
between spins in Chapter 3 and on on-site Hubbard repulsion in Chapter 4. In both
cases the interactions lead to magnetic ordering.
The ordering is described by an order parameter which arises due to mean-field

decoupling. In this approximation the quartic interaction terms are expressed as product
of an order parameter and two field operators. For example the effective interaction of
a spinless p-wave superconductor in one dimension −V

∑
k,k′ sin k sin k′ψ†kψ

†
−kψ−k′ψk′

can be written in the approximate form ∆
∑
k sin k ψ†kψ

†
−k. The order parameter
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1.2 Phase transitions and symmetries

∆ for the superconducting gap is introduced by the self-consistency equation ∆ =
−V

∑
k sin k〈ψ−kψk〉. Products of fluctuations ψ

†
kψ
†
−k − 〈ψ

†
kψ
†
−k〉 have been neglected.

Note that there are multiple ways to decouple an interaction by reordering the
field operators using commutator relations. In this example the effective interaction
was already written to obtain the p-wave order parameter directly. This way mean
field theory can give raise to a plethora of different order parameters corresponding
to many different phases. To determine the possible ground state of system one
proceeds by deriving a Landau theory by expanding the free energy of the system as a
polynomial in the order parameters. The minimum of the free energy determines then
the physical ground state. In this state some of the order parameters can be non-zero.
The coefficients of the polynomial can be derived microscopically as for example in
Chapter 4. However in many cases it is also possible to propose a Landau theory purely
by symmetry considerations. The Landau theory has to preserve the symmetries of
the given Hamiltonian. However the ground state can have reduced symmetry, the
effect of spontaneous symmetry breaking. A ferromagnet for example breaks rotational
symmetry after choosing a specifically oriented ground state.
Spontaneous symmetry breaking is a fundamental principle in modern physics and

strongly connected to the Landau picture of phase transitions. Recently the discovery of
the Higgs boson at CERN got lots of attention, which is connected to the spontaneous
symmetry breaking of the electroweak gauge symmetry SU(2)L ⊗ U(1)Y to the lower
electromagnetic gauge symmetry U(1)Q. According to the Goldstone theorem the
spontaneous breaking of a continuous symmetry results in massless Goldstone bosons.
The occurrence of Goldstone bosons can for example be seen when a system becomes
magnetic. In Chapter 4 we consider a system developing a skyrmion texture as a linear
combination of three helical spin density waves. The skyrmion texture breaks the
continuous translational symmetry to a discrete translational symmetry. Two phase
degrees of freedom, so called phasons, remain as massless Goldstone bosons. However
in the case of a broken gauge symmetry the Goldstone degrees of freedom are ‘eaten’
by the gauge bosons as predicted by Anderson for superconductors and by Higgs for
the electroweak theory, giving rise to massive Higgs bosons.

1.2.2 Spatial symmetries: Inversion, translation, rotation and point group
symmetries

Spatial symmetries play a crucial role in the study of solid state systems since essentially
the ‘background’ is determined by the crystalline structure of the material under
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1 Introduction to topological phases of matter

Table 1.1: Crystallographic point groups in Schoenflies notation. Cn are the cyclic
groups. Cnh contains Cn and adds a reflection plane perpendicular to the
rotation axis. Cnv contains Cn and adds reflection planes parallel to the
rotation axis. Dn are the dihedral groups. S2n contain only a 2n-fold rotation-
reflection axis. Missing in the table are the tetrahedral and octohedral groups
T, Td, Th, O and Oh. Counting all the groups yields 32 crystallographic
point groups in total.

n 1 2 3 4 6
Cn C1 C2 C3 C4 C6
Cnv C1v = C1h C2v C3v C4v C6v
Cnh C1h C2h C3h C4h C6h
Dn D1 = C2 D2 D3 D4 D6
Dnh D1h = C2v D2h D3h D4h D6h
Dnd D1d = C2h D2d D3d D4d D6d
S2n S2 S4 S6 S8 S12

consideration. For simplicity, we exclude quasicrystals [29, 30] and amorphous materials
with fewer symmetries from the discussion.

The crystal structures are classified in different classes by the Bravais lattices. The
real space periodicity gives rise to Brillouin zones according to Bloch. Additional to
the translation symmetries there are symmetries given by the a point group. Point
groups are generated by rotation and reflection operations. The rotation operations
are defined for fixed rotation axes and discrete angles. In particular for 2D coverings
only 2-, 3-, 4- or 6-fold rotations are allowed. The combined rotation and translation
symmetry groups yield the full space group.
As first spatial symmetry operation we discuss the inversion operation I, which

is often part of point groups. I inverts spatial coordinates r 7→ −r. In contrast to
inversion parity operations are defined via detP = −1. In odd dimensions inversion is
a parity operation but not in even dimensions. The actions of inversion symmetry on
quantum mechanical operators for position r̂, momentum p̂ and spin operator Ŝ are
given by

I† r̂ I = −r̂ , I† p̂ I = −p̂ , I† r̂ × p̂ I = +r̂ × p̂ , I† Ŝ I = +Ŝ . (1.18)

Given a single-particle state |k, σ, ν〉 with wavevector k, spin σ which is an eigenvalue
of Ŝz and orbital quantum number ν, the inversion symmetry acts as I |k, σ, ν〉 =
ην |−k, σ, ν〉. Here ην = 〈k, σ, ν|I|k, σ, ν〉 is the intrinsic parity of the orbital which
is ην = 1 in even dimension and can be either even ην = +1 or odd ην = −1 in odd
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1.2 Phase transitions and symmetries

dimension since I2 = 1. A Hamiltonian transforms under inversion as

Ĥ(k)′ = I†Ĥ(k)I = η̂Ĥ(−k)η̂ . (1.19)

In this work we consider Bogoliubov-de Gennes (BdG) Hamiltonians, which act in
particle-hole space in order to represent superconducting terms. By convention, the
τ = (τx, τy, τz) Pauli matrices span particle-hole space. Given the inherent particle-hole
symmetry (and inversion of momenta) of a BdG Hamiltonian, inversion can also be
represented as

Ĥ(k)′ = I†Ĥ(k)I = −τxĤᵀ(k)τx . (1.20)

If additionally to inversion, more spatial symmetry operations like reflections and
rotations are considered, the set of symmetries can be combined in a finite group, the
point group.

We show a subset of the most important point groups in Table 1.1, where the groups
are labeled according the Schoenflies notation. As noted before the point group is
a subgroup of the space group which includes translations. In tight binding models,
where continuous translational symmetry is broken, the discrete translational symmetry
of the space group is significant. However in the case of bulk models the point group
by itself can provide important insights.

In the case of a BdG Hamiltonian point group operations act on both the momentum
vector and the spinor components in the presence of strong spin orbit coupling

Ĥ(k)′ = G†i Ĥ(k)Gi = D̂†(Gi)Ĥ(Gik)D̂(Gi) . (1.21)

The vector k is rotated or reflected and the representations D̂(Gi) transform the spinor
space. The representation D̂(Gi) is trivial if the system does not have orbital or spin
degrees of freedom. This is the case for a low energy model in the presence of a strong
Zeeman field fixing the spin direction.

A representation D̂i is a mapping from the group elements to invertible matrices of
some dimension, i.e., the representation of a group element Gn is a matrix D̂i(Gn). A
representation is defined as a group homomorphism, i.e., D̂i(Gn ·Gm) = D̂i(Gn) ·D̂i(Gm).
The significance of representations lies in the fact that they can be built up from
irreducible representations (IRs) with the one-dimensional representations being the
most basic representations. Two irreducible representations can be combined as a
direct sum to form a higher dimensional reducible representation D̂ = D̂1 ⊕ D̂2.
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1 Introduction to topological phases of matter

Table 1.2: Character table of the dihedral point group D4h which consists of rotations
and reflections. See Fig. 1.5 for a visualization.

I.R. E 2C4 C2 2C ′2 2C ′′2 I 2S4 σh 2σv 2σd Linear Higher
A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 x2 + y2, z2

A2g +1 +1 +1 −1 −1 +1 +1 +1 −1 −1 Rz xy(x2 − y2)
B1g +1 −1 +1 +1 −1 +1 −1 +1 +1 −1 x2 − y2

B2g +1 −1 +1 −1 +1 +1 −1 +1 −1 +1 xy
Eg +2 0 −2 0 0 +2 0 −2 0 0 (Rx, Ry) (xz, yz)
A1u +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 xyz(x2 − y2)
A2u +1 +1 +1 −1 −1 −1 −1 −1 +1 +1 z
B1u +1 −1 +1 +1 −1 −1 +1 −1 −1 +1 xyz
B2u +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 z(x2 − y2)
Eu +2 0 −2 0 0 −2 0 +2 0 0 (x, y)

Given a representation one can define characters by tracing χi(Gn) = tr D̂i(Gn). The
characters of group generators are summarized in a character table. Generators are the
elements which span the group, e.g., for C3v, the C3 rotation generates the C2

3 rotation.
The construction of character tables relies on the great orthogonality theorem [4, 31].

To illustrate, we will consider the character table of the point group D4h. The
table is presented in Table 1.2, and the corresponding operations are illustrated in
Fig. 1.5. The first column is the name of the IR. In the Mullikan nomenclature, A
and B are used for one-dimensional representations and E is used for two-dimensional
representations. The subscript g or u means ‘gerade’ or ‘ungerade’ which characterize
the behavior under inversion I. The last two columns list basis functions transforming
under the given transformation. The row A1g contains the trivial representation with
DA1g(Gi) = χA1g(Gi) = 1. The function x2+y2 belongs to the trivial representation since
it is invariant under the group operations. Rotations Rx,y,z which are pseudovectors
are included in the column of the linear basis functions.

1.2.3 Antiunitary symmetries: Time reversal and charge conjugation

We review two important antiunitary symmetries, which are defined as a product
of complex conjugation K and a unitary operator U . Complex conjugation acts on
complex numbers K†zK = z∗ but also reverses momenta since the momentum operator
is imaginary. Complex conjugation acts as follows on position, momentum and spin
operators

K† r̂K = +r̂ , K† p̂K = −p̂ , K† Ŝx,z K = +Ŝx,z , K† Ŝy K = −Ŝy , (1.22)
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Figure 1.5: Mirror planes and rotation axes of the point group D4h

assuming that the spin operators are given in the usual representation with Ŝy imaginary,
which is the case for the Pauli matrices Ŝ = σ. Time reversal symmetry T = UT K is
the first example of an antiunitary symmetry. The action of time reversal symmetry is
given as

T † r̂ T = +r̂ , T † p̂ T = −p̂ , T † r̂ × p̂ T = −r̂ × p̂ , T † Ŝ T = −Ŝ . (1.23)

These transformations fix the action of the unitary part of time reversal symmetry UT .
In particular UT = e−ıπŜy/~ satisfies the given relations. For a half-spin system with
Ŝy = ~σy/2 one finds T = −ıσyK. If a system has additional orbital degrees of freedom,
i.e., states |k, σ, ν〉 with orbital ν, the orbital degree of freedom will also enter the time
reversal operator T = e−ıπĴy/~K. The total angular momentum operator Ĵy = L̂y + Ŝy

contains an angular momentum operator L̂y. Given a Hamiltonian Ĥ(k) defined in
the state space spanned by orbital degrees of freedom time reversal symmetry acts as

Ĥ(k)′ = T †Ĥ(k)T = e+ıπĴy/~Ĥ∗(−k)e−ıπĴy/~ . (1.24)

For a BdG Hamiltonian there is an intrinsic symmetry operation, namely charge
conjugation C. A BdG Hamiltonian has an intrinsic charge conjugation symmetry
−Ĥ(k) = τxĤᵀ(−k)τx with the charge conjugation operator C = τxK. Charge conjuga-
tion is antiunitary here3. This can be seen by

Ĥ(k)′ = C†Ĥ(k)C = τxĤᵀ(−k)τx = −H(k) . (1.25)

3The representation of charge conjugation is unfixed in non-relativistic theories and can be chosen to
be unitary. In relativistic quantum theory charge conjugation is necessarily antiunitary due to the
CPT theorem, which requires CPT = 1, where P is the parity operation.
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1 Introduction to topological phases of matter

Using the charge conjugation symmetry of a BdG Hamiltonian Ĥ(k) time reversal
symmetry can be rewritten using the τx Pauli matrices representing the complex
conjugation of the Hamiltonian

Ĥ(k)′ = T †Ĥ(k)T = −τxe+ıπĴy/~Ĥ(k)τxe−ıπĴy/~ . (1.26)

In the next section we focus on the topological aspect of symmetries which give rise
to the topological classification of Hamiltonians.

1.3 Topological classification of Hamiltonians

Hamiltonians can be classified in terms of symmetries. For random Hamiltonians
with all unitary symmetries broken, a classification can be performed in terms of
antiunitary symmetries. Altland and Zirnbauer (AZ) classified random matrices using
the antiunitary symmetries time reversal symmetry T , charge conjugation symmetry
C and chiral symmetry S [11]. The AZ classification extends the Wigner-Dyson
classification [32, 33] which relies solely on time reversal symmetry. The random
matrices can describe disordered systems. For non-random systems it is necessary
to check for additional space group symmetries [34]. Given the three antiunitary
symmetries the matrices fall in ten different symmetry classes which are summarized
in the periodic table of topological insulators and superconductors [12].
The periodic table associates a Z or Z2 invariant with each symmetry class and

dimension. In certain cases the topological invariants are connected to measurable
physical quantities, e.g., the Hall conductivity σxy in the quantum Hall effect [16]
corresponds to the first Chern number [9, 10] as discussed in Section 1.1.1.

1.3.1 Random matrix theory and symmetries

Random matrix theory considers random matrices of a given size where all unitary
symmetries are broken. This classification of random matrices is connected to symmetric
spaces and topology [12]. We assume that a Hamiltonian Ĥ is Hermitian and that no
unitary operators exist, which commute with the Hamiltonian, except for trivial scalar
operators. In our work we focus particularly on many body Hamiltonians in k-space
Ĥ(k). For such Hamiltonians one has to ensure that no additional symmetries exist
due to the k-dependence [34], which would require diagonalizing the Hamiltonian using
this additional symmetry.
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1.3 Topological classification of Hamiltonians

The classification proceeds then using three remaining symmetries: Time reversal
symmetry T , charge conjugation symmetry C and chiral or sublattice symmetry S.
However note that the physical names are not of importance here. T and C are
antiunitary symmetries, which can be written as a product of a unitary operator
U and the complex conjugation operator K. For time reversal symmetry we write
T = KUT = U∗T K. Chiral symmetry S is not an antiunitary symmetry, but a unitary
operator, which anticommutes with the Hamiltonian.
The Altland and Zirnbauer (AZ) classification [11] defines that for a Hamiltonian

operator Ĥ(k), time reversal symmetry T , charge conjugation symmetry C or chiral
symmetry S are present if the respective relation holds

T : T †Ĥ(k)T = U †T Ĥ
∗(−k)UT = + Ĥ(k) , (1.27)

C : C†Ĥ(k)C = U †CĤ
∗(−k)UC =− Ĥ(k) , (1.28)

S : S†Ĥ(k)S = U †SĤ(k)US =− Ĥ(k) , (1.29)

where UT , UC and US are unitary matrices. Note that there are no possibilities for
further symmetries. Chiral symmetry S is defined as the product of time reversal and
charge conjugation symmetry, which means that the presence of the latter implies the
presence of chiral symmetry. However if neither time reversal nor charge conjugation
symmetry is present, chiral symmetry can still be present.
To classify the matrices one writes T = 0 (C = 0) if time reversal symmetry T

(charge conjugation symmetry C) is absent. The presence of a symmetry is denoted by
T ≡ ±1 or C ≡ ±1 respectively depending on the square of the corresponding symmetry,
e.g., T 2 = ±1. Note that the symmetries can only square to ±1 [4]. Physically a
symmetry which squares to −1 involves half-integer spin. There are 9 different classes
with T = 0,±1 and C = 0,±1. Additionally chiral symmetry S distinguishes the two
cases S = 0 and S = 1 for T = C = 0.
Since both time reversal T and charge conjugation C involve complex conjugation,

their absence signals that the Hamiltonian is complex. The other eight classes are real.
In the next section we discuss the classes and their associated topological properties.

1.3.2 Classification in the periodic table

Time reversal symmetry T , charge conjugation symmetry C and chiral symmetry S
allow to distinguish ten different classes of Hamiltonians. These classes correspond to
symmetric spaces defined by Élie Cartan. However Cartan’s exhaustive classification
contains more than ten classes, including exceptional classes with fixed matrix size.
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Table 1.3: Periodic table of topological insulators and superconductors. The symmetries
T , C and S distinguish ten classes. The classes with S = 1 are chiral. The
first two complex classes have a Bott periodicity of two in the dimension,
the other eight real classes have a periodicity of eight.

Symmetry Dimension
T C S 1 2 3 4 5 6 7 8

A unitary 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII chiral unitary 0 0 1 Z 0 Z 0 Z 0 Z 0
AI orthogonal 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI chiral orthogonal 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D BdG 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII chiral BdG −1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII symplectic −1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII chiral symplectic −1 −1 1 Z 0 Z2 Z2 Z 0 0 0
C BdG 0 −1 0 0 Z 0 Z2 Z2 Z 0 0
CI chiral BdG 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

These exceptional classes correspond to exceptional Lie groups. The periodic table
of topological insulators and superconductors only covers the spaces with variable
matrix size N since these allow the description of physical systems of arbitrary size.
The classes termed ‘BdG’ (Bogoliubov-de Gennes) contain physical systems exhibiting
particle-hole symmetry. We present the periodic table [12] in Table 1.3. The table
includes dimension up to eight since the associated topological invariants repeat with
a periodicity. The first two complex classes A and AIII have a Bott periodicity of
two, the other eight real classes have a periodicity of eight. The phenomenon of Bott
periodicity is known from real and complex K-theory [35].
Each class and space dimension has an associated Z or Z2 label, which describes

possible topological invariants of Hamiltonians defined in the particular class. More
precisely, the Z and Z2 labels denote the stable homotopy groups πd(M(N)) of a
symmetric space M(N) spanned by matrices of dimension N × N . The homotopy
groups of the symmetric spaces depend on matrix size N , but stabilize for large matrix
sizes, i.e., they do not change anymore for even larger matrices. A homotopy group is
a group which classifies topological spaces like a symmetric space. For completeness we
shortly review the definition. Choose a base point a ∈ Sd in the d-sphere and a base
point b ∈ M . The group πd(M) is defined as the set of equivalence classes of maps
f : Sd →M with f(a) = b, i.e.,

πd(M) =
{
f : Sd →M

∣∣∣f(a) = b
}
∼
. (1.30)

32



1.3 Topological classification of Hamiltonians

Maps are equivalent if they can be continuously transformed into each other, i.e., if
they are homotopic. For d = 0 the homotopy group π0(M) is the set of connected
components of M . For d ≥ 1 the homotopy group or fundamental group forms a group
by path composition. For example for d = 1 two paths f and g defined on t ∈ [0, 1]
(with 0 = 1 identified since S1 is a circle) can be composed to h = f ∗ g such that
h(t) = f(2t) for t ≤ 1/2 and h(t) = g(2t − 1) for t ≥ 1/2. For higher dimensional
homotopy groups the definition relies on the wedge sum of the domain spheres. The
wedge sum of two spheres Sd is defined as the disjoint union, with the two base points
of the two spheres identified. Composition of the two maps h = f + g is defined by
taking h = f on the first sphere and h = g on the second sphere of the wedge sum [36].

1.3.3 Topological invariants

In this section we discuss topological invariants which are means to classify topological
phases by integer numbers. Slight perturbations to the system parameters do not
change the value of the topological invariants. Perhaps the best known invariant is the
genus which counts the number of handles of a geometric space. The genus g(S) of a
compact surface without boundary S is calculated using the Gauss-Bonnet formula∫

S
K ds = 2πχ(S) = 2π(2− 2g(S)) , (1.31)

with K the curvature of the manifold at a point and χ(S) = 2 − 2g(S) the Euler
characteristic. Interestingly, a far reaching generalization of the Gauss-Bonnet theorem,
the Atiyah-Singer index theorem, is connected to the bulk-boundary correspondence,
which plays an important role in the topological systems discussed in this thesis. In
the following we highlight invariants appearing in condensed matter systems, starting
from a band structure picture.

Berry phase of a band structure

Band structures in condensed matter arise due to the periodicity of a lattice in real
space. The Bloch equation H(k) |un(k)〉 = En(k) |un(k)〉 for a band n determines the
Bloch eigenfunctions |un(k)〉 giving rise to periodic wavefunctions |ψn〉 = eık·r |un(k)〉.
The Berry phase is a geometric phase acquired by the Bloch wavefunction while
moving along a path. The Berry connection (or Berry potential) is defined as An(k) =
ı 〈un(k)| ∇k |un(k)〉. Integrating the (non-gauge invariant) Berry connection along a
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closed curve C yields the Berry phase

γn =
∮
C

dk ·An(k) , (1.32)

which is a gauge invariant quantity modulo 2π. A gauge transformation |un(k)〉 7→
eıφn(k) |un(k)〉 yields γn 7→ γn + 2πm with m ∈ Z. Furthermore, similar to a gauge
potential, the Berry connection An(k) allows the definition of another gauge invariant
quantity, the Berry curvature (or Berry flux) Fn(k) = ∇k ×An(k).

Calculating the Berry phase via Stokes’ theorem yields

γn =
∮
C

dk ·An(k) =
∫
S

dk n̂ · [∇k ×An(k)] =
∫
S

dk n̂ · Fn(k) . (1.33)

If integration is performed over the full 2D Brillouin zone S = BZ, which forms a
T2 torus, the boundary term vanishes and the surface term yields a value of 2πm.
This means the Berry phase over the whole Brillouin zone is a quantized topological
invariant, the so called first Chern number.

Chern number and winding number

We rewrite the Chern number in a more direct form, expressed in terms of the Bloch
wavefunctions

Cn1 = γn
2π = ı

∫
dkx dky

[
∂kx 〈un(k)|∂kyun(k)〉 − ∂ky 〈un(k)|∂kxun(k)〉

]
. (1.34)

In the case of simple two-band Hamiltonians Ĥ(k) = g(k) · σ the equation simplifies
even further. The Chern number reduces to the familiar form

C1 = 1
4π

∫
dkx dky ĝ ·

(
∂kx ĝ × ∂ky ĝ

)
, (1.35)

which also appeared in the equation of the Hall conductivity in Section 1.1.2.

This number counts how often the unit configuration vector ĝ(k) winds if integrated
over the whole Brillouin zone. Essentially the number determines the skyrmionic charge
of the configuration vector. Choosing the S2 base manifold we can for example consider
the configuration ĝ(θ, φ) = (cosAφ sin θ, sinAφ, cos θ)ᵀ. For A = 1 the vector ĝ(k)
parametrizes the sphere and one obtains C1 = 1. For A > 1 the vector winds multiple
times resulting in a higher Chern number C1 = A > 1.
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1.3 Topological classification of Hamiltonians

Reducing the system by one dimension yields the topological invariant

n = 1
2π

∫
dk (ĝ × ∂kĝ)z . (1.36)

This integral can be rewritten as a winding number in the complex plane

n = 1
2πı

∫
C

dz
z

= 1
2πı

∫
C

dk ∂kz(k)
z(k) (1.37)

with z(k) = gx(k) + ıgy(k), which counts the number of times the closed curve C
parametrized by z(k) winds around the singularity 1/z at z = 0. The Kitaev chain is a
physical system, described by a winding number, which will be discussed in Section 2.3.1.
The winding number determines the number of Majorana bound states per end of the
chain via the bulk boundary correspondence.

Z2 topological invariants

Up to now we discussed integer topological invariants n ∈ Z. Now we consider the
classes in the periodic table of topological insulators, which are characterized by a Z2

invariant. The systems in those classes exhibit two possible different topological phases
labeled by 0, 1 ∈ Z2 or equivalently by ±1 ∈ Z2.
In particular, time-reversal invariant topological insulators exhibit Kramers pairs

|uIn(k)〉 and, |uIIn (k)〉 which are two degenerate energy eigenstates. For a 1D (2D)
system this has the consequence that the winding (Chern) number vanishes. However
for each of the states I and II of the pair a separate Chern CI/II can be defined, where
CI = −CII . Taking the parity (−1)CI yields a Z2 invariant. This definition of the
topological invariant corresponds to the invariant defined in terms of the Pfaffian [22,
23]. As part of our work in Chapter 4, we discuss the Bi2Te3 topological insulator,
which can be classified according to a Z2 invariant.

1.3.4 Bulk-boundary correspondence

The bulk boundary correspondence connects the bulk topology, i.e., the topology
of the band structure, with the number of localized states at the boundary of a
corresponding finite system. This correspondence can be approached in an intuitive
manner. Introducing a boundary or creating an interface to another material necessarily
changes the band structure near the boundary. In the simplest case assume an
interface of two different materials A and B with two bands A1,2 and B2,1 respectively.
Furthermore we assume band inversion of corresponding bands Ai = Bi, i.e., the
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energies satisfy E(A1) > E(A2), E(B2) > E(B1). If the band inversion happens
smoothly, the bands must necessarily go through zero energy corresponding to the
existence of a zero energy bound state. This scenario is realized in the case of HgTe
quantum wells which were used to demonstrate the quantum spin Hall effect (see
Section 1.1.3).

The exact form of the bulk boundary correspondence depends on the system under
consideration and is non-obvious in the general case. For a given model like the Kitaev
chain it is possible to show the correspondence explicitly.

The concept of bulk-boundary correspondence in general is related to index theorems
of Dirac operators, in particular the Atiyah-Patodi-Singer index theorem, which is a
generalization of the Atiyah-Singer index theorem for manifolds with boundaries [37,
38]. The theorem can be stated as the equation

indD =
∫
X
AS− 1

2η(D0) (1.38)

for a Dirac operator D where the right hand side of the equation captures the analytical
properties of the operator and the left hand side the topological nature. The index
of the Dirac operator indD = dim kerD − dim kerD† counts the number of zero
modes of the operator. The right hand side involves an integral of the Atiyah-Singer
integrand AS over the manifold X, defined via the Chern character and genus, and the
additional boundary term according to Atiyah-Patodi-Singer for the boundary operator
D0. Interestingly the left hand side yields an integer value, which is non-obvious for
the right hand side. This already hints on to the deep implications of this theorem.
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2 Chapter 2

Fundamentals of Majorana fermions

In this chapter we focus on Majorana fermions in solid state systems. They are named
after Ettore Majorana who discovered that the Dirac equation supports purely real
solutions. These solutions describe particles which are their own antiparticles. The
Dirac equation describe a relativistic fermion ψ and can be written in non-Lorentz
invariant form as

ı
~
c
∂tψ(r, t) = [−ı~α · ∂r + βmc]ψ(r, t) , (2.1)

where m is the fermion mass and α and β are 4 × 4 matrices, which obey the anti-
commutation relations {αi, αj} = 2δi,j , {αi, β} = 0 and β2 = 1. There are multiple
possible choices for α and β satisfying the algebra. In particular, if a basis with
α∗ = α and β∗ = −β is chosen, the complex conjugated Dirac equation describing the
antifermion ψ∗ is of identical form as the original equation. In this case the reality
condition ψ = ψ∗ can be imposed.
In high energy physics it is discussed whether neutrinos are Majorana fermions

[39]. Experimental confirmation however is very difficult since neutrinos interact very
weakly and usually appear in decays as ‘missing’ energy. In fact, the missing energy
was the reason for Fermi to propose the existence of neutrinos. Furthermore there
are hypothetical particles, expected to be of Majorana character, e.g., superpartners
of real gauge fields. However in condensed matter physics the situation is different:
Majorana fermions appear as excitations and not as elementary particles. To qualify
as Majorana particles, the corresponding Majorana operators must fulfill the Majorana
condition γE = γ†−E with energy E. In particular for zero energy modes with E = 0,
the condition γ0 = γ†0 holds. We will discuss the occurrence of such zero modes in
various systems in Section 2.3. But first, we give an overview over the general properties
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2 Fundamentals of Majorana fermions

of the Majorana zero modes and proceed with their possible application as constituents
for quantum bits to perform topological quantum computation. In the following we
will use the term Majorana fermion to subsume elementary Majorana particles and
Majorana zero modes in condensed matter systems.

2.1 Majorana zero modes: Definition and general properties

We follow Ref. [40] for this section. Majorana zero modes are created by a fermionic
operator γ with γ2 = 1/2. It is also possible to use a different normalization where the
Majorana operators square to another constant. Due to the squaring condition, γ = γ†

necessarily holds, which means that the Majorana operators are real. Furthermore
γ corresponds to a zero energy state, as such the operator has to commute with the
Hamiltonian of the system [H, γ] = 0. In condensed matter systems multiple zero
modes γi (i = 1, . . . , 2n) can appear as localized excitations which are separated by a
certain distance l. Given the length it is more realistic that [H, γ] = e−l/ξ, where ξ is a
characteristic correlation length associated with the Hamiltonian, e.g., superconducting
coherence length.

The zero modes appear only in pairs since they arise as fractionalization of ordinary
electrons, i.e., each Majorana mode corresponds to half of an electron. For the
given normalization, multiple Majorana operators satisfy the anticommutation relation
{γi, γj} = δij . Since each of the Majorana operators commute with the Hamiltonian, a
series of operators ıγ1γ2, ıγ3γ4, . . . , ıγ2n−1γ2n can be defined, which all commute with
the Hamiltonian and span an eigenspace of dimension 2n. This eigenspace forms the
degenerate ground state of the system. In the physically realistic scenario this ground
state is only approximate with an energy exponentially suppressed with l. It is the
goal to exploit this ground state degeneracy for quantum information purposes, which
we will discuss in Section 2.2.

2.1.1 Non-abelian anyons

A crucial aspect of Majorana zero modes are their non-abelian statistics. Let us first
consider the case of abelian anyons. For two particles in three dimensions at positions
r1 and r2 we require that the particles always keep a safe distance |r1 − r2| > l. The
wavefunction of the two particles ψ(r1, r2) can generally acquire a phase θ when the
particles are moved on paths such that they are exchanged, i.e. ψ(r1, r2) 7→ eıθψ(r2, r1).
However the modulus of the wavefunction cannot change, i.e. |ψ| = const. After one
exchange, the particles are exchanged a second time eıθψ(r2, r1) 7→ e2ıθψ(r1, r2). Since
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2.1 Majorana zero modes: Definition and general properties

Figure 2.1: Anyons are moved adiabatically around each other, constituting an elemen-
tary braiding operation. The blue particle is moved three times around
the red particle. The blue and red lines illustrate the worldlines through
time and space. The closed yellow path shows the movement in space,
characterized by the winding number n = 3.

the two exchanges are equivalent to no exchange at all it must hold e2ıθ = 1 which
implies eıθ = ±1 and θ = 0, π. This means that under exchange the wavefunction can
only acquire a sign giving rise to fermions or does not change in the case of bosons.
Again - the crucial argument is that two exchanges are equivalent to no exchange at
all. However for this argument to hold the topology of the paths must be considered.
In three dimensions the paths involved in the exchange are contractible to a point such
that no exchange can be seen as a limit of performing an exchange.

In contrast to three dimensions, the argument does not work in two dimensions! The
paths involved in the exchange cannot be contracted to single points. Therefore no
condition on the phase eınθ for n exchanges exists. The phase can possibly take any
value and the particles are anyons with anyonic exchange statistics ψiψj = eıθψjψi.
In second quantization ψi,j correspond to the field operators creating the anyonic
excitations.

Now let us repeat the crucial argument in more mathematical terms by considering
the first homotopy group of the configuration space of the system [41]. The distance
vector δr = r1 − r2 with δrx > 0 is an element of (R3 \ {0})/Z2. The origin {0}
is removed since the two particles must maintain their distance. Furthermore the
division by Z2 ensures that the identical particles are not distinct. By definition, this
space coincides with the projective real plane RP2 with the first homotopy group
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2 Fundamentals of Majorana fermions

π1((R3 \ {0})/Z2) = π1(RP2) = Z2. The Z2 group shows that there are only two
distinguishable paths, namely paths which exchange and paths which do nothing. In
two dimension one obtains

π1((R2 \ {0})/Z2) = π1(RP1) = Z , (2.2)

only that Z different possible paths exist, corresponding to the numbers of times the first
particle encircles the other one. Such exchange operations can be used to implement
braiding which is the basis for topological quantum information. We illustrate the
movement of the two particles in Fig. 2.1.
Now we focus on non-abelian anyons where the wavefunction acquires more than

a phase factor under exchange. Two Majorana zero modes can be combined to form
a fermion c = γ1 + ıγ2. The number operator c†c = 0, 1 yields the fermion parity of
the degenerate state. Since fermion parity is conserved, exchanging γ1 and γ2 in two
dimensions requires that (

γ1

γ2

)
7→ U

(
γ1

γ2

)
=
(
±γ2

γ1

)
, (2.3)

where the overall sign can be changed by a gauge transformation. Since only the sign
changes in the first component, Majorana zero modes are of Ising type. The exchange
operations are generated by non-abelian unitary braiding operators U = eıθe

π
4 γ1γ2 .

Therefore Majorana zero modes are non-abelian Ising anyons. In the next section we
focus on the use of braiding operations for topological quantum computation.

2.2 Topological quantum computation

The key assumption of topological quantum computation is that qubits encoded in the
ground state degeneracy spanned by Majorana zero modes are topologically protected
against local fluctuations in contrast to classical qubits like the superconducting flux
and charge qubits or alternative qubit implementations. The assumption is justified
by the delocalized nature of the topological qubit implemented by spatially-separated
Majorana zero modes. To exploit Majorana zero modes for quantum computation,
artificial delocalized fermions composed out of two Majorana operators are considered,
e.g., c = γ1 + ıγ2. The occupation numbers of these fermions for 2n Majorana zero
modes span a ground state space of dimension 2n−1 for fixed fermion parity. In the
following we first discuss the problem of fault tolerance in quantum computation and

40



2.2 Topological quantum computation

proceed with a discussion of braiding operations. Furthermore we give an outlook to
universal topological quantum computation.

2.2.1 Fault tolerance and topological protection

The main obstacle for quantum computation is decoherence due to coupling of the qubit
to other system degrees of freedom. Usually the full system is modeled as two level
systems describing the qubits, coupled to a bosonic bath, representing the additional
degrees of freedom. The stability of qubits is quantified by two coherence times, the
longitudinal T1 and the traversal coherence time T2, where usually T1 � T2. The qubit
decays exponentially ∝ e−t/Ti . The T1 time measures the loss of energy of the system,
while T2 measures the time span for which the system stays coherent. Essentially, after
time T2 the system loses its quantum behavior and acts classically.
The important question is how to reduce the possible sources of noise. Due to the

non-local nature of Majorana qubits, they can only couple to non-local noise which
makes them presumably stable. Considering a one-dimensional wire with Majorana
bound states located at the ends far apart, electric charge noise on one side of the
chain cannot couple directly to the Majorana state which is only half an electron. This
feature of Majorana qubits is called topological protection.

However Majorana qubits rely on fermion parity conservation. As long as only Cooper
pairs enter or leave the superconductor as fluctuations, fermion parity is preserved and
the encoded qubits remain safe. If single electrons are allowed to enter the system from
the environment, fermion parity is violated and the systems leaves the topologically
protected subspace. Unfortunately there is a source of single electrons which comes
directly from the superconductor, in form of quasiparticle poisoning. The density of
(electronic) quasisparticles does not vanish for small temperatures as would be expected
from standard BCS-theory, where at T = 0 all electrons should be condensed in Cooper
pairs. Therefore quasiparticles remain a problem even at very low temperatures [42].
We note that at the current experimental status it is hard to tell if Majorana based
qubits would offer an advantage over conventional qubit designs due to quasiparticle
poisoning, since no experiments managed yet to successfully demonstrate such qubits.

2.2.2 Braiding

For the following discussion we again follow Ref. [40]. Braiding operations exchange
Majorana zero modes by moving them around each other adiabatically with a safe
distance [43]. Through the exchange certain qubit rotations are possible, since the
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1 3 2 4 5

1 2 3 4 5

Figure 2.2: Braid group element. We show five strands on which the braid group acts.
The red boxes highlight an elementary exchange, its inverse and a neutral
operation. The tensor product of one elementary exchange with neutral
operations on the other strands yields the braid group generators.

Majorana zero modes enjoy non-abelian exchange statistics as described before. Unfor-
tunately braiding operations alone do not suffice to build a complete set of quantum
gates. We will discuss this shortcoming in the following section and discuss certain
possibilities to achieve universality.

Braiding operations are elements of the braid group Bn which describes how n

strands can be ‘knotted’. The generators of the group are exchanges of two strands.
Two group elements are composed by connecting the corresponding strands of the
group. We show an exemplary braid group element in Fig. 2.2. In a physical system
the braided zero modes are located on a two-dimensional surface, for example trapped
in vortices which are then moved around. More realistically however might be a setup
of nanowires and T-junctions also supporting exchange operations [43] as illustrated in
Fig. 2.3.

There are multiple possibilities to encode qubits in Majorana zero modes. In
particular the dense encoding allows to encode n qubits in 2n+ 2 Majorana zero modes.
There the eigenvalues ıγ2k−1γ2k = ±1 correspond to the σz eigenvalues of the k-th qubit.
However it can be useful to use a sparse encoding with more redundancy, where four
Majorana zero modes form one qubit. The k-th qubit k is encoded in γ4k−3, γ4k−2, γ4k−1

and γ4k such that γ4k−3γ4k−2γ4k−1 = −1. This fixes an even fermion parity in the
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Figure 2.3: Adiabatic exchange of two Majorana fermions living on one-dimensional
wires. The two Majoranas are either bridged by a topological region (dark
blue line) as in (a-d) or by a non-topological region (light blue line) as in
(e-h). Reprinted from Ref. [43] with permission by the Nature Publishing
Group.

subspace of these four Majorana zero modes. The qubit operator σz is defined as
σz ≡ ıγ4k−3γ4k−2.

For (approximate) universal quantum computation the Hadamard gate H, the π/8
phase gate T and the controlled Z gate C(Z) are needed:

H = 1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 eıπ/4

)
, Z =

(
1 0
0 −1

)
. (2.4)

Using these qubit operations the full set of qubit operations can be approximated
according to the Solovay-Kitaev theorem [44]. To perform the Hadamard gate on the
k-th qubit, γ4k−2 and γ4k−1 are exchanged counterclockwise. To apply the gate C(Z)
one switches first from the sparse to the dense representation and afterwards back by
measuring a subset of the involved Majorana operators. For details on the operation
see Ref. [40].
However it is not possible to implement the π/8 phase gate using topologically

protected braiding operations. To perform universal quantum computations that safe
place must be left unfortunately – at least in the case of Ising anyons.

2.2.3 Roads to universal quantum computation

Unfortunately the braiding operations yield only certain rotations on the Bloch sphere.
However for universal quantum computation it is necessary to cover the whole sphere.
If only Majorana zero modes are used as building blocks of the qubits, universality
cannot be achieved while maintaining topological protection.
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However if topological protection is violated it is possible to implement the afore-
mentioned π/8 phase gate by moving Majorana zero modes close to each other such
that the wavefunctions overlap with a splitting energy ∆E. Letting the qubit evolve
for a certain time t leads to a gate operation

U(t) =
(

1 0
0 eı∆Et

)
. (2.5)

After some time the Majorana zero modes are moved again apart. If the parameters of
the system can be controlled to sufficient precision such that t = π

4∆E the necessary
phase gate T = U(t) is obtained.

Another scenario involves coupling Majorana qubits to conventional universal qubits,
e.g., qubits implemented based on superconducting circuits. Coupling the conventional
and the topological system could happen momentarily such that the Majorana part of
the setup still enjoys topological protection while being uncoupled from the unprotected
qubits. Topologically protected non-universal qubits could be used as quantum memory
in such a hybrid setup.

Another more intriguing possibility to achieve universal quantum computation is to
rely on ‘more capable’ excitations, e.g., Fibonacci anyons, which follow richer algebraic
relations Ref. [45]. The basic idea is that, in contrast to Majorana zero modes which
combine to fermions, combining two Fibonacci anyons possibly yields a new anyon.
The fusion operation ⊗ follows a set of fusion rules, forming a fusion algebra.

At first we shortly review the fusion rules for Ising anyons, which include the previ-
ously discussed Majorana zero modes, in order to highlight the additional capabilities
of Fibonacci anyons. The algebra for Majorana zero modes acts on the trivial particle
1, a fermion ψ and the Majorana zero mode σ. The algebra includes trivial fusion
rules 1⊗ 1 = 1, 1⊗ σ = σ ⊗ 1 = σ and 1⊗ ψ = ψ ⊗ 1 = ψ. The rules describing the
fusion of fermions and Majorana zero modes are given by

(I) σ ⊗ σ = 1⊕ ψ (2.6)

(II) ψ ⊗ σ = σ (2.7)

(III) ψ ⊗ ψ = 1 (2.8)

Rule (I) encodes that two Majorana zero modes σ can be combined, resulting in either
a trivial particle 1 (unoccupied fermionic state) or a fermion ψ. Rule (II) means that
the anyon σ will persist if it fuses with a fermion ψ and the rule (III) states that two
fermions combine resulting in a trivial particle. Physically, these rules encode that the
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Majorana zero modes are stable as long as they are not allowed to fuse and maintain
their safe distance.

For Fibonacci anyons τ the fusion rules are given by

1⊗ 1 = 1 (2.9)

1⊗ τ = τ ⊗ 1 = τ (2.10)

τ ⊗ τ = 1⊕ τ (2.11)

which is even simpler than the set of rules for the Ising anyons. The crucial ingredient
is the fusion rule τ ⊗ τ = 1⊕ τ . In contrast to the Ising anyons, combining Fibonacci
anyons yields further Fibonacci anyons. This aspect allows to build up fusion trees.
It is possible to build universal qubit gates acting on a state space spanned by the
anyons. For more details see Ref. [45]. In a physical system, Fibonacci anyons can be
realized from coupled parafermions [46].

2.3 Theoretical proposals for realization of Majorana fermions

In this section we focus on the main theoretical proposals for realization of Majorana
fermions in condensed matter systems. The starting point was the discovery by
Kitaev that one-dimensional spinless p-wave superconductors show a topological phase
transition and host isolated zero energy Majorana bound states in the topological
regime. We dedicate the next paragraph to a discussion of that proposal. Since a
one-dimensional p-wave superconductor is mostly a theoretical construct, we discuss
engineered physical setups afterwards. These setups are effectively described as a
p-wave superconductor in the low energy regime. In Chapter 3, we present our work
on adatom chains, which is an engineered system, hosting Majorana bound states.

In two dimensions it is possible for vortices of a topological superconductor to host
point-like Majorana zero modes. Topological superconductors can be engineered from
topological insulators, which exists in nature, and conventional superconductors. In
our work we study a setup of this type, as presented in Chapter 5.

2.3.1 Edge states of 1D p-wave superconductor

The spinless 1D p-wave superconductor, or Kitaev chain, is the prototypical example
of a topological superconductor, which was first described by Kitaev [8]. We consider
a finite chain of length N with p-wave superconducting pairing ∆, nearest neighbor
hopping amplitude t and chemical potential µ.
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…

…

Figure 2.4: Illustration of a Kitaev chain in the trivial phase and in the topological
phase, where two Majorana operators remain uncoupled at the ends of the
chain.

The Hamiltonian has the form

H = −µ
N∑
i=1

c†ici +
N−1∑
i=1

[
tc†ici+1 + ∆cici+1 + H.c.

]
. (2.12)

Note that the fermionic operators ci are spinless and fulfill the usual fermionic com-
mutation relation {ci , c

†
j} = δij . Because of Pauli’s exclusion principle no s-wave

superconducting pairing term could be written. The p-wave pairing must have triplet
character. The spinless character of the fermions can be achieved by applying a strong
polarizing magnetic field which pushes one of the spin components to significantly
higher energies. We will discuss realizations of the model later, in particular how
p-wave pairing can be achieved.

Varying the parameters allows to tune the system into different phases, which can
be understood in terms of topology. According to the bulk-boundary correspondence
there are two approaches to understand the topology of the system, (a) the occurrence
of states on the boundary and (b) the bulk topology. We focus first on approach (a),
the occurrence of bound states. For this purpose we introduce Majorana operators

γi = ci + c†i√
2

and γ′i = ci − c
†
i

ı
√

2
, (2.13)

satisfying the commutator relations {γi, γj} = δij , {γ′i, γ′j} = δij and {γi , γ′j} = 0.
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Expressing the Hamiltonian in Majorana operators yields

H = −µ
N∑
i=1

(1
2 − ıγ

′
iγi

)
− ı

N−1∑
i=1

[
(∆ + t)γi+1γ

′
i + (∆− t)γ′i+1γi

]
. (2.14)

The form of the Hamiltonian suggests that we consider the cases with ∆ = t. In
particular: (i) ∆ = t = 0, µ > 0. The Hamiltonian reduces to the trivial form

H = −µ
N∑
i=1

(1
2 − ıγ

′
iγi

)
= −µ

N∑
i=1

c†ici . (2.15)

In this scenario the system is in a topologically trivial metallic state, since no special
states are found. Each site i can be either occupied by an electronic state with energy
−µ or unoccupied.

(ii) ∆ = t 6= 0, µ = 0. In this case the Hamiltonian takes the form

H = −2ı∆
N−1∑
i=1

γi+1γ
′
i . (2.16)

Now something special happened: The operators γ1 and γ′N do not appear in the
Hamiltonian. Hence the states generated by these operators stay at zero energy. These
two unpaired states are located precisely at the ends of the chain. The appearance
of the end states signals that the system is topologically non-trivial. The scenario is
illustrated in Fig. 2.4.

If one departs slightly from the limit discussed here with ∆ = t = 0, these highly
localized states start to leak into the bulk of the chain. The wavefunctions decay
exponentially such that the overlap of the two wavefunctions is exponentially suppressed
with the length of the chain. Adjusting the model parameters slightly does not remove
them. This behavior of the states is characteristic for their topological origin. For an
illustration of a Majorana wavefunction in a realistic setup see Fig. 3.8.

Now we turn our focus on approach (b), the bulk picture. The Fourier transformed
Hamiltonian is given by

H = 1
2
∑
k

ψ†kĤ(k)ψk with Ĥ(k) = (2t cos k − µ)τz − 2∆ sin kτy . (2.17)

The Hamiltonian Ĥ(k) acts in particle-hole space spanned by the spinor ψ†k = (c†k, c−k).
In this form of the Hamiltonian the p-wave character of the superconducting pairing
becomes obvious, since the superconducting term is odd under inversion.
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Figure 2.5: Bulk band structure of the Kitaev chain for ∆ = 0.2, µ = 1, t = 0.2, 0.5, 0.8.
The topological phase transition happens at t = 0.5. The vectors show
the orientation of ĝ(k) or equivalently the orientation of the eigenstates
in particle-hole space. For t = 0.8 the system is in the topological regime.
The non-trivial topology is reflected in the winding of the eigenstates. The
topological phase transition can also be interpreted as a band inversion in
vicinity of the k = 0 point.

The dispersion is given by

Ek = ±
√

(2t cos k − µ)2 − 4∆2 sin2 k (2.18)

and shows a gap closing at k = 0, π for |µ| = 2t. This gap closing has the crucial role
of signaling a topological phase transition. The nodes at the gap closing points are the
topologically relevant bulk nodes. We illustrate the bulk band structure in Fig. 2.5.

The topological invariant corresponding to the number of Majorana bound states
at the ends of the chain can be calculated as a winding number n of a complex curve
z(k) = a(k) + ıb(k) as follows

a(k) = 2t cos k − µ , b(k) = 2∆ sin k , (2.19)

n = 1
2πı

∮ dz
z

= 1
2πı

∫ π

−π

dk
z(k)

∂z(k)
∂k

= θ(2t− |µ|) . (2.20)

This winding number n counts how often the curve z(k) circles around the singularity
of 1/z at z = 0. Deforming the curve by modifying the parameters t and ∆ slightly
does not change the number of times the curve circles around the singularity.

2.3.2 Quasi-1D p-wave superconductors and Majorana flat bands

Instead of the Kitaev chain, we can consider a variant of the model, which is extended
anisotropically in the xy-plane. Furthermore we additionally consider the spin degree
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2.3 Theoretical proposals for realization of Majorana fermions

of freedom. The Hamiltonian is given by

Ĥ(k) = [2tz cos kz + 2t⊥(cos kx + cos ky)− µ] τz − 2∆ sin kzτy , (2.21)

with anisotropic hopping tz � t⊥ > 0 and pz-superconducting gap ∆ > 0. The
Hamiltonian acts in the spinor space Ψ†k = (ψ†k↑, ψ

†
k↓, ψ−k↑, ψ−k↓). For t⊥ = 0 and

neglecting the spin degree of freedom, one recovers the Kitaev chain in z-direction.

We assume that spin-spin inter-site interactions of the form HJ = −
∑
ab

∑
ij J

ab
ij S

a
i S

b
j

are present. Here Sai =
∑
z ψ
†
i (z)σaψi (z) is the spin operator at site i. We can

especially concentrate on an anisotropic interaction, such that the interaction drives the
pz-superconducting order in the bulk. The possible interactions for the spin component
in z-direction and the spin components in the xy-plane are given by

HJz = −
∑
ij

JzijS
z
i S

z
j and HJ⊥ = −

∑
ij

J⊥ijS
⊥
i · S⊥j . (2.22)

Now we consider the possible Majorana modes, which can appear at a surface in the
xy-plane. The two spin blocks of the bulk Hamiltonian belong to the symmetry class
BDI with time-reversal symmetry Θ = K, charge conjugation symmetry Ξ = τxK and
chiral symmetry Π = τx, thus these surface modes are only weakly protected by the
presence of translational symmetry in the xy-plane.

One Majorana bound state appears per spin block at each k⊥ = (kx, ky)ᵀ point on
the surface if the 1D subsystem along the kz-axis is in the topologically non-trivial
phase. This is the case if the criterion 2tz >

∣∣2t⊥(cos kx + cos ky)− µ
∣∣ is satisfied. The

in-plane hopping term ∝ t⊥ modifies the chemical potential and enters the topological
criterion and the topological invariant. From that viewpoint the 3D system is seen as
a bundle of Kitaev chains in z-direction which all end on the surface at z = 0. The
bulk extends to z →∞.

Since at each k⊥ point one Majorana bound state is present per spin, these states
form two zero energy Majorana flat bands. Since the topological criterion depends on
the k⊥-coordinates, only certain regions of the k⊥ Brillouin zone might be topological
and contribute to the flat bands. The topological regions are given by the regions where
a Fermi surface is present for ∆ = 0. Previously Majorana flat bands (MFB) have been
discussed in p-wave SCs [47, 48], d-wave SCs [47], lattice models [49], gapless TSCs
[50–53], nodal d-wave SCs [54], noncentrosymmetric SCs [55–60], hybrid structures [61,
62] and in relation to ferromagnetism [63].
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2 Fundamentals of Majorana fermions

In the case when the whole k⊥-plane is in the topologically non-trivial phase, the
Majorana solutions at site i on the surface are given by

γi↑ =
∑
z

φ(z)
ψi↑(z) + ψ†i↑(z)√

2
and γi↓ =

∑
z

φ(z)
ψi↓(z)− ψ

†
i↓(z)

ı
√

2
, (2.23)

where φ decays exponentially in z-direction. The Majorana operators satisfy {γis, γjs′} =
δijδss′ .

Since the flat bands are highly degenerate the bulk interaction effects on them must
be considered. To take interactions into account, we project the electronic degrees
of freedom onto the Majorana solutions, which are eigenstates to τxσz = 1. This
yields the projected spin operator Sai = Φ(γi↑,−ıγi↓)σa(γi↑, ıγi↓)ᵀ with form factor
Φ =

∑
z φ

2(z). The projected fermionic operators are given by ψi↑(z) ≈ φ(z)γi↑/
√

2
and ψi↓(z) ≈ ıφ(z)γi↓/

√
2. With these operators the interaction HJz becomes constant

for the Majorana operators but the interaction of the in-plane spin components acts
on the Majorana bands as

HJ⊥ = −Φ2∑
ij

J⊥ij (ıγi↑γi↓)(ıγj↑γj↓) . (2.24)

This interaction acts on the flat Majorana bands and can possibly lead to a chiral
dispersion. We will discuss a system where flat bands occur in Chapter 5. However the
study of systems with flat bands and interactions is an interesting research topic on its
own.

2.3.3 Majorana bound states in vortices of p+ ıp-superconductors

Majorana bound states can be obtained at domain walls and in vortices of topological
superconductors, which was first recognized by Read and Green [64]. We shortly review
how such Majorana zero modes come about using standard BCS theory. At first one
considers the effective quasiparticle Hamiltonian with p-wave pairing ∆k ≈ ∆(kx + ıky)
in the form

H =
∑
k

[
ξkc
†
kck + 1

2
(
∆∗kc−kck + H.c.

)]
. (2.25)

Using the Bogoliubov transformation αk = ukck − vkc
†
−k and α†k = u∗kc

†
k − v∗kc−k one

obtains the Hamiltonian Heff =
∑
k Ekα

†
kαk + const and the Bogoliubov-de Gennes

equations Ekuk = ξkuk − ∆∗kvk, Ekvk = −ξkvk − ∆kuk with Ek =
√
ξ2
k + |∆k|2,
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2.3 Theoretical proposals for realization of Majorana fermions

|uk|2 = (1 + ξk/Ek)/2 and |vk|2 = (1− ξk/Ek)/2. From these equations it is necessary
to distinguish two limiting cases for k→ 0: (i) ξk > 0 such that |uk| → 1, |vk| → 0 which
is the strong-pairing BEC or trivial phase and (ii) ξk < 0 such that |uk| → 0, |vk| → 1
which is the weak-pairing BCS or non-trivial phase. In the low energy regime for small
k and chemical potential µ where ξk ≈ −µ, the chemical potential determines the
transition between weak and strong pairing at ξk = 0. Within linear approximation
the BdG equations become in real space

ı∂tu = −µu+ ı∆∗(∂x + ı∂y)v and ı∂tv = µv + ı∆ (∂x − ı∂y)u , (2.26)

which resembles the Dirac equation for a spinor (u, v). For u∗ = v the two equations
are equivalent. Therefore there exists a zero-energy real solution, which is its own
antiparticle, a Majorana bound state.

Introducing a domain wall µ(x) = |µ| sign x and solving the Schrödinger equation
yields Jackiw-Rebbi-type solutions bound at the wall. These solutions have the form
u(x) ∝ e−ıπ/4e−|µ|x/∆ and v = ıu. The solutions with non-zero energy propagate along
the wall in only one direction, i.e., are chiral Majorana modes.

Vortices can be treated in a similar manner, where a small circular domain wall
on the superconductor surface with µ < 0 is considered, which encloses a region with
µ > 0. Then one exponentially decaying zero energy bound state will be trapped
within this vortex. Since p-wave superconductors are problematic to obtain in nature,
engineered systems with effective p-wave pairing are considered. The prototype is
due to Fu and Kane [65], which a heterostructure composed of a conventional s-wave
superconductor in proximity to a topological insulator surface. Our work in Chapter 5
pursues this direction. In the next section we discuss a proposal, which engineers
topological superconductors from even more elementary subsystems, not relying on
topological insulators.

2.3.4 Proximity induced superconductivity and engineered topological
superconductors

There are materials, like the ruthenates, which are discussed to show p-wave correlations
and if true would act as a natural topological superconductor [28]. However it seems
to be more feasible to consider engineered topological superconductors, composed of
easily experimentally accessible and well-understood conventional components. In this
section we discuss such an engineered setup.
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Figure 2.6: Experimental nanowire setup reprinted from Ref. [5] with permission from
AAAS. (a) Theoretical proposal. Top: Device layout with a semiconducting
nanowire in proximity to an s-wave superconductor with external B-field.
The Rashba spin-orbit coupling is indicated as an effective magnetic field
Bso. Red stars indicate Majorana bound states. Bottom: Energy E versus
momentum k. The spin-orbit coupling shifts the spin-down band (blue) to
the left and spin-up band (red) to the right. Blue and red parabola are
for B = 0. Black curves for B 6= 0 illustrate the formation of a gap near
k = 0 of size gµBB. (µ is the Fermi energy with µ = 0 defined at crossing
of parabolas at k = 0). The superconductor induces a gap ∆. (b) Scanning
electron microscope image of the implemented device with normal (N) and
superconducting (S) contacts. The S-contact only covers the right part of
the nanowire. The underlying gates 1 to 4 are covered by a dielectric.

To achieve engineered topological superconductors three essential building blocks are
necessary: 1. Conventional s-wave superconductivity, 2. Rashba spin orbit coupling and
3. magnetic field or intrinsic magnetism. The proposals rely on the superconducting
proximity effect. Cooper pairs of the superconductor tunnel into the other material,
inducing a superconducting gap ∆ within the other material near the interface.

One of the first models proposed was the nanowire model [66, 67]. The Hamiltonian
acts in particle-hole space τ and spin space σ and has the form

Ĥ(k) =
(
k2

2m − µ
)
τz + αkσz −Bτzσx −∆τyσy , (2.27)

with Rashba spin orbit coupling α, magnetic Zeeman field B and a proximity-induced
conventional s-wave superconducting gap ∆. A sufficiently strong magnetic field will
polarize the excitations in such a way that only one of the spin-direction is relevant.
Effectively the system is then described by a two band model of the low energy bands,
which is obtained by projection Ĥ(k) = (ε̃k − µ̃)τz − 2∆̃kτy, where ε̃k is quadratic in k.
From this continuum model the tight-binding model of the Kitaev chain is regained
by compactification (see Section 2.3.1). The first experiment realizing the nanowire
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2.4 Majorana fermion signatures

model [5] is shown in Fig. 2.6. In this experiment a zero-bias peak was observed in a
tunneling conductance measurement as shown in Fig. 2.7.

There are other proposals not relying on semiconductors. In particular in our work
we considered magnetic adatoms placed on a superconducting substrate [68]. The
external magnetic field is replaced by intrinsic magnetism of the adatoms. We will
discuss this model in detail in Chapter 3. Furthermore there are similar models relying
on nanomagnets [69], special rare-earth superconductors which combine magnetism
with superconductivity [70] and systems relying on magnetic random impurities [71].

2.4 Majorana fermion signatures

There are multiple proposed experimental signatures for Majorana states. At first
we discuss the signature in tunneling experiments, the zero bias anomaly. These
experiments try to measure the tunneling trough the Majorana bound states, retrieving
a tunneling spectrum by varying the bias voltage V . In Chapter 3 we focus exclusively
on such transport signatures in the extended case with spin polarized tip and richer
signatures.
The second signature is the 4π-Josephson effect. The Josephson effect leads to a

supercurrent through a weak link between superconductors with a phase difference.
The 4π-Josephson effect is related to the suppression of Shapiro steps.

However the ultimate smoking gun experiment would involve a measurement of
the non-abelian exchange statistics of the Majorana states by performing braiding
operations as discussed in Section 2.2.2. To perform such an experiment, a setup was
proposed, which consists of multiple p-wave chains organized such that T-junctions
are formed. By gating the chains it is possible to braid the bound states [43]. Such
braiding experiments would open the door towards topological quantum computation
as discussed in Section 2.2.

2.4.1 Tunneling conductance: Zero bias anomaly

The most well known experimental signatures of Majorana zero modes is a zero bias
peak in the tunneling spectrum. Chapter 3 focuses on our work on signatures in
different Majorana adatom chain setups. Here we summarize the most important
aspects of the zero bias peak following Ref. [72]. A finite 1D system in x-direction is
assumed. The Majorana operator γi corresponding to a Majorana zero mode can be
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2 Fundamentals of Majorana fermions

Figure 2.7: Experimental results of magnetic field dependent spectroscopy reprinted
from Ref. [5] with permission from AAAS. (a) dI/dV over V at T = 70 mK
at different B-fields from 0 to 490 mT in 10 mT steps. (b) Full color scale
plot of dI/dV over V and B. The zero-bias peak is highlighted by a dashed
oval. The dashed lines indicate the gap edges. At 0.6 T a non-Majorana
state is crossing zero bias, which is indicated by tilted dotted lines.

written in the general form

γi =
∑
σ

∫
dx
[
fσ,i(x)ψσ(x) + f∗σ,i(x)ψ†σ(x)

]
. (2.28)

The spectral weight of the coefficient function fσ,i(x) is localized at the ends of the
chain. In experiment the region of high spectral weight is approached with a tunneling
tip, such that a tunneling current depending on a bias voltage can be measured. The
tunneling is modeled with a Hamiltonian

HT =
∑
kσ

∫
dx
[
t∗k(x)c†kσψσ(x) + H.c.

]
, (2.29)

which couples the electrons of the lead electrons ckσ of the tip to the superconducting
electrons ψσ(x). The current flowing through the tip is then given by the current
operator

I = −eṄ = −e d
dt
∑
kσ

c†kσckσ . (2.30)

For zero-temperature the differential conductance is given by

dI
dV = 2e2

h

4Γ2

(eV )2 + 4Γ2 (2.31)
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with an approximately energy-independent linewidth Γ. For V = 0 this Lorentzian
curve shows a quantized peak of 2e2/h. In the nanowire experiment a zero-bias peak
was observed as shown in Fig. 2.7 [5]. In recent experiments even the quantization of
the tunneling conductance was reported [7].

2.4.2 4π-Josephson effect and Shapiro steps

The 4π-Josephson effect should be measurable in topological Josephson junctions
between topological superconductors [73]. There are Majorana bound states located
at each side of the Josephson junction. The tunnel coupling through the junction
hybridizes the Majorana bound states states, forming Andreev bound states with finite
energy ε(δφ) depending on the phase difference δφ. This finite energy is 4π periodic in
the phase difference δφ, i.e., ε(δφ) ∝ cos(δφ/2). This leads to a current phase relation
I(δφ) ∝ sin(δφ/2).

Furthermore this 4π periodicity appears in the coupling M of the two bound states
on both sides of the junction. This coupling enters the dI/dV function, which allows
the direct observation of the periodicity if the phase difference δφ over the junction is
changed between tunneling conductance measurements. Controlling the phase difference
is achieved by applying magnetic flux in a setup with SQUID-like geometry.

Another signature of the Andreev bound states due to Majorana modes are missing
odd Shapiro steps. Shapiro steps are observed if an AC voltage VAC sin(ωt) and a DC
voltage VDC are applied to the junction. The Josephson current

I = IJ sin
[
φ0 + 2eVDCt

~
− 2eVAC cos(ωt)

~ω

]
(2.32)

shows Shapiro steps in the dI/dVDC measurements for 2eVDC/~ = 2nω. However the
odd Shapiro steps are missing, which might act as a signature of Majorana bound
states [73].

55





3 Chapter 3

Majorana bound states in magnetic
adatom chains

This chapter is based on our publications Ref. [2] and Ref. [3]. We present our work
on one of the most prominent theoretical proposals for the realization of Majorana
bound states which is currently also under experimental investigation [6]. We consider
hybrid superconducting devices consisting of a superconducting substrate with Rashba
spin-orbit coupling and magnetic adatoms placed on top of it. The adatoms form a
chain with magnetic ordering and lead to in-gap Yu-Shiba-Rusinov (YSR) states in the
superconductor.

If the system is tuned to the topological regime, which depends on the material
parameters, one or more Majorana bound states are expected to appear at the ends of
the chain as illustrated in Fig. 3.1. In tunneling conductance measurements, the tip of
a scanning tunneling microscope (STM) couples to the Majorana states leading to the
appearance of a zero bias conductance peak in the tunneling spectrum.

In the next section we review the current experimental situation of such adatom
setups. Then we introduce the theoretical model describing adatom chains. We discuss
the possible classical magnetic ground states of the adatom chains. After that we
focus on the form of the Majorana bound states which can appear in a chain with
ferromagnetic ordering. Interestingly the Majorana wavefunctions have a distinctive
spinful character, which can be probed. For that purpose, we introduce possible tunnel
couplings between Majorana states and the electrons of a spin-polarized superconducting
tip. Furthermore we discuss couplings of multiple Majorana states located in a single
adatom chain and between states located in multiple chains separated by Josephson
junctions.
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3 Majorana bound states in magnetic adatom chains

Using the couplings we derive the specific signatures which are expected in tunneling
experiments. For an isolated YSR chain with one Majorana bound state we show
that the tunneling conductance depends on the polarization direction of the tip, even
such that the tunneling conductance vanishes completely in certain directions. In the
case with multiple bound states we also show a strong dependence on the polarization
direction. This behavior could provide an explanation for the value of the conductance
measured in first tunneling experiments, which is lower than the quantized conductance
unit 2e/h2.

3.1 Status of magnetic adatom chain experiments

There have been multiple experiments recently on hybrid superconducting devices with
the goal of detecting Majorana bound states [5–7, 74]. A detection would open the
door for further experiments analyzing the exotic non-abelian statistics with possible
application in topological quantum computation.

The first experiments have been performed in semiconducting nanowires with spin-
orbit coupling [5] which was predicted before [66, 67]. In these systems Majorana
bound states are expected to appear at the ends of the nanowire, leading to a zero
bias peak in the tunneling conductance [72, 75]. In particular the zero bias peak is
quantized with height 2e2/h. In recent experiments this quantization was reported [7].
However the appearance of zero bias peaks is not unique to Majorana bound states
[76, 77].

The debate on the Majorana signatures motivated new ideas which do not involve
semiconductors. Instead conventional superconductors are used in the presence of a
magnetic texture. It was shown that a magnetic chain with randomly ordered spins on
top of a superconductor can harbor Majorana bound states [71]. Not even spin-orbit
coupling and other external fields are necessary if a helical magnetic texture is present
[34, 70, 78, 79].

It was realized that in magnetic chains spin-polarized tunneling microscopy can allow
spatial visualization and thus provide a better method for detecting Majorana bound
states and their properties [6]. The advantage of detecting spin-polarized Majorana
bound states has motivated further proposals involving helical magnetism [61, 68]. If
spin-orbit coupling is present, a ferromagnetic [2, 80–86] or an antiferromagnetic [2, 82]
chain suffices to achieve a topological superconductor. Such a situation setup appears
to have been recently realized experimentally [6], as shown in Fig. 3.2. However more
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Figure 3.1: Ferromagnetic chain of adatoms on top of a superconducting substrate.
The Majorana bound states γa,b are probed using a spin-polarized STM tip
with bias voltage V and polarization P .

Figure 3.2: Spectroscopic mapping of atomic chains and ZBPs reprinted from Ref. [6]
with permission by AAAS. (A) STM spectra measured at locations indicated
in (B) and (C). The spectra are offset by 100 nS. The red spectrum shows
the ZBP at one end of the chain. The gray trace was measured on Pb
substrate and corresponds to the BCS gap. (B, C) Zoom-in topography
of the upper (B) and lower end (C) of the chain and locations for spectra
marked (1-7). (D, E) Spectra measured at marked locations. (F) Spatial
and energy-resolved conductance maps of another Fe atomic chain close to
its end with similar features as in (A).
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experiments at lower temperature and with better resolution are required to confirm
the results.
In this work we explore experimental fingerprints of Majorana bound states, some

of which can be directly tested in the existing devices [6]. Crucial element is the
magnetic spin-polarization of the tip. Previous studies focused on a non-magnetic
tip in the normal [83, 84] or superconducting phase [83]. For nanowire based devices,
spin-selective Andreev processes due to Majorana bound states have been previously
studied [87].

3.2 Theoretical description of Yu-Shiba-Rusinov chains

In this section we discuss the derivation of the theoretical model for Yu-Shiba-Rusinov
(YSR) adatom chains as in Ref. [2]. For simplicity the magnetic ordering of the adatom
spins is first derived considering a metallic substrate with Rashba spin orbit coupling.
The Hamiltonian of the surface electrons is given by

Hmetal =
∑
k

ψ†k

[
ξk + α(k × ẑ) · σ

]
ψk (3.1)

with the Pauli matrices σ and the spinor ψ† = (ψ†k↑, ψ
†
k↓). Here ξk is the energy

dispersion of free electrons and α denotes the spin-orbit coupling strength. The
adatoms are modeled as classical spins Sj with |Sj | = S located at positions Rj = jax̂.
The spins are coupled via an exchange interaction mediated by the substrate electrons

HJ = J
N∑
j=1

∑
s,s′

∫ dk dk′

(2π)2 e
−ı(k−k′)·Rjψ†ks(Sj · σ)ss′ψk′s′ . (3.2)

For small J and unmodified substrate electron spectrum one can derive the Ruderman-
Kittel-Kasuya-Yosida (RKKY) superexchange interaction acting between the spins

HRKKY = −m
(
JkF
π

)2∑
ij

sin(2kF |Ri −Rj |)
(2kF |Ri −Rj |)2 Si · Sj(θij) (3.3)

with Sj rotated by tilting angles θij [2]. Furthermore we consider an additional
symmetry breaking term due to the crystal field

HCF = −D2
∑
j

(Szj )2 (3.4)
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Figure 3.3: Phase diagrams for the classical magnetic ground state [2]. (a) The parame-
ter plane is defined by the adatom spacing a, and the rescaled strength D of
the crystal field anisotropy. The plots were calculated for two values of the
Rashba SOC strength α. Large α coupling favors the spiral configuration,
whereas increasing the Ising anisotropy strength D promotes the FM and
AFM phases. (b) Parameter plane defined by the rescaled SOC strength α,
and the rescaled Ising anisotropy strength D. The plots were calculated for
two values of the adatom spacing a. The FM or AFM phases stabilize for
increasing anisotropy. Tuning the SOC strength allows switching between
the FM and AFM phases.

with Ising anisotropy strength D. We classically minimize the Hamiltonian to determine
the classical ground state and the orientation of the adatom spins. It is possible that
the chains exhibit either a ferromagnetic, antiferromagnetic or spiral magnetic order.
The stability of the ground state in the presence of thermal and quantum fluctuations
was investigated in Ref. [2]. It was found that ferromagnetic and antiferromagnetic are
stable for large regions of the parameter space as shown in Fig. 3.3.

Extending the model of adatoms on a metallic substrate to a superconducting model
with bulk superconducting gap ∆ yields the Hamiltonian

HSC = 1
2
∑
k

Ψ†k [ξkτz + ατz(k × ẑ) · σ̃ −∆τyσy] Ψk , (3.5)

with the Pauli matrices σ and τ defined in spin and particle-hole space respectively.
The extended spin Pauli matrices are defined as σ̃ = (τzσx, σy, τzσz). The Hamiltonian
acts on spinors Ψ†k = (ψ†k↑, ψ

†
k↓, ψ−k↑, ψ−k↓), where ψ†k,σ is the creation operator

for electrons of momentum k with spin σ. The Cooper pair breaking effect of the
magnetic adatoms on the superconducting substrate leads to YSR states, with low
energy ε � ∆. The states are localized at the positions of the magnetic adatoms.
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The RKKY interaction acquires an additional contribution due to YSR states. It was
discussed that this contribution can dominate, such that an antiferromagnetic ordering
is favored [88]. However in the case considered in our work with short adatom distances
of ∼ 1 nm and superconducting coherence length of 80 nm the YSR contribution is
negligible [2]. Therefore it is unnecessary to consider the YSR states to determine the
magnetic order of the adatom chains.

We assume that the magnetic ordering is already fixed by the effective RKKY
interaction of the adatom spins Sj , leading to an effective Hamiltonian of the form

HJ = 1
2

N∑
j=1

∫ dk dk′

(2π)2 e
−ı(k−k′)·Rjψ†kMjτzσz ψk′ , (3.6)

with Mj = JS(±1)j where +1 (−1) corresponds to ferromagnetic (antiferromagnetic)
ordering.

As shown in Ref. [2], the Bogoliubov-de Gennes (BdG) equation of the system can
be reduced to a Schrödinger equation for the YSR midgap states

∑
j Ĥijφj = εφi with

wavefunction φ†i = (u∗i,↑ , u∗i,↓ , vi,↑ , vi,↓) and the Hamiltonian

Ĥij = ∆
πνFM2

[ (
πνFM

2τyσy −Mτzσz
)
δij

+M2
(
Gsijτz −Gaijτzσy + F sijτyσy − F aijτy

) ]
, (3.7)

at sites i and j. The coefficients are given by

Gs(r)
πνF

= cos(kFαr/vF ) sin
(
kF |r| − π

4
)
e
−|r|ξ0

√
2

πkF |r| , (3.8)

F s(r)
πνF

= cos(kFαr/vF ) cos
(
kF |r| − π

4
)
e
−|r|ξ0

√
2

πkF |r| , (3.9)

Ga(r)
ıπνF

= sin(kFαr/vF ) sin
(
kF |r| − π

4
)
e
−|r|ξ0

√
2

πkF |r| , (3.10)

F a(r)
ıπνF

= sin(kFαr/vF ) cos
(
kF |r| − π

4
)
e
−|r|ξ0

√
2

πkF |r| , (3.11)

with the superconducting coherence length ξ0, Fermi wavevector kF , Fermi velocity vF
and r = (i− j)a with adatom spacing a. The super scripts of the functions denote if
the function is symmetric (s) or antisymmetric (a). In the following we use kF in units
of π/a, α in units of vF , M in units of 1/(πνF ) and ξ0 in units of a.
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We transfer the given Hamiltonian from real space to k-space and obtain the BdG
Hamiltonian

Ĥk = tkτz − vkτzσy + (∆ +Dk)τyσy − dkτy − Bτzσz , (3.12)

where we introduced the coefficients B = ∆/(πνFJS) and

tk =
∞∑
δ=1

tδ cos(δka) with tδ = 2∆
πνF

Gsδ , (3.13)

vk =
∞∑
δ=1

vδ sin(δka) with vδ = 2∆
ıπνF

Gaδ , (3.14)

Dk =
∞∑
δ=1
Dδ cos(δka) with Dδ = 2∆

πνF
F sδ , (3.15)

dk =
∞∑
δ=1

dδ sin(δka) with dδ = 2∆
ıπνF

F aδ . (3.16)

The BdG Hamiltonian lives in class BDI [89] since it has time-reversal symmetry Θ = K,
chiral symmetry Π = τx and charge-conjugation symmetry Ξ = τxK. Class BDI in
one dimension supports a Z invariant and therefore a Z number of Majorana bound
states per end of the chain. Chiral symmetry Π̂ = τx allows to block off-diagonalize
the Hamiltonian [89, 90] via a rotation about the τy-axis

Ĥ′k =
(

0 Ak
A†k 0

)
with Ak = tk − ıdk − Bσz − [vk − ı(∆ +Dk)]σy . (3.17)

The determinant z(k) = detAk is a complex number parametrized by k ∈ [−π/a, π/a]
and describes a curve in the complex plane around the origin. The number of times
this curve encircles the origin is given by the winding number N as described in
Section 1.3.3. The winding number N is an integer value and can take the values zero,
one or two in our case. Respectively the system supports zero, one or two Majorana
bound states per end depending on the parameters of the system as shown in the
topological phase diagram Fig. 3.4. The detailed diagram has been extracted in Ref. [2]
and for similar systems in Ref. [81, 84]. In two-dimensional systems multiple Majorana
modes have also been found [91].

The multiple Majorana solutions are not particularly stable since external perturba-
tions, violating chiral symmetry Π or time-reversal symmetry Θ, will move the system
to class D which only allows a Z2 invariant and a single Majorana bound state per
end of the chain. A small perturbation m will therefore split the two Majorana bound
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3 Majorana bound states in magnetic adatom chains

Figure 3.4: Z topological invariant (winding number) for varying adatom spacing a and
(a) magnetic exchange energy JS (α = 0.01 vF ) or (b) normalized SOC
strength α (πνFJS = 0.85) [2]. The topological phases harbor one or two
MFs per chain end. In (a) tuning the magnetic exchange energy allows to
switch between one and two MF phases. Close to the phase boundary the
switching could be achieved by a weak perpendicular Zeeman field. In (b)
for an infinitesimal small SOC strength both one and two MF phases are
accessible. For the single MF phase where α does not enter the topological
criterion this is expected, but remarkably, the same happens in the two
MF situation. Electrical tuning of α can be used to achieve topological
quantum phase transitions.

states to finite energy bound states with energy proportional to m. In contrast, the
phase with one Majorana bound state per end is not affected by weak perturbations.
The small perturbation m which breaks chiral symmetry could originate from a Zeeman
field in y direction. Magnetic fields in x and z direction will not violate chiral symmetry.
Such a chiral symmetry violating By field splits the two Majorana bound states at
the end independent on if it is applied globally or as a local perturbation, e.g., due
to the polarization of a spin polarized tip. In the case of two Majorana bound states,
it should in principle be possible to observe a double unit of conductance 4e2/h in a
transport experiment, which reduces to a single unit of conductance 2e2/h as soon as
chiral symmetry is violated. Such interesting behavior is the main motivation for the
following transport calculations.

3.3 Majorana bound states and Majorana tunnel couplings

In this section we look into the structure of the Majorana solutions and their possible
couplings at lowest order. We consider that Majorana wavefunctions, which are
harbored in a single chain, can overlap and couple to each other. Then we consider
Majorana bound states in different chains separated by a Josephson junction which
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3.3 Majorana bound states and Majorana tunnel couplings

couple through tunneling. Finally we focus on the Hamiltonian description of a spin-
polarized tip which can couple to Majorana bound states and can be used to conduct
tunneling conductance measurements. For each case, specific Majorana signatures will
appear in the tunneling conductance spectrum.

3.3.1 Majorana wavefunctions and coupling between Majorana states

We solve the Schrödinger equation of a finite chain and retrieve the Majorana wave-
functions which have the form Φ†i,n =

(
u∗i,↑,n , u

∗
i,↓,n , ui,↑,n , ui,↓,n

)
, where i is the site

and n the index of the solution. The wavefunction satisfies the normalization condition∑
i,σ |ui,σ,n|2 = 1/2. This condition implies that the Majorana operators fulfill the usual

Majorana anticommutation relation {γn, γm} = δn,m. Since we are interested in the
physics of the Majorana states at low energy, we can focus only on the sector of these
solutions and neglect BdG quasiparticles as long as their energy is higher than the bulk
superconducting gap. This means we are only considering the physics of the in-gap
stages. Therefore we can approximate the electronic YSR states by their projection on
the Majorana degrees of freedom and write them in the form ψi,σ ≈

∑
n ui,σ,nγn.

Ideally the Majorana states remain unpaired [8] and located strictly at the ends
of the chains and fixed at zero energy. This happens for infinitely long chains, for
shorter chains coupling remains, which is exponentially suppressed with the length of
the chain. The coupling between the distant Majorana states is given by the overlap of
the Majorana wavefunctions and yields quasiparticles with finite energy splitting δε.

If there are multiple Majorana states per end in a chain, these states remain uncoupled
in the presence of chiral symmetry. However the states couple if the symmetry is broken
weakly by an additional term of strength m. Furthermore there is the possibility to
couple Majorana states of different chains by tunneling through a junction between
the chains.

The general Hamiltonian describing the coupled Majorana fermions is given by

HMF = ı

2
∑
n,m

Mnmγnγm , (3.18)

which is a sufficient description of the low energy physics as long as the couplings
stay well below the superconducting bulk gap. Of the possible terms we note that the
weakly chiral symmetry breaking term m is introduced on a phenomenological level
and could correspond to appropriate external fields in an experimental setup. For the
tunnel coupling between the chains we consider a particular model.
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3 Majorana bound states in magnetic adatom chains

3.3.2 Hamiltonian for the tunnel coupling between the chains

For the tunneling between the chains we consider the electronic degrees of freedom of
the superconductors. The assumption is that the chains are located on superconductors
which are separated by an insulating thin film such that the result is a Josephson
junction with a superconducting phase difference δϕ. The phase difference can be
imposed by inducing supercurrents through the junction or conceptually by gluing
together the left and right sides of the superconducting substrate such that a certain
flux can be enclosed by the loop.

We assume that the electrons of the superconductors are coupled via a Hamiltonian
of the general form

HT =
∑
i,j

[
ψ†i,σTi,je

ı(ϕi−ϕj)/2ψj,σ + H.c.
]
. (3.19)

For simplicity we consider an exponentially decaying profile for the tunneling coefficients,
i.e.,

Ti,j = t
1− sign(ij)

2 exp
[
−|ai− bj| − (a+ b)

l

]
. (3.20)

The specific form is chosen such that one of the chains is located on positive sites
i, j > 0 and the other on negative sites. The first term [1 − sign(ij)]/2 ensures that
tunneling happens only between the chains and not within one chain. The decay is
controlled by the characteristic decay length l and a and b are the adatom spacings of
the left and right chain. Furthermore the phases per site are given by ϕi = sign(i)δϕ/2.
Finally the coupling of the Majorana bound states between the chains takes the form

Mnm = 4 Im
∑
i,j,σ

u∗i,σ,nTi,je
ı(ϕi−ϕj)/2uj,σ,m . (3.21)

In the next section we consider the Hamiltonian of an spin-polarized STM tip and
subsequently the coupling of the Majorana bound states to the tip.

3.3.3 Hamiltonian for spin-polarized STM tip

We first write the model for a spin-polarized STM tip. We assume that the electrons
of the tip behave as electrons under the influence of a spin-splitting field P . Since the
goal is to couple the tip to the adatom chain, we index the tip with the site i, above
which the tip is located. By keeping the index i we allow to address the case of a spin
polarized tunneling microscope with multiple tips. In the most general case P should
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3.3 Majorana bound states and Majorana tunnel couplings

also be indexed by i. The electrons of the tip are created by the operator c†k,α,i. The
tip electrons carry momentum k and spin α. Additional to the splitting field the tip
feels a bias voltage Vi. This bias voltage drives the system out of equilibrium and leads
to a tunneling current. In previous works non-magnetic tips in the normal [83, 84] and
superconducting phase [83] were considered.

The Hamiltonian for the tip electrons has the form

HTip,i =
∑
k,α,β

[(εk − eVi)δαβ − P · σαβ] c†k,α,ick,β,i . (3.22)

The spin polarization can be parametrized by polar coordinates

P = P (cosϑ sin η, sinϑ sin η, cos η)ᵀ . (3.23)

In the presence of a spin-polarization, the density of states ρσ(E) of the spin up and
down electrons at an energy E is modified. The full density of states is given by the
sum ρ(E) = ρ↑(E) + ρ↓(E).

The difference is proportional to the polarization P ∝ ρ↑(E)− ρ↓(E). Furthermore
we introduce a normalized density of states per spin νσ = ρσ(E)/ρ(E) and a normalized
polarization degree Ps = ν↑ − ν↓ ∈ [−1,+1]. The extreme values of Ps occur for fully
spin-polarized tips. The polarization degree depends strongly on the material of the
tip. It is possible to achieve full polarization by using a half-metal. For such a material
one of the spin-bands does not cross the Fermi level and as such does not contribute to
the polarization [92].

To simplify the further analysis we perform a rotation and diagonalize the Hamiltonian
in spin-space. The term P · σ can be diagonalized as follows

R̂ P · σR̂† = Pσz with R̂ = exp(ıησy/2) exp(ıϑσz/2) . (3.24)

Plugging in the rotated polarization yields the Hamiltonian

HTip,i =
∑
k,σ=±

(εk,σ − eVi)c̃†k,σ,ic̃k,σ,i , (3.25)

where σ = ± labels the two eigenstates of σz and εk,σ = εk − σP . In the next section
we discuss how the tip electrons couple to the Majorana states if we assume a certain
tunneling from the tip electrons to the electronic degrees of freedom of the substrate.
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3 Majorana bound states in magnetic adatom chains

3.3.4 Coupling between Majorana bound states and the tip

The spin polarized tip couples to the electronic degrees of freedom of the superconductor
at site i. We write a phenomenological tunneling Hamiltonian of the form

HTip-MF,i =
∑
k,σ

Tk,ic
†
k,σ,iψi,σ + H.c. . (3.26)

The tunneling coefficient Tk,i is momentum dependent. However we assume that the
tunneling does not depend on spin, such that spin is preserved. By expressing the YSR
state operators ψi,σ ≈

∑
n ui,σ,nγn approximately in terms of the Majorana operators

we obtain the desired form which directly describes the coupling between tip electrons
and Majorana states. After diagonalization in spin space the Hamiltonian takes the
form

HTip-MF,i =
∑
k,σ,n

(
Vk,σ,i,nc̃

†
k,σ,i − V

∗
k,σ,i,nc̃k,σ,i

)
γn . (3.27)

The matrix elements which describe the coupling between the tip electrons and the
Majorana states are given by

Vk,σ,i,n =
∑
σ′

Tk,iRσ,σ′ui,σ′,n . (3.28)

Using the tunneling Hamiltonian we can proceed to calculate the tunneling conductance
dIi/dVi through the Majorana states. We are particularly interested in the tunneling
conductance at Vi = 0 and show the occurrence of a zero bias peak. Furthermore the
goal is to study how this zero bias peak changes for different scenarios, e.g., overlapping
Majorana states in a short chain or multiple coupled Majorana states in multiple chains.

3.4 Tunneling conductance signatures of Majorana spin
character

In this section we discuss signatures of the Majorana bound states in tunneling
conductance measurements. At first we review the method to compute the tunneling
conductance within the Keldysh formalism and proceed with the signatures in different
setups. In particular we discuss the consequences of using a spin polarized tip in the
scanning tunneling microscope. The polarization allows to unveil additional features of
the Majorana bound states.

68



3.4 Tunneling conductance signatures of Majorana spin character

3.4.1 Calculation of the tunneling conductance

In this section we proceed with the calculation of the differential tunneling conductance
dIi/dVi. At first we derive the Heisenberg operator for the current through the tip
at site i. The current is given by the time derivative of the electron number operator
times the electron charge e

Îi(t) = −eṄTip(t) = −e
∑
k,σ

d
dt
(
c̃†k,σ,i(t)c̃k,σ,i(t)

)
. (3.29)

Via the Heisenberg equation and by neglecting fluctuations in the electron number of
the tip the current operator in the Heisenberg picture takes the form

Îi(t) = −eı
~
∑
k,σ

[
HTip-MF,i, c̃

†
k,σ,ic̃k,σ,i

]
(t) . (3.30)

Transforming from the Heisenberg to the Schrödinger picture yields

Îi = eı

~
∑
k,σ,n

(
Vk,σ,i,nc̃

†
k,σ,i + V∗k,σ,i,nc̃k,σ,i

)
γn . (3.31)

The current is given by the expectation value of the current operator Ii(t) ≡ 〈Îi(t)〉,
which takes the form

Ii(t) = 2e
~
∑
k,σ,n

Im
[
V∗k,σ,i,n 〈γn(t)c̃k,σ,i(t)〉

]
= −2e

~
∑
k,σ,n

Re
[
V∗k,σ,i,nG<k,σ,i,n(t, t)

]
. (3.32)

Here we introduced the lesser mixed Green’s function G<k,σ,i,n(t, t′) ≡ ı 〈γn(t′)c̃k,σ,i(t)〉,
which involves both the Majorana and the electronic operator.

To calculate this expectation value we employ the Keldysh formalism following the
method of Ref. [72]. At first we introduce the retarded and advanced Majorana Green’s
functions

GRnm(t, t′) ≡ −ıΘ(t− t′)
〈
γn(t)γm(t′)

〉
, (3.33)

GAnm(t, t′) ≡ ıΘ(t′ − t)
〈
γn(t)γm(t′)

〉
. (3.34)

We obtain the result

Ii = e

h

∫ +∞

−∞
dω Ti(ω) [nF (ω − eVi)− nF (−ω + eVi)] , (3.35)
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3 Majorana bound states in magnetic adatom chains

with the Fermi-Dirac distribution nF (ω) at energy ω and a transmission coefficient
Ti(ω), as in the Landauer-Büttiker formalism. The transmission coefficient

Ti(ω) ≡ tr
[
ĜR(ω)Γ̂i∗(−ω)ĜA(ω)Γ̂i(ω)

]
(3.36)

involves the Green’s functions and linewidth matrices Γ̂i(ω). However compared to the
usual Landauer formula for ballistic transport, in this equation the second Fermi-Dirac
distribution corresponds to holes. This modification of the formula is a consequence of
the transport through Majorana states which are formed by an equal superposition of
electrons and holes

The matrix elements of the linewidth matrices are given by

Γinm(ω) = 2π
∑
k,σ

V∗k,σ,i,nVk,σ,i,mδ(ω − εk,σ) . (3.37)

We adopt the wideband approximation, where the linewidth matrix elements are energy
independent, i.e., Γinm(ω) ≡ Γinm.
Furthermore we assume that the tunneling coefficient Tk,i = T is k independent

and set the DOS of the tip to approximately ρσ(EF ) which corresponds to the most
relevant contribution. Using these approximations we obtain

Γinm = Γu†i,n
1+ PsP̂ · σ

2 ui,m , (3.38)

with normalization constant Γ = 2πρ(EF )|T|2, u†i,n = (u∗i,↑,n, u∗i,↓,n) and the polariza-
tion direction P̂ = P /P .
To obtain the transmission coefficient we calculate the retarded and advanced

Majorana matrix Green’s functions given by

ĜR(ω) =
(
ω1− ıM̂+ ıRe Γ̂i

)−1
, (3.39)

and ĜA(ω) = [ĜR(ω)]†. Here M̂ couples the different Majorana states. Furthermore
we assumed that the self-energies of the Majorana Green’s functions only contain the
linewidth. In our further analysis of different setups we focus on the zero temperature
tunneling conductance given by

dIi
dVi

= 2e2

h
Ti(eV ) . (3.40)

We perform numerical calculations and usually set Γ = 1 for convenience.
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3.4 Tunneling conductance signatures of Majorana spin character

Figure 3.5: Ferromagnetic adatom chain probed by a spin-polarized STM tip, which
couples locally to the electronic density below it. Given a long chain only
the γa Majorana bound state contributes to the tunneling conductance.
For short chains both Majorana bound states contribute.

Figure 3.6: Tunneling conductance for a tip coupled to a single Majorana bound state
at then end of a chain with N = 100 sites. (a) Spatial profile of the
conductance for an unpolarized tip (Ps = 0). (b) Conductance at site i = 1
for a tip polarized in x-direction. The polarization degree Ps modifies the
broadening of the zero bias peak.

Figure 3.7: Tunneling conductance as a function of the polarization angles (ϑ, η) for a
fully polarized tip Ps = ±1. The tip is coupled to a single Majorana bound
state at the i = 1 site in a chain with N = 100 sites. The strong anisotropy
is one of the characteristic signatures of bound states with spin character,
like γa. Parameters: ξ0 = 80, kF = 6.0, α = 0.01 and M = 0.85.
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3 Majorana bound states in magnetic adatom chains

Figure 3.8: Majorana wavefunctions in a chain with N = 100 sites. There is a single
Majorana bound state per end of the chain. The plot shows the local
spectral weight |ui|2 and electronic spin polarization 〈σ〉i at site i. The
spin polarization in y direction is omitted since it vanishes exactly due to
time reversal symmetry Θ = K.

3.4.2 Single adatom chain with a single Majorana state per end

Now we discuss the simplest scenario of an isolated adatom chain with a single Majorana
per end as shown in Fig. 3.5. In this case one finds a single Lorentzian peak in the
conductance curve. Similar to the result in Ref. [72] we obtain

dIi
dV = 2e2

h

(Γiaa)2

(eV )2 + (Γiaa)2 . (3.41)

In the equation and in the rest of this chapter we set Vi ≡ V for convenience. The
peak appears at V = 0, hence called zero bias peak. We plot the curve in Fig. 3.6. The
broadening of the peak is given by

Γiaa = Γu†i,a
1+ PsP̂ · σ

2 ui,a . (3.42)

The difference in our analysis is the inclusion of the polarization of the tip, which
modifies the Majorana signature and opens new possibilities to pinpoint the presence
of a Majorana bound state.

From the above equation one observes that if P̂ · σui,a = −ui,a the linewidth term
reduces to Γiaa = ν↓Γu†i,aui,a. In this case the tunneling conductance will vanish for a
fully spin polarized tip with ν↓ = 0. For these special conditions, the spin-polarization
of the tip electrons is antiparallel to the polarization of the electrons at the end of the
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3.4 Tunneling conductance signatures of Majorana spin character

Figure 3.9: (a) Majorana wavefunctions in a short chain with N = 15 sites. The plots
show the local spectral weight and the electronic spin-polarization of the
wavefunctions. Because of the short chain the two Majorana bound states
hybridize and form finite energy quasiparticle excitations. However the
spin signature coincides mostly with the signatures of bound states in a
longer chain. (b) Non-zero matrix elements of the linewidth matrix Γ̂i for
a short chain with N = 15. We consider a full polarized tip Ps = 1 in
different directions. Parameters for both plots: ξ0 = 80, kF = 6.0, α = 0.01
and M = 0.85.

adatom chain 〈σ〉i = u†i,aσui,a, which is induced by the Majorana bound state. Since
the tunneling is spin conserving the coupling of tip and Majorana bound states must
necessarily drop to zero. We plot the polarization dependence in Fig. 3.7.

In Fig. 3.8 we plot the spin-polarization of the Majorana bound states. One observes
that the polarization is confined to the xz-plane, which is a result of time reversal
symmetry Θ = K. This symmetry enforces that the spin-part of the wavefunction
is real. We note that a similar result for the spin polarization profile was previously
obtained for nanowire based topological superconductors in Ref. [93]. The characteristic
anisotropic dependence of the tunneling conductance on the polarization angles ϑ and
η was pointed out before in Ref. [87], which studies spin selective Andreev reflections
due to Majorana fermions. They conclude that Majorana fermions can therefore be
used to create fully spin-polarized currents in paramagnetic leads.

Now we take the possibility into account, that the Majorana bound states living at
the two ends of the chain couple. The coupling is proportional to the overlap of the
wavefunctions which is exponentially suppressed with the length of the chain. Since in
experiments the chains are relatively short this scenario is relevant [6]. The overlap of
the Majorana wave functions will generate a coupling of the form ıδεγaγe, where γa
corresponds to the Majorana below the tip and γe is the Majorana on other side of the
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chain. The coupling will lead to finite energy excitations and will move the Majorana
bound states away from zero energy. We consider a chain with 15 sites and plot the
Majorana wavefunctions in Fig. 3.9( a).

The couplings give rise to the coupling matrices of the form

M̂ =
(

0 δε

−δε 0

)
and Γ̂i =

(
Γiaa Γiae

(Γiae)∗ Γiee

)
. (3.43)

In particular the tip also couples weakly to the Majorana γe on the other side of the
chain. The matrix elements of the Γ̂ are shown in Fig. 3.9(b).

We obtain the tunneling conductance formula

dIi
dV = 2e2

h

{
2
[
det(Re Γ̂i) + δε2

]
det Γ̂i

+ (eV )2
[(

Γiaa
)2

+
(
Γiee
)2

+ 2
(
Re2 Γiae − Im2 Γiae

)]}
×
{[

(eV )2 − δε2 − det(Re Γ̂i)
]2

+ (eV )2
(
Γiaa + Γiee

)2
}−1

. (3.44)

For V = 0 this equation simplifies to

dIi
dV

∣∣∣∣
V=0

= 2 · 2e2

h

ΓiaaΓiee − |Γiae|2

ΓiaaΓiee − Re2 Γiae + δε2
, (3.45)

which is the height of the residual zero bias conductance. We note that the zero bias
tunneling conductance persists even though the tip accesses both Majorana bound
states. However the spectral weight at V = 0 is heavily reduced compared to the
case with only one Majorana involved in the tunneling. The residual spectral weight
disappears for Γiee = Γiae = 0 as can be seen from the equation. This means that the
residual weight at V = 0 is due to the coupling of the tip to the γe Majorana, which is
away from the tip.

More significant than the residual weight at V = 0 are two finite bias peaks appearing
at eV = ±

√
δε2 + det(Re Γ̂i). The peaks are split away from zero by the overlap energy

δε and the correction from the determinant of Γ̂i. The height of these finite bias peaks
is given by

dIi
dV

∣∣∣∣
FBPs

= 2e2

h

(
Γiaa + Γiee

)2 − 4 Im2 Γiae
(Γiaa + Γiee)

2 . (3.46)
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Figure 3.10: Tunneling conductance for a short chain with N = 15 sites. Each end of
the chain hosts one Majorana bound state. (a) Conductance profile at site
i = 1 for spin unpolarized (◦) and fully polarized tip in x, y, z direction.
The zero bias peak splits into two finite bias peaks. For an unpolarized tip
residual spectral weight remains at V = 0. The spin anisotropy due to the
Majorana bound states results in different heights of the finite bias peaks
for polarization in z-direction. However for a polarization in xy-plane or
an unpolarized tip, the conductance remains equal to 2e2/h. We show
the spatial profile in (b-d) for fully polarized tips in x, y, z direction. In
particular note the asymmetry in (b). Parameters: ξ0 = 80, kF = 6.0,
α = 0.01 and M = 0.85.
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Figure 3.11: Single adatom chain with two Majorana bound states per end, which are
protected by chiral symmetry. Only the Majorana bound states below the
tip contribute to the tunneling conductance for sufficiently long chains.
Tip polarization in y direction can locally break chiral symmetry even in
the absence of additional symmetry breaking fields.

We note that the finite peaks assume the ideal height 2e2/h only if Im Γiae = 0. We
plot the resulting conductance curve in Fig. 3.10. From the plot, one can observe that
the height stays in almost all cases equal to the ideal value. The only special case
occurs if the magnetic tip is polarized in z direction, where we find a much smaller
tunneling conductance. In a recent experiment exactly that configuration was used [6],
and our model could possibly explain the highly reduced signal. However a significant
reduction of the peak height is due to broadening because of finite temperature.

In our model a tip polarization in x or y direction will lead to a tunneling conductance
almost equal to the idealized value. Interestingly the zero bias peaks appear for short
chains of N = 15 sites. From this we conclude that spin polarized measurements are a
powerful method to detect and analyze Majorana bound states in adatom chains.

Now we also consider the simpler case where the tip does not couple to the Majorana
γe which is away from the tip. We obtain the result from Ref. [72], i.e.,

dIi
dV = 2e2

h

(eV )2 (Γiaa)2
[(eV )2 − δε2]2 + (eV )2 (Γiaa)

2 . (3.47)

where no residual spectral weight is left at V = 0. Here the zero bias peak splits
completely in two finite peaks which appear at the splitting energies eV = ±δε.

3.4.3 Single adatom chain with two Majorana states per end

Now we proceed with the case of a single chain and two Majorana bound states per
end. The tip can possibly probe both of those Majorana bound states. The scenario
is illustrated in Fig. 3.11. The necessary condition for the presence of two Majorana
states is that chiral symmetry is preserved. Experimentally this situation is difficult to
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Figure 3.12: Spectral weight |ui|2 and spin-polarization of Majorana wavefunctions
in chain with N = 100 sites. The y component of the spin polarization
vanishes. Parameters: N = 100, ξ0 = 80, kF = 6.0, α = 0.01 and
M = 0.85.

achieve and up to now there have not been experiments claiming the detection of two
states. However the phase should be accessible in principle, based on the fact that it
can be engineered starting from the phase with one Majorana bound state per end as
for example in a recent experiment [6]. To achieve the phase with two Majorana bound
states a topological phase transition has to take place which is triggered by varying
the parameters of the setup, in particular the spacing of the adatoms, the strength of
the magnetic field or the strength of the spin orbit coupling as described in Ref. [2].

Now we analyze the tunneling conductance in the presence of two Majorana bound
states. For simplicity we focus on the case where the chain is long such that a restriction
to the Majorana states below the tip is justified. This means that neither the coupling
of the tip and the bound states far away nor the overlap between the bound states
themselves play a role. Thus there are two Majorana operators γa and γd which are
relevant and couple to the tip.

Additionally they can couple to each other by a matrix element m which corresponds
to weakly broken chiral symmetry. Such a chiral symmetry breaking can be induced by
a tip with a polarization component in y direction or an external field. The coupling
matrices for the setup under consideration are given by

M̂ =
(

0 m

−m 0

)
and Γ̂i =

(
Γiaa Γiad

(Γiad)∗ Γidd

)
. (3.48)
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3 Majorana bound states in magnetic adatom chains

Figure 3.13: (a) Conductance profile at site i = 1 and zero bias peak when chiral
symmetry is preserved. At a small crossover voltage the spike-like profile
switches to a broad hump. The curve arises due to the combination of the
two peaks of γa and γd with much different widths. The blue curve is the
full conductance while the orange curve corresponds only to the second
summand in Eq. (3.50). The inset zooms in around V = 0. (b) Spatial
conductance profile for broken chiral symmetry m = 0.1 and unpolarized
tip. Parameters: N = 100, ξ0 = 80, kF = 6.0, α = 0.01 and M = 0.85.

We note that these matrices are identical to Eq. (3.43) for the replacements δε 7→ m and
e 7→ d. Correspondingly the tunneling conductance can be obtained from Eq. (3.44).
For example in the case of V = 0 one obtains

dIi
dV

∣∣∣∣
V=0

= 2 · 2e2

h

ΓiaaΓidd − |Γiad|2

ΓiaaΓidd − Re2 Γiad +m2 . (3.49)

It is important to note that the off-diagonal linewidth elements Γiad cannot be neglected
since the two Majorana bound states, which are protected by chiral symmetry are
located at the same sites of the chain. In the previously discussed case in Section 3.4.2
and in Ref. [72] the off-diagonal elements are not as crucial as here.

As in the case for single Majorana bound states the zero bias peak persists and the
value depends on the strength of the chiral symmetry breaking m and Im Γiad. The
spin-polarization of the Majorana wavefunctions is confined to the xz-plane as shown
in Fig. 3.12. Additionally both wavefunctions are real, which has the consequence that
a tip polarization in y-direction leads to finite values of both m and Im Γiad. On the
other hand for a spin-polarization in the xz-plane or a tip without polarization we find
m = Im Γiad = 0. This corresponds to a zero bias peak with the double quantum 4e2/h.
This means that the Majorana bound states act as if they were unpaired [8, 72].
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3.4 Tunneling conductance signatures of Majorana spin character

The tunneling spectrum in this case with m = Im Γiad = 0 has the form

dIi
dV = 2e2

h

2 det2(Γ̂i) + (eV )2
[(

Γiaa
)2 +

(
Γidd

)2 + 2(Γiad)2
]

[
(eV )2 − det Γ̂i

]2
+ (eV )2 (Γiaa + Γidd

)2 . (3.50)

The first summand leads to the aforementioned double quantum of the zero bias
conductance. This can be seen in Fig. 3.13 which shows a sharp peak at V = 0. The
second term is relevant for eV > min{Γiaa,Γidd}, where the curve switches from the
sharp peak to a broader bell-like curve. This behavior happens even for uncoupled
bound states with Γiad = 0 and Γiaa > Γidd. In particular the equation can be rewritten
as

dIi
dV = 2e2

h

( (
Γiaa

)2
(Γiaa)

2 + (eV )2
+

(
Γidd

)2(
Γidd

)2 + (eV )2
+O

[
(Γiad)2

])
. (3.51)

We observe that the double conductance arises due to the coupling of the tip to
the separate Majorana bound states. Each of the bound states provides a separate
peak. Since Γiaa > Γidd the peak corresponding to γa is much broader than the peak
corresponding to γd.

Interestingly in the situation with two Majorana bound states there is a special case
where the conductance peak looks identical to the case with one Majorana bound state.
Therefore the presence of two bound states in such a case could be misinterpreted in
the experiment. This happens when chiral symmetry is preserved m = 0 and when
the special condition ΓiaaΓidd = (Γiad)2 = Re2 Γiad holds. Then the conduction formula
reduces to

dIi
dV = 2e2

h

(Γiaa + Γidd)2

(eV )2 + (Γiaa + Γidd)2 , (3.52)

which is the same result as for a single Majorana per end, where Γiaa + Γidd plays the
role of an effective broadening.

3.4.4 Two coupled adatom chains, both with one Majorana state per end

Now we consider two chains where the Majorana bound states of the chains couple via
tunneling through a junction. We illustrate the situation in Fig. 3.14. This kind of
scenario is interesting since it allows to probe the 4π-periodic Josephson effect. For
simplicity we assume that the chains are long enough, such that the Majorana bound
states away from the junction do not contribute. Therefore only two Majorana bound
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3 Majorana bound states in magnetic adatom chains

Figure 3.14: Two adatom chains coupled via a Josephson junction with one Majorana
bound state per chain end. Only the Majorana bound states near the
junction contribute for sufficiently long chains. Only γa couples directly
to the tip. The Josephson coupling of the two Majorana bound states γa
and γb is 4π-periodic.

Figure 3.15: (a) Spatial profile of the tunneling conductance for δϕ = 0. There are two
finite bias peaks at eV = ±M(δϕ). (b) The tunneling conductance at site
i = 1 is 2π-periodic over δϕ. For δϕ = π one obtains a zero bias peak.
Parameters: Tunneling constant t = 0.1, decay length l = 10 in units of
a = b = 1.

states are involved in the tunneling processes. The Josephson coupling of the Majorana
bound states due to tunneling through the junction can be written in the form

M = 4 Im
∑
i,j,σ

u∗i,σ,aTi,je
ı(ϕi−ϕj)/2uj,σ,b (3.53)

with tunneling coefficients Ti,j . In particular, the Josephson coupling is 4π-periodic
in the phase difference. The matrices describing the coupling between the Majorana
bound states and between Majorana bound states and tip are given by

M̂ =
(

0 M

−M 0

)
and Γ̂i =

(
Γiaa 0
0 0

)
. (3.54)
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3.4 Tunneling conductance signatures of Majorana spin character

Using these coupling matrices we obtain the tunneling conductance

dIi
dV = 2e2

h

(eV )2 (Γiaa)2
[(eV )2 −M2]2 + (eV )2 (Γiaa)

2 (3.55)

which again results in two finite bias peaks. If a phase difference δϕ = φi − φj between
the superconductors below the chains is imposed, M modifies the location of the peaks.
In particular the tunneling conductance at a fixed location is 2π periodic due to the
4π-periodic coupling ∝ cos(δϕ/2) between the Majorana bound states γa and γb. We
plot our results in Fig. 3.15.

3.4.5 Two coupled adatom chains: One Majorana state below the tip and
two in the other chain

Now we consider the scenario where two chains are in different topological states with
one and two Majorana bound states respectively. The two chains are connected by a
junction and we focus on the bound states near the junction and neglect the Majorana
bound states which live far away in the chains. We assume that the tip is located above
the single Majorana γa and couples only to this Majorana. The setup is illustrated in
Fig. 3.16. Then the coupling matrices of our model are given by

M̂ =


0 Mab Mac

−Mab 0 mbc

−Mac −mbc 0

 and Γ̂i =


Γiaa 0 0
0 0 0
0 0 0

 . (3.56)

Here the Majorana couplings Mab and Mac arise from the interchain tunneling through
the junction as before. In contrast mbc arises due to breaking of chiral symmetry within
the left or even in both chains. We note that violation of chiral symmetry does not
modify the wavefunction of γa and leaves the coupling matrices unchanged. We find
the following equation for the tunneling conductance

dIi
dV = 2e2

h

[
(eV )2 −m2

bc

]2 (Γiaa)2
(eV )2 [(eV )2 −M2]2 + (Γiaa)2 [(eV )2 −m2

bc

]2 , (3.57)

withM =
√
M2
ab +M2

ca +m2
bc. For V = 0 this equation yields a zero bias peak. This

is consistent with the rule derived in Ref. [72], which states that an odd number of
coupled Majorana bound states leads to the emergence of a zero bias peak.
Additionally to the zero bias peak there are two finite bias peaks of conductance

2e2/h at eV = ±M. Now we discuss the case with preserved chiral symmetry, i.e.,
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3 Majorana bound states in magnetic adatom chains

Figure 3.16: Two adatom chains coupled via a Josephson junction, where the two
chains host one and two Majorana bound states per end respectively. The
Majorana bound states far away from the junction are not taken into
account. Only γa couples to the tip. Chiral symmetry breaking leads to a
hybridization of γb and γc.

mbc = 0. In this case the conductance equation simplifies to

dIi
dV = 2e2

h

(eV )2 (Γiaa)2
[(eV )2 −M2]2 + (eV )2(Γiaa)2

, (3.58)

where we introduced an effective coupling M =
√
M2
ab +M2

ac. For preserved chiral
symmetry the system behaves the same as the system where both chains have one
Majorana per end with coupling M . This correspondence can be seen directly by
expressing the coupling as

ıγa(Mabγb +Macγc) = ıMγa

(
Mab

M
γb + Mac

M
γc

)
= ıMγaγ̃bc. (3.59)

The orthogonal linear combination Macγb−Mabγc does not couple to γa [8] and cannot
be seen by the spin polarized tip. Since it could be experimentally feasible to selectively
switch chiral symmetry breaking fields on and off, one can assume that this provides a
valuable experimental knob to pinpoint the presence of Majorana bound states in such
a setup. Combining chiral symmetry breaking with the possibility to modify the phase
difference between the superconductors δϕ yields a rich set of options for experiments.

3.4.6 Two coupled adatom chains: Two Majorana states below the tip
and one in the other chain

Now we consider the opposite situation where the tip is located instead above the end
of the chain where two Majorana bound states live. We depict the setup in Fig. 3.17.
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3.4 Tunneling conductance signatures of Majorana spin character

Figure 3.17: Two adatom chains coupled via a Josephson junction, where the two
chains host one and two Majorana bound states per end respectively. The
Majorana bound states far away from the junction are not taken into
account. Only γa and γd couple to the tip. Chiral symmetry breaking
leads to a hybridization of γa and γd.

Here the coupling matrices take the form

M̂ =


0 mad Mab

−mad 0 Mdb

−Mab −Mdb 0

 and Γ̂i =


Γiaa Γiad 0

(Γiad)∗ Γidd 0
0 0 0

 . (3.60)

As before the matrix elements Mab and Mdb describe the interchain tunneling and mad

is induced by chiral symmetry breaking. Again weakly breaking the chiral symmetry
does not affect the wavefunction of the single Majorana.

The expression for the conductance is quite long in this case and available in
Appendix A.1. From the setup we can directly infer that the zero bias peak will persist
according to the odd number rule [72]. Since all Majorana bound states are coupled by
the tip, this rule applies in the presence or absence of chiral symmetry. However if the
coupling to the single Majorana γb of the left chain vanishes, chiral symmetry matters
and the system reduces to the case of a single chain with two Majorana bound states
at the end as discussed in Section 3.4.3.

3.4.7 Two coupled adatom chains, both with two Majorana states

The final case considers two chains which both host two Majorana bound states per
end. As usual the two chains are coupled via a junction and we assume sufficiently long
chains such that it is possible to neglect the Majorana bound states at the far ends of

83



3 Majorana bound states in magnetic adatom chains

Figure 3.18: Two adatom chains coupled via a Josephson junction, where the two chains
both host two Majorana bound states per end. The Majorana bound
states far away from the junction are not taken into account. Only γa and
γd couple to the tip.

the chains. The setup is shown in Fig. 3.18. The coupling matrices have the form

M̂ =


0 mad Mac Mab

−mad 0 Mdc Mdb

−Mac −Mdc 0 mcb

−Mab −Mdb −mcb 0

 and Γ̂i =


Γiaa Γiad 0 0

(Γiad)∗ Γidd 0 0
0 0 0 0
0 0 0 0

 . (3.61)

Here we omit the long expression for the tunneling conductance and focus instead on
the value at zero bias. We find for V = 0

dIi
dV

∣∣∣∣
V=0

= 2e2

h

2m2
cb det Γ̂i(

det M̂ −madmcb

)2
+m2

cb det(Re Γ̂i)
, (3.62)

where we introduced the tunneling coupling matrix

M̂ =
(
Mac Mab

Mdc Mdb

)
. (3.63)

From the equation we can infer that a zero bias conductance exist. However it does not
take the ideal quantized value of 2e2

h . Since mcb appears in the numerator, the zero bias
conductance vanishes for mcb = 0, which means that chiral symmetry is restored in the
left chain, which does not couple to the tip. In contrast to that, if chiral symmetry is
present in the chain below the tip, i.e., mad = 0 and Py = 0, some modified value of
the zero bias conductance remains. The conductance is still not quantized. The special
case with mad = 0 and additionally det M̂ = 0 however yields a quantized peak with
the doubled quantum 4e2

h . In this case the system acts as if there are two unpaired
Majorana bound states which contribute to the tunneling. Finally, there is also the
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3.5 Summary and conclusion

case where det M̂ = 0, but mad 6= 0, which corresponds to effectively uncoupled chains.
Then the system reduces to the case of a single chain with two Majorana bound states
as discussed in Section 3.4.3.

3.5 Summary and conclusion

This chapter discussed magnetic adatom chains on top of a superconducting substrate,
so called YSR chains, named after the in-gap states in the superconductor due to the
magnetic adatoms. After describing the current experimental status we developed the
theoretical model. In particular the spins of the magnetic adatoms were treated as
classical spins coupled via an exchange interaction mediated by the substrate electrons.
This interaction could be reduced to an RKKY interaction. In the topological treatment
of the chain we assumed a ferromagnetic ordering as supported by a study of the
magnetic phase diagram. Given a ferromagnetic chain we found the possibility for
one or two Majorana bound states per end of the chain. The topological phase with
two Majorana states is protected by the presence of a chiral symmetry. Note that the
Majorana bound states have a spin character, which was a motivation for the next
steps discussed in this chapter.

We focused on the transport signatures of the Majorana bound states, in particular
considering the spin structure by applying a spin polarized tip. For that purpose we
analyzed three types of tunnel Hamiltonians, (i) coupling of Majorana bound states to
a tip, (ii) coupling of two Majorana bound states within one short chain, (ii) coupling
of two Majorana bound states within two chains separated by a Josephson junction.

Within a Keldysh approach we obtained the tunneling signatures of multiple setups,
the simplest one being the single Majorana bound state at the end of a chain coupled to
a tip. In this case the tunneling conductance depends on the polarization direction of
the tip. In particular for a fully spin-polarized tip and specific angles of the polarization
the tunneling conductance vanishes. Similarly, in the case of short chains, where the
Majorana bound states of both ends of the chain contribute, the signal can be very
weak in one direction while staying nearly quantized in other directions.

Furthermore we showed that for a single chain with two chiral symmetry protected
bound states per end, the polarized tip or an additional Zeeman field in y-direction
can break chiral symmetry. This allows to controllably modify the tunneling spectrum.
Then we discussed setups of increasing complexity with two coupled chains. There

the tunneling conductance can be used as a probe of the 4π-Josephson effect. The
emerging finite bias peaks can be moved by modifying the 4π-Josephson coupling.
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3 Majorana bound states in magnetic adatom chains

Furthermore for two chains with different number of bound states per end, tunable
chiral symmetry violation and restoration can be used to switch a zero bias peak on and
off. While current experiments based on self-assembled magnetic chains as in Ref. [6]
do not support junctions yet, Josephson effects could possibly be accessed by either
inducing a supercurrent flow along a chain [68, 94] or by employing a chain in ring
geometry with threaded magnetic flux. These two configurations both lead to coupled
Majorana bound states on the left and right ends, which feel different superconducting
phases.

To conclude, the signatures described in this work rely on Majorana spin polarization
which was extracted from a realistic model for YSR chains. These signatures present
new possibilities for experiments to detect Majorana bound states in the future and
study the spin character of the states.
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4 Chapter 4

Magnetic order on warped
topological insulator surfaces

This chapter is based on our publication Ref. [1]. We focus on magnetic topological
insulator surfaces originating from three-dimensional bulk topological insulators. Topo-
logical insulators have been predicted [25, 95, 96] and discovered [26, 97–102]. They
rely on the presence of topologically protected surface states [13, 14, 22, 23, 103–106].
These electronic surface states are characterized by spin-momentum locking, leading in
the simplest form to a helical Dirac cone energy dispersion.
After describing Z2 topological insulators with Dirac cones we focus on a more

complex variation of such a system. In particular we consider a topological insulator
with warping effects, which are observable in the Fermi surface of the surface electrons.
The modifications arise due to the crystal structure and reflect the point group symmetry
of the material. For Bi-based topological insulators the Fermi surface exhibits a C3v

symmetric warping [107–112]. Some of the consequences of warping on magnetic [107,
113–115] and transport [116–118] have been discussed in the literature before, including
the possibility of a skyrmion lattice [115]. In particular, the warping leads to enhanced
Fermi surface nesting due to parallel flat lines appearing in the Fermi surface and thus
to the possibility of magnetic phases. However the question of the magnetic ground
state has not been resolved before.
We investigate the spin susceptibility and derive a Landau theory to compare the

different magnetic ground states which are possible. The possible ground states include
a magnetic texture involving a single wavevector Q and textures involving three Q
wavevectors including the possibility of a skyrmion lattice. We show that for a nearly
hexagonal Fermi surface a sufficiently strong interaction yields a magnetic texture
formed by a skyrmion lattice. This lattice can be viewed as the superposition of three
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Figure 4.1: (a) Dirac cone energy dispersion of the surface states of a 3D topological
insulator without warping (γ = 0). (b) Warped Dirac cone (γ > 0). The
color shows the direction-resolved density of states. (c) Warped Fermi
surfaces at different chemical potentials. For µ = µhex the Fermi surface
is nearly hexagonal. In this case the three nesting vectors Q1,2,3 connect
the flat sides of the Fermi surface. The white plane in (b) corresponds to
E = µhex.

helical spin density waves such that C3 symmetry is preserved. The skyrmions are
topological objects, which carry non-zero topological charge. This chapter concludes
with a classification of the means to control the magnetic ground state using external
fields or imposed currents.

4.1 Three-dimensional topological insulator

This chapter focuses on the surface states of a 3D topological insulator. The class of
3D topological insulators include time reversal invariant systems with a bulk gap and
are classified by a Z2 topological invariant, reflecting the number of Dirac cones. The
surfaces can either exhibit one cone in the non-trivial phase or zero cones.
The surface Hamiltonian arises from the bulk by projection of the Hamiltonian

expanded around the Γ point. The surface electrons form a Dirac cone or relativistic
(linear) spectrum with constant density of states (DOS) as shown in Fig. 4.1(a). At
lowest order the surface Hamiltonian with Rashba spin orbit coupling with Dirac
velocity v is given by

Ĥ(k) = v (kxσy − kyσx) , (4.1)

with the Pauli matrices σ acting in an effective spin space. We work in natural units
by setting ~ = 1 in this chapter. The structure of the spin-orbit coupling has the
consequence of locking the spin to the momentum, which means if the spin expectation
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Figure 4.2: (a,b) Crystal structure of Bi2Te3 reprinted from Ref. [96] with permission
by the Nature Publishing Group. (a) Side view. The quintuple layer repeats
itself along the z-axis. The [111] plane is perpendicular to 1 ·t1 +1 ·t2 +1 ·t3
where t1,2,3 are the basis vectors. (b) Top view at the [111] surface. The
structure shows a threefold rotation symmetry. (c) Point group symmetry
C3v. x-axis goes from Γ to K point. Mirror planes and rotation axes of the
point group C3v

value of the eigenstates are computed, a spin direction pointing tangentially around
the cone is obtained. The Hamiltonian has a U(1) rotational symmetry around the
z-axis. Furthermore it is invariant under mirror operations.

4.2 Surface states and warping effects

Now we consider more realistic systems with additional terms modifying the dispersion.
For example one can include second order kinetic terms ε0(k) and terms which break
the rotational symmetry to a lower discrete symmetry according to the point group
of the crystal. In this section we focus on a system where the surface states are
hexagonally warped due to a threefold C3v symmetry of the material. Of particular
interest are Bi-based topological insulators, e.g., Bi2Te3, as shown in Fig. 4.2. At first
we determine the eigenvalues and eigenstates. Later we consider the consequences of
the warping for different values of the chemical potential, namely possible nesting and
magnetization effects.
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4 Magnetic order on warped topological insulator surfaces

4.2.1 Hamiltonian of a warped topological insulator

The Hamiltonian describing the warped topological insulators follow from a Dirac
Hamiltonian with an additional term which breaks rotational symmetry [107]. The 2D
surface lies in the xy-plane and the Hamiltonian has the form

Ĥ0(k) = v (kxσy − kyσx) + γkx(k2
x − 3k2

y)σz + ε0(k) . (4.2)

As before the Pauli matrices σ act in an effective spin space. More precisely the space is
spanned by the eigenstates |↑〉 , |↓〉 of the z-component of the total angular momentum
operators. In the case of the materials described here, the total angular momentum
operator almost coincides with the spin operator S [119, 120].

Now we take a closer look at the second term of the Hamiltonian

γkx(k2
x − 3k2

y)σz = γ

2 (k3
+ + k3

−)σz , (4.3)

which can be rewritten in terms of the complex momenta k± = kx ± ıky = ke±ıθk ,
such that the threefold symmetry becomes evident. The strength of the warping is
controlled by the parameter γ. The term reduces the continuous rotational symmetry
to a discrete C3 subgroup. The generators of the group are a 2π/3 counterclockwise
rotation (C3) of the system about the z-axis. Additional to the rotation, the system is
invariant under and a mirror operation at the yz-plane σv : x 7→ −x. This yields the
C3v as full point group symmetry. The point group is specified by the character table
Table 4.1. Additional to the point group symmetry the Hamiltonian respects time
reversal T symmetry which leads to a Kramers pairs and a hexagonal Fermi surface.

In the Hamiltonian, the third term ε0(k) is a kinetic energy term which is assumed
to be invariant under the symmetry operations. The term includes chemical potential
µ, quadratic kinetic energy ∝ k2. In the material under consideration the quadratic
term is not relevant, so we assume that only the chemical potential is present, i.e., we
set ε0(k) = −µ. This chemical potential can be controlled by doping the topological
insulator. This has been shown experimentally in angular resolved photoemission
spectroscopy (ARPES) measurements [99, 121] as presented in Fig. 4.3.

In the rest of this chapter we rely on a dimensionless rescaling of the Hamiltonian for
convenience, such that only the rescaled chemical potential appears as free parameter.
The momenta are scaled by ks =

√
v/γ and the energies by Es = vks respectively. The

parameters v and γ can be determined by ARPES. See for instance Ref. [113]. In our
work we consider mostly Bi2Te3 which has strong warping effects. The parameters for
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4.2 Surface states and warping effects

Table 4.1: Character table of point group C3v. The table shows linear and higher order
quantities transforming according to an irreducible representation.
IR 1 2C3 3σv Linear Higher order
A1 1 1 1 z x2 + y2, z2, z3, y(y2 − 3x2)
A2 1 1 −1 Sz x(x2 − 3y2)
E 2 −1 0 (x, y), (Sx, Sy) (2xy, x2 − y2), (xz, yz)

Figure 4.3: ARPES measurement of the Bi2Te3 surface reprinted from Ref. [99] with
permission by AAAS. Columns A to D show Fermi surfaces and band
dispersions for 0, 0.27, 0.67 and 0.9% doping. We are interested in the
bulk insulating phase (around doping 0.67%) where the Fermi surface
forms a hexagon. First row: Fermi surface symmetrized according to
hexagonal symmetry. The pocket formed by the surface state band (SSB)
is observed for all dopings. The pocket from the bulk conductance band
(BCB) shrinks upon doping and vanishes in columns C and D. In column
D pockets formed by the bulk valence band (BVB) emerge outside the SSB
pockets. The K-G-K direction is indicated by white dashed lines. Second
row: Band dispersions along K-G-K direction. The EF positions of the
four doping samples are at 0.34, 0.325, 0.25, and 0.12 eV above the Dirac
point, respectively. EA is the Fermi energy for undoped BiTe, EB is the
bottom of the BCB, EC is the top of the BVB and ED is the position of
the Dirac point.
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4 Magnetic order on warped topological insulator surfaces

Bi2Te3 are ks = 0.1Å−1 and Es = 0.26 eV. The dimensionless Hamiltonian takes the
form Ĥ0(k) = g(k) · σ − µ, where we introduced the configuration vector

g(k) =


−ky
kx

kx(k2
x − 3k2

y)

 = |g(k)|


sinϑk cosϕk
sinϑk sinϕk

cosϑk

 (4.4)

with the polar angles cotϑk = sinϕk(k2
x − 3k2

y), tanϕk = −kx/ky and ϕk = θk + π/2.
The formulation using the polar angles is especially useful to write the eigenstates
compactly. In the next section we take a closer look at the spectrum and the eigenstates.

4.2.2 Spectrum and eigenstates

The spectrum of the given Hamiltonian has the form εk,± = ±|g(k, θk)| − µ. In our
case we write the energy depending on angle and the modulus of the momentum
εk,± = ±k

√
1 + k4 cos2(3θk)−µ. The Fermi surface for different values of the chemical

potentials µ is depicted in Fig. 4.1(b). In the spin basis, the eigenstates take the form

|k,+〉 =
(
e−

ıϕk
2 cos ϑk

2
e+ ıϕk

2 sin ϑk
2

)
and |k,−〉 =

(
−e−

ıϕk
2 sin ϑk

2
e+ ıϕk

2 cos ϑk
2

)
. (4.5)

In the following, we call these states ±-helicity eigenstates.
For completeness we describe the transformation properties of the relevant operators

and states under the point group generators C3 and σv of the group C3v. We distinguish
between the group elements G and the representation of the group elements D̂+

G (D̂−G )
acting on vectors (pseudovectors). The representations D̂+

C3
= D̂−C3

of the rotation C3

coincide and are given by the rotation matrix about the z-axis by 2π/3. For example
the rotation acts on the momentum vector as C3k = D̂+

C3
k and on the spin operators

as C3σ = D̂−C3
σ. The mirror operation acts as σvk = D̂+

σvk = diag(−1, 1, 1)k on
vectors and as σvσ = diag(1,−1,−1)σ = D̂−σvσ = −D̂+

σvσ on pseudovectors. The
Hamiltonian is invariant under the group operations G ∈ C3v. Therefore one obtains
the transformation of the configuration vector

g(Gk) · Gσ = g(k) · σ ⇒ g(Gk) = D̂−G g(k) . (4.6)

The transformation properties of the helicity eigenstates are given by

|C3k,±〉 = e−ıπσz/3 |k,±〉 and |σvk,±〉 = ıσx |k,±〉 . (4.7)

92



4.3 Magnetic instability

In the next section we consider the geometric structure of the Fermi surface and show
how this structure enhances nesting for certain values of the chemical potential µ.

4.2.3 Nesting in the warped Fermi surface

We depict in Fig. 4.1(c) the Fermi surface for different chemical potentials µ. For low
energies µ . 0.5 the Fermi surface is roughly circular and evolves to a more hexagonal
and finally to a snowflake-like form for µ & 1. The Fermi surface is defined by the
cubic equation |g(k, θk)| = µ. Solving this equation for cos(3θ) = 0 yields the value
k(θ, µ) = µ. In general we obtain the solution

k(θ, µ) =
√
t(θ, µ)− 1

3 cos2(3θ)t(θ, µ) with

t(θ, µ) = 3

√√√√ µ2

2 cos2(3θ) +
√

µ4

4 cos4(3θ) + 1
27 cos6(3θ) . (4.8)

Since we want to study the susceptibility of the material towards the formation of
magnetic order we focus on the situation where the Fermi surface becomes nearly
hexagonal with strong nesting. This kind of hexagonal form occurs for approximately
µ = µhex = 0.725.
Nesting means that there exist dominant wavevectors connecting the sides of the

Fermi surface. We find six of those nesting vectors ±Q1,2,3, which are given in xy-
coordinates by

Q1 ≡ 2k0(1, 0) ,

Q2 ≡ C3Q1 = 2k0(−1/2, +
√

3/2) ,

Q3 ≡ C3Q2 = 2k0(−1/2, −
√

3/2) . (4.9)

The wavevectors have the length of the Fermi wavevector k0. At the Fermi surface it
holds εk0,+ = 0, which implies the relation µ = |g(k0, 0)| = k0

√
1 + k4

0 for the chemical
potential.

4.3 Magnetic instability

As discussed before, the Fermi surface can take a hexagonal shape which leads to
the nesting vectors ±Q1,2,3 connecting the sides of the Fermi surface. Systems with
nesting can support spontaneous symmetry breaking and the formation of a magnetic
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4 Magnetic order on warped topological insulator surfaces

grounds state, since certain scattering processes are enhanced if large regions of the
Fermi surface or regions with high density of states are connected by wavevectors.

In Section 4.3.1 we discuss the form of the magnetic order parameter which can
develop in the presence of a repulsive Hubbard interaction at the mean-field level. In
the following section we derive the Landau theory up to sixth order. At second order
it is only possible to determine the susceptibility of the system to become magnetized.
We find possible order parameters MQ1,2,3 corresponding to the Q1,2,3 vectors.

At fourth and sixth order of the free energy expansion more information can be
extracted. At fourth order it is possible to infer if a magnetic phase with only one
MQi dominates, which will lead to a magnetic stripe pattern. The other possibility is
a triple-Q phase, which leads to a lattice-like pattern. At fourth order the complex
phases of the order parameters are still undetermined. The sixth order is required
to completely determine the structure of the order parameters. However two phase
degrees of freedom corresponding to Goldstone modes remain free at any order of the
Landau theory.

4.3.1 Magnetic interaction and order parameter

For the stabilization of the magnetic order an interaction is necessary, additional to the
nesting. Here we assume the presence of a repulsive Hubbard interaction with U > 0.
The Hubbard interaction is on-site and can be written in the form

HU = U

∫
dr n↑(r)n↓(r) = U

∫
dr
[
ρ2(r)

4 − S
2(r)
3

]
. (4.10)

We decompose the product of the particle number density operators n↑(r) and n↓(r) in
particle and spin density operators ρ(r) = ψ†(r)1ψ(r) and S(r) = ψ†(r)(σ/2)ψ(r).
For the given repulsive interaction charge density-wave instabilities are not expected,
hence we neglect the non-magnetic term in the following analysis. However the spin
part is relevant.

We perform the mean-field decoupling and introduce the order parameter M(r) =
−U 〈S(r)〉. The remaining interaction can then be written in the decoupled form

Hmag =
∫

dr M
2(r)
U

+
∫

dr ψ†(r)M(r) · σψ(r) . (4.11)
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4.3 Magnetic instability

Then we introduce the Fourier-transformed order parameters Mq, which depend on
wavevectors q,

M(r) =
∫ dq

(2π)2 e
ıq·rMq . (4.12)

The Hamiltonian takes the form

Hmag =
∫ dq

(2π)2

[
|Mq|2

U
+
∫ dk

(2π)2 ψ
†
k+q/2Mq · σψk−q/2

]
(4.13)

in Fourier space. Similarly the self-consistency relation of the order parameter reads

Mq = −U
∫

dr e−ıq·r 〈S(r)〉 = −U2

∫ dk
(2π)2 〈ψ

†
k−q/2σψk+q/2〉 . (4.14)

These order parameters fulfill the relation M−q = M∗
q. They transform under a group

operation G of the point group C3v as GMq ≡ D̂−GMG−1q. In Appendix A.2, we present
a complete classification of the possible magnetic order parameters with wavevectors q,
C3q and C2

3q under the point group C3v.

This classification of the order parameters according to the point group will turn out
useful later when we discuss the structure of the dominant magnetic order, which will
be either a non-trivial skyrmion lattice or a trivial lattice transforming according to
A1 and A2 representations respectively. In the next section we discuss the free energy
expansion in powers of the magnetic order parameters.

4.3.2 Free energy expansion

The free energy expansion allows to obtain information about the dominant magnetic
instability and preferred wavevectors. Note that due to geometry we already expect
that Q1,2,3 dominate. The numerical analysis that we performed in the course of this
section confirms the analytic expectations.

At first we integrate out the electronic degrees of freedom in the path-integral
formalism in terms of Grassman fields. The free energy F = − lnZ/β is given by the
logarithm of the partition function

Z =
∫

D[ψ̄, ψ] e−S[ψ̄,ψ] . (4.15)
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4 Magnetic order on warped topological insulator surfaces

The action is given by the bare Hamiltonian and the magnetic order parameter and
takes the form

S[ψ̄, ψ] =
∑
k,q

ψ̄k+q
{
−
[
ıkn − Ĥ0(k)

]
δq,0 +M q · σ

}
ψk

≡
∑
k,q

ψ̄k+q
[
−Ĝ−1

0 (k)δq,0 + V̂(k + q, k)
]
ψk

≡ ψ̄
(
−Ĝ−1

0 + V̂
)
ψ . (4.16)

We introduced the fermionic and bosonic (2+1)-vectors k = (k, kn) and q = (q, ωn),
where the fermionic Matsubara frequencies kn = (2n+ 1)π/β and bosonic Matsubara
frequencies ωn = 2nπ/β enter. For the integration over the (2+1)-vectors we introduced
the shorthand summation notation

∑
k ≡

∑
kn

∫
dk /(2π)2 and the shorthand Kronecker

delta δq,q′ = (2π)2δ(q − q′)δ
ωn,ω′n

.

The non-interacting Green’s function is given by Ĝ0(k) = [ıkn − Ĥ0(k)]−1. We can
write the action in a basis independent form

S[ψ̄, ψ] ≡ ψ̄
(
−Ĝ−1

0 + V̂
)
ψ , (4.17)

with the operators Ĝ0 and V̂ defined by the matrix elements Ĝ0(k) ≡ 〈k|Ĝ0|k〉 and
V̂(k + q, k) ≡ 〈k + q|V̂|k〉. Since we are only interested in the static magnetization we
concentrate on the zero-frequency component Mq,0 and the static magnetic potential
V̂(k + q, k) ≡ V̂(q)δωn,0. Integrating the Grassmann variables results in the fermionic
determinant which yields the partition function

Z = detβ
(
−Ĝ−1

0 + V̂
)

= etrln
[
β
(
−Ĝ−1

0 +V̂
)]
. (4.18)

Plugging the partition function into the free energy yields

F = − 1
β

lnZ = F0 −
1
β

trln
(
1− Ĝ0V̂

)
, (4.19)

which can in turn be expanded.

We perform the series expansion of the logarithm in powers of the magnetic potential.
The expansion complemented by the quadratic term due the mean-field decoupling is
then given by

Fmag = 1
β

∞∑
ν=1

tr
(
Ĝ0V̂

)ν
ν

+
∫ dq

(2π)2
|Mq|2

U
. (4.20)
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(a)
Ĝ(k + q)

Ĝ(k)

V̂(−q)V̂(q)

(b)

1

2

Figure 4.4: (a) Loop diagram for the magnetic susceptibility corresponding to the
quadratic term of the Landau expansion. Solid lines correspond to fermionic
propagators. (b) Dominant scattering process between nested sides of the
Fermi surface.

The Green’s function can be given explicitly in terms of projectors P±(k) = [1± ĝ(k) · σ] /2
with unit vector ĝ(k) ≡ g(k)/|g(k)| as follows

Ĝ0(k) = ıkn + µ+ g(k) · σ
(ıkn + µ)2 − |g(k)|2

=
∑
s=±

Ps(k)
ıkn − εk,s

. (4.21)

For our numerical analysis we used this form of the Green’s function, since the poles
in the integration and the resulting residues can be controlled. In Appendix A.4 we
present the details of the calculation of the coefficients of the free energy expansion.

4.3.3 Landau theory at second order: Magnetic susceptibility

To obtain the leading instability the lowest order term of the free energy expansion
must be analyzed. The quadratic term has the form

F (2) = 1
2

∫ dq
(2π)2 M

a
−q

( 2
U
δab − χabq

)
M b
q , (4.22)

which depends on the spin susceptibility χabq =
∑
s,s′=± χ

ab
q,s,s′ . Here we imply a

summation over repeated indices a, b = x, y, z. In Fig. 4.4(a) we depict the loop
diagram corresponding to the susceptibility and the dominant scattering process at
second order between nested sides of the Fermi surface. The spin susceptibility can be
decomposed in contributions involving upper and lower helicity bands, s, s′ = ±,

χabq,s,s′ = −
∫ dk

(2π)2
nF (εk,s)− nF (εk+q,s′)

εk,s − εk+q,s′
〈k, s|σa|k + q, s′〉 〈k + q, s′|σb|k, s〉 . (4.23)

To illustrate the different scattering processes contributing to the spin susceptibility,
we present the band structure in Fig. 4.5. For chemical potential µ > 0 and T = 0
the lower helicity band |k,−〉 is located deep below the Fermi level and therefore fully
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Figure 4.5: Energy dispersion E(ky) for kx = 0. We show scattering processes from
occupied states with E < µ to empty states with E > µ. Given a Fermi
surface with good nesting, process 1 dominates the susceptibility of the up-
per helicity band. Process 2 is most relevant to the interband susceptibility.
At low temperatures, the processes 3 and 4 are suppressed.

occupied, i.e., we assume nF (εk,−) = 1. Therefore, intraband scattering in the lower
band is completely suppressed. The only relevant processes involve the upper helicity
band |k,+〉.
We see that processes of type 1 of Fig. 4.5, i.e., intraband scattering in the upper

helicity band with large wavevector transfer are the most dominant ones. The interband
processes 2 and 4 enter the susceptibility suppressed by a small factor∼ 1/(εk,−−εk,+) <
1/µ. Furthermore processes of type 3, i.e., intraband scattering in the upper helicity
band with small wavevector transfer, can be neglected since the occupation of the two
states remains nearly unchanged.

If we consider the case of an almost hexagonal Fermi surface the dominant scattering
process contributing to the susceptibility for Q1 involves nested parts of the Fermi
surface as shown in Fig. 4.4(b). We point out that in the present problem the
susceptibility for the nested wavevectors is strongly enhanced. In contrast to that, in
1D systems [122] with perfect nesting, the susceptibility might diverge, which would
result in the onset of a magnetic instability. In the present problem a sufficiently strong
interaction is necessary to lead to the development of the magnetic instability.
Now if the spin susceptibility matrix for each wavevector q is diagonalized, three

eigenvalues and corresponding unit eigenvectors, χ̂qM̂
i

q = χiqM̂
i

q are obtained. The
leading magnetic instability corresponds to the largest eigenvalue. Since all instabilities
are triggered by the same interaction potential U , there are no other competing
instabilities and we can focus on the dominant instability only. The critical interaction
for the onset of the instability is given by the Stoner criterion det[(2/Ucrit)1− χ̂q] = 0.
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Figure 4.6: Largest eigenvalue of the spin-susceptibility over the wavevector q = (qx, qy)
in 3D view [(a1),(b1),(c1)] and top view [(a2),(b2),(c2)]. We used µ = µhex =
0.725 for all plots. The temperature is T = 0.01 in (a1), (b1), (c1) and
T = 0 in (a2), (b2), (c2). Plot (a) shows the interband contribution. Plot
(b) shows the intraband contribution from the upper helicity band. Plot (c)
shows the total susceptibility, i.e., sum of (a) and (b). The nesting vector
Q1 connects two sides of the Fermi surface. The other nesting vectors Q2,3
are given by C3 rotations of Q1.

We perform a numerical calculation of the susceptibility and plot in Fig. 4.6 the
largest eigenvalue of the spin susceptibility χ1

q for different wavevectors q = (qx, qy).
We focus on zero temperature and on the most perfectly hexagonally warped Fermi
surface, which is the case for µ = µhex. In the plot, we show the decomposition of the
susceptibility into the inter- and intraband contributions.

The major contribution of the interband scattering shown in Fig. 4.6(a), comes from
q ≈ 0 with only a weak signature of the hexagonal warping. A large value of χ1

0 would
then indicate a tendency to a ferromagnetic ground state. The upper helicity intraband
contribution, plotted in Fig. 4.6(b), peaks for the nesting wavevectors ±Q1,2,3.

For T = 0 the intraband contribution of the lower helicity band vanishes. In
Fig. 4.6(c) we depict the total susceptibility, i.e., the sum of both the interband and
upper helicity intraband contributions. The picture persists qualitatively unchanged as
long as temperature is low, i.e., T . 0.05.

From the plots we can read of the largest eigenvalue of the susceptibility, i.e.,
χ1
Q1
≈ 12/(2π)2. The Stoner criterion implies that a magnetic instability arises when

the interaction is stronger than a critical value, which at T = 0 is Ucrit = 2/χ1
Q1
≈ 6.58.

Given the material parameters of Bi2Te3, this corresponds to an interaction strength
of U ≈ 1.71 eV. If only the upper helicity band contribution is taken into account a
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4 Magnetic order on warped topological insulator surfaces

higher value of U ≈ 2.57 eV is necessary. In the following qualitative discussions we
will concentrate on the contribution from the upper helicity band only.

Once the leading instability corresponding to the largest eigenvalue is established,
the remaining two instabilities corresponding to the other two eigenvalues χ2,3

q are
suppressed. This follows from the fact that most of the Fermi surface is already
gapped by the leading instability. Hence we can consider only the emergence of the
leading magnetic instability. This simplification is justified for all temperatures and is
confirmed by our numerical results where the eigenvalues of the remaining instabilities
are very small. The results of our work are in agreement with previous studies [113,
115].

Now we proceed to analyze the structure of the leading order parameter, which is
determined by the unit eigenvector M̂1

q of the spin susceptibility χ1
q. Since we only

consider the dominant eigenvector and eigenvalue we omit the index 1 from here on
for convenience. The complex unit eigenvector M̂Q1 can be parametrized by spherical
coordinates with the angles ζ and υ

M̂Q1(ζ, υ) =


cos ζ

ı sin ζ sin υ
ı sin ζ cos υ

 . (4.24)

We observe that the x component of the eigenvector is real, while the y and z components
are imaginary. This π/2 phase shift is a consequence of the spin-momentum locking of
the surface states. The leading instability corresponds to a helical magnetic phase.

The orientation of the magnetic order can be understood on purely geometric
arguments directly from the structure of the Hamiltonian. Considering only the
upper helicity band, as we justified above, we can project the magnetic term of the
Hamiltonian to the upper helicity band obtaining

H+
mag =

∫ dq
(2π)2

[
|Mq|2

U
+
∫ dk

(2π)2 ψ
†
k+q/2,+Mq · σ+

q (k)ψk−q/2,+

]
. (4.25)
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For this purpose we introduced the projected matrix element, which is related to the
effective magnetic moment of the upper helicity band,

σ+
q (k) ≡ 〈k + q/2,+|σ|k − q/2,+〉 (4.26)

=
(

sin
ϑk+q/2

2 cos
ϑk−q/2

2 exp [−ıδk,q,+] + cos
ϑk+q/2

2 sin
ϑk−q/2

2 exp [ıδk,q,+] ,

ı sin
ϑk+q/2

2 cos
ϑk−q/2

2 exp [−ıδk,q,+]− ı cos
ϑk+q/2

2 sin
ϑk−q/2

2 exp [ıδk,q,+] ,

cos
ϑk+q/2

2 cos
ϑk−q/2

2 exp [ıδk,q,−]− sin
ϑk+q/2

2 sin
ϑk−q/2

2 exp [−ıδk,q,−]
)
,

with δk,q,± = (ϕk+q/2 ± ϕk−q/2)/2. Note that for k ≈ 0 the projected matrix element
σ+
q (0) reduces to

σ+
q (0) =


cosϑq/2 cosϕq/2 + ı sinϕq/2
cosϑq/2 sinϕq/2 − ı cosϕq/2

− sinϑq/2

 . (4.27)

Specifically for q = Q1 it holds σ+
Q1

(0) =
(
ı, k3

0/µhex,−k0/µhex
)ᵀ. The maximum

magnetic gap at the hexagonal Fermi surface is achieved when |MQi · σ
+
Qi

(k)| for
i = 1, 2, 3 become maximized. In the case of a flat Fermi surface nested by the
wavevectors q = Q1,2,3, this happens when M̂Q1,2,3 is parallel to σ+

Q1,2,3
(0) respectively.

For Q1 one finds the magnetization direction

M̂Q1 ≈
1√
2


1

ık3
0/µhex

−ık0/µhex

 . (4.28)

Note that the phases are not fixed and chosen by convention. Numerically we found
ζ ≈ π/4 and υ ≈ 0.9π, which is in good agreement with the approximate Eq. (4.28)
determined using the geometric argument. Approximately it holds sin(ζ) ≈ cos(ζ) ≈
1/
√

2, sin(υ) ≈ k3
0/µhex, and cos(υ) ≈ −k0/µhex. There are small discrepancies between

the numerical and approximate result due to additional contributions in the numerical
results from other parts of the Fermi surface with poor nesting, such as for instance
the round corners.

The other eigenvectors M̂±Q2,3 can be obtained from the transformation properties
of the susceptibility matrix under the point group operations G ∈ C3v, i.e., χ̂Gq =
D̂−G χ̂q

(
D̂−G

)ᵀ
. This implies M̂Gq = D̂−G M̂q.
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Figure 4.7: Scattering processes at fourth and sixth order in the hexagonal Fermi surface.
The scattering vectors connect regions of high density of state in the Fermi
surface. The process shown in (a) determines β1, the process shown in (b)
determines β2. There are similar sixth order processes. However there is
one distinct process at sixth order, which is shown in (c). This triangle
scattering process determines η. The scattering phase space is shown in
red. Due to momentum conservation the scattering phase space for β2 and
η is significantly smaller than the space for α and β1.

This discussion shows, that the magnetic order parameter opens a gap at the well-
nested parts of the Fermi surface, however, there is no guarantee for a gap opening at
the remaining parts of the Fermi surface. This behavior is typical for two-dimensional
systems with imperfect nesting [123].

4.3.4 Landau theory at quartic order: Single- versus triple-Q phase

In this section we focus on the fourth order of the free energy expansion. Previous works
on hexagonally warped surface states focused on the spin susceptibility or equivalently
on the quadratic part of a Landau expansion. However at this level it is not possible
to discriminate between single-Q or triple-Q magnetic phases [107]. A checkerboard
phase with two Q order parameters cannot appear since such a configuration never
minimizes the free energy.

To determine which of the, at second order degenerate, ground states is the real
ground state, we go to higher order in the Landau theory. As it turns out even the
sixth-order coefficients of the Landau expansion are necessary. Here in this section we
show that the quartic order decides in favor of a triple-Q order parameter.

As our analysis in the previous showed, we can focus on the dominant nesting vectors
±Qi and the corresponding magnetic order parameters MQi . At first we split the
favored magnetization vectors MQi = MiM̂ i into a complex amplitude Mi = eıΦi |Mi|
and a unit vector M̂ i = M̂Qi . Under complex conjugation the order parameters
behave as M−Qi = M∗i M̂−Qi .
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4.3 Magnetic instability

From the previous section the orientation of the magnetic order parameters is fixed.
There remain six degrees of freedom from the moduli Mi and the phases Φi. The free
energy expansion at fourth order involving only the moduli Mi can then be written as

F (4) = α
3∑
i=1
|Mi|2 + β1

2

3∑
i=1
|Mi|4 + β2

∑
i<j

|Mi|2|Mj |2 . (4.29)

The first coefficient α = 2/U − χ1
Q1

vanishes when the Stoner criterion is fulfilled and
the instability sets in. The higher coefficients β1 and β2 originate from the scattering
processes shown in Fig. 4.7(a) and (b), respectively. The values of the coefficients
can be obtained from four-leg loop diagrams. The second-order term in the Landau
expansion exhibits a U(3) symmetry [107]. This means that we can express the three
complex scalar order parameters as a vector with angles ω and ρ

M1

M2

M3

 = |M |


eıΦ1 sinω cos ρ
eıΦ2 sinω sin ρ
eıΦ3 cosω

 . (4.30)

Furthermore the symmetry can be shown explicitly by splitting the fourth-order terms
into a U(3)-symmetric term with coefficient βS = β2/2 and an anisotropic term with
coefficient βA = (β1 − β2)/2 as follows

F (4) = α
3∑
i=1
|Mi|2 + βS

( 3∑
i=1
|Mi|2

)2

+ βA

3∑
i=1
|Mi|4 . (4.31)

The U(3) symmetry can be broken by higher order terms.

Minimizing the free energy determines which of the magnetic order parameters
appear in the ground state. It would be possible that the order parameters coexist
or compete. For that it is necessary to analyze the relation between β1 and β2 (or
equivalently between βS and βA). At first we consider the case βS > 0. Then it is
sufficient to minimize the anisotropic term

βA|M |4
[
sin4 ω(cos4 ρ+ sin4 ρ) + cos4 ω

]
. (4.32)

In this case for βA < 0 the minima are located at ω = 0 (independent of ρ) and at
ω = ±π/2 with ρ = 0,±π/2. These minima correspond to a magnetization with a
single wavevector Qi. On the other hand, for βA > 0 the minimum at ρ = ±π/4 with
ω = arctan

√
2 implies that |M1,2,3| appear equally together.
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Now in the second case βS < 0 the favored value for the modulus |M | is obtained by
minimizing the Landau functional up to quartic order. It reduces to the three equations

|Mi|
(
α+ β1|Mi|2 + β2

∑
j 6=i
|Mj |2

)
= 0 . (4.33)

This system of equations has three solutions:

(i) Nonmagnetic phase with |Mi| = 0.

(ii) Single-Q phase. Here we have, e.g., |M1| 6= 0 and |M2,3| = 0 and obtain
|M1|2 = |α|/β1. The free energy takes the value F = −α2/(2β1).

(iii) Triple-Q phase. We obtain |Mi|2 = |α|/(β1 + 2β2) for i = 1, 2, 3 and the free
energy F = −3α2/[2(β1 + 2β2)].

Comparing the single and triple phases, we find that the triple-Q phase is stabilized
when β1 > β2 or β1 > −2β2. We note again that a double-Q phase cannot appear,
since whenever two order parameters would appear together, due to the β2 coupling,
these order parameters would act as sources for the remaining third-order parameter
which would then lead to a triple-Q phase.

According to this analysis, the magnitude of the order parameters is fixed at the
quartic order of the Landau theory. However there are still three phase degrees of
freedom yet to be determined. Two of the phase degrees of freedom, Φx = 2Φ1−Φ2−Φ3

and Φy =
√

3(Φ2 − Φ3) form Goldstone modes, i.e., phasons which are related to
the broken translational symmetry in the two-dimensional coordinate space. They
correspond to translations of the magnetic texture in the plane. The two phases Φx,y
transform according to the two-dimensional irreducible representation E of C3v. There
is another ‘center of mass’ phase Φz = Φ1 + Φ2 + Φ3, which transforms according to
the A2 irreducible representation of C3v. We will see that this center of mass phase is
fixed at the sixth order of the Landau expansion in the next section.
The coefficients β1,2 are obtained by evaluating four-leg loop diagrams, where we

present our numerical results in Fig. 4.8. We find that β1 � 2|β2| for the whole
temperature regime which is relevant for our scenario. This implies that the triple-Q
phase with equal values of |Mi| for i = 1, 2, 3 is favored over the stripe phase if the
system is tuned to a hexagonally warped Fermi surface by setting µ = µhex at low
temperature. The stabilization of this triple-Q magnetic phase renders the system
C3-symmetric. Although the stripe phase is unfavored within our analysis, it can
still become relevant in cases where external fields or structural defects break the C3

symmetry.
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Figure 4.8: (a,b) Second, fourth and sixth order coefficients of the Landau expansion
for T = 0.01 and T = 0.05. The temperatures correspond to T = 30 K
and T = 150 K for Bi2Te3. The dashed lines show the chemical potential
µ = µhex of hexagonal warping. For µ = µhex the relation between the
coefficients α, β1,2, and η favors the triple-Q magnetic phases, including the
skyrmion texture. We plot η in arbitrary units since only the sign matters
for the selection of the phase. In the numeric calculation we considered
only the upper helicity band.

4.3.5 Sixth order Landau theory: Phase locking

In this section we go to the sixth order of the Landau theory and show that at this
level one additional phase of the order parameters is locked. At sixth order there are
terms of the form |Mi|6, |Mi|2|Mj |4 with i 6= j and |M1M2M3|2. These terms yield
only quantitative corrections since they consist of factors already appearing at lower
order. Therefore they cannot provide any information about the phases.

However there appears an additional unique term which contains the “center of mass”
phase Φz

F (6)
Φz

= η(M1M2M3)2 + η(M∗1M∗2M∗3 )2 = 2η|M1M2M3|2 cos (2Φz) . (4.34)

This term is allowed due to the relation of the momentaQ1+Q2+Q3 = 0. Minimization
of this term will lead to a locking of the phase Φz. We show the most relevant scattering
process connecting regions of high density of states in Fig. 4.7(c). There the particle
scatters twice around the triangular path.
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4 Magnetic order on warped topological insulator surfaces

For η < 0 (η > 0) the free energy is minimized if Φz = 0, π (Φz = ±π/2). We
determine the sign of η using numerical calculations (see figure Fig. 4.8) and observe
that the results depend on the shape of the Fermi surface which in turn depends on the
chemical potential µ. In the plot there are points, where η vanishes, which leads to a
degeneracy and unlocked Φz. In such a scenario Φz stays a Goldstone mode. However
in the hexagonal regime, which we are most interested in, with µ = µhex = 0.725, it
holds η > 0. This leads to a specific magnetic texture, a skyrmion lattice, which we
describe in the next section.

4.3.6 Magnetic texture and skyrmion lattices

Since Φz = ±π/2 is locked, we can examine the real-space structure of the magnetic
texture M(r) =

∑3
i=1MQie

ıQi·r + c.c., which is given by its Fourier components. We
show the resulting magnetization profiles in Fig. 4.9 for the different cases. In the
following we call the two possible phases either A1 or A2 (Skyrmion) phase. This
terminology is justified by looking at the transformation behavior of the magnetic
texture under the point group operations. For this purpose we fix the Goldstone phases,
which correspond to translations in the xy-plane such that the MQ1,x component of the
order parameter is real and the MQ1,y/z

components are purely imaginary. This is the
same convention used in Section 4.3.3. Looking at the plot of the magnetization profiles
we can directly identify the irreducible representation. In the case Φz = 0, π we find the
A1 representation, since the Mx(r) component is even under mirror symmetry x 7→ −x,
while the My,z(r) components change sign. The alternative situation is given in the
A2 or skyrmion case, with Φz = ±π/2 where only the C3 symmetry is preserved. For
more details on the different representations of the magnetic order see Appendix A.2.

The skyrmion phase has an associated topological invariant in real space per skyrmion
of the lattice. As shown in Fig. 4.9(b,c) the periodicity allows to introduce a unit cell
in real space (enclosed by green lines), which is spanned by the unit vectors

a1 = 2π√
3k0

(√
3

2 ,
1
2

)
and a2 = 2π√

3k0
(0, 1) . (4.35)

In the figure we show a hexagon with |r ·Qi| ≤ 2π, which consists of three unit cells
to highlight the unbroken C3 symmetry. The periodicity of the magnetization in real
space yields a Brillouin zone in k space with |k · Q̂i| ≤ k0. The magnetization direction
at opposite edges of the unit cell is the same which allows compactification of the unit
cell. This means that the opposite edges can be glued together to obtain a manifold
homeomorphic to the flat 2-torus T2. The magnetization vectors M̂(r) which live on

106



4.3 Magnetic instability

(a)

x

yC = 0

a1

(b)

x

yC = 0

a1

(c)

x

yC = −1

a1

(d)

x

yC = +1

a1

(e)

x

y

Figure 4.9: Magnetic texture on the surface of a warped topological insulating for
|r · Q̂i| ≤ 2π. The unit cell is shown as a green parallelogram. Figures
(a,b) show triple-Q phases which belong to the A1 representation of the
group C3v with trivial skyrmion charge C = 0. (a) Φz = Φ1,2,3 = 0 and (b)
Φz = Φ1,2,3 = π. Figures (c,d) show triple-Q phases belonging to the A2
representation of the group C3v with non-trivial skyrmion charge C = ±1.
(c) Φz = −π/2, Φ1,2,3 = π/2 and (d) Φz = π/2, Φ1,2,3 = −π/2. Figure
(e) shows the excluded single-Q phase (strip phase) with order parameter
breaking the C3 symmetry. The vector normalization in (e) is different
from (a) to (d) to improve the presentation.
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4 Magnetic order on warped topological insulator surfaces

Table 4.2: Symmetry classification of the phase degrees of freedom Φ, electric field E,
magnetic field B and current J , according to the irreducible representations
of the point group C3v and the behavior under time reversal T .

IR 1 2C3 3σv T = +1 T = −1
A1 1 1 1 Ez Jz
A2 1 1 −1 Φz Bz
E 2 −1 0 (Φx, Φy), (Ex, Ey) (Bx, By), (Jx, Jy)

this manifold take on values on the 2-sphere S2. Now a topological invariant can be
assigned to the mapping T2 → S2. The relevant topological invariant is the first Chern
number, which takes only integer values and is defined as

C = 1
4π

∫
UC

dr M̂(r) ·
(
∂xM̂(r)× ∂yM̂(r)

)
. (4.36)

Interestingly this topological invariant also appears in the quantum Hall effect to
describe the number of Landau levels as discussed in Section 1.1.1. For the two phases,
we find C = sign(Φz), thus C = 0 for the A1 phases with ϕ = 0 and C = ±1 for
the A2 phase with Φz = ±π/2. The A1 phase is therefore a trivial phase, and A2 a
topologically non-trivial phase. The possibility of a non-trivial magnetic ground state
has been discussed earlier in Ref. [115]. Our detailed analysis confirms that indeed
the skyrmion lattice is the true ground state of such a system with hexagonal Fermi
surface and repulsive Hubbard interaction.

4.4 Control and fingerprints of the magnetic phases

In this section we study how the magnetic phases can be controlled by applying external
magnetic fields or imposing currents. We focus on the C3 symmetric phases, which are
favored compared to the single-Q phases. The single-Q phases can only be favored if
appropriate symmetry breaking fields are introduced.

Within the C3-symmetric phases, particularly interesting is the possibility to couple
a magnetic field in z-direction to the skyrmion charge of the magnetic texture. This
way it is possible to select the C = ±1 phases and to stabilize the texture.

We classify external electric E(r) and magnetic fields B(r) according to the C3v

point group symmetry. In Table 4.2 all the components of the electric and magnetic
fields are classified according to their respective irreducible representations and to their
transformation behavior under time reversal symmetry T . In the table we included the
current vector J(r) too. This is particularly relevant when the topological insulator
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4.4 Control and fingerprints of the magnetic phases

Table 4.3: Combinations of magnetic field B and current J which couple to the third
order terms |M1M2M3| cosΦz or |M1M2M3| sinΦz. The presence of such
terms can select the triple-Q magnetic ground state. The cosΦz (sinΦz)
establishes the Φz = 0, π (Φz = ±π/2) magnetic ground state. In particular,
sinΦz stabilizes the skyrmion lattice.
|M1M2M3| cosΦz· |M1M2M3| sinΦz·
Bx(B2

x − 3B2
y) Bz, B

3
z , Bz(B2

x +B2
y)

Jy(J2
y − 3J2

x) By(B2
y − 3B2

x), Jx(J2
x − 3J2

y )
2JxJyBy − (J2

x − J2
y )Bx 2JxJyBx + (J2

x − J2
y )By

2BxByJx + (B2
x −B2

y)Jy 2BxByJy − (B2
x −B2

y)Jx

surface is in proximity to a bulk superconductor with superconducting order parameter
∆(r) = ∆eıφ(r) and J(r) ∝ ∇φ(r).

Homogeneous and spatially static fields can only modify the magnetic phase diagram
by coupling to the phases of the order parameters. Constant B and J fields can
only couple to Φz. Accordingly an electric field E can lead to terms of the form
ΦxEx + ΦyEy. Coupling to Φz allows to determine the favored triple-Q phase. Φz
appears in the Landau expansion only in terms of order three of the form (M1M2M3)n =
|M1M2M3|eınΦz and (M∗1M∗2M∗3 )n = |M1M2M3|e−ınΦz with n ∈ N. Since the system
respects time reversal symmetry T , the lowest allowed term is of sixth order with the
form 2η|M1M2M3|2 cos(2Φz). More general, only even n is allowed.

At sixth order coupling to external T -symmetric fields allows switching between
possible triple-Q phases. This allows to control the skyrmion charge C = ±1. However
effects at lower order are probably more interesting. For example applying T -violating
external fields as given in Table 4.3 can already act at third order and can influence
the phase diagram. The higher order terms, in particular the sixth order terms and
the value of η are then rendered irrelevant near the boundaries of the magnetic phase
where the order parameters are small.

The relevant terms at third-order are |M1M2M3| cosΦz and |M1M2M3| sinΦz, which
belong to the A1 and A2 representations respectively. These two terms can couple
to external fields which break T symmetry. Coupling to cosΦz (sinΦz) will lead to a
stabilization of the triple-Q phases with Φz = 0, π (Φz = ±π/2).

The magnetic field in Bz only couples to the A2 term and yields |M1M2M3| sinΦzBz.
For the extremal values of sinΦz this term takes the form CBz with C = ±1. This
means that the field Bz, which is easily accessible in experiment, directly couples to
the skyrmion charge and as such allows stabilization and manipulation of the skyrmion
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4 Magnetic order on warped topological insulator surfaces

phase. In contrast to Bz, in-plane fields Bx,y or currents Jx,y break the C3 point group
symmetry and favor magnetic stripe phases.
Concerning the terms at third order in Table 4.3: The fields with non-vanishing

moments Bx(B2
x − 3B2

y) or Jx(J2
x − 3J2

y ) (and similarly for the other third-order
combinations which are C3 symmetric but break T symmetry) would stabilize the A1

or A2 phase with C = 0 or C = ±1 respectively. However these higher order terms do
not have practical relevance since it would be difficult to generate third order moments
without also creating linear C3 symmetry violating fields Bx,y or Jx,y which couple
then at lower order. The required structure of the external fields restricts the potential
use of them to manipulate the magnetic phase. However the other way round, these
field distributions could play a role as a signature of the magnetic phase, since these
are precisely the field distributions that are generated by the magnetic texture itself.

4.5 Summary and conclusion

In this chapter we discussed the electronic surface states of a 3D topological insulator
with warping. We investigated the magnetic instabilities which can spontaneously
develop in the surface states in the case of strong hexagonal warping of the Fermi
surface. Due to imperfect nesting, the phase transition can only occur above a critical
strength of a repulsive Hubbard interaction.

We microscopically derived and analyzed a Landau theory for varying values of the
chemical potential and extended earlier work considering this problem. At fourth order
the Landau theory showed that the phase with a single dominant wavevector Qi is
not favored. This phase can be favored if the C3 symmetry of the system is broken
by external effects, e.g., by an applied field. Instead a phase with three contributing
wavevectors Q1,2,3 is favored, which yields a magnetic lattice. There are three possible
phases with Q1,2,3 which differ by the skyrmion charge C. Tuning the chemical potential
allows to switch between the different phases with C = 0,±1. The phases with C = ±1
exhibit topologically non-trivial skyrmions in real space. In particular, we showed that
the case with a nearly hexagonal Fermi surface favors a skyrmion phase with C = ±1.

Furthermore we investigated the modification of the magnetic phase diagram when
external fields are applied, e.g., a magnetic field in z-direction can induce a quantum
phase transition between two topologically distinct magnetic phases, this way creating
a skyrmion charge switch. However in this case the complete lattice switches, which
is different from experimental platforms currently under investigation, where isolated
skyrmion excitations are studied [92].
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4.5 Summary and conclusion

To conclude this chapter, we showed that warped topological insulators indeed
support a skyrmion lattice if a sufficiently strong repulsive interaction is present. While
the Fermi surface warping was discovered in experiment, there are ongoing efforts to
study the magnetic behavior of such materials. The crucial question is whether there
are materials providing a sufficiently strong interaction.

In the next chapter we will extend this work and combine the topological insulator
with a conventional superconductor to engineer a topological superconductor which
can act as a host for Majorana bound states.
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5 Chapter 5

Topological superconductivity in
magnetic skyrmion lattice and
superconductor-based
heterostructure

This chapter is partially based on our publication Ref. [1] and partially on unpublished
works. Our goal is to engineer topological superconductors from topological insulators
and conventional superconductors [34, 65, 124–127]. There are multiple experiments,
which take steps towards the implementation of such systems [128–134]. We are
particularly interested in interface effects and focus on materials with a magnetic
texture, as discussed in Chapter 4.

First we discuss the general description of a system consisting of a magnetic surface
with a superconducting layer on top. We introduce a tunneling coupling between
the two components and derive the relevant free energy description. From there
we investigate the feedback effects between superconductor and magnetic layer. In
particular we discuss the suppression of the magnetic instability in the presence of the
superconductor, leading to a reduction of the magnetic gap due to the superconductor.
Vice versa there is an effect from the magnetic order on the superconductor, e.g., a
multipolar supercurrent distribution is induced in the superconductor. Furthermore
certain staggered superconducting correlations appear.

Then we focus on the particular example of a Bi-based topological insulator as
discussed in Chapter 4, analyze this system in a self-consistent manner and verify the
possibility to obtain a topological superconductor.

113



5 Topological superconductivity in magnetic skyrmion lattice and
superconductor-based heterostructure

Figure 5.1: Warped Dirac cones for Cnv with n = 2, 3, 4. We plot the unitless dis-
persion with v = γ = 1. The C2v case uses a stronger warping γ = 3
for presentational purposes. C6v uses γ = 0.2. Color coding shows the
direction-resolved density of states.

Finally we discuss the properties of the topological superconductors, i.e., the possi-
bility to host Majorana bound states. Majorana states occur at domain walls where
the energy difference between the magnetic order parameter and a proximity-induced
superconducting gap changes sign [65, 126, 135, 136]. In the systems at hand, chiral
Majorana bands and additional Majorana flat bands can appear due to an anisotropy
in the low energy description. The flat bands arise from degenerate Majorana solutions
with a flat dispersion in one momentum direction. We discuss the effects of interactions
on Majorana flat bands.

5.1 Hamiltonian of a magnetic skyrmion lattice

In the following we describe a heterostructure based on a magnetic skyrmion lattice in
the xy-plane at z = 0. On top of the skyrmion lattice at z ∈ [0, L] is a superconducting
layer with thickness L. Generalized from Chapter 4, a magnetic skyrmion lattice can
be described by a Hamiltonian of the form

Hmag =
∫

dr ψ†(r)Ĥ0
mag(p̂)ψ(r) + U

∫
dr n↑(r)n↓(r) . (5.1)

The spinor ψ(r) = (ψ↑(r), ψ↓(r))ᵀ is defined in spin-space and the integration is
performed in the xy-plane with r = (x, y, 0). As a convention we write R = (r, z) for
the coordinates in three dimensions, which include the superconducting layer. Here
the magnetic layer is described as a purely two-dimensional film in the xy-plane at
z = 0. In reality the layer has a finite thickness and the surface states decay into the
bulk. However we exclude the influence of the underlying bulk, which is a reasonable
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Figure 5.2: Fermi surface nesting for Cnv-symmetric FS depending on the chemical
potential for n = 2, 3, 4, 6. We concentrate on the situation µ = µflat at
which the FS becomes approximately flat (shown in red in the figures),
thus leading to a good FS nesting. The nesting vectors Ql are shown in
blue with the index l. All Fermi surfaces are plotted for γ = 1 for different
chemical potentials µ.

approximation for topological insulators, where the surface physics is dominated by the
surface modes. The phase transition to a magnetic texture is possible since the system
is three-dimensional in fact. The non-interacting single-particle Hamiltonian Ĥ0

mag(p̂)
with momentum dependence is supplemented by a repulsive Hubbard interaction with
U > 0, which is necessary to drive the magnetic order. Note that, in general systems
with other types of interactions could be studied in the given context. The presence of
Hubbard interaction however is particularly suitable to drive magnetic ordering if the
system exhibits nesting. The single-particle Hamiltonian takes the form

Ĥ0
mag(p̂) = δmag(p̂) + g(p̂) · σ − µ , (5.2)

where we introduced a dispersion δmag(p̂) = δmag(−p̂) and a spin-orbit coupling term
g(p̂) = −g(−p̂). Similar to the coordinates r and R, we denote the momentum
operators as p̂ = (p̂x, p̂y, 0)ᵀ and P̂ = (p̂, p̂z)ᵀ. The chemical potential µ can be tuned
by doping of the material.

Given a stabilized magnetic texture we define the magnetic order parameterM(r) =
−U/2〈ψ†(r)σψ(r)〉 on a mean-field level. Since we assume a magnetic texture in the
form of a lattice, the magnetic order parameter can be written in Fourier representation
with a small set of dominant wavevectors Qi = (qi, 0) with qi = (qi,x, qi,y). The form of
the wavevectors depend on the point group symmetry of the system under consideration.
In the case of Bi2Te3 we obtained three wavevectors due to the point group C3v as
discussed in Chapter 4. The generalization includes systems with different point group
symmetries and nesting vectors as shown in Fig. 5.1 and Fig. 5.2.
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superconductor-based heterostructure

Given the magnetic order parameter, the mean-field decoupled Hamiltonian takes
the form

Hmag =
∫

dr M
2(r)
U

+ 1
2

∫
drΨ†(r)Ĥmag(p̂, r)Ψ(r) ,

Ĥmag(p̂, r) = δmag(p̂)τz + g(p̂) · τzσ̃ − µτz +M(r) · σ̃ . (5.3)

Since we are interested in superconducting terms, we extended the Hamiltonian in
particle-hole space spanned by the τ Pauli matrices. The Hamiltonian acts on the
Nambu spinor Ψ†(r) = (ψ†↑(r), ψ†↓(r), ψ↑(r), ψ↓(r)). Furthermore the spin matrices are
replaced by σ̃ = (τzσx, σy, τzσz) here. Note the factor 1/2 which is necessary to avoid
double counting the electronic degrees of freedom. In the next section we discuss the
feedback effects between the magnetic and the superconducting layer.

5.2 Feedback effects between superconductor and magnetic
texture

In order to discuss feedback effects we first introduce the Hamiltonian description of
the superconductor and the coupling between the two subsystems. Then we derive a
free energy description to identify the relevant feedback effects, which are expected at
such an interface.

5.2.1 Coupling between superconductor and magnetic texture

We start from the Hamiltonian for the superconductor in coordinate space given in the
form

Hsc =
∫

dRc†(R)ε(P̂ )c(R)− g
∫

dR c†↑(R)c†↓(R)c↓(R)c↑(R) (5.4)

with interaction strength g > 0. We assume a featureless dispersion given solely by the
quadratic term ε(P̂ ) = (P̂ 2 − P 2

F )/(2m) with Fermi momentum PF and electron mass
m. The boundary conditions of the bulk superconductor are assumed to be periodic in
all three directions such that plane waves with appropriately quantized wavevectors can
be employed as a basis. Despite the featureless dispersion the superconducting order
parameter ∆(R) acquires a spatial dependence due to the coupling to the spatially
inhomogeneous magnetic lattice. In particular we expect the Fourier components ∆0(z)
and ∆qi(z) to appear. The order parameter is determined by the self-consistency equa-
tion ∆(R) = −g〈c↓(R)c↑(R)〉. Given the order parameter, the mean-field decoupled
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5.2 Feedback effects between superconductor and magnetic texture

Hamiltonian takes the form

Hsc =
∫

dR |∆(R)|2

g
+ 1

2

∫
dRC†(R)Ĥsc(P̂ ,R)C(R) ,

Ĥsc(P̂ ,R) = ε(P̂ )τz + Re ∆(R) τyσy − Im ∆(R) τxσy . (5.5)

The Hamiltonian is defined in particle-hole space with the Nambu spinor C†(R) =
(c†↑(R), c†↓(R), c↑(R), c↑(R)).

The coupling of the two subsystems is described by a tunneling Hamiltonian

HT = t

∫
dr ψ†(r)c(r) + H.c. = 1

2

∫
drΨ†(r)T̂C(r) + H.c. , (5.6)

where we introduced a tunneling constant t and a tunneling matrix T̂ = tτz. The
magnetic skyrmion lattice leads to non-zero currents in the superconductor. The
currents are screened by the superconductor by building up a non-vanishing vector
potential A(R) = (a(R), Az(R))ᵀ with a(r) = (ax(r), ay(r))ᵀ. Since the vector
potential can modify ∆(R) we include it in the following analysis. The vector potential
follows the equation of motion ∇2A(R) = −µJ(R) with magnetic permeability µ.
Since the superconductor is a non-magnetic material, we use µ ≈ µ0 with the magnetic
permeability µ0 of the vacuum. For convenience we set µ0 = 1 in the following. The
fermionic current J(R) is given by the functional derivative J(R) = −δFf/δA(R).
Here Ff is the free energy obtained by integrating out the fermionic degrees of freedom.

The vector potential couples via minimal coupling, i.e., by substituting p̂ → p̂ +
eτza(r) and P̂ → P̂ + eτzA(R). In this work we will consider a perturbative coupling
to the vector potential, given as H̄A = HA +HA2 + . . . and similar for the coupling
between magnetic layer and vector potential a. In particular, we keep the linear
parametric terms HA and Ha and the quadratic diamagnetic terms HA2 and Ha2 . By
the minimal coupling substitution one obtains the Hamiltonians

HA = 1
2

∫
dR C†(R) e

2m(P̂ ·A+A · P̂ )C(R) , (5.7)

HA2 = 1
2

∫
dR C†(R)e

2A2

2m τzC(R) , (5.8)

for the coupling between vector potential and the electrons of the superconductor.
After introducing the full Hamiltonian Hmag +Hsc +HT +HA +HA2 +Ha +Ha2

we proceed to derive the free energy description of the heterostructure.
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5.2.2 Free energy description of the coupled subsystems

Now we derive the free energy description of the coupled systems within the Matsubara
formalism. This approach is sufficient since we are interested in static phenomena.
We transfer to the path integral formalism which is useful for the development of a
perturbation theory and express the free energy functional in terms of Green’s functions.
The Matsubara action of the fermionic degrees is given by

Sf = −Ψ̄Ĝ−1
magΨ− C̄Ĝ−1

sc C + Ψ̄T̂C + C̄T̂ †Ψ . (5.9)

The Green’s function are given here in full matrix form as in Chapter 4. The action
does not include the constant quadratic terms ∆2 and M2 produced by the mean-field
decoupling, since we can add them when needed. Introducing the shifted Grassmann
variable C ′ = C − ĜscT̂ †Ψ and C̄ ′ = C̄ −ΨT̂ Ĝsc and Ĝ−1

mag,sc = Ĝ−1
mag − T̂ ĜscT̂ † yields

the simplified action Sf = −Ψ̄Ĝ−1
mag,scΨ− C̄

′Ĝ−1
sc C

′. We proceed with integrating out
the fermionic degrees of freedom to obtain the free energy Ff = Fsc + Fmag,sc with

Fsc = F∆2 −
1

2β trln(−Ĝ−1
sc ) and Fmag,sc = FM2 −

1
2β trln(−Ĝ−1

mag,sc) . (5.10)

Note that the factors 1/2 are necessary to avoid double counting. The constants F∆2

and FM2 are the quadratic contributions to the free energy due to the mean-field
decoupling. The Green’s functions also include the coupling to the vector potential.

In the following we assume that the superconducting gap is only weakly influenced
by the magnetic lattice and only near z = 0, i.e., is given as ∆(R) ≈ ∆0 + δ∆(R) with
∆0(z) ≈ ∆0 = ∆∗0. As consequence the term δ∆(R) contains only Fourier contributions
related to ∆Qi(z). Without these assumptions all superconducting order parameters
for all Fourier components would require perturbative treatment. Furthermore we
assume |δ∆(R)| � ∆0 which allows to expand the superconducting Green’s function
perturbatively. We obtain

−Ĝ−1
sc = −Ĝ−1

sc,0 + δ∆̂ + ĤA + ĤA2

⇒ Ĝsc ≈ Ĝsc,0 + Ĝsc,0
(
1+ δ∆̂ + ĤA + ĤA2

)
Ĝsc,0 , (5.11)

−Ĝ−1
mag = −Ĝ−1

mag,0 + Ĥa + Ĥa2

⇒ Ĝmag ≈ Ĝmag,0 + Ĝmag,0
(
1+ Ĥa + Ĥa2

)
Ĝmag,0 . (5.12)

We define Ĝ−1
mag,sc,0 = Ĝ−1

mag,0 − T̂ Ĝsc,0T̂ † and obtain the free energy Ff ≈ Fsc,0 +
Fmag,sc,0 +Ffb via the approximated Green’s functions. The first two terms of the free
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energy are given by

Fsc,0 = F∆2
0
− 1

2β trln(−Ĝ−1
sc,0) and Fmag,sc,0 = FM2 −

1
2β trln(−Ĝ−1

mag,sc,0) . (5.13)

Of particular interest is the feedback term which arises from expanding the logarithm
up to quadratic order

Ffb = 1
2β tr

{
Ĝmag,sc,0

[
Ĥa + T̂ Ĝsc,0

(
δ∆̃ + ĤA

)
Ĝsc,0T̂ † + Ĥa2 + T̂ Ĝsc,0ĤA2 Ĝsc,0T̂ †

]}
+ 1

2β tr
{
Ĝsc,0ĤA2

}
+ Fδ∆2 + 1

4β tr
{
Ĝsc,0

(
δ∆̂ + ĤA

)}2

+ 1
4β tr

{
Ĝmag,sc,0

(
Ĥa + T̂ Ĝsc,0(δ∆̂ + ĤA)Ĝsc,0T̂ †

)}2
. (5.14)

The construction of the full free energy Ff assumes that ∆0 is determined first by
minimizing only Fsc,0. Then the magnetic order M(r) will be determined in the
presence of the superconducting gap ∆0 by minimizing Fmag,sc,0, which we will describe
in the following Section 5.2.3. After that the feedback onto the superconductor δ∆(r)
and J(R) will be determined by minimizing the feedback term Ffb.
The feedback free energy can be decomposed in terms leading to different effects.

Here we highlight the source terms due to the magnetic layer. In particular there are
source terms for the vector potential A and a and staggered superconductivity δ∆:

(i) Paramagnetic source term for the vector potential a due to the magnetic layer
1

2β tr
(
Ĝmag,sc,0Ĥa

)
. We will analyze this term in Section 5.2.4 to obtain the

induced current at the interface.

There are further diamagnetic coupling terms of vector potential and magnetic
layer and a subdominant quadratic paramagnetic term. The diamagnetic coupling
terms are irrelevant compared to the corresponding terms of the superconductor
electrons, since the superconductor has much higher carrier density.

(ii) Source terms for the vector potential A due to tunnel coupling T̂ of magnetic
layer and superconductor 1

2β tr
{
Ĝmag,sc,0

(
T̂ Ĝsc,0ĤAĜsc,0T̂ †

)}
.

(iii) Source terms for staggered superconductivity δ∆ due to tunnel coupling T̂ of the
magnetic layer to the superconductor 1

2β tr
{
Ĝmag,sc,0

(
T̂ Ĝsc,0δ∆̃Ĝsc,0T̂ †

)}
. This

term is responsible for the appearance of staggered superconducting correlations
∆Qi .
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Furthermore there are contributions of the superconducting electrons to the effective
action of the vector potentialA and to the effective action of staggered superconductivity
δ∆ and the coupling between A and δ∆:

(iv) Contribution to the vector potential 1
2β tr

(
Ĝsc,0ĤA2

)
+ 1

4β tr
(
Ĝsc,0ĤA

)2
.

(v) Contribution to staggered superconductivity Fδ∆2 + 1
4β tr

(
Ĝsc,0δ∆̂

)2
.

(vi) Contribution to the coupling of vector potential and staggered superconductivity
1

2β tr
(
Ĝsc,0δ∆̂Ĝsc,0ĤA + Ĝsc,0ĤAĜsc,0δ∆̂

)
.

There are further quadratic terms which are subdominant to the linear terms and will
not change the qualitative picture given by the aforementioned terms. In the following
we will focus on the magnetic instability in the presence of the superconducting layer
and the induced currents at the interface due to the texture of the magnetic layer.

5.2.3 Superconducting proximity effects on the magnetic instability

Now we determine the magnetic order from the term Fmag,sc,0. In the plane wave basis
|k〉 for k = (kx, ky) and K = (k, kz) the Green’s function Ĝmag,sc,0 is given by

Ĝ−1
mag,sc,0(E,k + q,k) ={
E − τz[δmag(k) + g(k) · σ̃ − µ]− t2τzĜsc,0(E,k, z = 0)τz

}
δ(q)−Mq · σ̃ (5.15)

with M(r) =
∫ dq

(2π)2 e
ıq·rMq. The Green’s function of the superconductor for energies

below the gap, i.e., E < ∆0 is given by

Ĝsc,0(E,k, z = 0) =
∫ dkz

2π Ĝsc,0(E,K) =
∫ dkz

2π
E + ε(K)τz −∆0τyσy
E2 − ε2(K)−∆2

0

≈ νF
∫ ∞
−∞

dε
2π

E + ετz −∆0τyσy
E2 − ε2 −∆2

0
= −νF2

E + ∆0τyσy√
∆2

0 − E2
(5.16)

with the density of states at the Fermi level νF . If we consider energies E � ∆0 far
below the superconducting gap we can introduce an effective gap ∆ = νF t

2/2, which
is induced in the magnetic lattice. With this effective gap ∆ the Green’s function
becomes

Ĝ−1
mag,sc,0(E,k + q,k) = {E − τz[δmag(k) + g(k) · σ̃ − µ]−∆τyσy} δ(q)−Mq · σ̃ .
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In the next step it is necessary to determine the magnetic susceptibility. Furthermore
the magnetic gap can be determined self-consistently in the presence of the induced
gap ∆. We will perform this analysis in the case of Bi2Te3 in Section 5.3.3.

5.2.4 Induced current in the magnetic layer

In this section we derive the induced current at the interface between magnetic layer
and superconductor. We use 〈k|Ĥa|k + q〉 = −jk,k+q · a−q with the single-particle
current

q · jk,k+q = − e
~

(
Ĥ0

mag(k + q)− Ĥ0
mag(k)

)
. (5.17)

The current is diagonal in particle-hole space which can be seen from the form of the
magnetic Hamiltonian Ĥ0

mag. However the current is non-diagonal in spin-space. This
observation implies that the current is driven purely by magnetoelectric effects. It is
useful to decompose the current into charge and spin parts jk,k+q = jck,k+q + jsk,k+q · σ̃
with

q · jck,k+q = − e
~

[δmag(k + q)− δmag(k)] τz , (5.18)

q · jsk,k+q = − e
~

[g(k + q)− g(k)] · σ̃ . (5.19)

As an example, we consider a Rashba Hamiltonian g(k) = ~αẑ×k and δmag(k) = 0. We
obtain for the current jsk,k+q = eαq · (ẑ × σ̃). The induced current is then determined
by the paramagnetic coupling of the magnetic layer to the vector potential

tr
(
Ĝmag,sc,0Ĥa

)
= −

∫ dk
(2π)2

dq
(2π)2 a−q ·

∑
ıkn

tr
(
Ĝmag,sc,0(ıkn,k + q,k)jk,k+q

)
. (5.20)

The relevant contributions are given by the low energy behavior of the system near the
Fermi points with good nesting, which all have the same Mq. We write NF for the
number of relevant Fermi points. The free energy term reduces to

1
2β tr

(
Ĝmag,sc,0Ĥa

)
= −

∫ dq
(2π)2 ea−q · jq , (5.21)

with the induced staggered current jq = (2eαNF )/U ẑ ×Mq. The staggered currents
are then fully determined by the magnetic order. The proportionality jq ∝ ẑ ×Mq

for the supercurrent can be obtained by symmetry considerations, as we will describe
in Section 5.3.4.
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5.3 Analysis of a Bi2Te3-superconductor heterostructure

After the general discussion of a heterostructure consisting of a magnetic layer cou-
pled via a tunnel coupling to a conventional superconductor, we consider now the
more specific system based on the topological insulator Bi2Te3, which was discussed
in Chapter 4. As shown in Section 5.2.3 we can assume that the superconductor
proximity induces an effective superconducting gap ∆ on the topological insulator.
Since the superconductor competes with the magnetic instability we expect that a
higher interaction strength is necessary to drive the system to the magnetic phase.

Here we neglect the effects onto the superconductor and assume the superconducting
gap to stay constant and unchanged by the magnetic texture. We analyze the magnetic
susceptibility in the presence of such an effective superconducting gap and compute the
gap in a self-consistent manner. Later we will consider superconducting correlations
induced in the superconductor, which follow the structure of the magnetic texture.
This analysis was published in Ref. [1].

5.3.1 Magnetic susceptibility in the presence of a superconducting gap

We showed that the superconductor induces a superconducting gap ∆ onto the electrons
of the topological insulator in Section 5.2.3. By symmetry the induced superconducting
gap can couple to the magnetic order parameters at fourth order in the Landau
expansion

Fmag,sc = c|∆|2
3∑
i=1
|Mi|2 . (5.22)

The sign of c must be positive since the magnetic phase competes with the singlet
superconducting gap, since the magnetic order parameters are T symmetry violating
in contrast to the superconducting order parameter. If we assume the free energy term
Eq. (5.22), the coefficient α of the bare free energy is modified as

α(∆) = 2
U
− χ1

Q1
+ c|∆|2 . (5.23)

This modification acts like a renormalization of the interaction U . We see that the
effective interaction Ũ(U) = U

1+Uc|∆|2/2 < U is reduced compared to the case with
∆ = 0. Therefore if a superconducting gap ∆ is present a stronger interaction U is
necessary to allow the magnetic instability to develop.
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Here we do not consider other higher order terms which could change either the
superconductor or the structure of the magnetic texture. In particular, the conclusions
concerning the structure of the magnetic texture and the dominance of the skyrmionic
phase with three Q wavevectors are unaffected. The assumption that the symmetric
structure stays unchanged is justified if one considers that the above additional term
Fmag,sc to the free energy is sufficiently weak and does not break any symmetries.

The strength of the induced gap can be controlled experimentally in principle by
the way the interface is grown and the superconducting material. In the following we
perform a similar analysis of the susceptibility as before including the gap ∆ in the
Bogoliubov-de Gennes Hamiltonian

Ĥ0,sc(k) = g(k) · τzσ̃ − µτz −∆τyσy . (5.24)

The τ Pauli matrices act in particle-hole space. The Hamiltonian has a U(1) gauge
symmetry corresponding to rotations around the τz-axis. Here we chose the gauge such
that ∆ is real and positive.

Additional to the bare Hamiltonian, the mean-field decoupled magnetic term

Hmag =
∫ dq

(2π)2

[
|Mq|2

U
+ 1

2

∫ dk
(2π)2 Ψ†k+q/2Mq · σ̃Ψk−q/2

]
(5.25)

must be included. The Green’s function of the modified Hamiltonian is given by

Ĝ0,sc(k) = (ıkn)2 −
(
|g(k)|2 + µ2 + ∆2)− 2µg(k) · σ̃(
k2
n + ε̃2k,+

) (
k2
n + ε̃2k,−

) [
ıkn + Ĥ0,sc(k)

]

=
∑
s=±

P̃s(k)
[
ıkn + Ĥ0,sc(k)

]
(ıkn − ε̃k,s) (ıkn + ε̃k,s)

. (5.26)

The fermionic Matsubara frequencies are denoted by kn and the eigenenergies are given
by ε̃k,± =

√
ε2k,± + ∆2. As before we write the Green’s function in terms of projectors

P̃±(k) = [1± ĝ(k) · σ̃] /2 and obtain

Ĝ0,sc(k) =
∑
s=±

P̃s(k)
[
ıkn + Ĥ0,sc(k)

]
(ıkn − ε̃k,s) (ıkn + ε̃k,s)

. (5.27)

In the analysis in Chapter 4, the significant contributions to the susceptibility were
due to intraband processes in the upper helicity band. For simplicity we only take
into account this band to compute the modified spin-susceptibility in the presence of
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∆. The helicity basis of the Hamiltonian is spanned by |e,k, s〉 and |h,k, s〉 with the
helicities s = ±1 and e (h) corresponding to electron (hole) space:

|e,k,±〉 =
(

1
0

)
⊗ |k,±〉 and |h,k,±〉 = Ξ |e,k,±〉 =

(
0
1

)
⊗ |−k,±〉∗ . (5.28)

The charge conjugate partners of |e,k,±〉 are obtained by acting with the charge
conjugation operator Ξ = τxK. For instance one obtains

|h,k,+〉 =
(

0
1

)
⊗
(
−e+ ıϕk

2 sin ϑk
2

e−
ıϕk

2 cos ϑk
2

)
(5.29)

for the upper helicity band using the relations ϕ−k = ϕk and ϑ−k = ϑk + π.
The projected Hamiltonian acting in the upper helicity space takes the form

Ĥ+
0,sc(k) = εk,+τz + ∆τx. With the given choice of the helicity eigenstates the projected

superconducting gap stays k-independent. A different gauge could lead to an odd
k-dependence as discussed in Ref. [65].

Using the corresponding Green’s function

Ĝ+
0,sc(k) =

ıkn + Ĥ+
0,sc(k)

(ıkn − ε̃k,+) (ıkn + ε̃k,+) , (5.30)

we obtain the modified spin susceptibility

χ̃abq,++ = −1
2
∑

λ,λ′=±

∫ dk
(2π)2

nF (λε̃k,+)− nF (λ′ε̃k+q,+)
λε̃k,+ − λ′ε̃k+q,+

(5.31)

× ε̃k,+ε̃k+q,+ + λλ′(εk,+εk+q,+ + ∆2)
2ε̃k,+ε̃k+q,+

〈k,+|σa|k + q,+〉 〈k + q,+|σb|k,+〉 .

We note that the formula is mainly changed by the modified eigenenergies ε̃k,± =√
ε2k,± + ∆2 and a form factor. In Fig. 5.3, we plot the spin susceptibility for T = 0 as

function of chemical potential µ and ∆. The plot shows the expected reduction of the
susceptibility due to ∆. For example, for ∆ = 1.93× 10−3 corresponding to 0.5 meV
for Bi2Te3, we find a reduction of the spin susceptibility by approximately 10%.

5.3.2 Low energy model

In this section we derive the low energy model describing the surface electrons in the
presence of the magnetic order parameters and proximity induced s-wave supercon-
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Figure 5.3: Contour plot of the largest susceptibility eigenvalue versus the proximity
induced superconducting gap ∆ and chemical potential µ. We only show
the contribution of the upper helicity band. The dashed red line marks the
chemical potential µ = µhex, for which the Fermi surface is approximately
hexagonal.

ductivity. This model corresponds to a topological superconductor, which can host
Majorana bound states if the system is in a topologically non-trivial phase.

The starting point is the Hamiltonian in the upper helicity basis with the magnetic
term of Eq. (5.25). Again we focus on the most relevant nesting wavevectors ±Qi,
giving raise to the corresponding order parameters Mi for i = 1, 2, 3. We obtain
the Bogoliubov-de Gennes Hamiltonian Ĥmag,sc(k) with three decoupled blocks ĥi(k)
corresponding to the wavevectors Qi. Each of the Hamiltonian blocks acts in a basis
with the momentum index i. The blocks have the form

ĥi(k) = δi,k,+τz + δi,k,−τzρz + ∆τx +MfRi (k)ρx −Mf Ii (k)ρy , (5.32)

δi,k,± =
εk+Qi/2,+ ± εk−Qi/2,+

2 , (5.33)

where fi(k) ≡ M̂ i ·σ+
i (k). The projected matrix element σ+

i (k) was introduced before
in Section 4.3.3. The Hamiltonian blocks act in the enlarged spinor space to account
for the two vectors k ±Qi/2. The ρ Pauli matrices act in this new 2 × 2 subspace.
The full spinor for each of the block is defined in τ ⊗ ρ space as

Ψ†i,k =
(
ψ†k+Qi/2,+

, ψ†k−Qi/2,+
, ψ−k−Qi/2,+ , ψ−k+Qi/2,+

)
. (5.34)
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The eigenenergies are given by ±Ei,k,s with s = ±1,

Ei,k,s =
√
δ2
i,k,+ + δ2

i,k,− + ∆2 +M2|fi(k)|2 + s2Ti(k) , (5.35)

Ti(k) =
√
δ2
i,k,+δ

2
i,k,− +M2|fi(k)|2(δ2

i,k,+ + ∆2) . (5.36)

When a gap in the dispersion closes for k = 0, the system can become topologically
non-trivial. To investigate that, we proceed with calculating the magnetic gap in the
presence of superconductivity.

5.3.3 Self-consistent calculation of the magnetic gap

The dependence of the magnetic gap M on the superconducting gap ∆ is relevant to
determine if the system can transit to the topologically non-trivial phase. Therefore we
determine the dependence self-consistently at zero temperature, which is most relevant
for Majorana physics. The free energy of the Hamiltonian blocks ĥi(k) is given by

Fi = 2M2

U
− 1

2
∑
s=±

∫ dk
(2π)2 Ei,k,s . (5.37)

Minimization yields the self-consistency relation

M = U
∑
s=±

∫ dk
(2π)2

M |fi(k)|2

8Ei,k,s

[
1 +

∆2 + δ2
i,k,+

sTi(k)

]
(5.38)

for the magnetic order parameter M . We solve this relation numerically in an iterative
fashion for various values of the interaction U and the induced gap ∆. The induced
gap ∆ is assumed to be constant and just imposed on the system.

The resulting magnetic gap M(U,∆) is shown in Fig. 5.4. In the plot the magnetic
gap does not appear for zero interaction strength, since the susceptibility does not
diverge due to imperfect nesting. Our results for M are mostly independent of the
chemical potential µ if one stays within 5% detuning from the hexagonal scenario with
µ = µhex. For larger values, the FS strongly differs from the hexagonal surface, and
additional nesting vectors become important (see Appendix A.3).

The magnetic order parameter M shows a first order transition for increasing ∆. A
first order transition is expected due to the different behavior of ∆ and M under time
reversal symmetry T . In our analysis we did not analyze the values of the free energy
at the transition point, but we think the overall qualitative picture is realistic. Similar
phase transitions have been found before, e.g., in a system with spatially modulated
superconducting pairing terms [137].
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Figure 5.4: Magnetic gapM(U,∆) calculated self-consistently depending on interaction
strength U and superconducting gap ∆. We find a first-order transition
for increasing ∆. For Bi2Te3 the value U = 13 corresponds to U = 3.38 eV,
∆ = 0.0025 to ∆ = 0.65 meV, and M ≈ 0.01 to M = 2.6 meV. The blue
line marks the onset of the instability at Ucrit = 2/χ1

Q1,++. The green curve
shows the increase of the magnetization M(U,∆ = 0). In the numerical
calculations we only took the relevant upper helicity band into account.

For non-zero superconducting gap ∆ below a critical value, the spectrum is fully
gapped. We display the reconstructed Fermi surface and band structure in Fig. 5.5 in
the presence of only a non-vanishing magnetic gap M . Ungapped parts remain due
to imperfect nesting and appear at the points of the Fermi surface which were not
connected by the dominant nesting vectors and do not participate in the scattering
processes leading the stabilization of the magnetic order. If the chemical potential µ is
tuned away from the optimal hexagonal scenario with µ = µhex the ungapped parts
grow, since less and less points are well nested. We note that the nesting wavevector
Q1(k0) depends on the Fermi wavevector k0 and as such depends on µ. The features
of the partially gapped band structure in the absence of superconductivity could be
observable in angular resolved photoemission spectroscopy.

5.3.4 Supercurrent signature of skyrmions

It is possible to couple supercurrent operators to the magnetic order parameters. This
way it is possible to stabilize the magnetic phase. Vice versa the magnetic texture will
induce multipolar patterns of supercurrents. These supercurrent patterns could serve
as signatures of the magnetic phases.
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Figure 5.5: (a) Extended scheme of the Fermi surface for µ = µhex and ∆ = 0 for
different values of the magnetic gap M . (b) Partly gapped band structure
for ∆ = 0 and M = 0.02.

In this section we describe how the spatially dependent magnetic texture M(r)
induces a supercurrent J(r) that can serve as signature of the magnetic order. The
lowest order term which provides information about the skyrmion charge has the form

J (r) ≡ Jx(r)[J2
x(r)− 3J2

y (r)] . (5.39)

It corresponds to an octupolar supercurrent distribution. At lowest order in the
magnetization one obtains J(r) ∝ ẑ×M(r), which yields the supercurrent distribution

J (r) ∝My(r)
[
M2
y (r)− 3M2

x(r)
]
. (5.40)

Interestingly, there is a direct connection between J (r) and the skyrmion charge C.
The integral of the supercurrent distribution J (r) over the unit cell J0 ≡

∫
UC drJ (r)

yields non-zero only for the topologically non-trivial skyrmion phases. In particular it
holds C = signJ0. We plot the distribution J (r) in Fig. 5.6, where the overall color
illustrates that J0 depends indeed on the charge of the skyrmions. This illustration
does not take screening effects since the superconductor in proximity to the topological
insulator is not treated in a self-consistent manner. Even if the distribution may deviate
due to screening effects, the value J0 is a topological invariant and will not change as
long as the magnetic ground state is not modified significantly.
There exist also inverse effects. In the presence of an in-plane supercurrent, an

effective in-plane Zeeman field ẑ × J [34] is induced. Similarly the aforementioned
octupolar supercurrent moment Jx(J2

x − 3J2
y ) produces a Bz component. These fields
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Figure 5.6: Supercurrent distribution of J (r) induced by the magnetic skyrmion texture.
The skyrmion charge C = −1 (+1) is selected by a weak perpendicular
magnetic fieldBz > 0 (< 0). The quantity J0 =

∫
UC drJ (r) is proportional

to the skyrmion charge C and acts as a signature of the magnetic state.
Due to screening effects the pattern observed in experiments could deviate
from the plotted distribution. Despite that, the topological invariant J0
will not change under smooth modifications of the distribution.

follow from Eq. (4.2) when the replacement k 7→ k + Jτz/2 is performed, one obtains

Beff(k) = Jx
2 ŷ −

Jy
2 x̂+

[
Jx
8 (J2

x − 3J2
y ) + Jx

2 (k2
x − 3k2

y) + kx(kxJx − 3kyJy)
]
ẑ . (5.41)

Since this effective magnetic field (induced by supercurrents) couples to the magnetic
order parameters, it would be indirectly possible to control the magnetic phase as
discussed in Section 4.4.

5.4 Topological superconductivity and Majorana flat bands

In this section we focus on the topological superconductivity present in a heterostructure
consisting of a magnetic layer and a conventional superconductor. Gap closings in the
bulk bandstructure at k = 0 are related to the occurrence of Majorana modes [65, 126,
135, 136].

In the system based on the topological insulator Bi2Te3 we find a gap closing for
∆ = M |fi(0)| since δi,0,± = 0. For ∆ < M |fi(0)| the block of the system is in the
topologically non-trivial phase and the block can support a single zero-energy Majorana
mode. Plugging in the approximate M̂ i given in Eq. (4.28) yields |fi(0)| ≈

√
2, i.e.,

the gap closes for ∆ ≈
√

2M . Given the numeric results shown in Fig. 5.4, we can
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answer the question whether the system can become topologically non-trivial, i.e.,
whether the inequality |∆| <

√
2M(U,∆) can be satisfied. If the system is tuned

to the point where µ = µhex with an induced superconducting gap ∆ = 2.5 × 10−3

corresponding to 0.65 meV for Bi2Te3 one finds that the interaction must be U & 13.
This value corresponds to U & 3.38 eV for Bi2Te3 and a magnetic gap of M ≈ 0.01
(2.6 meV). Therefore the heterostructure forms an engineered C3-symmetric topological
superconductor [34, 138–142]. The remaining question is whether the interaction in
Bi2Te3 or similar materials is sufficiently strong to satisfy the above conditions.

At domain walls Majorana modes will appear. In particular chiral Majorana modes
are expected for the given topological superconductor. Furthermore Majorana flat
bands will occur due to the structure of the Hamiltonian at domain walls, where
√

2M −∆ changes sign. Here we focus on the flat bands since they are a special feature
of this system.

5.4.1 Majorana flat bands

Here we consider in particular the Majorana flat bands, which occur at a domain
wall of a topological superconductor with a local anisotropy. A prototype for a model
yielding flat bands is an anisotropic p-wave superconductor, which we described in
Section 2.3.2. For the discussion we return to the more general setting. The relevant
Hamiltonian has the form

H = 1
2

∫
drΨ†(r)

[
g(k̂) · τzσ̃ − µτz +M(r) · σ̃ −∆τyσy

]
Ψ(r) . (5.42)

Since we are interested in the low energy solutions to the system we expand the field
operators in the relevant Fourier components around the nested points

Ψ(r) =
∑

i=1,2,3

[
eıQi·r/2Ψ+Qi/2(r) + e−ıQi·r/2Ψ−Qi/2(r)

]
. (5.43)

The field operators Ψ+Qi/2(r) vary slowly in space, which means that the corresponding
wavevector is small |k| � |Qi|.

Furthermore the low energy physics is determined by the upper helicity band
projection of the Hamiltonian. The operators of the spin bands are determined by the
upper helicity band

ψk±Qi↑ ≈ Akwŵ±Qi/2ψk±Qi,+ and ψk±Qi↓ ≈ Bkwŵ±Qi/2ψk±Qi,+ . (5.44)
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The coefficients Akwŵ±Qi/2 and Bkwŵ±Qi/2 are determined by the solutions to the bare
Hamiltonian without superconductivity and magnetic term

|kwŵ ±Qi/2,+〉 ≈
(
Akwŵ±Qi/2

Bkwŵ±Qi/2

)
. (5.45)

In this basis the linearized Hamiltonian blocks for each Qi wavevector have the form

ĥi(k) = vQi · kτzρz + ∆τx −Bρy . (5.46)

In the case of Bi2Te3 with threefold symmetry the Dirac velocity is given by v =
(k0 + 3k5

0)/µhex. The Hamiltonian has the form of a nanowire Hamiltonian [66], in
Qi direction, where the ρ matrices take the role of the spin matrices. However the
nanowire Hamiltonian is defined in one dimension whereas the given Hamiltonian
blocks are defined in two dimensions with a highly anisotropic ρ-orbit coupling.

To find Majorana modes one introduces a domain wall along ŵ = cosωx̂+ sinωŷ,
where B−∆ changes sign, with with B =

√
2M . The domain wall is located at r⊥ = 0

with B −∆ = G > 0 for r⊥ > 0 and B −∆ = −G < 0 for r⊥ < 0.

We split the momentum in a component along the domain wall kw and a momentum
component orthogonal to the wall k⊥. The momentum along the wall kw is still a good
quantum number since translational symmetry along the wall is unbroken. Then the
Hamiltonian takes the form

ĥi(k) = (vi,wkw + vi,⊥k⊥)τzρz + ∆τx −Bρy , (5.47)

with vi,w = vQi · ŵ and vi,⊥ = vQi · ŵ⊥. The solutions to k⊥ are given by the
Schrödinger equation vi,⊥k⊥ = −vi,wkw − ı(Bτzρx + ∆τyρz) as follows

k⊥ = −vi,wkw/vi,⊥ − ı(B + ∆)/vi,⊥ , φ = 1
2(ı, ı,−1, 1)ᵀ , (5.48)

k⊥ = −vi,wkw/vi,⊥ + ı(B + ∆)/vi,⊥ , φ = 1
2(ı,−ı, 1, 1)ᵀ , (5.49)

k⊥ = −vi,wkw/vi,⊥ − ı(B −∆)/vi,⊥ , φ = 1
2(ı, ı, 1,−1)ᵀ , (5.50)

k⊥ = −vi,wkw/vi,⊥ + ı(B −∆)/vi,⊥ , φ = 1
2(−ı, ı, 1, 1)ᵀ . (5.51)

The relevant solutions decay for r⊥ → ±∞. For r⊥ < 0 the these solutions satisfy
Im k⊥ < 0 and for r⊥ > 0 the solutions satisfy Im k⊥ > 0.
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The full solution on either side of the domain wall takes the form

Φ = 1
N
eıkw(rw−r⊥vi,⊥/vi,⊥)e−G|r⊥/vi,⊥|

1
2 (ı sign(vi,⊥), ı, 1, − sign(vi,⊥))ᵀ (5.52)

with normalization constant N . Given those, the wavefunction of the electronic part
on the left φ−e,kw (r⊥ < 0) and on the right φ+

e,kw
(r⊥ > 0) reads as

φ±e,kw(r) = 1
2N

∑
i

eıkw(rw−r⊥vi,w/vi,⊥)e−G|r⊥/vi,⊥| (5.53)

× a±i,kw

{
eıQi·r/2

(
ı sign(vi,⊥)Akwŵ+Qi/2

ı sign(vi,⊥)Bkwŵ+Qi/2

)
+ e−ıQi·r/2

(
ıAkwŵ−Qi/2

ıBkwŵ−Qi/2

)}
.

The hole part of the wavefunction φ±h,kw can be recovered by charge-conjugation
symmetry of the Bogoliubov-de Gennes Hamiltonian.
In the next step, the wavefunctions on the left and the right must be matched at

r⊥ = 0, where we assume that the superconducting phase and the magnetic order do
not change over the domain wall. Here the question is whether the wavefunctions for
the different vectors Qi mix. One finds that for the domain wall angle ω = nπ/6 two
of the velocities |vi,w| become equal leading to a mixing. For ω = (2n + 1)π/12 the
velocities become maximally different. Furthermore for ŵ ‖ Qi the subsystem i does
not support a Majorana mode.
In the case of maximally different velocities one finds the coefficient ai,kw = a±i,kw .

In the case of other angles the coefficients are determined by a system of coupled
equations. However the determinant of this system of equations is zero such that the
solutions can always be written in the decoupled form

φ±e,kw,i(r) = ai,kw
2N eıkw(rw−r⊥vi,w/vi,⊥)e−G|r⊥/vi,⊥| (5.54)

×
{
eıQi·r/2

(
sign(vi,⊥)Akwŵ+Qi/2

sign(vi,⊥)Bkwŵ+Qi/2

)
+ e−ıQi·r/2

(
Akwŵ−Qi/2

Bkwŵ−Qi/2

)}
.

Since the flat bands are highly degenerate we proceed with a discussion of possible
interaction effects.

5.4.2 Interaction effects on the flat bands

The arising flat bands are susceptible to interaction effects due to their high degeneracy.
We proceed by considering the interaction present in the given system, which is a
repulsive Hubbard interaction, also responsible for the stabilization of the magnetic
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texture. The Hubbard interaction has the form

H = U

∫
dr ψ†↑(r)ψ↑(r)ψ†↓(r)ψ↓(r) . (5.55)

The goal is to replace the fermionic field operators with Majorana operators. For this
purpose we project the fermionic operators onto the Majorana operators. The fermionic
operators are decomposed in the relevant Fourier components as follows

Ψ(rw, r⊥) =
∑

i=1,2,3

∫ dkw
2π eıkwrw

×
[
eıQi·r/2Ψkwŵ+Qi/2(r⊥) + e−ıQi·r/2Ψkwŵ−Qi/2(r⊥)

]
, (5.56)

Ψi,kw(r⊥) =
∫

drw
[
eıQi·r/2Ψkwŵ+Qi/2(r⊥) + e−ıQi·r/2Ψkwŵ−Qi/2(r⊥)

]
. (5.57)

Replacing the electronic operators Ψi,kw(r⊥) with the Majorana operators γi(kw) and
mean-field decoupling the interaction in the most-relevant zero-momentum channel
yields a Hamiltonian for three Majorana bands γi(kw) of the general form

H3MF =
∫ Λ

−Λ
dkw


γ1(−kw)
γ2(−kw)
γ3(−kw)


ᵀ

f1(kw) m12(kw) m13(kw)
m21(kw) f2(kw) m23(kw)
m31(kw) m32(kw) f3(kw)



γ1(kw)
γ2(kw)
γ3(kw)

 . (5.58)

The Majorana operators satisfy {γi(−kw), γj(k′w)} = δijδ(kw − k′w) which implies the
relations fi(kw) = −fi(−kw) and mij(kw) = −mji(−kw) on the matrix elements.

Given these relations the matrix elements can be approximated at first order to
fi(kw) ≈ αikw andmij(kw) = −mji(−kw) ≈ const. This leads to two possible outcomes:
Either the flat bands are tilted and transformed into chiral bands to the diagonal
elements or a gap opens because of the off-diagonal matrix elements.

As an example, we present the case where only two subsystems give rise to Majorana
flat bands. In this case the Hamiltonian reduces to

H2MF =
∫ Λ

−Λ
dkw

(
γ1(−kw)
γ2(−kw)

)ᵀ(
(J + δ)kw −ım

ım (J − δ)kw

)(
γ1(kw)
γ2(kw)

)
. (5.59)

We introduce the eigenenergies of the bands ε±,kw = Jkw ±
√
δ2k2

w +m2.

We illustrate the possible modifications of the dispersion in Fig. 5.7. The Majorana
bands are tilted by J , acquiring a chiral character. δ corresponds to a tilting of the
bands relative to each other or a bending and m leads to a gap opening.
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Figure 5.7: Modified dispersion of two Majorana flat bands

5.5 Summary and conclusion

In this chapter we discussed a heterostructure consisting of a magnetic layer with
spin-orbit coupling and a conventional superconductor. We derived a free energy theory
describing the coupled systems. Given this theory we introduced the various feedback
effects between the systems.

Then we considered a more specific model, based on a Bi-based topological insulator.
We derived the modified susceptibility and computed the magnetic gap in a self-
consistent manner. Furthermore we considered a multipolar supercurrent distribution
appearing in the superconductor due to the coupling. In particular, the skyrmion
lattice may lead to a characteristic pattern of supercurrents.
After that we analyzed the topological properties of the given system. We demon-

strated that a magnetic topological insulator in proximity to a conventional super-
conductor indeed allows to engineer a C3-symmetric topological superconductor. We
discussed Majorana flat bands which appear as low energy excitations at a domain
wall where B − ∆ changes sign. Here ∆ is the proximity induced superconducting
gap and B is the intrinsic magnetic field due to the magnetic texture. The number
of Majorana flat bands depends on the orientation of the wall. Since flat bands are
generally unstable in the presence of interactions we discussed interaction effects on
the bands, which can lead a modification of the flat dispersion, resulting in tilted or
gapped bands.
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6 Chapter 6

Conclusion and outlook

In this thesis we studied heterostructures with interaction-driven magnetic ordering
and superconductivity. We analyzed magnetic adatom chains and transport through
Majorana bound states. Furthermore we considered topological insulator surface states
with the tendency for magnetic ordering, which can provide a platform for Majorana
setups. For this purpose the topological insulator must be combined with a conventional
superconductor, resulting in a topological superconductor.

More precisely, in Chapter 3 we studied chains of magnetic adatoms, placed on
a superconducting substrate. The adatoms order via a substrate-mediated RKKY
interaction [2]. Within the topological phase diagram, there are topologically non-
trivial regimes, which support either one or two Majorana bound states per end of the
chain. The two Majorana bound states are protected by chiral symmetry which can be
selectively broken by external fields. This feature provides an experimental knob in
the detection of Majorana bound states in engineered topological superconductors.

In Ref. [3] we calculated the tunneling conductance, which is expected in a magnetic
adatom chain in ferromagnetic ordering. In the phase with two Majorana bound states
a tunneling conductance of 4e2/h is expected, which should reduce to 2e2/h for a
single Majorana bound state. In particular, the breaking of chiral symmetry should be
observable in the tunneling conductance experiments.

A more important aspect is, that the Majorana bound states, hosted in Yu-Shiba-
Rusinov chains, show a spin character which can be revealed in spin-polarized tunneling
conductance measurements, when a scanning tunneling microscope with spin-polarized
tip is used. The analysis of the tunneling conductance using a spin-polarized tip was
the main focus of our analysis. We found that tunneling conductance measurements
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can show an asymmetry if the Majorana bound states at both ends of the chain are
probed.
Experiments with magnetic adatom chains have been performed [6] and further

experiments are planned, also with a focus on the spin polarization. Interestingly, the
quantization 2e2/h was found just recently in a semiconductor based setup [7]. In our
work, we included more complex setups involving multiple chains coupled via Josephson
junctions. The discussed extensions are currently out of reach experimentally in the
case of adatom chains, but we are optimistic that this will change in the future.

Potentially our work could be extended to networks of topological Yu-Shiba-Rusinov
chains with braiding capabilities, to provide the ultimate Majorana signature by
demonstrating non-abelian statistics [43]. This would at the same time demonstrate
the feasibility of topological quantum computation using Majorana bound states.
In Chapter 4 we focused on topological insulator surface states with the tendency

for magnetic ordering. Topological insulators are characterized by their surface states,
which are a consequence of the bulk topology. On the other hand, the bulk of
the material is insulating with a bulk gap. There are experiments, showing these
characteristic properties of topological insulators [99, 121].
For the Bi2Te3 compound, the Fermi surface shows hexagonal warping depending

on the chemical potential, which is controlled by doping the material. In particular the
chemical potential can be tuned to a special value µhex, where the Fermi surface forms
a nearly perfect hexagon. In this case, three dominant wavevectors Q1,2,3 connect the
nested flat sides of the Fermi surface. These wavevectors correspond to three magnetic
order parameters M1,2,3.
In our work we analyzed the possible magnetic phases in a microscopically-derived

Landau theory in the presence of a repulsive Hubbard interaction. The second order
of the theory, corresponding to the susceptibility, fixes the direction of the magnetic
order parameters. At fourth order the Landau theory determines whether a magnetic
phase with one order parameter M i or all three order parameters M1,2,3 dominates.
As a result we showed that for a chemical potential in the vicinity of µhex the phase
with all three M1,2,3 is favored [1].

At sixth order, one additional phase degree of freedom Φz is fixed, while two massless
Goldstone phasons remain unfixed, as expected by the spontaneous symmetry breaking
of translational symmetry. The fixed phase Φz leads to a topologically non-trivial
skyrmion phase, which constitutes the dominant ground state for chemical potential
µhex [1]. The skyrmion texture is composed by the linear superposition of three helical
spin density waves, rotated by 2π/3.
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The presence of helical magnetism is useful to build topological superconductors
supporting Majorana fermions, by combining the magnetic material with a conventional
superconductor. However for the material to transit to the magnetic phase a sufficiently
strong interaction must be present. While currently no materials of this family are
known providing such an interaction, the mechanism to generate a skyrmion texture
is general. In experiment, it could be helpful to stabilize the skyrmion texture by
coupling to external fields. In particular we found that a magnetic field Bz, orthogonal
to the topological insulator surface, couples directly to the skyrmion charge. Possible
extensions of our work include different types of skyrmion lattices for different point
group symmetries and the study of the dynamics of the magnetic texture.

Chapter 5 extends our work on magnetic topological insulator surfaces. We consid-
ered a heterostructure formed from a magnetic layer and a conventional superconductor.
At first we derived a general theory applying to heterostructures of this type to gain
understanding of the feedback effects between the magnetic layer and the superconduc-
tor.

At first order, the superconductor induces a superconducting gap in the magnetic
layer, the superconducting proximity effect. This superconducting gap competes with
the magnetic order of the magnetic layer. The are higher order feedback effects,
including possible staggered superconducting correlations due to the magnetic texture
and multipolar supercurrent distributions occurring at the interface between the
subsystems.

In the case of a heterostructure formed from a Bi-based topological insulator with
hexagonal warping, we analyzed the phase diagram of the magnetic gap self-consistently
in the presence of the superconducting gap. We derived a low energy model confirming
the possibility of topological superconductivity in this heterostructure [1]. In this case
the supercurrent distribution reflects the skyrmion charge of the underlying texture and
could act as a probe. We analyzed the phenomenon of topological superconductivity
in the given system in more detail. Additional to chiral edge modes, which occur
in topological superconductors built from two dimensional surfaces of topological
insulators, we found that due to the anisotropic structure of the low energy Hamiltonian,
Majorana flat bands can occur. The bands appear at domain walls where B − ∆
changes the sign, with B the intrinsic magnetic field due to the magnetic layer and
∆ the proximity-induced superconducting gap. The domain wall breaks translational
symmetry perpendicular to the wall, however along the wall Majorana flat bands
disperse.
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Since interactions are present in the system under consideration, the flat bands
may acquire a chiral dispersion and gap openings. Even very weak interactions are
of importance here, since flat bands are very susceptible to modification due to their
high degeneracy. Similar effects on Majorana flat bands are expected in comparable
topological systems with anisotropy, e.g., in an anisotropic p-wave superconductor.
The effects of interactions in flat band systems require further studies. In particular
strong interactions in topological systems pose many interesting research questions.
While there exists an exhaustive topological classification of topological insulators and
superconductors [89], for interacting systems such an exhaustive classification is still
out of reach.
Concerning the combination of superconductors with materials with non-trivial

magnetic texture, further work is needed to propose experiments based on existing
materials. Especially the expected feedback effects are of interest and perhaps relevant
for applications within spintronics or even ‘skyrmionics’. In particular the interplay of
Majorana states and skyrmions, which are both topological structures or of topological
origin, provides interesting perspectives for quantum information processing.
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A Appendix A

Appendices

A.1 Tunneling conductance for two coupled magnetic adatom
chains

We present the conductance formula in the form

dIi
dV = 2e2

h

N(eV )
D(eV ) . (A.1)

We introducedM =
√
m2
ad +M2

ab +M2
db and the denominator and nominator functions

D(ω) = ω6 + ω4
[
(Γiaa)2 + (Γidd)2 + 2 Re2 Γiad − 2M2

]
+ ω2

{[
ΓiaaΓidd − Re2 Γiad +M2

]2
− 2(Γiaa + Γidd)

[
ΓiaaM2

db + ΓiddM2
ab − 2(Re Γiad)MabMdb

]}
+ [ΓiaaM2

db + ΓiddM2
ab − 2(Re Γiad)MabMdb]2 , (A.2)

N(ω) = ω4
{

(Γiaa)2 + (Γidd)2 + 2
[
Re2 Γiad − Im2 Γiad

]}
+ 2ω2

[
ΓiaaΓidd − Re2 Γiad +m2

ad

] [
ΓiaaΓidd − |Γiad|2

]
− 2ω2

{[
(Γiaa)2 + Re2 Γiad − Im2 Γiad

]
M2
db +

[
(Γidd)2 + Re2 Γiad − Im2 Γiad

]
M2
ab

− 2(Γiaa + Γidd)(Re Γiad)MabMdb

}
+ [ΓiaaM2

db + ΓiddM2
ab − 2(Re Γiad)MabMdb]2 . (A.3)
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A.2 Magnetic order parameter classification of warped
topological insulators

We consider the case of a hexagonal FS and three dominant nesting vectors Q1,2,3.
Then we can classify linear combinations of the order parameters MQλ

= M∗
−Qλ ≡

(Mλx, Mλy, Mλz)ᵀ for λ = 1, 2, 3, which transform under the point group representa-
tions A1, A2 and E of the point group C3v. The axial vector Mq transforms under a
group operation G ∈ C3v as GMq ≡ D̂−GMG−1q.

We define the following 18-dimensional basis in terms of the original order parameters

Mᵀ ≡
(
Mᵀ

Q1
, Mᵀ

−Q1
, Mᵀ

Q2
, Mᵀ

−Q2
, Mᵀ

Q3
, Mᵀ

−Q3

)
≡
(
M1x, M1y, M1z, M∗1x, M∗1y, M∗1z, . . .

)
, (A.4)

M † = [13 ⊗ ρx ⊗ 13] ·Mᵀ =
(
M∗1x, M∗1y, M∗1z, M1x, M1y, M1z, . . .

)
. (A.5)

The 18-dimensional space can be decomposed in the λ, ρ and axial part. Rotations in
the 3D λ space connect the different M1,2,3. Transformations in 2D ρ space connect
the order parameters ±Qi.

To perform the classification we have to consider the action of the point group
operations G ∈ C3v on the magnetic order parameters. The representations D̂M (G)
acting in the basis M are given as

D̂M (C3) = D̂λ(C3)⊗ 12 ⊗ D̂−C3
and D̂M (σv)= D̂λ(σv)⊗ ρx ⊗ D̂−σv . (A.6)

The representations of the point group operations in λ space are given by the represen-
tations

D̂λ(C3) =


0 0 1
1 0 0
0 1 0

 and D̂λ(σv) =


1 0 0
0 0 1
0 1 0

 . (A.7)

This form can be obtained by considering how the Q vectors transform under the group
operations. The rotation C3 rotates the wave vector Q1 to Q2, etc.. The reflection at
the yz plane reflects Q1 → −Q1 and Q2,3 → −Q3,2.
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In order to connect the order parameters to the ones, which can appear in a
Hamiltonian, we represent them in the real basisMR

q

M I
q

 ≡ 1√
2

(
1 1
−ı ı

)
·
(
Mq

M−q

)
. (A.8)

To complete the symmetry analysis, we write the linear combinations of the order
parameters, which transform according to respective representations of the point
group. The two-dimensional E representations are formed by (Mx,i,My,i). The
representations i = 1, 2, 3 are chosen is such a way that they transform like a (kx, ky)
vector. The representations i = 4, 5, 6 are chosen to transform like (−ky, kx).

MA1,1 = 1/
√

12
(
−2MR

1x +MR
2x +MR

3x −
√

3MR
2y +

√
3MR

3y

)
, (A.9)

MA1,2 = 1/
√

12
(
−
√

3M I
2x +

√
3M I

3x + 2M I
1y −M I

2y −M I
3y

)
, (A.10)

MA1,3 = 1/
√

3
(
M I

1z +M I
2z +M I

3z

)
, (A.11)

MA2,1 = 1/
√

12
(
2M I

1x −M I
2x −M I

3x +
√

3M I
2y −

√
3M I

3y

)
, (A.12)

MA2,2 = 1/
√

12
(
−
√

3MR
2x +

√
3MR

3x + 2MR
1y −MR

2y −MR
3y

)
, (A.13)

MA2,3 = 1/
√

3
(
MR

1z +MR
2z +MR

3z

)
, (A.14)

Mx,1 = 1/
√

24
(
−
√

3MR
2x +

√
3MR

3x + 3MR
2y + 3MR

3y

)
, (A.15)

My,1 = 1/
√

24
(
−4MR

1x −MR
2x −MR

3x +
√

3MR
2y −

√
3MR

3y

)
, (A.16)

Mx,2 = 1/
√

24
(
3M I

2x + 3M I
3x +

√
3M I

2y −
√

3M I
3y

)
, (A.17)

My,2 = 1/
√

24
(√

3M I
2x −

√
3M I

3x + 4M I
1y +M I

2y +M I
3y

)
, (A.18)

Mx,3 = 1/
√

2
(
M I

3z −M I
2z

)
, (A.19)

My,3 = 1/
√

6
(
2M I

1z −M I
2z −M I

3z

)
, (A.20)

Mx,4 = 1/
√

24
(√

3M I
2x −

√
3M I

3x − 3M I
2y − 3M I

3y

)
, (A.21)

My,4 = 1/
√

24
(
4M I

1x +M I
2x +M I

3x −
√

3M I
2y +

√
3M I

3y

)
, (A.22)

Mx,5 = 1/
√

24
(
3MR

2x + 3MR
3x +

√
3MR

2y −
√

3MR
3y

)
, (A.23)

My,5 = 1/
√

24
(√

3MR
2x −

√
3MR

3x + 4MR
1y +MR

2y +MR
3y

)
, (A.24)

Mx,6 = 1/
√

2
(
MR

3z −MR
2z

)
, (A.25)

My,6 = 1/
√

6
(
2MR

1z −MR
2z −MR

3z

)
. (A.26)
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Figure A.1: Largest susceptibility eigenvalue for momentum transfers along two different
high-symmetry lines shown in (a,d). Figures (b,c) show the susceptibility
of the upper helicity band and figures (c,f) the full susceptibility of both
bands.

A.3 Magnetic susceptibility of warped topological insulators

We performed a scan of the parameter space for a wide range of the chemical potential
and for different temperatures. We cover the regimes from circular via hexagonal to
snowflake-like and focus on momentum transfers along high-symmetry lines, which
yield the highest contributions to the susceptibility.

Two flat sides of the Fermi surface for a given chemical potential have the distance
2k0. Using the equation for the Fermi surface Eq. (4.8) we can find the connecting
wavevectors and distances d0,1,2 between the corners of the Fermi surface. We illustrate
the wavevectors in Fig. A.1(a,d). The distances are given by

d0 = 2µ sin(π/6) = µ , (A.27)

d1 = 2µ sin(π/3) =
√

3µ , (A.28)

d2 = 2k(π/6, µ) = 2µ . (A.29)

Furthermore Fig. A.1(a,d) shows the spin susceptibility for T = 0 as a function of µ
and the modulus of two vectors q = q(1, 0) and q′ = q′(

√
3/2, 1/2), both running along

high-symmetry lines in momentum space and connecting sides or corners respectively.
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Figure A.2: All three susceptibility eigenvalues and spherical angles ν and ζ of the
magnetization direction depending on chemical potentials at temperature
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potential µhex, where the Fermi surface is hexagonal.
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Scanning the parameters simultaneously allows to determine the optimal relations for
µ(q) and µ(q′), which maximize the spin susceptibility. In the plots of Fig. A.1(b,c,e,f)
the dominant features are the two ridges where the susceptibility is higher than at other
parts of the parameter space. These ridges can be attributed to scattering processes
between sides of the Fermi surface and corners with high density of states.
For instance in Fig. A.1(b,c) the dominant ridge in the susceptibility is along the

quartic curve µ = (q/2)
√

1 + (q/2)4 with q = 2k0 which is due to the scattering process
along the nesting vector connecting the approximately flat parts of the Fermi surface.
The subdominant ridge which goes along the line µ = q/

√
3 = d1/

√
3 and arises due to

the nesting of the high density of states corners of the Fermi surface connected by the
mirror symmetries (x, y) 7→ (x,−y).

In Fig. A.1(e,f) there is one ridge along the line µ = q′ = d0, originating from nested
neighboring corners of the Fermi surface. The subleading linear ridge along the line
µ = q′/2 = d2/2 is due to nesting between opposite corners connected by the reflection
(x, y) 7→ (−x,−y). The arising nonlinear ridge is related to the nesting of Fermi surface
edges in the snowflake like regime which bend outwards for higher values of µ.
In Fig. A.2(a,c) we show the three spin susceptibility eigenvalues for the most

dominant ridge µ = k0
√

1 + k4
0 and the dominant nesting vector Q1 = 2k0(1, 0). The

plots of (a) and (c) correspond to the temperatures T = 0 and T = 0.01, respectively.
Rescaling with the energy scale yields the temperature in Kelvin. For Bi2Te3 the
temperature value T = 0.01 corresponds to 30 K.

The solid curves in the plot show the susceptibility due to all bands and the dashed
lines correspond to the upper helicity intraband contribution. The lower helicity
intraband contribution is negligible. The largest spin susceptibility eigenvalue is two or
three times larger that the remaining two, which justifies to consider only the dominant
magnetic order.

The dashed vertical line is at the chemical potential µ = µhex which corresponds to
the relevant scenario of hexagonal Fermi surface. We also analyzed the stability of the
magnetization direction as can be seen in Fig. A.2(d). In spite of the fact that the
susceptibility decreases with temperature, the magnetization direction stays more or
less stable.

A.4 Free energy coefficients of warped topological insulators

In this appendix we present the details on how to compute the coefficients of the
Landau expansion. The coefficients obtained here are computed numerically. The free
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energy up to fourth order has the form

F (4) = α
3∑
i=1
|Mi|2 + β1

2

3∑
i=1
|Mi|4 + β2

∑
i<j

|Mi|2|Mj |2 . (A.30)

Furthermore we consider the decisive sixth order parameter of the form

F (6)
Φz

= η(M1M2M3)2 + η(M∗1M∗2M∗3 )2 = 2η|M1M2M3|2 cos (2Φz) . (A.31)

By deriving these free energy terms with respect to the order parameters M1,2,3 we
obtain the coefficients

α(U = 0) = ∂2F
∂M1∂M

∗
1

∣∣∣∣∣
M1,2,3=0

= Π(2)(Q1,−Q1) , (A.32)

2β1 = ∂4F
(∂M1∂M

∗
1 )2

∣∣∣∣∣
M1,2,3=0

= 1
4
∑
σ∈S4

Π(4) (σ(Q1,−Q1,Q1,−Q1)) , (A.33)

β2 = ∂4F
∂M1∂M

∗
1∂M2∂M

∗
2

∣∣∣∣∣
M1,2,3=0

= 1
4
∑
σ∈S4

Π(4) (σ(Q1,−Q1,Q2,−Q2)) , (A.34)

8η = ∂6F
(∂M1∂M2∂M3)2

∣∣∣∣∣
M1,2,3=0

= 1
6
∑
σ∈S6

Π(6) (σ(Q1,Q2,Q3,Q1,Q2,Q3)) . (A.35)

Here Π(n) are correlation functions of order n. σ ∈ Sn denotes permutations of the
arguments to this function. The correlation functions are given by

Π(2)(q1, q2) =
∑
s1,2

∫ dk
(2π)2 S

(2)(ε) tr
{
Ps1(k)σq1Ps2(k + q2)σq2

}
, (A.36)

Π(4)(q1, . . . , q4) =
∑

s1,2,3,4

∫ dk
(2π)2 S

(4)(ε) tr
{
Ps1(k)σq1Ps2(k−q1)σq2Ps3(k−q1−q2)

σq3Ps4(k+q4)σq4

}
, (A.37)

Π(6)(q1, . . . , q6) =
∑
s1,...,6

∫ dk
(2π)2 S

(6)(ε) tr
{
Ps1(k)σq1Ps2(k−q1)σq2Ps3(k−q1−q2)

σq3Ps4(k+q4+q5+q6)σq4Ps5(k+q5+q6)σq5Ps6(k+q6)σq6

}
, (A.38)

where we used the shorthand notation σq ≡ M̂q · σ and introduced the Matsubara
summation as separate functions S(2,4,6)(ε) with the pole structure.
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The Matsubara sums take the general form

S(m1 × ε1, . . . ,mµ × εµ) = 1
β

∑
kn

µ∏
ν=1

1
(ıkn − εν)mν

=
µ∑
ν=1

1
(mν − 1)!

∂mν−1

∂εmν−1
ν

nF (εν)
∏
ρ6=ν

1
(εν − ερ)mρ

 , (A.39)

where εi 6= εj are pairwise different energies and mν denotes the multiplicities of the
arguments and the poles. In the simplest case of single poles (mν = 1 for all ν), the
sum reduces to

S(ε1, . . . , εµ) =
µ∑
ν=1

nF (εν)
∏
ρ6=ν

1
εν − ερ

. (A.40)

The second order correlation function α corresponds to the susceptibility. The explicit
form is given by

χabq,s,s′ = −
∫ dk

(2π)2
nF (εk,s)− nF (εk+q,s′)

εk,s − εk+q,s′
〈k, s|σa|k + q, s′〉 〈k + q, s′|σb|k, s〉

= −1
2

∫ dk
(2π)2

nF (εk,s)− nF (εk+q,s′)
εk,s − εk+q,s′

×
{
δab
[
1− ss′ĝm(k)ĝm(k + q)

]
+ ıεabm

[
sĝm(k)− s′ĝm(k + q)

]
+ ss′

[
ĝa(k)ĝb(k + q) + ĝa(k + q)ĝb(k)

]}
. (A.41)

146



Bibliography

1. Mendler, D., Kotetes, P. & Schön, G. Magnetic order on a topological insulator
surface with warping and proximity-induced superconductivity. Phys. Rev. B
91, 155405 (2015).

2. Heimes, A., Mendler, D. & Kotetes, P. Interplay of topological phases in magnetic
adatom-chains on top of a Rashba superconducting surface. New J. Phys. 17,
023051 (2015).

3. Kotetes, P., Mendler, D., Heimes, A. & Schön, G. Majorana fermion fingerprints
in spin-polarised scanning tunnelling microscopy. Physica E 74, 614 (2015).

4. Mendler, D. Topological phases in systems with coexisting density waves and
superconductivity Diploma thesis (Karlsruhe Institute of Technology, 2013).

5. Mourik, V., Zuo, K., Frolov, S. M., Plissard, S. R., Bakkers, E. P. A. M. &
Kouwenhoven, L. P. Signatures of Majorana Fermions in Hybrid Superconductor-
Semiconductor Nanowire Devices. Science 336, 1003 (2012).

6. Nadj-Perge, S., Drozdov, I. K., Li, J., Chen, H., Jeon, S., Seo, J., MacDonald,
A. H., Bernevig, B. A. & Yazdani, A. Observation of Majorana fermions in
ferromagnetic atomic chains on a superconductor. Science 346, 602 (2014).

7. Nichele, F., Drachmann, A. C. C., Whiticar, A. M., O’Farrell, E. C. T., Suominen,
H. J., Fornieri, A., Wang, T., Gardner, G. C., Thomas, C., Hatke, A. T.,
Krogstrup, P., Manfra, M. J., Flensberg, K. & Marcus, C. M. Scaling of Majorana
Zero-Bias Conductance Peaks. arXiv: 1706.07033 (2017).

8. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi
44, 131 (2001).

9. Thouless, D., Kohmoto, M., Nightingale, M. & den Nijs, M. Quantized Hall
Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 49, 405
(1982).

10. Kohmoto, M. Topological invariant and the quantization of the Hall conductance.
Annals of Physics 160, 343 (1985).

147

http://arxiv.org/abs/1706.07033


Bibliography

11. Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic
normal-superconducting hybrid structures. Phys. Rev. B 55, 1142 (1997).

12. Kitaev, A. Periodic table for topological insulators and superconductors. AIP
Conf. Proc. 1134, 22 (2009).

13. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys.
82, 3045 (2010).

14. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod.
Phys. 83, 1057 (2011).

15. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys.
80, 076501 (2017).

16. Klitzing, K., Dorda, G. & Pepper, M. New Method for High-Accuracy Deter-
mination of the Fine-Structure Constant Based on Quantized Hall Resistance.
Phys. Rev. Lett. 45, 494 (1980).

17. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-Dimensional Magnetotransport
in the Extreme Quantum Limit. Phys. Rev. Lett. 48, 1559 (22 1982).

18. Tong, D. Lectures on the Quantum Hall Effect. arXiv: 1606.06687 (2016).

19. Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels:
Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 61,
2015 (1988).

20. Skyrme, T. H. R. A Non-Linear Theory of Strong Interactions. Proc. Royal Soc.
A 247, 260 (1958).

21. Qi, X., Hughes, T., Raghu, S. & Zhang, S. Topological Superconductivity and
Superfluidity. Phys. Rev. Lett. 102, 187001 (2009).

22. Kane, C. L. & Mele, E. J. Z2 Topological Order and the Quantum Spin Hall
Effect. Phys. Rev. Lett. 95, 146802 (2005).

23. Kane, C. L. & Mele, E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev.
Lett. 95, 226801 (2005).

24. Bernevig, B. A. & Zhang, S.-C. Quantum Spin Hall Effect. Phys. Rev. Lett. 96,
106802 (2006).

25. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum Spin Hall Effect and
Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757 (2006).

148

http://arxiv.org/abs/1606.06687


Bibliography

26. König, M., Wiedmann, S., Brune, C., Roth, A., Buhmann, H., Molenkamp, L. W.,
Qi, X.-L. & Zhang, S.-C. Quantum Spin Hall Insulator State in HgTe Quantum
Wells. Science 318, 766 (2007).

27. Volovik, G. The Superfluid Universe. arXiv: 1004.0597v2 (2012).

28. Kallin, C. Chiral p-wave order in Sr2RuO4. Rep. Prog. Phys. 75, 042501 (2012).

29. Penrose, R. Role of aesthetics in pure and applied research. Bull. Inst. Math.
Appl. 10, 266 (1974).

30. De Bruijn, N. G. Algebraic theory of Penrose’s non-periodic tilings of the plane,
I, II. Indag. Math. 84, 39 (1981).

31. Cotton, F. Chemical applications of group theory (Wiley, 1990).

32. Wigner, E. P. & Dirac, P. A. M. On the statistical distribution of the widths
and spacings of nuclear resonance levels. Math. Proc. Camb. Philos. Soc. 47,
790 (1951).

33. Dyson, F. J. Statistical Theory of the Energy Levels of Complex Systems. I. J.
Math. Phys. 3, 140 (1962).

34. Kotetes, P. Classification of engineered topological superconductors. New J. Phys.
15, 105027 (2013).

35. Karoubi, M. K-theory: An introduction (Springer, 2008).

36. Hatcher, A. Algebraic Topology 5259 (Cambridge University Press, 2002).

37. Melrose, R. B. The Atiyah-Patodi-singer index theorem (AK Peters Wellesley,
1993).

38. Kaufmann, R. M., Li, D. & Wehefritz-Kaufmann, B. Notes on topological
insulators. Rev. Math. Phys. 28, 1630003 (2016).

39. Schechter, J. & Valle, J. W. F. Neutrinoless double-β decay in SU(2)×U(1)
theories. Phys. Rev. D 25, 2951 (11 1982).

40. Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological
quantum computation. npj Quantum Information (2015).

41. Rao, S. An anyon primer. arXiv: hep-th/9209066 (1992).

42. Rainis, D. & Loss, D. Majorana qubit decoherence by quasiparticle poisoning.
Phys. Rev. B 85, 174533 (2012).

43. Alicea, J., Oreg, Y., Refael, G., Von Oppen, F. & Fisher, M. P. Non-Abelian
statistics and topological quantum information processing in 1D wire networks.
Nat. Phys. 7, 412 (2011).

149

http://arxiv.org/abs/1004.0597v2
http://arxiv.org/abs/hep-th/9209066


Bibliography

44. Dawson, C. M. & Nielsen, M. A. The Solovay-Kitaev Algorithm. Quantum Info.
Comput. 6, 81 (2006).

45. Trebst, S., Troyer, M., Wang, Z. & Ludwig, A. W. W. A Short Introduction to
Fibonacci Anyon Models. Prog. Theor. Phys. 176, 384 (2008).

46. Aasen, D., Hell, M., Mishmash, R. V., Higginbotham, A., Danon, J., Leijnse, M.,
Jespersen, T. S., Folk, J. A., Marcus, C. M., Flensberg, K. & Alicea, J. Milestones
Toward Majorana-Based Quantum Computing. Phys. Rev. X 6, 031016 (2016).

47. Sato, M., Tanaka, Y., Yada, K. & Yokoyama, T. Topology of Andreev bound
states with flat dispersion. Phys. Rev. B 83, 224511 (2011).

48. Li, Y., Wang, D. & Wu, C. Spontaneous breaking of time-reversal symmetry
in the orbital channel for the boundary Majorana flat bands. New J. Phys. 15,
085002 (2013).

49. Sedlmayr, N., Aguiar-Hualde, J. & Bena, C. Flat Majorana bands in two-
dimensional lattices with inhomogeneous magnetic fields: Topology and stability.
Phys. Rev. B 91, 115415 (2015).

50. Volovik, G. E. Flat band in the core of topological defects: bulk-vortex corre-
spondence in topological superfluids with Fermi points. JETP letters 93, 66
(2011).

51. Heikkilä, T. T., Kopnin, N. B. & Volovik, G. E. Flat bands in topological media.
JETP letters 94, 233 (2011).

52. Wong, C. L. M., Liu, J., Law, K. T. & Lee, P. A. Majorana flat bands and
unidirectional Majorana edge states in gapless topological superconductors. Phys.
Rev. B 88, 060504 (2013).

53. Deng, S., Ortiz, G., Poudel, A. & Viola, L. Majorana flat bands in s-wave gapless
topological superconductors. Phys. Rev. B 89, 140507 (2014).

54. Yuan, N., Wong, C. & Law, K. Probing Majorana flat bands in nodal d-wave
superconductors with Rashba spin-orbit coupling. Physica E 55, 30 (2014).

55. Brydon, P. M. R., Schnyder, A. P. & Timm, C. Topologically protected flat
zero-energy surface bands in noncentrosymmetric superconductors. Phys. Rev.
B 84, 020501 (2011).

56. Brydon, P., Timm, C. & Schnyder, A. P. Interface currents in topological
superconductor–ferromagnet heterostructures. New J. Phys. 15, 045019 (2013).

150



Bibliography

57. Schnyder, A. P. & Ryu, S. Topological phases and surface flat bands in super-
conductors without inversion symmetry. Phys. Rev. B 84, 060504 (2011).

58. Schnyder, A. P., Brydon, P. M. R. & Timm, C. Types of topological surface
states in nodal noncentrosymmetric superconductors. Phys. Rev. B 85, 024522
(2012).

59. Schnyder, A. P., Timm, C. & Brydon, P. M. R. Edge Currents as a Signature of
Flatbands in Topological Superconductors. Phys. Rev. Lett. 111, 077001 (2013).

60. Chang, P.-Y., Matsuura, S., Schnyder, A. P. & Ryu, S. Majorana vortex-bound
states in three-dimensional nodal noncentrosymmetric superconductors. Phys.
Rev. B 90, 174504 (2014).

61. Nakosai, S., Tanaka, Y. & Nagaosa, N. Two-dimensional p-wave superconducting
states with magnetic moments on a conventional s-wave superconductor. Phys.
Rev. B 88, 180503 (2013).

62. Lababidi, M. & Zhao, E. Nearly flat Andreev bound states in superconductor-
topological insulator hybrid structures. Phys. Rev. B 86, 161108 (2012).

63. Potter, A. C. & Lee, P. A. Edge Ferromagnetism from Majorana Flat Bands:
Application to Split Tunneling-Conductance Peaks in High-Tc Cuprate Super-
conductors. Phys. Rev. Lett. 112, 117002 (2014).

64. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking
of parity and time-reversal symmetries and the fractional quantum Hall effect.
Phys. Rev. B 61, 10267 (2000).

65. Fu, L. & Kane, C. Superconducting Proximity Effect and Majorana Fermions at
the Surface of a Topological Insulator. Phys. Rev. Lett. 100, 096407 (2008).

66. Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological
phase transition in semiconductor-superconductor heterostructures. Phys. Rev.
Lett. 105, 077001 (2010).

67. Liquids, H. Majorana Bound States in Quantum Wires Oreg, Yuval; Refael, Gil;
von Oppen, Felix. Phys. Rev. Lett. 105, 177002 (2010).

68. Heimes, A., Kotetes, P. & Schön, G. Majorana fermions from Shiba states in an
antiferromagnetic chain on top of a superconductor. Phys. Rev. B 90, 060507
(2014).

69. Kjaergaard, M., Wölms, K. & Flensberg, K. Majorana fermions in superconduct-
ing nanowires without spin-orbit coupling. Phys. Rev. B 85, 020503 (2012).

151



Bibliography

70. Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical
magnets. Phys. Rev. B 85, 144505 (2012).

71. Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana
fermions emerging from magnetic nanoparticles on a superconductor without
spin-orbit coupling. Phys. Rev. B 84, 195442 (2011).

72. Flensberg, K. Tunneling characteristics of a chain of Majorana bound states.
Phys. Rev. B 82, 180516 (2010).

73. Jiang, L., Pekker, D., Alicea, J., Refael, G., Oreg, Y. & von Oppen, F. Uncon-
ventional Josephson signatures of Majorana bound states. Phys. Rev. Lett. 107,
236401 (2011).

74. Pawlak, R., Kisiel, M., Klinovaja, J., Meier, T., Kawai, S., Glatzel, T., Loss, D. &
Meyer, E. Probing atomic structure and Majorana wavefunctions in mono-atomic
Fe chains on superconducting Pb surface. npj Quantum Information 2, 16035
(2016).

75. Law, K. T., Lee, P. A. & Ng, T. K. Majorana Fermion Induced Resonant Andreev
Reflection. Phys. Rev. Lett. 103, 237001 (2009).

76. Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Zero-Bias Peaks in the Tunneling
Conductance of Spin-Orbit-Coupled Superconducting Wires with and without
Majorana End-States. Phys. Rev. Lett. 109, 267002 (2012).

77. Lee, E. J. H., Jiang, X., Houzet, M., Aguado, R., Lieber, C. M. & de Franceschi,
S. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-
semiconductor nanostructures. Nat. Nanotechnol. 9, 79 (2014).

78. Kjaergaard, M., Wölms, K. & Flensberg, K. Majorana fermions in superconduct-
ing nanowires without spin-orbit coupling. Phys. Rev. B 85, 020503 (2012).

79. Pöyhönen, K., Westström, A., Röntynen, J. & Ojanen, T. Majorana states in
helical Shiba chains and ladders. Phys. Rev. B 89, 115109 (2014).

80. Brydon, P. M. R., Das Sarma, S., Hui, H.-Y. & Sau, J. D. Topological Yu-Shiba-
Rusinov chain from spin-orbit coupling. Phys. Rev. B 91, 064505 (2015).

81. Li, J., Chen, H., Drozdov, I. K., Yazdani, A., Bernevig, B. A. & MacDonald, A. H.
Topological superconductivity induced by ferromagnetic metal chains. Phys. Rev.
B 90, 235433 (2014).

82. Ebisu, H., Yada, K., Kasai, H. & Tanaka, Y. Odd-frequency pairing in topological
superconductivity in a one-dimensional magnetic chain. Phys. Rev. B 91, 054518
(2015).

152



Bibliography

83. Peng, Y., Pientka, F., Glazman, L. I. & von Oppen, F. Strong Localization of
Majorana End States in Chains of Magnetic Adatoms. Phys. Rev. Lett. 114,
106801 (2015).

84. Hui, H.-Y., Brydon, P. M. R., Sau, J. D., Tewari, S. & Sarma, S. D. Majorana
fermions in ferromagnetic chains on the surface of bulk spin-orbit coupled s-wave
superconductors. Sci. Rep. 5, 8880 (2015).

85. Zhang, J., Kim, Y., Rossi, E. & Lutchyn, R. M. Topological superconductivity
in a multichannel Yu-Shiba-Rusinov chain. Phys. Rev. B 93, 024507 (2016).

86. Čadež, T. & Sacramento, P. D. Zero energy modes in a superconductor with
ferromagnetic adatom chains and quantum phase transitions. J. Phys. Condens.
Matter 28, 495703 (2016).

87. He, J. J., Ng, T. K., Lee, P. A. & Law, K. T. Selective Equal-Spin Andreev
Reflections Induced by Majorana Fermions. Phys. Rev. Lett. 112, 037001 (2014).

88. Yao, N. Y., Glazman, L. I., Demler, E. A., Lukin, M. D. & Sau, J. D. Enhanced
Antiferromagnetic Exchange between Magnetic Impurities in a Superconducting
Host. Phys. Rev. Lett. 113, 087202 (2014).

89. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators
and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12,
065010 (2010).

90. Tewari, S. & Sau, J. D. Topological Invariants for Spin-Orbit Coupled Supercon-
ductor Nanowires. Phys. Rev. Lett. 109, 150408 (2012).

91. Röntynen, J. & Ojanen, T. Topological Superconductivity and High Chern
Numbers in 2D Ferromagnetic Shiba Lattices. Phys. Rev. Lett. 114, 236803
(2015).

92. Romming, N., Hanneken, C., Menzel, M., Bickel, J. E., Wolter, B., von Bergmann,
K., Kubetzka, A. & Wiesendanger, R. Writing and Deleting Single Magnetic
Skyrmions. Science 341, 636 (2013).

93. Sticlet, D., Bena, C. & Simon, P. Spin and Majorana Polarization in Topological
Superconducting Wires. Phys. Rev. Lett. 108, 096802 (2012).

94. Romito, A., Alicea, J., Refael, G. & von Oppen, F. Manipulating Majorana
fermions using supercurrents. Phys. Rev. B 85, 020502 (2012).

95. Fu, L. & Kane, C. Topological insulators with inversion symmetry. Phys. Rev.
B 76, 045302 (2007).

153



Bibliography

96. Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z. & Zhang, S.-C. Topological
insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.
Nat. Phys. 5, 438 (2009).

97. Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J. & Hasan, M. Z.
A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970
(2008).

98. Hsieh, D., Xia, Y., Wray, L., Qian, D., Pal, A., Dil, J. H., Osterwalder, J.,
Meier, F., Bihlmayer, G., Kane, C. L., Hor, Y. S., Cava, R. J. & Hasan, M. Z.
Observation of Unconventional Quantum Spin Textures in Topological Insulators.
Science 323, 919 (2009).

99. Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., Zhang,
H. J., Lu, D. H., Dai, X., Fang, Z., Zhang, S. C., Fisher, I. R., Hussain, Z.
& Shen, Z.-X. Experimental Realization of a Three-Dimensional Topological
Insulator, Bi2Te3. Science 325, 178 (2009).

100. Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor,
Y. S., Cava, R. J. & Hasan, M. Z. Observation of a large-gap topological-insulator
class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009).

101. Brüne, C., Liu, C. X., Novik, E. G., Hankiewicz, E. M., Buhmann, H., Chen,
Y. L., Qi, X. L., Shen, Z. X., Zhang, S. C. & Molenkamp, L. W. Quantum Hall
Effect from the Topological Surface States of Strained Bulk HgTe. Phys. Rev.
Lett. 106, 126803 (2011).

102. Souma, S., Kosaka, K., Sato, T., Komatsu, M., Takayama, A., Takahashi, T.,
Kriener, M., Segawa, K. & Ando, Y. Direct Measurement of the Out-of-Plane
Spin Texture in the Dirac-Cone Surface State of a Topological Insulator. Phys.
Rev. Lett. 106, 216803 (2011).

103. Moore, J. & Balents, L. Topological invariants of time-reversal-invariant band
structures. Phys. Rev. B 75, 121306 (2007).

104. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal
invariant insulators. Phys. Rev. B 78, 195424 (2008).

105. Roy, R. Z2 classification of quantum spin Hall systems: An approach using
time-reversal invariance. Phys. Rev. B 79, 195321 (2009).

106. Ando, Y. Topological Insulator Materials. J. Phys. Soc. Jpn. 82, 102001 (2013).

107. Fu, L. Hexagonal Warping Effects in the Surface States of the Topological
Insulator Bi2Te3. Phys. Rev. Lett. 103, 266801 (2009).

154



Bibliography

108. Liu, C.-X., Qi, X.-L., Zhang, H., Dai, X., Fang, Z. & Zhang, S.-C. Model
Hamiltonian for topological insulators. Phys. Rev. B 82, 045122 (2010).

109. Alpichshev, Z., Analytis, J. G., Chu, J.-H., Fisher, I. R., Chen, Y. L., Shen, Z. X.,
Fang, A. & Kapitulnik, A. STM Imaging of Electronic Waves on the Surface of
Bi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects.
Phys. Rev. Lett. 104, 016401 (2010).

110. Wang, Y. H., Hsieh, D., Pilon, D., Fu, L., Gardner, D. R., Lee, Y. S. & Gedik,
N. Observation of a Warped Helical Spin Texture in Bi2Se3 from Circular
Dichroism Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 107,
207602 (2011).

111. Henk, J., Flieger, M., Maznichenko, I. V., Mertig, I., Ernst, A., Eremeev, S. V.
& Chulkov, E. V. Topological Character and Magnetism of the Dirac State in
Mn-Doped Bi2Te3. Phys. Rev. Lett. 109, 076801 (2012).

112. Kuroda, K., Arita, M., Miyamoto, K., Ye, M., Jiang, J., Kimura, A., Krasovskii,
E. E., Chulkov, E. V., Iwasawa, H., Okuda, T., Shimada, K., Ueda, Y., Namatame,
H. & Taniguchi, M. Hexagonally Deformed Fermi Surface of the 3D Topological
Insulator Bi2Se3. Phys. Rev. Lett. 105, 076802 (2010).

113. Jiang, J.-H. & Wu, S. Spin susceptibility and helical magnetic order at the
edges/surfaces of topological insulators due to Fermi surface nesting. Phys. Rev.
B 83, 205124 (2011).

114. Baum, Y. & Stern, A. Magnetic instability on the surface of topological insulators.
Phys. Rev. B 85, 121105 (2012).

115. Baum, Y. & Stern, A. Density-waves instability and a skyrmion lattice on the
surface of strong topological insulators. Phys. Rev. B 86, 195116 (2012).

116. Li, Z. & Carbotte, J. Hexagonal warping on optical conductivity of surface states
in topological insulator Bi2Te3. Phys. Rev. B 87, 155416 (2013).

117. Li, Z. & Carbotte, J. Magneto-optical conductivity in a topological insulator.
Phys. Rev. B 88, 045414 (2013).

118. Xiao, X. &Wen, W. Optical conductivities and signatures of topological insulators
with hexagonal warping. Phys. Rev. B 88, 045442 (2013).

119. Zhang, Y., He, K., Chang, C.-Z., Song, C.-L., Wang, L.-L., Chen, X., Jia, J.-F.,
Fang, Z., Dai, X., Shan, W.-Y., Shen, S.-Q., Niu, Q., Qi, X.-L., Zhang, S.-C.,
Ma, X.-C. & Xue, Q.-K. Crossover of the three-dimensional topological insulator
Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584 (2010).

155



Bibliography

120. Pan, Z.-H., Vescovo, E., Fedorov, A. V., Gardner, D., Lee, Y. S., Chu, S., Gu,
G. D. & Valla, T. Electronic Structure of the Topological Insulator Bi2Se3 Using
Angle-Resolved Photoemission Spectroscopy: Evidence for a Nearly Full Surface
Spin Polarization. Phys. Rev. Lett. 106, 257004 (2011).

121. Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J., Meier, F., Osterwalder, J., Patthey,
L., Checkelsky, J., Ong, N., Fedorov, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.,
Cava, R. & Hasan, M. A tunable topological insulator in the spin helical Dirac
transport regime. Nature 460, 1101 (2009).

122. Grüner, G. The dynamics of spin-density waves. Rev. Mod. Phys. 66, 1 (1994).

123. Schulz, H. Incommensurate antiferromagnetism in the two-dimensional Hubbard
model. Phys. Rev. Lett. 64, 1445 (1990).

124. Akhmerov, A., Nilsson, J. & Beenakker, C. Electrically Detected Interferometry
of Majorana Fermions in a Topological Insulator. Phys. Rev. Lett. 102, 216404
(2009).

125. Linder, J., Tanaka, Y., Yokoyama, T., Sudbø, A. & Nagaosa, N. Interplay
between superconductivity and ferromagnetism on a topological insulator. Phys.
Rev. B 81, 184525 (2010).

126. Alicea, J. New directions in the pursuit of Majorana fermions in solid state
systems. Rep. Prog. Phys. 75, 076501 (2012).

127. Beenakker, C. Search for Majorana Fermions in Superconductors. Annu. Rev.
Con. Mat. Phys. 4, 113 (2013).

128. Sacépé, B., Oostinga, J. B., Li, J., Ubaldini, A., Couto, N. J., Giannini, E.
& Morpurgo, A. F. Gate-tuned normal and superconducting transport at the
surface of a topological insulator. Nat. Comm. 2, 575 (2011).

129. Williams, J. R., Bestwick, A. J., Gallagher, P., Hong, S. S., Cui, Y., Bleich, A. S.,
Analytis, J. G., Fisher, I. R. & Goldhaber-Gordon, D. Unconventional Josephson
Effect in Hybrid Superconductor-Topological Insulator Devices. Phys. Rev. Lett.
109, 056803 (2012).

130. Veldhorst, M., Snelder, M., Hoek, M., Gang, T., Guduru, V. K., Wang, X. L.,
Zeitler, U., van der Wiel, W. G., Golubov, A. A., Hilgenkamp, H. & Brinkman,
A. Josephson supercurrent through a topological insulator surface state. Nat.
Mat. 11, 417 (2012).

156



Bibliography

131. Qu, F., Yang, F., Shen, J., Ding, Y., Chen, J., Ji, Z., Liu, G., Fan, J., Jing, X.,
Yang, C. & Lu, L. Strong Superconducting Proximity Effect in Pb-Bi2Te3 Hybrid
Structures. Sci. Rep. 2, 339 (2012).

132. Knez, I., Du, R.-R. & Sullivan, G. Andreev Reflection of Helical Edge Modes in
InAs/GaSb Quantum Spin Hall Insulator. Phys. Rev. Lett. 109, 186603 (2012).

133. Oostinga, J. B., Maier, L., Schüffelgen, P., Knott, D., Ames, C., Brüne, C.,
Tkachov, G., Buhmann, H. & Molenkamp, L. W. Josephson Supercurrent through
the Topological Surface States of Strained Bulk HgTe. Phys. Rev. X 3, 021007
(2013).

134. Hart, S., Ren, H., Wagner, T., Leubner, P., Mühlbauer, M., Brüne, C., Buhmann,
H., Molenkamp, L. W. & Yacoby, A. Induced superconductivity in the quantum
spin Hall edge. Nat. Phys. 10, 638 (2014).

135. Kotetes, P., Schön, G. & Shnirman, A. Engineering and manipulating topological
qubits in 1D quantum wires. J. Korean Phys. Soc. 62, 1558 (2013).

136. Jiang, L., Pekker, D., Alicea, J., Refael, G., Oreg, Y., Brataas, A. & von Oppen,
F. Magneto-Josephson effects in junctions with Majorana bound states. Phys.
Rev. B 87, 075438 (2013).

137. Aperis, A., Varelogiannis, G. & Littlewood, P. B. Magnetic-Field-Induced Pattern
of Coexisting Condensates in the Superconducting State of CeCoIn5. Phys. Rev.
Lett. 104, 216403 (2010).

138. Zhang, F., Kane, C. L. & Mele, E. J. Topological Mirror Superconductivity.
Phys. Rev. Lett. 111, 056403 (2013).

139. Chiu, C.-K., Yao, H. & Ryu, S. Classification of topological insulators and
superconductors in the presence of reflection symmetry. Phys. Rev. B 88, 075142
(2013).

140. Ueno, Y., Yamakage, A., Tanaka, Y. & Sato, M. Symmetry-Protected Majorana
Fermions in Topological Crystalline Superconductors: Theory and Application
to Sr2RuO4. Phys. Rev. Lett. 111, 087002 (2013).

141. Shiozaki, K. & Sato, M. Topology of crystalline insulators and superconductors.
Phys. Rev. B 90, 165114 (2014).

142. Fang, C., Bernevig, B. A. & Gilbert, M. J. Tri-Dirac surface modes in topological
superconductors. Phys. Rev. B 91, 165421 (2015).

157


	Preface
	Introduction to topological phases of matter
	Topological insulators and superconductors
	Phase transitions and symmetries
	Topological classification of Hamiltonians

	Fundamentals of Majorana fermions
	Majorana zero modes: Definition and general properties
	Topological quantum computation
	Theoretical proposals for realization of Majorana fermions
	Majorana fermion signatures

	Majorana bound states in magnetic adatom chains
	Status of magnetic adatom chain experiments
	Theoretical description of Yu-Shiba-Rusinov chains
	Majorana bound states and Majorana tunnel couplings
	Tunneling conductance signatures of Majorana spin character
	Summary and conclusion

	Magnetic order on warped topological insulator surfaces
	Three-dimensional topological insulator
	Surface states and warping effects
	Magnetic instability
	Control and fingerprints of the magnetic phases
	Summary and conclusion

	Topological superconductivity in magnetic skyrmion lattice and superconductor-based heterostructure
	Hamiltonian of a magnetic skyrmion lattice
	Feedback effects between superconductor and magnetic texture
	Analysis of a Bi2Te3-superconductor heterostructure
	Topological superconductivity and Majorana flat bands
	Summary and conclusion

	Conclusion and outlook
	Appendices
	Tunneling conductance for two coupled magnetic adatom chains
	Magnetic order parameter classification of warped topological insulators
	Magnetic susceptibility of warped topological insulators
	Free energy coefficients of warped topological insulators

	Bibliography

