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ABSTRACT:

Classification of materials found in urban areas using remote sensing, in particular with hyperspectral data, has in recent times increased
in importance. This study is conducting classification of materials found on building using hyperspectral data, by using an existing
spectral library and collected data acquired with a spectrometer. Two commonly used classification algorithms, Support Vector Machine
and Random Forest, were used to classify the materials. In addition, dimensionality reduction and band selection were performed
to determine if selected parts of the full spectral domain, such as the Short Wave Infra-Red domain, are sufficient to classify the
different materials. We achieved the best classification results for the two datasets using dimensionality reduction based on a Principal
Component Analysis in combination with a Random Forest classification. Classification using the full domain achieved the best results,
followed by the Short Wave Infra-Red domain.

1. INTRODUCTION

Knowledge about the materials found in urban areas is valuable
information for municipalities while dealing with urban and re-
gional planning. Such information is crucial for city models when
a high level of detail is needed, but also for estimates of the an-
thropocentric inventory and as input to models of the built envi-
ronment. The urban climate is strongly influenced by the existing
materials, hence an increased number of large-scale land cover
databases have emerged.

Data about building materials, such as the materials on a facade,
have received an increased interest in recent times. As cities are
trying to reduce the building energy consumption, information
about the facade structure, its components and the materials are
of major interest. With the usage of thermal imaging, it is possi-
ble to estimate the heat transfer coefficient for buildings when the
material and the structure are known (Fokaides and Kalogirou,
2011). Hence, prior knowledge of the facade structure and mate-
rials is necessary for a meaningful estimation of the parameter.

Material classification based on data collected with remote sens-
ing is an efficient approach since materials have different spec-
tral reflectance curves, which can be extracted from the pixel
values. The three most commonly used bands (red, blue and
green), which ranges in the visible spectrum, are often not suf-
ficient for material classification due to the limited spectral in-
formation. Therefore, data acquired with hyperspectral sensors
have received an increased importance for classifications of ur-
ban materials since the spectral range is larger. Spectral libraries
based on hyperspectral data are therefore often used for training
and accuracy assessment of classification algorithms.

Spectral libraries can be based on data captured from either space-
borne, airborne or ground-based sensors/platforms (Heiden et al.,
2007; Kotthaus et al., 2014; Herold et al., 2003). With the in-
creased usage of Unmanned Aerial Vehicles (UAVs), such spec-
tral libraries can be created using data acquired at lower altitudes
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with innovative compact and lightweight sensors. Due to the
small size of UAVs, flight campaigns with the sensors can be eas-
ily performed since acquisition of data can be done on the spot.
In addition, data acquired with a UAV is less influenced by the
atmosphere in comparison to data acquired at higher altitudes.

Hyperspectral sensors available for UAVs have limited techni-
cal specifications compared to bigger sensors, such as a narrower
spectral range. It is therefore of interest to determine if offered
spectral ranges are enough to classify building materials correctly.
Hence, a comprehensive approach for material classification us-
ing feature extraction and band selection can determine if all
bands are necessary or not.

In short, this study aims to classify urban materials, mainly those
found on building facades, by using one existing spectral library
and collected data from a spectrometer. The data is classified into
commonly encountered building material classes, such as glass
and concrete. Since the main task is to distinguish the basic ma-
terials, a fine level of detail of the material classification is not
performed. The main objectives of this study are:

• Classification of common materials found on buildings
• Evaluation of different classification approaches
• Utilization of an existing spectral library and collected data
• Assessment of the added value by using dimensionality re-

duction and band selection

We briefly summarize the literature related to the classification
of hyperspectral data and the usages of hyperspectral libraries in
Section 2. The used methodology is presented in Section 3, which
consists of feature extraction, involving dimensionality reduction
and feature selection techniques, and supervised classification.
The utilized datasets, the experimental set-up and the experimen-
tal results are described in Section 4. Subsequently, the results
are discussed in Section 5, while the final remarks and sugges-
tions for future work are provided in Section 6.
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2. RELATED WORK

To provide an overview of related work, the common approaches
for classifying hyperspectral data are presented in Section 2.1
while the various applications of spectral libraries are presented
in Section 2.2.

2.1 Classification of Hyperspectral Data

In recent years, a lot of attention has been paid to the classifica-
tion of hyperspectral imagery (Plaza et al., 2009; Camps-Valls et
al., 2014) which is nowadays typically acquired from airborne or
spaceborne sensor platforms. Focusing on the classification on
a per-pixel basis, the straightforward approach is to consider the
reflectance values acquired for all spectral bands, to concatenate
these values to a feature vector and to use a standard classifier
such as a Support Vector Machine (Melgani and Bruzzone, 2004;
Chi et al., 2008) or a Random Forest (Ham et al., 2005; Joelsson
et al., 2005).

However, for high-dimensional data like hyperspectral data, a
high degree of redundancy can be expected as values correspond-
ing to adjacent spectral bands tend to be strongly correlated. Con-
sequently, the classification approach has to deal with more or
less relevant features as well as with redundant and possibly even
irrelevant features. This is quite important, since an increase of
the number of considered features over a certain threshold typi-
cally results in a decrease in classification accuracy, given a con-
stant number of training examples (Melgani and Bruzzone, 2004;
Keller et al., 2016). This effect is commonly referred to as the
Hughes phenomenon (Hughes, 1968), and it can be addressed by
using either dimensionality reduction or feature selection tech-
niques. Thereby, dimensionality reduction can for instance be
achieved via a Principal Component Analysis or an Independent
Component Analysis as proposed in (Licciardi et al., 2012; Wang
and Chang, 2006). While such approaches focus on transform-
ing the acquired data to a new space, feature selection techniques
focus on retaining only a subset of relevant and informative fea-
tures. In general, feature selection typically allows to gain predic-
tive accuracy, to improve computational efficiency with respect
to both time and memory consumption, and to retain meaningful
features (Guyon and Elisseeff, 2003; Saeys et al., 2007; Zhao et
al., 2010). This has also been demonstrated for the classification
of hyperspectral data, e.g. in (Melgani and Bruzzone, 2004; Le
Bris et al., 2014; Chehata et al., 2014; Keller et al., 2016; Keller
et al., 2017).

For the classification of hyperspectral imagery, there are also ap-
proaches exploiting spatial-spectral features, i.e. relations within
a local image neighborhood are taken into account in addition to
the spectral information per pixel. However, in the scope of our
work, we focus on a classification of common building materials
on facades by only considering the acquired spectrum per mea-
surement.

2.2 Usages of Spectral Libraries

The number of spectral libraries are increasing as more appli-
cations are being developed and hence, more types of spectral
libraries are being built. The specific types of materials and the
level of detail when defining a spectrum are chosen depending on
the intended application. Therefore, there is a large variation of
spectral libraries and if publicly available, it is possible to choose
a suitable library for a specific application.

One could group the types of spectral libraries into two bigger
groups, the first one being libraries based on spectra from natural

materials, such as vegetation (Zomer et al., 2009) and the other
one being a mixture between natural and man-made materials,
such as urban surface materials (Heiden et al., 2007). The ap-
plications of these types of libraries are thus different, since they
have been developed and built for different purposes.

The different types of spectral libraries which are based on spec-
tra from natural materials, are often developed for classification
of different types of vegetation on a high level of detail. Using
such libraries, it is possible to perform classification of soil prop-
erties (Shepherd and Walsh, 2002), vegetation species (Cochrane,
2000), crops (Rao et al., 2007) and even corals (Kutser et al.,
2006). Hence, to distinguish the differences a high level of detail
describing each spectrum is necessary.

Spectral libraries based on a mixture of man-made and natural
materials may not need the fine level of detail when it comes to
distinguish different types of vegetation, since vegetation is of-
ten grouped into a small number of spectra. On the other hand,
the man-made materials are in such libraries distinguished on a
finer level of detail (Baldridge et al., 2009; Kotthaus et al., 2014;
Heiden et al., 2007).

In our work, the type of spectral library we use is based on spectra
from urban land cover materials and thus, the man-made materi-
als are defined on a finer level of detail.

3. METHODOLOGY

To classify common building materials on facades, we utilize a
basic framework consisting of two steps. The first step addresses
the extraction of features from the acquired hyperspectral data
(Section 3.1), whereas the second step focuses on a supervised
classification based on the derived features (Section 3.2).

3.1 Feature Extraction

The straightforward approach to obtain features from the acquired
hyperspectral data is to directly use the values measured for all
spectral bands and to concatenate these values to corresponding
feature vectors. Depending on the classifier that is later used, it
can be favorable to additionally introduce a normalization which
maps the range of occurring values to the interval [0, 1] and thus
adapts the value for each spectral band. Accordingly, we use a
standard representation in terms of feature vectors whose entries
correspond to reflectance values between 0% and 100%.

However, as already mentioned in Section 2.1, the values corre-
sponding to adjacent spectral bands often tend to be correlated.
Consequently, the degree of redundancy might be considerable
for the considered hyperspectral data which, in turn, typically re-
veals a negative impact on the classification results which has
for instance been demonstrated in (Melgani and Bruzzone, 2004;
Keller et al., 2016). To address this issue, we involve standard
approaches for dimensionality reduction and feature selection as
recently used for the classification of simulated hyperspectral En-
MAP data (Keller et al., 2017).

3.1.1 Dimensionality Reduction For dimensionality reduc-
tion, we use a standard Principal Component Analysis (PCA).
The PCA uses an orthogonal transformation to map the consid-
ered data from one space spanned by possibly correlated variables
to another space spanned by linearly uncorrelated variables which
are referred to as principal components. The components are or-
ganized in a way that the first principal component covers the
highest variability of the data, and that each subsequent principal
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component covers the highest possible variability under the con-
straint that it is orthogonal with respect to all previous principal
components. As a consequence, the most relevant information of
the considered data is covered by the first few principal compo-
nents. The PCA-based dimensionality reduction hence focuses
on only considering the first few principal components, while as-
suming that there will not be a significant loss of information
when discarding all other principal components. For our exper-
iments, we use the first few principal components which cover
99.9% of the variability of the given training data.

3.1.2 Feature Selection For feature selection, we use an ap-
proach that has recently been proven to work well for the analy-
sis of relevant spectral bands in simulated hyperspectral EnMAP
data (Keller et al., 2017) and is referred to as Correlation-based
Feature Selection (CFS) (Hall, 1999). In general, CFS accounts
for (1) the correlation between features and classes to identify
relevant features and (2) the correlation among features to iden-
tify and discard redundant features. With the average correlation
between features and classes denoted by ρ̄fc and the average cor-
relation between different features denoted by ρ̄ff , the relevance
r of a feature subset F comprising Nf features is defined by

r(F) =
Nf ρ̄fc√

Nf +Nf (Nf − 1)ρ̄ff
. (1)

A suitable feature subset F∗ can thus be derived by maximiz-
ing r over the set of all possible feature subsets (Hall, 1999). To
achieve this, an iterative scheme is exploited where per iteration
either a feature is added to the feature subset (forward selection)
or a feature is removed from the feature subset (backward elimi-
nation) until the relevance r converges to a stable value.

3.2 Supervised Classification

Focusing on standard classifiers for supervised classification, we
use a Random Forest classifier (Section 3.2.1) and a Support Vec-
tor Machine classifier (Section 3.2.2) which represent the most
popular approaches among a rich diversity of classification ap-
proaches.

3.2.1 Random Forest The Random Forest (RF) classifier pro-
posed in (Breiman, 2001) is composed of an ensemble of ran-
domly trained decision trees. More specifically, each decision
tree is trained on a random subset of the training data, resulting
in a set of decision trees which are randomly different from each
another. Consequently, the predictions of the decision trees for a
new feature vector can be considered as being de-correlated and,
thus, improved generalization and robustness can be expected
when taking the respective majority vote over the predictions of
all decision trees (Criminisi and Shotton, 2013).

3.2.2 Support Vector Machine The Support Vector Machine
(SVM) classifier (Cortes and Vapnik, 1995; Chang and Lin, 2011)
has originally been presented as binary classifier, which is trained
to linearly separate two classes of interest by constructing a hy-
perplane or a set of hyperplanes in a high-dimensional space.
Thereby, a good separation is expected to be achieved if the hy-
perplane has the maximum margin (i.e. distance) to the classwise
nearest feature vectors in the training data. However, a linear
separation of different classes in the considered space is often not
possible. To allow for separability in such cases, a kernel func-
tion such as a (Gaussian) radial basis function (RBF) is typically
introduced to implicitly map the training data to a new space of
higher dimensionality where the data is linearly separable. To al-
low for multi-class classification, an SVM classifier is composed
of several binary SVMs. For the latter, we use a one-against-
one approach which means that, for each pair of classes, a binary

SVM is trained to distinguish samples of one class from sam-
ples of the other class. Such a strategy may improve the training
process and the subsequent discrimination of classes which are
closely located in the feature space.

4. EXPERIMENTAL RESULTS

In this section, we present details about the used datasets (Sec-
tion 4.1), a description of the implementation (Section 4.2) and
finally the conducted experiment with the corresponding results
(Section 4.3).

4.1 Datasets

To evaluate the proposed methods for feature extraction, we choose
two datasets: an open access spectral library dataset and own col-
lected data. Both datasets are presented in the following subsec-
tions.

4.1.1 Spectral Library A number of commonly used open
spectral libraries are available with variable emphasis on either
artificial urban materials or natural materials (Le Bris et al., 2016).
We choose the Santa Barbara library for urban classification that
has been compiled to study the spectral resolution requirements
for urban area mapping (Herold et al., 2003). The available part
of the Santa Barbara dataset is a collection of nearly 1000 field
spectra of 26 differently labeled materials and land cover types
that have been acquired in the region of Santa Barbara and Go-
leta, CA, USA (Herold et al., 2004). The spectra were measured
on site with an ASD Full Range spectrometer, comparable to the
instrument used in this study. Among others, the Santa Barbara
spectral library is our preferred choice as it can be easily accessed
and contains a comparably large compilation of in situ field mea-
surements from materials that are relevant for facade classifica-
tion. It fits our database most.

4.1.2 Collected Data We collected field spectra of urban ma-
terials found on building facades and the near surrounding by us-
ing the high-resolution spectrometer FieldSpec 4 Hi-Res, which
is an identical but updated version of the spectrometer used to
collect data for the Santa Barbara dataset. The FieldSpec 4 has
a spectral range of 350 to 2500 nm with a spectral sampling of
1.4 nm in the range of 350 -1000 nm and 1.1 nm between 1001 -
2500 nm. The spectrometer has 2151 channels and with a wave-
length accuracy of 0.5 nm.

Materials found on and near selected buildings were collected
during mostly sunny conditions and one building can be seen in
Figure 1. The collected dataset will from here on be referred to
URBAN-SAT and was collected in an area north of the city of
Karlsruhe in Germany. Some of the samples we collected can be
seen in Figure 2 and the materials that we collected at the study
area were:

• Glass (not listed)
• Concrete (1.2.6)
• Metal (1.1.5)
• Wood (1.1.7)
• Fibre Cement (not listed)

The numbers in brackets are the corresponding classes according
to the classification system in (Herold et al., 2004).

4.2 Implementation

All implementation and processing was done in Matlab. From
external packages, we used the CFS implementation provided
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Figure 1. One building used for data collection

(a) (b)

(c) (d)

Figure 2. Samples of collected building material: (a) Metal, (b)
Fibre Cement, (c) Wood and (d) Wood.

with (Zhao et al., 2010) and the RF implementation provided with
(Liaw and Wiener, 2002).

To evaluate the performance of our framework, we consider sev-
eral evaluation metrics. Besides the overall accuracy OA indicat-
ing the overall performance of an approach, we also provide the
κ-value indicating how good classes can be separated from each
other. Furthermore, we focus on the average recall R̄, the average
precision P̄ and the average F1-score F̄1 across all classes.

4.3 Experiment and Results

In addition to using the full spectrum, we performed sub-band
selection to determine if selected parts of the full spectrum are
enough to classify materials using the two classification approaches,
SVM and RF. The chosen sub-bands are:

• Visible: 400 - 700 nm
• SWIR: 1000 - 2400 nm
• VNIR: 450 - 900 nm

These three band selections represent the spectrum of firstly the
visible domain, secondly the Short Wave Infra-Red domain (SWIR)
and lastly the common spectral range of Visible and Near Infra-
Red (VNIR) hyperspectral sensors. The first spectral range was
chosen as it is claimed that this range is not sufficient to classify
materials, hence hyperspectral sensors are preferred for material
classification. The second spectral range, SWIR, was picked on
the basis that it is claimed to have an important contribution deal-
ing with classification of urban materials (Le Bris et al., 2016).

The third selection was chosen since it represents the spectral
range of the hyperspectral VNIR sensor Cubert Firefly S185, that
will be used in future work for UAV based data collection. Hence,
it is of interest to determine if the selected range is sufficient to
classify building materials.

Coefficient of variation is an indicator which one can use to calcu-
late the distribution and is expressed as percentage. It is defined
by dividing the standard deviation with the mean, as seen in

cv =
σ

µ
(2)

This indicator is in this work used to display the distribution of
the spectral reflectance of the classified materials across different
wavelengths. Hence, it is possible to determine which parts of the
spectral domain contain the most variation. The mean spectra and
the coefficient of variation spectra for the classes of the URBAN-
SAT dataset can be seen in Figures 3 and 5 and for those of the
Santa Barbara dataset in Figures 4 and 6.
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Figure 3. Mean spectra for the URBAN-SAT dataset (Glass:
cyan; Concrete: red; Metal: gray; Wood: orange; Fibre Cement:
green).
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Figure 4. Mean spectra for the Santa Barbara dataset (Compos-
ite: olive green; Gravel: blue; Metal: gray; Asphalt: black; Tile:
yellow; Tar: magenta; Wood: orange; Concrete: red).

In a first experiment, we consider the URBAN-SAT dataset where
the reference labeling refers to the five semantic classes Glass,
Concrete, Metal, Wood and Fibre Cement. We randomly select
10 samples per class to obtain a training set, while we use all
remaining samples as test set. On the one hand, we use all avail-
able spectral bands except the spectral bands that are sensitive
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Figure 5. Coefficient of variation spectra for the URBAN-SAT
dataset (Glass: cyan; Concrete: red; Metal: gray; Wood: orange;
Fibre Cement: green).
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Figure 6. Coefficient of variation spectra for the Santa Barbara
dataset (Composite: olive green; Gravel: blue; Metal: gray; As-
phalt: black; Tile: yellow; Tar: magenta; Wood: orange; Con-
crete: red).

to noise (i.e. the spectral bands in the range of 1351-1440 nm,
1798-1957 nm and > 2400 nm). As a consequence, we consider
spectral information corresponding to 1801 spectral bands. Us-
ing the reflectance values corresponding to these channels deliv-
ers the feature set Sall,orig, applying a PCA yields the feature set
Sall,PCA, and only using the spectral bands selected via CFS re-
sults in the feature set Sall,CFS. In addition to the original spectra,
we separately consider the 301 spectral bands that correspond to
the visible spectrum in the range of 400-700 nm, which deliv-
ers the feature sets Svisible,orig, Svisible,PCA and Svisible,CFS, re-
spectively. Furthermore, we separately consider the 501 spectral
bands that correspond to the VNIR spectrum in the range of 450-
950 nm, which yields the feature sets SVNIR,orig, SVNIR,PCA

and SVNIR,CFS, respectively. Finally, we consider the 1151 spec-
tral bands that correspond to the SWIR spectrum in the range of
1000-2400 nm when discarding the spectral bands in the range
of 1351-1440 nm and 1798-1957 nm. This results in the feature
sets SSWIR,orig, SSWIR,PCA and SSWIR,CFS. Relying on the 12
different feature sets, we perform a standard supervised classifi-
cation. The results achieved with the RF classifier and the SVM
classifier are provided in Table 1.

In a second experiment, we consider the Santa Barbara dataset
where the reference labeling refers to eight semantic classes which
were defined by us: Composite, Gravel, Metal, Asphalt, Tile, Tar,
Wood and Concrete. On the one hand, we consider the use of

all available spectral information (172 spectral bands) after re-
moving the bands which are sensitive to noise (i.e. the spectral
bands in the range of 1325-1473 nm and 1783-2008 nm). On the
other hand, we consider the use of only the spectral bands that
correspond to the visible spectrum in the range of 400-700 nm
(29 spectral bands), the use of only the spectral bands that cor-
respond to the VNIR spectrum in the range of 450-950 nm (53
spectral bands) and the use of the spectral bands that correspond
to the SWIR spectrum in the range of 1000-2400 nm (105 spec-
tral bands) after discarding the spectral bands which are sensitive
to noise. We therefore obtain 12 different feature sets in anal-
ogy to the first experiment. For classification, we again use a
RF classifier and an SVM classifier. The respectively achieved
classification results are provided as well in Table 1.

5. DISCUSSION

The main objectives of this work were to classify common ma-
terials found on buildings, by using the datasets of Santa Bar-
bara and URBAN-SAT and to evaluate the achieved results. The
added value of using dimensionality reduction and feature/band
selection as well as parts of the full spectra domain were evalu-
ated. Hence, by comparing the classification approaches, we have
concluded the following.

RF compared to SVM achieves better classification results for
both datasets, which can be seen with the better overall accu-
racy and higher κ-values. SVM does achieve classification re-
sults close to RF when the full spectra domain is used, but not the
sub-bands are chosen. Overall, the classification of the materials
in the Santa Barbara dataset is superior to the classification of the
materials in the URBAN-SAT dataset. However, the URBAN-
SAT dataset compared to the Santa Barbara dataset consists of
fewer samples, hence it contains a larger variation of spectra for
each material. This is noticeable while studying the provided ta-
bles, since the scores using the URBAN-SAT dataset are lower
than the scores generated from the Santa Barbara dataset in addi-
tion to the generally higher coefficient of variation.

The PCA-based dimensionality reduction achieves in general a
higher overall accuracy than CFS and when none of them is used.
The scoring also indicates that it is better to use no feature se-
lection than to use CFS, since CFS performs in general worse.
Additionally, the scores seen in the tables when the full domain
is used are the best, followed by using the sub-band of SWIR.
The VNIR domain achieves better classification results than the
SWIR domain with the URBAN-SAT dataset, with the opposite
results for the Santa Barbara dataset. However, the URBAN-SAT
dataset contains in comparison to the Santa Barbara dataset more
noise in the SWIR domain, which can be seen in Figure 5. Hence,
the SWIR domain loses values for classifying materials with the
URBAN-SAT dataset. This could indicate that the VNIR domain
can be sufficient for material classification.

Three materials existed in both two datasets, Metal, Wood and
Concrete and are represented as gray, orange and red in the plot-
ted graphs. One can see that the mean spectra for these three ma-
terials (in Figures 3 and 4) are not the same in the two datasets.
This could be due to a variation of how the materials are defined.
While both datasets contain metal, there is a variation of the spec-
tra between different types of metal in addition to the paint and
coating of the metal. In addition, the URBAN-SAT dataset con-
sists of fewer samples and is therefore more sensible to the varia-
tions caused by for example the weather conditions and the types
of metals. This variation in the URBAN-SAT dataset can be noted
in Figure 5, where the coefficient of variation spectra has for some
materials a value close or above 100%.
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Sall Svisible SVNIR SSWIR

orig PCA CFS orig PCA CFS orig PCA CFS orig PCA CFS

OA [%]

URBANSATRF 85.0 87.5 69.8 71.9 81.3 63.1 80.6 83.8 65.0 76.9 75.6 71.3
URBANSATSVM 77.5 76.9 71.3 68.1 68.1 60.0 70.6 69.4 64.4 66.9 65.0 65.6
SantaBarbaraRF 86.0 90.4 85.4 70.3 81.6 67.6 70.6 81.9 71.4 69.0 85.2 62.9
SantaBarbaraSVM 82.4 82.1 83.5 65.6 65.6 65.9 70.1 70.1 71.4 74.5 72.8 69.5

κ [%]

URBANSATRF 81.1 84.1 61.8 64.5 76.4 53.2 75.6 79.5 55.4 70.7 69.1 63.5
URBANSATSVM 71.6 70.8 63.3 59.9 59.9 49.5 62.8 61.2 54.9 57.8 55.4 55.9
SantaBarbaraRF 83.5 88.7 82.9 65.7 78.5 62.4 66.1 78.8 67.0 63.9 82.5 57.1
SantaBarbaraSVM 79.4 79.1 80.6 60.8 60.8 61.0 65.6 65.6 67.1 70.2 68.3 64.6

R̄ [%]

URBANSATRF 85.8 88.3 70.8 71.0 81.7 61.2 81.7 84.7 63.8 75.0 77.2 69.0
URBANSATSVM 77.8 77.3 69.8 67.8 67.8 58.8 71.5 70.2 64.3 64.3 62.5 62.8
SantaBarbaraRF 86.9 92.4 85.8 74.5 80.8 68.5 74.2 85.8 74.5 73.0 87.9 68.9
SantaBarbaraSVM 85.3 85.0 85.2 70.7 70.7 69.7 75.3 75.3 76.4 77.4 75.7 73.5

P̄ [%]

URBANSATRF 86.0 90.2 71.2 74.1 82.9 64.1 81.3 85.0 63.9 76.0 79.1 70.6
URBANSATSVM 78.1 77.5 72.1 72.9 72.9 59.4 71.5 70.7 63.9 67.5 65.7 69.0
SantaBarbaraRF 85.3 90.8 80.7 67.2 77.1 64.2 70.4 79.3 72.1 67.2 84.8 60.9
SantaBarbaraSVM 81.8 81.5 81.1 62.3 62.6 66.0 72.9 72.9 74.3 72.1 70.5 65.7

F̄1 [%]

URBANSATRF 84.8 88.9 68.3 70.5 80.5 60.2 80.3 83.8 62.7 75.1 76.2 69.3
URBANSATSVM 77.3 76.7 70.4 66.7 66.7 58.1 70.6 69.2 63.2 65.1 63.2 64.2
SantaBarbaraRF 84.8 91.0 81.3 66.5 77.6 63.2 68.3 80.5 69.5 67.3 85.1 61.6
SantaBarbaraSVM 82.2 82.0 81.9 60.2 60.1 61.8 69.7 69.7 71.1 71.1 69.8 66.0

Table 1. Classification results achieved for the two datasets

Different types of building materials are used in different coun-
tries which needs to be kept in mind. In our case, the two datasets
have been collected in two different countries. The type of wood
which might be use as building material in the Santa Barbara re-
gion (USA) may not be the same in the Karlsruhe region (Ger-
many). Therefore, it might not be feasible to compare the spectral
reflectance of the same material from the two datasets, since they
might not be the same type of material.

6. CONCLUSION AND OUTLOOK

In this work, we have classified building materials using the Santa
Barbara dataset and our own dataset URBAN-SAT. Two classifi-
cation approaches were used, SVM and RF, in addition to PCA-
based dimensionality reduction and CFS-based feature selection.
The classification results indicate that RF is in general better than
SVM for the two used datasets, achieving a higher overall accu-
racy and higher κ-values. In addition, usage of the PCA-based
dimensionality reduction contributes as well to those better clas-
sification results. While comparing the three sub-bands, one can
tell that the full domain provides the better values, followed by
the SWIR and the VNIR domain. However, the results indicate
that the VNIR domain is sufficient for material classification.

As future work, we want to significantly extend the URBAN-SAT
database by having a larger variation of building materials and
increasing the number of acquired samples. A spectral variation
caused by small differences in the solar radiation is noticeable,
as seen in results in the SWIR domain. URBAN-SAT should
therefore contain material samples exposed from different inten-
sities of solar radiation (at both cloudy and sunny conditions).
This would extend the usage of the library, since the spectral re-
flectance is strongly affected by intensity of the solar radiation.
In general, laboratory created libraries do not reflect the reality
since the data is collected with a constant intensity of solar radi-
ation. The level of detail that describes the materials, meaning
differencing for example metals, should be on a finer level than
the one used in this work for an increased usage.
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