

Time-resolved IR spectroscopic studies of Sr-NaTaO₃ photocatalysts

Xiaojuan Yu, Chengwu Yang, Stefan Heissler, Alexei Nefedov, Hiroshi Onishi⁺, Yuemin Wang and Christof Wöll

Institute of Functional Interfaces, Chemistry of oxydic and organic Interfaces

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

⁺ Department of Chemistry, School of Science, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan.

www.kit.edu

I. Introduction

II. Experimental

III. Results

> Time-resolved IR results during UV irradiation

> Atomic H (D) doping experiments

IV. Conclusions

Introduction

NaTaO₃ perovskite structure

quantum yield > 50 %

La-doped NaTaO₃

A. Kudo et al., Chem. Phys. Lett. 2000, 331, 373

Ca, Sr, Ba-doped NaTaO₃

Iwase et al., ChemSusChem, 2009, 2, 873.

Sr-NaTaO₃ photocatalyst

(A)

 H_2O

Individual Steps in a Photocatalytic Reaction

- 1. Adsorption of molecules on surface
- 2. Generation of an exciton
- 3. Dissociation of exciton into electron and hole
- 4. Trapping of charge carriers in polaronic states
- 5. Transport of charge carriers to surface

6. Trigger reactions in the adsorbed molecules

H. Sezen et al., Sci. Rep. 2014, 4, 3808
H. Sezen et al., Nat. Commun. 2015, 6, 6901
Deinert, J.-C., et al., Phys. Rev. Lett. 2014. 113: 057602.
Thomas, D.G., J. Phys. Chem. Solids, 1960. 15: 86-96.
Skettrup, T., Phys. Status Solidi B, 1970. 42: 813-819.
Linsebigler, et al., Chem. Rev., 1995. 95: 735-758.
Petrik, et al., JPC Letters, 2013. 4: 344-349.
Petrik, Kimmel, Phys. Chem. Chem. Phys., 2014. 16: 2338-2346.
Thompson, Yates, Topics in Catalysis, 2005. 35: 197-210.

Experimental

I. Introduction

II. Experimental

III. Results

Time-resolved IR results during UV irradiation

> Atomic H (D) doping experiments

IV. Conclusions

HF-etched Sr-NaTaO₃

e7

IR

e⁻

thermal

equilibrium band

valence

4000

3500

band

3000 2500 2000 1500 Wavenumber (cm⁻¹)

1000

UV

e

(e⁻)

Un-etched Sr-NaTaO₃

I. Introduction

II. Experimental

III. Results

➢ Time-resolved IR results during UV irradiation

> Atomic H (D) doping experiments

IV. Conclusions

H→e + H⁺

CB

traps

VB

electron

e

HF-etched Sr-NaTaO₃

UV irradiation

Institute of Functional Interfaces

Un-etched Sr-NaTaO₃

Shell (Sr-rich)

Core (Sr-poor)

Atomic H or D doping

UV irradiation

Electron polarons

Conclusions

- The HF-etched and un-etched Srdoped NaTaO₃ samples exhibit the photocatalytic activity, whereas the pure sample is inactive.
- Based on the atomic H(D) experiments, the high photocatalytic activity of Sr-doped samples is attributed to the formation of different electron polaron states (HF-etched Sr-NaTaO₃: 1020 cm⁻¹; un-etched Sr-NaTaO₃: 955 cm⁻¹).

