

Computational Study of Cr-SPD for Neutron Flux Measurements in HCPB TBM of ITER

Prasoon RAJ, Maurizio Angelone, Ulrich Fischer, Axel Klix

INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR)

www.kit.edu

⁸NR

Karlsruhe Institute of Technology

OUTLINE

1. INTRODUCTION

- A. Nuclear Instrumentation for ITER TBM
- B. Self-Powered Detector and Cr-SPD

2. Monte-Carlo Modeling Approach for SPDs

- A. ITER TBM Source Neutron and Photon Spectra
- B. SPD Sensitivity Model in MCNP
- C. Description of Cr-SPD Simulation in HCPB TBM Case

3. Cr-SPD Signals in HCPB TBM of ITER

- A. Signal Profile under 400 s and 3000 s ITER Pulse
- B. Delayed vs Prompt Component

4. Conclusions and Outlook

1a. ITER Test Blanket Modules (TBM)

ITER is a Tokamak Fusion Reactor being built in St. Paul lez Durance

${}^2_1D + {}^3_1T \rightarrow {}^4_2He + {}^1_0n + Energy (18 MeV)$

 \Box To test <u>tritium</u> breeding concepts \rightarrow **Test Blanket Modules (TBM)**

- □ To validate neutronic modelling tools, viz.- particle transport/ activation codes, nuclear cross-section data → neutronic experiments in TBM
- ❑ Neutron and Gamma Flux Measurements important → indirect measures for tritium production, material activation

Harsh conditions: E_n- 14 MeV, Φ_n-10¹⁴ cm⁻² s⁻¹, B - 4 T, T - 500 °C
 Do we have detectors?? Activation system, fission chambers, diamond

1b. Self-Powered Detectors (SPD)

Self-Powered Detectors (SPD) are common instruments for neutron and gamma flux monitoring in fission reactor cores

1c. SPD Design and Interactions

PhDia PhDiaFusion 2017

1d. Chromium Fast Neutron SND

 \Box Fast Neutrons very low cross-section for (n, β -) processes: 0.01-100 mb

- \Box Many new (threshold) reactions: (n, p), (n, α) etc. apart from (n, γ)
- ❑ Delayed SPND- similar cross-sections (for all materials), competing effects → sophisticated response mechanism
- Prompt SPND- comparable photon production probabilities and therefore, response
- **Ξ** Emitter materials shortlisted for study: ⁵²Cr(n,p)⁵²V, ⁹Be(n,α)⁶He

ENEA + KIT Cr-SPD: with typical dimensions, designed & constructed Cr-emitter, Al₂O₃- insulator, SS304L-collector

2a. A-lite MCNP Model & HCPB TBM

2b. HCPB Neutron Spectrum

2c. HCPB Photon Spectrum

PhDia PhDiaFusion 2017

2d. SPD Sensitivity Theory and Model

Monte-Carlo (MCNP) Model

- Coupled n-γ-e transports
- Activation products modelled in multiple steps, normalized to 1 source neutron
- Insulator charge accumulation affects included separately

2e. Model Development in MCNP

PhDig PhDiaFusion 2017

2f. Sensitivity of SPD

PhDiaFusion 201

Sensitivity	Emitter Charge		Space Charge Effect
Emitter charge:	$\boldsymbol{Q}_{\boldsymbol{eTOT}} = RR \times Q_{\boldsymbol{eE}}$	$+ \varphi_{G/N} \times Q$	$_{ePE} + Q_{eNPE}$
Insulator charge:	$\boldsymbol{Q}_{iTOT} = RR \times Q_{iE}$	$+ \varphi_{G/N} \times Q_i$	$_{PE} + Q_{iNPE}$
Insulator charge density:	$\boldsymbol{\rho}_{iTOT} = RR \times \rho_{iE}$ -	$\vdash \varphi_{G/N} \times \rho_{iP}$	$\rho_E + \rho_{iNPE}$

ρ_{iT0T} used in Poisson's equation to solve for Space-Charge Field
 F: Returning Fraction, pseudo-analysis

Net Emitter Charge (per neutron)

$$\boldsymbol{Q}_{\boldsymbol{e}} = Q_{\boldsymbol{e}TOT} + F \times Q_{iTOT}$$

Sensitivity:

$$S = \frac{Q_e}{\varphi}$$

- □ A flat source on surface, forward direction
- □ Flux densities: N- 7 x 10¹⁴, P- 2 x 10¹³ cm⁻² s⁻¹
- Two representative ITER Pulses: 400s and 3000s
- Signal Profiles and their Interpretation

1 cell

0.125 to 0.150 cm

3a. Signal Profile and Breakup (400 s)

PhDia PhDiaFusion 2017

2017

Fus:0

3c. Signal Profile and Breakup (3000 s)

PhDia PhDiaFusion 2017

3d. Delayed Signal Components (3000 s)

4. Conclusions & Outlook

Cr-SPD: Not Delayed but Prompt – SPND (80% prompt, due to neutrons)

- Fast neutron signal needs to be carefully extracted from delayed part. Need for online signal interpretation software.
- Negligible thermal neutron signal expected. Decay gamma (1%) and external electron (difficult) contributions to be included!
- Observable prompt photon signal (spinoff: **SPGD feasible**)
- Nanoamperes with present design: difficulties in measurement expected. With geometrical optimization- ten-folds or more

□ **Need of verification with experiments** (lab-based signals very small)

The work leading to this publication has been funded partially by Fusion for Energy under the Specific Grant Agreement F4E-FPA-395-2. This publication reflects the views only of the author, and Fusion for Energy cannot be held responsible for any use which may be made of the information contained therein.

1extra. Chromium Fast Neutron SND

2extra. Neutron Only Calculations

- F2-Surface Flux
 Comp. w/ Expt.
 Φ_n (neutron/ cm²)
- F4-Cell FluxAll (n, β^-) reactionsRR: (ρ/M), all cells
 - F4-Cell Flux
 RR(r): electron emission in cells

2extra. Electron Only Calculation

PhDia PhDiaFusion 2017

2extra. Coupled Calculations

